ac: add ac_get_i1_sgpr_mask
[mesa.git] / src / amd / common / ac_llvm_build.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sub license, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
13 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
15 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
17 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
18 * USE OR OTHER DEALINGS IN THE SOFTWARE.
19 *
20 * The above copyright notice and this permission notice (including the
21 * next paragraph) shall be included in all copies or substantial portions
22 * of the Software.
23 *
24 */
25 /* based on pieces from si_pipe.c and radeon_llvm_emit.c */
26 #include "ac_llvm_build.h"
27
28 #include <llvm-c/Core.h>
29
30 #include "c11/threads.h"
31
32 #include <assert.h>
33 #include <stdio.h>
34
35 #include "ac_llvm_util.h"
36 #include "ac_exp_param.h"
37 #include "util/bitscan.h"
38 #include "util/macros.h"
39 #include "util/u_atomic.h"
40 #include "util/u_math.h"
41 #include "sid.h"
42
43 #include "shader_enums.h"
44
45 #define AC_LLVM_INITIAL_CF_DEPTH 4
46
47 /* Data for if/else/endif and bgnloop/endloop control flow structures.
48 */
49 struct ac_llvm_flow {
50 /* Loop exit or next part of if/else/endif. */
51 LLVMBasicBlockRef next_block;
52 LLVMBasicBlockRef loop_entry_block;
53 };
54
55 /* Initialize module-independent parts of the context.
56 *
57 * The caller is responsible for initializing ctx::module and ctx::builder.
58 */
59 void
60 ac_llvm_context_init(struct ac_llvm_context *ctx,
61 enum chip_class chip_class, enum radeon_family family)
62 {
63 LLVMValueRef args[1];
64
65 ctx->context = LLVMContextCreate();
66
67 ctx->chip_class = chip_class;
68 ctx->family = family;
69 ctx->module = NULL;
70 ctx->builder = NULL;
71
72 ctx->voidt = LLVMVoidTypeInContext(ctx->context);
73 ctx->i1 = LLVMInt1TypeInContext(ctx->context);
74 ctx->i8 = LLVMInt8TypeInContext(ctx->context);
75 ctx->i16 = LLVMIntTypeInContext(ctx->context, 16);
76 ctx->i32 = LLVMIntTypeInContext(ctx->context, 32);
77 ctx->i64 = LLVMIntTypeInContext(ctx->context, 64);
78 ctx->intptr = ctx->i32;
79 ctx->f16 = LLVMHalfTypeInContext(ctx->context);
80 ctx->f32 = LLVMFloatTypeInContext(ctx->context);
81 ctx->f64 = LLVMDoubleTypeInContext(ctx->context);
82 ctx->v2i16 = LLVMVectorType(ctx->i16, 2);
83 ctx->v2i32 = LLVMVectorType(ctx->i32, 2);
84 ctx->v3i32 = LLVMVectorType(ctx->i32, 3);
85 ctx->v4i32 = LLVMVectorType(ctx->i32, 4);
86 ctx->v2f32 = LLVMVectorType(ctx->f32, 2);
87 ctx->v4f32 = LLVMVectorType(ctx->f32, 4);
88 ctx->v8i32 = LLVMVectorType(ctx->i32, 8);
89
90 ctx->i8_0 = LLVMConstInt(ctx->i8, 0, false);
91 ctx->i8_1 = LLVMConstInt(ctx->i8, 1, false);
92 ctx->i16_0 = LLVMConstInt(ctx->i16, 0, false);
93 ctx->i16_1 = LLVMConstInt(ctx->i16, 1, false);
94 ctx->i32_0 = LLVMConstInt(ctx->i32, 0, false);
95 ctx->i32_1 = LLVMConstInt(ctx->i32, 1, false);
96 ctx->i64_0 = LLVMConstInt(ctx->i64, 0, false);
97 ctx->i64_1 = LLVMConstInt(ctx->i64, 1, false);
98 ctx->f16_0 = LLVMConstReal(ctx->f16, 0.0);
99 ctx->f16_1 = LLVMConstReal(ctx->f16, 1.0);
100 ctx->f32_0 = LLVMConstReal(ctx->f32, 0.0);
101 ctx->f32_1 = LLVMConstReal(ctx->f32, 1.0);
102 ctx->f64_0 = LLVMConstReal(ctx->f64, 0.0);
103 ctx->f64_1 = LLVMConstReal(ctx->f64, 1.0);
104
105 ctx->i1false = LLVMConstInt(ctx->i1, 0, false);
106 ctx->i1true = LLVMConstInt(ctx->i1, 1, false);
107
108 ctx->range_md_kind = LLVMGetMDKindIDInContext(ctx->context,
109 "range", 5);
110
111 ctx->invariant_load_md_kind = LLVMGetMDKindIDInContext(ctx->context,
112 "invariant.load", 14);
113
114 ctx->fpmath_md_kind = LLVMGetMDKindIDInContext(ctx->context, "fpmath", 6);
115
116 args[0] = LLVMConstReal(ctx->f32, 2.5);
117 ctx->fpmath_md_2p5_ulp = LLVMMDNodeInContext(ctx->context, args, 1);
118
119 ctx->uniform_md_kind = LLVMGetMDKindIDInContext(ctx->context,
120 "amdgpu.uniform", 14);
121
122 ctx->empty_md = LLVMMDNodeInContext(ctx->context, NULL, 0);
123 }
124
125 void
126 ac_llvm_context_dispose(struct ac_llvm_context *ctx)
127 {
128 free(ctx->flow);
129 ctx->flow = NULL;
130 ctx->flow_depth_max = 0;
131 }
132
133 int
134 ac_get_llvm_num_components(LLVMValueRef value)
135 {
136 LLVMTypeRef type = LLVMTypeOf(value);
137 unsigned num_components = LLVMGetTypeKind(type) == LLVMVectorTypeKind
138 ? LLVMGetVectorSize(type)
139 : 1;
140 return num_components;
141 }
142
143 LLVMValueRef
144 ac_llvm_extract_elem(struct ac_llvm_context *ac,
145 LLVMValueRef value,
146 int index)
147 {
148 if (LLVMGetTypeKind(LLVMTypeOf(value)) != LLVMVectorTypeKind) {
149 assert(index == 0);
150 return value;
151 }
152
153 return LLVMBuildExtractElement(ac->builder, value,
154 LLVMConstInt(ac->i32, index, false), "");
155 }
156
157 int
158 ac_get_elem_bits(struct ac_llvm_context *ctx, LLVMTypeRef type)
159 {
160 if (LLVMGetTypeKind(type) == LLVMVectorTypeKind)
161 type = LLVMGetElementType(type);
162
163 if (LLVMGetTypeKind(type) == LLVMIntegerTypeKind)
164 return LLVMGetIntTypeWidth(type);
165
166 if (type == ctx->f16)
167 return 16;
168 if (type == ctx->f32)
169 return 32;
170 if (type == ctx->f64)
171 return 64;
172
173 unreachable("Unhandled type kind in get_elem_bits");
174 }
175
176 unsigned
177 ac_get_type_size(LLVMTypeRef type)
178 {
179 LLVMTypeKind kind = LLVMGetTypeKind(type);
180
181 switch (kind) {
182 case LLVMIntegerTypeKind:
183 return LLVMGetIntTypeWidth(type) / 8;
184 case LLVMHalfTypeKind:
185 return 2;
186 case LLVMFloatTypeKind:
187 return 4;
188 case LLVMDoubleTypeKind:
189 return 8;
190 case LLVMPointerTypeKind:
191 if (LLVMGetPointerAddressSpace(type) == AC_ADDR_SPACE_CONST_32BIT)
192 return 4;
193 return 8;
194 case LLVMVectorTypeKind:
195 return LLVMGetVectorSize(type) *
196 ac_get_type_size(LLVMGetElementType(type));
197 case LLVMArrayTypeKind:
198 return LLVMGetArrayLength(type) *
199 ac_get_type_size(LLVMGetElementType(type));
200 default:
201 assert(0);
202 return 0;
203 }
204 }
205
206 static LLVMTypeRef to_integer_type_scalar(struct ac_llvm_context *ctx, LLVMTypeRef t)
207 {
208 if (t == ctx->i8)
209 return ctx->i8;
210 else if (t == ctx->f16 || t == ctx->i16)
211 return ctx->i16;
212 else if (t == ctx->f32 || t == ctx->i32)
213 return ctx->i32;
214 else if (t == ctx->f64 || t == ctx->i64)
215 return ctx->i64;
216 else
217 unreachable("Unhandled integer size");
218 }
219
220 LLVMTypeRef
221 ac_to_integer_type(struct ac_llvm_context *ctx, LLVMTypeRef t)
222 {
223 if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) {
224 LLVMTypeRef elem_type = LLVMGetElementType(t);
225 return LLVMVectorType(to_integer_type_scalar(ctx, elem_type),
226 LLVMGetVectorSize(t));
227 }
228 if (LLVMGetTypeKind(t) == LLVMPointerTypeKind) {
229 switch (LLVMGetPointerAddressSpace(t)) {
230 case AC_ADDR_SPACE_GLOBAL:
231 return ctx->i64;
232 case AC_ADDR_SPACE_LDS:
233 return ctx->i32;
234 default:
235 unreachable("unhandled address space");
236 }
237 }
238 return to_integer_type_scalar(ctx, t);
239 }
240
241 LLVMValueRef
242 ac_to_integer(struct ac_llvm_context *ctx, LLVMValueRef v)
243 {
244 LLVMTypeRef type = LLVMTypeOf(v);
245 if (LLVMGetTypeKind(type) == LLVMPointerTypeKind) {
246 return LLVMBuildPtrToInt(ctx->builder, v, ac_to_integer_type(ctx, type), "");
247 }
248 return LLVMBuildBitCast(ctx->builder, v, ac_to_integer_type(ctx, type), "");
249 }
250
251 LLVMValueRef
252 ac_to_integer_or_pointer(struct ac_llvm_context *ctx, LLVMValueRef v)
253 {
254 LLVMTypeRef type = LLVMTypeOf(v);
255 if (LLVMGetTypeKind(type) == LLVMPointerTypeKind)
256 return v;
257 return ac_to_integer(ctx, v);
258 }
259
260 static LLVMTypeRef to_float_type_scalar(struct ac_llvm_context *ctx, LLVMTypeRef t)
261 {
262 if (t == ctx->i8)
263 return ctx->i8;
264 else if (t == ctx->i16 || t == ctx->f16)
265 return ctx->f16;
266 else if (t == ctx->i32 || t == ctx->f32)
267 return ctx->f32;
268 else if (t == ctx->i64 || t == ctx->f64)
269 return ctx->f64;
270 else
271 unreachable("Unhandled float size");
272 }
273
274 LLVMTypeRef
275 ac_to_float_type(struct ac_llvm_context *ctx, LLVMTypeRef t)
276 {
277 if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) {
278 LLVMTypeRef elem_type = LLVMGetElementType(t);
279 return LLVMVectorType(to_float_type_scalar(ctx, elem_type),
280 LLVMGetVectorSize(t));
281 }
282 return to_float_type_scalar(ctx, t);
283 }
284
285 LLVMValueRef
286 ac_to_float(struct ac_llvm_context *ctx, LLVMValueRef v)
287 {
288 LLVMTypeRef type = LLVMTypeOf(v);
289 return LLVMBuildBitCast(ctx->builder, v, ac_to_float_type(ctx, type), "");
290 }
291
292
293 LLVMValueRef
294 ac_build_intrinsic(struct ac_llvm_context *ctx, const char *name,
295 LLVMTypeRef return_type, LLVMValueRef *params,
296 unsigned param_count, unsigned attrib_mask)
297 {
298 LLVMValueRef function, call;
299 bool set_callsite_attrs = !(attrib_mask & AC_FUNC_ATTR_LEGACY);
300
301 function = LLVMGetNamedFunction(ctx->module, name);
302 if (!function) {
303 LLVMTypeRef param_types[32], function_type;
304 unsigned i;
305
306 assert(param_count <= 32);
307
308 for (i = 0; i < param_count; ++i) {
309 assert(params[i]);
310 param_types[i] = LLVMTypeOf(params[i]);
311 }
312 function_type =
313 LLVMFunctionType(return_type, param_types, param_count, 0);
314 function = LLVMAddFunction(ctx->module, name, function_type);
315
316 LLVMSetFunctionCallConv(function, LLVMCCallConv);
317 LLVMSetLinkage(function, LLVMExternalLinkage);
318
319 if (!set_callsite_attrs)
320 ac_add_func_attributes(ctx->context, function, attrib_mask);
321 }
322
323 call = LLVMBuildCall(ctx->builder, function, params, param_count, "");
324 if (set_callsite_attrs)
325 ac_add_func_attributes(ctx->context, call, attrib_mask);
326 return call;
327 }
328
329 /**
330 * Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with
331 * intrinsic names).
332 */
333 void ac_build_type_name_for_intr(LLVMTypeRef type, char *buf, unsigned bufsize)
334 {
335 LLVMTypeRef elem_type = type;
336
337 assert(bufsize >= 8);
338
339 if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
340 int ret = snprintf(buf, bufsize, "v%u",
341 LLVMGetVectorSize(type));
342 if (ret < 0) {
343 char *type_name = LLVMPrintTypeToString(type);
344 fprintf(stderr, "Error building type name for: %s\n",
345 type_name);
346 return;
347 }
348 elem_type = LLVMGetElementType(type);
349 buf += ret;
350 bufsize -= ret;
351 }
352 switch (LLVMGetTypeKind(elem_type)) {
353 default: break;
354 case LLVMIntegerTypeKind:
355 snprintf(buf, bufsize, "i%d", LLVMGetIntTypeWidth(elem_type));
356 break;
357 case LLVMHalfTypeKind:
358 snprintf(buf, bufsize, "f16");
359 break;
360 case LLVMFloatTypeKind:
361 snprintf(buf, bufsize, "f32");
362 break;
363 case LLVMDoubleTypeKind:
364 snprintf(buf, bufsize, "f64");
365 break;
366 }
367 }
368
369 /**
370 * Helper function that builds an LLVM IR PHI node and immediately adds
371 * incoming edges.
372 */
373 LLVMValueRef
374 ac_build_phi(struct ac_llvm_context *ctx, LLVMTypeRef type,
375 unsigned count_incoming, LLVMValueRef *values,
376 LLVMBasicBlockRef *blocks)
377 {
378 LLVMValueRef phi = LLVMBuildPhi(ctx->builder, type, "");
379 LLVMAddIncoming(phi, values, blocks, count_incoming);
380 return phi;
381 }
382
383 void ac_build_s_barrier(struct ac_llvm_context *ctx)
384 {
385 ac_build_intrinsic(ctx, "llvm.amdgcn.s.barrier", ctx->voidt, NULL,
386 0, AC_FUNC_ATTR_CONVERGENT);
387 }
388
389 /* Prevent optimizations (at least of memory accesses) across the current
390 * point in the program by emitting empty inline assembly that is marked as
391 * having side effects.
392 *
393 * Optionally, a value can be passed through the inline assembly to prevent
394 * LLVM from hoisting calls to ReadNone functions.
395 */
396 void
397 ac_build_optimization_barrier(struct ac_llvm_context *ctx,
398 LLVMValueRef *pvgpr)
399 {
400 static int counter = 0;
401
402 LLVMBuilderRef builder = ctx->builder;
403 char code[16];
404
405 snprintf(code, sizeof(code), "; %d", p_atomic_inc_return(&counter));
406
407 if (!pvgpr) {
408 LLVMTypeRef ftype = LLVMFunctionType(ctx->voidt, NULL, 0, false);
409 LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, code, "", true, false);
410 LLVMBuildCall(builder, inlineasm, NULL, 0, "");
411 } else {
412 LLVMTypeRef ftype = LLVMFunctionType(ctx->i32, &ctx->i32, 1, false);
413 LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, code, "=v,0", true, false);
414 LLVMValueRef vgpr = *pvgpr;
415 LLVMTypeRef vgpr_type = LLVMTypeOf(vgpr);
416 unsigned vgpr_size = ac_get_type_size(vgpr_type);
417 LLVMValueRef vgpr0;
418
419 assert(vgpr_size % 4 == 0);
420
421 vgpr = LLVMBuildBitCast(builder, vgpr, LLVMVectorType(ctx->i32, vgpr_size / 4), "");
422 vgpr0 = LLVMBuildExtractElement(builder, vgpr, ctx->i32_0, "");
423 vgpr0 = LLVMBuildCall(builder, inlineasm, &vgpr0, 1, "");
424 vgpr = LLVMBuildInsertElement(builder, vgpr, vgpr0, ctx->i32_0, "");
425 vgpr = LLVMBuildBitCast(builder, vgpr, vgpr_type, "");
426
427 *pvgpr = vgpr;
428 }
429 }
430
431 LLVMValueRef
432 ac_build_shader_clock(struct ac_llvm_context *ctx)
433 {
434 LLVMValueRef tmp = ac_build_intrinsic(ctx, "llvm.readcyclecounter",
435 ctx->i64, NULL, 0, 0);
436 return LLVMBuildBitCast(ctx->builder, tmp, ctx->v2i32, "");
437 }
438
439 LLVMValueRef
440 ac_build_ballot(struct ac_llvm_context *ctx,
441 LLVMValueRef value)
442 {
443 LLVMValueRef args[3] = {
444 value,
445 ctx->i32_0,
446 LLVMConstInt(ctx->i32, LLVMIntNE, 0)
447 };
448
449 /* We currently have no other way to prevent LLVM from lifting the icmp
450 * calls to a dominating basic block.
451 */
452 ac_build_optimization_barrier(ctx, &args[0]);
453
454 args[0] = ac_to_integer(ctx, args[0]);
455
456 return ac_build_intrinsic(ctx,
457 "llvm.amdgcn.icmp.i32",
458 ctx->i64, args, 3,
459 AC_FUNC_ATTR_NOUNWIND |
460 AC_FUNC_ATTR_READNONE |
461 AC_FUNC_ATTR_CONVERGENT);
462 }
463
464 LLVMValueRef ac_get_i1_sgpr_mask(struct ac_llvm_context *ctx,
465 LLVMValueRef value)
466 {
467 LLVMValueRef args[3] = {
468 value,
469 ctx->i1false,
470 LLVMConstInt(ctx->i32, LLVMIntNE, 0),
471 };
472
473 assert(HAVE_LLVM >= 0x0800);
474 return ac_build_intrinsic(ctx, "llvm.amdgcn.icmp.i1", ctx->i64, args, 3,
475 AC_FUNC_ATTR_NOUNWIND |
476 AC_FUNC_ATTR_READNONE |
477 AC_FUNC_ATTR_CONVERGENT);
478 }
479
480 LLVMValueRef
481 ac_build_vote_all(struct ac_llvm_context *ctx, LLVMValueRef value)
482 {
483 LLVMValueRef active_set = ac_build_ballot(ctx, ctx->i32_1);
484 LLVMValueRef vote_set = ac_build_ballot(ctx, value);
485 return LLVMBuildICmp(ctx->builder, LLVMIntEQ, vote_set, active_set, "");
486 }
487
488 LLVMValueRef
489 ac_build_vote_any(struct ac_llvm_context *ctx, LLVMValueRef value)
490 {
491 LLVMValueRef vote_set = ac_build_ballot(ctx, value);
492 return LLVMBuildICmp(ctx->builder, LLVMIntNE, vote_set,
493 LLVMConstInt(ctx->i64, 0, 0), "");
494 }
495
496 LLVMValueRef
497 ac_build_vote_eq(struct ac_llvm_context *ctx, LLVMValueRef value)
498 {
499 LLVMValueRef active_set = ac_build_ballot(ctx, ctx->i32_1);
500 LLVMValueRef vote_set = ac_build_ballot(ctx, value);
501
502 LLVMValueRef all = LLVMBuildICmp(ctx->builder, LLVMIntEQ,
503 vote_set, active_set, "");
504 LLVMValueRef none = LLVMBuildICmp(ctx->builder, LLVMIntEQ,
505 vote_set,
506 LLVMConstInt(ctx->i64, 0, 0), "");
507 return LLVMBuildOr(ctx->builder, all, none, "");
508 }
509
510 LLVMValueRef
511 ac_build_varying_gather_values(struct ac_llvm_context *ctx, LLVMValueRef *values,
512 unsigned value_count, unsigned component)
513 {
514 LLVMValueRef vec = NULL;
515
516 if (value_count == 1) {
517 return values[component];
518 } else if (!value_count)
519 unreachable("value_count is 0");
520
521 for (unsigned i = component; i < value_count + component; i++) {
522 LLVMValueRef value = values[i];
523
524 if (i == component)
525 vec = LLVMGetUndef( LLVMVectorType(LLVMTypeOf(value), value_count));
526 LLVMValueRef index = LLVMConstInt(ctx->i32, i - component, false);
527 vec = LLVMBuildInsertElement(ctx->builder, vec, value, index, "");
528 }
529 return vec;
530 }
531
532 LLVMValueRef
533 ac_build_gather_values_extended(struct ac_llvm_context *ctx,
534 LLVMValueRef *values,
535 unsigned value_count,
536 unsigned value_stride,
537 bool load,
538 bool always_vector)
539 {
540 LLVMBuilderRef builder = ctx->builder;
541 LLVMValueRef vec = NULL;
542 unsigned i;
543
544 if (value_count == 1 && !always_vector) {
545 if (load)
546 return LLVMBuildLoad(builder, values[0], "");
547 return values[0];
548 } else if (!value_count)
549 unreachable("value_count is 0");
550
551 for (i = 0; i < value_count; i++) {
552 LLVMValueRef value = values[i * value_stride];
553 if (load)
554 value = LLVMBuildLoad(builder, value, "");
555
556 if (!i)
557 vec = LLVMGetUndef( LLVMVectorType(LLVMTypeOf(value), value_count));
558 LLVMValueRef index = LLVMConstInt(ctx->i32, i, false);
559 vec = LLVMBuildInsertElement(builder, vec, value, index, "");
560 }
561 return vec;
562 }
563
564 LLVMValueRef
565 ac_build_gather_values(struct ac_llvm_context *ctx,
566 LLVMValueRef *values,
567 unsigned value_count)
568 {
569 return ac_build_gather_values_extended(ctx, values, value_count, 1, false, false);
570 }
571
572 /* Expand a scalar or vector to <dst_channels x type> by filling the remaining
573 * channels with undef. Extract at most src_channels components from the input.
574 */
575 static LLVMValueRef
576 ac_build_expand(struct ac_llvm_context *ctx,
577 LLVMValueRef value,
578 unsigned src_channels,
579 unsigned dst_channels)
580 {
581 LLVMTypeRef elemtype;
582 LLVMValueRef chan[dst_channels];
583
584 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMVectorTypeKind) {
585 unsigned vec_size = LLVMGetVectorSize(LLVMTypeOf(value));
586
587 if (src_channels == dst_channels && vec_size == dst_channels)
588 return value;
589
590 src_channels = MIN2(src_channels, vec_size);
591
592 for (unsigned i = 0; i < src_channels; i++)
593 chan[i] = ac_llvm_extract_elem(ctx, value, i);
594
595 elemtype = LLVMGetElementType(LLVMTypeOf(value));
596 } else {
597 if (src_channels) {
598 assert(src_channels == 1);
599 chan[0] = value;
600 }
601 elemtype = LLVMTypeOf(value);
602 }
603
604 for (unsigned i = src_channels; i < dst_channels; i++)
605 chan[i] = LLVMGetUndef(elemtype);
606
607 return ac_build_gather_values(ctx, chan, dst_channels);
608 }
609
610 /* Expand a scalar or vector to <4 x type> by filling the remaining channels
611 * with undef. Extract at most num_channels components from the input.
612 */
613 LLVMValueRef ac_build_expand_to_vec4(struct ac_llvm_context *ctx,
614 LLVMValueRef value,
615 unsigned num_channels)
616 {
617 return ac_build_expand(ctx, value, num_channels, 4);
618 }
619
620 LLVMValueRef ac_build_round(struct ac_llvm_context *ctx, LLVMValueRef value)
621 {
622 unsigned type_size = ac_get_type_size(LLVMTypeOf(value));
623 const char *name;
624
625 if (type_size == 2)
626 name = "llvm.rint.f16";
627 else if (type_size == 4)
628 name = "llvm.rint.f32";
629 else
630 name = "llvm.rint.f64";
631
632 return ac_build_intrinsic(ctx, name, LLVMTypeOf(value), &value, 1,
633 AC_FUNC_ATTR_READNONE);
634 }
635
636 LLVMValueRef
637 ac_build_fdiv(struct ac_llvm_context *ctx,
638 LLVMValueRef num,
639 LLVMValueRef den)
640 {
641 /* If we do (num / den), LLVM >= 7.0 does:
642 * return num * v_rcp_f32(den * (fabs(den) > 0x1.0p+96f ? 0x1.0p-32f : 1.0f));
643 *
644 * If we do (num * (1 / den)), LLVM does:
645 * return num * v_rcp_f32(den);
646 */
647 LLVMValueRef one = LLVMConstReal(LLVMTypeOf(num), 1.0);
648 LLVMValueRef rcp = LLVMBuildFDiv(ctx->builder, one, den, "");
649 LLVMValueRef ret = LLVMBuildFMul(ctx->builder, num, rcp, "");
650
651 /* Use v_rcp_f32 instead of precise division. */
652 if (!LLVMIsConstant(ret))
653 LLVMSetMetadata(ret, ctx->fpmath_md_kind, ctx->fpmath_md_2p5_ulp);
654 return ret;
655 }
656
657 /* See fast_idiv_by_const.h. */
658 /* Set: increment = util_fast_udiv_info::increment ? multiplier : 0; */
659 LLVMValueRef ac_build_fast_udiv(struct ac_llvm_context *ctx,
660 LLVMValueRef num,
661 LLVMValueRef multiplier,
662 LLVMValueRef pre_shift,
663 LLVMValueRef post_shift,
664 LLVMValueRef increment)
665 {
666 LLVMBuilderRef builder = ctx->builder;
667
668 num = LLVMBuildLShr(builder, num, pre_shift, "");
669 num = LLVMBuildMul(builder,
670 LLVMBuildZExt(builder, num, ctx->i64, ""),
671 LLVMBuildZExt(builder, multiplier, ctx->i64, ""), "");
672 num = LLVMBuildAdd(builder, num,
673 LLVMBuildZExt(builder, increment, ctx->i64, ""), "");
674 num = LLVMBuildLShr(builder, num, LLVMConstInt(ctx->i64, 32, 0), "");
675 num = LLVMBuildTrunc(builder, num, ctx->i32, "");
676 return LLVMBuildLShr(builder, num, post_shift, "");
677 }
678
679 /* See fast_idiv_by_const.h. */
680 /* If num != UINT_MAX, this more efficient version can be used. */
681 /* Set: increment = util_fast_udiv_info::increment; */
682 LLVMValueRef ac_build_fast_udiv_nuw(struct ac_llvm_context *ctx,
683 LLVMValueRef num,
684 LLVMValueRef multiplier,
685 LLVMValueRef pre_shift,
686 LLVMValueRef post_shift,
687 LLVMValueRef increment)
688 {
689 LLVMBuilderRef builder = ctx->builder;
690
691 num = LLVMBuildLShr(builder, num, pre_shift, "");
692 num = LLVMBuildNUWAdd(builder, num, increment, "");
693 num = LLVMBuildMul(builder,
694 LLVMBuildZExt(builder, num, ctx->i64, ""),
695 LLVMBuildZExt(builder, multiplier, ctx->i64, ""), "");
696 num = LLVMBuildLShr(builder, num, LLVMConstInt(ctx->i64, 32, 0), "");
697 num = LLVMBuildTrunc(builder, num, ctx->i32, "");
698 return LLVMBuildLShr(builder, num, post_shift, "");
699 }
700
701 /* See fast_idiv_by_const.h. */
702 /* Both operands must fit in 31 bits and the divisor must not be 1. */
703 LLVMValueRef ac_build_fast_udiv_u31_d_not_one(struct ac_llvm_context *ctx,
704 LLVMValueRef num,
705 LLVMValueRef multiplier,
706 LLVMValueRef post_shift)
707 {
708 LLVMBuilderRef builder = ctx->builder;
709
710 num = LLVMBuildMul(builder,
711 LLVMBuildZExt(builder, num, ctx->i64, ""),
712 LLVMBuildZExt(builder, multiplier, ctx->i64, ""), "");
713 num = LLVMBuildLShr(builder, num, LLVMConstInt(ctx->i64, 32, 0), "");
714 num = LLVMBuildTrunc(builder, num, ctx->i32, "");
715 return LLVMBuildLShr(builder, num, post_shift, "");
716 }
717
718 /* Coordinates for cube map selection. sc, tc, and ma are as in Table 8.27
719 * of the OpenGL 4.5 (Compatibility Profile) specification, except ma is
720 * already multiplied by two. id is the cube face number.
721 */
722 struct cube_selection_coords {
723 LLVMValueRef stc[2];
724 LLVMValueRef ma;
725 LLVMValueRef id;
726 };
727
728 static void
729 build_cube_intrinsic(struct ac_llvm_context *ctx,
730 LLVMValueRef in[3],
731 struct cube_selection_coords *out)
732 {
733 LLVMTypeRef f32 = ctx->f32;
734
735 out->stc[1] = ac_build_intrinsic(ctx, "llvm.amdgcn.cubetc",
736 f32, in, 3, AC_FUNC_ATTR_READNONE);
737 out->stc[0] = ac_build_intrinsic(ctx, "llvm.amdgcn.cubesc",
738 f32, in, 3, AC_FUNC_ATTR_READNONE);
739 out->ma = ac_build_intrinsic(ctx, "llvm.amdgcn.cubema",
740 f32, in, 3, AC_FUNC_ATTR_READNONE);
741 out->id = ac_build_intrinsic(ctx, "llvm.amdgcn.cubeid",
742 f32, in, 3, AC_FUNC_ATTR_READNONE);
743 }
744
745 /**
746 * Build a manual selection sequence for cube face sc/tc coordinates and
747 * major axis vector (multiplied by 2 for consistency) for the given
748 * vec3 \p coords, for the face implied by \p selcoords.
749 *
750 * For the major axis, we always adjust the sign to be in the direction of
751 * selcoords.ma; i.e., a positive out_ma means that coords is pointed towards
752 * the selcoords major axis.
753 */
754 static void build_cube_select(struct ac_llvm_context *ctx,
755 const struct cube_selection_coords *selcoords,
756 const LLVMValueRef *coords,
757 LLVMValueRef *out_st,
758 LLVMValueRef *out_ma)
759 {
760 LLVMBuilderRef builder = ctx->builder;
761 LLVMTypeRef f32 = LLVMTypeOf(coords[0]);
762 LLVMValueRef is_ma_positive;
763 LLVMValueRef sgn_ma;
764 LLVMValueRef is_ma_z, is_not_ma_z;
765 LLVMValueRef is_ma_y;
766 LLVMValueRef is_ma_x;
767 LLVMValueRef sgn;
768 LLVMValueRef tmp;
769
770 is_ma_positive = LLVMBuildFCmp(builder, LLVMRealUGE,
771 selcoords->ma, LLVMConstReal(f32, 0.0), "");
772 sgn_ma = LLVMBuildSelect(builder, is_ma_positive,
773 LLVMConstReal(f32, 1.0), LLVMConstReal(f32, -1.0), "");
774
775 is_ma_z = LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 4.0), "");
776 is_not_ma_z = LLVMBuildNot(builder, is_ma_z, "");
777 is_ma_y = LLVMBuildAnd(builder, is_not_ma_z,
778 LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 2.0), ""), "");
779 is_ma_x = LLVMBuildAnd(builder, is_not_ma_z, LLVMBuildNot(builder, is_ma_y, ""), "");
780
781 /* Select sc */
782 tmp = LLVMBuildSelect(builder, is_ma_x, coords[2], coords[0], "");
783 sgn = LLVMBuildSelect(builder, is_ma_y, LLVMConstReal(f32, 1.0),
784 LLVMBuildSelect(builder, is_ma_z, sgn_ma,
785 LLVMBuildFNeg(builder, sgn_ma, ""), ""), "");
786 out_st[0] = LLVMBuildFMul(builder, tmp, sgn, "");
787
788 /* Select tc */
789 tmp = LLVMBuildSelect(builder, is_ma_y, coords[2], coords[1], "");
790 sgn = LLVMBuildSelect(builder, is_ma_y, sgn_ma,
791 LLVMConstReal(f32, -1.0), "");
792 out_st[1] = LLVMBuildFMul(builder, tmp, sgn, "");
793
794 /* Select ma */
795 tmp = LLVMBuildSelect(builder, is_ma_z, coords[2],
796 LLVMBuildSelect(builder, is_ma_y, coords[1], coords[0], ""), "");
797 tmp = ac_build_intrinsic(ctx, "llvm.fabs.f32",
798 ctx->f32, &tmp, 1, AC_FUNC_ATTR_READNONE);
799 *out_ma = LLVMBuildFMul(builder, tmp, LLVMConstReal(f32, 2.0), "");
800 }
801
802 void
803 ac_prepare_cube_coords(struct ac_llvm_context *ctx,
804 bool is_deriv, bool is_array, bool is_lod,
805 LLVMValueRef *coords_arg,
806 LLVMValueRef *derivs_arg)
807 {
808
809 LLVMBuilderRef builder = ctx->builder;
810 struct cube_selection_coords selcoords;
811 LLVMValueRef coords[3];
812 LLVMValueRef invma;
813
814 if (is_array && !is_lod) {
815 LLVMValueRef tmp = ac_build_round(ctx, coords_arg[3]);
816
817 /* Section 8.9 (Texture Functions) of the GLSL 4.50 spec says:
818 *
819 * "For Array forms, the array layer used will be
820 *
821 * max(0, min(d−1, floor(layer+0.5)))
822 *
823 * where d is the depth of the texture array and layer
824 * comes from the component indicated in the tables below.
825 * Workaroudn for an issue where the layer is taken from a
826 * helper invocation which happens to fall on a different
827 * layer due to extrapolation."
828 *
829 * VI and earlier attempt to implement this in hardware by
830 * clamping the value of coords[2] = (8 * layer) + face.
831 * Unfortunately, this means that the we end up with the wrong
832 * face when clamping occurs.
833 *
834 * Clamp the layer earlier to work around the issue.
835 */
836 if (ctx->chip_class <= VI) {
837 LLVMValueRef ge0;
838 ge0 = LLVMBuildFCmp(builder, LLVMRealOGE, tmp, ctx->f32_0, "");
839 tmp = LLVMBuildSelect(builder, ge0, tmp, ctx->f32_0, "");
840 }
841
842 coords_arg[3] = tmp;
843 }
844
845 build_cube_intrinsic(ctx, coords_arg, &selcoords);
846
847 invma = ac_build_intrinsic(ctx, "llvm.fabs.f32",
848 ctx->f32, &selcoords.ma, 1, AC_FUNC_ATTR_READNONE);
849 invma = ac_build_fdiv(ctx, LLVMConstReal(ctx->f32, 1.0), invma);
850
851 for (int i = 0; i < 2; ++i)
852 coords[i] = LLVMBuildFMul(builder, selcoords.stc[i], invma, "");
853
854 coords[2] = selcoords.id;
855
856 if (is_deriv && derivs_arg) {
857 LLVMValueRef derivs[4];
858 int axis;
859
860 /* Convert cube derivatives to 2D derivatives. */
861 for (axis = 0; axis < 2; axis++) {
862 LLVMValueRef deriv_st[2];
863 LLVMValueRef deriv_ma;
864
865 /* Transform the derivative alongside the texture
866 * coordinate. Mathematically, the correct formula is
867 * as follows. Assume we're projecting onto the +Z face
868 * and denote by dx/dh the derivative of the (original)
869 * X texture coordinate with respect to horizontal
870 * window coordinates. The projection onto the +Z face
871 * plane is:
872 *
873 * f(x,z) = x/z
874 *
875 * Then df/dh = df/dx * dx/dh + df/dz * dz/dh
876 * = 1/z * dx/dh - x/z * 1/z * dz/dh.
877 *
878 * This motivatives the implementation below.
879 *
880 * Whether this actually gives the expected results for
881 * apps that might feed in derivatives obtained via
882 * finite differences is anyone's guess. The OpenGL spec
883 * seems awfully quiet about how textureGrad for cube
884 * maps should be handled.
885 */
886 build_cube_select(ctx, &selcoords, &derivs_arg[axis * 3],
887 deriv_st, &deriv_ma);
888
889 deriv_ma = LLVMBuildFMul(builder, deriv_ma, invma, "");
890
891 for (int i = 0; i < 2; ++i)
892 derivs[axis * 2 + i] =
893 LLVMBuildFSub(builder,
894 LLVMBuildFMul(builder, deriv_st[i], invma, ""),
895 LLVMBuildFMul(builder, deriv_ma, coords[i], ""), "");
896 }
897
898 memcpy(derivs_arg, derivs, sizeof(derivs));
899 }
900
901 /* Shift the texture coordinate. This must be applied after the
902 * derivative calculation.
903 */
904 for (int i = 0; i < 2; ++i)
905 coords[i] = LLVMBuildFAdd(builder, coords[i], LLVMConstReal(ctx->f32, 1.5), "");
906
907 if (is_array) {
908 /* for cube arrays coord.z = coord.w(array_index) * 8 + face */
909 /* coords_arg.w component - array_index for cube arrays */
910 coords[2] = ac_build_fmad(ctx, coords_arg[3], LLVMConstReal(ctx->f32, 8.0), coords[2]);
911 }
912
913 memcpy(coords_arg, coords, sizeof(coords));
914 }
915
916
917 LLVMValueRef
918 ac_build_fs_interp(struct ac_llvm_context *ctx,
919 LLVMValueRef llvm_chan,
920 LLVMValueRef attr_number,
921 LLVMValueRef params,
922 LLVMValueRef i,
923 LLVMValueRef j)
924 {
925 LLVMValueRef args[5];
926 LLVMValueRef p1;
927
928 args[0] = i;
929 args[1] = llvm_chan;
930 args[2] = attr_number;
931 args[3] = params;
932
933 p1 = ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p1",
934 ctx->f32, args, 4, AC_FUNC_ATTR_READNONE);
935
936 args[0] = p1;
937 args[1] = j;
938 args[2] = llvm_chan;
939 args[3] = attr_number;
940 args[4] = params;
941
942 return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p2",
943 ctx->f32, args, 5, AC_FUNC_ATTR_READNONE);
944 }
945
946 LLVMValueRef
947 ac_build_fs_interp_f16(struct ac_llvm_context *ctx,
948 LLVMValueRef llvm_chan,
949 LLVMValueRef attr_number,
950 LLVMValueRef params,
951 LLVMValueRef i,
952 LLVMValueRef j)
953 {
954 LLVMValueRef args[6];
955 LLVMValueRef p1;
956
957 args[0] = i;
958 args[1] = llvm_chan;
959 args[2] = attr_number;
960 args[3] = ctx->i1false;
961 args[4] = params;
962
963 p1 = ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p1.f16",
964 ctx->f32, args, 5, AC_FUNC_ATTR_READNONE);
965
966 args[0] = p1;
967 args[1] = j;
968 args[2] = llvm_chan;
969 args[3] = attr_number;
970 args[4] = ctx->i1false;
971 args[5] = params;
972
973 return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p2.f16",
974 ctx->f16, args, 6, AC_FUNC_ATTR_READNONE);
975 }
976
977 LLVMValueRef
978 ac_build_fs_interp_mov(struct ac_llvm_context *ctx,
979 LLVMValueRef parameter,
980 LLVMValueRef llvm_chan,
981 LLVMValueRef attr_number,
982 LLVMValueRef params)
983 {
984 LLVMValueRef args[4];
985
986 args[0] = parameter;
987 args[1] = llvm_chan;
988 args[2] = attr_number;
989 args[3] = params;
990
991 return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.mov",
992 ctx->f32, args, 4, AC_FUNC_ATTR_READNONE);
993 }
994
995 LLVMValueRef
996 ac_build_gep_ptr(struct ac_llvm_context *ctx,
997 LLVMValueRef base_ptr,
998 LLVMValueRef index)
999 {
1000 return LLVMBuildGEP(ctx->builder, base_ptr, &index, 1, "");
1001 }
1002
1003 LLVMValueRef
1004 ac_build_gep0(struct ac_llvm_context *ctx,
1005 LLVMValueRef base_ptr,
1006 LLVMValueRef index)
1007 {
1008 LLVMValueRef indices[2] = {
1009 ctx->i32_0,
1010 index,
1011 };
1012 return LLVMBuildGEP(ctx->builder, base_ptr, indices, 2, "");
1013 }
1014
1015 LLVMValueRef ac_build_pointer_add(struct ac_llvm_context *ctx, LLVMValueRef ptr,
1016 LLVMValueRef index)
1017 {
1018 return LLVMBuildPointerCast(ctx->builder,
1019 ac_build_gep0(ctx, ptr, index),
1020 LLVMTypeOf(ptr), "");
1021 }
1022
1023 void
1024 ac_build_indexed_store(struct ac_llvm_context *ctx,
1025 LLVMValueRef base_ptr, LLVMValueRef index,
1026 LLVMValueRef value)
1027 {
1028 LLVMBuildStore(ctx->builder, value,
1029 ac_build_gep0(ctx, base_ptr, index));
1030 }
1031
1032 /**
1033 * Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad.
1034 * It's equivalent to doing a load from &base_ptr[index].
1035 *
1036 * \param base_ptr Where the array starts.
1037 * \param index The element index into the array.
1038 * \param uniform Whether the base_ptr and index can be assumed to be
1039 * dynamically uniform (i.e. load to an SGPR)
1040 * \param invariant Whether the load is invariant (no other opcodes affect it)
1041 * \param no_unsigned_wraparound
1042 * For all possible re-associations and re-distributions of an expression
1043 * "base_ptr + index * elemsize" into "addr + offset" (excluding GEPs
1044 * without inbounds in base_ptr), this parameter is true if "addr + offset"
1045 * does not result in an unsigned integer wraparound. This is used for
1046 * optimal code generation of 32-bit pointer arithmetic.
1047 *
1048 * For example, a 32-bit immediate offset that causes a 32-bit unsigned
1049 * integer wraparound can't be an imm offset in s_load_dword, because
1050 * the instruction performs "addr + offset" in 64 bits.
1051 *
1052 * Expected usage for bindless textures by chaining GEPs:
1053 * // possible unsigned wraparound, don't use InBounds:
1054 * ptr1 = LLVMBuildGEP(base_ptr, index);
1055 * image = load(ptr1); // becomes "s_load ptr1, 0"
1056 *
1057 * ptr2 = LLVMBuildInBoundsGEP(ptr1, 32 / elemsize);
1058 * sampler = load(ptr2); // becomes "s_load ptr1, 32" thanks to InBounds
1059 */
1060 static LLVMValueRef
1061 ac_build_load_custom(struct ac_llvm_context *ctx, LLVMValueRef base_ptr,
1062 LLVMValueRef index, bool uniform, bool invariant,
1063 bool no_unsigned_wraparound)
1064 {
1065 LLVMValueRef pointer, result;
1066 LLVMValueRef indices[2] = {ctx->i32_0, index};
1067
1068 if (no_unsigned_wraparound &&
1069 LLVMGetPointerAddressSpace(LLVMTypeOf(base_ptr)) == AC_ADDR_SPACE_CONST_32BIT)
1070 pointer = LLVMBuildInBoundsGEP(ctx->builder, base_ptr, indices, 2, "");
1071 else
1072 pointer = LLVMBuildGEP(ctx->builder, base_ptr, indices, 2, "");
1073
1074 if (uniform)
1075 LLVMSetMetadata(pointer, ctx->uniform_md_kind, ctx->empty_md);
1076 result = LLVMBuildLoad(ctx->builder, pointer, "");
1077 if (invariant)
1078 LLVMSetMetadata(result, ctx->invariant_load_md_kind, ctx->empty_md);
1079 return result;
1080 }
1081
1082 LLVMValueRef ac_build_load(struct ac_llvm_context *ctx, LLVMValueRef base_ptr,
1083 LLVMValueRef index)
1084 {
1085 return ac_build_load_custom(ctx, base_ptr, index, false, false, false);
1086 }
1087
1088 LLVMValueRef ac_build_load_invariant(struct ac_llvm_context *ctx,
1089 LLVMValueRef base_ptr, LLVMValueRef index)
1090 {
1091 return ac_build_load_custom(ctx, base_ptr, index, false, true, false);
1092 }
1093
1094 /* This assumes that there is no unsigned integer wraparound during the address
1095 * computation, excluding all GEPs within base_ptr. */
1096 LLVMValueRef ac_build_load_to_sgpr(struct ac_llvm_context *ctx,
1097 LLVMValueRef base_ptr, LLVMValueRef index)
1098 {
1099 return ac_build_load_custom(ctx, base_ptr, index, true, true, true);
1100 }
1101
1102 /* See ac_build_load_custom() documentation. */
1103 LLVMValueRef ac_build_load_to_sgpr_uint_wraparound(struct ac_llvm_context *ctx,
1104 LLVMValueRef base_ptr, LLVMValueRef index)
1105 {
1106 return ac_build_load_custom(ctx, base_ptr, index, true, true, false);
1107 }
1108
1109 static void
1110 ac_build_buffer_store_common(struct ac_llvm_context *ctx,
1111 LLVMValueRef rsrc,
1112 LLVMValueRef data,
1113 LLVMValueRef vindex,
1114 LLVMValueRef voffset,
1115 unsigned num_channels,
1116 bool glc,
1117 bool slc,
1118 bool writeonly_memory,
1119 bool use_format)
1120 {
1121 LLVMValueRef args[] = {
1122 data,
1123 LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""),
1124 vindex ? vindex : ctx->i32_0,
1125 voffset,
1126 LLVMConstInt(ctx->i1, glc, 0),
1127 LLVMConstInt(ctx->i1, slc, 0)
1128 };
1129 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1130
1131 const char *type_names[] = {"f32", "v2f32", "v4f32"};
1132 char name[256];
1133
1134 if (use_format) {
1135 snprintf(name, sizeof(name), "llvm.amdgcn.buffer.store.format.%s",
1136 type_names[func]);
1137 } else {
1138 snprintf(name, sizeof(name), "llvm.amdgcn.buffer.store.%s",
1139 type_names[func]);
1140 }
1141
1142 ac_build_intrinsic(ctx, name, ctx->voidt, args, ARRAY_SIZE(args),
1143 ac_get_store_intr_attribs(writeonly_memory));
1144 }
1145
1146 static void
1147 ac_build_llvm8_buffer_store_common(struct ac_llvm_context *ctx,
1148 LLVMValueRef rsrc,
1149 LLVMValueRef data,
1150 LLVMValueRef vindex,
1151 LLVMValueRef voffset,
1152 LLVMValueRef soffset,
1153 unsigned num_channels,
1154 LLVMTypeRef return_channel_type,
1155 bool glc,
1156 bool slc,
1157 bool writeonly_memory,
1158 bool use_format,
1159 bool structurized)
1160 {
1161 LLVMValueRef args[6];
1162 int idx = 0;
1163 args[idx++] = data;
1164 args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, "");
1165 if (structurized)
1166 args[idx++] = vindex ? vindex : ctx->i32_0;
1167 args[idx++] = voffset ? voffset : ctx->i32_0;
1168 args[idx++] = soffset ? soffset : ctx->i32_0;
1169 args[idx++] = LLVMConstInt(ctx->i32, (glc ? 1 : 0) + (slc ? 2 : 0), 0);
1170 unsigned func = num_channels == 3 ? 4 : num_channels;
1171 const char *indexing_kind = structurized ? "struct" : "raw";
1172 char name[256], type_name[8];
1173
1174 LLVMTypeRef type = func > 1 ? LLVMVectorType(return_channel_type, func) : return_channel_type;
1175 ac_build_type_name_for_intr(type, type_name, sizeof(type_name));
1176
1177 if (use_format) {
1178 snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.store.format.%s",
1179 indexing_kind, type_name);
1180 } else {
1181 snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.store.%s",
1182 indexing_kind, type_name);
1183 }
1184
1185 ac_build_intrinsic(ctx, name, ctx->voidt, args, idx,
1186 ac_get_store_intr_attribs(writeonly_memory));
1187 }
1188
1189 void
1190 ac_build_buffer_store_format(struct ac_llvm_context *ctx,
1191 LLVMValueRef rsrc,
1192 LLVMValueRef data,
1193 LLVMValueRef vindex,
1194 LLVMValueRef voffset,
1195 unsigned num_channels,
1196 bool glc,
1197 bool writeonly_memory)
1198 {
1199 if (HAVE_LLVM >= 0x800) {
1200 ac_build_llvm8_buffer_store_common(ctx, rsrc, data, vindex,
1201 voffset, NULL, num_channels,
1202 ctx->f32, glc, false,
1203 writeonly_memory, true, true);
1204 } else {
1205 ac_build_buffer_store_common(ctx, rsrc, data, vindex, voffset,
1206 num_channels, glc, false,
1207 writeonly_memory, true);
1208 }
1209 }
1210
1211 /* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4.
1212 * The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2),
1213 * or v4i32 (num_channels=3,4).
1214 */
1215 void
1216 ac_build_buffer_store_dword(struct ac_llvm_context *ctx,
1217 LLVMValueRef rsrc,
1218 LLVMValueRef vdata,
1219 unsigned num_channels,
1220 LLVMValueRef voffset,
1221 LLVMValueRef soffset,
1222 unsigned inst_offset,
1223 bool glc,
1224 bool slc,
1225 bool writeonly_memory,
1226 bool swizzle_enable_hint)
1227 {
1228 /* Split 3 channel stores, becase LLVM doesn't support 3-channel
1229 * intrinsics. */
1230 if (num_channels == 3) {
1231 LLVMValueRef v[3], v01;
1232
1233 for (int i = 0; i < 3; i++) {
1234 v[i] = LLVMBuildExtractElement(ctx->builder, vdata,
1235 LLVMConstInt(ctx->i32, i, 0), "");
1236 }
1237 v01 = ac_build_gather_values(ctx, v, 2);
1238
1239 ac_build_buffer_store_dword(ctx, rsrc, v01, 2, voffset,
1240 soffset, inst_offset, glc, slc,
1241 writeonly_memory, swizzle_enable_hint);
1242 ac_build_buffer_store_dword(ctx, rsrc, v[2], 1, voffset,
1243 soffset, inst_offset + 8,
1244 glc, slc,
1245 writeonly_memory, swizzle_enable_hint);
1246 return;
1247 }
1248
1249 /* SWIZZLE_ENABLE requires that soffset isn't folded into voffset
1250 * (voffset is swizzled, but soffset isn't swizzled).
1251 * llvm.amdgcn.buffer.store doesn't have a separate soffset parameter.
1252 */
1253 if (!swizzle_enable_hint) {
1254 LLVMValueRef offset = soffset;
1255
1256 if (inst_offset)
1257 offset = LLVMBuildAdd(ctx->builder, offset,
1258 LLVMConstInt(ctx->i32, inst_offset, 0), "");
1259
1260 if (HAVE_LLVM >= 0x800) {
1261 ac_build_llvm8_buffer_store_common(ctx, rsrc,
1262 ac_to_float(ctx, vdata),
1263 ctx->i32_0,
1264 voffset, offset,
1265 num_channels,
1266 ctx->f32,
1267 glc, slc,
1268 writeonly_memory,
1269 false, false);
1270 } else {
1271 if (voffset)
1272 offset = LLVMBuildAdd(ctx->builder, offset, voffset, "");
1273
1274 ac_build_buffer_store_common(ctx, rsrc,
1275 ac_to_float(ctx, vdata),
1276 ctx->i32_0, offset,
1277 num_channels, glc, slc,
1278 writeonly_memory, false);
1279 }
1280 return;
1281 }
1282
1283 static const unsigned dfmts[] = {
1284 V_008F0C_BUF_DATA_FORMAT_32,
1285 V_008F0C_BUF_DATA_FORMAT_32_32,
1286 V_008F0C_BUF_DATA_FORMAT_32_32_32,
1287 V_008F0C_BUF_DATA_FORMAT_32_32_32_32
1288 };
1289 unsigned dfmt = dfmts[num_channels - 1];
1290 unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
1291 LLVMValueRef immoffset = LLVMConstInt(ctx->i32, inst_offset, 0);
1292
1293 ac_build_raw_tbuffer_store(ctx, rsrc, vdata, voffset, soffset,
1294 immoffset, num_channels, dfmt, nfmt, glc,
1295 slc, writeonly_memory);
1296 }
1297
1298 static LLVMValueRef
1299 ac_build_buffer_load_common(struct ac_llvm_context *ctx,
1300 LLVMValueRef rsrc,
1301 LLVMValueRef vindex,
1302 LLVMValueRef voffset,
1303 unsigned num_channels,
1304 bool glc,
1305 bool slc,
1306 bool can_speculate,
1307 bool use_format)
1308 {
1309 LLVMValueRef args[] = {
1310 LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""),
1311 vindex ? vindex : ctx->i32_0,
1312 voffset,
1313 LLVMConstInt(ctx->i1, glc, 0),
1314 LLVMConstInt(ctx->i1, slc, 0)
1315 };
1316 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1317
1318 LLVMTypeRef types[] = {ctx->f32, ctx->v2f32, ctx->v4f32};
1319 const char *type_names[] = {"f32", "v2f32", "v4f32"};
1320 char name[256];
1321
1322 if (use_format) {
1323 snprintf(name, sizeof(name), "llvm.amdgcn.buffer.load.format.%s",
1324 type_names[func]);
1325 } else {
1326 snprintf(name, sizeof(name), "llvm.amdgcn.buffer.load.%s",
1327 type_names[func]);
1328 }
1329
1330 return ac_build_intrinsic(ctx, name, types[func], args,
1331 ARRAY_SIZE(args),
1332 ac_get_load_intr_attribs(can_speculate));
1333 }
1334
1335 static LLVMValueRef
1336 ac_build_llvm8_buffer_load_common(struct ac_llvm_context *ctx,
1337 LLVMValueRef rsrc,
1338 LLVMValueRef vindex,
1339 LLVMValueRef voffset,
1340 LLVMValueRef soffset,
1341 unsigned num_channels,
1342 LLVMTypeRef channel_type,
1343 bool glc,
1344 bool slc,
1345 bool can_speculate,
1346 bool use_format,
1347 bool structurized)
1348 {
1349 LLVMValueRef args[5];
1350 int idx = 0;
1351 args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, "");
1352 if (structurized)
1353 args[idx++] = vindex ? vindex : ctx->i32_0;
1354 args[idx++] = voffset ? voffset : ctx->i32_0;
1355 args[idx++] = soffset ? soffset : ctx->i32_0;
1356 args[idx++] = LLVMConstInt(ctx->i32, (glc ? 1 : 0) + (slc ? 2 : 0), 0);
1357 unsigned func = num_channels == 3 ? 4 : num_channels;
1358 const char *indexing_kind = structurized ? "struct" : "raw";
1359 char name[256], type_name[8];
1360
1361 LLVMTypeRef type = func > 1 ? LLVMVectorType(channel_type, func) : channel_type;
1362 ac_build_type_name_for_intr(type, type_name, sizeof(type_name));
1363
1364 if (use_format) {
1365 snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.load.format.%s",
1366 indexing_kind, type_name);
1367 } else {
1368 snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.load.%s",
1369 indexing_kind, type_name);
1370 }
1371
1372 return ac_build_intrinsic(ctx, name, type, args, idx,
1373 ac_get_load_intr_attribs(can_speculate));
1374 }
1375
1376 LLVMValueRef
1377 ac_build_buffer_load(struct ac_llvm_context *ctx,
1378 LLVMValueRef rsrc,
1379 int num_channels,
1380 LLVMValueRef vindex,
1381 LLVMValueRef voffset,
1382 LLVMValueRef soffset,
1383 unsigned inst_offset,
1384 unsigned glc,
1385 unsigned slc,
1386 bool can_speculate,
1387 bool allow_smem)
1388 {
1389 LLVMValueRef offset = LLVMConstInt(ctx->i32, inst_offset, 0);
1390 if (voffset)
1391 offset = LLVMBuildAdd(ctx->builder, offset, voffset, "");
1392 if (soffset)
1393 offset = LLVMBuildAdd(ctx->builder, offset, soffset, "");
1394
1395 if (allow_smem && !slc &&
1396 (!glc || (HAVE_LLVM >= 0x0800 && ctx->chip_class >= VI))) {
1397 assert(vindex == NULL);
1398
1399 LLVMValueRef result[8];
1400
1401 for (int i = 0; i < num_channels; i++) {
1402 if (i) {
1403 offset = LLVMBuildAdd(ctx->builder, offset,
1404 LLVMConstInt(ctx->i32, 4, 0), "");
1405 }
1406 const char *intrname =
1407 HAVE_LLVM >= 0x0800 ? "llvm.amdgcn.s.buffer.load.f32"
1408 : "llvm.SI.load.const.v4i32";
1409 unsigned num_args = HAVE_LLVM >= 0x0800 ? 3 : 2;
1410 LLVMValueRef args[3] = {
1411 rsrc,
1412 offset,
1413 glc ? ctx->i32_1 : ctx->i32_0,
1414 };
1415 result[i] = ac_build_intrinsic(ctx, intrname,
1416 ctx->f32, args, num_args,
1417 AC_FUNC_ATTR_READNONE |
1418 (HAVE_LLVM < 0x0800 ? AC_FUNC_ATTR_LEGACY : 0));
1419 }
1420 if (num_channels == 1)
1421 return result[0];
1422
1423 if (num_channels == 3)
1424 result[num_channels++] = LLVMGetUndef(ctx->f32);
1425 return ac_build_gather_values(ctx, result, num_channels);
1426 }
1427
1428 if (HAVE_LLVM >= 0x0800) {
1429 return ac_build_llvm8_buffer_load_common(ctx, rsrc, vindex,
1430 offset, ctx->i32_0,
1431 num_channels, ctx->f32,
1432 glc, slc,
1433 can_speculate, false,
1434 false);
1435 }
1436
1437 return ac_build_buffer_load_common(ctx, rsrc, vindex, offset,
1438 num_channels, glc, slc,
1439 can_speculate, false);
1440 }
1441
1442 LLVMValueRef ac_build_buffer_load_format(struct ac_llvm_context *ctx,
1443 LLVMValueRef rsrc,
1444 LLVMValueRef vindex,
1445 LLVMValueRef voffset,
1446 unsigned num_channels,
1447 bool glc,
1448 bool can_speculate)
1449 {
1450 if (HAVE_LLVM >= 0x800) {
1451 return ac_build_llvm8_buffer_load_common(ctx, rsrc, vindex, voffset, ctx->i32_0,
1452 num_channels, ctx->f32,
1453 glc, false,
1454 can_speculate, true, true);
1455 }
1456 return ac_build_buffer_load_common(ctx, rsrc, vindex, voffset,
1457 num_channels, glc, false,
1458 can_speculate, true);
1459 }
1460
1461 LLVMValueRef ac_build_buffer_load_format_gfx9_safe(struct ac_llvm_context *ctx,
1462 LLVMValueRef rsrc,
1463 LLVMValueRef vindex,
1464 LLVMValueRef voffset,
1465 unsigned num_channels,
1466 bool glc,
1467 bool can_speculate)
1468 {
1469 if (HAVE_LLVM >= 0x800) {
1470 return ac_build_llvm8_buffer_load_common(ctx, rsrc, vindex, voffset, ctx->i32_0,
1471 num_channels, ctx->f32,
1472 glc, false,
1473 can_speculate, true, true);
1474 }
1475
1476 LLVMValueRef elem_count = LLVMBuildExtractElement(ctx->builder, rsrc, LLVMConstInt(ctx->i32, 2, 0), "");
1477 LLVMValueRef stride = LLVMBuildExtractElement(ctx->builder, rsrc, ctx->i32_1, "");
1478 stride = LLVMBuildLShr(ctx->builder, stride, LLVMConstInt(ctx->i32, 16, 0), "");
1479
1480 LLVMValueRef new_elem_count = LLVMBuildSelect(ctx->builder,
1481 LLVMBuildICmp(ctx->builder, LLVMIntUGT, elem_count, stride, ""),
1482 elem_count, stride, "");
1483
1484 LLVMValueRef new_rsrc = LLVMBuildInsertElement(ctx->builder, rsrc, new_elem_count,
1485 LLVMConstInt(ctx->i32, 2, 0), "");
1486
1487 return ac_build_buffer_load_common(ctx, new_rsrc, vindex, voffset,
1488 num_channels, glc, false,
1489 can_speculate, true);
1490 }
1491
1492 static LLVMValueRef
1493 ac_build_llvm8_tbuffer_load(struct ac_llvm_context *ctx,
1494 LLVMValueRef rsrc,
1495 LLVMValueRef vindex,
1496 LLVMValueRef voffset,
1497 LLVMValueRef soffset,
1498 unsigned num_channels,
1499 unsigned dfmt,
1500 unsigned nfmt,
1501 bool glc,
1502 bool slc,
1503 bool can_speculate,
1504 bool structurized)
1505 {
1506 LLVMValueRef args[6];
1507 int idx = 0;
1508 args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, "");
1509 if (structurized)
1510 args[idx++] = vindex ? vindex : ctx->i32_0;
1511 args[idx++] = voffset ? voffset : ctx->i32_0;
1512 args[idx++] = soffset ? soffset : ctx->i32_0;
1513 args[idx++] = LLVMConstInt(ctx->i32, dfmt | (nfmt << 4), 0);
1514 args[idx++] = LLVMConstInt(ctx->i32, (glc ? 1 : 0) + (slc ? 2 : 0), 0);
1515 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1516
1517 LLVMTypeRef types[] = {ctx->i32, ctx->v2i32, ctx->v4i32};
1518 const char *type_names[] = {"i32", "v2i32", "v4i32"};
1519 const char *indexing_kind = structurized ? "struct" : "raw";
1520 char name[256];
1521
1522 snprintf(name, sizeof(name), "llvm.amdgcn.%s.tbuffer.load.%s",
1523 indexing_kind, type_names[func]);
1524
1525 return ac_build_intrinsic(ctx, name, types[func], args,
1526 idx,
1527 ac_get_load_intr_attribs(can_speculate));
1528 }
1529
1530 static LLVMValueRef
1531 ac_build_tbuffer_load(struct ac_llvm_context *ctx,
1532 LLVMValueRef rsrc,
1533 LLVMValueRef vindex,
1534 LLVMValueRef voffset,
1535 LLVMValueRef soffset,
1536 LLVMValueRef immoffset,
1537 unsigned num_channels,
1538 unsigned dfmt,
1539 unsigned nfmt,
1540 bool glc,
1541 bool slc,
1542 bool can_speculate,
1543 bool structurized) /* only matters for LLVM 8+ */
1544 {
1545 if (HAVE_LLVM >= 0x800) {
1546 voffset = LLVMBuildAdd(ctx->builder, voffset, immoffset, "");
1547
1548 return ac_build_llvm8_tbuffer_load(ctx, rsrc, vindex, voffset,
1549 soffset, num_channels,
1550 dfmt, nfmt, glc, slc,
1551 can_speculate, structurized);
1552 }
1553
1554 LLVMValueRef args[] = {
1555 rsrc,
1556 vindex ? vindex : ctx->i32_0,
1557 voffset,
1558 soffset,
1559 immoffset,
1560 LLVMConstInt(ctx->i32, dfmt, false),
1561 LLVMConstInt(ctx->i32, nfmt, false),
1562 LLVMConstInt(ctx->i1, glc, false),
1563 LLVMConstInt(ctx->i1, slc, false),
1564 };
1565 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1566 LLVMTypeRef types[] = {ctx->i32, ctx->v2i32, ctx->v4i32};
1567 const char *type_names[] = {"i32", "v2i32", "v4i32"};
1568 char name[256];
1569
1570 snprintf(name, sizeof(name), "llvm.amdgcn.tbuffer.load.%s",
1571 type_names[func]);
1572
1573 return ac_build_intrinsic(ctx, name, types[func], args, 9,
1574 ac_get_load_intr_attribs(can_speculate));
1575 }
1576
1577 LLVMValueRef
1578 ac_build_struct_tbuffer_load(struct ac_llvm_context *ctx,
1579 LLVMValueRef rsrc,
1580 LLVMValueRef vindex,
1581 LLVMValueRef voffset,
1582 LLVMValueRef soffset,
1583 LLVMValueRef immoffset,
1584 unsigned num_channels,
1585 unsigned dfmt,
1586 unsigned nfmt,
1587 bool glc,
1588 bool slc,
1589 bool can_speculate)
1590 {
1591 return ac_build_tbuffer_load(ctx, rsrc, vindex, voffset, soffset,
1592 immoffset, num_channels, dfmt, nfmt, glc,
1593 slc, can_speculate, true);
1594 }
1595
1596 LLVMValueRef
1597 ac_build_raw_tbuffer_load(struct ac_llvm_context *ctx,
1598 LLVMValueRef rsrc,
1599 LLVMValueRef voffset,
1600 LLVMValueRef soffset,
1601 LLVMValueRef immoffset,
1602 unsigned num_channels,
1603 unsigned dfmt,
1604 unsigned nfmt,
1605 bool glc,
1606 bool slc,
1607 bool can_speculate)
1608 {
1609 return ac_build_tbuffer_load(ctx, rsrc, NULL, voffset, soffset,
1610 immoffset, num_channels, dfmt, nfmt, glc,
1611 slc, can_speculate, false);
1612 }
1613
1614 LLVMValueRef
1615 ac_build_tbuffer_load_short(struct ac_llvm_context *ctx,
1616 LLVMValueRef rsrc,
1617 LLVMValueRef voffset,
1618 LLVMValueRef soffset,
1619 LLVMValueRef immoffset,
1620 bool glc)
1621 {
1622 LLVMValueRef res;
1623
1624 if (HAVE_LLVM >= 0x900) {
1625 voffset = LLVMBuildAdd(ctx->builder, voffset, immoffset, "");
1626
1627 /* LLVM 9+ supports i8/i16 with struct/raw intrinsics. */
1628 res = ac_build_llvm8_buffer_load_common(ctx, rsrc, NULL,
1629 voffset, soffset,
1630 1, ctx->i16, glc, false,
1631 false, false, false);
1632 } else {
1633 unsigned dfmt = V_008F0C_BUF_DATA_FORMAT_16;
1634 unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
1635
1636 res = ac_build_raw_tbuffer_load(ctx, rsrc, voffset, soffset,
1637 immoffset, 1, dfmt, nfmt, glc, false,
1638 false);
1639
1640 res = LLVMBuildTrunc(ctx->builder, res, ctx->i16, "");
1641 }
1642
1643 return res;
1644 }
1645
1646 LLVMValueRef
1647 ac_build_tbuffer_load_byte(struct ac_llvm_context *ctx,
1648 LLVMValueRef rsrc,
1649 LLVMValueRef voffset,
1650 LLVMValueRef soffset,
1651 LLVMValueRef immoffset,
1652 bool glc)
1653 {
1654 LLVMValueRef res;
1655
1656 if (HAVE_LLVM >= 0x900) {
1657 voffset = LLVMBuildAdd(ctx->builder, voffset, immoffset, "");
1658
1659 /* LLVM 9+ supports i8/i16 with struct/raw intrinsics. */
1660 res = ac_build_llvm8_buffer_load_common(ctx, rsrc, NULL,
1661 voffset, soffset,
1662 1, ctx->i8, glc, false,
1663 false, false, false);
1664 } else {
1665 unsigned dfmt = V_008F0C_BUF_DATA_FORMAT_8;
1666 unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
1667
1668 res = ac_build_raw_tbuffer_load(ctx, rsrc, voffset, soffset,
1669 immoffset, 1, dfmt, nfmt, glc, false,
1670 false);
1671
1672 res = LLVMBuildTrunc(ctx->builder, res, ctx->i8, "");
1673 }
1674
1675 return res;
1676 }
1677 static void
1678 ac_build_llvm8_tbuffer_store(struct ac_llvm_context *ctx,
1679 LLVMValueRef rsrc,
1680 LLVMValueRef vdata,
1681 LLVMValueRef vindex,
1682 LLVMValueRef voffset,
1683 LLVMValueRef soffset,
1684 unsigned num_channels,
1685 unsigned dfmt,
1686 unsigned nfmt,
1687 bool glc,
1688 bool slc,
1689 bool writeonly_memory,
1690 bool structurized)
1691 {
1692 LLVMValueRef args[7];
1693 int idx = 0;
1694 args[idx++] = vdata;
1695 args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, "");
1696 if (structurized)
1697 args[idx++] = vindex ? vindex : ctx->i32_0;
1698 args[idx++] = voffset ? voffset : ctx->i32_0;
1699 args[idx++] = soffset ? soffset : ctx->i32_0;
1700 args[idx++] = LLVMConstInt(ctx->i32, dfmt | (nfmt << 4), 0);
1701 args[idx++] = LLVMConstInt(ctx->i32, (glc ? 1 : 0) + (slc ? 2 : 0), 0);
1702 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1703
1704 const char *type_names[] = {"i32", "v2i32", "v4i32"};
1705 const char *indexing_kind = structurized ? "struct" : "raw";
1706 char name[256];
1707
1708 snprintf(name, sizeof(name), "llvm.amdgcn.%s.tbuffer.store.%s",
1709 indexing_kind, type_names[func]);
1710
1711 ac_build_intrinsic(ctx, name, ctx->voidt, args, idx,
1712 ac_get_store_intr_attribs(writeonly_memory));
1713 }
1714
1715 static void
1716 ac_build_tbuffer_store(struct ac_llvm_context *ctx,
1717 LLVMValueRef rsrc,
1718 LLVMValueRef vdata,
1719 LLVMValueRef vindex,
1720 LLVMValueRef voffset,
1721 LLVMValueRef soffset,
1722 LLVMValueRef immoffset,
1723 unsigned num_channels,
1724 unsigned dfmt,
1725 unsigned nfmt,
1726 bool glc,
1727 bool slc,
1728 bool writeonly_memory,
1729 bool structurized) /* only matters for LLVM 8+ */
1730 {
1731 if (HAVE_LLVM >= 0x800) {
1732 voffset = LLVMBuildAdd(ctx->builder,
1733 voffset ? voffset : ctx->i32_0,
1734 immoffset, "");
1735
1736 ac_build_llvm8_tbuffer_store(ctx, rsrc, vdata, vindex, voffset,
1737 soffset, num_channels, dfmt, nfmt,
1738 glc, slc, writeonly_memory,
1739 structurized);
1740 } else {
1741 LLVMValueRef params[] = {
1742 vdata,
1743 rsrc,
1744 vindex ? vindex : ctx->i32_0,
1745 voffset ? voffset : ctx->i32_0,
1746 soffset ? soffset : ctx->i32_0,
1747 immoffset,
1748 LLVMConstInt(ctx->i32, dfmt, false),
1749 LLVMConstInt(ctx->i32, nfmt, false),
1750 LLVMConstInt(ctx->i1, glc, false),
1751 LLVMConstInt(ctx->i1, slc, false),
1752 };
1753 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1754 const char *type_names[] = {"i32", "v2i32", "v4i32"};
1755 char name[256];
1756
1757 snprintf(name, sizeof(name), "llvm.amdgcn.tbuffer.store.%s",
1758 type_names[func]);
1759
1760 ac_build_intrinsic(ctx, name, ctx->voidt, params, 10,
1761 ac_get_store_intr_attribs(writeonly_memory));
1762 }
1763 }
1764
1765 void
1766 ac_build_struct_tbuffer_store(struct ac_llvm_context *ctx,
1767 LLVMValueRef rsrc,
1768 LLVMValueRef vdata,
1769 LLVMValueRef vindex,
1770 LLVMValueRef voffset,
1771 LLVMValueRef soffset,
1772 LLVMValueRef immoffset,
1773 unsigned num_channels,
1774 unsigned dfmt,
1775 unsigned nfmt,
1776 bool glc,
1777 bool slc,
1778 bool writeonly_memory)
1779 {
1780 ac_build_tbuffer_store(ctx, rsrc, vdata, vindex, voffset, soffset,
1781 immoffset, num_channels, dfmt, nfmt, glc, slc,
1782 writeonly_memory, true);
1783 }
1784
1785 void
1786 ac_build_raw_tbuffer_store(struct ac_llvm_context *ctx,
1787 LLVMValueRef rsrc,
1788 LLVMValueRef vdata,
1789 LLVMValueRef voffset,
1790 LLVMValueRef soffset,
1791 LLVMValueRef immoffset,
1792 unsigned num_channels,
1793 unsigned dfmt,
1794 unsigned nfmt,
1795 bool glc,
1796 bool slc,
1797 bool writeonly_memory)
1798 {
1799 ac_build_tbuffer_store(ctx, rsrc, vdata, NULL, voffset, soffset,
1800 immoffset, num_channels, dfmt, nfmt, glc, slc,
1801 writeonly_memory, false);
1802 }
1803
1804 void
1805 ac_build_tbuffer_store_short(struct ac_llvm_context *ctx,
1806 LLVMValueRef rsrc,
1807 LLVMValueRef vdata,
1808 LLVMValueRef voffset,
1809 LLVMValueRef soffset,
1810 bool glc,
1811 bool writeonly_memory)
1812 {
1813 vdata = LLVMBuildBitCast(ctx->builder, vdata, ctx->i16, "");
1814
1815 if (HAVE_LLVM >= 0x900) {
1816 /* LLVM 9+ supports i8/i16 with struct/raw intrinsics. */
1817 ac_build_llvm8_buffer_store_common(ctx, rsrc, vdata, NULL,
1818 voffset, soffset, 1,
1819 ctx->i16, glc, false,
1820 writeonly_memory, false,
1821 false);
1822 } else {
1823 unsigned dfmt = V_008F0C_BUF_DATA_FORMAT_16;
1824 unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
1825
1826 vdata = LLVMBuildZExt(ctx->builder, vdata, ctx->i32, "");
1827
1828 ac_build_raw_tbuffer_store(ctx, rsrc, vdata, voffset, soffset,
1829 ctx->i32_0, 1, dfmt, nfmt, glc, false,
1830 writeonly_memory);
1831 }
1832 }
1833
1834 void
1835 ac_build_tbuffer_store_byte(struct ac_llvm_context *ctx,
1836 LLVMValueRef rsrc,
1837 LLVMValueRef vdata,
1838 LLVMValueRef voffset,
1839 LLVMValueRef soffset,
1840 bool glc,
1841 bool writeonly_memory)
1842 {
1843 vdata = LLVMBuildBitCast(ctx->builder, vdata, ctx->i8, "");
1844
1845 if (HAVE_LLVM >= 0x900) {
1846 /* LLVM 9+ supports i8/i16 with struct/raw intrinsics. */
1847 ac_build_llvm8_buffer_store_common(ctx, rsrc, vdata, NULL,
1848 voffset, soffset, 1,
1849 ctx->i8, glc, false,
1850 writeonly_memory, false,
1851 false);
1852 } else {
1853 unsigned dfmt = V_008F0C_BUF_DATA_FORMAT_8;
1854 unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
1855
1856 vdata = LLVMBuildZExt(ctx->builder, vdata, ctx->i32, "");
1857
1858 ac_build_raw_tbuffer_store(ctx, rsrc, vdata, voffset, soffset,
1859 ctx->i32_0, 1, dfmt, nfmt, glc, false,
1860 writeonly_memory);
1861 }
1862 }
1863 /**
1864 * Set range metadata on an instruction. This can only be used on load and
1865 * call instructions. If you know an instruction can only produce the values
1866 * 0, 1, 2, you would do set_range_metadata(value, 0, 3);
1867 * \p lo is the minimum value inclusive.
1868 * \p hi is the maximum value exclusive.
1869 */
1870 static void set_range_metadata(struct ac_llvm_context *ctx,
1871 LLVMValueRef value, unsigned lo, unsigned hi)
1872 {
1873 LLVMValueRef range_md, md_args[2];
1874 LLVMTypeRef type = LLVMTypeOf(value);
1875 LLVMContextRef context = LLVMGetTypeContext(type);
1876
1877 md_args[0] = LLVMConstInt(type, lo, false);
1878 md_args[1] = LLVMConstInt(type, hi, false);
1879 range_md = LLVMMDNodeInContext(context, md_args, 2);
1880 LLVMSetMetadata(value, ctx->range_md_kind, range_md);
1881 }
1882
1883 LLVMValueRef
1884 ac_get_thread_id(struct ac_llvm_context *ctx)
1885 {
1886 LLVMValueRef tid;
1887
1888 LLVMValueRef tid_args[2];
1889 tid_args[0] = LLVMConstInt(ctx->i32, 0xffffffff, false);
1890 tid_args[1] = ctx->i32_0;
1891 tid_args[1] = ac_build_intrinsic(ctx,
1892 "llvm.amdgcn.mbcnt.lo", ctx->i32,
1893 tid_args, 2, AC_FUNC_ATTR_READNONE);
1894
1895 tid = ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.hi",
1896 ctx->i32, tid_args,
1897 2, AC_FUNC_ATTR_READNONE);
1898 set_range_metadata(ctx, tid, 0, 64);
1899 return tid;
1900 }
1901
1902 /*
1903 * SI implements derivatives using the local data store (LDS)
1904 * All writes to the LDS happen in all executing threads at
1905 * the same time. TID is the Thread ID for the current
1906 * thread and is a value between 0 and 63, representing
1907 * the thread's position in the wavefront.
1908 *
1909 * For the pixel shader threads are grouped into quads of four pixels.
1910 * The TIDs of the pixels of a quad are:
1911 *
1912 * +------+------+
1913 * |4n + 0|4n + 1|
1914 * +------+------+
1915 * |4n + 2|4n + 3|
1916 * +------+------+
1917 *
1918 * So, masking the TID with 0xfffffffc yields the TID of the top left pixel
1919 * of the quad, masking with 0xfffffffd yields the TID of the top pixel of
1920 * the current pixel's column, and masking with 0xfffffffe yields the TID
1921 * of the left pixel of the current pixel's row.
1922 *
1923 * Adding 1 yields the TID of the pixel to the right of the left pixel, and
1924 * adding 2 yields the TID of the pixel below the top pixel.
1925 */
1926 LLVMValueRef
1927 ac_build_ddxy(struct ac_llvm_context *ctx,
1928 uint32_t mask,
1929 int idx,
1930 LLVMValueRef val)
1931 {
1932 unsigned tl_lanes[4], trbl_lanes[4];
1933 char name[32], type[8];
1934 LLVMValueRef tl, trbl;
1935 LLVMTypeRef result_type;
1936 LLVMValueRef result;
1937
1938 result_type = ac_to_float_type(ctx, LLVMTypeOf(val));
1939
1940 if (result_type == ctx->f16)
1941 val = LLVMBuildZExt(ctx->builder, val, ctx->i32, "");
1942
1943 for (unsigned i = 0; i < 4; ++i) {
1944 tl_lanes[i] = i & mask;
1945 trbl_lanes[i] = (i & mask) + idx;
1946 }
1947
1948 tl = ac_build_quad_swizzle(ctx, val,
1949 tl_lanes[0], tl_lanes[1],
1950 tl_lanes[2], tl_lanes[3]);
1951 trbl = ac_build_quad_swizzle(ctx, val,
1952 trbl_lanes[0], trbl_lanes[1],
1953 trbl_lanes[2], trbl_lanes[3]);
1954
1955 if (result_type == ctx->f16) {
1956 tl = LLVMBuildTrunc(ctx->builder, tl, ctx->i16, "");
1957 trbl = LLVMBuildTrunc(ctx->builder, trbl, ctx->i16, "");
1958 }
1959
1960 tl = LLVMBuildBitCast(ctx->builder, tl, result_type, "");
1961 trbl = LLVMBuildBitCast(ctx->builder, trbl, result_type, "");
1962 result = LLVMBuildFSub(ctx->builder, trbl, tl, "");
1963
1964 ac_build_type_name_for_intr(result_type, type, sizeof(type));
1965 snprintf(name, sizeof(name), "llvm.amdgcn.wqm.%s", type);
1966
1967 return ac_build_intrinsic(ctx, name, result_type, &result, 1, 0);
1968 }
1969
1970 void
1971 ac_build_sendmsg(struct ac_llvm_context *ctx,
1972 uint32_t msg,
1973 LLVMValueRef wave_id)
1974 {
1975 LLVMValueRef args[2];
1976 args[0] = LLVMConstInt(ctx->i32, msg, false);
1977 args[1] = wave_id;
1978 ac_build_intrinsic(ctx, "llvm.amdgcn.s.sendmsg", ctx->voidt, args, 2, 0);
1979 }
1980
1981 LLVMValueRef
1982 ac_build_imsb(struct ac_llvm_context *ctx,
1983 LLVMValueRef arg,
1984 LLVMTypeRef dst_type)
1985 {
1986 LLVMValueRef msb = ac_build_intrinsic(ctx, "llvm.amdgcn.sffbh.i32",
1987 dst_type, &arg, 1,
1988 AC_FUNC_ATTR_READNONE);
1989
1990 /* The HW returns the last bit index from MSB, but NIR/TGSI wants
1991 * the index from LSB. Invert it by doing "31 - msb". */
1992 msb = LLVMBuildSub(ctx->builder, LLVMConstInt(ctx->i32, 31, false),
1993 msb, "");
1994
1995 LLVMValueRef all_ones = LLVMConstInt(ctx->i32, -1, true);
1996 LLVMValueRef cond = LLVMBuildOr(ctx->builder,
1997 LLVMBuildICmp(ctx->builder, LLVMIntEQ,
1998 arg, ctx->i32_0, ""),
1999 LLVMBuildICmp(ctx->builder, LLVMIntEQ,
2000 arg, all_ones, ""), "");
2001
2002 return LLVMBuildSelect(ctx->builder, cond, all_ones, msb, "");
2003 }
2004
2005 LLVMValueRef
2006 ac_build_umsb(struct ac_llvm_context *ctx,
2007 LLVMValueRef arg,
2008 LLVMTypeRef dst_type)
2009 {
2010 const char *intrin_name;
2011 LLVMTypeRef type;
2012 LLVMValueRef highest_bit;
2013 LLVMValueRef zero;
2014 unsigned bitsize;
2015
2016 bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(arg));
2017 switch (bitsize) {
2018 case 64:
2019 intrin_name = "llvm.ctlz.i64";
2020 type = ctx->i64;
2021 highest_bit = LLVMConstInt(ctx->i64, 63, false);
2022 zero = ctx->i64_0;
2023 break;
2024 case 32:
2025 intrin_name = "llvm.ctlz.i32";
2026 type = ctx->i32;
2027 highest_bit = LLVMConstInt(ctx->i32, 31, false);
2028 zero = ctx->i32_0;
2029 break;
2030 case 16:
2031 intrin_name = "llvm.ctlz.i16";
2032 type = ctx->i16;
2033 highest_bit = LLVMConstInt(ctx->i16, 15, false);
2034 zero = ctx->i16_0;
2035 break;
2036 case 8:
2037 intrin_name = "llvm.ctlz.i8";
2038 type = ctx->i8;
2039 highest_bit = LLVMConstInt(ctx->i8, 7, false);
2040 zero = ctx->i8_0;
2041 break;
2042 default:
2043 unreachable(!"invalid bitsize");
2044 break;
2045 }
2046
2047 LLVMValueRef params[2] = {
2048 arg,
2049 ctx->i1true,
2050 };
2051
2052 LLVMValueRef msb = ac_build_intrinsic(ctx, intrin_name, type,
2053 params, 2,
2054 AC_FUNC_ATTR_READNONE);
2055
2056 /* The HW returns the last bit index from MSB, but TGSI/NIR wants
2057 * the index from LSB. Invert it by doing "31 - msb". */
2058 msb = LLVMBuildSub(ctx->builder, highest_bit, msb, "");
2059
2060 if (bitsize == 64) {
2061 msb = LLVMBuildTrunc(ctx->builder, msb, ctx->i32, "");
2062 } else if (bitsize < 32) {
2063 msb = LLVMBuildSExt(ctx->builder, msb, ctx->i32, "");
2064 }
2065
2066 /* check for zero */
2067 return LLVMBuildSelect(ctx->builder,
2068 LLVMBuildICmp(ctx->builder, LLVMIntEQ, arg, zero, ""),
2069 LLVMConstInt(ctx->i32, -1, true), msb, "");
2070 }
2071
2072 LLVMValueRef ac_build_fmin(struct ac_llvm_context *ctx, LLVMValueRef a,
2073 LLVMValueRef b)
2074 {
2075 char name[64];
2076 snprintf(name, sizeof(name), "llvm.minnum.f%d", ac_get_elem_bits(ctx, LLVMTypeOf(a)));
2077 LLVMValueRef args[2] = {a, b};
2078 return ac_build_intrinsic(ctx, name, LLVMTypeOf(a), args, 2,
2079 AC_FUNC_ATTR_READNONE);
2080 }
2081
2082 LLVMValueRef ac_build_fmax(struct ac_llvm_context *ctx, LLVMValueRef a,
2083 LLVMValueRef b)
2084 {
2085 char name[64];
2086 snprintf(name, sizeof(name), "llvm.maxnum.f%d", ac_get_elem_bits(ctx, LLVMTypeOf(a)));
2087 LLVMValueRef args[2] = {a, b};
2088 return ac_build_intrinsic(ctx, name, LLVMTypeOf(a), args, 2,
2089 AC_FUNC_ATTR_READNONE);
2090 }
2091
2092 LLVMValueRef ac_build_imin(struct ac_llvm_context *ctx, LLVMValueRef a,
2093 LLVMValueRef b)
2094 {
2095 LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntSLE, a, b, "");
2096 return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
2097 }
2098
2099 LLVMValueRef ac_build_imax(struct ac_llvm_context *ctx, LLVMValueRef a,
2100 LLVMValueRef b)
2101 {
2102 LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGT, a, b, "");
2103 return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
2104 }
2105
2106 LLVMValueRef ac_build_umin(struct ac_llvm_context *ctx, LLVMValueRef a,
2107 LLVMValueRef b)
2108 {
2109 LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntULE, a, b, "");
2110 return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
2111 }
2112
2113 LLVMValueRef ac_build_umax(struct ac_llvm_context *ctx, LLVMValueRef a,
2114 LLVMValueRef b)
2115 {
2116 LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntUGE, a, b, "");
2117 return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
2118 }
2119
2120 LLVMValueRef ac_build_clamp(struct ac_llvm_context *ctx, LLVMValueRef value)
2121 {
2122 LLVMTypeRef t = LLVMTypeOf(value);
2123 return ac_build_fmin(ctx, ac_build_fmax(ctx, value, LLVMConstReal(t, 0.0)),
2124 LLVMConstReal(t, 1.0));
2125 }
2126
2127 void ac_build_export(struct ac_llvm_context *ctx, struct ac_export_args *a)
2128 {
2129 LLVMValueRef args[9];
2130
2131 args[0] = LLVMConstInt(ctx->i32, a->target, 0);
2132 args[1] = LLVMConstInt(ctx->i32, a->enabled_channels, 0);
2133
2134 if (a->compr) {
2135 LLVMTypeRef i16 = LLVMInt16TypeInContext(ctx->context);
2136 LLVMTypeRef v2i16 = LLVMVectorType(i16, 2);
2137
2138 args[2] = LLVMBuildBitCast(ctx->builder, a->out[0],
2139 v2i16, "");
2140 args[3] = LLVMBuildBitCast(ctx->builder, a->out[1],
2141 v2i16, "");
2142 args[4] = LLVMConstInt(ctx->i1, a->done, 0);
2143 args[5] = LLVMConstInt(ctx->i1, a->valid_mask, 0);
2144
2145 ac_build_intrinsic(ctx, "llvm.amdgcn.exp.compr.v2i16",
2146 ctx->voidt, args, 6, 0);
2147 } else {
2148 args[2] = a->out[0];
2149 args[3] = a->out[1];
2150 args[4] = a->out[2];
2151 args[5] = a->out[3];
2152 args[6] = LLVMConstInt(ctx->i1, a->done, 0);
2153 args[7] = LLVMConstInt(ctx->i1, a->valid_mask, 0);
2154
2155 ac_build_intrinsic(ctx, "llvm.amdgcn.exp.f32",
2156 ctx->voidt, args, 8, 0);
2157 }
2158 }
2159
2160 void ac_build_export_null(struct ac_llvm_context *ctx)
2161 {
2162 struct ac_export_args args;
2163
2164 args.enabled_channels = 0x0; /* enabled channels */
2165 args.valid_mask = 1; /* whether the EXEC mask is valid */
2166 args.done = 1; /* DONE bit */
2167 args.target = V_008DFC_SQ_EXP_NULL;
2168 args.compr = 0; /* COMPR flag (0 = 32-bit export) */
2169 args.out[0] = LLVMGetUndef(ctx->f32); /* R */
2170 args.out[1] = LLVMGetUndef(ctx->f32); /* G */
2171 args.out[2] = LLVMGetUndef(ctx->f32); /* B */
2172 args.out[3] = LLVMGetUndef(ctx->f32); /* A */
2173
2174 ac_build_export(ctx, &args);
2175 }
2176
2177 static unsigned ac_num_coords(enum ac_image_dim dim)
2178 {
2179 switch (dim) {
2180 case ac_image_1d:
2181 return 1;
2182 case ac_image_2d:
2183 case ac_image_1darray:
2184 return 2;
2185 case ac_image_3d:
2186 case ac_image_cube:
2187 case ac_image_2darray:
2188 case ac_image_2dmsaa:
2189 return 3;
2190 case ac_image_2darraymsaa:
2191 return 4;
2192 default:
2193 unreachable("ac_num_coords: bad dim");
2194 }
2195 }
2196
2197 static unsigned ac_num_derivs(enum ac_image_dim dim)
2198 {
2199 switch (dim) {
2200 case ac_image_1d:
2201 case ac_image_1darray:
2202 return 2;
2203 case ac_image_2d:
2204 case ac_image_2darray:
2205 case ac_image_cube:
2206 return 4;
2207 case ac_image_3d:
2208 return 6;
2209 case ac_image_2dmsaa:
2210 case ac_image_2darraymsaa:
2211 default:
2212 unreachable("derivatives not supported");
2213 }
2214 }
2215
2216 static const char *get_atomic_name(enum ac_atomic_op op)
2217 {
2218 switch (op) {
2219 case ac_atomic_swap: return "swap";
2220 case ac_atomic_add: return "add";
2221 case ac_atomic_sub: return "sub";
2222 case ac_atomic_smin: return "smin";
2223 case ac_atomic_umin: return "umin";
2224 case ac_atomic_smax: return "smax";
2225 case ac_atomic_umax: return "umax";
2226 case ac_atomic_and: return "and";
2227 case ac_atomic_or: return "or";
2228 case ac_atomic_xor: return "xor";
2229 }
2230 unreachable("bad atomic op");
2231 }
2232
2233 LLVMValueRef ac_build_image_opcode(struct ac_llvm_context *ctx,
2234 struct ac_image_args *a)
2235 {
2236 const char *overload[3] = { "", "", "" };
2237 unsigned num_overloads = 0;
2238 LLVMValueRef args[18];
2239 unsigned num_args = 0;
2240 enum ac_image_dim dim = a->dim;
2241
2242 assert(!a->lod || a->lod == ctx->i32_0 || a->lod == ctx->f32_0 ||
2243 !a->level_zero);
2244 assert((a->opcode != ac_image_get_resinfo && a->opcode != ac_image_load_mip &&
2245 a->opcode != ac_image_store_mip) ||
2246 a->lod);
2247 assert(a->opcode == ac_image_sample || a->opcode == ac_image_gather4 ||
2248 (!a->compare && !a->offset));
2249 assert((a->opcode == ac_image_sample || a->opcode == ac_image_gather4 ||
2250 a->opcode == ac_image_get_lod) ||
2251 !a->bias);
2252 assert((a->bias ? 1 : 0) +
2253 (a->lod ? 1 : 0) +
2254 (a->level_zero ? 1 : 0) +
2255 (a->derivs[0] ? 1 : 0) <= 1);
2256
2257 if (a->opcode == ac_image_get_lod) {
2258 switch (dim) {
2259 case ac_image_1darray:
2260 dim = ac_image_1d;
2261 break;
2262 case ac_image_2darray:
2263 case ac_image_cube:
2264 dim = ac_image_2d;
2265 break;
2266 default:
2267 break;
2268 }
2269 }
2270
2271 bool sample = a->opcode == ac_image_sample ||
2272 a->opcode == ac_image_gather4 ||
2273 a->opcode == ac_image_get_lod;
2274 bool atomic = a->opcode == ac_image_atomic ||
2275 a->opcode == ac_image_atomic_cmpswap;
2276 LLVMTypeRef coord_type = sample ? ctx->f32 : ctx->i32;
2277
2278 if (atomic || a->opcode == ac_image_store || a->opcode == ac_image_store_mip) {
2279 args[num_args++] = a->data[0];
2280 if (a->opcode == ac_image_atomic_cmpswap)
2281 args[num_args++] = a->data[1];
2282 }
2283
2284 if (!atomic)
2285 args[num_args++] = LLVMConstInt(ctx->i32, a->dmask, false);
2286
2287 if (a->offset)
2288 args[num_args++] = ac_to_integer(ctx, a->offset);
2289 if (a->bias) {
2290 args[num_args++] = ac_to_float(ctx, a->bias);
2291 overload[num_overloads++] = ".f32";
2292 }
2293 if (a->compare)
2294 args[num_args++] = ac_to_float(ctx, a->compare);
2295 if (a->derivs[0]) {
2296 unsigned count = ac_num_derivs(dim);
2297 for (unsigned i = 0; i < count; ++i)
2298 args[num_args++] = ac_to_float(ctx, a->derivs[i]);
2299 overload[num_overloads++] = ".f32";
2300 }
2301 unsigned num_coords =
2302 a->opcode != ac_image_get_resinfo ? ac_num_coords(dim) : 0;
2303 for (unsigned i = 0; i < num_coords; ++i)
2304 args[num_args++] = LLVMBuildBitCast(ctx->builder, a->coords[i], coord_type, "");
2305 if (a->lod)
2306 args[num_args++] = LLVMBuildBitCast(ctx->builder, a->lod, coord_type, "");
2307 overload[num_overloads++] = sample ? ".f32" : ".i32";
2308
2309 args[num_args++] = a->resource;
2310 if (sample) {
2311 args[num_args++] = a->sampler;
2312 args[num_args++] = LLVMConstInt(ctx->i1, a->unorm, false);
2313 }
2314
2315 args[num_args++] = ctx->i32_0; /* texfailctrl */
2316 args[num_args++] = LLVMConstInt(ctx->i32, a->cache_policy, false);
2317
2318 const char *name;
2319 const char *atomic_subop = "";
2320 switch (a->opcode) {
2321 case ac_image_sample: name = "sample"; break;
2322 case ac_image_gather4: name = "gather4"; break;
2323 case ac_image_load: name = "load"; break;
2324 case ac_image_load_mip: name = "load.mip"; break;
2325 case ac_image_store: name = "store"; break;
2326 case ac_image_store_mip: name = "store.mip"; break;
2327 case ac_image_atomic:
2328 name = "atomic.";
2329 atomic_subop = get_atomic_name(a->atomic);
2330 break;
2331 case ac_image_atomic_cmpswap:
2332 name = "atomic.";
2333 atomic_subop = "cmpswap";
2334 break;
2335 case ac_image_get_lod: name = "getlod"; break;
2336 case ac_image_get_resinfo: name = "getresinfo"; break;
2337 default: unreachable("invalid image opcode");
2338 }
2339
2340 const char *dimname;
2341 switch (dim) {
2342 case ac_image_1d: dimname = "1d"; break;
2343 case ac_image_2d: dimname = "2d"; break;
2344 case ac_image_3d: dimname = "3d"; break;
2345 case ac_image_cube: dimname = "cube"; break;
2346 case ac_image_1darray: dimname = "1darray"; break;
2347 case ac_image_2darray: dimname = "2darray"; break;
2348 case ac_image_2dmsaa: dimname = "2dmsaa"; break;
2349 case ac_image_2darraymsaa: dimname = "2darraymsaa"; break;
2350 default: unreachable("invalid dim");
2351 }
2352
2353 bool lod_suffix =
2354 a->lod && (a->opcode == ac_image_sample || a->opcode == ac_image_gather4);
2355 char intr_name[96];
2356 snprintf(intr_name, sizeof(intr_name),
2357 "llvm.amdgcn.image.%s%s" /* base name */
2358 "%s%s%s" /* sample/gather modifiers */
2359 ".%s.%s%s%s%s", /* dimension and type overloads */
2360 name, atomic_subop,
2361 a->compare ? ".c" : "",
2362 a->bias ? ".b" :
2363 lod_suffix ? ".l" :
2364 a->derivs[0] ? ".d" :
2365 a->level_zero ? ".lz" : "",
2366 a->offset ? ".o" : "",
2367 dimname,
2368 atomic ? "i32" : "v4f32",
2369 overload[0], overload[1], overload[2]);
2370
2371 LLVMTypeRef retty;
2372 if (atomic)
2373 retty = ctx->i32;
2374 else if (a->opcode == ac_image_store || a->opcode == ac_image_store_mip)
2375 retty = ctx->voidt;
2376 else
2377 retty = ctx->v4f32;
2378
2379 LLVMValueRef result =
2380 ac_build_intrinsic(ctx, intr_name, retty, args, num_args,
2381 a->attributes);
2382 if (!sample && retty == ctx->v4f32) {
2383 result = LLVMBuildBitCast(ctx->builder, result,
2384 ctx->v4i32, "");
2385 }
2386 return result;
2387 }
2388
2389 LLVMValueRef ac_build_cvt_pkrtz_f16(struct ac_llvm_context *ctx,
2390 LLVMValueRef args[2])
2391 {
2392 LLVMTypeRef v2f16 =
2393 LLVMVectorType(LLVMHalfTypeInContext(ctx->context), 2);
2394
2395 return ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pkrtz", v2f16,
2396 args, 2, AC_FUNC_ATTR_READNONE);
2397 }
2398
2399 LLVMValueRef ac_build_cvt_pknorm_i16(struct ac_llvm_context *ctx,
2400 LLVMValueRef args[2])
2401 {
2402 LLVMValueRef res =
2403 ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pknorm.i16",
2404 ctx->v2i16, args, 2,
2405 AC_FUNC_ATTR_READNONE);
2406 return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
2407 }
2408
2409 LLVMValueRef ac_build_cvt_pknorm_u16(struct ac_llvm_context *ctx,
2410 LLVMValueRef args[2])
2411 {
2412 LLVMValueRef res =
2413 ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pknorm.u16",
2414 ctx->v2i16, args, 2,
2415 AC_FUNC_ATTR_READNONE);
2416 return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
2417 }
2418
2419 /* The 8-bit and 10-bit clamping is for HW workarounds. */
2420 LLVMValueRef ac_build_cvt_pk_i16(struct ac_llvm_context *ctx,
2421 LLVMValueRef args[2], unsigned bits, bool hi)
2422 {
2423 assert(bits == 8 || bits == 10 || bits == 16);
2424
2425 LLVMValueRef max_rgb = LLVMConstInt(ctx->i32,
2426 bits == 8 ? 127 : bits == 10 ? 511 : 32767, 0);
2427 LLVMValueRef min_rgb = LLVMConstInt(ctx->i32,
2428 bits == 8 ? -128 : bits == 10 ? -512 : -32768, 0);
2429 LLVMValueRef max_alpha =
2430 bits != 10 ? max_rgb : ctx->i32_1;
2431 LLVMValueRef min_alpha =
2432 bits != 10 ? min_rgb : LLVMConstInt(ctx->i32, -2, 0);
2433
2434 /* Clamp. */
2435 if (bits != 16) {
2436 for (int i = 0; i < 2; i++) {
2437 bool alpha = hi && i == 1;
2438 args[i] = ac_build_imin(ctx, args[i],
2439 alpha ? max_alpha : max_rgb);
2440 args[i] = ac_build_imax(ctx, args[i],
2441 alpha ? min_alpha : min_rgb);
2442 }
2443 }
2444
2445 LLVMValueRef res =
2446 ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pk.i16",
2447 ctx->v2i16, args, 2,
2448 AC_FUNC_ATTR_READNONE);
2449 return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
2450 }
2451
2452 /* The 8-bit and 10-bit clamping is for HW workarounds. */
2453 LLVMValueRef ac_build_cvt_pk_u16(struct ac_llvm_context *ctx,
2454 LLVMValueRef args[2], unsigned bits, bool hi)
2455 {
2456 assert(bits == 8 || bits == 10 || bits == 16);
2457
2458 LLVMValueRef max_rgb = LLVMConstInt(ctx->i32,
2459 bits == 8 ? 255 : bits == 10 ? 1023 : 65535, 0);
2460 LLVMValueRef max_alpha =
2461 bits != 10 ? max_rgb : LLVMConstInt(ctx->i32, 3, 0);
2462
2463 /* Clamp. */
2464 if (bits != 16) {
2465 for (int i = 0; i < 2; i++) {
2466 bool alpha = hi && i == 1;
2467 args[i] = ac_build_umin(ctx, args[i],
2468 alpha ? max_alpha : max_rgb);
2469 }
2470 }
2471
2472 LLVMValueRef res =
2473 ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pk.u16",
2474 ctx->v2i16, args, 2,
2475 AC_FUNC_ATTR_READNONE);
2476 return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
2477 }
2478
2479 LLVMValueRef ac_build_wqm_vote(struct ac_llvm_context *ctx, LLVMValueRef i1)
2480 {
2481 return ac_build_intrinsic(ctx, "llvm.amdgcn.wqm.vote", ctx->i1,
2482 &i1, 1, AC_FUNC_ATTR_READNONE);
2483 }
2484
2485 void ac_build_kill_if_false(struct ac_llvm_context *ctx, LLVMValueRef i1)
2486 {
2487 ac_build_intrinsic(ctx, "llvm.amdgcn.kill", ctx->voidt,
2488 &i1, 1, 0);
2489 }
2490
2491 LLVMValueRef ac_build_bfe(struct ac_llvm_context *ctx, LLVMValueRef input,
2492 LLVMValueRef offset, LLVMValueRef width,
2493 bool is_signed)
2494 {
2495 LLVMValueRef args[] = {
2496 input,
2497 offset,
2498 width,
2499 };
2500
2501 return ac_build_intrinsic(ctx,
2502 is_signed ? "llvm.amdgcn.sbfe.i32" :
2503 "llvm.amdgcn.ubfe.i32",
2504 ctx->i32, args, 3,
2505 AC_FUNC_ATTR_READNONE);
2506 }
2507
2508 LLVMValueRef ac_build_imad(struct ac_llvm_context *ctx, LLVMValueRef s0,
2509 LLVMValueRef s1, LLVMValueRef s2)
2510 {
2511 return LLVMBuildAdd(ctx->builder,
2512 LLVMBuildMul(ctx->builder, s0, s1, ""), s2, "");
2513 }
2514
2515 LLVMValueRef ac_build_fmad(struct ac_llvm_context *ctx, LLVMValueRef s0,
2516 LLVMValueRef s1, LLVMValueRef s2)
2517 {
2518 return LLVMBuildFAdd(ctx->builder,
2519 LLVMBuildFMul(ctx->builder, s0, s1, ""), s2, "");
2520 }
2521
2522 void ac_build_waitcnt(struct ac_llvm_context *ctx, unsigned simm16)
2523 {
2524 LLVMValueRef args[1] = {
2525 LLVMConstInt(ctx->i32, simm16, false),
2526 };
2527 ac_build_intrinsic(ctx, "llvm.amdgcn.s.waitcnt",
2528 ctx->voidt, args, 1, 0);
2529 }
2530
2531 LLVMValueRef ac_build_fmed3(struct ac_llvm_context *ctx, LLVMValueRef src0,
2532 LLVMValueRef src1, LLVMValueRef src2,
2533 unsigned bitsize)
2534 {
2535 LLVMTypeRef type;
2536 char *intr;
2537
2538 if (bitsize == 16) {
2539 intr = "llvm.amdgcn.fmed3.f16";
2540 type = ctx->f16;
2541 } else if (bitsize == 32) {
2542 intr = "llvm.amdgcn.fmed3.f32";
2543 type = ctx->f32;
2544 } else {
2545 intr = "llvm.amdgcn.fmed3.f64";
2546 type = ctx->f64;
2547 }
2548
2549 LLVMValueRef params[] = {
2550 src0,
2551 src1,
2552 src2,
2553 };
2554 return ac_build_intrinsic(ctx, intr, type, params, 3,
2555 AC_FUNC_ATTR_READNONE);
2556 }
2557
2558 LLVMValueRef ac_build_fract(struct ac_llvm_context *ctx, LLVMValueRef src0,
2559 unsigned bitsize)
2560 {
2561 LLVMTypeRef type;
2562 char *intr;
2563
2564 if (bitsize == 16) {
2565 intr = "llvm.amdgcn.fract.f16";
2566 type = ctx->f16;
2567 } else if (bitsize == 32) {
2568 intr = "llvm.amdgcn.fract.f32";
2569 type = ctx->f32;
2570 } else {
2571 intr = "llvm.amdgcn.fract.f64";
2572 type = ctx->f64;
2573 }
2574
2575 LLVMValueRef params[] = {
2576 src0,
2577 };
2578 return ac_build_intrinsic(ctx, intr, type, params, 1,
2579 AC_FUNC_ATTR_READNONE);
2580 }
2581
2582 LLVMValueRef ac_build_isign(struct ac_llvm_context *ctx, LLVMValueRef src0,
2583 unsigned bitsize)
2584 {
2585 LLVMTypeRef type = LLVMIntTypeInContext(ctx->context, bitsize);
2586 LLVMValueRef zero = LLVMConstInt(type, 0, false);
2587 LLVMValueRef one = LLVMConstInt(type, 1, false);
2588
2589 LLVMValueRef cmp, val;
2590 cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGT, src0, zero, "");
2591 val = LLVMBuildSelect(ctx->builder, cmp, one, src0, "");
2592 cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGE, val, zero, "");
2593 val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstInt(type, -1, true), "");
2594 return val;
2595 }
2596
2597 LLVMValueRef ac_build_fsign(struct ac_llvm_context *ctx, LLVMValueRef src0,
2598 unsigned bitsize)
2599 {
2600 LLVMValueRef cmp, val, zero, one;
2601 LLVMTypeRef type;
2602
2603 if (bitsize == 16) {
2604 type = ctx->f16;
2605 zero = ctx->f16_0;
2606 one = ctx->f16_1;
2607 } else if (bitsize == 32) {
2608 type = ctx->f32;
2609 zero = ctx->f32_0;
2610 one = ctx->f32_1;
2611 } else {
2612 type = ctx->f64;
2613 zero = ctx->f64_0;
2614 one = ctx->f64_1;
2615 }
2616
2617 cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGT, src0, zero, "");
2618 val = LLVMBuildSelect(ctx->builder, cmp, one, src0, "");
2619 cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGE, val, zero, "");
2620 val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstReal(type, -1.0), "");
2621 return val;
2622 }
2623
2624 LLVMValueRef ac_build_bit_count(struct ac_llvm_context *ctx, LLVMValueRef src0)
2625 {
2626 LLVMValueRef result;
2627 unsigned bitsize;
2628
2629 bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(src0));
2630
2631 switch (bitsize) {
2632 case 64:
2633 result = ac_build_intrinsic(ctx, "llvm.ctpop.i64", ctx->i64,
2634 (LLVMValueRef []) { src0 }, 1,
2635 AC_FUNC_ATTR_READNONE);
2636
2637 result = LLVMBuildTrunc(ctx->builder, result, ctx->i32, "");
2638 break;
2639 case 32:
2640 result = ac_build_intrinsic(ctx, "llvm.ctpop.i32", ctx->i32,
2641 (LLVMValueRef []) { src0 }, 1,
2642 AC_FUNC_ATTR_READNONE);
2643 break;
2644 case 16:
2645 result = ac_build_intrinsic(ctx, "llvm.ctpop.i16", ctx->i16,
2646 (LLVMValueRef []) { src0 }, 1,
2647 AC_FUNC_ATTR_READNONE);
2648
2649 result = LLVMBuildZExt(ctx->builder, result, ctx->i32, "");
2650 break;
2651 case 8:
2652 result = ac_build_intrinsic(ctx, "llvm.ctpop.i8", ctx->i8,
2653 (LLVMValueRef []) { src0 }, 1,
2654 AC_FUNC_ATTR_READNONE);
2655
2656 result = LLVMBuildZExt(ctx->builder, result, ctx->i32, "");
2657 break;
2658 default:
2659 unreachable(!"invalid bitsize");
2660 break;
2661 }
2662
2663 return result;
2664 }
2665
2666 LLVMValueRef ac_build_bitfield_reverse(struct ac_llvm_context *ctx,
2667 LLVMValueRef src0)
2668 {
2669 LLVMValueRef result;
2670 unsigned bitsize;
2671
2672 bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(src0));
2673
2674 switch (bitsize) {
2675 case 64:
2676 result = ac_build_intrinsic(ctx, "llvm.bitreverse.i64", ctx->i64,
2677 (LLVMValueRef []) { src0 }, 1,
2678 AC_FUNC_ATTR_READNONE);
2679
2680 result = LLVMBuildTrunc(ctx->builder, result, ctx->i32, "");
2681 break;
2682 case 32:
2683 result = ac_build_intrinsic(ctx, "llvm.bitreverse.i32", ctx->i32,
2684 (LLVMValueRef []) { src0 }, 1,
2685 AC_FUNC_ATTR_READNONE);
2686 break;
2687 case 16:
2688 result = ac_build_intrinsic(ctx, "llvm.bitreverse.i16", ctx->i16,
2689 (LLVMValueRef []) { src0 }, 1,
2690 AC_FUNC_ATTR_READNONE);
2691
2692 result = LLVMBuildZExt(ctx->builder, result, ctx->i32, "");
2693 break;
2694 case 8:
2695 result = ac_build_intrinsic(ctx, "llvm.bitreverse.i8", ctx->i8,
2696 (LLVMValueRef []) { src0 }, 1,
2697 AC_FUNC_ATTR_READNONE);
2698
2699 result = LLVMBuildZExt(ctx->builder, result, ctx->i32, "");
2700 break;
2701 default:
2702 unreachable(!"invalid bitsize");
2703 break;
2704 }
2705
2706 return result;
2707 }
2708
2709 #define AC_EXP_TARGET 0
2710 #define AC_EXP_ENABLED_CHANNELS 1
2711 #define AC_EXP_OUT0 2
2712
2713 enum ac_ir_type {
2714 AC_IR_UNDEF,
2715 AC_IR_CONST,
2716 AC_IR_VALUE,
2717 };
2718
2719 struct ac_vs_exp_chan
2720 {
2721 LLVMValueRef value;
2722 float const_float;
2723 enum ac_ir_type type;
2724 };
2725
2726 struct ac_vs_exp_inst {
2727 unsigned offset;
2728 LLVMValueRef inst;
2729 struct ac_vs_exp_chan chan[4];
2730 };
2731
2732 struct ac_vs_exports {
2733 unsigned num;
2734 struct ac_vs_exp_inst exp[VARYING_SLOT_MAX];
2735 };
2736
2737 /* Return true if the PARAM export has been eliminated. */
2738 static bool ac_eliminate_const_output(uint8_t *vs_output_param_offset,
2739 uint32_t num_outputs,
2740 struct ac_vs_exp_inst *exp)
2741 {
2742 unsigned i, default_val; /* SPI_PS_INPUT_CNTL_i.DEFAULT_VAL */
2743 bool is_zero[4] = {}, is_one[4] = {};
2744
2745 for (i = 0; i < 4; i++) {
2746 /* It's a constant expression. Undef outputs are eliminated too. */
2747 if (exp->chan[i].type == AC_IR_UNDEF) {
2748 is_zero[i] = true;
2749 is_one[i] = true;
2750 } else if (exp->chan[i].type == AC_IR_CONST) {
2751 if (exp->chan[i].const_float == 0)
2752 is_zero[i] = true;
2753 else if (exp->chan[i].const_float == 1)
2754 is_one[i] = true;
2755 else
2756 return false; /* other constant */
2757 } else
2758 return false;
2759 }
2760
2761 /* Only certain combinations of 0 and 1 can be eliminated. */
2762 if (is_zero[0] && is_zero[1] && is_zero[2])
2763 default_val = is_zero[3] ? 0 : 1;
2764 else if (is_one[0] && is_one[1] && is_one[2])
2765 default_val = is_zero[3] ? 2 : 3;
2766 else
2767 return false;
2768
2769 /* The PARAM export can be represented as DEFAULT_VAL. Kill it. */
2770 LLVMInstructionEraseFromParent(exp->inst);
2771
2772 /* Change OFFSET to DEFAULT_VAL. */
2773 for (i = 0; i < num_outputs; i++) {
2774 if (vs_output_param_offset[i] == exp->offset) {
2775 vs_output_param_offset[i] =
2776 AC_EXP_PARAM_DEFAULT_VAL_0000 + default_val;
2777 break;
2778 }
2779 }
2780 return true;
2781 }
2782
2783 static bool ac_eliminate_duplicated_output(struct ac_llvm_context *ctx,
2784 uint8_t *vs_output_param_offset,
2785 uint32_t num_outputs,
2786 struct ac_vs_exports *processed,
2787 struct ac_vs_exp_inst *exp)
2788 {
2789 unsigned p, copy_back_channels = 0;
2790
2791 /* See if the output is already in the list of processed outputs.
2792 * The LLVMValueRef comparison relies on SSA.
2793 */
2794 for (p = 0; p < processed->num; p++) {
2795 bool different = false;
2796
2797 for (unsigned j = 0; j < 4; j++) {
2798 struct ac_vs_exp_chan *c1 = &processed->exp[p].chan[j];
2799 struct ac_vs_exp_chan *c2 = &exp->chan[j];
2800
2801 /* Treat undef as a match. */
2802 if (c2->type == AC_IR_UNDEF)
2803 continue;
2804
2805 /* If c1 is undef but c2 isn't, we can copy c2 to c1
2806 * and consider the instruction duplicated.
2807 */
2808 if (c1->type == AC_IR_UNDEF) {
2809 copy_back_channels |= 1 << j;
2810 continue;
2811 }
2812
2813 /* Test whether the channels are not equal. */
2814 if (c1->type != c2->type ||
2815 (c1->type == AC_IR_CONST &&
2816 c1->const_float != c2->const_float) ||
2817 (c1->type == AC_IR_VALUE &&
2818 c1->value != c2->value)) {
2819 different = true;
2820 break;
2821 }
2822 }
2823 if (!different)
2824 break;
2825
2826 copy_back_channels = 0;
2827 }
2828 if (p == processed->num)
2829 return false;
2830
2831 /* If a match was found, but the matching export has undef where the new
2832 * one has a normal value, copy the normal value to the undef channel.
2833 */
2834 struct ac_vs_exp_inst *match = &processed->exp[p];
2835
2836 /* Get current enabled channels mask. */
2837 LLVMValueRef arg = LLVMGetOperand(match->inst, AC_EXP_ENABLED_CHANNELS);
2838 unsigned enabled_channels = LLVMConstIntGetZExtValue(arg);
2839
2840 while (copy_back_channels) {
2841 unsigned chan = u_bit_scan(&copy_back_channels);
2842
2843 assert(match->chan[chan].type == AC_IR_UNDEF);
2844 LLVMSetOperand(match->inst, AC_EXP_OUT0 + chan,
2845 exp->chan[chan].value);
2846 match->chan[chan] = exp->chan[chan];
2847
2848 /* Update number of enabled channels because the original mask
2849 * is not always 0xf.
2850 */
2851 enabled_channels |= (1 << chan);
2852 LLVMSetOperand(match->inst, AC_EXP_ENABLED_CHANNELS,
2853 LLVMConstInt(ctx->i32, enabled_channels, 0));
2854 }
2855
2856 /* The PARAM export is duplicated. Kill it. */
2857 LLVMInstructionEraseFromParent(exp->inst);
2858
2859 /* Change OFFSET to the matching export. */
2860 for (unsigned i = 0; i < num_outputs; i++) {
2861 if (vs_output_param_offset[i] == exp->offset) {
2862 vs_output_param_offset[i] = match->offset;
2863 break;
2864 }
2865 }
2866 return true;
2867 }
2868
2869 void ac_optimize_vs_outputs(struct ac_llvm_context *ctx,
2870 LLVMValueRef main_fn,
2871 uint8_t *vs_output_param_offset,
2872 uint32_t num_outputs,
2873 uint8_t *num_param_exports)
2874 {
2875 LLVMBasicBlockRef bb;
2876 bool removed_any = false;
2877 struct ac_vs_exports exports;
2878
2879 exports.num = 0;
2880
2881 /* Process all LLVM instructions. */
2882 bb = LLVMGetFirstBasicBlock(main_fn);
2883 while (bb) {
2884 LLVMValueRef inst = LLVMGetFirstInstruction(bb);
2885
2886 while (inst) {
2887 LLVMValueRef cur = inst;
2888 inst = LLVMGetNextInstruction(inst);
2889 struct ac_vs_exp_inst exp;
2890
2891 if (LLVMGetInstructionOpcode(cur) != LLVMCall)
2892 continue;
2893
2894 LLVMValueRef callee = ac_llvm_get_called_value(cur);
2895
2896 if (!ac_llvm_is_function(callee))
2897 continue;
2898
2899 const char *name = LLVMGetValueName(callee);
2900 unsigned num_args = LLVMCountParams(callee);
2901
2902 /* Check if this is an export instruction. */
2903 if ((num_args != 9 && num_args != 8) ||
2904 (strcmp(name, "llvm.SI.export") &&
2905 strcmp(name, "llvm.amdgcn.exp.f32")))
2906 continue;
2907
2908 LLVMValueRef arg = LLVMGetOperand(cur, AC_EXP_TARGET);
2909 unsigned target = LLVMConstIntGetZExtValue(arg);
2910
2911 if (target < V_008DFC_SQ_EXP_PARAM)
2912 continue;
2913
2914 target -= V_008DFC_SQ_EXP_PARAM;
2915
2916 /* Parse the instruction. */
2917 memset(&exp, 0, sizeof(exp));
2918 exp.offset = target;
2919 exp.inst = cur;
2920
2921 for (unsigned i = 0; i < 4; i++) {
2922 LLVMValueRef v = LLVMGetOperand(cur, AC_EXP_OUT0 + i);
2923
2924 exp.chan[i].value = v;
2925
2926 if (LLVMIsUndef(v)) {
2927 exp.chan[i].type = AC_IR_UNDEF;
2928 } else if (LLVMIsAConstantFP(v)) {
2929 LLVMBool loses_info;
2930 exp.chan[i].type = AC_IR_CONST;
2931 exp.chan[i].const_float =
2932 LLVMConstRealGetDouble(v, &loses_info);
2933 } else {
2934 exp.chan[i].type = AC_IR_VALUE;
2935 }
2936 }
2937
2938 /* Eliminate constant and duplicated PARAM exports. */
2939 if (ac_eliminate_const_output(vs_output_param_offset,
2940 num_outputs, &exp) ||
2941 ac_eliminate_duplicated_output(ctx,
2942 vs_output_param_offset,
2943 num_outputs, &exports,
2944 &exp)) {
2945 removed_any = true;
2946 } else {
2947 exports.exp[exports.num++] = exp;
2948 }
2949 }
2950 bb = LLVMGetNextBasicBlock(bb);
2951 }
2952
2953 /* Remove holes in export memory due to removed PARAM exports.
2954 * This is done by renumbering all PARAM exports.
2955 */
2956 if (removed_any) {
2957 uint8_t old_offset[VARYING_SLOT_MAX];
2958 unsigned out, i;
2959
2960 /* Make a copy of the offsets. We need the old version while
2961 * we are modifying some of them. */
2962 memcpy(old_offset, vs_output_param_offset,
2963 sizeof(old_offset));
2964
2965 for (i = 0; i < exports.num; i++) {
2966 unsigned offset = exports.exp[i].offset;
2967
2968 /* Update vs_output_param_offset. Multiple outputs can
2969 * have the same offset.
2970 */
2971 for (out = 0; out < num_outputs; out++) {
2972 if (old_offset[out] == offset)
2973 vs_output_param_offset[out] = i;
2974 }
2975
2976 /* Change the PARAM offset in the instruction. */
2977 LLVMSetOperand(exports.exp[i].inst, AC_EXP_TARGET,
2978 LLVMConstInt(ctx->i32,
2979 V_008DFC_SQ_EXP_PARAM + i, 0));
2980 }
2981 *num_param_exports = exports.num;
2982 }
2983 }
2984
2985 void ac_init_exec_full_mask(struct ac_llvm_context *ctx)
2986 {
2987 LLVMValueRef full_mask = LLVMConstInt(ctx->i64, ~0ull, 0);
2988 ac_build_intrinsic(ctx,
2989 "llvm.amdgcn.init.exec", ctx->voidt,
2990 &full_mask, 1, AC_FUNC_ATTR_CONVERGENT);
2991 }
2992
2993 void ac_declare_lds_as_pointer(struct ac_llvm_context *ctx)
2994 {
2995 unsigned lds_size = ctx->chip_class >= CIK ? 65536 : 32768;
2996 ctx->lds = LLVMBuildIntToPtr(ctx->builder, ctx->i32_0,
2997 LLVMPointerType(LLVMArrayType(ctx->i32, lds_size / 4), AC_ADDR_SPACE_LDS),
2998 "lds");
2999 }
3000
3001 LLVMValueRef ac_lds_load(struct ac_llvm_context *ctx,
3002 LLVMValueRef dw_addr)
3003 {
3004 return ac_build_load(ctx, ctx->lds, dw_addr);
3005 }
3006
3007 void ac_lds_store(struct ac_llvm_context *ctx,
3008 LLVMValueRef dw_addr,
3009 LLVMValueRef value)
3010 {
3011 value = ac_to_integer(ctx, value);
3012 ac_build_indexed_store(ctx, ctx->lds,
3013 dw_addr, value);
3014 }
3015
3016 LLVMValueRef ac_find_lsb(struct ac_llvm_context *ctx,
3017 LLVMTypeRef dst_type,
3018 LLVMValueRef src0)
3019 {
3020 unsigned src0_bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(src0));
3021 const char *intrin_name;
3022 LLVMTypeRef type;
3023 LLVMValueRef zero;
3024
3025 switch (src0_bitsize) {
3026 case 64:
3027 intrin_name = "llvm.cttz.i64";
3028 type = ctx->i64;
3029 zero = ctx->i64_0;
3030 break;
3031 case 32:
3032 intrin_name = "llvm.cttz.i32";
3033 type = ctx->i32;
3034 zero = ctx->i32_0;
3035 break;
3036 case 16:
3037 intrin_name = "llvm.cttz.i16";
3038 type = ctx->i16;
3039 zero = ctx->i16_0;
3040 break;
3041 case 8:
3042 intrin_name = "llvm.cttz.i8";
3043 type = ctx->i8;
3044 zero = ctx->i8_0;
3045 break;
3046 default:
3047 unreachable(!"invalid bitsize");
3048 }
3049
3050 LLVMValueRef params[2] = {
3051 src0,
3052
3053 /* The value of 1 means that ffs(x=0) = undef, so LLVM won't
3054 * add special code to check for x=0. The reason is that
3055 * the LLVM behavior for x=0 is different from what we
3056 * need here. However, LLVM also assumes that ffs(x) is
3057 * in [0, 31], but GLSL expects that ffs(0) = -1, so
3058 * a conditional assignment to handle 0 is still required.
3059 *
3060 * The hardware already implements the correct behavior.
3061 */
3062 ctx->i1true,
3063 };
3064
3065 LLVMValueRef lsb = ac_build_intrinsic(ctx, intrin_name, type,
3066 params, 2,
3067 AC_FUNC_ATTR_READNONE);
3068
3069 if (src0_bitsize == 64) {
3070 lsb = LLVMBuildTrunc(ctx->builder, lsb, ctx->i32, "");
3071 } else if (src0_bitsize < 32) {
3072 lsb = LLVMBuildSExt(ctx->builder, lsb, ctx->i32, "");
3073 }
3074
3075 /* TODO: We need an intrinsic to skip this conditional. */
3076 /* Check for zero: */
3077 return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder,
3078 LLVMIntEQ, src0,
3079 zero, ""),
3080 LLVMConstInt(ctx->i32, -1, 0), lsb, "");
3081 }
3082
3083 LLVMTypeRef ac_array_in_const_addr_space(LLVMTypeRef elem_type)
3084 {
3085 return LLVMPointerType(LLVMArrayType(elem_type, 0),
3086 AC_ADDR_SPACE_CONST);
3087 }
3088
3089 LLVMTypeRef ac_array_in_const32_addr_space(LLVMTypeRef elem_type)
3090 {
3091 return LLVMPointerType(LLVMArrayType(elem_type, 0),
3092 AC_ADDR_SPACE_CONST_32BIT);
3093 }
3094
3095 static struct ac_llvm_flow *
3096 get_current_flow(struct ac_llvm_context *ctx)
3097 {
3098 if (ctx->flow_depth > 0)
3099 return &ctx->flow[ctx->flow_depth - 1];
3100 return NULL;
3101 }
3102
3103 static struct ac_llvm_flow *
3104 get_innermost_loop(struct ac_llvm_context *ctx)
3105 {
3106 for (unsigned i = ctx->flow_depth; i > 0; --i) {
3107 if (ctx->flow[i - 1].loop_entry_block)
3108 return &ctx->flow[i - 1];
3109 }
3110 return NULL;
3111 }
3112
3113 static struct ac_llvm_flow *
3114 push_flow(struct ac_llvm_context *ctx)
3115 {
3116 struct ac_llvm_flow *flow;
3117
3118 if (ctx->flow_depth >= ctx->flow_depth_max) {
3119 unsigned new_max = MAX2(ctx->flow_depth << 1,
3120 AC_LLVM_INITIAL_CF_DEPTH);
3121
3122 ctx->flow = realloc(ctx->flow, new_max * sizeof(*ctx->flow));
3123 ctx->flow_depth_max = new_max;
3124 }
3125
3126 flow = &ctx->flow[ctx->flow_depth];
3127 ctx->flow_depth++;
3128
3129 flow->next_block = NULL;
3130 flow->loop_entry_block = NULL;
3131 return flow;
3132 }
3133
3134 static void set_basicblock_name(LLVMBasicBlockRef bb, const char *base,
3135 int label_id)
3136 {
3137 char buf[32];
3138 snprintf(buf, sizeof(buf), "%s%d", base, label_id);
3139 LLVMSetValueName(LLVMBasicBlockAsValue(bb), buf);
3140 }
3141
3142 /* Append a basic block at the level of the parent flow.
3143 */
3144 static LLVMBasicBlockRef append_basic_block(struct ac_llvm_context *ctx,
3145 const char *name)
3146 {
3147 assert(ctx->flow_depth >= 1);
3148
3149 if (ctx->flow_depth >= 2) {
3150 struct ac_llvm_flow *flow = &ctx->flow[ctx->flow_depth - 2];
3151
3152 return LLVMInsertBasicBlockInContext(ctx->context,
3153 flow->next_block, name);
3154 }
3155
3156 LLVMValueRef main_fn =
3157 LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->builder));
3158 return LLVMAppendBasicBlockInContext(ctx->context, main_fn, name);
3159 }
3160
3161 /* Emit a branch to the given default target for the current block if
3162 * applicable -- that is, if the current block does not already contain a
3163 * branch from a break or continue.
3164 */
3165 static void emit_default_branch(LLVMBuilderRef builder,
3166 LLVMBasicBlockRef target)
3167 {
3168 if (!LLVMGetBasicBlockTerminator(LLVMGetInsertBlock(builder)))
3169 LLVMBuildBr(builder, target);
3170 }
3171
3172 void ac_build_bgnloop(struct ac_llvm_context *ctx, int label_id)
3173 {
3174 struct ac_llvm_flow *flow = push_flow(ctx);
3175 flow->loop_entry_block = append_basic_block(ctx, "LOOP");
3176 flow->next_block = append_basic_block(ctx, "ENDLOOP");
3177 set_basicblock_name(flow->loop_entry_block, "loop", label_id);
3178 LLVMBuildBr(ctx->builder, flow->loop_entry_block);
3179 LLVMPositionBuilderAtEnd(ctx->builder, flow->loop_entry_block);
3180 }
3181
3182 void ac_build_break(struct ac_llvm_context *ctx)
3183 {
3184 struct ac_llvm_flow *flow = get_innermost_loop(ctx);
3185 LLVMBuildBr(ctx->builder, flow->next_block);
3186 }
3187
3188 void ac_build_continue(struct ac_llvm_context *ctx)
3189 {
3190 struct ac_llvm_flow *flow = get_innermost_loop(ctx);
3191 LLVMBuildBr(ctx->builder, flow->loop_entry_block);
3192 }
3193
3194 void ac_build_else(struct ac_llvm_context *ctx, int label_id)
3195 {
3196 struct ac_llvm_flow *current_branch = get_current_flow(ctx);
3197 LLVMBasicBlockRef endif_block;
3198
3199 assert(!current_branch->loop_entry_block);
3200
3201 endif_block = append_basic_block(ctx, "ENDIF");
3202 emit_default_branch(ctx->builder, endif_block);
3203
3204 LLVMPositionBuilderAtEnd(ctx->builder, current_branch->next_block);
3205 set_basicblock_name(current_branch->next_block, "else", label_id);
3206
3207 current_branch->next_block = endif_block;
3208 }
3209
3210 void ac_build_endif(struct ac_llvm_context *ctx, int label_id)
3211 {
3212 struct ac_llvm_flow *current_branch = get_current_flow(ctx);
3213
3214 assert(!current_branch->loop_entry_block);
3215
3216 emit_default_branch(ctx->builder, current_branch->next_block);
3217 LLVMPositionBuilderAtEnd(ctx->builder, current_branch->next_block);
3218 set_basicblock_name(current_branch->next_block, "endif", label_id);
3219
3220 ctx->flow_depth--;
3221 }
3222
3223 void ac_build_endloop(struct ac_llvm_context *ctx, int label_id)
3224 {
3225 struct ac_llvm_flow *current_loop = get_current_flow(ctx);
3226
3227 assert(current_loop->loop_entry_block);
3228
3229 emit_default_branch(ctx->builder, current_loop->loop_entry_block);
3230
3231 LLVMPositionBuilderAtEnd(ctx->builder, current_loop->next_block);
3232 set_basicblock_name(current_loop->next_block, "endloop", label_id);
3233 ctx->flow_depth--;
3234 }
3235
3236 void ac_build_ifcc(struct ac_llvm_context *ctx, LLVMValueRef cond, int label_id)
3237 {
3238 struct ac_llvm_flow *flow = push_flow(ctx);
3239 LLVMBasicBlockRef if_block;
3240
3241 if_block = append_basic_block(ctx, "IF");
3242 flow->next_block = append_basic_block(ctx, "ELSE");
3243 set_basicblock_name(if_block, "if", label_id);
3244 LLVMBuildCondBr(ctx->builder, cond, if_block, flow->next_block);
3245 LLVMPositionBuilderAtEnd(ctx->builder, if_block);
3246 }
3247
3248 void ac_build_if(struct ac_llvm_context *ctx, LLVMValueRef value,
3249 int label_id)
3250 {
3251 LLVMValueRef cond = LLVMBuildFCmp(ctx->builder, LLVMRealUNE,
3252 value, ctx->f32_0, "");
3253 ac_build_ifcc(ctx, cond, label_id);
3254 }
3255
3256 void ac_build_uif(struct ac_llvm_context *ctx, LLVMValueRef value,
3257 int label_id)
3258 {
3259 LLVMValueRef cond = LLVMBuildICmp(ctx->builder, LLVMIntNE,
3260 ac_to_integer(ctx, value),
3261 ctx->i32_0, "");
3262 ac_build_ifcc(ctx, cond, label_id);
3263 }
3264
3265 LLVMValueRef ac_build_alloca_undef(struct ac_llvm_context *ac, LLVMTypeRef type,
3266 const char *name)
3267 {
3268 LLVMBuilderRef builder = ac->builder;
3269 LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
3270 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
3271 LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
3272 LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
3273 LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(ac->context);
3274 LLVMValueRef res;
3275
3276 if (first_instr) {
3277 LLVMPositionBuilderBefore(first_builder, first_instr);
3278 } else {
3279 LLVMPositionBuilderAtEnd(first_builder, first_block);
3280 }
3281
3282 res = LLVMBuildAlloca(first_builder, type, name);
3283 LLVMDisposeBuilder(first_builder);
3284 return res;
3285 }
3286
3287 LLVMValueRef ac_build_alloca(struct ac_llvm_context *ac,
3288 LLVMTypeRef type, const char *name)
3289 {
3290 LLVMValueRef ptr = ac_build_alloca_undef(ac, type, name);
3291 LLVMBuildStore(ac->builder, LLVMConstNull(type), ptr);
3292 return ptr;
3293 }
3294
3295 LLVMValueRef ac_cast_ptr(struct ac_llvm_context *ctx, LLVMValueRef ptr,
3296 LLVMTypeRef type)
3297 {
3298 int addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
3299 return LLVMBuildBitCast(ctx->builder, ptr,
3300 LLVMPointerType(type, addr_space), "");
3301 }
3302
3303 LLVMValueRef ac_trim_vector(struct ac_llvm_context *ctx, LLVMValueRef value,
3304 unsigned count)
3305 {
3306 unsigned num_components = ac_get_llvm_num_components(value);
3307 if (count == num_components)
3308 return value;
3309
3310 LLVMValueRef masks[MAX2(count, 2)];
3311 masks[0] = ctx->i32_0;
3312 masks[1] = ctx->i32_1;
3313 for (unsigned i = 2; i < count; i++)
3314 masks[i] = LLVMConstInt(ctx->i32, i, false);
3315
3316 if (count == 1)
3317 return LLVMBuildExtractElement(ctx->builder, value, masks[0],
3318 "");
3319
3320 LLVMValueRef swizzle = LLVMConstVector(masks, count);
3321 return LLVMBuildShuffleVector(ctx->builder, value, value, swizzle, "");
3322 }
3323
3324 LLVMValueRef ac_unpack_param(struct ac_llvm_context *ctx, LLVMValueRef param,
3325 unsigned rshift, unsigned bitwidth)
3326 {
3327 LLVMValueRef value = param;
3328 if (rshift)
3329 value = LLVMBuildLShr(ctx->builder, value,
3330 LLVMConstInt(ctx->i32, rshift, false), "");
3331
3332 if (rshift + bitwidth < 32) {
3333 unsigned mask = (1 << bitwidth) - 1;
3334 value = LLVMBuildAnd(ctx->builder, value,
3335 LLVMConstInt(ctx->i32, mask, false), "");
3336 }
3337 return value;
3338 }
3339
3340 /* Adjust the sample index according to FMASK.
3341 *
3342 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
3343 * which is the identity mapping. Each nibble says which physical sample
3344 * should be fetched to get that sample.
3345 *
3346 * For example, 0x11111100 means there are only 2 samples stored and
3347 * the second sample covers 3/4 of the pixel. When reading samples 0
3348 * and 1, return physical sample 0 (determined by the first two 0s
3349 * in FMASK), otherwise return physical sample 1.
3350 *
3351 * The sample index should be adjusted as follows:
3352 * addr[sample_index] = (fmask >> (addr[sample_index] * 4)) & 0xF;
3353 */
3354 void ac_apply_fmask_to_sample(struct ac_llvm_context *ac, LLVMValueRef fmask,
3355 LLVMValueRef *addr, bool is_array_tex)
3356 {
3357 struct ac_image_args fmask_load = {};
3358 fmask_load.opcode = ac_image_load;
3359 fmask_load.resource = fmask;
3360 fmask_load.dmask = 0xf;
3361 fmask_load.dim = is_array_tex ? ac_image_2darray : ac_image_2d;
3362 fmask_load.attributes = AC_FUNC_ATTR_READNONE;
3363
3364 fmask_load.coords[0] = addr[0];
3365 fmask_load.coords[1] = addr[1];
3366 if (is_array_tex)
3367 fmask_load.coords[2] = addr[2];
3368
3369 LLVMValueRef fmask_value = ac_build_image_opcode(ac, &fmask_load);
3370 fmask_value = LLVMBuildExtractElement(ac->builder, fmask_value,
3371 ac->i32_0, "");
3372
3373 /* Apply the formula. */
3374 unsigned sample_chan = is_array_tex ? 3 : 2;
3375 LLVMValueRef final_sample;
3376 final_sample = LLVMBuildMul(ac->builder, addr[sample_chan],
3377 LLVMConstInt(ac->i32, 4, 0), "");
3378 final_sample = LLVMBuildLShr(ac->builder, fmask_value, final_sample, "");
3379 /* Mask the sample index by 0x7, because 0x8 means an unknown value
3380 * with EQAA, so those will map to 0. */
3381 final_sample = LLVMBuildAnd(ac->builder, final_sample,
3382 LLVMConstInt(ac->i32, 0x7, 0), "");
3383
3384 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
3385 * resource descriptor is 0 (invalid).
3386 */
3387 LLVMValueRef tmp;
3388 tmp = LLVMBuildBitCast(ac->builder, fmask, ac->v8i32, "");
3389 tmp = LLVMBuildExtractElement(ac->builder, tmp, ac->i32_1, "");
3390 tmp = LLVMBuildICmp(ac->builder, LLVMIntNE, tmp, ac->i32_0, "");
3391
3392 /* Replace the MSAA sample index. */
3393 addr[sample_chan] = LLVMBuildSelect(ac->builder, tmp, final_sample,
3394 addr[sample_chan], "");
3395 }
3396
3397 static LLVMValueRef
3398 _ac_build_readlane(struct ac_llvm_context *ctx, LLVMValueRef src, LLVMValueRef lane)
3399 {
3400 ac_build_optimization_barrier(ctx, &src);
3401 return ac_build_intrinsic(ctx,
3402 lane == NULL ? "llvm.amdgcn.readfirstlane" : "llvm.amdgcn.readlane",
3403 LLVMTypeOf(src), (LLVMValueRef []) {
3404 src, lane },
3405 lane == NULL ? 1 : 2,
3406 AC_FUNC_ATTR_READNONE |
3407 AC_FUNC_ATTR_CONVERGENT);
3408 }
3409
3410 /**
3411 * Builds the "llvm.amdgcn.readlane" or "llvm.amdgcn.readfirstlane" intrinsic.
3412 * @param ctx
3413 * @param src
3414 * @param lane - id of the lane or NULL for the first active lane
3415 * @return value of the lane
3416 */
3417 LLVMValueRef
3418 ac_build_readlane(struct ac_llvm_context *ctx, LLVMValueRef src, LLVMValueRef lane)
3419 {
3420 LLVMTypeRef src_type = LLVMTypeOf(src);
3421 src = ac_to_integer(ctx, src);
3422 unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(src));
3423 LLVMValueRef ret;
3424
3425 if (bits == 32) {
3426 ret = _ac_build_readlane(ctx, src, lane);
3427 } else {
3428 assert(bits % 32 == 0);
3429 LLVMTypeRef vec_type = LLVMVectorType(ctx->i32, bits / 32);
3430 LLVMValueRef src_vector =
3431 LLVMBuildBitCast(ctx->builder, src, vec_type, "");
3432 ret = LLVMGetUndef(vec_type);
3433 for (unsigned i = 0; i < bits / 32; i++) {
3434 src = LLVMBuildExtractElement(ctx->builder, src_vector,
3435 LLVMConstInt(ctx->i32, i, 0), "");
3436 LLVMValueRef ret_comp = _ac_build_readlane(ctx, src, lane);
3437 ret = LLVMBuildInsertElement(ctx->builder, ret, ret_comp,
3438 LLVMConstInt(ctx->i32, i, 0), "");
3439 }
3440 }
3441 return LLVMBuildBitCast(ctx->builder, ret, src_type, "");
3442 }
3443
3444 LLVMValueRef
3445 ac_build_writelane(struct ac_llvm_context *ctx, LLVMValueRef src, LLVMValueRef value, LLVMValueRef lane)
3446 {
3447 /* TODO: Use the actual instruction when LLVM adds an intrinsic for it.
3448 */
3449 LLVMValueRef pred = LLVMBuildICmp(ctx->builder, LLVMIntEQ, lane,
3450 ac_get_thread_id(ctx), "");
3451 return LLVMBuildSelect(ctx->builder, pred, value, src, "");
3452 }
3453
3454 LLVMValueRef
3455 ac_build_mbcnt(struct ac_llvm_context *ctx, LLVMValueRef mask)
3456 {
3457 LLVMValueRef mask_vec = LLVMBuildBitCast(ctx->builder, mask,
3458 LLVMVectorType(ctx->i32, 2),
3459 "");
3460 LLVMValueRef mask_lo = LLVMBuildExtractElement(ctx->builder, mask_vec,
3461 ctx->i32_0, "");
3462 LLVMValueRef mask_hi = LLVMBuildExtractElement(ctx->builder, mask_vec,
3463 ctx->i32_1, "");
3464 LLVMValueRef val =
3465 ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.lo", ctx->i32,
3466 (LLVMValueRef []) { mask_lo, ctx->i32_0 },
3467 2, AC_FUNC_ATTR_READNONE);
3468 val = ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.hi", ctx->i32,
3469 (LLVMValueRef []) { mask_hi, val },
3470 2, AC_FUNC_ATTR_READNONE);
3471 return val;
3472 }
3473
3474 enum dpp_ctrl {
3475 _dpp_quad_perm = 0x000,
3476 _dpp_row_sl = 0x100,
3477 _dpp_row_sr = 0x110,
3478 _dpp_row_rr = 0x120,
3479 dpp_wf_sl1 = 0x130,
3480 dpp_wf_rl1 = 0x134,
3481 dpp_wf_sr1 = 0x138,
3482 dpp_wf_rr1 = 0x13C,
3483 dpp_row_mirror = 0x140,
3484 dpp_row_half_mirror = 0x141,
3485 dpp_row_bcast15 = 0x142,
3486 dpp_row_bcast31 = 0x143
3487 };
3488
3489 static inline enum dpp_ctrl
3490 dpp_quad_perm(unsigned lane0, unsigned lane1, unsigned lane2, unsigned lane3)
3491 {
3492 assert(lane0 < 4 && lane1 < 4 && lane2 < 4 && lane3 < 4);
3493 return _dpp_quad_perm | lane0 | (lane1 << 2) | (lane2 << 4) | (lane3 << 6);
3494 }
3495
3496 static inline enum dpp_ctrl
3497 dpp_row_sl(unsigned amount)
3498 {
3499 assert(amount > 0 && amount < 16);
3500 return _dpp_row_sl | amount;
3501 }
3502
3503 static inline enum dpp_ctrl
3504 dpp_row_sr(unsigned amount)
3505 {
3506 assert(amount > 0 && amount < 16);
3507 return _dpp_row_sr | amount;
3508 }
3509
3510 static LLVMValueRef
3511 _ac_build_dpp(struct ac_llvm_context *ctx, LLVMValueRef old, LLVMValueRef src,
3512 enum dpp_ctrl dpp_ctrl, unsigned row_mask, unsigned bank_mask,
3513 bool bound_ctrl)
3514 {
3515 return ac_build_intrinsic(ctx, "llvm.amdgcn.update.dpp.i32",
3516 LLVMTypeOf(old),
3517 (LLVMValueRef[]) {
3518 old, src,
3519 LLVMConstInt(ctx->i32, dpp_ctrl, 0),
3520 LLVMConstInt(ctx->i32, row_mask, 0),
3521 LLVMConstInt(ctx->i32, bank_mask, 0),
3522 LLVMConstInt(ctx->i1, bound_ctrl, 0) },
3523 6, AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_CONVERGENT);
3524 }
3525
3526 static LLVMValueRef
3527 ac_build_dpp(struct ac_llvm_context *ctx, LLVMValueRef old, LLVMValueRef src,
3528 enum dpp_ctrl dpp_ctrl, unsigned row_mask, unsigned bank_mask,
3529 bool bound_ctrl)
3530 {
3531 LLVMTypeRef src_type = LLVMTypeOf(src);
3532 src = ac_to_integer(ctx, src);
3533 old = ac_to_integer(ctx, old);
3534 unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(src));
3535 LLVMValueRef ret;
3536 if (bits == 32) {
3537 ret = _ac_build_dpp(ctx, old, src, dpp_ctrl, row_mask,
3538 bank_mask, bound_ctrl);
3539 } else {
3540 assert(bits % 32 == 0);
3541 LLVMTypeRef vec_type = LLVMVectorType(ctx->i32, bits / 32);
3542 LLVMValueRef src_vector =
3543 LLVMBuildBitCast(ctx->builder, src, vec_type, "");
3544 LLVMValueRef old_vector =
3545 LLVMBuildBitCast(ctx->builder, old, vec_type, "");
3546 ret = LLVMGetUndef(vec_type);
3547 for (unsigned i = 0; i < bits / 32; i++) {
3548 src = LLVMBuildExtractElement(ctx->builder, src_vector,
3549 LLVMConstInt(ctx->i32, i,
3550 0), "");
3551 old = LLVMBuildExtractElement(ctx->builder, old_vector,
3552 LLVMConstInt(ctx->i32, i,
3553 0), "");
3554 LLVMValueRef ret_comp = _ac_build_dpp(ctx, old, src,
3555 dpp_ctrl,
3556 row_mask,
3557 bank_mask,
3558 bound_ctrl);
3559 ret = LLVMBuildInsertElement(ctx->builder, ret,
3560 ret_comp,
3561 LLVMConstInt(ctx->i32, i,
3562 0), "");
3563 }
3564 }
3565 return LLVMBuildBitCast(ctx->builder, ret, src_type, "");
3566 }
3567
3568 static inline unsigned
3569 ds_pattern_bitmode(unsigned and_mask, unsigned or_mask, unsigned xor_mask)
3570 {
3571 assert(and_mask < 32 && or_mask < 32 && xor_mask < 32);
3572 return and_mask | (or_mask << 5) | (xor_mask << 10);
3573 }
3574
3575 static LLVMValueRef
3576 _ac_build_ds_swizzle(struct ac_llvm_context *ctx, LLVMValueRef src, unsigned mask)
3577 {
3578 return ac_build_intrinsic(ctx, "llvm.amdgcn.ds.swizzle",
3579 LLVMTypeOf(src), (LLVMValueRef []) {
3580 src, LLVMConstInt(ctx->i32, mask, 0) },
3581 2, AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_CONVERGENT);
3582 }
3583
3584 LLVMValueRef
3585 ac_build_ds_swizzle(struct ac_llvm_context *ctx, LLVMValueRef src, unsigned mask)
3586 {
3587 LLVMTypeRef src_type = LLVMTypeOf(src);
3588 src = ac_to_integer(ctx, src);
3589 unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(src));
3590 LLVMValueRef ret;
3591 if (bits == 32) {
3592 ret = _ac_build_ds_swizzle(ctx, src, mask);
3593 } else {
3594 assert(bits % 32 == 0);
3595 LLVMTypeRef vec_type = LLVMVectorType(ctx->i32, bits / 32);
3596 LLVMValueRef src_vector =
3597 LLVMBuildBitCast(ctx->builder, src, vec_type, "");
3598 ret = LLVMGetUndef(vec_type);
3599 for (unsigned i = 0; i < bits / 32; i++) {
3600 src = LLVMBuildExtractElement(ctx->builder, src_vector,
3601 LLVMConstInt(ctx->i32, i,
3602 0), "");
3603 LLVMValueRef ret_comp = _ac_build_ds_swizzle(ctx, src,
3604 mask);
3605 ret = LLVMBuildInsertElement(ctx->builder, ret,
3606 ret_comp,
3607 LLVMConstInt(ctx->i32, i,
3608 0), "");
3609 }
3610 }
3611 return LLVMBuildBitCast(ctx->builder, ret, src_type, "");
3612 }
3613
3614 static LLVMValueRef
3615 ac_build_wwm(struct ac_llvm_context *ctx, LLVMValueRef src)
3616 {
3617 char name[32], type[8];
3618 ac_build_type_name_for_intr(LLVMTypeOf(src), type, sizeof(type));
3619 snprintf(name, sizeof(name), "llvm.amdgcn.wwm.%s", type);
3620 return ac_build_intrinsic(ctx, name, LLVMTypeOf(src),
3621 (LLVMValueRef []) { src }, 1,
3622 AC_FUNC_ATTR_READNONE);
3623 }
3624
3625 static LLVMValueRef
3626 ac_build_set_inactive(struct ac_llvm_context *ctx, LLVMValueRef src,
3627 LLVMValueRef inactive)
3628 {
3629 char name[33], type[8];
3630 LLVMTypeRef src_type = LLVMTypeOf(src);
3631 src = ac_to_integer(ctx, src);
3632 inactive = ac_to_integer(ctx, inactive);
3633 ac_build_type_name_for_intr(LLVMTypeOf(src), type, sizeof(type));
3634 snprintf(name, sizeof(name), "llvm.amdgcn.set.inactive.%s", type);
3635 LLVMValueRef ret =
3636 ac_build_intrinsic(ctx, name,
3637 LLVMTypeOf(src), (LLVMValueRef []) {
3638 src, inactive }, 2,
3639 AC_FUNC_ATTR_READNONE |
3640 AC_FUNC_ATTR_CONVERGENT);
3641 return LLVMBuildBitCast(ctx->builder, ret, src_type, "");
3642 }
3643
3644 static LLVMValueRef
3645 get_reduction_identity(struct ac_llvm_context *ctx, nir_op op, unsigned type_size)
3646 {
3647 if (type_size == 4) {
3648 switch (op) {
3649 case nir_op_iadd: return ctx->i32_0;
3650 case nir_op_fadd: return ctx->f32_0;
3651 case nir_op_imul: return ctx->i32_1;
3652 case nir_op_fmul: return ctx->f32_1;
3653 case nir_op_imin: return LLVMConstInt(ctx->i32, INT32_MAX, 0);
3654 case nir_op_umin: return LLVMConstInt(ctx->i32, UINT32_MAX, 0);
3655 case nir_op_fmin: return LLVMConstReal(ctx->f32, INFINITY);
3656 case nir_op_imax: return LLVMConstInt(ctx->i32, INT32_MIN, 0);
3657 case nir_op_umax: return ctx->i32_0;
3658 case nir_op_fmax: return LLVMConstReal(ctx->f32, -INFINITY);
3659 case nir_op_iand: return LLVMConstInt(ctx->i32, -1, 0);
3660 case nir_op_ior: return ctx->i32_0;
3661 case nir_op_ixor: return ctx->i32_0;
3662 default:
3663 unreachable("bad reduction intrinsic");
3664 }
3665 } else { /* type_size == 64bit */
3666 switch (op) {
3667 case nir_op_iadd: return ctx->i64_0;
3668 case nir_op_fadd: return ctx->f64_0;
3669 case nir_op_imul: return ctx->i64_1;
3670 case nir_op_fmul: return ctx->f64_1;
3671 case nir_op_imin: return LLVMConstInt(ctx->i64, INT64_MAX, 0);
3672 case nir_op_umin: return LLVMConstInt(ctx->i64, UINT64_MAX, 0);
3673 case nir_op_fmin: return LLVMConstReal(ctx->f64, INFINITY);
3674 case nir_op_imax: return LLVMConstInt(ctx->i64, INT64_MIN, 0);
3675 case nir_op_umax: return ctx->i64_0;
3676 case nir_op_fmax: return LLVMConstReal(ctx->f64, -INFINITY);
3677 case nir_op_iand: return LLVMConstInt(ctx->i64, -1, 0);
3678 case nir_op_ior: return ctx->i64_0;
3679 case nir_op_ixor: return ctx->i64_0;
3680 default:
3681 unreachable("bad reduction intrinsic");
3682 }
3683 }
3684 }
3685
3686 static LLVMValueRef
3687 ac_build_alu_op(struct ac_llvm_context *ctx, LLVMValueRef lhs, LLVMValueRef rhs, nir_op op)
3688 {
3689 bool _64bit = ac_get_type_size(LLVMTypeOf(lhs)) == 8;
3690 switch (op) {
3691 case nir_op_iadd: return LLVMBuildAdd(ctx->builder, lhs, rhs, "");
3692 case nir_op_fadd: return LLVMBuildFAdd(ctx->builder, lhs, rhs, "");
3693 case nir_op_imul: return LLVMBuildMul(ctx->builder, lhs, rhs, "");
3694 case nir_op_fmul: return LLVMBuildFMul(ctx->builder, lhs, rhs, "");
3695 case nir_op_imin: return LLVMBuildSelect(ctx->builder,
3696 LLVMBuildICmp(ctx->builder, LLVMIntSLT, lhs, rhs, ""),
3697 lhs, rhs, "");
3698 case nir_op_umin: return LLVMBuildSelect(ctx->builder,
3699 LLVMBuildICmp(ctx->builder, LLVMIntULT, lhs, rhs, ""),
3700 lhs, rhs, "");
3701 case nir_op_fmin: return ac_build_intrinsic(ctx,
3702 _64bit ? "llvm.minnum.f64" : "llvm.minnum.f32",
3703 _64bit ? ctx->f64 : ctx->f32,
3704 (LLVMValueRef[]){lhs, rhs}, 2, AC_FUNC_ATTR_READNONE);
3705 case nir_op_imax: return LLVMBuildSelect(ctx->builder,
3706 LLVMBuildICmp(ctx->builder, LLVMIntSGT, lhs, rhs, ""),
3707 lhs, rhs, "");
3708 case nir_op_umax: return LLVMBuildSelect(ctx->builder,
3709 LLVMBuildICmp(ctx->builder, LLVMIntUGT, lhs, rhs, ""),
3710 lhs, rhs, "");
3711 case nir_op_fmax: return ac_build_intrinsic(ctx,
3712 _64bit ? "llvm.maxnum.f64" : "llvm.maxnum.f32",
3713 _64bit ? ctx->f64 : ctx->f32,
3714 (LLVMValueRef[]){lhs, rhs}, 2, AC_FUNC_ATTR_READNONE);
3715 case nir_op_iand: return LLVMBuildAnd(ctx->builder, lhs, rhs, "");
3716 case nir_op_ior: return LLVMBuildOr(ctx->builder, lhs, rhs, "");
3717 case nir_op_ixor: return LLVMBuildXor(ctx->builder, lhs, rhs, "");
3718 default:
3719 unreachable("bad reduction intrinsic");
3720 }
3721 }
3722
3723 /**
3724 * \param maxprefix specifies that the result only needs to be correct for a
3725 * prefix of this many threads
3726 *
3727 * TODO: add inclusive and excluse scan functions for SI chip class.
3728 */
3729 static LLVMValueRef
3730 ac_build_scan(struct ac_llvm_context *ctx, nir_op op, LLVMValueRef src, LLVMValueRef identity,
3731 unsigned maxprefix)
3732 {
3733 LLVMValueRef result, tmp;
3734 result = src;
3735 if (maxprefix <= 1)
3736 return result;
3737 tmp = ac_build_dpp(ctx, identity, src, dpp_row_sr(1), 0xf, 0xf, false);
3738 result = ac_build_alu_op(ctx, result, tmp, op);
3739 if (maxprefix <= 2)
3740 return result;
3741 tmp = ac_build_dpp(ctx, identity, src, dpp_row_sr(2), 0xf, 0xf, false);
3742 result = ac_build_alu_op(ctx, result, tmp, op);
3743 if (maxprefix <= 3)
3744 return result;
3745 tmp = ac_build_dpp(ctx, identity, src, dpp_row_sr(3), 0xf, 0xf, false);
3746 result = ac_build_alu_op(ctx, result, tmp, op);
3747 if (maxprefix <= 4)
3748 return result;
3749 tmp = ac_build_dpp(ctx, identity, result, dpp_row_sr(4), 0xf, 0xe, false);
3750 result = ac_build_alu_op(ctx, result, tmp, op);
3751 if (maxprefix <= 8)
3752 return result;
3753 tmp = ac_build_dpp(ctx, identity, result, dpp_row_sr(8), 0xf, 0xc, false);
3754 result = ac_build_alu_op(ctx, result, tmp, op);
3755 if (maxprefix <= 16)
3756 return result;
3757 tmp = ac_build_dpp(ctx, identity, result, dpp_row_bcast15, 0xa, 0xf, false);
3758 result = ac_build_alu_op(ctx, result, tmp, op);
3759 if (maxprefix <= 32)
3760 return result;
3761 tmp = ac_build_dpp(ctx, identity, result, dpp_row_bcast31, 0xc, 0xf, false);
3762 result = ac_build_alu_op(ctx, result, tmp, op);
3763 return result;
3764 }
3765
3766 LLVMValueRef
3767 ac_build_inclusive_scan(struct ac_llvm_context *ctx, LLVMValueRef src, nir_op op)
3768 {
3769 LLVMValueRef result;
3770
3771 if (LLVMTypeOf(src) == ctx->i1 && op == nir_op_iadd) {
3772 LLVMBuilderRef builder = ctx->builder;
3773 src = LLVMBuildZExt(builder, src, ctx->i32, "");
3774 result = ac_build_ballot(ctx, src);
3775 result = ac_build_mbcnt(ctx, result);
3776 result = LLVMBuildAdd(builder, result, src, "");
3777 return result;
3778 }
3779
3780 ac_build_optimization_barrier(ctx, &src);
3781
3782 LLVMValueRef identity =
3783 get_reduction_identity(ctx, op, ac_get_type_size(LLVMTypeOf(src)));
3784 result = LLVMBuildBitCast(ctx->builder, ac_build_set_inactive(ctx, src, identity),
3785 LLVMTypeOf(identity), "");
3786 result = ac_build_scan(ctx, op, result, identity, 64);
3787
3788 return ac_build_wwm(ctx, result);
3789 }
3790
3791 LLVMValueRef
3792 ac_build_exclusive_scan(struct ac_llvm_context *ctx, LLVMValueRef src, nir_op op)
3793 {
3794 LLVMValueRef result;
3795
3796 if (LLVMTypeOf(src) == ctx->i1 && op == nir_op_iadd) {
3797 LLVMBuilderRef builder = ctx->builder;
3798 src = LLVMBuildZExt(builder, src, ctx->i32, "");
3799 result = ac_build_ballot(ctx, src);
3800 result = ac_build_mbcnt(ctx, result);
3801 return result;
3802 }
3803
3804 ac_build_optimization_barrier(ctx, &src);
3805
3806 LLVMValueRef identity =
3807 get_reduction_identity(ctx, op, ac_get_type_size(LLVMTypeOf(src)));
3808 result = LLVMBuildBitCast(ctx->builder, ac_build_set_inactive(ctx, src, identity),
3809 LLVMTypeOf(identity), "");
3810 result = ac_build_dpp(ctx, identity, result, dpp_wf_sr1, 0xf, 0xf, false);
3811 result = ac_build_scan(ctx, op, result, identity, 64);
3812
3813 return ac_build_wwm(ctx, result);
3814 }
3815
3816 LLVMValueRef
3817 ac_build_reduce(struct ac_llvm_context *ctx, LLVMValueRef src, nir_op op, unsigned cluster_size)
3818 {
3819 if (cluster_size == 1) return src;
3820 ac_build_optimization_barrier(ctx, &src);
3821 LLVMValueRef result, swap;
3822 LLVMValueRef identity = get_reduction_identity(ctx, op,
3823 ac_get_type_size(LLVMTypeOf(src)));
3824 result = LLVMBuildBitCast(ctx->builder,
3825 ac_build_set_inactive(ctx, src, identity),
3826 LLVMTypeOf(identity), "");
3827 swap = ac_build_quad_swizzle(ctx, result, 1, 0, 3, 2);
3828 result = ac_build_alu_op(ctx, result, swap, op);
3829 if (cluster_size == 2) return ac_build_wwm(ctx, result);
3830
3831 swap = ac_build_quad_swizzle(ctx, result, 2, 3, 0, 1);
3832 result = ac_build_alu_op(ctx, result, swap, op);
3833 if (cluster_size == 4) return ac_build_wwm(ctx, result);
3834
3835 if (ctx->chip_class >= VI)
3836 swap = ac_build_dpp(ctx, identity, result, dpp_row_half_mirror, 0xf, 0xf, false);
3837 else
3838 swap = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x1f, 0, 0x04));
3839 result = ac_build_alu_op(ctx, result, swap, op);
3840 if (cluster_size == 8) return ac_build_wwm(ctx, result);
3841
3842 if (ctx->chip_class >= VI)
3843 swap = ac_build_dpp(ctx, identity, result, dpp_row_mirror, 0xf, 0xf, false);
3844 else
3845 swap = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x1f, 0, 0x08));
3846 result = ac_build_alu_op(ctx, result, swap, op);
3847 if (cluster_size == 16) return ac_build_wwm(ctx, result);
3848
3849 if (ctx->chip_class >= VI && cluster_size != 32)
3850 swap = ac_build_dpp(ctx, identity, result, dpp_row_bcast15, 0xa, 0xf, false);
3851 else
3852 swap = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x1f, 0, 0x10));
3853 result = ac_build_alu_op(ctx, result, swap, op);
3854 if (cluster_size == 32) return ac_build_wwm(ctx, result);
3855
3856 if (ctx->chip_class >= VI) {
3857 swap = ac_build_dpp(ctx, identity, result, dpp_row_bcast31, 0xc, 0xf, false);
3858 result = ac_build_alu_op(ctx, result, swap, op);
3859 result = ac_build_readlane(ctx, result, LLVMConstInt(ctx->i32, 63, 0));
3860 return ac_build_wwm(ctx, result);
3861 } else {
3862 swap = ac_build_readlane(ctx, result, ctx->i32_0);
3863 result = ac_build_readlane(ctx, result, LLVMConstInt(ctx->i32, 32, 0));
3864 result = ac_build_alu_op(ctx, result, swap, op);
3865 return ac_build_wwm(ctx, result);
3866 }
3867 }
3868
3869 /**
3870 * "Top half" of a scan that reduces per-wave values across an entire
3871 * workgroup.
3872 *
3873 * The source value must be present in the highest lane of the wave, and the
3874 * highest lane must be live.
3875 */
3876 void
3877 ac_build_wg_wavescan_top(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
3878 {
3879 if (ws->maxwaves <= 1)
3880 return;
3881
3882 const LLVMValueRef i32_63 = LLVMConstInt(ctx->i32, 63, false);
3883 LLVMBuilderRef builder = ctx->builder;
3884 LLVMValueRef tid = ac_get_thread_id(ctx);
3885 LLVMValueRef tmp;
3886
3887 tmp = LLVMBuildICmp(builder, LLVMIntEQ, tid, i32_63, "");
3888 ac_build_ifcc(ctx, tmp, 1000);
3889 LLVMBuildStore(builder, ws->src, LLVMBuildGEP(builder, ws->scratch, &ws->waveidx, 1, ""));
3890 ac_build_endif(ctx, 1000);
3891 }
3892
3893 /**
3894 * "Bottom half" of a scan that reduces per-wave values across an entire
3895 * workgroup.
3896 *
3897 * The caller must place a barrier between the top and bottom halves.
3898 */
3899 void
3900 ac_build_wg_wavescan_bottom(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
3901 {
3902 const LLVMTypeRef type = LLVMTypeOf(ws->src);
3903 const LLVMValueRef identity =
3904 get_reduction_identity(ctx, ws->op, ac_get_type_size(type));
3905
3906 if (ws->maxwaves <= 1) {
3907 ws->result_reduce = ws->src;
3908 ws->result_inclusive = ws->src;
3909 ws->result_exclusive = identity;
3910 return;
3911 }
3912 assert(ws->maxwaves <= 32);
3913
3914 LLVMBuilderRef builder = ctx->builder;
3915 LLVMValueRef tid = ac_get_thread_id(ctx);
3916 LLVMBasicBlockRef bbs[2];
3917 LLVMValueRef phivalues_scan[2];
3918 LLVMValueRef tmp, tmp2;
3919
3920 bbs[0] = LLVMGetInsertBlock(builder);
3921 phivalues_scan[0] = LLVMGetUndef(type);
3922
3923 if (ws->enable_reduce)
3924 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, ws->numwaves, "");
3925 else if (ws->enable_inclusive)
3926 tmp = LLVMBuildICmp(builder, LLVMIntULE, tid, ws->waveidx, "");
3927 else
3928 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, ws->waveidx, "");
3929 ac_build_ifcc(ctx, tmp, 1001);
3930 {
3931 tmp = LLVMBuildLoad(builder, LLVMBuildGEP(builder, ws->scratch, &tid, 1, ""), "");
3932
3933 ac_build_optimization_barrier(ctx, &tmp);
3934
3935 bbs[1] = LLVMGetInsertBlock(builder);
3936 phivalues_scan[1] = ac_build_scan(ctx, ws->op, tmp, identity, ws->maxwaves);
3937 }
3938 ac_build_endif(ctx, 1001);
3939
3940 const LLVMValueRef scan = ac_build_phi(ctx, type, 2, phivalues_scan, bbs);
3941
3942 if (ws->enable_reduce) {
3943 tmp = LLVMBuildSub(builder, ws->numwaves, ctx->i32_1, "");
3944 ws->result_reduce = ac_build_readlane(ctx, scan, tmp);
3945 }
3946 if (ws->enable_inclusive)
3947 ws->result_inclusive = ac_build_readlane(ctx, scan, ws->waveidx);
3948 if (ws->enable_exclusive) {
3949 tmp = LLVMBuildSub(builder, ws->waveidx, ctx->i32_1, "");
3950 tmp = ac_build_readlane(ctx, scan, tmp);
3951 tmp2 = LLVMBuildICmp(builder, LLVMIntEQ, ws->waveidx, ctx->i32_0, "");
3952 ws->result_exclusive = LLVMBuildSelect(builder, tmp2, identity, tmp, "");
3953 }
3954 }
3955
3956 /**
3957 * Inclusive scan of a per-wave value across an entire workgroup.
3958 *
3959 * This implies an s_barrier instruction.
3960 *
3961 * Unlike ac_build_inclusive_scan, the caller \em must ensure that all threads
3962 * of the workgroup are live. (This requirement cannot easily be relaxed in a
3963 * useful manner because of the barrier in the algorithm.)
3964 */
3965 void
3966 ac_build_wg_wavescan(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
3967 {
3968 ac_build_wg_wavescan_top(ctx, ws);
3969 ac_build_s_barrier(ctx);
3970 ac_build_wg_wavescan_bottom(ctx, ws);
3971 }
3972
3973 /**
3974 * "Top half" of a scan that reduces per-thread values across an entire
3975 * workgroup.
3976 *
3977 * All lanes must be active when this code runs.
3978 */
3979 void
3980 ac_build_wg_scan_top(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
3981 {
3982 if (ws->enable_exclusive) {
3983 ws->extra = ac_build_exclusive_scan(ctx, ws->src, ws->op);
3984 if (LLVMTypeOf(ws->src) == ctx->i1 && ws->op == nir_op_iadd)
3985 ws->src = LLVMBuildZExt(ctx->builder, ws->src, ctx->i32, "");
3986 ws->src = ac_build_alu_op(ctx, ws->extra, ws->src, ws->op);
3987 } else {
3988 ws->src = ac_build_inclusive_scan(ctx, ws->src, ws->op);
3989 }
3990
3991 bool enable_inclusive = ws->enable_inclusive;
3992 bool enable_exclusive = ws->enable_exclusive;
3993 ws->enable_inclusive = false;
3994 ws->enable_exclusive = ws->enable_exclusive || enable_inclusive;
3995 ac_build_wg_wavescan_top(ctx, ws);
3996 ws->enable_inclusive = enable_inclusive;
3997 ws->enable_exclusive = enable_exclusive;
3998 }
3999
4000 /**
4001 * "Bottom half" of a scan that reduces per-thread values across an entire
4002 * workgroup.
4003 *
4004 * The caller must place a barrier between the top and bottom halves.
4005 */
4006 void
4007 ac_build_wg_scan_bottom(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
4008 {
4009 bool enable_inclusive = ws->enable_inclusive;
4010 bool enable_exclusive = ws->enable_exclusive;
4011 ws->enable_inclusive = false;
4012 ws->enable_exclusive = ws->enable_exclusive || enable_inclusive;
4013 ac_build_wg_wavescan_bottom(ctx, ws);
4014 ws->enable_inclusive = enable_inclusive;
4015 ws->enable_exclusive = enable_exclusive;
4016
4017 /* ws->result_reduce is already the correct value */
4018 if (ws->enable_inclusive)
4019 ws->result_inclusive = ac_build_alu_op(ctx, ws->result_exclusive, ws->src, ws->op);
4020 if (ws->enable_exclusive)
4021 ws->result_exclusive = ac_build_alu_op(ctx, ws->result_exclusive, ws->extra, ws->op);
4022 }
4023
4024 /**
4025 * A scan that reduces per-thread values across an entire workgroup.
4026 *
4027 * The caller must ensure that all lanes are active when this code runs
4028 * (WWM is insufficient!), because there is an implied barrier.
4029 */
4030 void
4031 ac_build_wg_scan(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
4032 {
4033 ac_build_wg_scan_top(ctx, ws);
4034 ac_build_s_barrier(ctx);
4035 ac_build_wg_scan_bottom(ctx, ws);
4036 }
4037
4038 LLVMValueRef
4039 ac_build_quad_swizzle(struct ac_llvm_context *ctx, LLVMValueRef src,
4040 unsigned lane0, unsigned lane1, unsigned lane2, unsigned lane3)
4041 {
4042 unsigned mask = dpp_quad_perm(lane0, lane1, lane2, lane3);
4043 if (ctx->chip_class >= VI) {
4044 return ac_build_dpp(ctx, src, src, mask, 0xf, 0xf, false);
4045 } else {
4046 return ac_build_ds_swizzle(ctx, src, (1 << 15) | mask);
4047 }
4048 }
4049
4050 LLVMValueRef
4051 ac_build_shuffle(struct ac_llvm_context *ctx, LLVMValueRef src, LLVMValueRef index)
4052 {
4053 index = LLVMBuildMul(ctx->builder, index, LLVMConstInt(ctx->i32, 4, 0), "");
4054 return ac_build_intrinsic(ctx,
4055 "llvm.amdgcn.ds.bpermute", ctx->i32,
4056 (LLVMValueRef []) {index, src}, 2,
4057 AC_FUNC_ATTR_READNONE |
4058 AC_FUNC_ATTR_CONVERGENT);
4059 }
4060
4061 LLVMValueRef
4062 ac_build_frexp_exp(struct ac_llvm_context *ctx, LLVMValueRef src0,
4063 unsigned bitsize)
4064 {
4065 LLVMTypeRef type;
4066 char *intr;
4067
4068 if (bitsize == 16) {
4069 intr = "llvm.amdgcn.frexp.exp.i16.f16";
4070 type = ctx->i16;
4071 } else if (bitsize == 32) {
4072 intr = "llvm.amdgcn.frexp.exp.i32.f32";
4073 type = ctx->i32;
4074 } else {
4075 intr = "llvm.amdgcn.frexp.exp.i32.f64";
4076 type = ctx->i32;
4077 }
4078
4079 LLVMValueRef params[] = {
4080 src0,
4081 };
4082 return ac_build_intrinsic(ctx, intr, type, params, 1,
4083 AC_FUNC_ATTR_READNONE);
4084 }
4085 LLVMValueRef
4086 ac_build_frexp_mant(struct ac_llvm_context *ctx, LLVMValueRef src0,
4087 unsigned bitsize)
4088 {
4089 LLVMTypeRef type;
4090 char *intr;
4091
4092 if (bitsize == 16) {
4093 intr = "llvm.amdgcn.frexp.mant.f16";
4094 type = ctx->f16;
4095 } else if (bitsize == 32) {
4096 intr = "llvm.amdgcn.frexp.mant.f32";
4097 type = ctx->f32;
4098 } else {
4099 intr = "llvm.amdgcn.frexp.mant.f64";
4100 type = ctx->f64;
4101 }
4102
4103 LLVMValueRef params[] = {
4104 src0,
4105 };
4106 return ac_build_intrinsic(ctx, intr, type, params, 1,
4107 AC_FUNC_ATTR_READNONE);
4108 }
4109
4110 /*
4111 * this takes an I,J coordinate pair,
4112 * and works out the X and Y derivatives.
4113 * it returns DDX(I), DDX(J), DDY(I), DDY(J).
4114 */
4115 LLVMValueRef
4116 ac_build_ddxy_interp(struct ac_llvm_context *ctx, LLVMValueRef interp_ij)
4117 {
4118 LLVMValueRef result[4], a;
4119 unsigned i;
4120
4121 for (i = 0; i < 2; i++) {
4122 a = LLVMBuildExtractElement(ctx->builder, interp_ij,
4123 LLVMConstInt(ctx->i32, i, false), "");
4124 result[i] = ac_build_ddxy(ctx, AC_TID_MASK_TOP_LEFT, 1, a);
4125 result[2+i] = ac_build_ddxy(ctx, AC_TID_MASK_TOP_LEFT, 2, a);
4126 }
4127 return ac_build_gather_values(ctx, result, 4);
4128 }
4129
4130 LLVMValueRef
4131 ac_build_load_helper_invocation(struct ac_llvm_context *ctx)
4132 {
4133 LLVMValueRef result = ac_build_intrinsic(ctx, "llvm.amdgcn.ps.live",
4134 ctx->i1, NULL, 0,
4135 AC_FUNC_ATTR_READNONE);
4136 result = LLVMBuildNot(ctx->builder, result, "");
4137 return LLVMBuildSExt(ctx->builder, result, ctx->i32, "");
4138 }