sim: mips: invert sim_state storage
[binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997-2021 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of the MIPS sim.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #ifndef SIM_MAIN_H
21 #define SIM_MAIN_H
22
23 #define SIM_HAVE_COMMON_SIM_STATE
24
25 /* MIPS uses an unusual format for floating point quiet NaNs. */
26 #define SIM_QUIET_NAN_NEGATED
27
28 #define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
29 mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
30
31 #include "sim-basics.h"
32 #include "sim-base.h"
33 #include "bfd.h"
34
35 /* Deprecated macros and types for manipulating 64bit values. Use
36 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
37
38 typedef signed64 word64;
39 typedef unsigned64 uword64;
40
41 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
42 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
43 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
44 #define SET64HI(t) (((uword64)(t))<<32)
45 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
46 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
47
48 /* Check if a value will fit within a halfword: */
49 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
50
51
52 typedef enum {
53 cp0_dmfc0,
54 cp0_dmtc0,
55 cp0_mfc0,
56 cp0_mtc0,
57 cp0_tlbr,
58 cp0_tlbwi,
59 cp0_tlbwr,
60 cp0_tlbp,
61 cp0_cache,
62 cp0_eret,
63 cp0_deret,
64 cp0_rfe
65 } CP0_operation;
66
67 /* Floating-point operations: */
68
69 #include "sim-fpu.h"
70 #include "cp1.h"
71
72 /* FPU registers must be one of the following types. All other values
73 are reserved (and undefined). */
74 typedef enum {
75 fmt_single = 0,
76 fmt_double = 1,
77 fmt_word = 4,
78 fmt_long = 5,
79 fmt_ps = 6,
80 /* The following are well outside the normal acceptable format
81 range, and are used in the register status vector. */
82 fmt_unknown = 0x10000000,
83 fmt_uninterpreted = 0x20000000,
84 fmt_uninterpreted_32 = 0x40000000,
85 fmt_uninterpreted_64 = 0x80000000U,
86 } FP_formats;
87
88 /* For paired word (pw) operations, the opcode representation is fmt_word,
89 but register transfers (StoreFPR, ValueFPR, etc.) are done as fmt_long. */
90 #define fmt_pw fmt_long
91
92 /* This should be the COC1 value at the start of the preceding
93 instruction: */
94 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
95
96 #ifdef TARGET_ENABLE_FR
97 /* FIXME: this should be enabled for all targets, but needs testing first. */
98 #define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
99 ? ((SR & status_FR) ? 64 : 32) \
100 : (WITH_TARGET_FLOATING_POINT_BITSIZE))
101 #else
102 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
103 #endif
104
105
106
107
108
109 /* HI/LO register accesses */
110
111 /* For some MIPS targets, the HI/LO registers have certain timing
112 restrictions in that, for instance, a read of a HI register must be
113 separated by at least three instructions from a preceeding read.
114
115 The struct below is used to record the last access by each of A MT,
116 MF or other OP instruction to a HI/LO register. See mips.igen for
117 more details. */
118
119 typedef struct _hilo_access {
120 signed64 timestamp;
121 address_word cia;
122 } hilo_access;
123
124 typedef struct _hilo_history {
125 hilo_access mt;
126 hilo_access mf;
127 hilo_access op;
128 } hilo_history;
129
130
131
132
133 /* Integer ALU operations: */
134
135 #include "sim-alu.h"
136
137 #define ALU32_END(ANS) \
138 if (ALU32_HAD_OVERFLOW) \
139 SignalExceptionIntegerOverflow (); \
140 (ANS) = (signed32) ALU32_OVERFLOW_RESULT
141
142
143 #define ALU64_END(ANS) \
144 if (ALU64_HAD_OVERFLOW) \
145 SignalExceptionIntegerOverflow (); \
146 (ANS) = ALU64_OVERFLOW_RESULT;
147
148
149
150
151
152 /* The following is probably not used for MIPS IV onwards: */
153 /* Slots for delayed register updates. For the moment we just have a
154 fixed number of slots (rather than a more generic, dynamic
155 system). This keeps the simulator fast. However, we only allow
156 for the register update to be delayed for a single instruction
157 cycle. */
158 #define PSLOTS (8) /* Maximum number of instruction cycles */
159
160 typedef struct _pending_write_queue {
161 int in;
162 int out;
163 int total;
164 int slot_delay[PSLOTS];
165 int slot_size[PSLOTS];
166 int slot_bit[PSLOTS];
167 void *slot_dest[PSLOTS];
168 unsigned64 slot_value[PSLOTS];
169 } pending_write_queue;
170
171 #ifndef PENDING_TRACE
172 #define PENDING_TRACE 0
173 #endif
174 #define PENDING_IN ((CPU)->pending.in)
175 #define PENDING_OUT ((CPU)->pending.out)
176 #define PENDING_TOTAL ((CPU)->pending.total)
177 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
178 #define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
179 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
180 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
181 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
182
183 /* Invalidate the pending write queue, all pending writes are
184 discarded. */
185
186 #define PENDING_INVALIDATE() \
187 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
188
189 /* Schedule a write to DEST for N cycles time. For 64 bit
190 destinations, schedule two writes. For floating point registers,
191 the caller should schedule a write to both the dest register and
192 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
193 is updated. */
194
195 #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
196 do { \
197 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
198 sim_engine_abort (SD, CPU, cia, \
199 "PENDING_SCHED - buffer overflow\n"); \
200 if (PENDING_TRACE) \
201 sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n", \
202 (unsigned long) cia, (unsigned long) &(DEST), \
203 (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
204 PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
205 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
206 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
207 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
208 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
209 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
210 PENDING_IN = (PENDING_IN + 1) % PSLOTS; \
211 PENDING_TOTAL += 1; \
212 } while (0)
213
214 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
215 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
216
217 #define PENDING_TICK() pending_tick (SD, CPU, cia)
218
219 #define PENDING_FLUSH() abort () /* think about this one */
220 #define PENDING_FP() abort () /* think about this one */
221
222 /* For backward compatibility */
223 #define PENDING_FILL(R,VAL) \
224 do { \
225 if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR) \
226 { \
227 PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1); \
228 PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \
229 } \
230 else \
231 PENDING_SCHED(GPR[(R)], VAL, 1, -1); \
232 } while (0)
233
234
235 enum float_operation
236 {
237 FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD,
238 FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS,
239 FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
240 };
241
242
243 /* The internal representation of an MDMX accumulator.
244 Note that 24 and 48 bit accumulator elements are represented in
245 32 or 64 bits. Since the accumulators are 2's complement with
246 overflow suppressed, high-order bits can be ignored in most contexts. */
247
248 typedef signed32 signed24;
249 typedef signed64 signed48;
250
251 typedef union {
252 signed24 ob[8];
253 signed48 qh[4];
254 } MDMX_accumulator;
255
256
257 /* Conventional system arguments. */
258 #define SIM_STATE sim_cpu *cpu, address_word cia
259 #define SIM_ARGS CPU, cia
260
261 struct _sim_cpu {
262
263
264 /* The following are internal simulator state variables: */
265 address_word dspc; /* delay-slot PC */
266 #define DSPC ((CPU)->dspc)
267
268 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
269 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
270
271
272 /* State of the simulator */
273 unsigned int state;
274 unsigned int dsstate;
275 #define STATE ((CPU)->state)
276 #define DSSTATE ((CPU)->dsstate)
277
278 /* Flags in the "state" variable: */
279 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
280 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
281 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
282 #define simPCOC0 (1 << 17) /* COC[1] from current */
283 #define simPCOC1 (1 << 18) /* COC[1] from previous */
284 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
285 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
286 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
287 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
288
289 #ifndef ENGINE_ISSUE_PREFIX_HOOK
290 #define ENGINE_ISSUE_PREFIX_HOOK() \
291 { \
292 /* Perform any pending writes */ \
293 PENDING_TICK(); \
294 /* Set previous flag, depending on current: */ \
295 if (STATE & simPCOC0) \
296 STATE |= simPCOC1; \
297 else \
298 STATE &= ~simPCOC1; \
299 /* and update the current value: */ \
300 if (GETFCC(0)) \
301 STATE |= simPCOC0; \
302 else \
303 STATE &= ~simPCOC0; \
304 }
305 #endif /* ENGINE_ISSUE_PREFIX_HOOK */
306
307
308 /* This is nasty, since we have to rely on matching the register
309 numbers used by GDB. Unfortunately, depending on the MIPS target
310 GDB uses different register numbers. We cannot just include the
311 relevant "gdb/tm.h" link, since GDB may not be configured before
312 the sim world, and also the GDB header file requires too much other
313 state. */
314
315 #ifndef TM_MIPS_H
316 #define LAST_EMBED_REGNUM (96)
317 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
318
319 #define FP0_REGNUM 38 /* Floating point register 0 (single float) */
320 #define FCRCS_REGNUM 70 /* FP control/status */
321 #define FCRIR_REGNUM 71 /* FP implementation/revision */
322 #endif
323
324
325 /* To keep this default simulator simple, and fast, we use a direct
326 vector of registers. The internal simulator engine then uses
327 manifests to access the correct slot. */
328
329 unsigned_word registers[LAST_EMBED_REGNUM + 1];
330
331 int register_widths[NUM_REGS];
332 #define REGISTERS ((CPU)->registers)
333
334 #define GPR (&REGISTERS[0])
335 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
336
337 #define LO (REGISTERS[33])
338 #define HI (REGISTERS[34])
339 #define PCIDX 37
340 #define PC (REGISTERS[PCIDX])
341 #define CAUSE (REGISTERS[36])
342 #define SRIDX (32)
343 #define SR (REGISTERS[SRIDX]) /* CPU status register */
344 #define FCR0IDX (71)
345 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
346 #define FCR31IDX (70)
347 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
348 #define FCSR (FCR31)
349 #define Debug (REGISTERS[86])
350 #define DEPC (REGISTERS[87])
351 #define EPC (REGISTERS[88])
352 #define ACX (REGISTERS[89])
353
354 #define AC0LOIDX (33) /* Must be the same register as LO */
355 #define AC0HIIDX (34) /* Must be the same register as HI */
356 #define AC1LOIDX (90)
357 #define AC1HIIDX (91)
358 #define AC2LOIDX (92)
359 #define AC2HIIDX (93)
360 #define AC3LOIDX (94)
361 #define AC3HIIDX (95)
362
363 #define DSPLO(N) (REGISTERS[DSPLO_REGNUM[N]])
364 #define DSPHI(N) (REGISTERS[DSPHI_REGNUM[N]])
365
366 #define DSPCRIDX (96) /* DSP control register */
367 #define DSPCR (REGISTERS[DSPCRIDX])
368
369 #define DSPCR_POS_SHIFT (0)
370 #define DSPCR_POS_MASK (0x3f)
371 #define DSPCR_POS_SMASK (DSPCR_POS_MASK << DSPCR_POS_SHIFT)
372
373 #define DSPCR_SCOUNT_SHIFT (7)
374 #define DSPCR_SCOUNT_MASK (0x3f)
375 #define DSPCR_SCOUNT_SMASK (DSPCR_SCOUNT_MASK << DSPCR_SCOUNT_SHIFT)
376
377 #define DSPCR_CARRY_SHIFT (13)
378 #define DSPCR_CARRY_MASK (1)
379 #define DSPCR_CARRY_SMASK (DSPCR_CARRY_MASK << DSPCR_CARRY_SHIFT)
380 #define DSPCR_CARRY (1 << DSPCR_CARRY_SHIFT)
381
382 #define DSPCR_EFI_SHIFT (14)
383 #define DSPCR_EFI_MASK (1)
384 #define DSPCR_EFI_SMASK (DSPCR_EFI_MASK << DSPCR_EFI_SHIFT)
385 #define DSPCR_EFI (1 << DSPCR_EFI_MASK)
386
387 #define DSPCR_OUFLAG_SHIFT (16)
388 #define DSPCR_OUFLAG_MASK (0xff)
389 #define DSPCR_OUFLAG_SMASK (DSPCR_OUFLAG_MASK << DSPCR_OUFLAG_SHIFT)
390 #define DSPCR_OUFLAG4 (1 << (DSPCR_OUFLAG_SHIFT + 4))
391 #define DSPCR_OUFLAG5 (1 << (DSPCR_OUFLAG_SHIFT + 5))
392 #define DSPCR_OUFLAG6 (1 << (DSPCR_OUFLAG_SHIFT + 6))
393 #define DSPCR_OUFLAG7 (1 << (DSPCR_OUFLAG_SHIFT + 7))
394
395 #define DSPCR_CCOND_SHIFT (24)
396 #define DSPCR_CCOND_MASK (0xf)
397 #define DSPCR_CCOND_SMASK (DSPCR_CCOND_MASK << DSPCR_CCOND_SHIFT)
398
399 /* All internal state modified by signal_exception() that may need to be
400 rolled back for passing moment-of-exception image back to gdb. */
401 unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
402 unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
403 int exc_suspended;
404
405 #define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
406 #define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
407 #define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
408
409 unsigned_word c0_config_reg;
410 #define C0_CONFIG ((CPU)->c0_config_reg)
411
412 /* The following are pseudonyms for standard registers */
413 #define ZERO (REGISTERS[0])
414 #define V0 (REGISTERS[2])
415 #define A0 (REGISTERS[4])
416 #define A1 (REGISTERS[5])
417 #define A2 (REGISTERS[6])
418 #define A3 (REGISTERS[7])
419 #define T8IDX 24
420 #define T8 (REGISTERS[T8IDX])
421 #define SPIDX 29
422 #define SP (REGISTERS[SPIDX])
423 #define RAIDX 31
424 #define RA (REGISTERS[RAIDX])
425
426 /* While space is allocated in the main registers arrray for some of
427 the COP0 registers, that space isn't sufficient. Unknown COP0
428 registers overflow into the array below */
429
430 #define NR_COP0_GPR 32
431 unsigned_word cop0_gpr[NR_COP0_GPR];
432 #define COP0_GPR ((CPU)->cop0_gpr)
433 #define COP0_BADVADDR (COP0_GPR[8])
434
435 /* While space is allocated for the floating point registers in the
436 main registers array, they are stored separatly. This is because
437 their size may not necessarily match the size of either the
438 general-purpose or system specific registers. */
439 #define NR_FGR (32)
440 #define FGR_BASE FP0_REGNUM
441 fp_word fgr[NR_FGR];
442 #define FGR ((CPU)->fgr)
443
444 /* Keep the current format state for each register: */
445 FP_formats fpr_state[32];
446 #define FPR_STATE ((CPU)->fpr_state)
447
448 pending_write_queue pending;
449
450 /* The MDMX accumulator (used only for MDMX ASE). */
451 MDMX_accumulator acc;
452 #define ACC ((CPU)->acc)
453
454 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
455 read-write instructions. It is set when a linked load occurs. It
456 is tested and cleared by the conditional store. It is cleared
457 (during other CPU operations) when a store to the location would
458 no longer be atomic. In particular, it is cleared by exception
459 return instructions. */
460 int llbit;
461 #define LLBIT ((CPU)->llbit)
462
463
464 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
465 corruptions caused by using the HI or LO register too close to a
466 following operation is spotted. See mips.igen for more details. */
467
468 hilo_history hi_history;
469 #define HIHISTORY (&(CPU)->hi_history)
470 hilo_history lo_history;
471 #define LOHISTORY (&(CPU)->lo_history)
472
473
474 sim_cpu_base base;
475 };
476
477 extern void mips_sim_close (SIM_DESC sd, int quitting);
478 #define SIM_CLOSE_HOOK(...) mips_sim_close (__VA_ARGS__)
479
480 /* FIXME: At present much of the simulator is still static */
481 struct mips_sim_state {
482 /* microMIPS ISA mode. */
483 int isa_mode;
484 };
485 #define MIPS_SIM_STATE(sd) ((struct mips_sim_state *) STATE_ARCH_DATA (sd))
486
487
488 /* Status information: */
489
490 /* TODO : these should be the bitmasks for these bits within the
491 status register. At the moment the following are VR4300
492 bit-positions: */
493 #define status_KSU_mask (0x18) /* mask for KSU bits */
494 #define status_KSU_shift (3) /* shift for field */
495 #define ksu_kernel (0x0)
496 #define ksu_supervisor (0x1)
497 #define ksu_user (0x2)
498 #define ksu_unknown (0x3)
499
500 #define SR_KSU ((SR & status_KSU_mask) >> status_KSU_shift)
501
502 #define status_IE (1 << 0) /* Interrupt enable */
503 #define status_EIE (1 << 16) /* Enable Interrupt Enable */
504 #define status_EXL (1 << 1) /* Exception level */
505 #define status_RE (1 << 25) /* Reverse Endian in user mode */
506 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
507 #define status_SR (1 << 20) /* soft reset or NMI */
508 #define status_BEV (1 << 22) /* Location of general exception vectors */
509 #define status_TS (1 << 21) /* TLB shutdown has occurred */
510 #define status_ERL (1 << 2) /* Error level */
511 #define status_IM7 (1 << 15) /* Timer Interrupt Mask */
512 #define status_RP (1 << 27) /* Reduced Power mode */
513
514 /* Specializations for TX39 family */
515 #define status_IEc (1 << 0) /* Interrupt enable (current) */
516 #define status_KUc (1 << 1) /* Kernel/User mode */
517 #define status_IEp (1 << 2) /* Interrupt enable (previous) */
518 #define status_KUp (1 << 3) /* Kernel/User mode */
519 #define status_IEo (1 << 4) /* Interrupt enable (old) */
520 #define status_KUo (1 << 5) /* Kernel/User mode */
521 #define status_IM_mask (0xff) /* Interrupt mask */
522 #define status_IM_shift (8)
523 #define status_NMI (1 << 20) /* NMI */
524 #define status_NMI (1 << 20) /* NMI */
525
526 /* Status bits used by MIPS32/MIPS64. */
527 #define status_UX (1 << 5) /* 64-bit user addrs */
528 #define status_SX (1 << 6) /* 64-bit supervisor addrs */
529 #define status_KX (1 << 7) /* 64-bit kernel addrs */
530 #define status_TS (1 << 21) /* TLB shutdown has occurred */
531 #define status_PX (1 << 23) /* Enable 64 bit operations */
532 #define status_MX (1 << 24) /* Enable MDMX resources */
533 #define status_CU0 (1 << 28) /* Coprocessor 0 usable */
534 #define status_CU1 (1 << 29) /* Coprocessor 1 usable */
535 #define status_CU2 (1 << 30) /* Coprocessor 2 usable */
536 #define status_CU3 (1 << 31) /* Coprocessor 3 usable */
537 /* Bits reserved for implementations: */
538 #define status_SBX (1 << 16) /* Enable SiByte SB-1 extensions. */
539
540 #define cause_BD ((unsigned)1 << 31) /* L1 Exception in branch delay slot */
541 #define cause_BD2 (1 << 30) /* L2 Exception in branch delay slot */
542 #define cause_CE_mask 0x30000000 /* Coprocessor exception */
543 #define cause_CE_shift 28
544 #define cause_EXC2_mask 0x00070000
545 #define cause_EXC2_shift 16
546 #define cause_IP7 (1 << 15) /* Interrupt pending */
547 #define cause_SIOP (1 << 12) /* SIO pending */
548 #define cause_IP3 (1 << 11) /* Int 0 pending */
549 #define cause_IP2 (1 << 10) /* Int 1 pending */
550
551 #define cause_EXC_mask (0x1c) /* Exception code */
552 #define cause_EXC_shift (2)
553
554 #define cause_SW0 (1 << 8) /* Software interrupt 0 */
555 #define cause_SW1 (1 << 9) /* Software interrupt 1 */
556 #define cause_IP_mask (0x3f) /* Interrupt pending field */
557 #define cause_IP_shift (10)
558
559 #define cause_set_EXC(x) CAUSE = (CAUSE & ~cause_EXC_mask) | ((x << cause_EXC_shift) & cause_EXC_mask)
560 #define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
561
562
563 /* NOTE: We keep the following status flags as bit values (1 for true,
564 0 for false). This allows them to be used in binary boolean
565 operations without worrying about what exactly the non-zero true
566 value is. */
567
568 /* UserMode */
569 #ifdef SUBTARGET_R3900
570 #define UserMode ((SR & status_KUc) ? 1 : 0)
571 #else
572 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
573 #endif /* SUBTARGET_R3900 */
574
575 /* BigEndianMem */
576 /* Hardware configuration. Affects endianness of LoadMemory and
577 StoreMemory and the endianness of Kernel and Supervisor mode
578 execution. The value is 0 for little-endian; 1 for big-endian. */
579 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
580 /*(state & simBE) ? 1 : 0)*/
581
582 /* ReverseEndian */
583 /* This mode is selected if in User mode with the RE bit being set in
584 SR (Status Register). It reverses the endianness of load and store
585 instructions. */
586 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
587
588 /* BigEndianCPU */
589 /* The endianness for load and store instructions (0=little;1=big). In
590 User mode this endianness may be switched by setting the state_RE
591 bit in the SR register. Thus, BigEndianCPU may be computed as
592 (BigEndianMem EOR ReverseEndian). */
593 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
594
595
596
597 /* Exceptions: */
598
599 /* NOTE: These numbers depend on the processor architecture being
600 simulated: */
601 enum ExceptionCause {
602 Interrupt = 0,
603 TLBModification = 1,
604 TLBLoad = 2,
605 TLBStore = 3,
606 AddressLoad = 4,
607 AddressStore = 5,
608 InstructionFetch = 6,
609 DataReference = 7,
610 SystemCall = 8,
611 BreakPoint = 9,
612 ReservedInstruction = 10,
613 CoProcessorUnusable = 11,
614 IntegerOverflow = 12, /* Arithmetic overflow (IDT monitor raises SIGFPE) */
615 Trap = 13,
616 FPE = 15,
617 DebugBreakPoint = 16, /* Impl. dep. in MIPS32/MIPS64. */
618 MDMX = 22,
619 Watch = 23,
620 MCheck = 24,
621 CacheErr = 30,
622 NMIReset = 31, /* Reserved in MIPS32/MIPS64. */
623
624
625 /* The following exception code is actually private to the simulator
626 world. It is *NOT* a processor feature, and is used to signal
627 run-time errors in the simulator. */
628 SimulatorFault = 0xFFFFFFFF
629 };
630
631 #define TLB_REFILL (0)
632 #define TLB_INVALID (1)
633
634
635 /* The following break instructions are reserved for use by the
636 simulator. The first is used to halt the simulation. The second
637 is used by gdb for break-points. NOTE: Care must be taken, since
638 this value may be used in later revisions of the MIPS ISA. */
639 #define HALT_INSTRUCTION_MASK (0x03FFFFC0)
640
641 #define HALT_INSTRUCTION (0x03ff000d)
642 #define HALT_INSTRUCTION2 (0x0000ffcd)
643
644
645 #define BREAKPOINT_INSTRUCTION (0x0005000d)
646 #define BREAKPOINT_INSTRUCTION2 (0x0000014d)
647
648
649
650 void interrupt_event (SIM_DESC sd, void *data);
651
652 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
653 #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
654 #define SignalExceptionInterrupt(level) signal_exception (SD, CPU, cia, Interrupt, level)
655 #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
656 #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
657 #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
658 #define SignalExceptionDataReference() signal_exception (SD, CPU, cia, DataReference)
659 #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
660 #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
661 #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
662 #define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
663 #define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset)
664 #define SignalExceptionTLBRefillStore() signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
665 #define SignalExceptionTLBRefillLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
666 #define SignalExceptionTLBInvalidStore() signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
667 #define SignalExceptionTLBInvalidLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
668 #define SignalExceptionTLBModification() signal_exception (SD, CPU, cia, TLBModification)
669 #define SignalExceptionMDMX() signal_exception (SD, CPU, cia, MDMX)
670 #define SignalExceptionWatch() signal_exception (SD, CPU, cia, Watch)
671 #define SignalExceptionMCheck() signal_exception (SD, CPU, cia, MCheck)
672 #define SignalExceptionCacheErr() signal_exception (SD, CPU, cia, CacheErr)
673
674 /* Co-processor accesses */
675
676 /* XXX FIXME: For now, assume that FPU (cp1) is always usable. */
677 #define COP_Usable(coproc_num) (coproc_num == 1)
678
679 void cop_lw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword);
680 void cop_ld (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword);
681 unsigned int cop_sw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
682 uword64 cop_sd (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
683
684 #define COP_LW(coproc_num,coproc_reg,memword) \
685 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
686 #define COP_LD(coproc_num,coproc_reg,memword) \
687 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
688 #define COP_SW(coproc_num,coproc_reg) \
689 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
690 #define COP_SD(coproc_num,coproc_reg) \
691 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
692
693
694 void decode_coproc (SIM_DESC sd, sim_cpu *cpu, address_word cia,
695 unsigned int instruction, int coprocnum, CP0_operation op,
696 int rt, int rd, int sel);
697 #define DecodeCoproc(instruction,coprocnum,op,rt,rd,sel) \
698 decode_coproc (SD, CPU, cia, (instruction), (coprocnum), (op), \
699 (rt), (rd), (sel))
700
701 int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
702
703
704 /* FPR access. */
705 unsigned64 value_fpr (SIM_STATE, int fpr, FP_formats);
706 #define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT))
707 void store_fpr (SIM_STATE, int fpr, FP_formats fmt, unsigned64 value);
708 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE))
709 unsigned64 ps_lower (SIM_STATE, unsigned64 op);
710 #define PSLower(op) ps_lower (SIM_ARGS, op)
711 unsigned64 ps_upper (SIM_STATE, unsigned64 op);
712 #define PSUpper(op) ps_upper (SIM_ARGS, op)
713 unsigned64 pack_ps (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats from);
714 #define PackPS(op1,op2) pack_ps (SIM_ARGS, op1, op2, fmt_single)
715
716
717 /* FCR access. */
718 unsigned_word value_fcr (SIM_STATE, int fcr);
719 #define ValueFCR(FCR) value_fcr (SIM_ARGS, (FCR))
720 void store_fcr (SIM_STATE, int fcr, unsigned_word value);
721 #define StoreFCR(FCR,VALUE) store_fcr (SIM_ARGS, (FCR), (VALUE))
722 void test_fcsr (SIM_STATE);
723 #define TestFCSR() test_fcsr (SIM_ARGS)
724
725
726 /* FPU operations. */
727 void fp_cmp (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt, int abs, int cond, int cc);
728 #define Compare(op1,op2,fmt,cond,cc) fp_cmp(SIM_ARGS, op1, op2, fmt, 0, cond, cc)
729 unsigned64 fp_abs (SIM_STATE, unsigned64 op, FP_formats fmt);
730 #define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt)
731 unsigned64 fp_neg (SIM_STATE, unsigned64 op, FP_formats fmt);
732 #define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt)
733 unsigned64 fp_add (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
734 #define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt)
735 unsigned64 fp_sub (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
736 #define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt)
737 unsigned64 fp_mul (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
738 #define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt)
739 unsigned64 fp_div (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
740 #define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt)
741 unsigned64 fp_recip (SIM_STATE, unsigned64 op, FP_formats fmt);
742 #define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt)
743 unsigned64 fp_sqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
744 #define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt)
745 unsigned64 fp_rsqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
746 #define RSquareRoot(op,fmt) fp_rsqrt(SIM_ARGS, op, fmt)
747 unsigned64 fp_madd (SIM_STATE, unsigned64 op1, unsigned64 op2,
748 unsigned64 op3, FP_formats fmt);
749 #define MultiplyAdd(op1,op2,op3,fmt) fp_madd(SIM_ARGS, op1, op2, op3, fmt)
750 unsigned64 fp_msub (SIM_STATE, unsigned64 op1, unsigned64 op2,
751 unsigned64 op3, FP_formats fmt);
752 #define MultiplySub(op1,op2,op3,fmt) fp_msub(SIM_ARGS, op1, op2, op3, fmt)
753 unsigned64 fp_nmadd (SIM_STATE, unsigned64 op1, unsigned64 op2,
754 unsigned64 op3, FP_formats fmt);
755 #define NegMultiplyAdd(op1,op2,op3,fmt) fp_nmadd(SIM_ARGS, op1, op2, op3, fmt)
756 unsigned64 fp_nmsub (SIM_STATE, unsigned64 op1, unsigned64 op2,
757 unsigned64 op3, FP_formats fmt);
758 #define NegMultiplySub(op1,op2,op3,fmt) fp_nmsub(SIM_ARGS, op1, op2, op3, fmt)
759 unsigned64 convert (SIM_STATE, int rm, unsigned64 op, FP_formats from, FP_formats to);
760 #define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to)
761 unsigned64 convert_ps (SIM_STATE, int rm, unsigned64 op, FP_formats from,
762 FP_formats to);
763 #define ConvertPS(rm,op,from,to) convert_ps (SIM_ARGS, rm, op, from, to)
764
765
766 /* MIPS-3D ASE operations. */
767 #define CompareAbs(op1,op2,fmt,cond,cc) \
768 fp_cmp(SIM_ARGS, op1, op2, fmt, 1, cond, cc)
769 unsigned64 fp_add_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
770 #define AddR(op1,op2,fmt) fp_add_r(SIM_ARGS, op1, op2, fmt)
771 unsigned64 fp_mul_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
772 #define MultiplyR(op1,op2,fmt) fp_mul_r(SIM_ARGS, op1, op2, fmt)
773 unsigned64 fp_recip1 (SIM_STATE, unsigned64 op, FP_formats fmt);
774 #define Recip1(op,fmt) fp_recip1(SIM_ARGS, op, fmt)
775 unsigned64 fp_recip2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
776 #define Recip2(op1,op2,fmt) fp_recip2(SIM_ARGS, op1, op2, fmt)
777 unsigned64 fp_rsqrt1 (SIM_STATE, unsigned64 op, FP_formats fmt);
778 #define RSquareRoot1(op,fmt) fp_rsqrt1(SIM_ARGS, op, fmt)
779 unsigned64 fp_rsqrt2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
780 #define RSquareRoot2(op1,op2,fmt) fp_rsqrt2(SIM_ARGS, op1, op2, fmt)
781
782
783 /* MDMX access. */
784
785 typedef unsigned int MX_fmtsel; /* MDMX format select field (5 bits). */
786 #define ob_fmtsel(sel) (((sel)<<1)|0x0)
787 #define qh_fmtsel(sel) (((sel)<<2)|0x1)
788
789 #define fmt_mdmx fmt_uninterpreted
790
791 #define MX_VECT_AND (0)
792 #define MX_VECT_NOR (1)
793 #define MX_VECT_OR (2)
794 #define MX_VECT_XOR (3)
795 #define MX_VECT_SLL (4)
796 #define MX_VECT_SRL (5)
797 #define MX_VECT_ADD (6)
798 #define MX_VECT_SUB (7)
799 #define MX_VECT_MIN (8)
800 #define MX_VECT_MAX (9)
801 #define MX_VECT_MUL (10)
802 #define MX_VECT_MSGN (11)
803 #define MX_VECT_SRA (12)
804 #define MX_VECT_ABSD (13) /* SB-1 only. */
805 #define MX_VECT_AVG (14) /* SB-1 only. */
806
807 unsigned64 mdmx_cpr_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
808 #define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
809 #define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
810 #define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
811 #define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
812 #define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
813 #define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
814 #define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
815 #define MX_Or(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_OR, op1, vt, fmtsel)
816 #define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
817 #define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
818 #define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
819 #define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
820 #define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
821 #define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
822 #define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
823
824 #define MX_C_EQ 0x1
825 #define MX_C_LT 0x4
826
827 void mdmx_cc_op (SIM_STATE, int cond, unsigned64 op1, int vt, MX_fmtsel fmtsel);
828 #define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
829
830 unsigned64 mdmx_pick_op (SIM_STATE, int tf, unsigned64 op1, int vt, MX_fmtsel fmtsel);
831 #define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
832
833 #define MX_VECT_ADDA (0)
834 #define MX_VECT_ADDL (1)
835 #define MX_VECT_MULA (2)
836 #define MX_VECT_MULL (3)
837 #define MX_VECT_MULS (4)
838 #define MX_VECT_MULSL (5)
839 #define MX_VECT_SUBA (6)
840 #define MX_VECT_SUBL (7)
841 #define MX_VECT_ABSDA (8) /* SB-1 only. */
842
843 void mdmx_acc_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
844 #define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
845 #define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
846 #define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
847 #define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
848 #define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
849 #define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
850 #define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
851 #define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
852 #define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
853
854 #define MX_FMT_OB (0)
855 #define MX_FMT_QH (1)
856
857 /* The following codes chosen to indicate the units of shift. */
858 #define MX_RAC_L (0)
859 #define MX_RAC_M (1)
860 #define MX_RAC_H (2)
861
862 unsigned64 mdmx_rac_op (SIM_STATE, int, int);
863 #define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
864
865 void mdmx_wacl (SIM_STATE, int, unsigned64, unsigned64);
866 #define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
867 void mdmx_wach (SIM_STATE, int, unsigned64);
868 #define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
869
870 #define MX_RND_AS (0)
871 #define MX_RND_AU (1)
872 #define MX_RND_ES (2)
873 #define MX_RND_EU (3)
874 #define MX_RND_ZS (4)
875 #define MX_RND_ZU (5)
876
877 unsigned64 mdmx_round_op (SIM_STATE, int, int, MX_fmtsel);
878 #define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
879 #define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
880 #define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
881 #define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
882 #define MX_RZS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
883 #define MX_RZU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
884
885 unsigned64 mdmx_shuffle (SIM_STATE, int, unsigned64, unsigned64);
886 #define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
887
888
889
890 /* Memory accesses */
891
892 /* The following are generic to all versions of the MIPS architecture
893 to date: */
894
895 #define isINSTRUCTION (1 == 0) /* FALSE */
896 #define isDATA (1 == 1) /* TRUE */
897 #define isLOAD (1 == 0) /* FALSE */
898 #define isSTORE (1 == 1) /* TRUE */
899 #define isREAL (1 == 0) /* FALSE */
900 #define isRAW (1 == 1) /* TRUE */
901 /* The parameter HOST (isTARGET / isHOST) is ignored */
902 #define isTARGET (1 == 0) /* FALSE */
903 /* #define isHOST (1 == 1) TRUE */
904
905 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
906 is the number of bytes minus 1. */
907 #define AccessLength_BYTE (0)
908 #define AccessLength_HALFWORD (1)
909 #define AccessLength_TRIPLEBYTE (2)
910 #define AccessLength_WORD (3)
911 #define AccessLength_QUINTIBYTE (4)
912 #define AccessLength_SEXTIBYTE (5)
913 #define AccessLength_SEPTIBYTE (6)
914 #define AccessLength_DOUBLEWORD (7)
915 #define AccessLength_QUADWORD (15)
916
917 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
918 ? AccessLength_DOUBLEWORD /*7*/ \
919 : AccessLength_WORD /*3*/)
920 #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
921
922
923 INLINE_SIM_MAIN (void) load_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD);
924 #define LoadMemory(memvalp,memval1p,AccessLength,pAddr,vAddr,IorD,raw) \
925 load_memory (SD, CPU, cia, memvalp, memval1p, 0, AccessLength, pAddr, vAddr, IorD)
926
927 INLINE_SIM_MAIN (void) store_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr);
928 #define StoreMemory(AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
929 store_memory (SD, CPU, cia, 0, AccessLength, MemElem, MemElem1, pAddr, vAddr)
930
931 INLINE_SIM_MAIN (void) cache_op (SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction);
932 #define CacheOp(op,pAddr,vAddr,instruction) \
933 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
934
935 INLINE_SIM_MAIN (void) sync_operation (SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype);
936 #define SyncOperation(stype) \
937 sync_operation (SD, CPU, cia, (stype))
938
939 void unpredictable_action (sim_cpu *cpu, address_word cia);
940 #define NotWordValue(val) not_word_value (SD_, (val))
941 #define Unpredictable() unpredictable (SD_)
942 #define UnpredictableResult() /* For now, do nothing. */
943
944 INLINE_SIM_MAIN (unsigned32) ifetch32 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
945 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
946 INLINE_SIM_MAIN (unsigned16) ifetch16 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
947 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
948 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
949 #define IMEM32_MICROMIPS(CIA) \
950 (ifetch16 (SD, CPU, (CIA), (CIA)) << 16 | ifetch16 (SD, CPU, (CIA + 2), \
951 (CIA + 2)))
952 #define IMEM16_MICROMIPS(CIA) ifetch16 (SD, CPU, (CIA), ((CIA)))
953
954 #define MICROMIPS_MINOR_OPCODE(INSN) ((INSN & 0x1C00) >> 10)
955
956 #define MICROMIPS_DELAYSLOT_SIZE_ANY 0
957 #define MICROMIPS_DELAYSLOT_SIZE_16 2
958 #define MICROMIPS_DELAYSLOT_SIZE_32 4
959
960 extern int isa_mode;
961
962 #define ISA_MODE_MIPS32 0
963 #define ISA_MODE_MICROMIPS 1
964
965 address_word micromips_instruction_decode (SIM_DESC sd, sim_cpu * cpu,
966 address_word cia,
967 int instruction_size);
968
969 #if WITH_TRACE_ANY_P
970 void dotrace (SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...);
971 extern FILE *tracefh;
972 #else
973 #define dotrace(sd, cpu, tracefh, type, address, width, comment, ...)
974 #endif
975
976 extern int DSPLO_REGNUM[4];
977 extern int DSPHI_REGNUM[4];
978
979 INLINE_SIM_MAIN (void) pending_tick (SIM_DESC sd, sim_cpu *cpu, address_word cia);
980 extern SIM_CORE_SIGNAL_FN mips_core_signal;
981
982 char* pr_addr (SIM_ADDR addr);
983 char* pr_uword64 (uword64 addr);
984
985
986 #define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
987
988 void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
989 void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
990 void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
991
992 #ifdef MIPS_MACH_MULTI
993 extern int mips_mach_multi(SIM_DESC sd);
994 #define MIPS_MACH(SD) mips_mach_multi(SD)
995 #else
996 #define MIPS_MACH(SD) MIPS_MACH_DEFAULT
997 #endif
998
999 /* Macros for determining whether a MIPS IV or MIPS V part is subject
1000 to the hi/lo restrictions described in mips.igen. */
1001
1002 #define MIPS_MACH_HAS_MT_HILO_HAZARD(SD) \
1003 (MIPS_MACH (SD) != bfd_mach_mips5500)
1004
1005 #define MIPS_MACH_HAS_MULT_HILO_HAZARD(SD) \
1006 (MIPS_MACH (SD) != bfd_mach_mips5500)
1007
1008 #define MIPS_MACH_HAS_DIV_HILO_HAZARD(SD) \
1009 (MIPS_MACH (SD) != bfd_mach_mips5500)
1010
1011 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
1012 #include "sim-main.c"
1013 #endif
1014
1015 #endif