(no commit message)
[libreriscv.git] / simple_v_extension / sv_prefix_proposal.rst
1 SimpleV Prefix (SVprefix) Proposal v0.3
2 =======================================
3
4 This proposal is designed to be able to operate without SVorig, but not to
5 require the absence of SVorig See Specification_.
6
7 .. _Specification: http://libre-riscv.org/simple_v_extension/specification/
8
9 .. contents::
10
11 Conventions
12 ===========
13
14 Conventions used in this document:
15 - Bits are numbered starting from 0 at the LSB, so bit 3 is 1 in the integer 8.
16 - Bit ranges are inclusive on both ends, so 5:3 means bits 5, 4, and 3.
17
18 Operations work on variable-length vectors of sub-vectors, where each sub-vector
19 has a length *svlen*, and an element type *etype*. When the vectors are stored
20 in registers, all elements are packed so that there is no padding in-between
21 elements of the same vector. The number of bytes in a sub-vector, *svsz*, is the
22 product of *svlen* and the element size in bytes.
23
24 Half-Precision Floating Point (FP16)
25 ====================================
26 If the F extension is supported, SVprefix adds support for FP16 in the
27 base FP instructions by using 10 (H) in the floating-point format field *fmt*
28 and using 001 (H) in the floating-point load/store *width* field.
29
30 Compressed Instructions
31 =======================
32 This proposal doesn't include any prefixed RVC instructions, instead, it will
33 include 32-bit instructions that are compressed forms of SVprefix 48-bit
34 instructions, in the same manner that RVC instructions are compressed forms of
35 RVI instructions. The compressed instructions will be defined later by
36 considering which 48-bit instructions are the most common.
37
38 48-bit Prefixed Instructions
39 ============================
40 All 48-bit prefixed instructions contain a 32-bit "base" instruction as the
41 last 4 bytes. Since all 32-bit instructions have bits 1:0 set to 11, those bits
42 are reused for additional encoding space in the 48-bit instructions.
43
44 64-bit Prefixed Instructions
45 ============================
46
47 The 48 bit format is further extended with the full 128-bit range on all source
48 and destination registers, and the option to set both VL and MVL is provided.
49
50 48-bit Instruction Encodings
51 ============================
52
53 In the following table, *Reserved* entries must be zero. RV32 equivalent encodings
54 included for side-by-side comparison (and listed below, separately).
55
56 First, bits 17:0:
57
58 +---------------+--------+------------+------------+-----+------------+-------------+------+------------+--------+
59 | Encoding | 17 | 16 | 15 | 14 | 13 | 12 | 11:7 | 6 | 5:0 |
60 +---------------+--------+------------+------------+-----+------------+-------------+------+------------+--------+
61 | P48-LD-type | rd[5] | rs1[5] | vitp7[6] | vd | vs1 | vitp7[5:0] | *Reserved* | 011111 |
62 +---------------+--------+------------+------------+-----+------------+-------------+------+------------+--------+
63 | P48-ST-type |vitp7[6]| rs1[5] | rs2[5] | vs2 | vs1 | vitp7[5:0] | *Reserved* | 011111 |
64 +---------------+--------+------------+------------+-----+------------+-------------+------+------------+--------+
65 | P48-R-type | rd[5] | rs1[5] | rs2[5] | vs2 | vs1 | vitp6 | *Reserved* | 011111 |
66 +---------------+--------+------------+------------+-----+------------+--------------------+------------+--------+
67 | P48-I-type | rd[5] | rs1[5] | vitp7[6] | vd | vs1 | vitp7[5:0] | *Reserved* | 011111 |
68 +---------------+--------+------------+------------+-----+------------+--------------------+------------+--------+
69 | P48-U-type | rd[5] | *Reserved* | *Reserved* | vd | *Reserved* | vitp6 | *Reserved* | 011111 |
70 +---------------+--------+------------+------------+-----+------------+-------------+------+------------+--------+
71 | P48-FR-type | rd[5] | rs1[5] | rs2[5] | vs2 | vs1 | *Reserved* | vtp5 | *Reserved* | 011111 |
72 +---------------+--------+------------+------------+-----+------------+-------------+------+------------+--------+
73 | P48-FI-type | rd[5] | rs1[5] | vitp7[6] | vd | vs1 | vitp7[5:0] | *Reserved* | 011111 |
74 +---------------+--------+------------+------------+-----+------------+-------------+------+------------+--------+
75 | P48-FR4-type | rd[5] | rs1[5] | rs2[5] | vs2 | rs3[5] | vs3 [#fr4]_ | vtp5 | *Reserved* | 011111 |
76 +---------------+--------+------------+------------+-----+------------+-------------+------+------------+--------+
77
78 .. [#fr4] Only vs2 and vs3 are included in the P48-FR4-type encoding because
79 there is not enough space for vs1 as well, and because it is more
80 useful to have a scalar argument for each of the multiplication and
81 addition portions of fmadd than to have two scalars on the
82 multiplication portion.
83
84 Table showing correspondance between P48-*-type and RV32-*-type. These are
85 bits 47:18 (RV32 shifted up by 16 bits):
86
87 +---------------+---------------+
88 | Encoding | 47:18 |
89 +---------------+---------------+
90 | RV32 Encoding | 31:2 |
91 +---------------+---------------+
92 | P48-LD-type | RV32-I-type |
93 +---------------+---------------+
94 | P48-ST-type | RV32-S-Type |
95 +---------------+---------------+
96 | P48-R-type | RV32-R-Type |
97 +---------------+---------------+
98 | P48-I-type | RV32-I-Type |
99 +---------------+---------------+
100 | P48-U-type | RV32-U-Type |
101 +---------------+---------------+
102 | P48-FR-type | RV32-FR-Type |
103 +---------------+---------------+
104 | P48-FI-type | RV32-I-Type |
105 +---------------+---------------+
106 | P48-FR4-type | RV32-FR-type |
107 +---------------+---------------+
108
109 Table showing Standard RV32 encodings:
110
111 +---------------+-------------+-------+----------+----------+--------+----------+--------+--------+------------+
112 | Encoding | 31:27 | 26:25 | 24:20 | 19:15 | 14:12 | 11:7 | 6:2 | 1 | 0 |
113 +---------------+-------------+-------+----------+----------+--------+----------+--------+--------+------------+
114 | RV32-R-type + funct7 + rs2[4:0] + rs1[4:0] + funct3 | rd[4:0] + opcode + 1 + 1 |
115 +---------------+-------------+-------+----------+----------+--------+----------+--------+--------+------------+
116 | RV32-S-type + imm[11:5] + rs2[4:0] + rs1[4:0] + funct3 | imm[4:0] + opcode + 1 + 1 |
117 +---------------+-------------+-------+----------+----------+--------+----------+--------+--------+------------+
118 | RV32-I-type + imm[11:0] + rs1[4:0] + funct3 | rd[4:0] + opcode + 1 + 1 |
119 +---------------+-------------+-------+----------+----------+--------+----------+--------+--------+------------+
120 | RV32-U-type + imm[31:12] | rd[4:0] + opcode + 1 + 1 |
121 +---------------+-------------+-------+----------+----------+--------+----------+--------+--------+------------+
122 | RV32-FR4-type + rs3[4:0] + fmt + rs2[4:0] + rs1[4:0] + funct3 | rd[4:0] + opcode + 1 + 1 |
123 +---------------+-------------+-------+----------+----------+--------+----------+--------+--------+------------+
124 | RV32-FR-type + funct5 + fmt + rs2[4:0] + rs1[4:0] + rm | rd[4:0] + opcode + 1 + 1 |
125 +---------------+-------------+-------+----------+----------+--------+----------+--------+--------+------------+
126
127 64-bit Instruction Encodings
128 ============================
129
130 Where in the 48 bit format the prefix is "0b0011111" in bits 0 to 6, this is
131 now set to "0b0111111".
132
133 +---------------+---------------+--------------+-----------+
134 | 63:48 | 47:18 | 17:7 | 6:0 |
135 +---------------+---------------+--------------+-----------+
136 | 64 bit prefix | RV32[31:3] | P48[17:7] | 0b0111111 |
137 +---------------+---------------+--------------+-----------+
138
139 * The 64 bit prefix format is below
140 * Bits 18 to 47 contain bits 3 to 31 of a standard RV32 format
141 * Bits 7 to 17 contain bits 7 through 17 of the P48 format
142 * Bits 0 to 6 contain the standard RV 64-bit prefix 0b0111111
143
144 64 bit prefix format:
145
146 +--------------+-------+--------+--------+--------+--------+
147 | Encoding | 63 | 62 | 61 | 60 | 59:48 |
148 +--------------+-------+--------+--------+--------+--------+
149 | P64-LD-type | rd[6] | rs1[6] | | | VLtyp |
150 +--------------+-------+--------+--------+--------+--------+
151 | P64-ST-type | | rs1[6] | rs2[6] | | VLtyp |
152 +--------------+-------+--------+--------+--------+--------+
153 | P64-R-type | rd[6] | rs1[6] | rs2[6] | | VLtyp |
154 +--------------+-------+--------+--------+--------+--------+
155 | P64-I-type | rd[6] | rs1[6] | | | VLtyp |
156 +--------------+-------+--------+--------+--------+--------+
157 | P64-U-type | rd[6] | | | | VLtyp |
158 +--------------+-------+--------+--------+--------+--------+
159 | P64-FR-type | | rs1[6] | rs2[6] | | VLtyp |
160 +--------------+-------+--------+--------+--------+--------+
161 | P64-FI-type | rd[6] | rs1[6] | rs2[6] | | VLtyp |
162 +--------------+-------+--------+--------+--------+--------+
163 | P64-FR4-type | rd[6] | rs1[6] | rs2[6] | rs3[6] | VLtyp |
164 +--------------+-------+--------+--------+--------+--------+
165
166 The extra bit for src and dest registers provides the full range of
167 up to 128 registers, when combined with the extra bit from the 48 bit
168 prefix as well. VLtyp encodes how (whether) to set VL and MAXVL.
169
170 VLtyp field encoding
171 ====================
172
173 +-----------+-------------+--------------+----------+----------------------+
174 | VLtyp[11] | VLtyp[10:6] | VLtyp[5:1] | VLtyp[0] | comment |
175 +-----------+-------------+--------------+----------+----------------------+
176 | 0 | 000000 | 00000 | 0 | no change to VL/MVL |
177 +-----------+-------------+--------------+----------+----------------------+
178 | 0 | VLdest | VLEN | vlt | VL imm/reg mode (vlt)|
179 +-----------+-------------+--------------+----------+----------------------+
180 | 1 | VLdest | MVL+VL-immed | 0 | MVL/VL immed mode |
181 +-----------+-------------+--------------+----------+----------------------+
182 | 1 | VLdest | MVL-immed | 1 | MVL/VL immed mode |
183 +-----------+-------------+--------------+----------+----------------------+
184
185 Note: when VLtyp is all zeros, neither VL nor MVL are changed.
186
187 Just as in the VLIW format, when bit 11 of VLtyp is zero:
188
189 * if vlt is zero, bits 1 to 5 specify the VLEN as a 5 bit immediate
190 (offset by 1: 0b00000 represents VL=1, 0b00001 represents VL=2 etc.)
191 * if vlt is 1, bits 1 to 5 specify the scalar (RV standard) register
192 from which VL is set. x0 is not permitted
193 * VL goes into the scalar register VLdest (if VLdest is not x0)
194
195 When bit 11 of VLtype is 1:
196
197 * both MAXVL and VL are set to (VLenimmed+1)
198 * the same value goes into the scalar register VLdest (if VLdest is not x0)
199
200 This gives the option to set up VL in a "loop mode" (VLtype[11]=0) or
201 in a "one-off" mode (VLtype[11]=1) which sets both MVL and VL to the
202 same immediate value. This may be most useful for one-off Vectorised
203 operations such as LOAD-MULTI / STORE-MULTI, for saving and restoration
204 of large batches of registers in context-switches or function calls.
205
206 vs#/vd Fields' Encoding
207 =======================
208
209 +--------+----------+----------------------------------------------------------+
210 | vs#/vd | Mnemonic | Meaning |
211 +========+==========+==========================================================+
212 | 0 | S | the rs#/rd field specifies a scalar (single sub-vector); |
213 | | | the rs#/rd field is zero-extended to get the actual |
214 | | | 7-bit register number |
215 +--------+----------+----------------------------------------------------------+
216 | 1 | V | the rs#/rd field specifies a vector; the rs#/rd field is |
217 | | | decoded using the `Vector Register Number Encoding`_ to |
218 | | | get the actual 7-bit register number |
219 +--------+----------+----------------------------------------------------------+
220
221 If a vs#/vd field is not present, it is as if it was present with a value that
222 is the bitwise-or of all present vs#/vd fields.
223
224 * scalar register numbers do NOT increment when allocated in the
225 hardware for-loop. the same scalar register number is handed
226 to every ALU.
227
228 * vector register numbers *DO* increase when allocated in the
229 hardware for-loop. sequentially-increasing register data
230 is handed to sequential ALUs.
231
232 Vector Register Number Encoding
233 ===============================
234
235 For the 48 bit format, when vs#/vd is 1, the actual 7-bit register number is derived from the
236 corresponding 6-bit rs#/rd field:
237
238 +---------------------------------+
239 | Actual 7-bit register number |
240 +===========+=============+=======+
241 | Bit 6 | Bits 5:1 | Bit 0 |
242 +-----------+-------------+-------+
243 | rs#/rd[0] | rs#/rd[5:1] | 0 |
244 +-----------+-------------+-------+
245
246 For the 64 bit format, the 7 bit register is constructed from the 7 bit fields: bits 0 to 4 from the 32 bit RV Standard format, bit 5 from the 48 bit prefix and bit 6 from the 64 bit prefix. Thus in the 64 bit format the full range of up to 128 registers is directly available. This for both when either scalar or vector mode is set.
247
248 Load/Store Kind (lsk) Field Encoding
249 ====================================
250
251 +--------+-----+--------------------------------------------------------------------------------+
252 | vd/vs2 | vs1 | Meaning |
253 +========+=====+================================================================================+
254 | 0 | 0 | srcbase is scalar, LD/ST is pure scalar. |
255 +--------+-----+--------------------------------------------------------------------------------+
256 | 1 | 0 | srcbase is scalar, LD/ST is unit strided |
257 +--------+-----+--------------------------------------------------------------------------------+
258 | 0 | 1 | srcbase is a vector (gather/scatter aka array of srcbases). VSPLAT and VSELECT |
259 +--------+-----+--------------------------------------------------------------------------------+
260 | 1 | 1 | srcbase is a vector, LD/ST is a full vector LD/ST. |
261 +--------+-----+--------------------------------------------------------------------------------+
262
263 Notes:
264
265 * A register strided LD/ST would require *5* registers. srcbase, vd/vs2, predicate 1, predicate 2 and the stride register.
266 * Complex strides may all be done with a general purpose vector of srcbases.
267 * Twin predication may be used even when vd/vs1 is a scalar, to give VSPLAT and VSELECT, because the hardware loop ends on the first occurrence of a 1 in the predicate when a predicate is applied to a scalar.
268 * Full vectorised gather/scatter is enabled when both registers are marked as vectorised, however unlike e.g Intel AVX512, twin predication can be applied.
269
270 Open question: RVV overloads the width field of LOAD-FP/STORE-FP using the bit 2 to indicate additional interpretation of the 11 bit immediate. Should this be considered?
271
272
273 Sub-Vector Length (svlen) Field Encoding
274 =======================================================
275
276 Bitwidth, from VL's perspective, is a multiple of the elwidth times svlen. So within each loop of VL there are svlen sub-elements of elwidth in size, just like in a SIMD architecture. When svlen is set to 0b00 (indicating svlen=1) no such SIMD-like behaviour exists and the subvectoring is disabled.
277
278 Predicate bits do not apply to the individual sub-vector elements, they apply to the entire subvector group. This saves instructions on setup of the predicate.
279
280 +----------------+-------+
281 | svlen Encoding | Value |
282 +================+=======+
283 | 00 | 1 |
284 +----------------+-------+
285 | 01 | 2 |
286 +----------------+-------+
287 | 10 | 3 |
288 +----------------+-------+
289 | 11 | 4 |
290 +----------------+-------+
291
292 TODO : resolve interactions when SV VLIW Mode is active, as SVLEN is also a CSR.
293
294 Predication (pred) Field Encoding
295 =================================
296
297 +------+------------+--------------------+----------------------------------------+
298 | pred | Mnemonic | Predicate Register | Meaning |
299 +======+============+====================+========================================+
300 | 000 | *None* | *None* | The instruction is unpredicated |
301 +------+------------+--------------------+----------------------------------------+
302 | 001 | *Reserved* | *Reserved* | |
303 +------+------------+--------------------+----------------------------------------+
304 | 010 | !x9 | x9 (s1) | execute vector op[0..i] on x9[i] == 0 |
305 +------+------------+ +----------------------------------------+
306 | 011 | x9 | | execute vector op[0..i] on x9[i] == 1 |
307 +------+------------+--------------------+----------------------------------------+
308 | 100 | !x10 | x10 (a0) | execute vector op[0..i] on x10[i] == 0 |
309 +------+------------+ +----------------------------------------+
310 | 101 | x10 | | execute vector op[0..i] on x10[i] == 1 |
311 +------+------------+--------------------+----------------------------------------+
312 | 110 | !x11 | x11 (a1) | execute vector op[0..i] on x11[i] == 0 |
313 +------+------------+ +----------------------------------------+
314 | 111 | x11 | | execute vector op[0..i] on x11[i] == 1 |
315 +------+------------+--------------------+----------------------------------------+
316
317 Twin-predication (tpred) Field Encoding
318 =======================================
319
320 +-------+------------+--------------------+----------------------------------------------+
321 | tpred | Mnemonic | Predicate Register | Meaning |
322 +=======+============+====================+==============================================+
323 | 000 | *None* | *None* | The instruction is unpredicated |
324 +-------+------------+--------------------+----------------------------------------------+
325 | 001 | x9,off | src=x9, dest=none | src[0..i] uses x9[i], dest unpredicated |
326 +-------+------------+ +----------------------------------------------+
327 | 010 | off,x10 | src=none, dest=x10 | dest[0..i] uses x10[i], src unpredicated |
328 +-------+------------+ +----------------------------------------------+
329 | 011 | x9,10 | src=x9, dest=x10 | src[0..i] uses x9[i], dest[0..i] uses x10[i] |
330 +-------+------------+--------------------+----------------------------------------------+
331 | 100 | *None* | *RESERVED* | Instruction is unpredicated (TBD) |
332 +-------+------------+--------------------+----------------------------------------------+
333 | 101 | !x9,off | src=!x9, dest=none | |
334 +-------+------------+ +----------------------------------------------+
335 | 110 | off,!x10 | src=none, dest=!x10| |
336 +-------+------------+ +----------------------------------------------+
337 | 111 | !x9,!x10 | src=!x9, dest=!x10 | |
338 +-------+------------+--------------------+----------------------------------------------+
339
340 Integer Element Type (itype) Field Encoding
341 ===========================================
342
343 +------------+-------+--------------+--------------+-----------------+-------------------+
344 | Signedness | itype | Element Type | Mnemonic in | Mnemonic in FP | Meaning (INT may |
345 | [#sgn_def]_| | | Integer | Instructions | be un/signed, FP |
346 | [#sgn_def]_| | | Instructions | (such as fmv.x) | just re-sized |
347 +============+=======+==============+==============+=================+===================+
348 | Unsigned | 01 | u8 | BU | BU | Unsigned 8-bit |
349 | +-------+--------------+--------------+-----------------+-------------------+
350 | | 10 | u16 | HU | HU | Unsigned 16-bit |
351 | +-------+--------------+--------------+-----------------+-------------------+
352 | | 11 | u32 | WU | WU | Unsigned 32-bit |
353 | +-------+--------------+--------------+-----------------+-------------------+
354 | | 00 | uXLEN | WU/DU/QU | WU/LU/TU | Unsigned XLEN-bit |
355 +------------+-------+--------------+--------------+-----------------+-------------------+
356 | Signed | 01 | i8 | BS | BS | Signed 8-bit |
357 | +-------+--------------+--------------+-----------------+-------------------+
358 | | 10 | i16 | HS | HS | Signed 16-bit |
359 | +-------+--------------+--------------+-----------------+-------------------+
360 | | 11 | i32 | W | W | Signed 32-bit |
361 | +-------+--------------+--------------+-----------------+-------------------+
362 | | 00 | iXLEN | W/D/Q | W/L/T | Signed XLEN-bit |
363 +------------+-------+--------------+--------------+-----------------+-------------------+
364
365 .. [#sgn_def] Signedness is defined in `Signedness Decision Procedure`_
366
367 Note: vector mode is effectively a type-cast of the register file
368 as if it was a sequential array being typecast to typedef itype[]
369 (c syntax). The starting point of the "typecast" is the vector
370 register rs#/rd.
371
372 Example: if itype=0b10 (u16), and rd is set to "vector", and
373 VL is set to 4, the 64-bit register at rd is subdivided into
374 *FOUR* 16-bit destination elements. It is *NOT* four
375 separate 64-bit destination registers (rd+0, rd+1, rd+2, rd+3)
376 that are sign-extended from the source width size out to 64-bit,
377 because that is itype=0b00 (uXLEN).
378
379 Signedness Decision Procedure
380 =============================
381
382 1. If the opcode field is either OP or OP-IMM, then
383 1. Signedness is Unsigned.
384 2. If the opcode field is either OP-32 or OP-IMM-32, then
385 1. Signedness is Signed.
386 3. If Signedness is encoded in a field of the base instruction, [#sign_enc]_ then
387 1. Signedness uses the encoded value.
388 4. Otherwise,
389 1. Signedness is Unsigned.
390
391 .. [#sign_enc] Like in fcvt.d.l[u], but unlike in fmv.x.w, since there is no
392 fmv.x.wu
393
394 Vector Type and Predication 5-bit (vtp5) Field Encoding
395 =======================================================
396
397 In the following table, X denotes a wildcard that is 0 or 1 and can be a
398 different value for every occurrence.
399
400 +-------+-----------+-----------+
401 | vtp5 | pred | svlen |
402 +=======+===========+===========+
403 | 1XXXX | vtp5[4:2] | vtp5[1:0] |
404 +-------+ | |
405 | 01XXX | | |
406 +-------+ | |
407 | 000XX | | |
408 +-------+-----------+-----------+
409 | 001XX | *Reserved* |
410 +-------+-----------------------+
411
412 Vector Integer Type and Predication 6-bit (vitp6) Field Encoding
413 ================================================================
414
415 In the following table, X denotes a wildcard that is 0 or 1 and can be a
416 different value for every occurrence.
417
418 +--------+------------+---------+------------+------------+
419 | vitp6 | itype | pred[2] | pred[0:1] | svlen |
420 +========+============+=========+============+============+
421 | XX1XXX | vitp6[5:4] | 0 | vitp6[3:2] | vitp6[1:0] |
422 +--------+ | | | |
423 | XX00XX | | | | |
424 +--------+------------+---------+------------+------------+
425 | XX01XX | *Reserved* |
426 +--------+------------------------------------------------+
427
428 vitp7 field: only tpred=
429
430 +---------+------------+----------+-------------+------------+
431 | vitp7 | itype | tpred[2] | tpred[0:1] | svlen |
432 +=========+============+==========+=============+============+
433 | XXXXXXX | vitp7[5:4] | vitp7[6] | vitp7[3:2] | vitp7[1:0] |
434 +---------+------------+----------+-------------+------------+
435
436 48-bit Instruction Encoding Decision Procedure
437 ==============================================
438
439 In the following decision procedure, *Reserved* means that there is not yet a
440 defined 48-bit instruction encoding for the base instruction.
441
442 1. If the base instruction is a load instruction, then
443 a. If the base instruction is an I-type instruction, then
444 1. The encoding is P48-LD-type.
445 b. Otherwise
446 1. The encoding is *Reserved*.
447 2. If the base instruction is a store instruction, then
448 a. If the base instruction is an S-type instruction, then
449 1. The encoding is P48-ST-type.
450 b. Otherwise
451 1. The encoding is *Reserved*.
452 3. If the base instruction is a SYSTEM instruction, then
453 a. The encoding is *Reserved*.
454 4. If the base instruction is an integer instruction, then
455 a. If the base instruction is an R-type instruction, then
456 1. The encoding is P48-R-type.
457 b. If the base instruction is an I-type instruction, then
458 1. The encoding is P48-I-type.
459 c. If the base instruction is an S-type instruction, then
460 1. The encoding is *Reserved*.
461 d. If the base instruction is an B-type instruction, then
462 1. The encoding is *Reserved*.
463 e. If the base instruction is an U-type instruction, then
464 1. The encoding is P48-U-type.
465 f. If the base instruction is an J-type instruction, then
466 1. The encoding is *Reserved*.
467 g. Otherwise
468 1. The encoding is *Reserved*.
469 5. If the base instruction is a floating-point instruction, then
470 a. If the base instruction is an R-type instruction, then
471 1. The encoding is P48-FR-type.
472 b. If the base instruction is an I-type instruction, then
473 1. The encoding is P48-FI-type.
474 c. If the base instruction is an S-type instruction, then
475 1. The encoding is *Reserved*.
476 d. If the base instruction is an B-type instruction, then
477 1. The encoding is *Reserved*.
478 e. If the base instruction is an U-type instruction, then
479 1. The encoding is *Reserved*.
480 f. If the base instruction is an J-type instruction, then
481 1. The encoding is *Reserved*.
482 g. If the base instruction is an R4-type instruction, then
483 1. The encoding is P48-FR4-type.
484 h. Otherwise
485 1. The encoding is *Reserved*.
486 6. Otherwise
487 a. The encoding is *Reserved*.
488
489 CSR Registers
490 =============
491
492 +--------+-----------------+---------------------------------------------------+
493 | Name | Legal Values | Meaning |
494 +========+=================+===================================================+
495 | VL | 0 <= VL <= XLEN | Vector Length. The number of sub-vectors operated |
496 | | | on by vector instructions. |
497 +--------+-----------------+---------------------------------------------------+
498 | Vstart | 0 <= VL < XLEN | The sub-vector index to start execution at. |
499 | | | Successful completion of all elements in a vector |
500 | | | instruction sets Vstart to 0. Set to the index of |
501 | | | the failing sub-vector when a vector instruction |
502 | | | traps. Used to resume execution of vector |
503 | | | instructions after a trap. Is *NOT* "slow" |
504 +--------+-----------------+---------------------------------------------------+
505
506 SetVL
507 =====
508
509 setvl rd, rs1, imm
510
511 This is done the same as Standard SV.
512 There is alsO a MVL CSR. CSRRW and CSRRWI operate in the same way as in SV. See Specification_.
513
514
515 Additional Instructions
516 =======================
517
518 Add instructions to convert between integer types.
519
520 Add instructions to `swizzle`_ elements in sub-vectors. Note that the sub-vector
521 lengths of the source and destination won't necessarily match.
522
523 .. _swizzle: https://www.khronos.org/opengl/wiki/Data_Type_(GLSL)#Swizzling
524
525 Add instructions to transpose (2-4)x(2-4) element matrices.
526
527 Add instructions to insert or extract a sub-vector from a vector, with the index
528 allowed to be both immediate and from a register (*immediate can be covered partly
529 by twin-predication, register cannot: requires MV.X aka VSELECT*)
530
531 Add a register gather instruction (aka MV.X)
532
533 # Open questions <a name="questions"></a>
534
535 What is SUBVL and how does it work
536
537 --
538
539 SVorig goes to a lot of effort to make VL 1<= MAXVL and MAXVL 1..64 where both CSRs may be stored internally in only 6 bits.
540
541 Thus, CSRRWI can reach 1..32 for VL and MAXVL.
542
543 In addition, setting a hardware loop to zero turning instructions into NOPs, um, just branch over them, to start the first loop at the end, on the test for loop variable being zero, a la c "while do" instead of "do while".
544
545 Or, does it not matter that VL only goes up to 31 on a CSRRWI, and that it only goes to a max of 63 rather than 64?
546
547 --
548
549 Should these questions be moved to Discussion subpage
550
551 --
552
553 Is MV.X good enough a substitute for swizzle?
554
555 --
556
557 Is vectorised srcbase ok as a gather scatter and ok substitute for register stride? 5 dependency registers (reg stride being the 5th) is quite scary
558
559 --
560
561 Why are integer conversion instructions needed, when the main SV spec covers them by allowing elwidth to be set on both src and dest regs?
562
563 --
564
565 Why are the SETVL rules so complex? What is the reason, how are loops carried out?
566
567 --
568
569 With SUBVL (sub vector len) being both a CSR and also part of the 48/64 bit opcode, how does that work?
570
571 --
572
573 What are the interaction rules when a 48/64 prefix opcode has a rd/rs that already has a Vector Context for either predication or a register?
574
575 It would perhaps make sense (and for svlen as well) to make 48/64 isolated and unaffected by VLIW context, with the exception of VL/MVL.
576
577 MVL and VL should be modifiable by 64 bit prefix as they are global in nature.
578