sim: watchpoints: change sizeof_pc to sizeof(sim_cia)
[binutils-gdb.git] / sim / v850 / interp.c
1 #include "sim-main.h"
2 #include "sim-options.h"
3 #include "v850_sim.h"
4 #include "sim-assert.h"
5 #include "itable.h"
6
7 #include <stdlib.h>
8 #include <string.h>
9
10 #include "bfd.h"
11
12 static const char * get_insn_name (sim_cpu *, int);
13
14 /* For compatibility. */
15 SIM_DESC simulator;
16
17 /* V850 interrupt model. */
18
19 enum interrupt_type
20 {
21 int_reset,
22 int_nmi,
23 int_intov1,
24 int_intp10,
25 int_intp11,
26 int_intp12,
27 int_intp13,
28 int_intcm4,
29 num_int_types
30 };
31
32 const char *interrupt_names[] =
33 {
34 "reset",
35 "nmi",
36 "intov1",
37 "intp10",
38 "intp11",
39 "intp12",
40 "intp13",
41 "intcm4",
42 NULL
43 };
44
45 static void
46 do_interrupt (SIM_DESC sd, void *data)
47 {
48 const char **interrupt_name = (const char**)data;
49 enum interrupt_type inttype;
50 inttype = (interrupt_name - STATE_WATCHPOINTS (sd)->interrupt_names);
51
52 /* For a hardware reset, drop everything and jump to the start
53 address */
54 if (inttype == int_reset)
55 {
56 PC = 0;
57 PSW = 0x20;
58 ECR = 0;
59 sim_engine_restart (sd, NULL, NULL, NULL_CIA);
60 }
61
62 /* Deliver an NMI when allowed */
63 if (inttype == int_nmi)
64 {
65 if (PSW & PSW_NP)
66 {
67 /* We're already working on an NMI, so this one must wait
68 around until the previous one is done. The processor
69 ignores subsequent NMIs, so we don't need to count them.
70 Just keep re-scheduling a single NMI until it manages to
71 be delivered */
72 if (STATE_CPU (sd, 0)->pending_nmi != NULL)
73 sim_events_deschedule (sd, STATE_CPU (sd, 0)->pending_nmi);
74 STATE_CPU (sd, 0)->pending_nmi =
75 sim_events_schedule (sd, 1, do_interrupt, data);
76 return;
77 }
78 else
79 {
80 /* NMI can be delivered. Do not deschedule pending_nmi as
81 that, if still in the event queue, is a second NMI that
82 needs to be delivered later. */
83 FEPC = PC;
84 FEPSW = PSW;
85 /* Set the FECC part of the ECR. */
86 ECR &= 0x0000ffff;
87 ECR |= 0x10;
88 PSW |= PSW_NP;
89 PSW &= ~PSW_EP;
90 PSW |= PSW_ID;
91 PC = 0x10;
92 sim_engine_restart (sd, NULL, NULL, NULL_CIA);
93 }
94 }
95
96 /* deliver maskable interrupt when allowed */
97 if (inttype > int_nmi && inttype < num_int_types)
98 {
99 if ((PSW & PSW_NP) || (PSW & PSW_ID))
100 {
101 /* Can't deliver this interrupt, reschedule it for later */
102 sim_events_schedule (sd, 1, do_interrupt, data);
103 return;
104 }
105 else
106 {
107 /* save context */
108 EIPC = PC;
109 EIPSW = PSW;
110 /* Disable further interrupts. */
111 PSW |= PSW_ID;
112 /* Indicate that we're doing interrupt not exception processing. */
113 PSW &= ~PSW_EP;
114 /* Clear the EICC part of the ECR, will set below. */
115 ECR &= 0xffff0000;
116 switch (inttype)
117 {
118 case int_intov1:
119 PC = 0x80;
120 ECR |= 0x80;
121 break;
122 case int_intp10:
123 PC = 0x90;
124 ECR |= 0x90;
125 break;
126 case int_intp11:
127 PC = 0xa0;
128 ECR |= 0xa0;
129 break;
130 case int_intp12:
131 PC = 0xb0;
132 ECR |= 0xb0;
133 break;
134 case int_intp13:
135 PC = 0xc0;
136 ECR |= 0xc0;
137 break;
138 case int_intcm4:
139 PC = 0xd0;
140 ECR |= 0xd0;
141 break;
142 default:
143 /* Should never be possible. */
144 sim_engine_abort (sd, NULL, NULL_CIA,
145 "do_interrupt - internal error - bad switch");
146 break;
147 }
148 }
149 sim_engine_restart (sd, NULL, NULL, NULL_CIA);
150 }
151
152 /* some other interrupt? */
153 sim_engine_abort (sd, NULL, NULL_CIA,
154 "do_interrupt - internal error - interrupt %d unknown",
155 inttype);
156 }
157
158 /* Return name of an insn, used by insn profiling. */
159
160 static const char *
161 get_insn_name (sim_cpu *cpu, int i)
162 {
163 return itable[i].name;
164 }
165
166 /* These default values correspond to expected usage for the chip. */
167
168 uint32 OP[4];
169
170 static sim_cia
171 v850_pc_get (sim_cpu *cpu)
172 {
173 return PC;
174 }
175
176 static void
177 v850_pc_set (sim_cpu *cpu, sim_cia pc)
178 {
179 PC = pc;
180 }
181
182 static int v850_reg_fetch (SIM_CPU *, int, unsigned char *, int);
183 static int v850_reg_store (SIM_CPU *, int, unsigned char *, int);
184
185 SIM_DESC
186 sim_open (SIM_OPEN_KIND kind,
187 host_callback * cb,
188 struct bfd * abfd,
189 char * const * argv)
190 {
191 int i;
192 SIM_DESC sd = sim_state_alloc (kind, cb);
193 int mach;
194
195 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
196
197 /* The cpu data is kept in a separately allocated chunk of memory. */
198 if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
199 return 0;
200
201 /* for compatibility */
202 simulator = sd;
203
204 /* FIXME: should be better way of setting up interrupts */
205 STATE_WATCHPOINTS (sd)->pc = &(PC);
206 STATE_WATCHPOINTS (sd)->interrupt_handler = do_interrupt;
207 STATE_WATCHPOINTS (sd)->interrupt_names = interrupt_names;
208
209 /* Initialize the mechanism for doing insn profiling. */
210 CPU_INSN_NAME (STATE_CPU (sd, 0)) = get_insn_name;
211 CPU_MAX_INSNS (STATE_CPU (sd, 0)) = nr_itable_entries;
212
213 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
214 return 0;
215
216 /* Allocate core managed memory */
217
218 /* "Mirror" the ROM addresses below 1MB. */
219 sim_do_commandf (sd, "memory region 0,0x100000,0x%lx", V850_ROM_SIZE);
220 /* Chunk of ram adjacent to rom */
221 sim_do_commandf (sd, "memory region 0x100000,0x%lx", V850_LOW_END-0x100000);
222 /* peripheral I/O region - mirror 1K across 4k (0x1000) */
223 sim_do_command (sd, "memory region 0xfff000,0x1000,1024");
224 /* similarly if in the internal RAM region */
225 sim_do_command (sd, "memory region 0xffe000,0x1000,1024");
226
227 /* The parser will print an error message for us, so we silently return. */
228 if (sim_parse_args (sd, argv) != SIM_RC_OK)
229 {
230 /* Uninstall the modules to avoid memory leaks,
231 file descriptor leaks, etc. */
232 sim_module_uninstall (sd);
233 return 0;
234 }
235
236 /* check for/establish the a reference program image */
237 if (sim_analyze_program (sd,
238 (STATE_PROG_ARGV (sd) != NULL
239 ? *STATE_PROG_ARGV (sd)
240 : NULL),
241 abfd) != SIM_RC_OK)
242 {
243 sim_module_uninstall (sd);
244 return 0;
245 }
246
247 /* establish any remaining configuration options */
248 if (sim_config (sd) != SIM_RC_OK)
249 {
250 sim_module_uninstall (sd);
251 return 0;
252 }
253
254 if (sim_post_argv_init (sd) != SIM_RC_OK)
255 {
256 /* Uninstall the modules to avoid memory leaks,
257 file descriptor leaks, etc. */
258 sim_module_uninstall (sd);
259 return 0;
260 }
261
262
263 /* determine the machine type */
264 if (STATE_ARCHITECTURE (sd) != NULL
265 && (STATE_ARCHITECTURE (sd)->arch == bfd_arch_v850
266 || STATE_ARCHITECTURE (sd)->arch == bfd_arch_v850_rh850))
267 mach = STATE_ARCHITECTURE (sd)->mach;
268 else
269 mach = bfd_mach_v850; /* default */
270
271 /* set machine specific configuration */
272 switch (mach)
273 {
274 case bfd_mach_v850:
275 case bfd_mach_v850e:
276 case bfd_mach_v850e1:
277 case bfd_mach_v850e2:
278 case bfd_mach_v850e2v3:
279 case bfd_mach_v850e3v5:
280 STATE_CPU (sd, 0)->psw_mask = (PSW_NP | PSW_EP | PSW_ID | PSW_SAT
281 | PSW_CY | PSW_OV | PSW_S | PSW_Z);
282 break;
283 }
284
285 /* CPU specific initialization. */
286 for (i = 0; i < MAX_NR_PROCESSORS; ++i)
287 {
288 SIM_CPU *cpu = STATE_CPU (sd, i);
289
290 CPU_REG_FETCH (cpu) = v850_reg_fetch;
291 CPU_REG_STORE (cpu) = v850_reg_store;
292 CPU_PC_FETCH (cpu) = v850_pc_get;
293 CPU_PC_STORE (cpu) = v850_pc_set;
294 }
295
296 return sd;
297 }
298
299 SIM_RC
300 sim_create_inferior (SIM_DESC sd,
301 struct bfd * prog_bfd,
302 char * const *argv,
303 char * const *env)
304 {
305 memset (&State, 0, sizeof (State));
306 if (prog_bfd != NULL)
307 PC = bfd_get_start_address (prog_bfd);
308 return SIM_RC_OK;
309 }
310
311 static int
312 v850_reg_fetch (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
313 {
314 *(unsigned32*)memory = H2T_4 (State.regs[rn]);
315 return -1;
316 }
317
318 static int
319 v850_reg_store (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
320 {
321 State.regs[rn] = T2H_4 (*(unsigned32 *) memory);
322 return length;
323 }