Add tests for gas arch autodetection on ARM
[binutils-gdb.git] / sim / v850 / sim-main.h
1 #ifndef SIM_MAIN_H
2 #define SIM_MAIN_H
3
4 /* General config options */
5
6 #define WITH_WATCHPOINTS 1
7
8
9 /* The v850 has 32bit words, numbered 31 (MSB) to 0 (LSB) */
10
11 #define WITH_TARGET_WORD_MSB 31
12
13 #include "config.h"
14 #include "sim-basics.h"
15 #include "sim-signal.h"
16 #include "sim-fpu.h"
17 #include "sim-base.h"
18
19 #include "simops.h"
20 #include "bfd.h"
21
22
23 typedef signed8 int8;
24 typedef unsigned8 uint8;
25 typedef signed16 int16;
26 typedef unsigned16 uint16;
27 typedef signed32 int32;
28 typedef unsigned32 uint32;
29 typedef unsigned32 reg_t;
30 typedef unsigned64 reg64_t;
31
32
33 /* The current state of the processor; registers, memory, etc. */
34
35 typedef struct _v850_regs {
36 reg_t regs[32]; /* general-purpose registers */
37 reg_t sregs[32]; /* system registers, including psw */
38 reg_t pc;
39 int dummy_mem; /* where invalid accesses go */
40 reg_t mpu0_sregs[28]; /* mpu0 system registers */
41 reg_t mpu1_sregs[28]; /* mpu1 system registers */
42 reg_t fpu_sregs[28]; /* fpu system registers */
43 reg_t selID_sregs[7][32]; /* system registers, selID 1 thru selID 7 */
44 reg64_t vregs[32]; /* vector registers. */
45 } v850_regs;
46
47 struct _sim_cpu
48 {
49 /* ... simulator specific members ... */
50 v850_regs reg;
51 reg_t psw_mask; /* only allow non-reserved bits to be set */
52 sim_event *pending_nmi;
53 /* ... base type ... */
54 sim_cpu_base base;
55 };
56
57 struct sim_state {
58 sim_cpu *cpu[MAX_NR_PROCESSORS];
59 #if 0
60 SIM_ADDR rom_size;
61 SIM_ADDR low_end;
62 SIM_ADDR high_start;
63 SIM_ADDR high_base;
64 void *mem;
65 #endif
66 sim_state_base base;
67 };
68
69 /* For compatibility, until all functions converted to passing
70 SIM_DESC as an argument */
71 extern SIM_DESC simulator;
72
73
74 #define V850_ROM_SIZE 0x8000
75 #define V850_LOW_END 0x200000
76 #define V850_HIGH_START 0xffe000
77
78
79 /* Because we are still using the old semantic table, provide compat
80 macro's that store the instruction where the old simops expects
81 it. */
82
83 extern uint32 OP[4];
84 #if 0
85 OP[0] = inst & 0x1f; /* RRRRR -> reg1 */
86 OP[1] = (inst >> 11) & 0x1f; /* rrrrr -> reg2 */
87 OP[2] = (inst >> 16) & 0xffff; /* wwwww -> reg3 OR imm16 */
88 OP[3] = inst;
89 #endif
90
91 #define SAVE_1 \
92 PC = cia; \
93 OP[0] = instruction_0 & 0x1f; \
94 OP[1] = (instruction_0 >> 11) & 0x1f; \
95 OP[2] = 0; \
96 OP[3] = instruction_0
97
98 #define COMPAT_1(CALL) \
99 SAVE_1; \
100 PC += (CALL); \
101 nia = PC
102
103 #define SAVE_2 \
104 PC = cia; \
105 OP[0] = instruction_0 & 0x1f; \
106 OP[1] = (instruction_0 >> 11) & 0x1f; \
107 OP[2] = instruction_1; \
108 OP[3] = (instruction_1 << 16) | instruction_0
109
110 #define COMPAT_2(CALL) \
111 SAVE_2; \
112 PC += (CALL); \
113 nia = PC
114
115
116 /* new */
117 #define GR ((CPU)->reg.regs)
118 #define SR ((CPU)->reg.sregs)
119 #define VR ((CPU)->reg.vregs)
120 #define MPU0_SR ((STATE_CPU (sd, 0))->reg.mpu0_sregs)
121 #define MPU1_SR ((STATE_CPU (sd, 0))->reg.mpu1_sregs)
122 #define FPU_SR ((STATE_CPU (sd, 0))->reg.fpu_sregs)
123
124 /* old */
125 #define State (STATE_CPU (simulator, 0)->reg)
126 #define PC (State.pc)
127 #define SP_REGNO 3
128 #define SP (State.regs[SP_REGNO])
129 #define EP (State.regs[30])
130
131 #define EIPC (State.sregs[0])
132 #define EIPSW (State.sregs[1])
133 #define FEPC (State.sregs[2])
134 #define FEPSW (State.sregs[3])
135 #define ECR (State.sregs[4])
136 #define PSW (State.sregs[5])
137 #define PSW_REGNO 5
138 #define EIIC (State.sregs[13])
139 #define FEIC (State.sregs[14])
140 #define DBIC (SR[15])
141 #define CTPC (SR[16])
142 #define CTPSW (SR[17])
143 #define DBPC (State.sregs[18])
144 #define DBPSW (State.sregs[19])
145 #define CTBP (State.sregs[20])
146 #define DIR (SR[21])
147 #define EIWR (SR[28])
148 #define FEWR (SR[29])
149 #define DBWR (SR[30])
150 #define BSEL (SR[31])
151
152 #define PSW_US BIT32 (8)
153 #define PSW_NP 0x80
154 #define PSW_EP 0x40
155 #define PSW_ID 0x20
156 #define PSW_SAT 0x10
157 #define PSW_CY 0x8
158 #define PSW_OV 0x4
159 #define PSW_S 0x2
160 #define PSW_Z 0x1
161
162 #define PSW_NPV (1<<18)
163 #define PSW_DMP (1<<17)
164 #define PSW_IMP (1<<16)
165
166 #define ECR_EICC 0x0000ffff
167 #define ECR_FECC 0xffff0000
168
169 /* FPU */
170
171 #define FPSR (FPU_SR[6])
172 #define FPSR_REGNO 6
173 #define FPEPC (FPU_SR[7])
174 #define FPST (FPU_SR[8])
175 #define FPST_REGNO 8
176 #define FPCC (FPU_SR[9])
177 #define FPCFG (FPU_SR[10])
178 #define FPCFG_REGNO 10
179
180 #define FPSR_DEM 0x00200000
181 #define FPSR_SEM 0x00100000
182 #define FPSR_RM 0x000c0000
183 #define FPSR_RN 0x00000000
184 #define FPSR_FS 0x00020000
185 #define FPSR_PR 0x00010000
186
187 #define FPSR_XC 0x0000fc00
188 #define FPSR_XCE 0x00008000
189 #define FPSR_XCV 0x00004000
190 #define FPSR_XCZ 0x00002000
191 #define FPSR_XCO 0x00001000
192 #define FPSR_XCU 0x00000800
193 #define FPSR_XCI 0x00000400
194
195 #define FPSR_XE 0x000003e0
196 #define FPSR_XEV 0x00000200
197 #define FPSR_XEZ 0x00000100
198 #define FPSR_XEO 0x00000080
199 #define FPSR_XEU 0x00000040
200 #define FPSR_XEI 0x00000020
201
202 #define FPSR_XP 0x0000001f
203 #define FPSR_XPV 0x00000010
204 #define FPSR_XPZ 0x00000008
205 #define FPSR_XPO 0x00000004
206 #define FPSR_XPU 0x00000002
207 #define FPSR_XPI 0x00000001
208
209 #define FPST_PR 0x00008000
210 #define FPST_XCE 0x00002000
211 #define FPST_XCV 0x00001000
212 #define FPST_XCZ 0x00000800
213 #define FPST_XCO 0x00000400
214 #define FPST_XCU 0x00000200
215 #define FPST_XCI 0x00000100
216
217 #define FPST_XPV 0x00000010
218 #define FPST_XPZ 0x00000008
219 #define FPST_XPO 0x00000004
220 #define FPST_XPU 0x00000002
221 #define FPST_XPI 0x00000001
222
223 #define FPCFG_RM 0x00000180
224 #define FPCFG_XEV 0x00000010
225 #define FPCFG_XEZ 0x00000008
226 #define FPCFG_XEO 0x00000004
227 #define FPCFG_XEU 0x00000002
228 #define FPCFG_XEI 0x00000001
229
230 #define GET_FPCC()\
231 ((FPSR >> 24) &0xf)
232
233 #define CLEAR_FPCC(bbb)\
234 (FPSR &= ~(1 << (bbb+24)))
235
236 #define SET_FPCC(bbb)\
237 (FPSR |= 1 << (bbb+24))
238
239 #define TEST_FPCC(bbb)\
240 ((FPSR & (1 << (bbb+24))) != 0)
241
242 #define FPSR_GET_ROUND() \
243 (((FPSR & FPSR_RM) == FPSR_RN) ? sim_fpu_round_near \
244 : ((FPSR & FPSR_RM) == 0x00040000) ? sim_fpu_round_up \
245 : ((FPSR & FPSR_RM) == 0x00080000) ? sim_fpu_round_down \
246 : sim_fpu_round_zero)
247
248
249 enum FPU_COMPARE {
250 FPU_CMP_F = 0,
251 FPU_CMP_UN,
252 FPU_CMP_EQ,
253 FPU_CMP_UEQ,
254 FPU_CMP_OLT,
255 FPU_CMP_ULT,
256 FPU_CMP_OLE,
257 FPU_CMP_ULE,
258 FPU_CMP_SF,
259 FPU_CMP_NGLE,
260 FPU_CMP_SEQ,
261 FPU_CMP_NGL,
262 FPU_CMP_LT,
263 FPU_CMP_NGE,
264 FPU_CMP_LE,
265 FPU_CMP_NGT
266 };
267
268
269 /* MPU */
270 #define MPM (MPU1_SR[0])
271 #define MPC (MPU1_SR[1])
272 #define MPC_REGNO 1
273 #define TID (MPU1_SR[2])
274 #define PPA (MPU1_SR[3])
275 #define PPM (MPU1_SR[4])
276 #define PPC (MPU1_SR[5])
277 #define DCC (MPU1_SR[6])
278 #define DCV0 (MPU1_SR[7])
279 #define DCV1 (MPU1_SR[8])
280 #define SPAL (MPU1_SR[10])
281 #define SPAU (MPU1_SR[11])
282 #define IPA0L (MPU1_SR[12])
283 #define IPA0U (MPU1_SR[13])
284 #define IPA1L (MPU1_SR[14])
285 #define IPA1U (MPU1_SR[15])
286 #define IPA2L (MPU1_SR[16])
287 #define IPA2U (MPU1_SR[17])
288 #define IPA3L (MPU1_SR[18])
289 #define IPA3U (MPU1_SR[19])
290 #define DPA0L (MPU1_SR[20])
291 #define DPA0U (MPU1_SR[21])
292 #define DPA1L (MPU1_SR[22])
293 #define DPA1U (MPU1_SR[23])
294 #define DPA2L (MPU1_SR[24])
295 #define DPA2U (MPU1_SR[25])
296 #define DPA3L (MPU1_SR[26])
297 #define DPA3U (MPU1_SR[27])
298
299 #define PPC_PPE 0x1
300 #define SPAL_SPE 0x1
301 #define SPAL_SPS 0x10
302
303 #define VIP (MPU0_SR[0])
304 #define VMECR (MPU0_SR[4])
305 #define VMTID (MPU0_SR[5])
306 #define VMADR (MPU0_SR[6])
307 #define VPECR (MPU0_SR[8])
308 #define VPTID (MPU0_SR[9])
309 #define VPADR (MPU0_SR[10])
310 #define VDECR (MPU0_SR[12])
311 #define VDTID (MPU0_SR[13])
312
313 #define MPM_AUE 0x2
314 #define MPM_MPE 0x1
315
316 #define VMECR_VMX 0x2
317 #define VMECR_VMR 0x4
318 #define VMECR_VMW 0x8
319 #define VMECR_VMS 0x10
320 #define VMECR_VMRMW 0x20
321 #define VMECR_VMMS 0x40
322
323 #define IPA2ADDR(IPA) ((IPA) & 0x1fffff80)
324 #define IPA_IPE 0x1
325 #define IPA_IPX 0x2
326 #define IPA_IPR 0x4
327 #define IPE0 (IPA0L & IPA_IPE)
328 #define IPE1 (IPA1L & IPA_IPE)
329 #define IPE2 (IPA2L & IPA_IPE)
330 #define IPE3 (IPA3L & IPA_IPE)
331 #define IPX0 (IPA0L & IPA_IPX)
332 #define IPX1 (IPA1L & IPA_IPX)
333 #define IPX2 (IPA2L & IPA_IPX)
334 #define IPX3 (IPA3L & IPA_IPX)
335 #define IPR0 (IPA0L & IPA_IPR)
336 #define IPR1 (IPA1L & IPA_IPR)
337 #define IPR2 (IPA2L & IPA_IPR)
338 #define IPR3 (IPA3L & IPA_IPR)
339
340 #define DPA2ADDR(DPA) ((DPA) & 0x1fffff80)
341 #define DPA_DPE 0x1
342 #define DPA_DPR 0x4
343 #define DPA_DPW 0x8
344 #define DPE0 (DPA0L & DPA_DPE)
345 #define DPE1 (DPA1L & DPA_DPE)
346 #define DPE2 (DPA2L & DPA_DPE)
347 #define DPE3 (DPA3L & DPA_DPE)
348 #define DPR0 (DPA0L & DPA_DPR)
349 #define DPR1 (DPA1L & DPA_DPR)
350 #define DPR2 (DPA2L & DPA_DPR)
351 #define DPR3 (DPA3L & DPA_DPR)
352 #define DPW0 (DPA0L & DPA_DPW)
353 #define DPW1 (DPA1L & DPA_DPW)
354 #define DPW2 (DPA2L & DPA_DPW)
355 #define DPW3 (DPA3L & DPA_DPW)
356
357 #define DCC_DCE0 0x1
358 #define DCC_DCE1 0x10000
359
360 #define PPA2ADDR(PPA) ((PPA) & 0x1fffff80)
361 #define PPC_PPC 0xfffffffe
362 #define PPC_PPE 0x1
363 #define PPC_PPM 0x0000fff8
364
365
366 #define SEXT3(x) ((((x)&0x7)^(~0x3))+0x4)
367
368 /* sign-extend a 4-bit number */
369 #define SEXT4(x) ((((x)&0xf)^(~0x7))+0x8)
370
371 /* sign-extend a 5-bit number */
372 #define SEXT5(x) ((((x)&0x1f)^(~0xf))+0x10)
373
374 /* sign-extend a 9-bit number */
375 #define SEXT9(x) ((((x)&0x1ff)^(~0xff))+0x100)
376
377 /* sign-extend a 22-bit number */
378 #define SEXT22(x) ((((x)&0x3fffff)^(~0x1fffff))+0x200000)
379
380 /* sign extend a 40 bit number */
381 #define SEXT40(x) ((((x) & UNSIGNED64 (0xffffffffff)) \
382 ^ (~UNSIGNED64 (0x7fffffffff))) \
383 + UNSIGNED64 (0x8000000000))
384
385 /* sign extend a 44 bit number */
386 #define SEXT44(x) ((((x) & UNSIGNED64 (0xfffffffffff)) \
387 ^ (~ UNSIGNED64 (0x7ffffffffff))) \
388 + UNSIGNED64 (0x80000000000))
389
390 /* sign extend a 60 bit number */
391 #define SEXT60(x) ((((x) & UNSIGNED64 (0xfffffffffffffff)) \
392 ^ (~ UNSIGNED64 (0x7ffffffffffffff))) \
393 + UNSIGNED64 (0x800000000000000))
394
395 /* No sign extension */
396 #define NOP(x) (x)
397
398 #define INC_ADDR(x,i) x = ((State.MD && x == MOD_E) ? MOD_S : (x)+(i))
399
400 #define RLW(x) load_mem (x, 4)
401
402 /* Function declarations. */
403
404 #define IMEM16(EA) \
405 sim_core_read_aligned_2 (CPU, PC, exec_map, (EA))
406
407 #define IMEM16_IMMED(EA,N) \
408 sim_core_read_aligned_2 (STATE_CPU (sd, 0), \
409 PC, exec_map, (EA) + (N) * 2)
410
411 #define load_mem(ADDR,LEN) \
412 sim_core_read_unaligned_##LEN (STATE_CPU (simulator, 0), \
413 PC, read_map, (ADDR))
414
415 #define store_mem(ADDR,LEN,DATA) \
416 sim_core_write_unaligned_##LEN (STATE_CPU (simulator, 0), \
417 PC, write_map, (ADDR), (DATA))
418
419
420 /* compare cccc field against PSW */
421 int condition_met (unsigned code);
422
423
424 /* Debug/tracing calls */
425
426 enum op_types
427 {
428 OP_UNKNOWN,
429 OP_NONE,
430 OP_TRAP,
431 OP_REG,
432 OP_REG_REG,
433 OP_REG_REG_CMP,
434 OP_REG_REG_MOVE,
435 OP_IMM_REG,
436 OP_IMM_REG_CMP,
437 OP_IMM_REG_MOVE,
438 OP_COND_BR,
439 OP_LOAD16,
440 OP_STORE16,
441 OP_LOAD32,
442 OP_STORE32,
443 OP_JUMP,
444 OP_IMM_REG_REG,
445 OP_UIMM_REG_REG,
446 OP_IMM16_REG_REG,
447 OP_UIMM16_REG_REG,
448 OP_BIT,
449 OP_EX1,
450 OP_EX2,
451 OP_LDSR,
452 OP_STSR,
453 OP_BIT_CHANGE,
454 OP_REG_REG_REG,
455 OP_REG_REG3,
456 OP_IMM_REG_REG_REG,
457 OP_PUSHPOP1,
458 OP_PUSHPOP2,
459 OP_PUSHPOP3,
460 };
461
462 #ifdef DEBUG
463 void trace_input (char *name, enum op_types type, int size);
464 void trace_output (enum op_types result);
465 void trace_result (int has_result, unsigned32 result);
466
467 extern int trace_num_values;
468 extern unsigned32 trace_values[];
469 extern unsigned32 trace_pc;
470 extern const char *trace_name;
471 extern int trace_module;
472
473 #define TRACE_BRANCH0() \
474 do { \
475 if (TRACE_BRANCH_P (CPU)) { \
476 trace_module = TRACE_BRANCH_IDX; \
477 trace_pc = cia; \
478 trace_name = itable[MY_INDEX].name; \
479 trace_num_values = 0; \
480 trace_result (1, (nia)); \
481 } \
482 } while (0)
483
484 #define TRACE_BRANCH1(IN1) \
485 do { \
486 if (TRACE_BRANCH_P (CPU)) { \
487 trace_module = TRACE_BRANCH_IDX; \
488 trace_pc = cia; \
489 trace_name = itable[MY_INDEX].name; \
490 trace_values[0] = (IN1); \
491 trace_num_values = 1; \
492 trace_result (1, (nia)); \
493 } \
494 } while (0)
495
496 #define TRACE_BRANCH2(IN1, IN2) \
497 do { \
498 if (TRACE_BRANCH_P (CPU)) { \
499 trace_module = TRACE_BRANCH_IDX; \
500 trace_pc = cia; \
501 trace_name = itable[MY_INDEX].name; \
502 trace_values[0] = (IN1); \
503 trace_values[1] = (IN2); \
504 trace_num_values = 2; \
505 trace_result (1, (nia)); \
506 } \
507 } while (0)
508
509 #define TRACE_BRANCH3(IN1, IN2, IN3) \
510 do { \
511 if (TRACE_BRANCH_P (CPU)) { \
512 trace_module = TRACE_BRANCH_IDX; \
513 trace_pc = cia; \
514 trace_name = itable[MY_INDEX].name; \
515 trace_values[0] = (IN1); \
516 trace_values[1] = (IN2); \
517 trace_values[2] = (IN3); \
518 trace_num_values = 3; \
519 trace_result (1, (nia)); \
520 } \
521 } while (0)
522
523 #define TRACE_LD(ADDR,RESULT) \
524 do { \
525 if (TRACE_MEMORY_P (CPU)) { \
526 trace_module = TRACE_MEMORY_IDX; \
527 trace_pc = cia; \
528 trace_name = itable[MY_INDEX].name; \
529 trace_values[0] = (ADDR); \
530 trace_num_values = 1; \
531 trace_result (1, (RESULT)); \
532 } \
533 } while (0)
534
535 #define TRACE_LD_NAME(NAME, ADDR,RESULT) \
536 do { \
537 if (TRACE_MEMORY_P (CPU)) { \
538 trace_module = TRACE_MEMORY_IDX; \
539 trace_pc = cia; \
540 trace_name = (NAME); \
541 trace_values[0] = (ADDR); \
542 trace_num_values = 1; \
543 trace_result (1, (RESULT)); \
544 } \
545 } while (0)
546
547 #define TRACE_ST(ADDR,RESULT) \
548 do { \
549 if (TRACE_MEMORY_P (CPU)) { \
550 trace_module = TRACE_MEMORY_IDX; \
551 trace_pc = cia; \
552 trace_name = itable[MY_INDEX].name; \
553 trace_values[0] = (ADDR); \
554 trace_num_values = 1; \
555 trace_result (1, (RESULT)); \
556 } \
557 } while (0)
558
559 #define TRACE_FP_INPUT_FPU1(V0) \
560 do { \
561 if (TRACE_FPU_P (CPU)) \
562 { \
563 unsigned64 f0; \
564 sim_fpu_to64 (&f0, (V0)); \
565 trace_input_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
566 } \
567 } while (0)
568
569 #define TRACE_FP_INPUT_FPU2(V0, V1) \
570 do { \
571 if (TRACE_FPU_P (CPU)) \
572 { \
573 unsigned64 f0, f1; \
574 sim_fpu_to64 (&f0, (V0)); \
575 sim_fpu_to64 (&f1, (V1)); \
576 trace_input_fp2 (SD, CPU, TRACE_FPU_IDX, f0, f1); \
577 } \
578 } while (0)
579
580 #define TRACE_FP_INPUT_FPU3(V0, V1, V2) \
581 do { \
582 if (TRACE_FPU_P (CPU)) \
583 { \
584 unsigned64 f0, f1, f2; \
585 sim_fpu_to64 (&f0, (V0)); \
586 sim_fpu_to64 (&f1, (V1)); \
587 sim_fpu_to64 (&f2, (V2)); \
588 trace_input_fp3 (SD, CPU, TRACE_FPU_IDX, f0, f1, f2); \
589 } \
590 } while (0)
591
592 #define TRACE_FP_INPUT_BOOL1_FPU2(V0, V1, V2) \
593 do { \
594 if (TRACE_FPU_P (CPU)) \
595 { \
596 int d0 = (V0); \
597 unsigned64 f1, f2; \
598 TRACE_DATA *data = CPU_TRACE_DATA (CPU); \
599 TRACE_IDX (data) = TRACE_FPU_IDX; \
600 sim_fpu_to64 (&f1, (V1)); \
601 sim_fpu_to64 (&f2, (V2)); \
602 save_data (SD, data, trace_fmt_bool, sizeof (d0), &d0); \
603 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f1); \
604 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f2); \
605 } \
606 } while (0)
607
608 #define TRACE_FP_INPUT_WORD2(V0, V1) \
609 do { \
610 if (TRACE_FPU_P (CPU)) \
611 trace_input_word2 (SD, CPU, TRACE_FPU_IDX, (V0), (V1)); \
612 } while (0)
613
614 #define TRACE_FP_RESULT_FPU1(R0) \
615 do { \
616 if (TRACE_FPU_P (CPU)) \
617 { \
618 unsigned64 f0; \
619 sim_fpu_to64 (&f0, (R0)); \
620 trace_result_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
621 } \
622 } while (0)
623
624 #define TRACE_FP_RESULT_WORD1(R0) TRACE_FP_RESULT_WORD(R0)
625
626 #define TRACE_FP_RESULT_WORD2(R0, R1) \
627 do { \
628 if (TRACE_FPU_P (CPU)) \
629 trace_result_word2 (SD, CPU, TRACE_FPU_IDX, (R0), (R1)); \
630 } while (0)
631
632 #else
633 #define trace_input(NAME, IN1, IN2)
634 #define trace_output(RESULT)
635 #define trace_result(HAS_RESULT, RESULT)
636
637 #define TRACE_ALU_INPUT0()
638 #define TRACE_ALU_INPUT1(IN0)
639 #define TRACE_ALU_INPUT2(IN0, IN1)
640 #define TRACE_ALU_INPUT2(IN0, IN1)
641 #define TRACE_ALU_INPUT2(IN0, IN1 INS2)
642 #define TRACE_ALU_RESULT(RESULT)
643
644 #define TRACE_BRANCH0()
645 #define TRACE_BRANCH1(IN1)
646 #define TRACE_BRANCH2(IN1, IN2)
647 #define TRACE_BRANCH2(IN1, IN2, IN3)
648
649 #define TRACE_LD(ADDR,RESULT)
650 #define TRACE_ST(ADDR,RESULT)
651
652 #endif
653
654 #define GPR_SET(N, VAL) (State.regs[(N)] = (VAL))
655 #define GPR_CLEAR(N) (State.regs[(N)] = 0)
656
657 extern void divun ( unsigned int N,
658 unsigned long int als,
659 unsigned long int sfi,
660 unsigned32 /*unsigned long int*/ * quotient_ptr,
661 unsigned32 /*unsigned long int*/ * remainder_ptr,
662 int *overflow_ptr
663 );
664 extern void divn ( unsigned int N,
665 unsigned long int als,
666 unsigned long int sfi,
667 signed32 /*signed long int*/ * quotient_ptr,
668 signed32 /*signed long int*/ * remainder_ptr,
669 int *overflow_ptr
670 );
671 extern int type1_regs[];
672 extern int type2_regs[];
673 extern int type3_regs[];
674
675 #define SESR_OV (1 << 0)
676 #define SESR_SOV (1 << 1)
677
678 #define SESR (State.sregs[12])
679
680 #define ROUND_Q62_Q31(X) ((((X) + (1 << 30)) >> 31) & 0xffffffff)
681 #define ROUND_Q62_Q15(X) ((((X) + (1 << 30)) >> 47) & 0xffff)
682 #define ROUND_Q31_Q15(X) ((((X) + (1 << 15)) >> 15) & 0xffff)
683 #define ROUND_Q30_Q15(X) ((((X) + (1 << 14)) >> 15) & 0xffff)
684
685 #define SAT16(X) \
686 do \
687 { \
688 signed64 z = (X); \
689 if (z > 0x7fff) \
690 { \
691 SESR |= SESR_OV | SESR_SOV; \
692 z = 0x7fff; \
693 } \
694 else if (z < -0x8000) \
695 { \
696 SESR |= SESR_OV | SESR_SOV; \
697 z = - 0x8000; \
698 } \
699 (X) = z; \
700 } \
701 while (0)
702
703 #define SAT32(X) \
704 do \
705 { \
706 signed64 z = (X); \
707 if (z > 0x7fffffff) \
708 { \
709 SESR |= SESR_OV | SESR_SOV; \
710 z = 0x7fffffff; \
711 } \
712 else if (z < -0x80000000) \
713 { \
714 SESR |= SESR_OV | SESR_SOV; \
715 z = - 0x80000000; \
716 } \
717 (X) = z; \
718 } \
719 while (0)
720
721 #define ABS16(X) \
722 do \
723 { \
724 signed64 z = (X) & 0xffff; \
725 if (z == 0x8000) \
726 { \
727 SESR |= SESR_OV | SESR_SOV; \
728 z = 0x7fff; \
729 } \
730 else if (z & 0x8000) \
731 { \
732 z = (- z) & 0xffff; \
733 } \
734 (X) = z; \
735 } \
736 while (0)
737
738 #define ABS32(X) \
739 do \
740 { \
741 signed64 z = (X) & 0xffffffff; \
742 if (z == 0x80000000) \
743 { \
744 SESR |= SESR_OV | SESR_SOV; \
745 z = 0x7fffffff; \
746 } \
747 else if (z & 0x80000000) \
748 { \
749 z = (- z) & 0xffffffff; \
750 } \
751 (X) = z; \
752 } \
753 while (0)
754
755 #endif