amd/addrlib: Fix selection of swizzle modes for 3D compressed images.
[mesa.git] / src / amd / addrlib / core / addrelemlib.cpp
1 /*
2 * Copyright © 2014 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining
6 * a copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
14 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
15 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
16 * NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
17 * AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
20 * USE OR OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * The above copyright notice and this permission notice (including the
23 * next paragraph) shall be included in all copies or substantial portions
24 * of the Software.
25 */
26
27 /**
28 ****************************************************************************************************
29 * @file addrelemlib.cpp
30 * @brief Contains the class implementation for element/pixel related functions.
31 ****************************************************************************************************
32 */
33
34 #include "addrelemlib.h"
35 #include "addrlib.h"
36
37 namespace Addr
38 {
39
40 /**
41 ****************************************************************************************************
42 * ElemLib::ElemLib
43 *
44 * @brief
45 * constructor
46 *
47 * @return
48 * N/A
49 ****************************************************************************************************
50 */
51 ElemLib::ElemLib(
52 Lib* pAddrLib) ///< [in] Parent addrlib instance pointer
53 :
54 Object(pAddrLib->GetClient()),
55 m_pAddrLib(pAddrLib)
56 {
57 switch (m_pAddrLib->GetChipFamily())
58 {
59 case ADDR_CHIP_FAMILY_R6XX:
60 m_depthPlanarType = ADDR_DEPTH_PLANAR_R600;
61 m_fp16ExportNorm = 0;
62 break;
63 case ADDR_CHIP_FAMILY_R7XX:
64 m_depthPlanarType = ADDR_DEPTH_PLANAR_R600;
65 m_fp16ExportNorm = 1;
66 break;
67 case ADDR_CHIP_FAMILY_R8XX:
68 case ADDR_CHIP_FAMILY_NI: // Same as 8xx
69 m_depthPlanarType = ADDR_DEPTH_PLANAR_R800;
70 m_fp16ExportNorm = 1;
71 break;
72 default:
73 m_fp16ExportNorm = 1;
74 m_depthPlanarType = ADDR_DEPTH_PLANAR_R800;
75 }
76
77 m_configFlags.value = 0;
78 }
79
80 /**
81 ****************************************************************************************************
82 * ElemLib::~ElemLib
83 *
84 * @brief
85 * destructor
86 *
87 * @return
88 * N/A
89 ****************************************************************************************************
90 */
91 ElemLib::~ElemLib()
92 {
93 }
94
95 /**
96 ****************************************************************************************************
97 * ElemLib::Create
98 *
99 * @brief
100 * Creates and initializes AddrLib object.
101 *
102 * @return
103 * Returns point to ADDR_CREATEINFO if successful.
104 ****************************************************************************************************
105 */
106 ElemLib* ElemLib::Create(
107 const Lib* pAddrLib) ///< [in] Pointer of parent AddrLib instance
108 {
109 ElemLib* pElemLib = NULL;
110
111 if (pAddrLib)
112 {
113 VOID* pObj = Object::ClientAlloc(sizeof(ElemLib), pAddrLib->GetClient());
114 if (pObj)
115 {
116 pElemLib = new(pObj) ElemLib(const_cast<Lib* const>(pAddrLib));
117 }
118 }
119
120 return pElemLib;
121 }
122
123 /**************************************************************************************************
124 * ElemLib::Flt32sToInt32s
125 *
126 * @brief
127 * Convert a ADDR_FLT_32 value to Int32 value
128 *
129 * @return
130 * N/A
131 ****************************************************************************************************
132 */
133 VOID ElemLib::Flt32sToInt32s(
134 ADDR_FLT_32 value, ///< [in] ADDR_FLT_32 value
135 UINT_32 bits, ///< [in] nubmer of bits in value
136 NumberType numberType, ///< [in] the type of number
137 UINT_32* pResult) ///< [out] Int32 value
138 {
139 UINT_8 round = 128; //ADDR_ROUND_BY_HALF
140 UINT_32 uscale;
141 UINT_32 sign;
142
143 //convert each component to an INT_32
144 switch ( numberType )
145 {
146 case ADDR_NO_NUMBER: //fall through
147 case ADDR_ZERO: //fall through
148 case ADDR_ONE: //fall through
149 case ADDR_EPSILON: //fall through
150 return; // these are zero-bit components, so don't set result
151
152 case ADDR_UINT_BITS: // unsigned integer bit field, clamped to range
153 uscale = (1<<bits) - 1;
154 if (bits == 32) // special case unsigned 32-bit int
155 {
156 *pResult = value.i;
157 }
158 else
159 {
160 if ((value.i < 0) || (value.u > uscale))
161 {
162 *pResult = uscale;
163 }
164 else
165 {
166 *pResult = value.i;
167 }
168 return;
169 }
170
171 // The algorithm used in the DB and TX differs at one value for 24-bit unorms
172 case ADDR_UNORM_R6XXDB: // unsigned repeating fraction
173 if ((bits==24) && (value.i == 0x33000000))
174 {
175 *pResult = 1;
176 return;
177 } // Else treat like ADDR_UNORM_R6XX
178
179 case ADDR_UNORM_R6XX: // unsigned repeating fraction
180 if (value.f <= 0)
181 {
182 *pResult = 0; // first clamp to [0..1]
183 }
184 else
185 {
186 if (value.f >= 1)
187 {
188 *pResult = (1<<bits) - 1;
189 }
190 else
191 {
192 if ((value.i | 0x87FFFFFF) == 0xFFFFFFFF)
193 {
194 *pResult = 0; // NaN, so force to 0
195 }
196
197 #if 0 // floating point version for documentation
198 else
199 {
200 FLOAT f = value.f * ((1<<bits) - 1);
201 *pResult = static_cast<INT_32>(f + (round/256.0f));
202 }
203 #endif
204 else
205 {
206 ADDR_FLT_32 scaled;
207 ADDR_FLT_32 shifted;
208 UINT_64 truncated, rounded;
209 UINT_32 altShift;
210 UINT_32 mask = (1 << bits) - 1;
211 UINT_32 half = 1 << (bits - 1);
212 UINT_32 mant24 = (value.i & 0x7FFFFF) + 0x800000;
213 UINT_64 temp = mant24 - (mant24>>bits) -
214 static_cast<INT_32>((mant24 & mask) > half);
215 UINT_32 exp8 = value.i >> 23;
216 UINT_32 shift = 126 - exp8 + 24 - bits;
217 UINT_64 final;
218
219 if (shift >= 32) // This is zero, even with maximum dither add
220 {
221 final = 0;
222 }
223 else
224 {
225 final = ((temp<<8) + (static_cast<UINT_64>(round)<<shift)) >> (shift+8);
226 }
227 //ADDR_EXIT( *pResult == final,
228 // ("Float %x converted to %d-bit Unorm %x != bitwise %x",
229 // value.u, bits, (UINT_32)*pResult, (UINT_32)final) );
230 if (final > mask)
231 {
232 final = mask;
233 }
234
235 scaled.f = value.f * ((1<<bits) - 1);
236 shifted.f = (scaled.f * 256);
237 truncated = ((shifted.i&0x7FFFFF) + (INT_64)0x800000) << 8;
238 altShift = 126 + 24 + 8 - ((shifted.i>>23)&0xFF);
239 truncated = (altShift > 60) ? 0 : truncated >> altShift;
240 rounded = static_cast<INT_32>((round + truncated) >> 8);
241 //if (rounded > ((1<<bits) - 1))
242 // rounded = ((1<<bits) - 1);
243 *pResult = static_cast<INT_32>(rounded); //(INT_32)final;
244 }
245 }
246 }
247
248 return;
249
250 case ADDR_S8FLOAT32: // 32-bit IEEE float, passes through NaN values
251 *pResult = value.i;
252 return;
253
254 // @@ FIX ROUNDING in this code, fix the denorm case
255 case ADDR_U4FLOATC: // Unsigned float, 4-bit exponent. bias 15, clamped [0..1]
256 sign = (value.i >> 31) & 1;
257 if ((value.i&0x7F800000) == 0x7F800000) // If NaN or INF:
258 {
259 if ((value.i&0x007FFFFF) != 0) // then if NaN
260 {
261 *pResult = 0; // return 0
262 }
263 else
264 {
265 *pResult = (sign)?0:0xF00000; // else +INF->+1, -INF->0
266 }
267 return;
268 }
269 if (value.f <= 0)
270 {
271 *pResult = 0;
272 }
273 else
274 {
275 if (value.f>=1)
276 {
277 *pResult = 0xF << (bits-4);
278 }
279 else
280 {
281 if ((value.i>>23) > 112 )
282 {
283 // 24-bit float: normalized
284 // value.i += 1 << (22-bits+4);
285 // round the IEEE mantissa to mantissa size
286 // @@ NOTE: add code to support rounding
287 value.u &= 0x7FFFFFF; // mask off high 4 exponent bits
288 *pResult = value.i >> (23-bits+4);// shift off unused mantissa bits
289 }
290 else
291 {
292 // 24-bit float: denormalized
293 value.f = value.f / (1<<28) / (1<<28);
294 value.f = value.f / (1<<28) / (1<<28); // convert to IEEE denorm
295 // value.i += 1 << (22-bits+4);
296 // round the IEEE mantissa to mantissa size
297 // @@ NOTE: add code to support rounding
298 *pResult = value.i >> (23-bits+4); // shift off unused mantissa bits
299 }
300 }
301 }
302
303 return;
304
305 default: // invalid number mode
306 //ADDR_EXIT(0, ("Invalid AddrNumber %d", numberType) );
307 break;
308
309 }
310 }
311
312 /**
313 ****************************************************************************************************
314 * ElemLib::Int32sToPixel
315 *
316 * @brief
317 * Pack 32-bit integer values into an uncompressed pixel,
318 * in the proper order
319 *
320 * @return
321 * N/A
322 *
323 * @note
324 * This entry point packes four 32-bit integer values into
325 * an uncompressed pixel. The pixel values are specifies in
326 * standard order, e.g. depth/stencil. This routine asserts
327 * if called on compressed pixel.
328 ****************************************************************************************************
329 */
330 VOID ElemLib::Int32sToPixel(
331 UINT_32 numComps, ///< [in] number of components
332 UINT_32* pComps, ///< [in] compnents
333 UINT_32* pCompBits, ///< [in] total bits in each component
334 UINT_32* pCompStart, ///< [in] the first bit position of each component
335 ComponentFlags properties, ///< [in] properties about byteAligned, exportNorm
336 UINT_32 resultBits, ///< [in] result bits: total bpp after decompression
337 UINT_8* pPixel) ///< [out] a depth/stencil pixel value
338 {
339 UINT_32 i;
340 UINT_32 j;
341 UINT_32 start;
342 UINT_32 size;
343 UINT_32 byte;
344 UINT_32 value = 0;
345 UINT_32 compMask;
346 UINT_32 elemMask=0;
347 UINT_32 elementXor = 0; // address xor when reading bytes from elements
348
349
350 // @@ NOTE: assert if called on a compressed format!
351
352 if (properties.byteAligned) // Components are all byte-sized
353 {
354 for (i = 0; i < numComps; i++) // Then for each component
355 {
356 // Copy the bytes of the component into the element
357 start = pCompStart[i] / 8;
358 size = pCompBits[i] / 8;
359 for (j = 0; j < size; j++)
360 {
361 pPixel[(j+start)^elementXor] = static_cast<UINT_8>(pComps[i] >> (8*j));
362 }
363 }
364 }
365 else // Element is 32-bits or less, components are bit fields
366 {
367 // First, extract each component in turn and combine it into a 32-bit value
368 for (i = 0; i < numComps; i++)
369 {
370 compMask = (1 << pCompBits[i]) - 1;
371 elemMask |= compMask << pCompStart[i];
372 value |= (pComps[i] & compMask) << pCompStart[i];
373 }
374
375 // Mext, copy the masked value into the element
376 size = (resultBits + 7) / 8;
377 for (i = 0; i < size; i++)
378 {
379 byte = pPixel[i^elementXor] & ~(elemMask >> (8*i));
380 pPixel[i^elementXor] = static_cast<UINT_8>(byte | ((elemMask & value) >> (8*i)));
381 }
382 }
383 }
384
385 /**
386 ****************************************************************************************************
387 * Flt32ToDepthPixel
388 *
389 * @brief
390 * Convert a FLT_32 value to a depth/stencil pixel value
391 *
392 * @return
393 * N/A
394 ****************************************************************************************************
395 */
396 VOID ElemLib::Flt32ToDepthPixel(
397 AddrDepthFormat format, ///< [in] Depth format
398 const ADDR_FLT_32 comps[2], ///< [in] two components of depth
399 UINT_8* pPixel ///< [out] depth pixel value
400 ) const
401 {
402 UINT_32 i;
403 UINT_32 values[2];
404 ComponentFlags properties; // byteAligned, exportNorm
405 UINT_32 resultBits = 0; // result bits: total bits per pixel after decompression
406
407 PixelFormatInfo fmt;
408
409 // get type for each component
410 PixGetDepthCompInfo(format, &fmt);
411
412 //initialize properties
413 properties.byteAligned = TRUE;
414 properties.exportNorm = TRUE;
415 properties.floatComp = FALSE;
416
417 //set properties and result bits
418 for (i = 0; i < 2; i++)
419 {
420 if ((fmt.compBit[i] & 7) || (fmt.compStart[i] & 7))
421 {
422 properties.byteAligned = FALSE;
423 }
424
425 if (resultBits < fmt.compStart[i] + fmt.compBit[i])
426 {
427 resultBits = fmt.compStart[i] + fmt.compBit[i];
428 }
429
430 // Clear ADDR_EXPORT_NORM if can't be represented as 11-bit or smaller [-1..+1] format
431 if (fmt.compBit[i] > 11 || fmt.numType[i] >= ADDR_USCALED)
432 {
433 properties.exportNorm = FALSE;
434 }
435
436 // Mark if there are any floating point components
437 if ((fmt.numType[i] == ADDR_U4FLOATC) || (fmt.numType[i] >= ADDR_S8FLOAT) )
438 {
439 properties.floatComp = TRUE;
440 }
441 }
442
443 // Convert the two input floats to integer values
444 for (i = 0; i < 2; i++)
445 {
446 Flt32sToInt32s(comps[i], fmt.compBit[i], fmt.numType[i], &values[i]);
447 }
448
449 // Then pack the two integer components, in the proper order
450 Int32sToPixel(2, values, fmt.compBit, fmt.compStart, properties, resultBits, pPixel );
451
452 }
453
454 /**
455 ****************************************************************************************************
456 * Flt32ToColorPixel
457 *
458 * @brief
459 * Convert a FLT_32 value to a red/green/blue/alpha pixel value
460 *
461 * @return
462 * N/A
463 ****************************************************************************************************
464 */
465 VOID ElemLib::Flt32ToColorPixel(
466 AddrColorFormat format, ///< [in] Color format
467 AddrSurfaceNumber surfNum, ///< [in] Surface number
468 AddrSurfaceSwap surfSwap, ///< [in] Surface swap
469 const ADDR_FLT_32 comps[4], ///< [in] four components of color
470 UINT_8* pPixel ///< [out] a red/green/blue/alpha pixel value
471 ) const
472 {
473 PixelFormatInfo pixelInfo;
474
475 UINT_32 i;
476 UINT_32 values[4];
477 ComponentFlags properties; // byteAligned, exportNorm
478 UINT_32 resultBits = 0; // result bits: total bits per pixel after decompression
479
480 memset(&pixelInfo, 0, sizeof(PixelFormatInfo));
481
482 PixGetColorCompInfo(format, surfNum, surfSwap, &pixelInfo);
483
484 //initialize properties
485 properties.byteAligned = TRUE;
486 properties.exportNorm = TRUE;
487 properties.floatComp = FALSE;
488
489 //set properties and result bits
490 for (i = 0; i < 4; i++)
491 {
492 if ( (pixelInfo.compBit[i] & 7) || (pixelInfo.compStart[i] & 7) )
493 {
494 properties.byteAligned = FALSE;
495 }
496
497 if (resultBits < pixelInfo.compStart[i] + pixelInfo.compBit[i])
498 {
499 resultBits = pixelInfo.compStart[i] + pixelInfo.compBit[i];
500 }
501
502 if (m_fp16ExportNorm)
503 {
504 // Clear ADDR_EXPORT_NORM if can't be represented as 11-bit or smaller [-1..+1] format
505 // or if it's not FP and <=16 bits
506 if (((pixelInfo.compBit[i] > 11) || (pixelInfo.numType[i] >= ADDR_USCALED))
507 && (pixelInfo.numType[i] !=ADDR_U4FLOATC))
508 {
509 properties.exportNorm = FALSE;
510 }
511 }
512 else
513 {
514 // Clear ADDR_EXPORT_NORM if can't be represented as 11-bit or smaller [-1..+1] format
515 if (pixelInfo.compBit[i] > 11 || pixelInfo.numType[i] >= ADDR_USCALED)
516 {
517 properties.exportNorm = FALSE;
518 }
519 }
520
521 // Mark if there are any floating point components
522 if ( (pixelInfo.numType[i] == ADDR_U4FLOATC) ||
523 (pixelInfo.numType[i] >= ADDR_S8FLOAT) )
524 {
525 properties.floatComp = TRUE;
526 }
527 }
528
529 // Convert the four input floats to integer values
530 for (i = 0; i < 4; i++)
531 {
532 Flt32sToInt32s(comps[i], pixelInfo.compBit[i], pixelInfo.numType[i], &values[i]);
533 }
534
535 // Then pack the four integer components, in the proper order
536 Int32sToPixel(4, values, &pixelInfo.compBit[0], &pixelInfo.compStart[0],
537 properties, resultBits, pPixel);
538 }
539
540 /**
541 ****************************************************************************************************
542 * ElemLib::GetCompType
543 *
544 * @brief
545 * Fill per component info
546 *
547 * @return
548 * N/A
549 *
550 ****************************************************************************************************
551 */
552 VOID ElemLib::GetCompType(
553 AddrColorFormat format, ///< [in] surface format
554 AddrSurfaceNumber numType, ///< [in] number type
555 PixelFormatInfo* pInfo) ///< [in][out] per component info out
556 {
557 BOOL_32 handled = FALSE;
558
559 // Floating point formats override the number format
560 switch (format)
561 {
562 case ADDR_COLOR_16_FLOAT: // fall through for all pure floating point format
563 case ADDR_COLOR_16_16_FLOAT:
564 case ADDR_COLOR_16_16_16_16_FLOAT:
565 case ADDR_COLOR_32_FLOAT:
566 case ADDR_COLOR_32_32_FLOAT:
567 case ADDR_COLOR_32_32_32_32_FLOAT:
568 case ADDR_COLOR_10_11_11_FLOAT:
569 case ADDR_COLOR_11_11_10_FLOAT:
570 numType = ADDR_NUMBER_FLOAT;
571 break;
572 // Special handling for the depth formats
573 case ADDR_COLOR_8_24: // fall through for these 2 similar format
574 case ADDR_COLOR_24_8:
575 for (UINT_32 c = 0; c < 4; c++)
576 {
577 if (pInfo->compBit[c] == 8)
578 {
579 pInfo->numType[c] = ADDR_UINT_BITS;
580 }
581 else if (pInfo->compBit[c] == 24)
582 {
583 pInfo->numType[c] = ADDR_UNORM_R6XX;
584 }
585 else
586 {
587 pInfo->numType[c] = ADDR_NO_NUMBER;
588 }
589 }
590 handled = TRUE;
591 break;
592 case ADDR_COLOR_8_24_FLOAT: // fall through for these 3 similar format
593 case ADDR_COLOR_24_8_FLOAT:
594 case ADDR_COLOR_X24_8_32_FLOAT:
595 for (UINT_32 c = 0; c < 4; c++)
596 {
597 if (pInfo->compBit[c] == 8)
598 {
599 pInfo->numType[c] = ADDR_UINT_BITS;
600 }
601 else if (pInfo->compBit[c] == 24)
602 {
603 pInfo->numType[c] = ADDR_U4FLOATC;
604 }
605 else if (pInfo->compBit[c] == 32)
606 {
607 pInfo->numType[c] = ADDR_S8FLOAT32;
608 }
609 else
610 {
611 pInfo->numType[c] = ADDR_NO_NUMBER;
612 }
613 }
614 handled = TRUE;
615 break;
616 default:
617 break;
618 }
619
620 if (!handled)
621 {
622 for (UINT_32 c = 0; c < 4; c++)
623 {
624 // Assign a number type for each component
625 AddrSurfaceNumber cnum;
626
627 // First handle default component values
628 if (pInfo->compBit[c] == 0)
629 {
630 if (c < 3)
631 {
632 pInfo->numType[c] = ADDR_ZERO; // Default is zero for RGB
633 }
634 else if (numType == ADDR_NUMBER_UINT || numType == ADDR_NUMBER_SINT)
635 {
636 pInfo->numType[c] = ADDR_EPSILON; // Alpha INT_32 bits default is 0x01
637 }
638 else
639 {
640 pInfo->numType[c] = ADDR_ONE; // Alpha normal default is float 1.0
641 }
642 continue;
643 }
644 // Now handle small components
645 else if (pInfo->compBit[c] == 1)
646 {
647 if (numType == ADDR_NUMBER_UINT || numType == ADDR_NUMBER_SINT)
648 {
649 cnum = ADDR_NUMBER_UINT;
650 }
651 else
652 {
653 cnum = ADDR_NUMBER_UNORM;
654 }
655 }
656 else
657 {
658 cnum = numType;
659 }
660
661 // If no default, set the number type fom num, compbits, and architecture
662 switch (cnum)
663 {
664 case ADDR_NUMBER_SRGB:
665 pInfo->numType[c] = (c < 3) ? ADDR_GAMMA8_R6XX : ADDR_UNORM_R6XX;
666 break;
667 case ADDR_NUMBER_UNORM:
668 pInfo->numType[c] = ADDR_UNORM_R6XX;
669 break;
670 case ADDR_NUMBER_SNORM:
671 pInfo->numType[c] = ADDR_SNORM_R6XX;
672 break;
673 case ADDR_NUMBER_USCALED:
674 pInfo->numType[c] = ADDR_USCALED; // @@ Do we need separate Pele routine?
675 break;
676 case ADDR_NUMBER_SSCALED:
677 pInfo->numType[c] = ADDR_SSCALED; // @@ Do we need separate Pele routine?
678 break;
679 case ADDR_NUMBER_FLOAT:
680 if (pInfo->compBit[c] == 32)
681 {
682 pInfo->numType[c] = ADDR_S8FLOAT32;
683 }
684 else if (pInfo->compBit[c] == 16)
685 {
686 pInfo->numType[c] = ADDR_S5FLOAT;
687 }
688 else if (pInfo->compBit[c] >= 10)
689 {
690 pInfo->numType[c] = ADDR_U5FLOAT;
691 }
692 else
693 {
694 ADDR_ASSERT_ALWAYS();
695 }
696 break;
697 case ADDR_NUMBER_SINT:
698 pInfo->numType[c] = ADDR_SINT_BITS;
699 break;
700 case ADDR_NUMBER_UINT:
701 pInfo->numType[c] = ADDR_UINT_BITS;
702 break;
703
704 default:
705 ADDR_ASSERT(!"Invalid number type");
706 pInfo->numType[c] = ADDR_NO_NUMBER;
707 break;
708 }
709 }
710 }
711 }
712
713 /**
714 ****************************************************************************************************
715 * ElemLib::GetCompSwap
716 *
717 * @brief
718 * Get components swapped for color surface
719 *
720 * @return
721 * N/A
722 *
723 ****************************************************************************************************
724 */
725 VOID ElemLib::GetCompSwap(
726 AddrSurfaceSwap swap, ///< [in] swap mode
727 PixelFormatInfo* pInfo) ///< [in,out] output per component info
728 {
729 switch (pInfo->comps)
730 {
731 case 4:
732 switch (swap)
733 {
734 case ADDR_SWAP_ALT:
735 SwapComps( 0, 2, pInfo );
736 break; // BGRA
737 case ADDR_SWAP_STD_REV:
738 SwapComps( 0, 3, pInfo );
739 SwapComps( 1, 2, pInfo );
740 break; // ABGR
741 case ADDR_SWAP_ALT_REV:
742 SwapComps( 0, 3, pInfo );
743 SwapComps( 0, 2, pInfo );
744 SwapComps( 0, 1, pInfo );
745 break; // ARGB
746 default:
747 break;
748 }
749 break;
750 case 3:
751 switch (swap)
752 {
753 case ADDR_SWAP_ALT_REV:
754 SwapComps( 0, 3, pInfo );
755 SwapComps( 0, 2, pInfo );
756 break; // AGR
757 case ADDR_SWAP_STD_REV:
758 SwapComps( 0, 2, pInfo );
759 break; // BGR
760 case ADDR_SWAP_ALT:
761 SwapComps( 2, 3, pInfo );
762 break; // RGA
763 default:
764 break; // RGB
765 }
766 break;
767 case 2:
768 switch (swap)
769 {
770 case ADDR_SWAP_ALT_REV:
771 SwapComps( 0, 1, pInfo );
772 SwapComps( 1, 3, pInfo );
773 break; // AR
774 case ADDR_SWAP_STD_REV:
775 SwapComps( 0, 1, pInfo );
776 break; // GR
777 case ADDR_SWAP_ALT:
778 SwapComps( 1, 3, pInfo );
779 break; // RA
780 default:
781 break; // RG
782 }
783 break;
784 case 1:
785 switch (swap)
786 {
787 case ADDR_SWAP_ALT_REV:
788 SwapComps( 0, 3, pInfo );
789 break; // A
790 case ADDR_SWAP_STD_REV:
791 SwapComps( 0, 2, pInfo );
792 break; // B
793 case ADDR_SWAP_ALT:
794 SwapComps( 0, 1, pInfo );
795 break; // G
796 default:
797 break; // R
798 }
799 break;
800 }
801 }
802
803 /**
804 ****************************************************************************************************
805 * ElemLib::GetCompSwap
806 *
807 * @brief
808 * Get components swapped for color surface
809 *
810 * @return
811 * N/A
812 *
813 ****************************************************************************************************
814 */
815 VOID ElemLib::SwapComps(
816 UINT_32 c0, ///< [in] component index 0
817 UINT_32 c1, ///< [in] component index 1
818 PixelFormatInfo* pInfo) ///< [in,out] output per component info
819 {
820 UINT_32 start;
821 UINT_32 bits;
822
823 start = pInfo->compStart[c0];
824 pInfo->compStart[c0] = pInfo->compStart[c1];
825 pInfo->compStart[c1] = start;
826
827 bits = pInfo->compBit[c0];
828 pInfo->compBit[c0] = pInfo->compBit[c1];
829 pInfo->compBit[c1] = bits;
830 }
831
832 /**
833 ****************************************************************************************************
834 * ElemLib::PixGetColorCompInfo
835 *
836 * @brief
837 * Get per component info for color surface
838 *
839 * @return
840 * N/A
841 *
842 ****************************************************************************************************
843 */
844 VOID ElemLib::PixGetColorCompInfo(
845 AddrColorFormat format, ///< [in] surface format, read from register
846 AddrSurfaceNumber number, ///< [in] pixel number type
847 AddrSurfaceSwap swap, ///< [in] component swap mode
848 PixelFormatInfo* pInfo ///< [out] output per component info
849 ) const
850 {
851 // 1. Get componet bits
852 switch (format)
853 {
854 case ADDR_COLOR_8:
855 GetCompBits(8, 0, 0, 0, pInfo);
856 break;
857 case ADDR_COLOR_1_5_5_5:
858 GetCompBits(5, 5, 5, 1, pInfo);
859 break;
860 case ADDR_COLOR_5_6_5:
861 GetCompBits(8, 6, 5, 0, pInfo);
862 break;
863 case ADDR_COLOR_6_5_5:
864 GetCompBits(5, 5, 6, 0, pInfo);
865 break;
866 case ADDR_COLOR_8_8:
867 GetCompBits(8, 8, 0, 0, pInfo);
868 break;
869 case ADDR_COLOR_4_4_4_4:
870 GetCompBits(4, 4, 4, 4, pInfo);
871 break;
872 case ADDR_COLOR_16:
873 GetCompBits(16, 0, 0, 0, pInfo);
874 break;
875 case ADDR_COLOR_8_8_8_8:
876 GetCompBits(8, 8, 8, 8, pInfo);
877 break;
878 case ADDR_COLOR_2_10_10_10:
879 GetCompBits(10, 10, 10, 2, pInfo);
880 break;
881 case ADDR_COLOR_10_11_11:
882 GetCompBits(11, 11, 10, 0, pInfo);
883 break;
884 case ADDR_COLOR_11_11_10:
885 GetCompBits(10, 11, 11, 0, pInfo);
886 break;
887 case ADDR_COLOR_16_16:
888 GetCompBits(16, 16, 0, 0, pInfo);
889 break;
890 case ADDR_COLOR_16_16_16_16:
891 GetCompBits(16, 16, 16, 16, pInfo);
892 break;
893 case ADDR_COLOR_16_FLOAT:
894 GetCompBits(16, 0, 0, 0, pInfo);
895 break;
896 case ADDR_COLOR_16_16_FLOAT:
897 GetCompBits(16, 16, 0, 0, pInfo);
898 break;
899 case ADDR_COLOR_32_FLOAT:
900 GetCompBits(32, 0, 0, 0, pInfo);
901 break;
902 case ADDR_COLOR_32_32_FLOAT:
903 GetCompBits(32, 32, 0, 0, pInfo);
904 break;
905 case ADDR_COLOR_16_16_16_16_FLOAT:
906 GetCompBits(16, 16, 16, 16, pInfo);
907 break;
908 case ADDR_COLOR_32_32_32_32_FLOAT:
909 GetCompBits(32, 32, 32, 32, pInfo);
910 break;
911
912 case ADDR_COLOR_32:
913 GetCompBits(32, 0, 0, 0, pInfo);
914 break;
915 case ADDR_COLOR_32_32:
916 GetCompBits(32, 32, 0, 0, pInfo);
917 break;
918 case ADDR_COLOR_32_32_32_32:
919 GetCompBits(32, 32, 32, 32, pInfo);
920 break;
921 case ADDR_COLOR_10_10_10_2:
922 GetCompBits(2, 10, 10, 10, pInfo);
923 break;
924 case ADDR_COLOR_10_11_11_FLOAT:
925 GetCompBits(11, 11, 10, 0, pInfo);
926 break;
927 case ADDR_COLOR_11_11_10_FLOAT:
928 GetCompBits(10, 11, 11, 0, pInfo);
929 break;
930 case ADDR_COLOR_5_5_5_1:
931 GetCompBits(1, 5, 5, 5, pInfo);
932 break;
933 case ADDR_COLOR_3_3_2:
934 GetCompBits(2, 3, 3, 0, pInfo);
935 break;
936 case ADDR_COLOR_4_4:
937 GetCompBits(4, 4, 0, 0, pInfo);
938 break;
939 case ADDR_COLOR_8_24:
940 case ADDR_COLOR_8_24_FLOAT: // same bit count, fall through
941 GetCompBits(24, 8, 0, 0, pInfo);
942 break;
943 case ADDR_COLOR_24_8:
944 case ADDR_COLOR_24_8_FLOAT: // same bit count, fall through
945 GetCompBits(8, 24, 0, 0, pInfo);
946 break;
947 case ADDR_COLOR_X24_8_32_FLOAT:
948 GetCompBits(32, 8, 0, 0, pInfo);
949 break;
950
951 case ADDR_COLOR_INVALID:
952 GetCompBits(0, 0, 0, 0, pInfo);
953 break;
954 default:
955 ADDR_ASSERT(0);
956 GetCompBits(0, 0, 0, 0, pInfo);
957 break;
958 }
959
960 // 2. Get component number type
961
962 GetCompType(format, number, pInfo);
963
964 // 3. Swap components if needed
965
966 GetCompSwap(swap, pInfo);
967 }
968
969 /**
970 ****************************************************************************************************
971 * ElemLib::PixGetDepthCompInfo
972 *
973 * @brief
974 * Get per component info for depth surface
975 *
976 * @return
977 * N/A
978 *
979 ****************************************************************************************************
980 */
981 VOID ElemLib::PixGetDepthCompInfo(
982 AddrDepthFormat format, ///< [in] surface format, read from register
983 PixelFormatInfo* pInfo ///< [out] output per component bits and type
984 ) const
985 {
986 if (m_depthPlanarType == ADDR_DEPTH_PLANAR_R800)
987 {
988 if (format == ADDR_DEPTH_8_24_FLOAT)
989 {
990 format = ADDR_DEPTH_X24_8_32_FLOAT; // Use this format to represent R800's D24FS8
991 }
992
993 if (format == ADDR_DEPTH_X8_24_FLOAT)
994 {
995 format = ADDR_DEPTH_32_FLOAT;
996 }
997 }
998
999 switch (format)
1000 {
1001 case ADDR_DEPTH_16:
1002 GetCompBits(16, 0, 0, 0, pInfo);
1003 break;
1004 case ADDR_DEPTH_8_24:
1005 case ADDR_DEPTH_8_24_FLOAT: // similar format, fall through
1006 GetCompBits(24, 8, 0, 0, pInfo);
1007 break;
1008 case ADDR_DEPTH_X8_24:
1009 case ADDR_DEPTH_X8_24_FLOAT: // similar format, fall through
1010 GetCompBits(24, 0, 0, 0, pInfo);
1011 break;
1012 case ADDR_DEPTH_32_FLOAT:
1013 GetCompBits(32, 0, 0, 0, pInfo);
1014 break;
1015 case ADDR_DEPTH_X24_8_32_FLOAT:
1016 GetCompBits(32, 8, 0, 0, pInfo);
1017 break;
1018 case ADDR_DEPTH_INVALID:
1019 GetCompBits(0, 0, 0, 0, pInfo);
1020 break;
1021 default:
1022 ADDR_ASSERT(0);
1023 GetCompBits(0, 0, 0, 0, pInfo);
1024 break;
1025 }
1026
1027 switch (format)
1028 {
1029 case ADDR_DEPTH_16:
1030 pInfo->numType [0] = ADDR_UNORM_R6XX;
1031 pInfo->numType [1] = ADDR_ZERO;
1032 break;
1033 case ADDR_DEPTH_8_24:
1034 pInfo->numType [0] = ADDR_UNORM_R6XXDB;
1035 pInfo->numType [1] = ADDR_UINT_BITS;
1036 break;
1037 case ADDR_DEPTH_8_24_FLOAT:
1038 pInfo->numType [0] = ADDR_U4FLOATC;
1039 pInfo->numType [1] = ADDR_UINT_BITS;
1040 break;
1041 case ADDR_DEPTH_X8_24:
1042 pInfo->numType [0] = ADDR_UNORM_R6XXDB;
1043 pInfo->numType [1] = ADDR_ZERO;
1044 break;
1045 case ADDR_DEPTH_X8_24_FLOAT:
1046 pInfo->numType [0] = ADDR_U4FLOATC;
1047 pInfo->numType [1] = ADDR_ZERO;
1048 break;
1049 case ADDR_DEPTH_32_FLOAT:
1050 pInfo->numType [0] = ADDR_S8FLOAT32;
1051 pInfo->numType [1] = ADDR_ZERO;
1052 break;
1053 case ADDR_DEPTH_X24_8_32_FLOAT:
1054 pInfo->numType [0] = ADDR_S8FLOAT32;
1055 pInfo->numType [1] = ADDR_UINT_BITS;
1056 break;
1057 default:
1058 pInfo->numType [0] = ADDR_NO_NUMBER;
1059 pInfo->numType [1] = ADDR_NO_NUMBER;
1060 break;
1061 }
1062
1063 pInfo->numType [2] = ADDR_NO_NUMBER;
1064 pInfo->numType [3] = ADDR_NO_NUMBER;
1065 }
1066
1067 /**
1068 ****************************************************************************************************
1069 * ElemLib::PixGetExportNorm
1070 *
1071 * @brief
1072 * Check if fp16 export norm can be enabled.
1073 *
1074 * @return
1075 * TRUE if this can be enabled.
1076 *
1077 ****************************************************************************************************
1078 */
1079 BOOL_32 ElemLib::PixGetExportNorm(
1080 AddrColorFormat colorFmt, ///< [in] surface format, read from register
1081 AddrSurfaceNumber numberFmt, ///< [in] pixel number type
1082 AddrSurfaceSwap swap ///< [in] components swap type
1083 ) const
1084 {
1085 BOOL_32 enabled = TRUE;
1086
1087 PixelFormatInfo formatInfo;
1088
1089 PixGetColorCompInfo(colorFmt, numberFmt, swap, &formatInfo);
1090
1091 for (UINT_32 c = 0; c < 4; c++)
1092 {
1093 if (m_fp16ExportNorm)
1094 {
1095 if (((formatInfo.compBit[c] > 11) || (formatInfo.numType[c] > ADDR_USCALED)) &&
1096 (formatInfo.numType[c] != ADDR_U4FLOATC) &&
1097 (formatInfo.numType[c] != ADDR_S5FLOAT) &&
1098 (formatInfo.numType[c] != ADDR_S5FLOATM) &&
1099 (formatInfo.numType[c] != ADDR_U5FLOAT) &&
1100 (formatInfo.numType[c] != ADDR_U3FLOATM))
1101 {
1102 enabled = FALSE;
1103 break;
1104 }
1105 }
1106 else
1107 {
1108 if ((formatInfo.compBit[c] > 11) || (formatInfo.numType[c] > ADDR_USCALED))
1109 {
1110 enabled = FALSE;
1111 break;
1112 }
1113 }
1114 }
1115
1116 return enabled;
1117 }
1118
1119 /**
1120 ****************************************************************************************************
1121 * ElemLib::AdjustSurfaceInfo
1122 *
1123 * @brief
1124 * Adjust bpp/base pitch/width/height according to elemMode and expandX/Y
1125 *
1126 * @return
1127 * N/A
1128 ****************************************************************************************************
1129 */
1130 VOID ElemLib::AdjustSurfaceInfo(
1131 ElemMode elemMode, ///< [in] element mode
1132 UINT_32 expandX, ///< [in] decompression expansion factor in X
1133 UINT_32 expandY, ///< [in] decompression expansion factor in Y
1134 UINT_32* pBpp, ///< [in,out] bpp
1135 UINT_32* pBasePitch, ///< [in,out] base pitch
1136 UINT_32* pWidth, ///< [in,out] width
1137 UINT_32* pHeight) ///< [in,out] height
1138 {
1139 UINT_32 packedBits;
1140 UINT_32 basePitch;
1141 UINT_32 width;
1142 UINT_32 height;
1143 UINT_32 bpp;
1144 BOOL_32 bBCnFormat = FALSE;
1145
1146 ADDR_ASSERT(pBpp != NULL);
1147 ADDR_ASSERT(pWidth != NULL && pHeight != NULL && pBasePitch != NULL);
1148
1149 if (pBpp)
1150 {
1151 bpp = *pBpp;
1152
1153 switch (elemMode)
1154 {
1155 case ADDR_EXPANDED:
1156 packedBits = bpp / expandX / expandY;
1157 break;
1158 case ADDR_PACKED_STD: // Different bit order
1159 case ADDR_PACKED_REV:
1160 packedBits = bpp * expandX * expandY;
1161 break;
1162 case ADDR_PACKED_GBGR:
1163 case ADDR_PACKED_BGRG:
1164 packedBits = bpp; // 32-bit packed ==> 2 32-bit result
1165 break;
1166 case ADDR_PACKED_BC1: // Fall through
1167 case ADDR_PACKED_BC4:
1168 packedBits = 64;
1169 bBCnFormat = TRUE;
1170 break;
1171 case ADDR_PACKED_BC2: // Fall through
1172 case ADDR_PACKED_BC3: // Fall through
1173 case ADDR_PACKED_BC5: // Fall through
1174 bBCnFormat = TRUE;
1175 // fall through
1176 case ADDR_PACKED_ASTC:
1177 packedBits = 128;
1178 break;
1179 case ADDR_ROUND_BY_HALF: // Fall through
1180 case ADDR_ROUND_TRUNCATE: // Fall through
1181 case ADDR_ROUND_DITHER: // Fall through
1182 case ADDR_UNCOMPRESSED:
1183 packedBits = bpp;
1184 break;
1185 default:
1186 packedBits = bpp;
1187 ADDR_ASSERT_ALWAYS();
1188 break;
1189 }
1190
1191 *pBpp = packedBits;
1192 }
1193
1194 if (pWidth && pHeight && pBasePitch)
1195 {
1196 basePitch = *pBasePitch;
1197 width = *pWidth;
1198 height = *pHeight;
1199
1200 if ((expandX > 1) || (expandY > 1))
1201 {
1202 if (elemMode == ADDR_EXPANDED)
1203 {
1204 basePitch *= expandX;
1205 width *= expandX;
1206 height *= expandY;
1207 }
1208 else
1209 {
1210 // Evergreen family workaround
1211 if (bBCnFormat && (m_pAddrLib->GetChipFamily() == ADDR_CHIP_FAMILY_R8XX))
1212 {
1213 // For BCn we now pad it to POW2 at the beginning so it is safe to
1214 // divide by 4 directly
1215 basePitch = basePitch / expandX;
1216 width = width / expandX;
1217 height = height / expandY;
1218 #if DEBUG
1219 width = (width == 0) ? 1 : width;
1220 height = (height == 0) ? 1 : height;
1221
1222 if ((*pWidth > PowTwoAlign(width, 8) * expandX) ||
1223 (*pHeight > PowTwoAlign(height, 8) * expandY)) // 8 is 1D tiling alignment
1224 {
1225 // if this assertion is hit we may have issues if app samples
1226 // rightmost/bottommost pixels
1227 ADDR_ASSERT_ALWAYS();
1228 }
1229 #endif
1230 }
1231 else // Not BCn format we still keep old way (FMT_1? No real test yet)
1232 {
1233 basePitch = (basePitch + expandX - 1) / expandX;
1234 width = (width + expandX - 1) / expandX;
1235 height = (height + expandY - 1) / expandY;
1236 }
1237 }
1238
1239 *pBasePitch = basePitch; // 0 is legal value for base pitch.
1240 *pWidth = (width == 0) ? 1 : width;
1241 *pHeight = (height == 0) ? 1 : height;
1242 } //if (pWidth && pHeight && pBasePitch)
1243 }
1244 }
1245
1246 /**
1247 ****************************************************************************************************
1248 * ElemLib::RestoreSurfaceInfo
1249 *
1250 * @brief
1251 * Reverse operation of AdjustSurfaceInfo
1252 *
1253 * @return
1254 * N/A
1255 ****************************************************************************************************
1256 */
1257 VOID ElemLib::RestoreSurfaceInfo(
1258 ElemMode elemMode, ///< [in] element mode
1259 UINT_32 expandX, ///< [in] decompression expansion factor in X
1260 UINT_32 expandY, ///< [out] decompression expansion factor in Y
1261 UINT_32* pBpp, ///< [in,out] bpp
1262 UINT_32* pWidth, ///< [in,out] width
1263 UINT_32* pHeight) ///< [in,out] height
1264 {
1265 UINT_32 originalBits;
1266 UINT_32 width;
1267 UINT_32 height;
1268 UINT_32 bpp;
1269
1270 ADDR_ASSERT(pBpp != NULL);
1271 ADDR_ASSERT(pWidth != NULL && pHeight != NULL);
1272
1273 if (pBpp)
1274 {
1275 bpp = *pBpp;
1276
1277 switch (elemMode)
1278 {
1279 case ADDR_EXPANDED:
1280 originalBits = bpp * expandX * expandY;
1281 break;
1282 case ADDR_PACKED_STD: // Different bit order
1283 case ADDR_PACKED_REV:
1284 originalBits = bpp / expandX / expandY;
1285 break;
1286 case ADDR_PACKED_GBGR:
1287 case ADDR_PACKED_BGRG:
1288 originalBits = bpp; // 32-bit packed ==> 2 32-bit result
1289 break;
1290 case ADDR_PACKED_BC1: // Fall through
1291 case ADDR_PACKED_BC4:
1292 originalBits = 64;
1293 break;
1294 case ADDR_PACKED_BC2: // Fall through
1295 case ADDR_PACKED_BC3: // Fall through
1296 case ADDR_PACKED_BC5:
1297 // fall through
1298 case ADDR_PACKED_ASTC:
1299 originalBits = 128;
1300 break;
1301 case ADDR_ROUND_BY_HALF: // Fall through
1302 case ADDR_ROUND_TRUNCATE: // Fall through
1303 case ADDR_ROUND_DITHER: // Fall through
1304 case ADDR_UNCOMPRESSED:
1305 originalBits = bpp;
1306 break;
1307 default:
1308 originalBits = bpp;
1309 ADDR_ASSERT_ALWAYS();
1310 break;
1311 }
1312
1313 *pBpp = originalBits;
1314 }
1315
1316 if (pWidth && pHeight)
1317 {
1318 width = *pWidth;
1319 height = *pHeight;
1320
1321 if ((expandX > 1) || (expandY > 1))
1322 {
1323 if (elemMode == ADDR_EXPANDED)
1324 {
1325 width /= expandX;
1326 height /= expandY;
1327 }
1328 else
1329 {
1330 width *= expandX;
1331 height *= expandY;
1332 }
1333 }
1334
1335 *pWidth = (width == 0) ? 1 : width;
1336 *pHeight = (height == 0) ? 1 : height;
1337 }
1338 }
1339
1340 /**
1341 ****************************************************************************************************
1342 * ElemLib::GetBitsPerPixel
1343 *
1344 * @brief
1345 * Compute the total bits per element according to a format
1346 * code. For compressed formats, this is not the same as
1347 * the number of bits per decompressed element.
1348 *
1349 * @return
1350 * Bits per pixel
1351 ****************************************************************************************************
1352 */
1353 UINT_32 ElemLib::GetBitsPerPixel(
1354 AddrFormat format, ///< [in] surface format code
1355 ElemMode* pElemMode, ///< [out] element mode
1356 UINT_32* pExpandX, ///< [out] decompression expansion factor in X
1357 UINT_32* pExpandY, ///< [out] decompression expansion factor in Y
1358 UINT_32* pUnusedBits) ///< [out] bits unused
1359 {
1360 UINT_32 bpp;
1361 UINT_32 expandX = 1;
1362 UINT_32 expandY = 1;
1363 UINT_32 bitUnused = 0;
1364 ElemMode elemMode = ADDR_UNCOMPRESSED; // default value
1365
1366 switch (format)
1367 {
1368 case ADDR_FMT_8:
1369 bpp = 8;
1370 break;
1371 case ADDR_FMT_1_5_5_5:
1372 case ADDR_FMT_5_6_5:
1373 case ADDR_FMT_6_5_5:
1374 case ADDR_FMT_8_8:
1375 case ADDR_FMT_4_4_4_4:
1376 case ADDR_FMT_16:
1377 case ADDR_FMT_16_FLOAT:
1378 bpp = 16;
1379 break;
1380 case ADDR_FMT_GB_GR: // treat as FMT_8_8
1381 elemMode = ADDR_PACKED_GBGR;
1382 bpp = 16;
1383 break;
1384 case ADDR_FMT_BG_RG: // treat as FMT_8_8
1385 elemMode = ADDR_PACKED_BGRG;
1386 bpp = 16;
1387 break;
1388 case ADDR_FMT_8_8_8_8:
1389 case ADDR_FMT_2_10_10_10:
1390 case ADDR_FMT_10_11_11:
1391 case ADDR_FMT_11_11_10:
1392 case ADDR_FMT_16_16:
1393 case ADDR_FMT_16_16_FLOAT:
1394 case ADDR_FMT_32:
1395 case ADDR_FMT_32_FLOAT:
1396 case ADDR_FMT_24_8:
1397 case ADDR_FMT_24_8_FLOAT:
1398 bpp = 32;
1399 break;
1400 case ADDR_FMT_16_16_16_16:
1401 case ADDR_FMT_16_16_16_16_FLOAT:
1402 case ADDR_FMT_32_32:
1403 case ADDR_FMT_32_32_FLOAT:
1404 case ADDR_FMT_CTX1:
1405 bpp = 64;
1406 break;
1407 case ADDR_FMT_32_32_32_32:
1408 case ADDR_FMT_32_32_32_32_FLOAT:
1409 bpp = 128;
1410 break;
1411 case ADDR_FMT_INVALID:
1412 bpp = 0;
1413 break;
1414 case ADDR_FMT_1_REVERSED:
1415 elemMode = ADDR_PACKED_REV;
1416 expandX = 8;
1417 bpp = 1;
1418 break;
1419 case ADDR_FMT_1:
1420 elemMode = ADDR_PACKED_STD;
1421 expandX = 8;
1422 bpp = 1;
1423 break;
1424 case ADDR_FMT_4_4:
1425 case ADDR_FMT_3_3_2:
1426 bpp = 8;
1427 break;
1428 case ADDR_FMT_5_5_5_1:
1429 bpp = 16;
1430 break;
1431 case ADDR_FMT_32_AS_8:
1432 case ADDR_FMT_32_AS_8_8:
1433 case ADDR_FMT_8_24:
1434 case ADDR_FMT_8_24_FLOAT:
1435 case ADDR_FMT_10_10_10_2:
1436 case ADDR_FMT_10_11_11_FLOAT:
1437 case ADDR_FMT_11_11_10_FLOAT:
1438 case ADDR_FMT_5_9_9_9_SHAREDEXP:
1439 bpp = 32;
1440 break;
1441 case ADDR_FMT_X24_8_32_FLOAT:
1442 bpp = 64;
1443 bitUnused = 24;
1444 break;
1445 case ADDR_FMT_8_8_8:
1446 elemMode = ADDR_EXPANDED;
1447 bpp = 24;//@@ 8; // read 3 elements per pixel
1448 expandX = 3;
1449 break;
1450 case ADDR_FMT_16_16_16:
1451 case ADDR_FMT_16_16_16_FLOAT:
1452 elemMode = ADDR_EXPANDED;
1453 bpp = 48;//@@ 16; // read 3 elements per pixel
1454 expandX = 3;
1455 break;
1456 case ADDR_FMT_32_32_32_FLOAT:
1457 case ADDR_FMT_32_32_32:
1458 elemMode = ADDR_EXPANDED;
1459 expandX = 3;
1460 bpp = 96;//@@ 32; // read 3 elements per pixel
1461 break;
1462 case ADDR_FMT_BC1:
1463 elemMode = ADDR_PACKED_BC1;
1464 expandX = 4;
1465 expandY = 4;
1466 bpp = 64;
1467 break;
1468 case ADDR_FMT_BC4:
1469 elemMode = ADDR_PACKED_BC4;
1470 expandX = 4;
1471 expandY = 4;
1472 bpp = 64;
1473 break;
1474 case ADDR_FMT_BC2:
1475 elemMode = ADDR_PACKED_BC2;
1476 expandX = 4;
1477 expandY = 4;
1478 bpp = 128;
1479 break;
1480 case ADDR_FMT_BC3:
1481 elemMode = ADDR_PACKED_BC3;
1482 expandX = 4;
1483 expandY = 4;
1484 bpp = 128;
1485 break;
1486 case ADDR_FMT_BC5:
1487 case ADDR_FMT_BC6: // reuse ADDR_PACKED_BC5
1488 case ADDR_FMT_BC7: // reuse ADDR_PACKED_BC5
1489 elemMode = ADDR_PACKED_BC5;
1490 expandX = 4;
1491 expandY = 4;
1492 bpp = 128;
1493 break;
1494
1495 case ADDR_FMT_ASTC_4x4:
1496 elemMode = ADDR_PACKED_ASTC;
1497 expandX = 4;
1498 expandY = 4;
1499 bpp = 128;
1500 break;
1501
1502 case ADDR_FMT_ASTC_5x4:
1503 elemMode = ADDR_PACKED_ASTC;
1504 expandX = 5;
1505 expandY = 4;
1506 bpp = 128;
1507 break;
1508
1509 case ADDR_FMT_ASTC_5x5:
1510 elemMode = ADDR_PACKED_ASTC;
1511 expandX = 5;
1512 expandY = 5;
1513 bpp = 128;
1514 break;
1515
1516 case ADDR_FMT_ASTC_6x5:
1517 elemMode = ADDR_PACKED_ASTC;
1518 expandX = 6;
1519 expandY = 5;
1520 bpp = 128;
1521 break;
1522
1523 case ADDR_FMT_ASTC_6x6:
1524 elemMode = ADDR_PACKED_ASTC;
1525 expandX = 6;
1526 expandY = 6;
1527 bpp = 128;
1528 break;
1529
1530 case ADDR_FMT_ASTC_8x5:
1531 elemMode = ADDR_PACKED_ASTC;
1532 expandX = 8;
1533 expandY = 5;
1534 bpp = 128;
1535 break;
1536
1537 case ADDR_FMT_ASTC_8x6:
1538 elemMode = ADDR_PACKED_ASTC;
1539 expandX = 8;
1540 expandY = 6;
1541 bpp = 128;
1542 break;
1543
1544 case ADDR_FMT_ASTC_8x8:
1545 elemMode = ADDR_PACKED_ASTC;
1546 expandX = 8;
1547 expandY = 8;
1548 bpp = 128;
1549 break;
1550
1551 case ADDR_FMT_ASTC_10x5:
1552 elemMode = ADDR_PACKED_ASTC;
1553 expandX = 10;
1554 expandY = 5;
1555 bpp = 128;
1556 break;
1557
1558 case ADDR_FMT_ASTC_10x6:
1559 elemMode = ADDR_PACKED_ASTC;
1560 expandX = 10;
1561 expandY = 6;
1562 bpp = 128;
1563 break;
1564
1565 case ADDR_FMT_ASTC_10x8:
1566 elemMode = ADDR_PACKED_ASTC;
1567 expandX = 10;
1568 expandY = 8;
1569 bpp = 128;
1570 break;
1571
1572 case ADDR_FMT_ASTC_10x10:
1573 elemMode = ADDR_PACKED_ASTC;
1574 expandX = 10;
1575 expandY = 10;
1576 bpp = 128;
1577 break;
1578
1579 case ADDR_FMT_ASTC_12x10:
1580 elemMode = ADDR_PACKED_ASTC;
1581 expandX = 12;
1582 expandY = 10;
1583 bpp = 128;
1584 break;
1585
1586 case ADDR_FMT_ASTC_12x12:
1587 elemMode = ADDR_PACKED_ASTC;
1588 expandX = 12;
1589 expandY = 12;
1590 bpp = 128;
1591 break;
1592
1593 default:
1594 bpp = 0;
1595 ADDR_ASSERT_ALWAYS();
1596 break;
1597 // @@ or should this be an error?
1598 }
1599
1600 SafeAssign(pExpandX, expandX);
1601 SafeAssign(pExpandY, expandY);
1602 SafeAssign(pUnusedBits, bitUnused);
1603 SafeAssign(reinterpret_cast<UINT_32*>(pElemMode), elemMode);
1604
1605 return bpp;
1606 }
1607
1608 /**
1609 ****************************************************************************************************
1610 * ElemLib::GetCompBits
1611 *
1612 * @brief
1613 * Set each component's bit size and bit start. And set element mode and number type
1614 *
1615 * @return
1616 * N/A
1617 ****************************************************************************************************
1618 */
1619 VOID ElemLib::GetCompBits(
1620 UINT_32 c0, ///< [in] bits of component 0
1621 UINT_32 c1, ///< [in] bits of component 1
1622 UINT_32 c2, ///< [in] bits of component 2
1623 UINT_32 c3, ///< [in] bits of component 3
1624 PixelFormatInfo* pInfo, ///< [out] per component info out
1625 ElemMode elemMode) ///< [in] element mode
1626 {
1627 pInfo->comps = 0;
1628
1629 pInfo->compBit[0] = c0;
1630 pInfo->compBit[1] = c1;
1631 pInfo->compBit[2] = c2;
1632 pInfo->compBit[3] = c3;
1633
1634 pInfo->compStart[0] = 0;
1635 pInfo->compStart[1] = c0;
1636 pInfo->compStart[2] = c0+c1;
1637 pInfo->compStart[3] = c0+c1+c2;
1638
1639 pInfo->elemMode = elemMode;
1640 // still needed since component swap may depend on number of components
1641 for (INT i=0; i<4; i++)
1642 {
1643 if (pInfo->compBit[i] == 0)
1644 {
1645 pInfo->compStart[i] = 0; // all null components start at bit 0
1646 pInfo->numType[i] = ADDR_NO_NUMBER; // and have no number type
1647 }
1648 else
1649 {
1650 pInfo->comps++;
1651 }
1652 }
1653 }
1654
1655 /**
1656 ****************************************************************************************************
1657 * ElemLib::GetCompBits
1658 *
1659 * @brief
1660 * Set the clear color (or clear depth/stencil) for a surface
1661 *
1662 * @note
1663 * If clearColor is zero, a default clear value is used in place of comps[4].
1664 * If float32 is set, full precision is used, else the mantissa is reduced to 12-bits
1665 *
1666 * @return
1667 * N/A
1668 ****************************************************************************************************
1669 */
1670 VOID ElemLib::SetClearComps(
1671 ADDR_FLT_32 comps[4], ///< [in,out] components
1672 BOOL_32 clearColor, ///< [in] TRUE if clear color is set (CLEAR_COLOR)
1673 BOOL_32 float32) ///< [in] TRUE if float32 component (BLEND_FLOAT32)
1674 {
1675 INT_32 i;
1676
1677 // Use default clearvalues if clearColor is disabled
1678 if (clearColor == FALSE)
1679 {
1680 for (i=0; i<3; i++)
1681 {
1682 comps[i].f = 0.0;
1683 }
1684 comps[3].f = 1.0;
1685 }
1686
1687 // Otherwise use the (modified) clear value
1688 else
1689 {
1690 for (i=0; i<4; i++)
1691 { // If full precision, use clear value unchanged
1692 if (float32)
1693 {
1694 // Do nothing
1695 //comps[i] = comps[i];
1696 }
1697 // Else if it is a NaN, use the standard NaN value
1698 else if ((comps[i].u & 0x7FFFFFFF) > 0x7F800000)
1699 {
1700 comps[i].u = 0xFFC00000;
1701 }
1702 // Else reduce the mantissa precision
1703 else
1704 {
1705 comps[i].u = comps[i].u & 0xFFFFF000;
1706 }
1707 }
1708 }
1709 }
1710
1711 /**
1712 ****************************************************************************************************
1713 * ElemLib::IsBlockCompressed
1714 *
1715 * @brief
1716 * TRUE if this is block compressed format
1717 *
1718 * @note
1719 *
1720 * @return
1721 * BOOL_32
1722 ****************************************************************************************************
1723 */
1724 BOOL_32 ElemLib::IsBlockCompressed(
1725 AddrFormat format) ///< [in] Format
1726 {
1727 return (((format >= ADDR_FMT_BC1) && (format <= ADDR_FMT_BC7)) ||
1728 ((format >= ADDR_FMT_ASTC_4x4) && (format <= ADDR_FMT_ASTC_12x12)));
1729 }
1730
1731
1732 /**
1733 ****************************************************************************************************
1734 * ElemLib::IsCompressed
1735 *
1736 * @brief
1737 * TRUE if this is block compressed format or 1 bit format
1738 *
1739 * @note
1740 *
1741 * @return
1742 * BOOL_32
1743 ****************************************************************************************************
1744 */
1745 BOOL_32 ElemLib::IsCompressed(
1746 AddrFormat format) ///< [in] Format
1747 {
1748 return IsBlockCompressed(format) || format == ADDR_FMT_BC1 || format == ADDR_FMT_BC7;
1749 }
1750
1751 /**
1752 ****************************************************************************************************
1753 * ElemLib::IsExpand3x
1754 *
1755 * @brief
1756 * TRUE if this is 3x expand format
1757 *
1758 * @note
1759 *
1760 * @return
1761 * BOOL_32
1762 ****************************************************************************************************
1763 */
1764 BOOL_32 ElemLib::IsExpand3x(
1765 AddrFormat format) ///< [in] Format
1766 {
1767 BOOL_32 is3x = FALSE;
1768
1769 switch (format)
1770 {
1771 case ADDR_FMT_8_8_8:
1772 case ADDR_FMT_16_16_16:
1773 case ADDR_FMT_16_16_16_FLOAT:
1774 case ADDR_FMT_32_32_32:
1775 case ADDR_FMT_32_32_32_FLOAT:
1776 is3x = TRUE;
1777 break;
1778 default:
1779 break;
1780 }
1781
1782 return is3x;
1783 }
1784
1785 }