Powerpc fix for gdb.base/ending-run.exp
[binutils-gdb.git] / sim / v850 / sim-main.h
1 #ifndef SIM_MAIN_H
2 #define SIM_MAIN_H
3
4 /* The v850 has 32bit words, numbered 31 (MSB) to 0 (LSB) */
5
6 #define WITH_TARGET_WORD_MSB 31
7
8 #include "sim-basics.h"
9 #include "sim-signal.h"
10 #include "sim-fpu.h"
11 #include "sim-base.h"
12
13 #include "simops.h"
14 #include "bfd.h"
15
16
17 typedef uint32_t reg_t;
18 typedef uint64_t reg64_t;
19
20
21 /* The current state of the processor; registers, memory, etc. */
22
23 typedef struct _v850_regs {
24 reg_t regs[32]; /* general-purpose registers */
25 reg_t sregs[32]; /* system registers, including psw */
26 reg_t pc;
27 int dummy_mem; /* where invalid accesses go */
28 reg_t mpu0_sregs[28]; /* mpu0 system registers */
29 reg_t mpu1_sregs[28]; /* mpu1 system registers */
30 reg_t fpu_sregs[28]; /* fpu system registers */
31 reg_t selID_sregs[7][32]; /* system registers, selID 1 thru selID 7 */
32 reg64_t vregs[32]; /* vector registers. */
33 } v850_regs;
34
35 struct _sim_cpu
36 {
37 /* ... simulator specific members ... */
38 v850_regs reg;
39 reg_t psw_mask; /* only allow non-reserved bits to be set */
40 sim_event *pending_nmi;
41 /* ... base type ... */
42 sim_cpu_base base;
43 };
44
45 /* For compatibility, until all functions converted to passing
46 SIM_DESC as an argument */
47 extern SIM_DESC simulator;
48
49
50 #define V850_ROM_SIZE 0x8000
51 #define V850_LOW_END 0x200000
52 #define V850_HIGH_START 0xffe000
53
54
55 /* Because we are still using the old semantic table, provide compat
56 macro's that store the instruction where the old simops expects
57 it. */
58
59 extern uint32_t OP[4];
60 #if 0
61 OP[0] = inst & 0x1f; /* RRRRR -> reg1 */
62 OP[1] = (inst >> 11) & 0x1f; /* rrrrr -> reg2 */
63 OP[2] = (inst >> 16) & 0xffff; /* wwwww -> reg3 OR imm16 */
64 OP[3] = inst;
65 #endif
66
67 #define SAVE_1 \
68 PC = cia; \
69 OP[0] = instruction_0 & 0x1f; \
70 OP[1] = (instruction_0 >> 11) & 0x1f; \
71 OP[2] = 0; \
72 OP[3] = instruction_0
73
74 #define COMPAT_1(CALL) \
75 SAVE_1; \
76 PC += (CALL); \
77 nia = PC
78
79 #define SAVE_2 \
80 PC = cia; \
81 OP[0] = instruction_0 & 0x1f; \
82 OP[1] = (instruction_0 >> 11) & 0x1f; \
83 OP[2] = instruction_1; \
84 OP[3] = (instruction_1 << 16) | instruction_0
85
86 #define COMPAT_2(CALL) \
87 SAVE_2; \
88 PC += (CALL); \
89 nia = PC
90
91
92 /* new */
93 #define GR ((CPU)->reg.regs)
94 #define SR ((CPU)->reg.sregs)
95 #define VR ((CPU)->reg.vregs)
96 #define MPU0_SR ((STATE_CPU (sd, 0))->reg.mpu0_sregs)
97 #define MPU1_SR ((STATE_CPU (sd, 0))->reg.mpu1_sregs)
98 #define FPU_SR ((STATE_CPU (sd, 0))->reg.fpu_sregs)
99
100 /* old */
101 #define State (STATE_CPU (simulator, 0)->reg)
102 #define PC (State.pc)
103 #define SP_REGNO 3
104 #define SP (State.regs[SP_REGNO])
105 #define EP (State.regs[30])
106
107 #define EIPC (State.sregs[0])
108 #define EIPSW (State.sregs[1])
109 #define FEPC (State.sregs[2])
110 #define FEPSW (State.sregs[3])
111 #define ECR (State.sregs[4])
112 #define PSW (State.sregs[5])
113 #define PSW_REGNO 5
114 #define EIIC (State.sregs[13])
115 #define FEIC (State.sregs[14])
116 #define DBIC (SR[15])
117 #define CTPC (SR[16])
118 #define CTPSW (SR[17])
119 #define DBPC (State.sregs[18])
120 #define DBPSW (State.sregs[19])
121 #define CTBP (State.sregs[20])
122 #define DIR (SR[21])
123 #define EIWR (SR[28])
124 #define FEWR (SR[29])
125 #define DBWR (SR[30])
126 #define BSEL (SR[31])
127
128 #define PSW_US BIT32 (8)
129 #define PSW_NP 0x80
130 #define PSW_EP 0x40
131 #define PSW_ID 0x20
132 #define PSW_SAT 0x10
133 #define PSW_CY 0x8
134 #define PSW_OV 0x4
135 #define PSW_S 0x2
136 #define PSW_Z 0x1
137
138 #define PSW_NPV (1<<18)
139 #define PSW_DMP (1<<17)
140 #define PSW_IMP (1<<16)
141
142 #define ECR_EICC 0x0000ffff
143 #define ECR_FECC 0xffff0000
144
145 /* FPU */
146
147 #define FPSR (FPU_SR[6])
148 #define FPSR_REGNO 6
149 #define FPEPC (FPU_SR[7])
150 #define FPST (FPU_SR[8])
151 #define FPST_REGNO 8
152 #define FPCC (FPU_SR[9])
153 #define FPCFG (FPU_SR[10])
154 #define FPCFG_REGNO 10
155
156 #define FPSR_DEM 0x00200000
157 #define FPSR_SEM 0x00100000
158 #define FPSR_RM 0x000c0000
159 #define FPSR_RN 0x00000000
160 #define FPSR_FS 0x00020000
161 #define FPSR_PR 0x00010000
162
163 #define FPSR_XC 0x0000fc00
164 #define FPSR_XCE 0x00008000
165 #define FPSR_XCV 0x00004000
166 #define FPSR_XCZ 0x00002000
167 #define FPSR_XCO 0x00001000
168 #define FPSR_XCU 0x00000800
169 #define FPSR_XCI 0x00000400
170
171 #define FPSR_XE 0x000003e0
172 #define FPSR_XEV 0x00000200
173 #define FPSR_XEZ 0x00000100
174 #define FPSR_XEO 0x00000080
175 #define FPSR_XEU 0x00000040
176 #define FPSR_XEI 0x00000020
177
178 #define FPSR_XP 0x0000001f
179 #define FPSR_XPV 0x00000010
180 #define FPSR_XPZ 0x00000008
181 #define FPSR_XPO 0x00000004
182 #define FPSR_XPU 0x00000002
183 #define FPSR_XPI 0x00000001
184
185 #define FPST_PR 0x00008000
186 #define FPST_XCE 0x00002000
187 #define FPST_XCV 0x00001000
188 #define FPST_XCZ 0x00000800
189 #define FPST_XCO 0x00000400
190 #define FPST_XCU 0x00000200
191 #define FPST_XCI 0x00000100
192
193 #define FPST_XPV 0x00000010
194 #define FPST_XPZ 0x00000008
195 #define FPST_XPO 0x00000004
196 #define FPST_XPU 0x00000002
197 #define FPST_XPI 0x00000001
198
199 #define FPCFG_RM 0x00000180
200 #define FPCFG_XEV 0x00000010
201 #define FPCFG_XEZ 0x00000008
202 #define FPCFG_XEO 0x00000004
203 #define FPCFG_XEU 0x00000002
204 #define FPCFG_XEI 0x00000001
205
206 #define GET_FPCC()\
207 ((FPSR >> 24) &0xf)
208
209 #define CLEAR_FPCC(bbb)\
210 (FPSR &= ~(1 << (bbb+24)))
211
212 #define SET_FPCC(bbb)\
213 (FPSR |= 1 << (bbb+24))
214
215 #define TEST_FPCC(bbb)\
216 ((FPSR & (1 << (bbb+24))) != 0)
217
218 #define FPSR_GET_ROUND() \
219 (((FPSR & FPSR_RM) == FPSR_RN) ? sim_fpu_round_near \
220 : ((FPSR & FPSR_RM) == 0x00040000) ? sim_fpu_round_up \
221 : ((FPSR & FPSR_RM) == 0x00080000) ? sim_fpu_round_down \
222 : sim_fpu_round_zero)
223
224
225 enum FPU_COMPARE {
226 FPU_CMP_F = 0,
227 FPU_CMP_UN,
228 FPU_CMP_EQ,
229 FPU_CMP_UEQ,
230 FPU_CMP_OLT,
231 FPU_CMP_ULT,
232 FPU_CMP_OLE,
233 FPU_CMP_ULE,
234 FPU_CMP_SF,
235 FPU_CMP_NGLE,
236 FPU_CMP_SEQ,
237 FPU_CMP_NGL,
238 FPU_CMP_LT,
239 FPU_CMP_NGE,
240 FPU_CMP_LE,
241 FPU_CMP_NGT
242 };
243
244
245 /* MPU */
246 #define MPM (MPU1_SR[0])
247 #define MPC (MPU1_SR[1])
248 #define MPC_REGNO 1
249 #define TID (MPU1_SR[2])
250 #define PPA (MPU1_SR[3])
251 #define PPM (MPU1_SR[4])
252 #define PPC (MPU1_SR[5])
253 #define DCC (MPU1_SR[6])
254 #define DCV0 (MPU1_SR[7])
255 #define DCV1 (MPU1_SR[8])
256 #define SPAL (MPU1_SR[10])
257 #define SPAU (MPU1_SR[11])
258 #define IPA0L (MPU1_SR[12])
259 #define IPA0U (MPU1_SR[13])
260 #define IPA1L (MPU1_SR[14])
261 #define IPA1U (MPU1_SR[15])
262 #define IPA2L (MPU1_SR[16])
263 #define IPA2U (MPU1_SR[17])
264 #define IPA3L (MPU1_SR[18])
265 #define IPA3U (MPU1_SR[19])
266 #define DPA0L (MPU1_SR[20])
267 #define DPA0U (MPU1_SR[21])
268 #define DPA1L (MPU1_SR[22])
269 #define DPA1U (MPU1_SR[23])
270 #define DPA2L (MPU1_SR[24])
271 #define DPA2U (MPU1_SR[25])
272 #define DPA3L (MPU1_SR[26])
273 #define DPA3U (MPU1_SR[27])
274
275 #define PPC_PPE 0x1
276 #define SPAL_SPE 0x1
277 #define SPAL_SPS 0x10
278
279 #define VIP (MPU0_SR[0])
280 #define VMECR (MPU0_SR[4])
281 #define VMTID (MPU0_SR[5])
282 #define VMADR (MPU0_SR[6])
283 #define VPECR (MPU0_SR[8])
284 #define VPTID (MPU0_SR[9])
285 #define VPADR (MPU0_SR[10])
286 #define VDECR (MPU0_SR[12])
287 #define VDTID (MPU0_SR[13])
288
289 #define MPM_AUE 0x2
290 #define MPM_MPE 0x1
291
292 #define VMECR_VMX 0x2
293 #define VMECR_VMR 0x4
294 #define VMECR_VMW 0x8
295 #define VMECR_VMS 0x10
296 #define VMECR_VMRMW 0x20
297 #define VMECR_VMMS 0x40
298
299 #define IPA2ADDR(IPA) ((IPA) & 0x1fffff80)
300 #define IPA_IPE 0x1
301 #define IPA_IPX 0x2
302 #define IPA_IPR 0x4
303 #define IPE0 (IPA0L & IPA_IPE)
304 #define IPE1 (IPA1L & IPA_IPE)
305 #define IPE2 (IPA2L & IPA_IPE)
306 #define IPE3 (IPA3L & IPA_IPE)
307 #define IPX0 (IPA0L & IPA_IPX)
308 #define IPX1 (IPA1L & IPA_IPX)
309 #define IPX2 (IPA2L & IPA_IPX)
310 #define IPX3 (IPA3L & IPA_IPX)
311 #define IPR0 (IPA0L & IPA_IPR)
312 #define IPR1 (IPA1L & IPA_IPR)
313 #define IPR2 (IPA2L & IPA_IPR)
314 #define IPR3 (IPA3L & IPA_IPR)
315
316 #define DPA2ADDR(DPA) ((DPA) & 0x1fffff80)
317 #define DPA_DPE 0x1
318 #define DPA_DPR 0x4
319 #define DPA_DPW 0x8
320 #define DPE0 (DPA0L & DPA_DPE)
321 #define DPE1 (DPA1L & DPA_DPE)
322 #define DPE2 (DPA2L & DPA_DPE)
323 #define DPE3 (DPA3L & DPA_DPE)
324 #define DPR0 (DPA0L & DPA_DPR)
325 #define DPR1 (DPA1L & DPA_DPR)
326 #define DPR2 (DPA2L & DPA_DPR)
327 #define DPR3 (DPA3L & DPA_DPR)
328 #define DPW0 (DPA0L & DPA_DPW)
329 #define DPW1 (DPA1L & DPA_DPW)
330 #define DPW2 (DPA2L & DPA_DPW)
331 #define DPW3 (DPA3L & DPA_DPW)
332
333 #define DCC_DCE0 0x1
334 #define DCC_DCE1 0x10000
335
336 #define PPA2ADDR(PPA) ((PPA) & 0x1fffff80)
337 #define PPC_PPC 0xfffffffe
338 #define PPC_PPE 0x1
339 #define PPC_PPM 0x0000fff8
340
341
342 #define SEXT3(x) ((((x)&0x7)^(~0x3))+0x4)
343
344 /* sign-extend a 4-bit number */
345 #define SEXT4(x) ((((x)&0xf)^(~0x7))+0x8)
346
347 /* sign-extend a 5-bit number */
348 #define SEXT5(x) ((((x)&0x1f)^(~0xf))+0x10)
349
350 /* sign-extend a 9-bit number */
351 #define SEXT9(x) ((((x)&0x1ff)^(~0xff))+0x100)
352
353 /* sign-extend a 22-bit number */
354 #define SEXT22(x) ((((x)&0x3fffff)^(~0x1fffff))+0x200000)
355
356 /* sign extend a 40 bit number */
357 #define SEXT40(x) ((((x) & UNSIGNED64 (0xffffffffff)) \
358 ^ (~UNSIGNED64 (0x7fffffffff))) \
359 + UNSIGNED64 (0x8000000000))
360
361 /* sign extend a 44 bit number */
362 #define SEXT44(x) ((((x) & UNSIGNED64 (0xfffffffffff)) \
363 ^ (~ UNSIGNED64 (0x7ffffffffff))) \
364 + UNSIGNED64 (0x80000000000))
365
366 /* sign extend a 60 bit number */
367 #define SEXT60(x) ((((x) & UNSIGNED64 (0xfffffffffffffff)) \
368 ^ (~ UNSIGNED64 (0x7ffffffffffffff))) \
369 + UNSIGNED64 (0x800000000000000))
370
371 /* No sign extension */
372 #define NOP(x) (x)
373
374 #define INC_ADDR(x,i) x = ((State.MD && x == MOD_E) ? MOD_S : (x)+(i))
375
376 #define RLW(x) load_mem (x, 4)
377
378 /* Function declarations. */
379
380 #define IMEM16(EA) \
381 sim_core_read_aligned_2 (CPU, PC, exec_map, (EA))
382
383 #define IMEM16_IMMED(EA,N) \
384 sim_core_read_aligned_2 (STATE_CPU (sd, 0), \
385 PC, exec_map, (EA) + (N) * 2)
386
387 #define load_mem(ADDR,LEN) \
388 sim_core_read_unaligned_##LEN (STATE_CPU (simulator, 0), \
389 PC, read_map, (ADDR))
390
391 #define store_mem(ADDR,LEN,DATA) \
392 sim_core_write_unaligned_##LEN (STATE_CPU (simulator, 0), \
393 PC, write_map, (ADDR), (DATA))
394
395
396 /* compare cccc field against PSW */
397 int condition_met (unsigned code);
398
399
400 /* Debug/tracing calls */
401
402 enum op_types
403 {
404 OP_UNKNOWN,
405 OP_NONE,
406 OP_TRAP,
407 OP_REG,
408 OP_REG_REG,
409 OP_REG_REG_CMP,
410 OP_REG_REG_MOVE,
411 OP_IMM_REG,
412 OP_IMM_REG_CMP,
413 OP_IMM_REG_MOVE,
414 OP_COND_BR,
415 OP_LOAD16,
416 OP_STORE16,
417 OP_LOAD32,
418 OP_STORE32,
419 OP_JUMP,
420 OP_IMM_REG_REG,
421 OP_UIMM_REG_REG,
422 OP_IMM16_REG_REG,
423 OP_UIMM16_REG_REG,
424 OP_BIT,
425 OP_EX1,
426 OP_EX2,
427 OP_LDSR,
428 OP_STSR,
429 OP_BIT_CHANGE,
430 OP_REG_REG_REG,
431 OP_REG_REG3,
432 OP_IMM_REG_REG_REG,
433 OP_PUSHPOP1,
434 OP_PUSHPOP2,
435 OP_PUSHPOP3,
436 };
437
438 #ifdef DEBUG
439 void trace_input (char *name, enum op_types type, int size);
440 void trace_output (enum op_types result);
441 void trace_result (int has_result, uint32_t result);
442
443 extern int trace_num_values;
444 extern uint32_t trace_values[];
445 extern uint32_t trace_pc;
446 extern const char *trace_name;
447 extern int trace_module;
448
449 #define TRACE_BRANCH0() \
450 do { \
451 if (TRACE_BRANCH_P (CPU)) { \
452 trace_module = TRACE_BRANCH_IDX; \
453 trace_pc = cia; \
454 trace_name = itable[MY_INDEX].name; \
455 trace_num_values = 0; \
456 trace_result (1, (nia)); \
457 } \
458 } while (0)
459
460 #define TRACE_BRANCH1(IN1) \
461 do { \
462 if (TRACE_BRANCH_P (CPU)) { \
463 trace_module = TRACE_BRANCH_IDX; \
464 trace_pc = cia; \
465 trace_name = itable[MY_INDEX].name; \
466 trace_values[0] = (IN1); \
467 trace_num_values = 1; \
468 trace_result (1, (nia)); \
469 } \
470 } while (0)
471
472 #define TRACE_BRANCH2(IN1, IN2) \
473 do { \
474 if (TRACE_BRANCH_P (CPU)) { \
475 trace_module = TRACE_BRANCH_IDX; \
476 trace_pc = cia; \
477 trace_name = itable[MY_INDEX].name; \
478 trace_values[0] = (IN1); \
479 trace_values[1] = (IN2); \
480 trace_num_values = 2; \
481 trace_result (1, (nia)); \
482 } \
483 } while (0)
484
485 #define TRACE_BRANCH3(IN1, IN2, IN3) \
486 do { \
487 if (TRACE_BRANCH_P (CPU)) { \
488 trace_module = TRACE_BRANCH_IDX; \
489 trace_pc = cia; \
490 trace_name = itable[MY_INDEX].name; \
491 trace_values[0] = (IN1); \
492 trace_values[1] = (IN2); \
493 trace_values[2] = (IN3); \
494 trace_num_values = 3; \
495 trace_result (1, (nia)); \
496 } \
497 } while (0)
498
499 #define TRACE_LD(ADDR,RESULT) \
500 do { \
501 if (TRACE_MEMORY_P (CPU)) { \
502 trace_module = TRACE_MEMORY_IDX; \
503 trace_pc = cia; \
504 trace_name = itable[MY_INDEX].name; \
505 trace_values[0] = (ADDR); \
506 trace_num_values = 1; \
507 trace_result (1, (RESULT)); \
508 } \
509 } while (0)
510
511 #define TRACE_LD_NAME(NAME, ADDR,RESULT) \
512 do { \
513 if (TRACE_MEMORY_P (CPU)) { \
514 trace_module = TRACE_MEMORY_IDX; \
515 trace_pc = cia; \
516 trace_name = (NAME); \
517 trace_values[0] = (ADDR); \
518 trace_num_values = 1; \
519 trace_result (1, (RESULT)); \
520 } \
521 } while (0)
522
523 #define TRACE_ST(ADDR,RESULT) \
524 do { \
525 if (TRACE_MEMORY_P (CPU)) { \
526 trace_module = TRACE_MEMORY_IDX; \
527 trace_pc = cia; \
528 trace_name = itable[MY_INDEX].name; \
529 trace_values[0] = (ADDR); \
530 trace_num_values = 1; \
531 trace_result (1, (RESULT)); \
532 } \
533 } while (0)
534
535 #define TRACE_FP_INPUT_FPU1(V0) \
536 do { \
537 if (TRACE_FPU_P (CPU)) \
538 { \
539 uint64_t f0; \
540 sim_fpu_to64 (&f0, (V0)); \
541 trace_input_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
542 } \
543 } while (0)
544
545 #define TRACE_FP_INPUT_FPU2(V0, V1) \
546 do { \
547 if (TRACE_FPU_P (CPU)) \
548 { \
549 uint64_t f0, f1; \
550 sim_fpu_to64 (&f0, (V0)); \
551 sim_fpu_to64 (&f1, (V1)); \
552 trace_input_fp2 (SD, CPU, TRACE_FPU_IDX, f0, f1); \
553 } \
554 } while (0)
555
556 #define TRACE_FP_INPUT_FPU3(V0, V1, V2) \
557 do { \
558 if (TRACE_FPU_P (CPU)) \
559 { \
560 uint64_t f0, f1, f2; \
561 sim_fpu_to64 (&f0, (V0)); \
562 sim_fpu_to64 (&f1, (V1)); \
563 sim_fpu_to64 (&f2, (V2)); \
564 trace_input_fp3 (SD, CPU, TRACE_FPU_IDX, f0, f1, f2); \
565 } \
566 } while (0)
567
568 #define TRACE_FP_INPUT_BOOL1_FPU2(V0, V1, V2) \
569 do { \
570 if (TRACE_FPU_P (CPU)) \
571 { \
572 int d0 = (V0); \
573 uint64_t f1, f2; \
574 TRACE_DATA *data = CPU_TRACE_DATA (CPU); \
575 TRACE_IDX (data) = TRACE_FPU_IDX; \
576 sim_fpu_to64 (&f1, (V1)); \
577 sim_fpu_to64 (&f2, (V2)); \
578 save_data (SD, data, trace_fmt_bool, sizeof (d0), &d0); \
579 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f1); \
580 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f2); \
581 } \
582 } while (0)
583
584 #define TRACE_FP_INPUT_WORD2(V0, V1) \
585 do { \
586 if (TRACE_FPU_P (CPU)) \
587 trace_input_word2 (SD, CPU, TRACE_FPU_IDX, (V0), (V1)); \
588 } while (0)
589
590 #define TRACE_FP_RESULT_FPU1(R0) \
591 do { \
592 if (TRACE_FPU_P (CPU)) \
593 { \
594 uint64_t f0; \
595 sim_fpu_to64 (&f0, (R0)); \
596 trace_result_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
597 } \
598 } while (0)
599
600 #define TRACE_FP_RESULT_WORD1(R0) TRACE_FP_RESULT_WORD(R0)
601
602 #define TRACE_FP_RESULT_WORD2(R0, R1) \
603 do { \
604 if (TRACE_FPU_P (CPU)) \
605 trace_result_word2 (SD, CPU, TRACE_FPU_IDX, (R0), (R1)); \
606 } while (0)
607
608 #else
609 #define trace_input(NAME, IN1, IN2)
610 #define trace_output(RESULT)
611 #define trace_result(HAS_RESULT, RESULT)
612
613 #define TRACE_ALU_INPUT0()
614 #define TRACE_ALU_INPUT1(IN0)
615 #define TRACE_ALU_INPUT2(IN0, IN1)
616 #define TRACE_ALU_INPUT2(IN0, IN1)
617 #define TRACE_ALU_INPUT2(IN0, IN1 INS2)
618 #define TRACE_ALU_RESULT(RESULT)
619
620 #define TRACE_BRANCH0()
621 #define TRACE_BRANCH1(IN1)
622 #define TRACE_BRANCH2(IN1, IN2)
623 #define TRACE_BRANCH2(IN1, IN2, IN3)
624
625 #define TRACE_LD(ADDR,RESULT)
626 #define TRACE_ST(ADDR,RESULT)
627
628 #endif
629
630 #define GPR_SET(N, VAL) (State.regs[(N)] = (VAL))
631 #define GPR_CLEAR(N) (State.regs[(N)] = 0)
632
633 extern void divun ( unsigned int N,
634 unsigned long int als,
635 unsigned long int sfi,
636 uint32_t /*unsigned long int*/ * quotient_ptr,
637 uint32_t /*unsigned long int*/ * remainder_ptr,
638 int *overflow_ptr
639 );
640 extern void divn ( unsigned int N,
641 unsigned long int als,
642 unsigned long int sfi,
643 int32_t /*signed long int*/ * quotient_ptr,
644 int32_t /*signed long int*/ * remainder_ptr,
645 int *overflow_ptr
646 );
647 extern int type1_regs[];
648 extern int type2_regs[];
649 extern int type3_regs[];
650
651 #define SESR_OV (1 << 0)
652 #define SESR_SOV (1 << 1)
653
654 #define SESR (State.sregs[12])
655
656 #define ROUND_Q62_Q31(X) ((((X) + (1 << 30)) >> 31) & 0xffffffff)
657 #define ROUND_Q62_Q15(X) ((((X) + (1 << 30)) >> 47) & 0xffff)
658 #define ROUND_Q31_Q15(X) ((((X) + (1 << 15)) >> 15) & 0xffff)
659 #define ROUND_Q30_Q15(X) ((((X) + (1 << 14)) >> 15) & 0xffff)
660
661 #define SAT16(X) \
662 do \
663 { \
664 int64_t z = (X); \
665 if (z > 0x7fff) \
666 { \
667 SESR |= SESR_OV | SESR_SOV; \
668 z = 0x7fff; \
669 } \
670 else if (z < -0x8000) \
671 { \
672 SESR |= SESR_OV | SESR_SOV; \
673 z = - 0x8000; \
674 } \
675 (X) = z; \
676 } \
677 while (0)
678
679 #define SAT32(X) \
680 do \
681 { \
682 int64_t z = (X); \
683 if (z > 0x7fffffff) \
684 { \
685 SESR |= SESR_OV | SESR_SOV; \
686 z = 0x7fffffff; \
687 } \
688 else if (z < -0x80000000) \
689 { \
690 SESR |= SESR_OV | SESR_SOV; \
691 z = - 0x80000000; \
692 } \
693 (X) = z; \
694 } \
695 while (0)
696
697 #define ABS16(X) \
698 do \
699 { \
700 int64_t z = (X) & 0xffff; \
701 if (z == 0x8000) \
702 { \
703 SESR |= SESR_OV | SESR_SOV; \
704 z = 0x7fff; \
705 } \
706 else if (z & 0x8000) \
707 { \
708 z = (- z) & 0xffff; \
709 } \
710 (X) = z; \
711 } \
712 while (0)
713
714 #define ABS32(X) \
715 do \
716 { \
717 int64_t z = (X) & 0xffffffff; \
718 if (z == 0x80000000) \
719 { \
720 SESR |= SESR_OV | SESR_SOV; \
721 z = 0x7fffffff; \
722 } \
723 else if (z & 0x80000000) \
724 { \
725 z = (- z) & 0xffffffff; \
726 } \
727 (X) = z; \
728 } \
729 while (0)
730
731 #endif