sim: mn10300: standardize the arch-specific settings a little
[binutils-gdb.git] / sim / mn10300 / mn10300-sim.h
1 #ifndef MN10300_SIM_H
2 #define MN10300_SIM_H
3
4 /* For compatibility, until all functions converted to passing
5 SIM_DESC as an argument */
6 extern SIM_DESC simulator;
7
8 typedef struct
9 {
10 uint32_t low, high;
11 } dword;
12 typedef uint32_t reg_t;
13
14 struct simops
15 {
16 long opcode;
17 long mask;
18 void (*func)();
19 int length;
20 int format;
21 int numops;
22 int operands[16];
23 };
24
25 /* The current state of the processor; registers, memory, etc. */
26
27 struct _state
28 {
29 reg_t regs[32]; /* registers, d0-d3, a0-a3, sp, pc, mdr, psw,
30 lir, lar, mdrq, plus some room for processor
31 specific regs. */
32 union
33 {
34 reg_t fs[32]; /* FS0-31 */
35 dword fd[16]; /* FD0,2,...,30 */
36 } fpregs;
37
38 /* All internal state modified by signal_exception() that may need to be
39 rolled back for passing moment-of-exception image back to gdb. */
40 reg_t exc_trigger_regs[32];
41 reg_t exc_suspend_regs[32];
42 int exc_suspended;
43
44 #define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mn10300_cpu_exception_trigger(SD,CPU,CIA)
45 #define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mn10300_cpu_exception_suspend(SD,CPU,EXC)
46 #define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mn10300_cpu_exception_resume(SD,CPU,EXC)
47 };
48
49 extern struct _state State;
50
51 #define PC (State.regs[REG_PC])
52 #define SP (State.regs[REG_SP])
53
54 #define PSW (State.regs[11])
55 #define PSW_Z 0x1
56 #define PSW_N 0x2
57 #define PSW_C 0x4
58 #define PSW_V 0x8
59 #define PSW_IE LSBIT (11)
60 #define PSW_LM LSMASK (10, 8)
61
62 #define EXTRACT_PSW_LM LSEXTRACTED16 (PSW, 10, 8)
63 #define INSERT_PSW_LM(l) LSINSERTED16 ((l), 10, 8)
64
65 #define REG_D0 0
66 #define REG_A0 4
67 #define REG_SP 8
68 #define REG_PC 9
69 #define REG_MDR 10
70 #define REG_PSW 11
71 #define REG_LIR 12
72 #define REG_LAR 13
73 #define REG_MDRQ 14
74 #define REG_E0 15
75 #define REG_SSP 23
76 #define REG_MSP 24
77 #define REG_USP 25
78 #define REG_MCRH 26
79 #define REG_MCRL 27
80 #define REG_MCVF 28
81
82 #define REG_FPCR 29
83
84 #define FPCR (State.regs[REG_FPCR])
85
86 #define FCC_MASK LSMASK (21, 18)
87 #define RM_MASK LSMASK (17, 16) /* Must always be zero. */
88 #define EC_MASK LSMASK (14, 10)
89 #define EE_MASK LSMASK ( 9, 5)
90 #define EF_MASK LSMASK ( 4, 0)
91 #define FPCR_MASK (FCC_MASK | EC_MASK | EE_MASK | EF_MASK)
92
93 #define FCC_L LSBIT (21)
94 #define FCC_G LSBIT (20)
95 #define FCC_E LSBIT (19)
96 #define FCC_U LSBIT (18)
97
98 #define EC_V LSBIT (14)
99 #define EC_Z LSBIT (13)
100 #define EC_O LSBIT (12)
101 #define EC_U LSBIT (11)
102 #define EC_I LSBIT (10)
103
104 #define EE_V LSBIT (9)
105 #define EE_Z LSBIT (8)
106 #define EE_O LSBIT (7)
107 #define EE_U LSBIT (6)
108 #define EE_I LSBIT (5)
109
110 #define EF_V LSBIT (4)
111 #define EF_Z LSBIT (3)
112 #define EF_O LSBIT (2)
113 #define EF_U LSBIT (1)
114 #define EF_I LSBIT (0)
115
116 #define PSW_FE LSBIT(20)
117 #define FPU_DISABLED !(PSW & PSW_FE)
118
119 #define XS2FS(X,S) State.fpregs.fs[((X<<4)|(S))]
120 #define AS2FS(A,S) State.fpregs.fs[((A<<2)|(S))]
121 #define Xf2FD(X,f) State.fpregs.fd[((X<<3)|(f))]
122
123 #define FS2FPU(FS,F) sim_fpu_32to (&(F), (FS))
124 #define FD2FPU(FD,F) sim_fpu_232to (&(F), ((FD).high), ((FD).low))
125 #define FPU2FS(F,FS) sim_fpu_to32 (&(FS), &(F))
126 #define FPU2FD(F,FD) sim_fpu_to232 (&((FD).high), &((FD).low), &(F))
127
128 #define FETCH32(a,b,c,d) \
129 ((a)+((b)<<8)+((c)<<16)+((d)<<24))
130
131 #define FETCH24(a,b,c) \
132 ((a)+((b)<<8)+((c)<<16))
133
134 #define FETCH16(a,b) ((a)+((b)<<8))
135
136 #define load_byte(ADDR) \
137 sim_core_read_unaligned_1 (STATE_CPU (simulator, 0), PC, read_map, (ADDR))
138
139 #define load_half(ADDR) \
140 sim_core_read_unaligned_2 (STATE_CPU (simulator, 0), PC, read_map, (ADDR))
141
142 #define load_word(ADDR) \
143 sim_core_read_unaligned_4 (STATE_CPU (simulator, 0), PC, read_map, (ADDR))
144
145 #define load_dword(ADDR) \
146 u642dw (sim_core_read_unaligned_8 (STATE_CPU (simulator, 0), \
147 PC, read_map, (ADDR)))
148
149 static INLINE2 dword
150 u642dw (uint64_t dw)
151 {
152 dword r;
153
154 r.low = (uint32_t)dw;
155 r.high = (uint32_t)(dw >> 32);
156 return r;
157 }
158
159 #define store_byte(ADDR, DATA) \
160 sim_core_write_unaligned_1 (STATE_CPU (simulator, 0), \
161 PC, write_map, (ADDR), (DATA))
162
163
164 #define store_half(ADDR, DATA) \
165 sim_core_write_unaligned_2 (STATE_CPU (simulator, 0), \
166 PC, write_map, (ADDR), (DATA))
167
168
169 #define store_word(ADDR, DATA) \
170 sim_core_write_unaligned_4 (STATE_CPU (simulator, 0), \
171 PC, write_map, (ADDR), (DATA))
172 #define store_dword(ADDR, DATA) \
173 sim_core_write_unaligned_8 (STATE_CPU (simulator, 0), \
174 PC, write_map, (ADDR), dw2u64 (DATA))
175
176 static INLINE2 uint64_t
177 dw2u64 (dword data)
178 {
179 return data.low | (((uint64_t)data.high) << 32);
180 }
181
182 /* Bring data in from the cold */
183
184 #define IMEM8(EA) \
185 (sim_core_read_aligned_1(STATE_CPU(sd, 0), EA, exec_map, (EA)))
186
187 #define IMEM8_IMMED(EA, N) \
188 (sim_core_read_aligned_1(STATE_CPU(sd, 0), EA, exec_map, (EA) + (N)))
189
190 /* Function declarations. */
191
192 INLINE_SIM_MAIN (void) genericAdd (uint32_t source, uint32_t destReg);
193 INLINE_SIM_MAIN (void) genericSub (uint32_t source, uint32_t destReg);
194 INLINE_SIM_MAIN (void) genericCmp (uint32_t leftOpnd, uint32_t rightOpnd);
195 INLINE_SIM_MAIN (void) genericOr (uint32_t source, uint32_t destReg);
196 INLINE_SIM_MAIN (void) genericXor (uint32_t source, uint32_t destReg);
197 INLINE_SIM_MAIN (void) genericBtst (uint32_t leftOpnd, uint32_t rightOpnd);
198 INLINE_SIM_MAIN (void) do_syscall (SIM_DESC sd);
199 void program_interrupt (SIM_DESC sd, sim_cpu *cpu, sim_cia cia, SIM_SIGNAL sig);
200
201 void mn10300_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
202 void mn10300_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
203 void mn10300_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
204
205 void fpu_disabled_exception (SIM_DESC, sim_cpu *, address_word);
206 void fpu_unimp_exception (SIM_DESC, sim_cpu *, address_word);
207 void fpu_check_signal_exception (SIM_DESC, sim_cpu *, address_word);
208
209 extern const struct fp_prec_t
210 {
211 void (* reg2val) (const void *, sim_fpu *);
212 int (* round) (sim_fpu *);
213 void (* val2reg) (const sim_fpu *, void *);
214 } fp_single_prec, fp_double_prec;
215
216 #define FP_SINGLE (&fp_single_prec)
217 #define FP_DOUBLE (&fp_double_prec)
218
219 void fpu_rsqrt (SIM_DESC, sim_cpu *, address_word, const void *, void *, const struct fp_prec_t *);
220 void fpu_sqrt (SIM_DESC, sim_cpu *, address_word, const void *, void *, const struct fp_prec_t *);
221 void fpu_cmp (SIM_DESC, sim_cpu *, address_word, const void *, const void *, const struct fp_prec_t *);
222 void fpu_add (SIM_DESC, sim_cpu *, address_word, const void *, const void *, void *, const struct fp_prec_t *);
223 void fpu_sub (SIM_DESC, sim_cpu *, address_word, const void *, const void *, void *, const struct fp_prec_t *);
224 void fpu_mul (SIM_DESC, sim_cpu *, address_word, const void *, const void *, void *, const struct fp_prec_t *);
225 void fpu_div (SIM_DESC, sim_cpu *, address_word, const void *, const void *, void *, const struct fp_prec_t *);
226 void fpu_fmadd (SIM_DESC, sim_cpu *, address_word, const void *, const void *, const void *, void *, const struct fp_prec_t *);
227 void fpu_fmsub (SIM_DESC, sim_cpu *, address_word, const void *, const void *, const void *, void *, const struct fp_prec_t *);
228 void fpu_fnmadd (SIM_DESC, sim_cpu *, address_word, const void *, const void *, const void *, void *, const struct fp_prec_t *);
229 void fpu_fnmsub (SIM_DESC, sim_cpu *, address_word, const void *, const void *, const void *, void *, const struct fp_prec_t *);
230
231 #endif