update slides
[libreriscv.git] / simple_v_extension / simple_v_chennai_2018.tex
1 \documentclass[slidestop]{beamer}
2 \usepackage{beamerthemesplit}
3 \usepackage{graphics}
4 \usepackage{pstricks}
5
6 \title{Simple-V RISC-V Extension for Vectorisation and SIMD}
7 \author{Luke Kenneth Casson Leighton}
8
9
10 \begin{document}
11
12 \frame{
13 \begin{center}
14 \huge{Simple-V RISC-V Extension for Vectors and SIMD}\\
15 \vspace{32pt}
16 \Large{Flexible Vectorisation}\\
17 \Large{(aka not so Simple-V?)}\\
18 \vspace{24pt}
19 \Large{Chennai 9th RISC-V Workshop}\\
20 \vspace{24pt}
21 \large{\today}
22 \end{center}
23 }
24
25 \frame{\frametitle{Why another Vector Extension?}
26
27 \begin{itemize}
28 \item RVV very heavy-duty (excellent for supercomputing)\vspace{10pt}
29 \item Simple-V abstracts parallelism (based on best of RVV)\vspace{10pt}
30 \item Graded levels: hardware, hybrid or traps\vspace{10pt}
31 \item Even Compressed instructions become vectorised\vspace{10pt}
32 \end{itemize}
33 What Simple-V is not:\vspace{10pt}
34 \begin{itemize}
35 \item A full supercomputer-level Vector Proposal\vspace{10pt}
36 \item A replacement for RVV (designed to be augmented)\vspace{10pt}
37 \end{itemize}
38 }
39
40 \frame{\frametitle{Quick refresher on SIMD}
41
42 \begin{itemize}
43 \item SIMD very easy to implement (and very seductive)\vspace{10pt}
44 \item Parallelism is in the ALU\vspace{10pt}
45 \item Zero-to-Negligeable impact for rest of core\vspace{10pt}
46 \end{itemize}
47 Where SIMD Goes Wrong:\vspace{10pt}
48 \begin{itemize}
49 \item See "Why SIMD considered harmful"\vspace{10pt}
50 \item (Corner-cases alone are extremely complex)\vspace{10pt}
51 \item O($N^{6}$) ISA opcode proliferation!\vspace{10pt}
52 \end{itemize}
53 }
54
55 \frame{\frametitle{Quick refresher on RVV}
56
57 \begin{itemize}
58 \item Extremely powerful (extensible to 256 registers)\vspace{10pt}
59 \item Supports polymorphism, several datatypes (inc. FP16)\vspace{10pt}
60 \item Requires a separate Register File\vspace{10pt}
61 \item Can be implemented as a separate pipeline\vspace{10pt}
62 \end{itemize}
63 However...\vspace{10pt}
64 \begin{itemize}
65 \item 98 percent opcode duplication with rest of RV (CLIP)\vspace{10pt}
66 \item Extending RVV requires customisation\vspace{10pt}
67 \end{itemize}
68 }
69
70
71 \frame{\frametitle{How is Parallelism abstracted?}
72
73 \begin{itemize}
74 \item Almost all opcodes removed in favour of implicit "typing"\vspace{10pt}
75 \item Primarily at the Instruction issue phase (except SIMD)\vspace{10pt}
76 \item Standard (and future, and custom) opcodes now parallel\vspace{10pt}
77 \end{itemize}
78 Notes:\vspace{10pt}
79 \begin{itemize}
80 \item LOAD/STORE (inc. C.LD and C.ST, LDX: everything)\vspace{10pt}
81 \item All ALU ops (soft / hybrid / full HW, on per-op basis)\vspace{10pt}
82 \item All branches become predication targets (C.FNE added)\vspace{10pt}
83 \end{itemize}
84 }
85
86
87 \frame{\frametitle{Implementation Options}
88
89 \begin{itemize}
90 \item Absolute minimum: Exceptions (CSRs needed)\vspace{10pt}
91 \item Hardware loop, single-instruction issue\vspace{10pt}
92 \item Hardware loop, parallel (multi-instruction) issue\vspace{10pt}
93 \item Hardware loop, full parallel ALU (not recommended)\vspace{10pt}
94 \end{itemize}
95 Considerations:\vspace{10pt}
96 \begin{itemize}
97 \item OoO may split off 4+ single-instructions at a time\vspace{10pt}
98 \item Minimum VL MUST be sufficient to cover regfile LD/ST\vspace{10pt}
99 \end{itemize}
100 }
101
102
103 \frame{\frametitle{How are SIMD Instructions Vectorised?}
104
105 \begin{itemize}
106 \item SIMD ALU(s) primarily unchanged\vspace{10pt}
107 \item Predication is added to each SIMD element (NO ZEROING!)\vspace{10pt}
108 \item End of Vector enables predication (NO ZEROING!)\vspace{10pt}
109 \end{itemize}
110 Considerations:\vspace{10pt}
111 \begin{itemize}
112 \item Many SIMD ALUs possible (parallel execution)\vspace{10pt}
113 \item Very long SIMD ALUs could waste die area (short vectors)\vspace{10pt}
114 \item Implementor free to choose (API remains the same)\vspace{10pt}
115 \end{itemize}
116 }
117
118
119 \frame{\frametitle{What's the deal / juice / score?}
120
121 \begin{itemize}
122 \item Standard Register File(s) overloaded with "vector span"\vspace{10pt}
123 \item Element width and type concepts remain same as RVV\vspace{10pt}
124 \item CSRs are key-value tables (overlaps allowed)\vspace{10pt}
125 \end{itemize}
126 Key differences from RVV:\vspace{10pt}
127 \begin{itemize}
128 \item Predication in INT regs as a BIT field (max VL=XLEN)\vspace{10pt}
129 \item Minimum VL must be Num Regs - 1 (all regs single LD/ST)\vspace{10pt}
130 \item NO ZEROING: non-predicated elements are skipped\vspace{10pt}
131 \end{itemize}
132 }
133
134 \frame{\frametitle{Why are overlaps allowed in Regfiles?}
135
136 \begin{itemize}
137 \item Same register(s) can have multiple "interpretations"\vspace{10pt}
138 \item xBitManip plus SIMD plus xBitManip = Hi/Lo bitops\vspace{10pt}
139 \item (32-bit GREV plus 4-wide 32-bit SIMD plus 32-bit GREVI)\vspace{10pt}
140 \item 32-bit op followed by 16-bit op w/ 2x VL, 1/2 predicated\vspace{10pt}
141 \end{itemize}
142 Note:\vspace{10pt}
143 \begin{itemize}
144 \item xBitManip reduces O($N^{6}$) SIMD down to O($N^{3}$) \vspace{10pt}
145 \item Hi-Performance: Macro-op fusion (more pipeline stages?)\vspace{10pt}
146 \end{itemize}
147 }
148
149
150 \frame{\frametitle{Why no Zeroing (place zeros in non-predicated elements)?}
151
152 \begin{itemize}
153 \item Zeroing is an implementation optimisation favouring OoO\vspace{10pt}
154 \item Simple implementations may skip non-predicated operations\vspace{10pt}
155 \item Simple implementations explicitly have to destroy data\vspace{10pt}
156 \item Complex implementations may use reg-renames to save power\vspace{10pt}
157 \end{itemize}
158 Considerations:\vspace{10pt}
159 \begin{itemize}
160 \item Complex not really impacted, Simple impacted a LOT\vspace{10pt}
161 \item Please don't use Vectors for "security" (use Sec-Ext)\vspace{10pt}
162 \end{itemize}
163 }
164
165
166 \begin{frame}[fragile]
167 \frametitle{ADD pseudocode (or trap, or actual hardware loop)}
168
169 \begin{semiverbatim}
170 function op_add(rd, rs1, rs2, predr) # add not VADD!
171  int i, id=0, irs1=0, irs2=0;
172  for (i=0; i < MIN(VL, vectorlen[rd]); i++)
173   if (ireg[predr] & 1<<i) # predication uses intregs
174    ireg[rd+id] <= ireg[rs1+irs1] + ireg[rs2+irs2];
175 if (reg_is_vectorised[rd]) \{ id += 1; \}
176 if (reg_is_vectorised[rs1]) \{ irs1 += 1; \}
177 if (reg_is_vectorised[rs2]) \{ irs2 += 1; \}
178 \end{semiverbatim}
179
180 \begin{itemize}
181 \item SIMD slightly more complex (case above is elwidth = default)
182 \item Scalar-scalar and scalar-vector and vector-vector now all in one
183 \item OoO may choose to push ADDs into instr. queue (v. busy!)
184 \end{itemize}
185 \end{frame}
186
187 \begin{frame}[fragile]
188 \frametitle{Predication-Branch (or trap, or actual hardware loop)}
189
190 \begin{semiverbatim}
191 s1 = vectorlen[src1] > 1;
192 s2 = vectorlen[src2] > 1;
193 for (int i = 0; i < VL; ++i)
194 preg[rs3] |= 1 << cmp(s1 ? reg[src1+i] : reg[src1],
195 s2 ? reg[src2+i] : reg[src2]);
196 \end{semiverbatim}
197
198 \begin{itemize}
199 \item SIMD slightly more complex (case above is elwidth = default)
200 \item If s1 and s2 both scalars, Standard branch occurs
201 \item Predication stored in integer regfile as a bitfield
202 \item Scalar-vector and vector-vector supported
203 \end{itemize}
204 \end{frame}
205
206 \begin{frame}[fragile]
207 \frametitle{LD/LD.S/LD.X (or trap, or actual hardware loop)}
208
209 \begin{semiverbatim}
210 if (unit-strided) stride = elsize;
211 else stride = areg[as2]; // constant-strided
212 for (int i = 0; i < VL; ++i)
213 if (preg_enabled[rd] && ([!]preg[rd] & 1<<i))
214 for (int j = 0; j < seglen+1; j++)
215 if (vectorised[rs2]) offs = vreg[rs2][i]
216 else offs = i*(seglen+1)*stride;
217 vreg[rd+j][i] = mem[sreg[base] + offs + j*stride]
218 \end{semiverbatim}
219
220 \begin{itemize}
221 \item Again: SIMD slightly more complex
222 \item rs2 vectorised taken to implicitly indicate LD.X
223 \end{itemize}
224 \end{frame}
225
226
227 \frame{\frametitle{Opcodes, compared to RVV}
228
229 \begin{itemize}
230 \item All integer and FP opcodes all removed (no CLIP!)\vspace{10pt}
231 \item VMPOP, VFIRST etc. all removed (use xBitManip)\vspace{10pt}
232 \item VSLIDE, VEXTRACT, VINSERT removed (using regfile)\vspace{10pt}
233 \item VSETVL, VGETVL, VSELECT stay\vspace{10pt}
234 \item Issue: VCLIP is not in RV* (add with custom ext?)\vspace{10pt}
235 \item Vector (or scalar-vector) use C.MV (MV is a pseudo-op)\vspace{10pt}
236 \item VMERGE: twin predicated C.MVs (one inverted. macro-op'd)\vspace{10pt}
237 \end{itemize}
238 }
239
240
241 \frame{\frametitle{Under consideration}
242
243 \begin{itemize}
244 \item Can VSELECT be removed (or overloaded onto xBitManip)?\vspace{10pt}
245 \item Can CLIP be done as a CSR (mode, like elwidth)\vspace{10pt}
246 \item SIMD saturation (etc.) also set as a mode?\vspace{10pt}
247 \end{itemize}
248 }
249
250
251 \frame{\frametitle{slide}
252
253 \begin{itemize}
254 \item \vspace{10pt}
255 \end{itemize}
256 Considerations:\vspace{10pt}
257 \begin{itemize}
258 \item \vspace{10pt}
259 \end{itemize}
260 }
261
262
263 \frame{\frametitle{slide}
264
265 \begin{itemize}
266 \item \vspace{10pt}
267 \end{itemize}
268 Considerations:\vspace{10pt}
269 \begin{itemize}
270 \item \vspace{10pt}
271 \end{itemize}
272 }
273
274
275 \frame{\frametitle{Including a plot}
276 \begin{center}
277 % \includegraphics[height=2in]{dental.ps}\\
278 {\bf \red Dental trajectories for 27 children:}
279 \end{center}
280 }
281
282 \frame{\frametitle{Creating .pdf slides in WinEdt}
283
284 \begin{itemize}
285 \item LaTeX [Shift-Control-L]\vspace{10pt}
286 \item dvi2pdf [click the button]\vspace{24pt}
287 \end{itemize}
288 To print 4 slides per page in acrobat click\vspace{10pt}
289 \begin{itemize}
290 \item File/print/properties\vspace{10pt}
291 \item Change ``pages per sheet'' to 4\vspace{10pt}
292 \end{itemize}
293 }
294
295 \frame{
296 \begin{center}
297 {\Huge \red The end}
298 \end{center}
299 }
300
301
302 \end{document}