* interf.c (sim_open): Use revamped memory_read, which makes
[binutils-gdb.git] / sim / mn10300 / interp.c
1 #include <signal.h>
2
3 #if WITH_COMMON
4 #include "sim-main.h"
5 #include "sim-options.h"
6 /* start-sanitize-am30 */
7 #include "sim-hw.h"
8 /* end-sanitize-am30 */
9 #else
10 #include "mn10300_sim.h"
11 #endif
12
13 #include "sysdep.h"
14 #include "bfd.h"
15 #include "sim-assert.h"
16
17
18 #ifdef HAVE_STDLIB_H
19 #include <stdlib.h>
20 #endif
21
22 #ifdef HAVE_STRING_H
23 #include <string.h>
24 #else
25 #ifdef HAVE_STRINGS_H
26 #include <strings.h>
27 #endif
28 #endif
29
30 #include "bfd.h"
31
32 #ifndef INLINE
33 #ifdef __GNUC__
34 #define INLINE inline
35 #else
36 #define INLINE
37 #endif
38 #endif
39
40
41 host_callback *mn10300_callback;
42 int mn10300_debug;
43
44 #if WITH_COMMON
45 #else
46 static void dispatch PARAMS ((uint32, uint32, int));
47 static long hash PARAMS ((long));
48 static void init_system PARAMS ((void));
49
50 static SIM_OPEN_KIND sim_kind;
51 static char *myname;
52 #define MAX_HASH 127
53
54 struct hash_entry
55 {
56 struct hash_entry *next;
57 long opcode;
58 long mask;
59 struct simops *ops;
60 #ifdef HASH_STAT
61 unsigned long count;
62 #endif
63 };
64
65 static int max_mem = 0;
66 struct hash_entry hash_table[MAX_HASH+1];
67
68
69 /* This probably doesn't do a very good job at bucket filling, but
70 it's simple... */
71 static INLINE long
72 hash(insn)
73 long insn;
74 {
75 /* These are one byte insns, we special case these since, in theory,
76 they should be the most heavily used. */
77 if ((insn & 0xffffff00) == 0)
78 {
79 switch (insn & 0xf0)
80 {
81 case 0x00:
82 return 0x70;
83
84 case 0x40:
85 return 0x71;
86
87 case 0x10:
88 return 0x72;
89
90 case 0x30:
91 return 0x73;
92
93 case 0x50:
94 return 0x74;
95
96 case 0x60:
97 return 0x75;
98
99 case 0x70:
100 return 0x76;
101
102 case 0x80:
103 return 0x77;
104
105 case 0x90:
106 return 0x78;
107
108 case 0xa0:
109 return 0x79;
110
111 case 0xb0:
112 return 0x7a;
113
114 case 0xe0:
115 return 0x7b;
116
117 default:
118 return 0x7c;
119 }
120 }
121
122 /* These are two byte insns */
123 if ((insn & 0xffff0000) == 0)
124 {
125 if ((insn & 0xf000) == 0x2000
126 || (insn & 0xf000) == 0x5000)
127 return ((insn & 0xfc00) >> 8) & 0x7f;
128
129 if ((insn & 0xf000) == 0x4000)
130 return ((insn & 0xf300) >> 8) & 0x7f;
131
132 if ((insn & 0xf000) == 0x8000
133 || (insn & 0xf000) == 0x9000
134 || (insn & 0xf000) == 0xa000
135 || (insn & 0xf000) == 0xb000)
136 return ((insn & 0xf000) >> 8) & 0x7f;
137
138 if ((insn & 0xff00) == 0xf000
139 || (insn & 0xff00) == 0xf100
140 || (insn & 0xff00) == 0xf200
141 || (insn & 0xff00) == 0xf500
142 || (insn & 0xff00) == 0xf600)
143 return ((insn & 0xfff0) >> 4) & 0x7f;
144
145 if ((insn & 0xf000) == 0xc000)
146 return ((insn & 0xff00) >> 8) & 0x7f;
147
148 return ((insn & 0xffc0) >> 6) & 0x7f;
149 }
150
151 /* These are three byte insns. */
152 if ((insn & 0xff000000) == 0)
153 {
154 if ((insn & 0xf00000) == 0x000000)
155 return ((insn & 0xf30000) >> 16) & 0x7f;
156
157 if ((insn & 0xf00000) == 0x200000
158 || (insn & 0xf00000) == 0x300000)
159 return ((insn & 0xfc0000) >> 16) & 0x7f;
160
161 if ((insn & 0xff0000) == 0xf80000)
162 return ((insn & 0xfff000) >> 12) & 0x7f;
163
164 if ((insn & 0xff0000) == 0xf90000)
165 return ((insn & 0xfffc00) >> 10) & 0x7f;
166
167 return ((insn & 0xff0000) >> 16) & 0x7f;
168 }
169
170 /* These are four byte or larger insns. */
171 if ((insn & 0xf0000000) == 0xf0000000)
172 return ((insn & 0xfff00000) >> 20) & 0x7f;
173
174 return ((insn & 0xff000000) >> 24) & 0x7f;
175 }
176
177 static INLINE void
178 dispatch (insn, extension, length)
179 uint32 insn;
180 uint32 extension;
181 int length;
182 {
183 struct hash_entry *h;
184
185 h = &hash_table[hash(insn)];
186
187 while ((insn & h->mask) != h->opcode
188 || (length != h->ops->length))
189 {
190 if (!h->next)
191 {
192 (*mn10300_callback->printf_filtered) (mn10300_callback,
193 "ERROR looking up hash for 0x%x, PC=0x%x\n", insn, PC);
194 exit(1);
195 }
196 h = h->next;
197 }
198
199
200 #ifdef HASH_STAT
201 h->count++;
202 #endif
203
204 /* Now call the right function. */
205 (h->ops->func)(insn, extension);
206 PC += length;
207 }
208
209 void
210 sim_size (power)
211 int power;
212
213 {
214 if (State.mem)
215 free (State.mem);
216
217 max_mem = 1 << power;
218 State.mem = (uint8 *) calloc (1, 1 << power);
219 if (!State.mem)
220 {
221 (*mn10300_callback->printf_filtered) (mn10300_callback, "Allocation of main memory failed.\n");
222 exit (1);
223 }
224 }
225
226 static void
227 init_system ()
228 {
229 if (!State.mem)
230 sim_size(19);
231 }
232
233 int
234 sim_write (sd, addr, buffer, size)
235 SIM_DESC sd;
236 SIM_ADDR addr;
237 unsigned char *buffer;
238 int size;
239 {
240 int i;
241
242 init_system ();
243
244 for (i = 0; i < size; i++)
245 store_byte (addr + i, buffer[i]);
246
247 return size;
248 }
249
250 /* Compare two opcode table entries for qsort. */
251 static int
252 compare_simops (arg1, arg2)
253 const PTR arg1;
254 const PTR arg2;
255 {
256 unsigned long code1 = ((struct simops *)arg1)->opcode;
257 unsigned long code2 = ((struct simops *)arg2)->opcode;
258
259 if (code1 < code2)
260 return -1;
261 if (code2 < code1)
262 return 1;
263 return 0;
264 }
265
266
267 SIM_DESC
268 sim_open (kind, cb, abfd, argv)
269 SIM_OPEN_KIND kind;
270 host_callback *cb;
271 struct _bfd *abfd;
272 char **argv;
273 {
274 struct simops *s;
275 struct hash_entry *h;
276 char **p;
277 int i;
278
279 mn10300_callback = cb;
280
281 /* Sort the opcode array from smallest opcode to largest.
282 This will generally improve simulator performance as the smaller
283 opcodes are generally preferred to the larger opcodes. */
284 for (i = 0, s = Simops; s->func; s++, i++)
285 ;
286 qsort (Simops, i, sizeof (Simops[0]), compare_simops);
287
288 sim_kind = kind;
289 myname = argv[0];
290
291 for (p = argv + 1; *p; ++p)
292 {
293 if (strcmp (*p, "-E") == 0)
294 ++p; /* ignore endian spec */
295 else
296 #ifdef DEBUG
297 if (strcmp (*p, "-t") == 0)
298 mn10300_debug = DEBUG;
299 else
300 #endif
301 (*mn10300_callback->printf_filtered) (mn10300_callback, "ERROR: unsupported option(s): %s\n",*p);
302 }
303
304 /* put all the opcodes in the hash table */
305 for (s = Simops; s->func; s++)
306 {
307 h = &hash_table[hash(s->opcode)];
308
309 /* go to the last entry in the chain */
310 while (h->next)
311 {
312 /* Don't insert the same opcode more than once. */
313 if (h->opcode == s->opcode
314 && h->mask == s->mask
315 && h->ops == s)
316 break;
317 else
318 h = h->next;
319 }
320
321 /* Don't insert the same opcode more than once. */
322 if (h->opcode == s->opcode
323 && h->mask == s->mask
324 && h->ops == s)
325 continue;
326
327 if (h->ops)
328 {
329 h->next = calloc(1,sizeof(struct hash_entry));
330 h = h->next;
331 }
332 h->ops = s;
333 h->mask = s->mask;
334 h->opcode = s->opcode;
335 #if HASH_STAT
336 h->count = 0;
337 #endif
338 }
339
340
341 /* fudge our descriptor for now */
342 return (SIM_DESC) 1;
343 }
344
345
346 void
347 sim_close (sd, quitting)
348 SIM_DESC sd;
349 int quitting;
350 {
351 /* nothing to do */
352 }
353
354 void
355 sim_set_profile (n)
356 int n;
357 {
358 (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile %d\n", n);
359 }
360
361 void
362 sim_set_profile_size (n)
363 int n;
364 {
365 (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile_size %d\n", n);
366 }
367
368 int
369 sim_stop (sd)
370 SIM_DESC sd;
371 {
372 return 0;
373 }
374
375 void
376 sim_resume (sd, step, siggnal)
377 SIM_DESC sd;
378 int step, siggnal;
379 {
380 uint32 inst;
381 reg_t oldpc;
382 struct hash_entry *h;
383
384 if (step)
385 State.exception = SIGTRAP;
386 else
387 State.exception = 0;
388
389 State.exited = 0;
390
391 do
392 {
393 unsigned long insn, extension;
394
395 /* Fetch the current instruction. */
396 inst = load_mem_big (PC, 2);
397 oldpc = PC;
398
399 /* Using a giant case statement may seem like a waste because of the
400 code/rodata size the table itself will consume. However, using
401 a giant case statement speeds up the simulator by 10-15% by avoiding
402 cascading if/else statements or cascading case statements. */
403
404 switch ((inst >> 8) & 0xff)
405 {
406 /* All the single byte insns except 0x80, 0x90, 0xa0, 0xb0
407 which must be handled specially. */
408 case 0x00:
409 case 0x04:
410 case 0x08:
411 case 0x0c:
412 case 0x10:
413 case 0x11:
414 case 0x12:
415 case 0x13:
416 case 0x14:
417 case 0x15:
418 case 0x16:
419 case 0x17:
420 case 0x18:
421 case 0x19:
422 case 0x1a:
423 case 0x1b:
424 case 0x1c:
425 case 0x1d:
426 case 0x1e:
427 case 0x1f:
428 case 0x3c:
429 case 0x3d:
430 case 0x3e:
431 case 0x3f:
432 case 0x40:
433 case 0x41:
434 case 0x44:
435 case 0x45:
436 case 0x48:
437 case 0x49:
438 case 0x4c:
439 case 0x4d:
440 case 0x50:
441 case 0x51:
442 case 0x52:
443 case 0x53:
444 case 0x54:
445 case 0x55:
446 case 0x56:
447 case 0x57:
448 case 0x60:
449 case 0x61:
450 case 0x62:
451 case 0x63:
452 case 0x64:
453 case 0x65:
454 case 0x66:
455 case 0x67:
456 case 0x68:
457 case 0x69:
458 case 0x6a:
459 case 0x6b:
460 case 0x6c:
461 case 0x6d:
462 case 0x6e:
463 case 0x6f:
464 case 0x70:
465 case 0x71:
466 case 0x72:
467 case 0x73:
468 case 0x74:
469 case 0x75:
470 case 0x76:
471 case 0x77:
472 case 0x78:
473 case 0x79:
474 case 0x7a:
475 case 0x7b:
476 case 0x7c:
477 case 0x7d:
478 case 0x7e:
479 case 0x7f:
480 case 0xcb:
481 case 0xd0:
482 case 0xd1:
483 case 0xd2:
484 case 0xd3:
485 case 0xd4:
486 case 0xd5:
487 case 0xd6:
488 case 0xd7:
489 case 0xd8:
490 case 0xd9:
491 case 0xda:
492 case 0xdb:
493 case 0xe0:
494 case 0xe1:
495 case 0xe2:
496 case 0xe3:
497 case 0xe4:
498 case 0xe5:
499 case 0xe6:
500 case 0xe7:
501 case 0xe8:
502 case 0xe9:
503 case 0xea:
504 case 0xeb:
505 case 0xec:
506 case 0xed:
507 case 0xee:
508 case 0xef:
509 case 0xff:
510 insn = (inst >> 8) & 0xff;
511 extension = 0;
512 dispatch (insn, extension, 1);
513 break;
514
515 /* Special cases where dm == dn is used to encode a different
516 instruction. */
517 case 0x80:
518 case 0x85:
519 case 0x8a:
520 case 0x8f:
521 case 0x90:
522 case 0x95:
523 case 0x9a:
524 case 0x9f:
525 case 0xa0:
526 case 0xa5:
527 case 0xaa:
528 case 0xaf:
529 case 0xb0:
530 case 0xb5:
531 case 0xba:
532 case 0xbf:
533 insn = inst;
534 extension = 0;
535 dispatch (insn, extension, 2);
536 break;
537
538 case 0x81:
539 case 0x82:
540 case 0x83:
541 case 0x84:
542 case 0x86:
543 case 0x87:
544 case 0x88:
545 case 0x89:
546 case 0x8b:
547 case 0x8c:
548 case 0x8d:
549 case 0x8e:
550 case 0x91:
551 case 0x92:
552 case 0x93:
553 case 0x94:
554 case 0x96:
555 case 0x97:
556 case 0x98:
557 case 0x99:
558 case 0x9b:
559 case 0x9c:
560 case 0x9d:
561 case 0x9e:
562 case 0xa1:
563 case 0xa2:
564 case 0xa3:
565 case 0xa4:
566 case 0xa6:
567 case 0xa7:
568 case 0xa8:
569 case 0xa9:
570 case 0xab:
571 case 0xac:
572 case 0xad:
573 case 0xae:
574 case 0xb1:
575 case 0xb2:
576 case 0xb3:
577 case 0xb4:
578 case 0xb6:
579 case 0xb7:
580 case 0xb8:
581 case 0xb9:
582 case 0xbb:
583 case 0xbc:
584 case 0xbd:
585 case 0xbe:
586 insn = (inst >> 8) & 0xff;
587 extension = 0;
588 dispatch (insn, extension, 1);
589 break;
590
591 /* The two byte instructions. */
592 case 0x20:
593 case 0x21:
594 case 0x22:
595 case 0x23:
596 case 0x28:
597 case 0x29:
598 case 0x2a:
599 case 0x2b:
600 case 0x42:
601 case 0x43:
602 case 0x46:
603 case 0x47:
604 case 0x4a:
605 case 0x4b:
606 case 0x4e:
607 case 0x4f:
608 case 0x58:
609 case 0x59:
610 case 0x5a:
611 case 0x5b:
612 case 0x5c:
613 case 0x5d:
614 case 0x5e:
615 case 0x5f:
616 case 0xc0:
617 case 0xc1:
618 case 0xc2:
619 case 0xc3:
620 case 0xc4:
621 case 0xc5:
622 case 0xc6:
623 case 0xc7:
624 case 0xc8:
625 case 0xc9:
626 case 0xca:
627 case 0xce:
628 case 0xcf:
629 case 0xf0:
630 case 0xf1:
631 case 0xf2:
632 case 0xf3:
633 case 0xf4:
634 case 0xf5:
635 case 0xf6:
636 insn = inst;
637 extension = 0;
638 dispatch (insn, extension, 2);
639 break;
640
641 /* The three byte insns with a 16bit operand in little endian
642 format. */
643 case 0x01:
644 case 0x02:
645 case 0x03:
646 case 0x05:
647 case 0x06:
648 case 0x07:
649 case 0x09:
650 case 0x0a:
651 case 0x0b:
652 case 0x0d:
653 case 0x0e:
654 case 0x0f:
655 case 0x24:
656 case 0x25:
657 case 0x26:
658 case 0x27:
659 case 0x2c:
660 case 0x2d:
661 case 0x2e:
662 case 0x2f:
663 case 0x30:
664 case 0x31:
665 case 0x32:
666 case 0x33:
667 case 0x34:
668 case 0x35:
669 case 0x36:
670 case 0x37:
671 case 0x38:
672 case 0x39:
673 case 0x3a:
674 case 0x3b:
675 case 0xcc:
676 insn = load_byte (PC);
677 insn <<= 16;
678 insn |= load_half (PC + 1);
679 extension = 0;
680 dispatch (insn, extension, 3);
681 break;
682
683 /* The three byte insns without 16bit operand. */
684 case 0xde:
685 case 0xdf:
686 case 0xf8:
687 case 0xf9:
688 insn = load_mem_big (PC, 3);
689 extension = 0;
690 dispatch (insn, extension, 3);
691 break;
692
693 /* Four byte insns. */
694 case 0xfa:
695 case 0xfb:
696 if ((inst & 0xfffc) == 0xfaf0
697 || (inst & 0xfffc) == 0xfaf4
698 || (inst & 0xfffc) == 0xfaf8)
699 insn = load_mem_big (PC, 4);
700 else
701 {
702 insn = inst;
703 insn <<= 16;
704 insn |= load_half (PC + 2);
705 extension = 0;
706 }
707 dispatch (insn, extension, 4);
708 break;
709
710 /* Five byte insns. */
711 case 0xcd:
712 insn = load_byte (PC);
713 insn <<= 24;
714 insn |= (load_half (PC + 1) << 8);
715 insn |= load_byte (PC + 3);
716 extension = load_byte (PC + 4);
717 dispatch (insn, extension, 5);
718 break;
719
720 case 0xdc:
721 insn = load_byte (PC);
722 insn <<= 24;
723 extension = load_word (PC + 1);
724 insn |= (extension & 0xffffff00) >> 8;
725 extension &= 0xff;
726 dispatch (insn, extension, 5);
727 break;
728
729 /* Six byte insns. */
730 case 0xfc:
731 case 0xfd:
732 insn = (inst << 16);
733 extension = load_word (PC + 2);
734 insn |= ((extension & 0xffff0000) >> 16);
735 extension &= 0xffff;
736 dispatch (insn, extension, 6);
737 break;
738
739 case 0xdd:
740 insn = load_byte (PC) << 24;
741 extension = load_word (PC + 1);
742 insn |= ((extension >> 8) & 0xffffff);
743 extension = (extension & 0xff) << 16;
744 extension |= load_byte (PC + 5) << 8;
745 extension |= load_byte (PC + 6);
746 dispatch (insn, extension, 7);
747 break;
748
749 case 0xfe:
750 insn = inst << 16;
751 extension = load_word (PC + 2);
752 insn |= ((extension >> 16) & 0xffff);
753 extension <<= 8;
754 extension &= 0xffff00;
755 extension |= load_byte (PC + 6);
756 dispatch (insn, extension, 7);
757 break;
758
759 default:
760 abort ();
761 }
762 }
763 while (!State.exception);
764
765 #ifdef HASH_STAT
766 {
767 int i;
768 for (i = 0; i < MAX_HASH; i++)
769 {
770 struct hash_entry *h;
771 h = &hash_table[i];
772
773 printf("hash 0x%x:\n", i);
774
775 while (h)
776 {
777 printf("h->opcode = 0x%x, count = 0x%x\n", h->opcode, h->count);
778 h = h->next;
779 }
780
781 printf("\n\n");
782 }
783 fflush (stdout);
784 }
785 #endif
786
787 }
788
789 int
790 sim_trace (sd)
791 SIM_DESC sd;
792 {
793 #ifdef DEBUG
794 mn10300_debug = DEBUG;
795 #endif
796 sim_resume (sd, 0, 0);
797 return 1;
798 }
799
800 void
801 sim_info (sd, verbose)
802 SIM_DESC sd;
803 int verbose;
804 {
805 (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_info\n");
806 }
807
808 SIM_RC
809 sim_create_inferior (sd, abfd, argv, env)
810 SIM_DESC sd;
811 struct _bfd *abfd;
812 char **argv;
813 char **env;
814 {
815 if (abfd != NULL)
816 PC = bfd_get_start_address (abfd);
817 else
818 PC = 0;
819 return SIM_RC_OK;
820 }
821
822 void
823 sim_set_callbacks (p)
824 host_callback *p;
825 {
826 mn10300_callback = p;
827 }
828
829 /* All the code for exiting, signals, etc needs to be revamped.
830
831 This is enough to get c-torture limping though. */
832
833 void
834 sim_stop_reason (sd, reason, sigrc)
835 SIM_DESC sd;
836 enum sim_stop *reason;
837 int *sigrc;
838 {
839 if (State.exited)
840 *reason = sim_exited;
841 else
842 *reason = sim_stopped;
843 if (State.exception == SIGQUIT)
844 *sigrc = 0;
845 else
846 *sigrc = State.exception;
847 }
848
849 int
850 sim_read (sd, addr, buffer, size)
851 SIM_DESC sd;
852 SIM_ADDR addr;
853 unsigned char *buffer;
854 int size;
855 {
856 int i;
857 for (i = 0; i < size; i++)
858 buffer[i] = load_byte (addr + i);
859
860 return size;
861 }
862
863 void
864 sim_do_command (sd, cmd)
865 SIM_DESC sd;
866 char *cmd;
867 {
868 (*mn10300_callback->printf_filtered) (mn10300_callback, "\"%s\" is not a valid mn10300 simulator command.\n", cmd);
869 }
870
871 SIM_RC
872 sim_load (sd, prog, abfd, from_tty)
873 SIM_DESC sd;
874 char *prog;
875 bfd *abfd;
876 int from_tty;
877 {
878 extern bfd *sim_load_file (); /* ??? Don't know where this should live. */
879 bfd *prog_bfd;
880
881 prog_bfd = sim_load_file (sd, myname, mn10300_callback, prog, abfd,
882 sim_kind == SIM_OPEN_DEBUG,
883 0, sim_write);
884 if (prog_bfd == NULL)
885 return SIM_RC_FAIL;
886 if (abfd == NULL)
887 bfd_close (prog_bfd);
888 return SIM_RC_OK;
889 }
890 #endif /* not WITH_COMMON */
891
892
893 #if WITH_COMMON
894
895 /* For compatibility */
896 SIM_DESC simulator;
897 /* start-sanitize-am30 */
898 /* Until the tree root gets moved somewhere else */
899 struct hw *hw;
900 /* end-sanitize-am30 */
901
902 /* These default values correspond to expected usage for the chip. */
903
904 SIM_DESC
905 sim_open (kind, cb, abfd, argv)
906 SIM_OPEN_KIND kind;
907 host_callback *cb;
908 struct _bfd *abfd;
909 char **argv;
910 {
911 SIM_DESC sd = sim_state_alloc (kind, cb);
912 mn10300_callback = cb;
913
914 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
915
916 /* for compatibility */
917 simulator = sd;
918
919 /* FIXME: should be better way of setting up interrupts. For
920 moment, only support watchpoints causing a breakpoint (gdb
921 halt). */
922 STATE_WATCHPOINTS (sd)->pc = &(PC);
923 STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
924 STATE_WATCHPOINTS (sd)->interrupt_handler = NULL;
925 STATE_WATCHPOINTS (sd)->interrupt_names = NULL;
926
927 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
928 return 0;
929
930 /* Allocate core managed memory */
931 sim_do_command (sd, "memory region 0,0x100000");
932 sim_do_command (sd, "memory region 0x40000000,0x100000");
933
934 /* getopt will print the error message so we just have to exit if this fails.
935 FIXME: Hmmm... in the case of gdb we need getopt to call
936 print_filtered. */
937 if (sim_parse_args (sd, argv) != SIM_RC_OK)
938 {
939 /* Uninstall the modules to avoid memory leaks,
940 file descriptor leaks, etc. */
941 sim_module_uninstall (sd);
942 return 0;
943 }
944
945 /* start-sanitize-am30 */
946 hw = hw_tree_create (sd, "core");
947 hw_tree_parse (hw, "/");
948 if (STATE_VERBOSE_P (sd))
949 hw_tree_parse (hw, "/trace? true");
950
951
952 /* interrupt controller */
953
954 hw_tree_parse (hw, "/mn103int@0x34000100/reg 0x34000100 0x68 0x34000200 0x8 0x3400280 0x8");
955 if (STATE_VERBOSE_P (sd))
956 hw_tree_parse (hw, "/mn103int/trace? true");
957
958 /* DEBUG: NMI input's */
959 hw_tree_parse (hw, "/glue@0x30000000/reg 0x30000000 12");
960 if (STATE_VERBOSE_P (sd))
961 hw_tree_parse (hw, "/glue@0x30000000/trace? true");
962 hw_tree_parse (hw, "/glue@0x30000000 > int0 nmirq /mn103int");
963 hw_tree_parse (hw, "/glue@0x30000000 > int1 watchdog /mn103int");
964 hw_tree_parse (hw, "/glue@0x30000000 > int2 syserr /mn103int");
965
966 /* DEBUG: ACK input */
967 hw_tree_parse (hw, "/glue@0x30002000/reg 0x30002000 4");
968 if (STATE_VERBOSE_P (sd))
969 hw_tree_parse (hw, "/glue@0x30002000/trace? true");
970 hw_tree_parse (hw, "/glue@0x30002000 > int ack /mn103int");
971
972 /* DEBUG: LEVEL output */
973 hw_tree_parse (hw, "/glue@0x30004000/reg 0x30004000 8");
974 if (STATE_VERBOSE_P (sd))
975 hw_tree_parse (hw, "/glue@0x30004000/trace? true");
976 hw_tree_parse (hw, "/mn103int > nmi int0 /glue@0x30004000");
977 hw_tree_parse (hw, "/mn103int > level int1 /glue@0x30004000");
978
979 /* DEBUG: A bunch of interrupt inputs */
980 hw_tree_parse (hw, "/glue@0x30006000/reg 0x30006000 32");
981 if (STATE_VERBOSE_P (sd))
982 hw_tree_parse (hw, "/glue@0x30006000/trace? true");
983 hw_tree_parse (hw, "/glue@0x30006000 > int0 irq-0 /mn103int");
984 hw_tree_parse (hw, "/glue@0x30006000 > int1 irq-1 /mn103int");
985 hw_tree_parse (hw, "/glue@0x30006000 > int2 irq-2 /mn103int");
986 hw_tree_parse (hw, "/glue@0x30006000 > int3 irq-3 /mn103int");
987 hw_tree_parse (hw, "/glue@0x30006000 > int4 irq-4 /mn103int");
988 hw_tree_parse (hw, "/glue@0x30006000 > int5 irq-5 /mn103int");
989 hw_tree_parse (hw, "/glue@0x30006000 > int6 irq-6 /mn103int");
990 hw_tree_parse (hw, "/glue@0x30006000 > int7 irq-7 /mn103int");
991
992
993 /* processor interrupt device */
994
995 /* the device */
996 hw_tree_parse (hw, "/mn103cpu@0x20000000");
997 if (STATE_VERBOSE_P (sd))
998 hw_tree_parse (hw, "/mn103cpu@0x20000000/trace? true");
999 hw_tree_parse (hw, "/mn103cpu@0x20000000/reg 0x20000000 0x42");
1000
1001 /* DEBUG: ACK output wired upto a glue device */
1002 hw_tree_parse (hw, "/glue@0x20002000");
1003 if (STATE_VERBOSE_P (sd))
1004 hw_tree_parse (hw, "/glue@0x20002000/trace? true");
1005 hw_tree_parse (hw, "/glue@0x20002000/reg 0x20002000 4");
1006 hw_tree_parse (hw, "/mn103cpu > ack int0 /glue@0x20002000");
1007
1008 /* DEBUG: RESET/NMI/LEVEL wired up to a glue device */
1009 hw_tree_parse (hw, "/glue@0x20004000");
1010 if (STATE_VERBOSE_P (sd))
1011 hw_tree_parse (hw, "/glue@0x20004000/trace? true");
1012 hw_tree_parse (hw, "/glue@0x20004000/reg 0x20004000 12");
1013 hw_tree_parse (hw, "/glue@0x20004000 > int0 reset /mn103cpu");
1014 hw_tree_parse (hw, "/glue@0x20004000 > int1 nmi /mn103cpu");
1015 hw_tree_parse (hw, "/glue@0x20004000 > int2 level /mn103cpu");
1016
1017 /* REAL: The processor wired up to the real interrupt controller */
1018 #if 1
1019 hw_tree_parse (hw, "/mn103cpu > ack ack /mn103int");
1020 hw_tree_parse (hw, "/mn103int > level level /mn103cpu");
1021 hw_tree_parse (hw, "/mn103int > nmi nmi /mn103cpu");
1022 #endif
1023
1024
1025 /* PAL */
1026
1027 /* the device */
1028 hw_tree_parse (hw, "/pal@0x31000000");
1029 if (STATE_VERBOSE_P (sd))
1030 hw_tree_parse (hw, "/pal@0x31000000/trace? true");
1031 hw_tree_parse (hw, "/pal@0x31000000/reg 0x31000000 64");
1032
1033 /* DEBUG: PAL wired up to a glue device */
1034 hw_tree_parse (hw, "/glue@0x31002000");
1035 if (STATE_VERBOSE_P (sd))
1036 hw_tree_parse (hw, "/glue@0x31002000/trace? true");
1037 hw_tree_parse (hw, "/glue@0x31002000/reg 0x31002000 16");
1038 hw_tree_parse (hw, "/pal@0x31000000 > countdown int0 /glue@0x31002000");
1039 hw_tree_parse (hw, "/pal@0x31000000 > timer int1 /glue@0x31002000");
1040 hw_tree_parse (hw, "/pal@0x31000000 > int int2 /glue@0x31002000");
1041 hw_tree_parse (hw, "/glue@0x31002000 > int0 int3 /glue@0x31002000");
1042 hw_tree_parse (hw, "/glue@0x31002000 > int1 int3 /glue@0x31002000");
1043 hw_tree_parse (hw, "/glue@0x31002000 > int2 int3 /glue@0x31002000");
1044
1045 /* REAL: The PAL wired up to the real interrupt controller */
1046 hw_tree_parse (hw, "/pal@0x31000000 > countdown irq-0 /mn103int");
1047 hw_tree_parse (hw, "/pal@0x31000000 > timer irq-1 /mn103int");
1048 hw_tree_parse (hw, "/pal@0x31000000 > int irq-2 /mn103int");
1049
1050
1051
1052 hw_tree_finish (hw);
1053 if (STATE_VERBOSE_P (sd))
1054 hw_tree_print (hw);
1055 /* end-sanitize-am30 */
1056
1057 /* check for/establish the a reference program image */
1058 if (sim_analyze_program (sd,
1059 (STATE_PROG_ARGV (sd) != NULL
1060 ? *STATE_PROG_ARGV (sd)
1061 : NULL),
1062 abfd) != SIM_RC_OK)
1063 {
1064 sim_module_uninstall (sd);
1065 return 0;
1066 }
1067
1068 /* establish any remaining configuration options */
1069 if (sim_config (sd) != SIM_RC_OK)
1070 {
1071 sim_module_uninstall (sd);
1072 return 0;
1073 }
1074
1075 if (sim_post_argv_init (sd) != SIM_RC_OK)
1076 {
1077 /* Uninstall the modules to avoid memory leaks,
1078 file descriptor leaks, etc. */
1079 sim_module_uninstall (sd);
1080 return 0;
1081 }
1082
1083
1084 /* set machine specific configuration */
1085 /* STATE_CPU (sd, 0)->psw_mask = (PSW_NP | PSW_EP | PSW_ID | PSW_SAT */
1086 /* | PSW_CY | PSW_OV | PSW_S | PSW_Z); */
1087
1088 return sd;
1089 }
1090
1091
1092 void
1093 sim_close (sd, quitting)
1094 SIM_DESC sd;
1095 int quitting;
1096 {
1097 sim_module_uninstall (sd);
1098 }
1099
1100
1101 SIM_RC
1102 sim_create_inferior (sd, prog_bfd, argv, env)
1103 SIM_DESC sd;
1104 struct _bfd *prog_bfd;
1105 char **argv;
1106 char **env;
1107 {
1108 memset (&State, 0, sizeof (State));
1109 if (prog_bfd != NULL) {
1110 PC = bfd_get_start_address (prog_bfd);
1111 } else {
1112 PC = 0;
1113 }
1114 CIA_SET (STATE_CPU (sd, 0), (unsigned64) PC);
1115
1116 return SIM_RC_OK;
1117 }
1118
1119 void
1120 sim_do_command (sd, cmd)
1121 SIM_DESC sd;
1122 char *cmd;
1123 {
1124 char *mm_cmd = "memory-map";
1125 char *int_cmd = "interrupt";
1126
1127 if (sim_args_command (sd, cmd) != SIM_RC_OK)
1128 {
1129 if (strncmp (cmd, mm_cmd, strlen (mm_cmd) == 0))
1130 sim_io_eprintf (sd, "`memory-map' command replaced by `sim memory'\n");
1131 else if (strncmp (cmd, int_cmd, strlen (int_cmd)) == 0)
1132 sim_io_eprintf (sd, "`interrupt' command replaced by `sim watch'\n");
1133 else
1134 sim_io_eprintf (sd, "Unknown command `%s'\n", cmd);
1135 }
1136 }
1137 #endif /* WITH_COMMON */
1138
1139 /* FIXME These would more efficient to use than load_mem/store_mem,
1140 but need to be changed to use the memory map. */
1141
1142 uint8
1143 get_byte (x)
1144 uint8 *x;
1145 {
1146 return *x;
1147 }
1148
1149 uint16
1150 get_half (x)
1151 uint8 *x;
1152 {
1153 uint8 *a = x;
1154 return (a[1] << 8) + (a[0]);
1155 }
1156
1157 uint32
1158 get_word (x)
1159 uint8 *x;
1160 {
1161 uint8 *a = x;
1162 return (a[3]<<24) + (a[2]<<16) + (a[1]<<8) + (a[0]);
1163 }
1164
1165 void
1166 put_byte (addr, data)
1167 uint8 *addr;
1168 uint8 data;
1169 {
1170 uint8 *a = addr;
1171 a[0] = data;
1172 }
1173
1174 void
1175 put_half (addr, data)
1176 uint8 *addr;
1177 uint16 data;
1178 {
1179 uint8 *a = addr;
1180 a[0] = data & 0xff;
1181 a[1] = (data >> 8) & 0xff;
1182 }
1183
1184 void
1185 put_word (addr, data)
1186 uint8 *addr;
1187 uint32 data;
1188 {
1189 uint8 *a = addr;
1190 a[0] = data & 0xff;
1191 a[1] = (data >> 8) & 0xff;
1192 a[2] = (data >> 16) & 0xff;
1193 a[3] = (data >> 24) & 0xff;
1194 }
1195
1196 int
1197 sim_fetch_register (sd, rn, memory, length)
1198 SIM_DESC sd;
1199 int rn;
1200 unsigned char *memory;
1201 int length;
1202 {
1203 put_word (memory, State.regs[rn]);
1204 return -1;
1205 }
1206
1207 int
1208 sim_store_register (sd, rn, memory, length)
1209 SIM_DESC sd;
1210 int rn;
1211 unsigned char *memory;
1212 int length;
1213 {
1214 State.regs[rn] = get_word (memory);
1215 return -1;
1216 }