add MID testing
[ieee754fpu.git] / src / add / unit_test_single.py
1 from random import randint
2 from random import seed
3
4 import sys
5 from sfpy import Float32
6
7 def get_mantissa(x):
8 return 0x7fffff & x
9
10 def get_exponent(x):
11 return ((x & 0x7f800000) >> 23) - 127
12
13 def set_exponent(x, e):
14 return (x & ~0x7f800000) | ((e+127) << 23)
15
16 def get_sign(x):
17 return ((x & 0x80000000) >> 31)
18
19 def is_nan(x):
20 return get_exponent(x) == 128 and get_mantissa(x) != 0
21
22 def is_inf(x):
23 return get_exponent(x) == 128 and get_mantissa(x) == 0
24
25 def is_pos_inf(x):
26 return is_inf(x) and not get_sign(x)
27
28 def is_neg_inf(x):
29 return is_inf(x) and get_sign(x)
30
31 def match(x, y):
32 return (
33 (is_pos_inf(x) and is_pos_inf(y)) or
34 (is_neg_inf(x) and is_neg_inf(y)) or
35 (is_nan(x) and is_nan(y)) or
36 (x == y)
37 )
38
39 def get_case(dut, a, b, mid):
40 yield dut.in_mid.eq(mid)
41 yield dut.in_a.v.eq(a)
42 yield dut.in_a.stb.eq(1)
43 yield
44 yield
45 a_ack = (yield dut.in_a.ack)
46 assert a_ack == 0
47
48 yield dut.in_a.stb.eq(0)
49
50 yield dut.in_b.v.eq(b)
51 yield dut.in_b.stb.eq(1)
52 yield
53 yield
54 b_ack = (yield dut.in_b.ack)
55 assert b_ack == 0
56
57 yield dut.in_b.stb.eq(0)
58
59 yield dut.out_z.ack.eq(1)
60
61 while True:
62 out_z_stb = (yield dut.out_z.stb)
63 if not out_z_stb:
64 yield
65 continue
66 out_z = yield dut.out_z.v
67 out_mid = yield dut.out_mid
68 yield dut.out_z.ack.eq(0)
69 yield
70 break
71
72 return out_z, out_mid
73
74 def check_case(dut, a, b, z, mid=None):
75 if mid is None:
76 mid = randint(0, 6)
77 out_z, out_mid = yield from get_case(dut, a, b, mid)
78 assert out_z == z, "Output z 0x%x not equal to expected 0x%x" % (out_z, z)
79 assert out_mid == mid, "Output mid 0x%x != expected 0x%x" % (out_mid, mid)
80
81
82 def run_test(dut, stimulus_a, stimulus_b, op):
83
84 expected_responses = []
85 actual_responses = []
86 for a, b in zip(stimulus_a, stimulus_b):
87 mid = randint(0, 6)
88 af = Float32.from_bits(a)
89 bf = Float32.from_bits(b)
90 z = op(af, bf)
91 expected_responses.append((z.get_bits(), mid))
92 #print (af, bf, z)
93 actual = yield from get_case(dut, a, b, mid)
94 actual_responses.append(actual)
95
96 if len(actual_responses) < len(expected_responses):
97 print ("Fail ... not enough results")
98 exit(0)
99
100 for expected, actual, a, b in zip(expected_responses, actual_responses,
101 stimulus_a, stimulus_b):
102 passed = match(expected[0], actual[0])
103 if expected[1] != actual[1]: # check mid
104 print ("MID failed", expected[1], actual[1])
105 sys.exit(0)
106
107 if not passed:
108
109 print ("Fail ... expected:", hex(expected), "actual:", hex(actual))
110
111 print (hex(a))
112 print ("a mantissa:", a & 0x7fffff)
113 print ("a exponent:", ((a & 0x7f800000) >> 23) - 127)
114 print ("a sign:", ((a & 0x80000000) >> 31))
115
116 print (hex(b))
117 print ("b mantissa:", b & 0x7fffff)
118 print ("b exponent:", ((b & 0x7f800000) >> 23) - 127)
119 print ("b sign:", ((b & 0x80000000) >> 31))
120
121 print (hex(expected))
122 print ("expected mantissa:", expected & 0x7fffff)
123 print ("expected exponent:", ((expected & 0x7f800000) >> 23) - 127)
124 print ("expected sign:", ((expected & 0x80000000) >> 31))
125
126 print (hex(actual))
127 print ("actual mantissa:", actual & 0x7fffff)
128 print ("actual exponent:", ((actual & 0x7f800000) >> 23) - 127)
129 print ("actual sign:", ((actual & 0x80000000) >> 31))
130
131 sys.exit(0)
132
133 corner_cases = [0x80000000, 0x00000000, 0x7f800000, 0xff800000,
134 0x7fc00000, 0xffc00000]
135
136 def run_corner_cases(dut, count, op):
137 #corner cases
138 from itertools import permutations
139 stimulus_a = [i[0] for i in permutations(corner_cases, 2)]
140 stimulus_b = [i[1] for i in permutations(corner_cases, 2)]
141 yield from run_test(dut, stimulus_a, stimulus_b, op)
142 count += len(stimulus_a)
143 print (count, "vectors passed")
144
145 def run_test_2(dut, stimulus_a, stimulus_b, op):
146 yield from run_test(dut, stimulus_a, stimulus_b, op)
147 yield from run_test(dut, stimulus_b, stimulus_a, op)
148
149 def run_cases(dut, count, op, fixed_num, num_entries):
150 if isinstance(fixed_num, int):
151 stimulus_a = [fixed_num for i in range(num_entries)]
152 report = hex(fixed_num)
153 else:
154 stimulus_a = fixed_num
155 report = "random"
156
157 stimulus_b = [randint(0, 1<<32) for i in range(num_entries)]
158 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
159 count += len(stimulus_a)
160 print (count, "vectors passed 2^32", report)
161
162 # non-canonical NaNs.
163 stimulus_b = [set_exponent(randint(0, 1<<32), 128) \
164 for i in range(num_entries)]
165 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
166 count += len(stimulus_a)
167 print (count, "vectors passed Non-Canonical NaN", report)
168
169 # -127
170 stimulus_b = [set_exponent(randint(0, 1<<32), -127) \
171 for i in range(num_entries)]
172 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
173 count += len(stimulus_a)
174 print (count, "vectors passed exp=-127", report)
175
176 # nearly zero
177 stimulus_b = [set_exponent(randint(0, 1<<32), -126) \
178 for i in range(num_entries)]
179 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
180 count += len(stimulus_a)
181 print (count, "vectors passed exp=-126", report)
182
183 # nearly inf
184 stimulus_b = [set_exponent(randint(0, 1<<32), 127) \
185 for i in range(num_entries)]
186 yield from run_test_2(dut, stimulus_a, stimulus_b, op)
187 count += len(stimulus_a)
188 print (count, "vectors passed exp=127", report)
189
190 return count
191
192 def run_edge_cases(dut, count, op):
193 #edge cases
194 for testme in corner_cases:
195 count = yield from run_cases(dut, count, op, testme, 10)
196
197 for i in range(100000):
198 stimulus_a = [randint(0, 1<<32) for i in range(10)]
199 count = yield from run_cases(dut, count, op, stimulus_a, 10)
200 return count
201