54e90288bda5d19b515682616df02698ea0a3ae6
[mesa.git] / src / amd / common / ac_llvm_build.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sub license, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
13 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
15 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
17 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
18 * USE OR OTHER DEALINGS IN THE SOFTWARE.
19 *
20 * The above copyright notice and this permission notice (including the
21 * next paragraph) shall be included in all copies or substantial portions
22 * of the Software.
23 *
24 */
25 /* based on pieces from si_pipe.c and radeon_llvm_emit.c */
26 #include "ac_llvm_build.h"
27
28 #include <llvm-c/Core.h>
29
30 #include "c11/threads.h"
31
32 #include <assert.h>
33 #include <stdio.h>
34
35 #include "ac_llvm_util.h"
36 #include "ac_exp_param.h"
37 #include "util/bitscan.h"
38 #include "util/macros.h"
39 #include "util/u_atomic.h"
40 #include "util/u_math.h"
41 #include "sid.h"
42
43 #include "shader_enums.h"
44
45 #define AC_LLVM_INITIAL_CF_DEPTH 4
46
47 /* Data for if/else/endif and bgnloop/endloop control flow structures.
48 */
49 struct ac_llvm_flow {
50 /* Loop exit or next part of if/else/endif. */
51 LLVMBasicBlockRef next_block;
52 LLVMBasicBlockRef loop_entry_block;
53 };
54
55 /* Initialize module-independent parts of the context.
56 *
57 * The caller is responsible for initializing ctx::module and ctx::builder.
58 */
59 void
60 ac_llvm_context_init(struct ac_llvm_context *ctx,
61 enum chip_class chip_class, enum radeon_family family)
62 {
63 LLVMValueRef args[1];
64
65 ctx->context = LLVMContextCreate();
66
67 ctx->chip_class = chip_class;
68 ctx->family = family;
69 ctx->module = NULL;
70 ctx->builder = NULL;
71
72 ctx->voidt = LLVMVoidTypeInContext(ctx->context);
73 ctx->i1 = LLVMInt1TypeInContext(ctx->context);
74 ctx->i8 = LLVMInt8TypeInContext(ctx->context);
75 ctx->i16 = LLVMIntTypeInContext(ctx->context, 16);
76 ctx->i32 = LLVMIntTypeInContext(ctx->context, 32);
77 ctx->i64 = LLVMIntTypeInContext(ctx->context, 64);
78 ctx->intptr = ctx->i32;
79 ctx->f16 = LLVMHalfTypeInContext(ctx->context);
80 ctx->f32 = LLVMFloatTypeInContext(ctx->context);
81 ctx->f64 = LLVMDoubleTypeInContext(ctx->context);
82 ctx->v2i16 = LLVMVectorType(ctx->i16, 2);
83 ctx->v2i32 = LLVMVectorType(ctx->i32, 2);
84 ctx->v3i32 = LLVMVectorType(ctx->i32, 3);
85 ctx->v4i32 = LLVMVectorType(ctx->i32, 4);
86 ctx->v2f32 = LLVMVectorType(ctx->f32, 2);
87 ctx->v4f32 = LLVMVectorType(ctx->f32, 4);
88 ctx->v8i32 = LLVMVectorType(ctx->i32, 8);
89
90 ctx->i8_0 = LLVMConstInt(ctx->i8, 0, false);
91 ctx->i8_1 = LLVMConstInt(ctx->i8, 1, false);
92 ctx->i16_0 = LLVMConstInt(ctx->i16, 0, false);
93 ctx->i16_1 = LLVMConstInt(ctx->i16, 1, false);
94 ctx->i32_0 = LLVMConstInt(ctx->i32, 0, false);
95 ctx->i32_1 = LLVMConstInt(ctx->i32, 1, false);
96 ctx->i64_0 = LLVMConstInt(ctx->i64, 0, false);
97 ctx->i64_1 = LLVMConstInt(ctx->i64, 1, false);
98 ctx->f16_0 = LLVMConstReal(ctx->f16, 0.0);
99 ctx->f16_1 = LLVMConstReal(ctx->f16, 1.0);
100 ctx->f32_0 = LLVMConstReal(ctx->f32, 0.0);
101 ctx->f32_1 = LLVMConstReal(ctx->f32, 1.0);
102 ctx->f64_0 = LLVMConstReal(ctx->f64, 0.0);
103 ctx->f64_1 = LLVMConstReal(ctx->f64, 1.0);
104
105 ctx->i1false = LLVMConstInt(ctx->i1, 0, false);
106 ctx->i1true = LLVMConstInt(ctx->i1, 1, false);
107
108 ctx->range_md_kind = LLVMGetMDKindIDInContext(ctx->context,
109 "range", 5);
110
111 ctx->invariant_load_md_kind = LLVMGetMDKindIDInContext(ctx->context,
112 "invariant.load", 14);
113
114 ctx->fpmath_md_kind = LLVMGetMDKindIDInContext(ctx->context, "fpmath", 6);
115
116 args[0] = LLVMConstReal(ctx->f32, 2.5);
117 ctx->fpmath_md_2p5_ulp = LLVMMDNodeInContext(ctx->context, args, 1);
118
119 ctx->uniform_md_kind = LLVMGetMDKindIDInContext(ctx->context,
120 "amdgpu.uniform", 14);
121
122 ctx->empty_md = LLVMMDNodeInContext(ctx->context, NULL, 0);
123 }
124
125 void
126 ac_llvm_context_dispose(struct ac_llvm_context *ctx)
127 {
128 free(ctx->flow);
129 ctx->flow = NULL;
130 ctx->flow_depth_max = 0;
131 }
132
133 int
134 ac_get_llvm_num_components(LLVMValueRef value)
135 {
136 LLVMTypeRef type = LLVMTypeOf(value);
137 unsigned num_components = LLVMGetTypeKind(type) == LLVMVectorTypeKind
138 ? LLVMGetVectorSize(type)
139 : 1;
140 return num_components;
141 }
142
143 LLVMValueRef
144 ac_llvm_extract_elem(struct ac_llvm_context *ac,
145 LLVMValueRef value,
146 int index)
147 {
148 if (LLVMGetTypeKind(LLVMTypeOf(value)) != LLVMVectorTypeKind) {
149 assert(index == 0);
150 return value;
151 }
152
153 return LLVMBuildExtractElement(ac->builder, value,
154 LLVMConstInt(ac->i32, index, false), "");
155 }
156
157 int
158 ac_get_elem_bits(struct ac_llvm_context *ctx, LLVMTypeRef type)
159 {
160 if (LLVMGetTypeKind(type) == LLVMVectorTypeKind)
161 type = LLVMGetElementType(type);
162
163 if (LLVMGetTypeKind(type) == LLVMIntegerTypeKind)
164 return LLVMGetIntTypeWidth(type);
165
166 if (type == ctx->f16)
167 return 16;
168 if (type == ctx->f32)
169 return 32;
170 if (type == ctx->f64)
171 return 64;
172
173 unreachable("Unhandled type kind in get_elem_bits");
174 }
175
176 unsigned
177 ac_get_type_size(LLVMTypeRef type)
178 {
179 LLVMTypeKind kind = LLVMGetTypeKind(type);
180
181 switch (kind) {
182 case LLVMIntegerTypeKind:
183 return LLVMGetIntTypeWidth(type) / 8;
184 case LLVMHalfTypeKind:
185 return 2;
186 case LLVMFloatTypeKind:
187 return 4;
188 case LLVMDoubleTypeKind:
189 return 8;
190 case LLVMPointerTypeKind:
191 if (LLVMGetPointerAddressSpace(type) == AC_ADDR_SPACE_CONST_32BIT)
192 return 4;
193 return 8;
194 case LLVMVectorTypeKind:
195 return LLVMGetVectorSize(type) *
196 ac_get_type_size(LLVMGetElementType(type));
197 case LLVMArrayTypeKind:
198 return LLVMGetArrayLength(type) *
199 ac_get_type_size(LLVMGetElementType(type));
200 default:
201 assert(0);
202 return 0;
203 }
204 }
205
206 static LLVMTypeRef to_integer_type_scalar(struct ac_llvm_context *ctx, LLVMTypeRef t)
207 {
208 if (t == ctx->i8)
209 return ctx->i8;
210 else if (t == ctx->f16 || t == ctx->i16)
211 return ctx->i16;
212 else if (t == ctx->f32 || t == ctx->i32)
213 return ctx->i32;
214 else if (t == ctx->f64 || t == ctx->i64)
215 return ctx->i64;
216 else
217 unreachable("Unhandled integer size");
218 }
219
220 LLVMTypeRef
221 ac_to_integer_type(struct ac_llvm_context *ctx, LLVMTypeRef t)
222 {
223 if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) {
224 LLVMTypeRef elem_type = LLVMGetElementType(t);
225 return LLVMVectorType(to_integer_type_scalar(ctx, elem_type),
226 LLVMGetVectorSize(t));
227 }
228 if (LLVMGetTypeKind(t) == LLVMPointerTypeKind) {
229 switch (LLVMGetPointerAddressSpace(t)) {
230 case AC_ADDR_SPACE_GLOBAL:
231 return ctx->i64;
232 case AC_ADDR_SPACE_LDS:
233 return ctx->i32;
234 default:
235 unreachable("unhandled address space");
236 }
237 }
238 return to_integer_type_scalar(ctx, t);
239 }
240
241 LLVMValueRef
242 ac_to_integer(struct ac_llvm_context *ctx, LLVMValueRef v)
243 {
244 LLVMTypeRef type = LLVMTypeOf(v);
245 if (LLVMGetTypeKind(type) == LLVMPointerTypeKind) {
246 return LLVMBuildPtrToInt(ctx->builder, v, ac_to_integer_type(ctx, type), "");
247 }
248 return LLVMBuildBitCast(ctx->builder, v, ac_to_integer_type(ctx, type), "");
249 }
250
251 LLVMValueRef
252 ac_to_integer_or_pointer(struct ac_llvm_context *ctx, LLVMValueRef v)
253 {
254 LLVMTypeRef type = LLVMTypeOf(v);
255 if (LLVMGetTypeKind(type) == LLVMPointerTypeKind)
256 return v;
257 return ac_to_integer(ctx, v);
258 }
259
260 static LLVMTypeRef to_float_type_scalar(struct ac_llvm_context *ctx, LLVMTypeRef t)
261 {
262 if (t == ctx->i8)
263 return ctx->i8;
264 else if (t == ctx->i16 || t == ctx->f16)
265 return ctx->f16;
266 else if (t == ctx->i32 || t == ctx->f32)
267 return ctx->f32;
268 else if (t == ctx->i64 || t == ctx->f64)
269 return ctx->f64;
270 else
271 unreachable("Unhandled float size");
272 }
273
274 LLVMTypeRef
275 ac_to_float_type(struct ac_llvm_context *ctx, LLVMTypeRef t)
276 {
277 if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) {
278 LLVMTypeRef elem_type = LLVMGetElementType(t);
279 return LLVMVectorType(to_float_type_scalar(ctx, elem_type),
280 LLVMGetVectorSize(t));
281 }
282 return to_float_type_scalar(ctx, t);
283 }
284
285 LLVMValueRef
286 ac_to_float(struct ac_llvm_context *ctx, LLVMValueRef v)
287 {
288 LLVMTypeRef type = LLVMTypeOf(v);
289 return LLVMBuildBitCast(ctx->builder, v, ac_to_float_type(ctx, type), "");
290 }
291
292
293 LLVMValueRef
294 ac_build_intrinsic(struct ac_llvm_context *ctx, const char *name,
295 LLVMTypeRef return_type, LLVMValueRef *params,
296 unsigned param_count, unsigned attrib_mask)
297 {
298 LLVMValueRef function, call;
299 bool set_callsite_attrs = !(attrib_mask & AC_FUNC_ATTR_LEGACY);
300
301 function = LLVMGetNamedFunction(ctx->module, name);
302 if (!function) {
303 LLVMTypeRef param_types[32], function_type;
304 unsigned i;
305
306 assert(param_count <= 32);
307
308 for (i = 0; i < param_count; ++i) {
309 assert(params[i]);
310 param_types[i] = LLVMTypeOf(params[i]);
311 }
312 function_type =
313 LLVMFunctionType(return_type, param_types, param_count, 0);
314 function = LLVMAddFunction(ctx->module, name, function_type);
315
316 LLVMSetFunctionCallConv(function, LLVMCCallConv);
317 LLVMSetLinkage(function, LLVMExternalLinkage);
318
319 if (!set_callsite_attrs)
320 ac_add_func_attributes(ctx->context, function, attrib_mask);
321 }
322
323 call = LLVMBuildCall(ctx->builder, function, params, param_count, "");
324 if (set_callsite_attrs)
325 ac_add_func_attributes(ctx->context, call, attrib_mask);
326 return call;
327 }
328
329 /**
330 * Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with
331 * intrinsic names).
332 */
333 void ac_build_type_name_for_intr(LLVMTypeRef type, char *buf, unsigned bufsize)
334 {
335 LLVMTypeRef elem_type = type;
336
337 assert(bufsize >= 8);
338
339 if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
340 int ret = snprintf(buf, bufsize, "v%u",
341 LLVMGetVectorSize(type));
342 if (ret < 0) {
343 char *type_name = LLVMPrintTypeToString(type);
344 fprintf(stderr, "Error building type name for: %s\n",
345 type_name);
346 return;
347 }
348 elem_type = LLVMGetElementType(type);
349 buf += ret;
350 bufsize -= ret;
351 }
352 switch (LLVMGetTypeKind(elem_type)) {
353 default: break;
354 case LLVMIntegerTypeKind:
355 snprintf(buf, bufsize, "i%d", LLVMGetIntTypeWidth(elem_type));
356 break;
357 case LLVMHalfTypeKind:
358 snprintf(buf, bufsize, "f16");
359 break;
360 case LLVMFloatTypeKind:
361 snprintf(buf, bufsize, "f32");
362 break;
363 case LLVMDoubleTypeKind:
364 snprintf(buf, bufsize, "f64");
365 break;
366 }
367 }
368
369 /**
370 * Helper function that builds an LLVM IR PHI node and immediately adds
371 * incoming edges.
372 */
373 LLVMValueRef
374 ac_build_phi(struct ac_llvm_context *ctx, LLVMTypeRef type,
375 unsigned count_incoming, LLVMValueRef *values,
376 LLVMBasicBlockRef *blocks)
377 {
378 LLVMValueRef phi = LLVMBuildPhi(ctx->builder, type, "");
379 LLVMAddIncoming(phi, values, blocks, count_incoming);
380 return phi;
381 }
382
383 void ac_build_s_barrier(struct ac_llvm_context *ctx)
384 {
385 ac_build_intrinsic(ctx, "llvm.amdgcn.s.barrier", ctx->voidt, NULL,
386 0, AC_FUNC_ATTR_CONVERGENT);
387 }
388
389 /* Prevent optimizations (at least of memory accesses) across the current
390 * point in the program by emitting empty inline assembly that is marked as
391 * having side effects.
392 *
393 * Optionally, a value can be passed through the inline assembly to prevent
394 * LLVM from hoisting calls to ReadNone functions.
395 */
396 void
397 ac_build_optimization_barrier(struct ac_llvm_context *ctx,
398 LLVMValueRef *pvgpr)
399 {
400 static int counter = 0;
401
402 LLVMBuilderRef builder = ctx->builder;
403 char code[16];
404
405 snprintf(code, sizeof(code), "; %d", p_atomic_inc_return(&counter));
406
407 if (!pvgpr) {
408 LLVMTypeRef ftype = LLVMFunctionType(ctx->voidt, NULL, 0, false);
409 LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, code, "", true, false);
410 LLVMBuildCall(builder, inlineasm, NULL, 0, "");
411 } else {
412 LLVMTypeRef ftype = LLVMFunctionType(ctx->i32, &ctx->i32, 1, false);
413 LLVMValueRef inlineasm = LLVMConstInlineAsm(ftype, code, "=v,0", true, false);
414 LLVMValueRef vgpr = *pvgpr;
415 LLVMTypeRef vgpr_type = LLVMTypeOf(vgpr);
416 unsigned vgpr_size = ac_get_type_size(vgpr_type);
417 LLVMValueRef vgpr0;
418
419 assert(vgpr_size % 4 == 0);
420
421 vgpr = LLVMBuildBitCast(builder, vgpr, LLVMVectorType(ctx->i32, vgpr_size / 4), "");
422 vgpr0 = LLVMBuildExtractElement(builder, vgpr, ctx->i32_0, "");
423 vgpr0 = LLVMBuildCall(builder, inlineasm, &vgpr0, 1, "");
424 vgpr = LLVMBuildInsertElement(builder, vgpr, vgpr0, ctx->i32_0, "");
425 vgpr = LLVMBuildBitCast(builder, vgpr, vgpr_type, "");
426
427 *pvgpr = vgpr;
428 }
429 }
430
431 LLVMValueRef
432 ac_build_shader_clock(struct ac_llvm_context *ctx)
433 {
434 LLVMValueRef tmp = ac_build_intrinsic(ctx, "llvm.readcyclecounter",
435 ctx->i64, NULL, 0, 0);
436 return LLVMBuildBitCast(ctx->builder, tmp, ctx->v2i32, "");
437 }
438
439 LLVMValueRef
440 ac_build_ballot(struct ac_llvm_context *ctx,
441 LLVMValueRef value)
442 {
443 LLVMValueRef args[3] = {
444 value,
445 ctx->i32_0,
446 LLVMConstInt(ctx->i32, LLVMIntNE, 0)
447 };
448
449 /* We currently have no other way to prevent LLVM from lifting the icmp
450 * calls to a dominating basic block.
451 */
452 ac_build_optimization_barrier(ctx, &args[0]);
453
454 args[0] = ac_to_integer(ctx, args[0]);
455
456 return ac_build_intrinsic(ctx,
457 "llvm.amdgcn.icmp.i32",
458 ctx->i64, args, 3,
459 AC_FUNC_ATTR_NOUNWIND |
460 AC_FUNC_ATTR_READNONE |
461 AC_FUNC_ATTR_CONVERGENT);
462 }
463
464 LLVMValueRef
465 ac_build_vote_all(struct ac_llvm_context *ctx, LLVMValueRef value)
466 {
467 LLVMValueRef active_set = ac_build_ballot(ctx, ctx->i32_1);
468 LLVMValueRef vote_set = ac_build_ballot(ctx, value);
469 return LLVMBuildICmp(ctx->builder, LLVMIntEQ, vote_set, active_set, "");
470 }
471
472 LLVMValueRef
473 ac_build_vote_any(struct ac_llvm_context *ctx, LLVMValueRef value)
474 {
475 LLVMValueRef vote_set = ac_build_ballot(ctx, value);
476 return LLVMBuildICmp(ctx->builder, LLVMIntNE, vote_set,
477 LLVMConstInt(ctx->i64, 0, 0), "");
478 }
479
480 LLVMValueRef
481 ac_build_vote_eq(struct ac_llvm_context *ctx, LLVMValueRef value)
482 {
483 LLVMValueRef active_set = ac_build_ballot(ctx, ctx->i32_1);
484 LLVMValueRef vote_set = ac_build_ballot(ctx, value);
485
486 LLVMValueRef all = LLVMBuildICmp(ctx->builder, LLVMIntEQ,
487 vote_set, active_set, "");
488 LLVMValueRef none = LLVMBuildICmp(ctx->builder, LLVMIntEQ,
489 vote_set,
490 LLVMConstInt(ctx->i64, 0, 0), "");
491 return LLVMBuildOr(ctx->builder, all, none, "");
492 }
493
494 LLVMValueRef
495 ac_build_varying_gather_values(struct ac_llvm_context *ctx, LLVMValueRef *values,
496 unsigned value_count, unsigned component)
497 {
498 LLVMValueRef vec = NULL;
499
500 if (value_count == 1) {
501 return values[component];
502 } else if (!value_count)
503 unreachable("value_count is 0");
504
505 for (unsigned i = component; i < value_count + component; i++) {
506 LLVMValueRef value = values[i];
507
508 if (i == component)
509 vec = LLVMGetUndef( LLVMVectorType(LLVMTypeOf(value), value_count));
510 LLVMValueRef index = LLVMConstInt(ctx->i32, i - component, false);
511 vec = LLVMBuildInsertElement(ctx->builder, vec, value, index, "");
512 }
513 return vec;
514 }
515
516 LLVMValueRef
517 ac_build_gather_values_extended(struct ac_llvm_context *ctx,
518 LLVMValueRef *values,
519 unsigned value_count,
520 unsigned value_stride,
521 bool load,
522 bool always_vector)
523 {
524 LLVMBuilderRef builder = ctx->builder;
525 LLVMValueRef vec = NULL;
526 unsigned i;
527
528 if (value_count == 1 && !always_vector) {
529 if (load)
530 return LLVMBuildLoad(builder, values[0], "");
531 return values[0];
532 } else if (!value_count)
533 unreachable("value_count is 0");
534
535 for (i = 0; i < value_count; i++) {
536 LLVMValueRef value = values[i * value_stride];
537 if (load)
538 value = LLVMBuildLoad(builder, value, "");
539
540 if (!i)
541 vec = LLVMGetUndef( LLVMVectorType(LLVMTypeOf(value), value_count));
542 LLVMValueRef index = LLVMConstInt(ctx->i32, i, false);
543 vec = LLVMBuildInsertElement(builder, vec, value, index, "");
544 }
545 return vec;
546 }
547
548 LLVMValueRef
549 ac_build_gather_values(struct ac_llvm_context *ctx,
550 LLVMValueRef *values,
551 unsigned value_count)
552 {
553 return ac_build_gather_values_extended(ctx, values, value_count, 1, false, false);
554 }
555
556 /* Expand a scalar or vector to <dst_channels x type> by filling the remaining
557 * channels with undef. Extract at most src_channels components from the input.
558 */
559 static LLVMValueRef
560 ac_build_expand(struct ac_llvm_context *ctx,
561 LLVMValueRef value,
562 unsigned src_channels,
563 unsigned dst_channels)
564 {
565 LLVMTypeRef elemtype;
566 LLVMValueRef chan[dst_channels];
567
568 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMVectorTypeKind) {
569 unsigned vec_size = LLVMGetVectorSize(LLVMTypeOf(value));
570
571 if (src_channels == dst_channels && vec_size == dst_channels)
572 return value;
573
574 src_channels = MIN2(src_channels, vec_size);
575
576 for (unsigned i = 0; i < src_channels; i++)
577 chan[i] = ac_llvm_extract_elem(ctx, value, i);
578
579 elemtype = LLVMGetElementType(LLVMTypeOf(value));
580 } else {
581 if (src_channels) {
582 assert(src_channels == 1);
583 chan[0] = value;
584 }
585 elemtype = LLVMTypeOf(value);
586 }
587
588 for (unsigned i = src_channels; i < dst_channels; i++)
589 chan[i] = LLVMGetUndef(elemtype);
590
591 return ac_build_gather_values(ctx, chan, dst_channels);
592 }
593
594 /* Expand a scalar or vector to <4 x type> by filling the remaining channels
595 * with undef. Extract at most num_channels components from the input.
596 */
597 LLVMValueRef ac_build_expand_to_vec4(struct ac_llvm_context *ctx,
598 LLVMValueRef value,
599 unsigned num_channels)
600 {
601 return ac_build_expand(ctx, value, num_channels, 4);
602 }
603
604 LLVMValueRef ac_build_round(struct ac_llvm_context *ctx, LLVMValueRef value)
605 {
606 unsigned type_size = ac_get_type_size(LLVMTypeOf(value));
607 const char *name;
608
609 if (type_size == 2)
610 name = "llvm.rint.f16";
611 else if (type_size == 4)
612 name = "llvm.rint.f32";
613 else
614 name = "llvm.rint.f64";
615
616 return ac_build_intrinsic(ctx, name, LLVMTypeOf(value), &value, 1,
617 AC_FUNC_ATTR_READNONE);
618 }
619
620 LLVMValueRef
621 ac_build_fdiv(struct ac_llvm_context *ctx,
622 LLVMValueRef num,
623 LLVMValueRef den)
624 {
625 /* If we do (num / den), LLVM >= 7.0 does:
626 * return num * v_rcp_f32(den * (fabs(den) > 0x1.0p+96f ? 0x1.0p-32f : 1.0f));
627 *
628 * If we do (num * (1 / den)), LLVM does:
629 * return num * v_rcp_f32(den);
630 */
631 LLVMValueRef one = LLVMConstReal(LLVMTypeOf(num), 1.0);
632 LLVMValueRef rcp = LLVMBuildFDiv(ctx->builder, one, den, "");
633 LLVMValueRef ret = LLVMBuildFMul(ctx->builder, num, rcp, "");
634
635 /* Use v_rcp_f32 instead of precise division. */
636 if (!LLVMIsConstant(ret))
637 LLVMSetMetadata(ret, ctx->fpmath_md_kind, ctx->fpmath_md_2p5_ulp);
638 return ret;
639 }
640
641 /* See fast_idiv_by_const.h. */
642 /* Set: increment = util_fast_udiv_info::increment ? multiplier : 0; */
643 LLVMValueRef ac_build_fast_udiv(struct ac_llvm_context *ctx,
644 LLVMValueRef num,
645 LLVMValueRef multiplier,
646 LLVMValueRef pre_shift,
647 LLVMValueRef post_shift,
648 LLVMValueRef increment)
649 {
650 LLVMBuilderRef builder = ctx->builder;
651
652 num = LLVMBuildLShr(builder, num, pre_shift, "");
653 num = LLVMBuildMul(builder,
654 LLVMBuildZExt(builder, num, ctx->i64, ""),
655 LLVMBuildZExt(builder, multiplier, ctx->i64, ""), "");
656 num = LLVMBuildAdd(builder, num,
657 LLVMBuildZExt(builder, increment, ctx->i64, ""), "");
658 num = LLVMBuildLShr(builder, num, LLVMConstInt(ctx->i64, 32, 0), "");
659 num = LLVMBuildTrunc(builder, num, ctx->i32, "");
660 return LLVMBuildLShr(builder, num, post_shift, "");
661 }
662
663 /* See fast_idiv_by_const.h. */
664 /* If num != UINT_MAX, this more efficient version can be used. */
665 /* Set: increment = util_fast_udiv_info::increment; */
666 LLVMValueRef ac_build_fast_udiv_nuw(struct ac_llvm_context *ctx,
667 LLVMValueRef num,
668 LLVMValueRef multiplier,
669 LLVMValueRef pre_shift,
670 LLVMValueRef post_shift,
671 LLVMValueRef increment)
672 {
673 LLVMBuilderRef builder = ctx->builder;
674
675 num = LLVMBuildLShr(builder, num, pre_shift, "");
676 num = LLVMBuildNUWAdd(builder, num, increment, "");
677 num = LLVMBuildMul(builder,
678 LLVMBuildZExt(builder, num, ctx->i64, ""),
679 LLVMBuildZExt(builder, multiplier, ctx->i64, ""), "");
680 num = LLVMBuildLShr(builder, num, LLVMConstInt(ctx->i64, 32, 0), "");
681 num = LLVMBuildTrunc(builder, num, ctx->i32, "");
682 return LLVMBuildLShr(builder, num, post_shift, "");
683 }
684
685 /* See fast_idiv_by_const.h. */
686 /* Both operands must fit in 31 bits and the divisor must not be 1. */
687 LLVMValueRef ac_build_fast_udiv_u31_d_not_one(struct ac_llvm_context *ctx,
688 LLVMValueRef num,
689 LLVMValueRef multiplier,
690 LLVMValueRef post_shift)
691 {
692 LLVMBuilderRef builder = ctx->builder;
693
694 num = LLVMBuildMul(builder,
695 LLVMBuildZExt(builder, num, ctx->i64, ""),
696 LLVMBuildZExt(builder, multiplier, ctx->i64, ""), "");
697 num = LLVMBuildLShr(builder, num, LLVMConstInt(ctx->i64, 32, 0), "");
698 num = LLVMBuildTrunc(builder, num, ctx->i32, "");
699 return LLVMBuildLShr(builder, num, post_shift, "");
700 }
701
702 /* Coordinates for cube map selection. sc, tc, and ma are as in Table 8.27
703 * of the OpenGL 4.5 (Compatibility Profile) specification, except ma is
704 * already multiplied by two. id is the cube face number.
705 */
706 struct cube_selection_coords {
707 LLVMValueRef stc[2];
708 LLVMValueRef ma;
709 LLVMValueRef id;
710 };
711
712 static void
713 build_cube_intrinsic(struct ac_llvm_context *ctx,
714 LLVMValueRef in[3],
715 struct cube_selection_coords *out)
716 {
717 LLVMTypeRef f32 = ctx->f32;
718
719 out->stc[1] = ac_build_intrinsic(ctx, "llvm.amdgcn.cubetc",
720 f32, in, 3, AC_FUNC_ATTR_READNONE);
721 out->stc[0] = ac_build_intrinsic(ctx, "llvm.amdgcn.cubesc",
722 f32, in, 3, AC_FUNC_ATTR_READNONE);
723 out->ma = ac_build_intrinsic(ctx, "llvm.amdgcn.cubema",
724 f32, in, 3, AC_FUNC_ATTR_READNONE);
725 out->id = ac_build_intrinsic(ctx, "llvm.amdgcn.cubeid",
726 f32, in, 3, AC_FUNC_ATTR_READNONE);
727 }
728
729 /**
730 * Build a manual selection sequence for cube face sc/tc coordinates and
731 * major axis vector (multiplied by 2 for consistency) for the given
732 * vec3 \p coords, for the face implied by \p selcoords.
733 *
734 * For the major axis, we always adjust the sign to be in the direction of
735 * selcoords.ma; i.e., a positive out_ma means that coords is pointed towards
736 * the selcoords major axis.
737 */
738 static void build_cube_select(struct ac_llvm_context *ctx,
739 const struct cube_selection_coords *selcoords,
740 const LLVMValueRef *coords,
741 LLVMValueRef *out_st,
742 LLVMValueRef *out_ma)
743 {
744 LLVMBuilderRef builder = ctx->builder;
745 LLVMTypeRef f32 = LLVMTypeOf(coords[0]);
746 LLVMValueRef is_ma_positive;
747 LLVMValueRef sgn_ma;
748 LLVMValueRef is_ma_z, is_not_ma_z;
749 LLVMValueRef is_ma_y;
750 LLVMValueRef is_ma_x;
751 LLVMValueRef sgn;
752 LLVMValueRef tmp;
753
754 is_ma_positive = LLVMBuildFCmp(builder, LLVMRealUGE,
755 selcoords->ma, LLVMConstReal(f32, 0.0), "");
756 sgn_ma = LLVMBuildSelect(builder, is_ma_positive,
757 LLVMConstReal(f32, 1.0), LLVMConstReal(f32, -1.0), "");
758
759 is_ma_z = LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 4.0), "");
760 is_not_ma_z = LLVMBuildNot(builder, is_ma_z, "");
761 is_ma_y = LLVMBuildAnd(builder, is_not_ma_z,
762 LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 2.0), ""), "");
763 is_ma_x = LLVMBuildAnd(builder, is_not_ma_z, LLVMBuildNot(builder, is_ma_y, ""), "");
764
765 /* Select sc */
766 tmp = LLVMBuildSelect(builder, is_ma_x, coords[2], coords[0], "");
767 sgn = LLVMBuildSelect(builder, is_ma_y, LLVMConstReal(f32, 1.0),
768 LLVMBuildSelect(builder, is_ma_z, sgn_ma,
769 LLVMBuildFNeg(builder, sgn_ma, ""), ""), "");
770 out_st[0] = LLVMBuildFMul(builder, tmp, sgn, "");
771
772 /* Select tc */
773 tmp = LLVMBuildSelect(builder, is_ma_y, coords[2], coords[1], "");
774 sgn = LLVMBuildSelect(builder, is_ma_y, sgn_ma,
775 LLVMConstReal(f32, -1.0), "");
776 out_st[1] = LLVMBuildFMul(builder, tmp, sgn, "");
777
778 /* Select ma */
779 tmp = LLVMBuildSelect(builder, is_ma_z, coords[2],
780 LLVMBuildSelect(builder, is_ma_y, coords[1], coords[0], ""), "");
781 tmp = ac_build_intrinsic(ctx, "llvm.fabs.f32",
782 ctx->f32, &tmp, 1, AC_FUNC_ATTR_READNONE);
783 *out_ma = LLVMBuildFMul(builder, tmp, LLVMConstReal(f32, 2.0), "");
784 }
785
786 void
787 ac_prepare_cube_coords(struct ac_llvm_context *ctx,
788 bool is_deriv, bool is_array, bool is_lod,
789 LLVMValueRef *coords_arg,
790 LLVMValueRef *derivs_arg)
791 {
792
793 LLVMBuilderRef builder = ctx->builder;
794 struct cube_selection_coords selcoords;
795 LLVMValueRef coords[3];
796 LLVMValueRef invma;
797
798 if (is_array && !is_lod) {
799 LLVMValueRef tmp = ac_build_round(ctx, coords_arg[3]);
800
801 /* Section 8.9 (Texture Functions) of the GLSL 4.50 spec says:
802 *
803 * "For Array forms, the array layer used will be
804 *
805 * max(0, min(d−1, floor(layer+0.5)))
806 *
807 * where d is the depth of the texture array and layer
808 * comes from the component indicated in the tables below.
809 * Workaroudn for an issue where the layer is taken from a
810 * helper invocation which happens to fall on a different
811 * layer due to extrapolation."
812 *
813 * VI and earlier attempt to implement this in hardware by
814 * clamping the value of coords[2] = (8 * layer) + face.
815 * Unfortunately, this means that the we end up with the wrong
816 * face when clamping occurs.
817 *
818 * Clamp the layer earlier to work around the issue.
819 */
820 if (ctx->chip_class <= VI) {
821 LLVMValueRef ge0;
822 ge0 = LLVMBuildFCmp(builder, LLVMRealOGE, tmp, ctx->f32_0, "");
823 tmp = LLVMBuildSelect(builder, ge0, tmp, ctx->f32_0, "");
824 }
825
826 coords_arg[3] = tmp;
827 }
828
829 build_cube_intrinsic(ctx, coords_arg, &selcoords);
830
831 invma = ac_build_intrinsic(ctx, "llvm.fabs.f32",
832 ctx->f32, &selcoords.ma, 1, AC_FUNC_ATTR_READNONE);
833 invma = ac_build_fdiv(ctx, LLVMConstReal(ctx->f32, 1.0), invma);
834
835 for (int i = 0; i < 2; ++i)
836 coords[i] = LLVMBuildFMul(builder, selcoords.stc[i], invma, "");
837
838 coords[2] = selcoords.id;
839
840 if (is_deriv && derivs_arg) {
841 LLVMValueRef derivs[4];
842 int axis;
843
844 /* Convert cube derivatives to 2D derivatives. */
845 for (axis = 0; axis < 2; axis++) {
846 LLVMValueRef deriv_st[2];
847 LLVMValueRef deriv_ma;
848
849 /* Transform the derivative alongside the texture
850 * coordinate. Mathematically, the correct formula is
851 * as follows. Assume we're projecting onto the +Z face
852 * and denote by dx/dh the derivative of the (original)
853 * X texture coordinate with respect to horizontal
854 * window coordinates. The projection onto the +Z face
855 * plane is:
856 *
857 * f(x,z) = x/z
858 *
859 * Then df/dh = df/dx * dx/dh + df/dz * dz/dh
860 * = 1/z * dx/dh - x/z * 1/z * dz/dh.
861 *
862 * This motivatives the implementation below.
863 *
864 * Whether this actually gives the expected results for
865 * apps that might feed in derivatives obtained via
866 * finite differences is anyone's guess. The OpenGL spec
867 * seems awfully quiet about how textureGrad for cube
868 * maps should be handled.
869 */
870 build_cube_select(ctx, &selcoords, &derivs_arg[axis * 3],
871 deriv_st, &deriv_ma);
872
873 deriv_ma = LLVMBuildFMul(builder, deriv_ma, invma, "");
874
875 for (int i = 0; i < 2; ++i)
876 derivs[axis * 2 + i] =
877 LLVMBuildFSub(builder,
878 LLVMBuildFMul(builder, deriv_st[i], invma, ""),
879 LLVMBuildFMul(builder, deriv_ma, coords[i], ""), "");
880 }
881
882 memcpy(derivs_arg, derivs, sizeof(derivs));
883 }
884
885 /* Shift the texture coordinate. This must be applied after the
886 * derivative calculation.
887 */
888 for (int i = 0; i < 2; ++i)
889 coords[i] = LLVMBuildFAdd(builder, coords[i], LLVMConstReal(ctx->f32, 1.5), "");
890
891 if (is_array) {
892 /* for cube arrays coord.z = coord.w(array_index) * 8 + face */
893 /* coords_arg.w component - array_index for cube arrays */
894 coords[2] = ac_build_fmad(ctx, coords_arg[3], LLVMConstReal(ctx->f32, 8.0), coords[2]);
895 }
896
897 memcpy(coords_arg, coords, sizeof(coords));
898 }
899
900
901 LLVMValueRef
902 ac_build_fs_interp(struct ac_llvm_context *ctx,
903 LLVMValueRef llvm_chan,
904 LLVMValueRef attr_number,
905 LLVMValueRef params,
906 LLVMValueRef i,
907 LLVMValueRef j)
908 {
909 LLVMValueRef args[5];
910 LLVMValueRef p1;
911
912 args[0] = i;
913 args[1] = llvm_chan;
914 args[2] = attr_number;
915 args[3] = params;
916
917 p1 = ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p1",
918 ctx->f32, args, 4, AC_FUNC_ATTR_READNONE);
919
920 args[0] = p1;
921 args[1] = j;
922 args[2] = llvm_chan;
923 args[3] = attr_number;
924 args[4] = params;
925
926 return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p2",
927 ctx->f32, args, 5, AC_FUNC_ATTR_READNONE);
928 }
929
930 LLVMValueRef
931 ac_build_fs_interp_f16(struct ac_llvm_context *ctx,
932 LLVMValueRef llvm_chan,
933 LLVMValueRef attr_number,
934 LLVMValueRef params,
935 LLVMValueRef i,
936 LLVMValueRef j)
937 {
938 LLVMValueRef args[6];
939 LLVMValueRef p1;
940
941 args[0] = i;
942 args[1] = llvm_chan;
943 args[2] = attr_number;
944 args[3] = ctx->i1false;
945 args[4] = params;
946
947 p1 = ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p1.f16",
948 ctx->f32, args, 5, AC_FUNC_ATTR_READNONE);
949
950 args[0] = p1;
951 args[1] = j;
952 args[2] = llvm_chan;
953 args[3] = attr_number;
954 args[4] = ctx->i1false;
955 args[5] = params;
956
957 return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.p2.f16",
958 ctx->f16, args, 6, AC_FUNC_ATTR_READNONE);
959 }
960
961 LLVMValueRef
962 ac_build_fs_interp_mov(struct ac_llvm_context *ctx,
963 LLVMValueRef parameter,
964 LLVMValueRef llvm_chan,
965 LLVMValueRef attr_number,
966 LLVMValueRef params)
967 {
968 LLVMValueRef args[4];
969
970 args[0] = parameter;
971 args[1] = llvm_chan;
972 args[2] = attr_number;
973 args[3] = params;
974
975 return ac_build_intrinsic(ctx, "llvm.amdgcn.interp.mov",
976 ctx->f32, args, 4, AC_FUNC_ATTR_READNONE);
977 }
978
979 LLVMValueRef
980 ac_build_gep_ptr(struct ac_llvm_context *ctx,
981 LLVMValueRef base_ptr,
982 LLVMValueRef index)
983 {
984 return LLVMBuildGEP(ctx->builder, base_ptr, &index, 1, "");
985 }
986
987 LLVMValueRef
988 ac_build_gep0(struct ac_llvm_context *ctx,
989 LLVMValueRef base_ptr,
990 LLVMValueRef index)
991 {
992 LLVMValueRef indices[2] = {
993 ctx->i32_0,
994 index,
995 };
996 return LLVMBuildGEP(ctx->builder, base_ptr, indices, 2, "");
997 }
998
999 LLVMValueRef ac_build_pointer_add(struct ac_llvm_context *ctx, LLVMValueRef ptr,
1000 LLVMValueRef index)
1001 {
1002 return LLVMBuildPointerCast(ctx->builder,
1003 ac_build_gep0(ctx, ptr, index),
1004 LLVMTypeOf(ptr), "");
1005 }
1006
1007 void
1008 ac_build_indexed_store(struct ac_llvm_context *ctx,
1009 LLVMValueRef base_ptr, LLVMValueRef index,
1010 LLVMValueRef value)
1011 {
1012 LLVMBuildStore(ctx->builder, value,
1013 ac_build_gep0(ctx, base_ptr, index));
1014 }
1015
1016 /**
1017 * Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad.
1018 * It's equivalent to doing a load from &base_ptr[index].
1019 *
1020 * \param base_ptr Where the array starts.
1021 * \param index The element index into the array.
1022 * \param uniform Whether the base_ptr and index can be assumed to be
1023 * dynamically uniform (i.e. load to an SGPR)
1024 * \param invariant Whether the load is invariant (no other opcodes affect it)
1025 * \param no_unsigned_wraparound
1026 * For all possible re-associations and re-distributions of an expression
1027 * "base_ptr + index * elemsize" into "addr + offset" (excluding GEPs
1028 * without inbounds in base_ptr), this parameter is true if "addr + offset"
1029 * does not result in an unsigned integer wraparound. This is used for
1030 * optimal code generation of 32-bit pointer arithmetic.
1031 *
1032 * For example, a 32-bit immediate offset that causes a 32-bit unsigned
1033 * integer wraparound can't be an imm offset in s_load_dword, because
1034 * the instruction performs "addr + offset" in 64 bits.
1035 *
1036 * Expected usage for bindless textures by chaining GEPs:
1037 * // possible unsigned wraparound, don't use InBounds:
1038 * ptr1 = LLVMBuildGEP(base_ptr, index);
1039 * image = load(ptr1); // becomes "s_load ptr1, 0"
1040 *
1041 * ptr2 = LLVMBuildInBoundsGEP(ptr1, 32 / elemsize);
1042 * sampler = load(ptr2); // becomes "s_load ptr1, 32" thanks to InBounds
1043 */
1044 static LLVMValueRef
1045 ac_build_load_custom(struct ac_llvm_context *ctx, LLVMValueRef base_ptr,
1046 LLVMValueRef index, bool uniform, bool invariant,
1047 bool no_unsigned_wraparound)
1048 {
1049 LLVMValueRef pointer, result;
1050 LLVMValueRef indices[2] = {ctx->i32_0, index};
1051
1052 if (no_unsigned_wraparound &&
1053 LLVMGetPointerAddressSpace(LLVMTypeOf(base_ptr)) == AC_ADDR_SPACE_CONST_32BIT)
1054 pointer = LLVMBuildInBoundsGEP(ctx->builder, base_ptr, indices, 2, "");
1055 else
1056 pointer = LLVMBuildGEP(ctx->builder, base_ptr, indices, 2, "");
1057
1058 if (uniform)
1059 LLVMSetMetadata(pointer, ctx->uniform_md_kind, ctx->empty_md);
1060 result = LLVMBuildLoad(ctx->builder, pointer, "");
1061 if (invariant)
1062 LLVMSetMetadata(result, ctx->invariant_load_md_kind, ctx->empty_md);
1063 return result;
1064 }
1065
1066 LLVMValueRef ac_build_load(struct ac_llvm_context *ctx, LLVMValueRef base_ptr,
1067 LLVMValueRef index)
1068 {
1069 return ac_build_load_custom(ctx, base_ptr, index, false, false, false);
1070 }
1071
1072 LLVMValueRef ac_build_load_invariant(struct ac_llvm_context *ctx,
1073 LLVMValueRef base_ptr, LLVMValueRef index)
1074 {
1075 return ac_build_load_custom(ctx, base_ptr, index, false, true, false);
1076 }
1077
1078 /* This assumes that there is no unsigned integer wraparound during the address
1079 * computation, excluding all GEPs within base_ptr. */
1080 LLVMValueRef ac_build_load_to_sgpr(struct ac_llvm_context *ctx,
1081 LLVMValueRef base_ptr, LLVMValueRef index)
1082 {
1083 return ac_build_load_custom(ctx, base_ptr, index, true, true, true);
1084 }
1085
1086 /* See ac_build_load_custom() documentation. */
1087 LLVMValueRef ac_build_load_to_sgpr_uint_wraparound(struct ac_llvm_context *ctx,
1088 LLVMValueRef base_ptr, LLVMValueRef index)
1089 {
1090 return ac_build_load_custom(ctx, base_ptr, index, true, true, false);
1091 }
1092
1093 static void
1094 ac_build_buffer_store_common(struct ac_llvm_context *ctx,
1095 LLVMValueRef rsrc,
1096 LLVMValueRef data,
1097 LLVMValueRef vindex,
1098 LLVMValueRef voffset,
1099 unsigned num_channels,
1100 bool glc,
1101 bool slc,
1102 bool writeonly_memory,
1103 bool use_format)
1104 {
1105 LLVMValueRef args[] = {
1106 data,
1107 LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""),
1108 vindex ? vindex : ctx->i32_0,
1109 voffset,
1110 LLVMConstInt(ctx->i1, glc, 0),
1111 LLVMConstInt(ctx->i1, slc, 0)
1112 };
1113 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1114
1115 const char *type_names[] = {"f32", "v2f32", "v4f32"};
1116 char name[256];
1117
1118 if (use_format) {
1119 snprintf(name, sizeof(name), "llvm.amdgcn.buffer.store.format.%s",
1120 type_names[func]);
1121 } else {
1122 snprintf(name, sizeof(name), "llvm.amdgcn.buffer.store.%s",
1123 type_names[func]);
1124 }
1125
1126 ac_build_intrinsic(ctx, name, ctx->voidt, args, ARRAY_SIZE(args),
1127 ac_get_store_intr_attribs(writeonly_memory));
1128 }
1129
1130 static void
1131 ac_build_llvm8_buffer_store_common(struct ac_llvm_context *ctx,
1132 LLVMValueRef rsrc,
1133 LLVMValueRef data,
1134 LLVMValueRef vindex,
1135 LLVMValueRef voffset,
1136 LLVMValueRef soffset,
1137 unsigned num_channels,
1138 bool glc,
1139 bool slc,
1140 bool writeonly_memory,
1141 bool use_format,
1142 bool structurized)
1143 {
1144 LLVMValueRef args[6];
1145 int idx = 0;
1146 args[idx++] = data;
1147 args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, "");
1148 if (structurized)
1149 args[idx++] = vindex ? vindex : ctx->i32_0;
1150 args[idx++] = voffset ? voffset : ctx->i32_0;
1151 args[idx++] = soffset ? soffset : ctx->i32_0;
1152 args[idx++] = LLVMConstInt(ctx->i32, (glc ? 1 : 0) + (slc ? 2 : 0), 0);
1153 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1154
1155 const char *type_names[] = {"f32", "v2f32", "v4f32"};
1156 const char *indexing_kind = structurized ? "struct" : "raw";
1157 char name[256];
1158
1159 if (use_format) {
1160 snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.store.format.%s",
1161 indexing_kind, type_names[func]);
1162 } else {
1163 snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.store.%s",
1164 indexing_kind, type_names[func]);
1165 }
1166
1167 ac_build_intrinsic(ctx, name, ctx->voidt, args, idx,
1168 ac_get_store_intr_attribs(writeonly_memory));
1169 }
1170
1171 void
1172 ac_build_buffer_store_format(struct ac_llvm_context *ctx,
1173 LLVMValueRef rsrc,
1174 LLVMValueRef data,
1175 LLVMValueRef vindex,
1176 LLVMValueRef voffset,
1177 unsigned num_channels,
1178 bool glc,
1179 bool writeonly_memory)
1180 {
1181 if (HAVE_LLVM >= 0x800) {
1182 ac_build_llvm8_buffer_store_common(ctx, rsrc, data, vindex,
1183 voffset, NULL, num_channels,
1184 glc, false, writeonly_memory,
1185 true, true);
1186 } else {
1187 ac_build_buffer_store_common(ctx, rsrc, data, vindex, voffset,
1188 num_channels, glc, false,
1189 writeonly_memory, true);
1190 }
1191 }
1192
1193 /* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4.
1194 * The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2),
1195 * or v4i32 (num_channels=3,4).
1196 */
1197 void
1198 ac_build_buffer_store_dword(struct ac_llvm_context *ctx,
1199 LLVMValueRef rsrc,
1200 LLVMValueRef vdata,
1201 unsigned num_channels,
1202 LLVMValueRef voffset,
1203 LLVMValueRef soffset,
1204 unsigned inst_offset,
1205 bool glc,
1206 bool slc,
1207 bool writeonly_memory,
1208 bool swizzle_enable_hint)
1209 {
1210 /* Split 3 channel stores, becase LLVM doesn't support 3-channel
1211 * intrinsics. */
1212 if (num_channels == 3) {
1213 LLVMValueRef v[3], v01;
1214
1215 for (int i = 0; i < 3; i++) {
1216 v[i] = LLVMBuildExtractElement(ctx->builder, vdata,
1217 LLVMConstInt(ctx->i32, i, 0), "");
1218 }
1219 v01 = ac_build_gather_values(ctx, v, 2);
1220
1221 ac_build_buffer_store_dword(ctx, rsrc, v01, 2, voffset,
1222 soffset, inst_offset, glc, slc,
1223 writeonly_memory, swizzle_enable_hint);
1224 ac_build_buffer_store_dword(ctx, rsrc, v[2], 1, voffset,
1225 soffset, inst_offset + 8,
1226 glc, slc,
1227 writeonly_memory, swizzle_enable_hint);
1228 return;
1229 }
1230
1231 /* SWIZZLE_ENABLE requires that soffset isn't folded into voffset
1232 * (voffset is swizzled, but soffset isn't swizzled).
1233 * llvm.amdgcn.buffer.store doesn't have a separate soffset parameter.
1234 */
1235 if (!swizzle_enable_hint) {
1236 LLVMValueRef offset = soffset;
1237
1238 if (inst_offset)
1239 offset = LLVMBuildAdd(ctx->builder, offset,
1240 LLVMConstInt(ctx->i32, inst_offset, 0), "");
1241
1242 if (HAVE_LLVM >= 0x800) {
1243 ac_build_llvm8_buffer_store_common(ctx, rsrc,
1244 ac_to_float(ctx, vdata),
1245 ctx->i32_0,
1246 voffset, offset,
1247 num_channels,
1248 glc, slc,
1249 writeonly_memory,
1250 false, false);
1251 } else {
1252 if (voffset)
1253 offset = LLVMBuildAdd(ctx->builder, offset, voffset, "");
1254
1255 ac_build_buffer_store_common(ctx, rsrc,
1256 ac_to_float(ctx, vdata),
1257 ctx->i32_0, offset,
1258 num_channels, glc, slc,
1259 writeonly_memory, false);
1260 }
1261 return;
1262 }
1263
1264 static const unsigned dfmts[] = {
1265 V_008F0C_BUF_DATA_FORMAT_32,
1266 V_008F0C_BUF_DATA_FORMAT_32_32,
1267 V_008F0C_BUF_DATA_FORMAT_32_32_32,
1268 V_008F0C_BUF_DATA_FORMAT_32_32_32_32
1269 };
1270 unsigned dfmt = dfmts[num_channels - 1];
1271 unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
1272 LLVMValueRef immoffset = LLVMConstInt(ctx->i32, inst_offset, 0);
1273
1274 ac_build_raw_tbuffer_store(ctx, rsrc, vdata, voffset, soffset,
1275 immoffset, num_channels, dfmt, nfmt, glc,
1276 slc, writeonly_memory);
1277 }
1278
1279 static LLVMValueRef
1280 ac_build_buffer_load_common(struct ac_llvm_context *ctx,
1281 LLVMValueRef rsrc,
1282 LLVMValueRef vindex,
1283 LLVMValueRef voffset,
1284 unsigned num_channels,
1285 bool glc,
1286 bool slc,
1287 bool can_speculate,
1288 bool use_format)
1289 {
1290 LLVMValueRef args[] = {
1291 LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""),
1292 vindex ? vindex : ctx->i32_0,
1293 voffset,
1294 LLVMConstInt(ctx->i1, glc, 0),
1295 LLVMConstInt(ctx->i1, slc, 0)
1296 };
1297 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1298
1299 LLVMTypeRef types[] = {ctx->f32, ctx->v2f32, ctx->v4f32};
1300 const char *type_names[] = {"f32", "v2f32", "v4f32"};
1301 char name[256];
1302
1303 if (use_format) {
1304 snprintf(name, sizeof(name), "llvm.amdgcn.buffer.load.format.%s",
1305 type_names[func]);
1306 } else {
1307 snprintf(name, sizeof(name), "llvm.amdgcn.buffer.load.%s",
1308 type_names[func]);
1309 }
1310
1311 return ac_build_intrinsic(ctx, name, types[func], args,
1312 ARRAY_SIZE(args),
1313 ac_get_load_intr_attribs(can_speculate));
1314 }
1315
1316 static LLVMValueRef
1317 ac_build_llvm8_buffer_load_common(struct ac_llvm_context *ctx,
1318 LLVMValueRef rsrc,
1319 LLVMValueRef vindex,
1320 LLVMValueRef voffset,
1321 LLVMValueRef soffset,
1322 unsigned num_channels,
1323 bool glc,
1324 bool slc,
1325 bool can_speculate,
1326 bool use_format,
1327 bool structurized)
1328 {
1329 LLVMValueRef args[5];
1330 int idx = 0;
1331 args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, "");
1332 if (structurized)
1333 args[idx++] = vindex ? vindex : ctx->i32_0;
1334 args[idx++] = voffset ? voffset : ctx->i32_0;
1335 args[idx++] = soffset ? soffset : ctx->i32_0;
1336 args[idx++] = LLVMConstInt(ctx->i32, (glc ? 1 : 0) + (slc ? 2 : 0), 0);
1337 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1338
1339 LLVMTypeRef types[] = {ctx->f32, ctx->v2f32, ctx->v4f32};
1340 const char *type_names[] = {"f32", "v2f32", "v4f32"};
1341 const char *indexing_kind = structurized ? "struct" : "raw";
1342 char name[256];
1343
1344 if (use_format) {
1345 snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.load.format.%s",
1346 indexing_kind, type_names[func]);
1347 } else {
1348 snprintf(name, sizeof(name), "llvm.amdgcn.%s.buffer.load.%s",
1349 indexing_kind, type_names[func]);
1350 }
1351
1352 return ac_build_intrinsic(ctx, name, types[func], args,
1353 idx,
1354 ac_get_load_intr_attribs(can_speculate));
1355 }
1356
1357 LLVMValueRef
1358 ac_build_buffer_load(struct ac_llvm_context *ctx,
1359 LLVMValueRef rsrc,
1360 int num_channels,
1361 LLVMValueRef vindex,
1362 LLVMValueRef voffset,
1363 LLVMValueRef soffset,
1364 unsigned inst_offset,
1365 unsigned glc,
1366 unsigned slc,
1367 bool can_speculate,
1368 bool allow_smem)
1369 {
1370 LLVMValueRef offset = LLVMConstInt(ctx->i32, inst_offset, 0);
1371 if (voffset)
1372 offset = LLVMBuildAdd(ctx->builder, offset, voffset, "");
1373 if (soffset)
1374 offset = LLVMBuildAdd(ctx->builder, offset, soffset, "");
1375
1376 if (allow_smem && !slc &&
1377 (!glc || (HAVE_LLVM >= 0x0800 && ctx->chip_class >= VI))) {
1378 assert(vindex == NULL);
1379
1380 LLVMValueRef result[8];
1381
1382 for (int i = 0; i < num_channels; i++) {
1383 if (i) {
1384 offset = LLVMBuildAdd(ctx->builder, offset,
1385 LLVMConstInt(ctx->i32, 4, 0), "");
1386 }
1387 const char *intrname =
1388 HAVE_LLVM >= 0x0800 ? "llvm.amdgcn.s.buffer.load.f32"
1389 : "llvm.SI.load.const.v4i32";
1390 unsigned num_args = HAVE_LLVM >= 0x0800 ? 3 : 2;
1391 LLVMValueRef args[3] = {
1392 rsrc,
1393 offset,
1394 glc ? ctx->i32_1 : ctx->i32_0,
1395 };
1396 result[i] = ac_build_intrinsic(ctx, intrname,
1397 ctx->f32, args, num_args,
1398 AC_FUNC_ATTR_READNONE |
1399 (HAVE_LLVM < 0x0800 ? AC_FUNC_ATTR_LEGACY : 0));
1400 }
1401 if (num_channels == 1)
1402 return result[0];
1403
1404 if (num_channels == 3)
1405 result[num_channels++] = LLVMGetUndef(ctx->f32);
1406 return ac_build_gather_values(ctx, result, num_channels);
1407 }
1408
1409 if (HAVE_LLVM >= 0x0800) {
1410 return ac_build_llvm8_buffer_load_common(ctx, rsrc, vindex,
1411 offset, ctx->i32_0,
1412 num_channels, glc, slc,
1413 can_speculate, false,
1414 false);
1415 }
1416
1417 return ac_build_buffer_load_common(ctx, rsrc, vindex, offset,
1418 num_channels, glc, slc,
1419 can_speculate, false);
1420 }
1421
1422 LLVMValueRef ac_build_buffer_load_format(struct ac_llvm_context *ctx,
1423 LLVMValueRef rsrc,
1424 LLVMValueRef vindex,
1425 LLVMValueRef voffset,
1426 unsigned num_channels,
1427 bool glc,
1428 bool can_speculate)
1429 {
1430 if (HAVE_LLVM >= 0x800) {
1431 return ac_build_llvm8_buffer_load_common(ctx, rsrc, vindex, voffset, ctx->i32_0,
1432 num_channels, glc, false,
1433 can_speculate, true, true);
1434 }
1435 return ac_build_buffer_load_common(ctx, rsrc, vindex, voffset,
1436 num_channels, glc, false,
1437 can_speculate, true);
1438 }
1439
1440 LLVMValueRef ac_build_buffer_load_format_gfx9_safe(struct ac_llvm_context *ctx,
1441 LLVMValueRef rsrc,
1442 LLVMValueRef vindex,
1443 LLVMValueRef voffset,
1444 unsigned num_channels,
1445 bool glc,
1446 bool can_speculate)
1447 {
1448 if (HAVE_LLVM >= 0x800) {
1449 return ac_build_llvm8_buffer_load_common(ctx, rsrc, vindex, voffset, ctx->i32_0,
1450 num_channels, glc, false,
1451 can_speculate, true, true);
1452 }
1453
1454 LLVMValueRef elem_count = LLVMBuildExtractElement(ctx->builder, rsrc, LLVMConstInt(ctx->i32, 2, 0), "");
1455 LLVMValueRef stride = LLVMBuildExtractElement(ctx->builder, rsrc, ctx->i32_1, "");
1456 stride = LLVMBuildLShr(ctx->builder, stride, LLVMConstInt(ctx->i32, 16, 0), "");
1457
1458 LLVMValueRef new_elem_count = LLVMBuildSelect(ctx->builder,
1459 LLVMBuildICmp(ctx->builder, LLVMIntUGT, elem_count, stride, ""),
1460 elem_count, stride, "");
1461
1462 LLVMValueRef new_rsrc = LLVMBuildInsertElement(ctx->builder, rsrc, new_elem_count,
1463 LLVMConstInt(ctx->i32, 2, 0), "");
1464
1465 return ac_build_buffer_load_common(ctx, new_rsrc, vindex, voffset,
1466 num_channels, glc, false,
1467 can_speculate, true);
1468 }
1469
1470 static LLVMValueRef
1471 ac_build_llvm8_tbuffer_load(struct ac_llvm_context *ctx,
1472 LLVMValueRef rsrc,
1473 LLVMValueRef vindex,
1474 LLVMValueRef voffset,
1475 LLVMValueRef soffset,
1476 unsigned num_channels,
1477 unsigned dfmt,
1478 unsigned nfmt,
1479 bool glc,
1480 bool slc,
1481 bool can_speculate,
1482 bool structurized)
1483 {
1484 LLVMValueRef args[6];
1485 int idx = 0;
1486 args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, "");
1487 if (structurized)
1488 args[idx++] = vindex ? vindex : ctx->i32_0;
1489 args[idx++] = voffset ? voffset : ctx->i32_0;
1490 args[idx++] = soffset ? soffset : ctx->i32_0;
1491 args[idx++] = LLVMConstInt(ctx->i32, dfmt | (nfmt << 4), 0);
1492 args[idx++] = LLVMConstInt(ctx->i32, (glc ? 1 : 0) + (slc ? 2 : 0), 0);
1493 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1494
1495 LLVMTypeRef types[] = {ctx->i32, ctx->v2i32, ctx->v4i32};
1496 const char *type_names[] = {"i32", "v2i32", "v4i32"};
1497 const char *indexing_kind = structurized ? "struct" : "raw";
1498 char name[256];
1499
1500 snprintf(name, sizeof(name), "llvm.amdgcn.%s.tbuffer.load.%s",
1501 indexing_kind, type_names[func]);
1502
1503 return ac_build_intrinsic(ctx, name, types[func], args,
1504 idx,
1505 ac_get_load_intr_attribs(can_speculate));
1506 }
1507
1508 static LLVMValueRef
1509 ac_build_tbuffer_load(struct ac_llvm_context *ctx,
1510 LLVMValueRef rsrc,
1511 LLVMValueRef vindex,
1512 LLVMValueRef voffset,
1513 LLVMValueRef soffset,
1514 LLVMValueRef immoffset,
1515 unsigned num_channels,
1516 unsigned dfmt,
1517 unsigned nfmt,
1518 bool glc,
1519 bool slc,
1520 bool can_speculate,
1521 bool structurized) /* only matters for LLVM 8+ */
1522 {
1523 if (HAVE_LLVM >= 0x800) {
1524 voffset = LLVMBuildAdd(ctx->builder, voffset, immoffset, "");
1525
1526 return ac_build_llvm8_tbuffer_load(ctx, rsrc, vindex, voffset,
1527 soffset, num_channels,
1528 dfmt, nfmt, glc, slc,
1529 can_speculate, structurized);
1530 }
1531
1532 LLVMValueRef args[] = {
1533 rsrc,
1534 vindex ? vindex : ctx->i32_0,
1535 voffset,
1536 soffset,
1537 immoffset,
1538 LLVMConstInt(ctx->i32, dfmt, false),
1539 LLVMConstInt(ctx->i32, nfmt, false),
1540 LLVMConstInt(ctx->i1, glc, false),
1541 LLVMConstInt(ctx->i1, slc, false),
1542 };
1543 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1544 LLVMTypeRef types[] = {ctx->i32, ctx->v2i32, ctx->v4i32};
1545 const char *type_names[] = {"i32", "v2i32", "v4i32"};
1546 char name[256];
1547
1548 snprintf(name, sizeof(name), "llvm.amdgcn.tbuffer.load.%s",
1549 type_names[func]);
1550
1551 return ac_build_intrinsic(ctx, name, types[func], args, 9,
1552 ac_get_load_intr_attribs(can_speculate));
1553 }
1554
1555 LLVMValueRef
1556 ac_build_struct_tbuffer_load(struct ac_llvm_context *ctx,
1557 LLVMValueRef rsrc,
1558 LLVMValueRef vindex,
1559 LLVMValueRef voffset,
1560 LLVMValueRef soffset,
1561 LLVMValueRef immoffset,
1562 unsigned num_channels,
1563 unsigned dfmt,
1564 unsigned nfmt,
1565 bool glc,
1566 bool slc,
1567 bool can_speculate)
1568 {
1569 return ac_build_tbuffer_load(ctx, rsrc, vindex, voffset, soffset,
1570 immoffset, num_channels, dfmt, nfmt, glc,
1571 slc, can_speculate, true);
1572 }
1573
1574 LLVMValueRef
1575 ac_build_raw_tbuffer_load(struct ac_llvm_context *ctx,
1576 LLVMValueRef rsrc,
1577 LLVMValueRef voffset,
1578 LLVMValueRef soffset,
1579 LLVMValueRef immoffset,
1580 unsigned num_channels,
1581 unsigned dfmt,
1582 unsigned nfmt,
1583 bool glc,
1584 bool slc,
1585 bool can_speculate)
1586 {
1587 return ac_build_tbuffer_load(ctx, rsrc, NULL, voffset, soffset,
1588 immoffset, num_channels, dfmt, nfmt, glc,
1589 slc, can_speculate, false);
1590 }
1591
1592 LLVMValueRef
1593 ac_build_tbuffer_load_short(struct ac_llvm_context *ctx,
1594 LLVMValueRef rsrc,
1595 LLVMValueRef voffset,
1596 LLVMValueRef soffset,
1597 LLVMValueRef immoffset,
1598 bool glc)
1599 {
1600 unsigned dfmt = V_008F0C_BUF_DATA_FORMAT_16;
1601 unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
1602 LLVMValueRef res;
1603
1604 res = ac_build_raw_tbuffer_load(ctx, rsrc, voffset, soffset,
1605 immoffset, 1, dfmt, nfmt, glc, false,
1606 false);
1607
1608 return LLVMBuildTrunc(ctx->builder, res, ctx->i16, "");
1609 }
1610
1611 LLVMValueRef
1612 ac_build_tbuffer_load_byte(struct ac_llvm_context *ctx,
1613 LLVMValueRef rsrc,
1614 LLVMValueRef voffset,
1615 LLVMValueRef soffset,
1616 LLVMValueRef immoffset,
1617 bool glc)
1618 {
1619 unsigned dfmt = V_008F0C_BUF_DATA_FORMAT_8;
1620 unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
1621 LLVMValueRef res;
1622
1623 res = ac_build_raw_tbuffer_load(ctx, rsrc, voffset, soffset,
1624 immoffset, 1, dfmt, nfmt, glc, false,
1625 false);
1626
1627 return LLVMBuildTrunc(ctx->builder, res, ctx->i8, "");
1628 }
1629 static void
1630 ac_build_llvm8_tbuffer_store(struct ac_llvm_context *ctx,
1631 LLVMValueRef rsrc,
1632 LLVMValueRef vdata,
1633 LLVMValueRef vindex,
1634 LLVMValueRef voffset,
1635 LLVMValueRef soffset,
1636 unsigned num_channels,
1637 unsigned dfmt,
1638 unsigned nfmt,
1639 bool glc,
1640 bool slc,
1641 bool writeonly_memory,
1642 bool structurized)
1643 {
1644 LLVMValueRef args[7];
1645 int idx = 0;
1646 args[idx++] = vdata;
1647 args[idx++] = LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, "");
1648 if (structurized)
1649 args[idx++] = vindex ? vindex : ctx->i32_0;
1650 args[idx++] = voffset ? voffset : ctx->i32_0;
1651 args[idx++] = soffset ? soffset : ctx->i32_0;
1652 args[idx++] = LLVMConstInt(ctx->i32, dfmt | (nfmt << 4), 0);
1653 args[idx++] = LLVMConstInt(ctx->i32, (glc ? 1 : 0) + (slc ? 2 : 0), 0);
1654 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1655
1656 const char *type_names[] = {"i32", "v2i32", "v4i32"};
1657 const char *indexing_kind = structurized ? "struct" : "raw";
1658 char name[256];
1659
1660 snprintf(name, sizeof(name), "llvm.amdgcn.%s.tbuffer.store.%s",
1661 indexing_kind, type_names[func]);
1662
1663 ac_build_intrinsic(ctx, name, ctx->voidt, args, idx,
1664 ac_get_store_intr_attribs(writeonly_memory));
1665 }
1666
1667 static void
1668 ac_build_tbuffer_store(struct ac_llvm_context *ctx,
1669 LLVMValueRef rsrc,
1670 LLVMValueRef vdata,
1671 LLVMValueRef vindex,
1672 LLVMValueRef voffset,
1673 LLVMValueRef soffset,
1674 LLVMValueRef immoffset,
1675 unsigned num_channels,
1676 unsigned dfmt,
1677 unsigned nfmt,
1678 bool glc,
1679 bool slc,
1680 bool writeonly_memory,
1681 bool structurized) /* only matters for LLVM 8+ */
1682 {
1683 if (HAVE_LLVM >= 0x800) {
1684 voffset = LLVMBuildAdd(ctx->builder,
1685 voffset ? voffset : ctx->i32_0,
1686 immoffset, "");
1687
1688 ac_build_llvm8_tbuffer_store(ctx, rsrc, vdata, vindex, voffset,
1689 soffset, num_channels, dfmt, nfmt,
1690 glc, slc, writeonly_memory,
1691 structurized);
1692 } else {
1693 LLVMValueRef params[] = {
1694 vdata,
1695 rsrc,
1696 vindex ? vindex : ctx->i32_0,
1697 voffset ? voffset : ctx->i32_0,
1698 soffset ? soffset : ctx->i32_0,
1699 immoffset,
1700 LLVMConstInt(ctx->i32, dfmt, false),
1701 LLVMConstInt(ctx->i32, nfmt, false),
1702 LLVMConstInt(ctx->i1, glc, false),
1703 LLVMConstInt(ctx->i1, slc, false),
1704 };
1705 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1706 const char *type_names[] = {"i32", "v2i32", "v4i32"};
1707 char name[256];
1708
1709 snprintf(name, sizeof(name), "llvm.amdgcn.tbuffer.store.%s",
1710 type_names[func]);
1711
1712 ac_build_intrinsic(ctx, name, ctx->voidt, params, 10,
1713 ac_get_store_intr_attribs(writeonly_memory));
1714 }
1715 }
1716
1717 void
1718 ac_build_struct_tbuffer_store(struct ac_llvm_context *ctx,
1719 LLVMValueRef rsrc,
1720 LLVMValueRef vdata,
1721 LLVMValueRef vindex,
1722 LLVMValueRef voffset,
1723 LLVMValueRef soffset,
1724 LLVMValueRef immoffset,
1725 unsigned num_channels,
1726 unsigned dfmt,
1727 unsigned nfmt,
1728 bool glc,
1729 bool slc,
1730 bool writeonly_memory)
1731 {
1732 ac_build_tbuffer_store(ctx, rsrc, vdata, vindex, voffset, soffset,
1733 immoffset, num_channels, dfmt, nfmt, glc, slc,
1734 writeonly_memory, true);
1735 }
1736
1737 void
1738 ac_build_raw_tbuffer_store(struct ac_llvm_context *ctx,
1739 LLVMValueRef rsrc,
1740 LLVMValueRef vdata,
1741 LLVMValueRef voffset,
1742 LLVMValueRef soffset,
1743 LLVMValueRef immoffset,
1744 unsigned num_channels,
1745 unsigned dfmt,
1746 unsigned nfmt,
1747 bool glc,
1748 bool slc,
1749 bool writeonly_memory)
1750 {
1751 ac_build_tbuffer_store(ctx, rsrc, vdata, NULL, voffset, soffset,
1752 immoffset, num_channels, dfmt, nfmt, glc, slc,
1753 writeonly_memory, false);
1754 }
1755
1756 void
1757 ac_build_tbuffer_store_short(struct ac_llvm_context *ctx,
1758 LLVMValueRef rsrc,
1759 LLVMValueRef vdata,
1760 LLVMValueRef voffset,
1761 LLVMValueRef soffset,
1762 bool glc,
1763 bool writeonly_memory)
1764 {
1765 unsigned dfmt = V_008F0C_BUF_DATA_FORMAT_16;
1766 unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
1767
1768 vdata = LLVMBuildBitCast(ctx->builder, vdata, ctx->i16, "");
1769 vdata = LLVMBuildZExt(ctx->builder, vdata, ctx->i32, "");
1770
1771 ac_build_raw_tbuffer_store(ctx, rsrc, vdata, voffset, soffset,
1772 ctx->i32_0, 1, dfmt, nfmt, glc, false,
1773 writeonly_memory);
1774 }
1775
1776 void
1777 ac_build_tbuffer_store_byte(struct ac_llvm_context *ctx,
1778 LLVMValueRef rsrc,
1779 LLVMValueRef vdata,
1780 LLVMValueRef voffset,
1781 LLVMValueRef soffset,
1782 bool glc,
1783 bool writeonly_memory)
1784 {
1785 unsigned dfmt = V_008F0C_BUF_DATA_FORMAT_8;
1786 unsigned nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
1787
1788 vdata = LLVMBuildBitCast(ctx->builder, vdata, ctx->i8, "");
1789 vdata = LLVMBuildZExt(ctx->builder, vdata, ctx->i32, "");
1790
1791 ac_build_raw_tbuffer_store(ctx, rsrc, vdata, voffset, soffset,
1792 ctx->i32_0, 1, dfmt, nfmt, glc, false,
1793 writeonly_memory);
1794 }
1795 /**
1796 * Set range metadata on an instruction. This can only be used on load and
1797 * call instructions. If you know an instruction can only produce the values
1798 * 0, 1, 2, you would do set_range_metadata(value, 0, 3);
1799 * \p lo is the minimum value inclusive.
1800 * \p hi is the maximum value exclusive.
1801 */
1802 static void set_range_metadata(struct ac_llvm_context *ctx,
1803 LLVMValueRef value, unsigned lo, unsigned hi)
1804 {
1805 LLVMValueRef range_md, md_args[2];
1806 LLVMTypeRef type = LLVMTypeOf(value);
1807 LLVMContextRef context = LLVMGetTypeContext(type);
1808
1809 md_args[0] = LLVMConstInt(type, lo, false);
1810 md_args[1] = LLVMConstInt(type, hi, false);
1811 range_md = LLVMMDNodeInContext(context, md_args, 2);
1812 LLVMSetMetadata(value, ctx->range_md_kind, range_md);
1813 }
1814
1815 LLVMValueRef
1816 ac_get_thread_id(struct ac_llvm_context *ctx)
1817 {
1818 LLVMValueRef tid;
1819
1820 LLVMValueRef tid_args[2];
1821 tid_args[0] = LLVMConstInt(ctx->i32, 0xffffffff, false);
1822 tid_args[1] = ctx->i32_0;
1823 tid_args[1] = ac_build_intrinsic(ctx,
1824 "llvm.amdgcn.mbcnt.lo", ctx->i32,
1825 tid_args, 2, AC_FUNC_ATTR_READNONE);
1826
1827 tid = ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.hi",
1828 ctx->i32, tid_args,
1829 2, AC_FUNC_ATTR_READNONE);
1830 set_range_metadata(ctx, tid, 0, 64);
1831 return tid;
1832 }
1833
1834 /*
1835 * SI implements derivatives using the local data store (LDS)
1836 * All writes to the LDS happen in all executing threads at
1837 * the same time. TID is the Thread ID for the current
1838 * thread and is a value between 0 and 63, representing
1839 * the thread's position in the wavefront.
1840 *
1841 * For the pixel shader threads are grouped into quads of four pixels.
1842 * The TIDs of the pixels of a quad are:
1843 *
1844 * +------+------+
1845 * |4n + 0|4n + 1|
1846 * +------+------+
1847 * |4n + 2|4n + 3|
1848 * +------+------+
1849 *
1850 * So, masking the TID with 0xfffffffc yields the TID of the top left pixel
1851 * of the quad, masking with 0xfffffffd yields the TID of the top pixel of
1852 * the current pixel's column, and masking with 0xfffffffe yields the TID
1853 * of the left pixel of the current pixel's row.
1854 *
1855 * Adding 1 yields the TID of the pixel to the right of the left pixel, and
1856 * adding 2 yields the TID of the pixel below the top pixel.
1857 */
1858 LLVMValueRef
1859 ac_build_ddxy(struct ac_llvm_context *ctx,
1860 uint32_t mask,
1861 int idx,
1862 LLVMValueRef val)
1863 {
1864 unsigned tl_lanes[4], trbl_lanes[4];
1865 LLVMValueRef tl, trbl;
1866 LLVMValueRef result;
1867
1868 for (unsigned i = 0; i < 4; ++i) {
1869 tl_lanes[i] = i & mask;
1870 trbl_lanes[i] = (i & mask) + idx;
1871 }
1872
1873 tl = ac_build_quad_swizzle(ctx, val,
1874 tl_lanes[0], tl_lanes[1],
1875 tl_lanes[2], tl_lanes[3]);
1876 trbl = ac_build_quad_swizzle(ctx, val,
1877 trbl_lanes[0], trbl_lanes[1],
1878 trbl_lanes[2], trbl_lanes[3]);
1879
1880 tl = LLVMBuildBitCast(ctx->builder, tl, ctx->f32, "");
1881 trbl = LLVMBuildBitCast(ctx->builder, trbl, ctx->f32, "");
1882 result = LLVMBuildFSub(ctx->builder, trbl, tl, "");
1883
1884 result = ac_build_intrinsic(ctx, "llvm.amdgcn.wqm.f32", ctx->f32,
1885 &result, 1, 0);
1886
1887 return result;
1888 }
1889
1890 void
1891 ac_build_sendmsg(struct ac_llvm_context *ctx,
1892 uint32_t msg,
1893 LLVMValueRef wave_id)
1894 {
1895 LLVMValueRef args[2];
1896 args[0] = LLVMConstInt(ctx->i32, msg, false);
1897 args[1] = wave_id;
1898 ac_build_intrinsic(ctx, "llvm.amdgcn.s.sendmsg", ctx->voidt, args, 2, 0);
1899 }
1900
1901 LLVMValueRef
1902 ac_build_imsb(struct ac_llvm_context *ctx,
1903 LLVMValueRef arg,
1904 LLVMTypeRef dst_type)
1905 {
1906 LLVMValueRef msb = ac_build_intrinsic(ctx, "llvm.amdgcn.sffbh.i32",
1907 dst_type, &arg, 1,
1908 AC_FUNC_ATTR_READNONE);
1909
1910 /* The HW returns the last bit index from MSB, but NIR/TGSI wants
1911 * the index from LSB. Invert it by doing "31 - msb". */
1912 msb = LLVMBuildSub(ctx->builder, LLVMConstInt(ctx->i32, 31, false),
1913 msb, "");
1914
1915 LLVMValueRef all_ones = LLVMConstInt(ctx->i32, -1, true);
1916 LLVMValueRef cond = LLVMBuildOr(ctx->builder,
1917 LLVMBuildICmp(ctx->builder, LLVMIntEQ,
1918 arg, ctx->i32_0, ""),
1919 LLVMBuildICmp(ctx->builder, LLVMIntEQ,
1920 arg, all_ones, ""), "");
1921
1922 return LLVMBuildSelect(ctx->builder, cond, all_ones, msb, "");
1923 }
1924
1925 LLVMValueRef
1926 ac_build_umsb(struct ac_llvm_context *ctx,
1927 LLVMValueRef arg,
1928 LLVMTypeRef dst_type)
1929 {
1930 const char *intrin_name;
1931 LLVMTypeRef type;
1932 LLVMValueRef highest_bit;
1933 LLVMValueRef zero;
1934 unsigned bitsize;
1935
1936 bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(arg));
1937 switch (bitsize) {
1938 case 64:
1939 intrin_name = "llvm.ctlz.i64";
1940 type = ctx->i64;
1941 highest_bit = LLVMConstInt(ctx->i64, 63, false);
1942 zero = ctx->i64_0;
1943 break;
1944 case 32:
1945 intrin_name = "llvm.ctlz.i32";
1946 type = ctx->i32;
1947 highest_bit = LLVMConstInt(ctx->i32, 31, false);
1948 zero = ctx->i32_0;
1949 break;
1950 case 16:
1951 intrin_name = "llvm.ctlz.i16";
1952 type = ctx->i16;
1953 highest_bit = LLVMConstInt(ctx->i16, 15, false);
1954 zero = ctx->i16_0;
1955 break;
1956 case 8:
1957 intrin_name = "llvm.ctlz.i8";
1958 type = ctx->i8;
1959 highest_bit = LLVMConstInt(ctx->i8, 7, false);
1960 zero = ctx->i8_0;
1961 break;
1962 default:
1963 unreachable(!"invalid bitsize");
1964 break;
1965 }
1966
1967 LLVMValueRef params[2] = {
1968 arg,
1969 ctx->i1true,
1970 };
1971
1972 LLVMValueRef msb = ac_build_intrinsic(ctx, intrin_name, type,
1973 params, 2,
1974 AC_FUNC_ATTR_READNONE);
1975
1976 /* The HW returns the last bit index from MSB, but TGSI/NIR wants
1977 * the index from LSB. Invert it by doing "31 - msb". */
1978 msb = LLVMBuildSub(ctx->builder, highest_bit, msb, "");
1979
1980 if (bitsize == 64) {
1981 msb = LLVMBuildTrunc(ctx->builder, msb, ctx->i32, "");
1982 } else if (bitsize < 32) {
1983 msb = LLVMBuildSExt(ctx->builder, msb, ctx->i32, "");
1984 }
1985
1986 /* check for zero */
1987 return LLVMBuildSelect(ctx->builder,
1988 LLVMBuildICmp(ctx->builder, LLVMIntEQ, arg, zero, ""),
1989 LLVMConstInt(ctx->i32, -1, true), msb, "");
1990 }
1991
1992 LLVMValueRef ac_build_fmin(struct ac_llvm_context *ctx, LLVMValueRef a,
1993 LLVMValueRef b)
1994 {
1995 char name[64];
1996 snprintf(name, sizeof(name), "llvm.minnum.f%d", ac_get_elem_bits(ctx, LLVMTypeOf(a)));
1997 LLVMValueRef args[2] = {a, b};
1998 return ac_build_intrinsic(ctx, name, LLVMTypeOf(a), args, 2,
1999 AC_FUNC_ATTR_READNONE);
2000 }
2001
2002 LLVMValueRef ac_build_fmax(struct ac_llvm_context *ctx, LLVMValueRef a,
2003 LLVMValueRef b)
2004 {
2005 char name[64];
2006 snprintf(name, sizeof(name), "llvm.maxnum.f%d", ac_get_elem_bits(ctx, LLVMTypeOf(a)));
2007 LLVMValueRef args[2] = {a, b};
2008 return ac_build_intrinsic(ctx, name, LLVMTypeOf(a), args, 2,
2009 AC_FUNC_ATTR_READNONE);
2010 }
2011
2012 LLVMValueRef ac_build_imin(struct ac_llvm_context *ctx, LLVMValueRef a,
2013 LLVMValueRef b)
2014 {
2015 LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntSLE, a, b, "");
2016 return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
2017 }
2018
2019 LLVMValueRef ac_build_imax(struct ac_llvm_context *ctx, LLVMValueRef a,
2020 LLVMValueRef b)
2021 {
2022 LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGT, a, b, "");
2023 return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
2024 }
2025
2026 LLVMValueRef ac_build_umin(struct ac_llvm_context *ctx, LLVMValueRef a,
2027 LLVMValueRef b)
2028 {
2029 LLVMValueRef cmp = LLVMBuildICmp(ctx->builder, LLVMIntULE, a, b, "");
2030 return LLVMBuildSelect(ctx->builder, cmp, a, b, "");
2031 }
2032
2033 LLVMValueRef ac_build_clamp(struct ac_llvm_context *ctx, LLVMValueRef value)
2034 {
2035 LLVMTypeRef t = LLVMTypeOf(value);
2036 return ac_build_fmin(ctx, ac_build_fmax(ctx, value, LLVMConstReal(t, 0.0)),
2037 LLVMConstReal(t, 1.0));
2038 }
2039
2040 void ac_build_export(struct ac_llvm_context *ctx, struct ac_export_args *a)
2041 {
2042 LLVMValueRef args[9];
2043
2044 args[0] = LLVMConstInt(ctx->i32, a->target, 0);
2045 args[1] = LLVMConstInt(ctx->i32, a->enabled_channels, 0);
2046
2047 if (a->compr) {
2048 LLVMTypeRef i16 = LLVMInt16TypeInContext(ctx->context);
2049 LLVMTypeRef v2i16 = LLVMVectorType(i16, 2);
2050
2051 args[2] = LLVMBuildBitCast(ctx->builder, a->out[0],
2052 v2i16, "");
2053 args[3] = LLVMBuildBitCast(ctx->builder, a->out[1],
2054 v2i16, "");
2055 args[4] = LLVMConstInt(ctx->i1, a->done, 0);
2056 args[5] = LLVMConstInt(ctx->i1, a->valid_mask, 0);
2057
2058 ac_build_intrinsic(ctx, "llvm.amdgcn.exp.compr.v2i16",
2059 ctx->voidt, args, 6, 0);
2060 } else {
2061 args[2] = a->out[0];
2062 args[3] = a->out[1];
2063 args[4] = a->out[2];
2064 args[5] = a->out[3];
2065 args[6] = LLVMConstInt(ctx->i1, a->done, 0);
2066 args[7] = LLVMConstInt(ctx->i1, a->valid_mask, 0);
2067
2068 ac_build_intrinsic(ctx, "llvm.amdgcn.exp.f32",
2069 ctx->voidt, args, 8, 0);
2070 }
2071 }
2072
2073 void ac_build_export_null(struct ac_llvm_context *ctx)
2074 {
2075 struct ac_export_args args;
2076
2077 args.enabled_channels = 0x0; /* enabled channels */
2078 args.valid_mask = 1; /* whether the EXEC mask is valid */
2079 args.done = 1; /* DONE bit */
2080 args.target = V_008DFC_SQ_EXP_NULL;
2081 args.compr = 0; /* COMPR flag (0 = 32-bit export) */
2082 args.out[0] = LLVMGetUndef(ctx->f32); /* R */
2083 args.out[1] = LLVMGetUndef(ctx->f32); /* G */
2084 args.out[2] = LLVMGetUndef(ctx->f32); /* B */
2085 args.out[3] = LLVMGetUndef(ctx->f32); /* A */
2086
2087 ac_build_export(ctx, &args);
2088 }
2089
2090 static unsigned ac_num_coords(enum ac_image_dim dim)
2091 {
2092 switch (dim) {
2093 case ac_image_1d:
2094 return 1;
2095 case ac_image_2d:
2096 case ac_image_1darray:
2097 return 2;
2098 case ac_image_3d:
2099 case ac_image_cube:
2100 case ac_image_2darray:
2101 case ac_image_2dmsaa:
2102 return 3;
2103 case ac_image_2darraymsaa:
2104 return 4;
2105 default:
2106 unreachable("ac_num_coords: bad dim");
2107 }
2108 }
2109
2110 static unsigned ac_num_derivs(enum ac_image_dim dim)
2111 {
2112 switch (dim) {
2113 case ac_image_1d:
2114 case ac_image_1darray:
2115 return 2;
2116 case ac_image_2d:
2117 case ac_image_2darray:
2118 case ac_image_cube:
2119 return 4;
2120 case ac_image_3d:
2121 return 6;
2122 case ac_image_2dmsaa:
2123 case ac_image_2darraymsaa:
2124 default:
2125 unreachable("derivatives not supported");
2126 }
2127 }
2128
2129 static const char *get_atomic_name(enum ac_atomic_op op)
2130 {
2131 switch (op) {
2132 case ac_atomic_swap: return "swap";
2133 case ac_atomic_add: return "add";
2134 case ac_atomic_sub: return "sub";
2135 case ac_atomic_smin: return "smin";
2136 case ac_atomic_umin: return "umin";
2137 case ac_atomic_smax: return "smax";
2138 case ac_atomic_umax: return "umax";
2139 case ac_atomic_and: return "and";
2140 case ac_atomic_or: return "or";
2141 case ac_atomic_xor: return "xor";
2142 }
2143 unreachable("bad atomic op");
2144 }
2145
2146 LLVMValueRef ac_build_image_opcode(struct ac_llvm_context *ctx,
2147 struct ac_image_args *a)
2148 {
2149 const char *overload[3] = { "", "", "" };
2150 unsigned num_overloads = 0;
2151 LLVMValueRef args[18];
2152 unsigned num_args = 0;
2153 enum ac_image_dim dim = a->dim;
2154
2155 assert(!a->lod || a->lod == ctx->i32_0 || a->lod == ctx->f32_0 ||
2156 !a->level_zero);
2157 assert((a->opcode != ac_image_get_resinfo && a->opcode != ac_image_load_mip &&
2158 a->opcode != ac_image_store_mip) ||
2159 a->lod);
2160 assert(a->opcode == ac_image_sample || a->opcode == ac_image_gather4 ||
2161 (!a->compare && !a->offset));
2162 assert((a->opcode == ac_image_sample || a->opcode == ac_image_gather4 ||
2163 a->opcode == ac_image_get_lod) ||
2164 !a->bias);
2165 assert((a->bias ? 1 : 0) +
2166 (a->lod ? 1 : 0) +
2167 (a->level_zero ? 1 : 0) +
2168 (a->derivs[0] ? 1 : 0) <= 1);
2169
2170 if (a->opcode == ac_image_get_lod) {
2171 switch (dim) {
2172 case ac_image_1darray:
2173 dim = ac_image_1d;
2174 break;
2175 case ac_image_2darray:
2176 case ac_image_cube:
2177 dim = ac_image_2d;
2178 break;
2179 default:
2180 break;
2181 }
2182 }
2183
2184 bool sample = a->opcode == ac_image_sample ||
2185 a->opcode == ac_image_gather4 ||
2186 a->opcode == ac_image_get_lod;
2187 bool atomic = a->opcode == ac_image_atomic ||
2188 a->opcode == ac_image_atomic_cmpswap;
2189 LLVMTypeRef coord_type = sample ? ctx->f32 : ctx->i32;
2190
2191 if (atomic || a->opcode == ac_image_store || a->opcode == ac_image_store_mip) {
2192 args[num_args++] = a->data[0];
2193 if (a->opcode == ac_image_atomic_cmpswap)
2194 args[num_args++] = a->data[1];
2195 }
2196
2197 if (!atomic)
2198 args[num_args++] = LLVMConstInt(ctx->i32, a->dmask, false);
2199
2200 if (a->offset)
2201 args[num_args++] = ac_to_integer(ctx, a->offset);
2202 if (a->bias) {
2203 args[num_args++] = ac_to_float(ctx, a->bias);
2204 overload[num_overloads++] = ".f32";
2205 }
2206 if (a->compare)
2207 args[num_args++] = ac_to_float(ctx, a->compare);
2208 if (a->derivs[0]) {
2209 unsigned count = ac_num_derivs(dim);
2210 for (unsigned i = 0; i < count; ++i)
2211 args[num_args++] = ac_to_float(ctx, a->derivs[i]);
2212 overload[num_overloads++] = ".f32";
2213 }
2214 unsigned num_coords =
2215 a->opcode != ac_image_get_resinfo ? ac_num_coords(dim) : 0;
2216 for (unsigned i = 0; i < num_coords; ++i)
2217 args[num_args++] = LLVMBuildBitCast(ctx->builder, a->coords[i], coord_type, "");
2218 if (a->lod)
2219 args[num_args++] = LLVMBuildBitCast(ctx->builder, a->lod, coord_type, "");
2220 overload[num_overloads++] = sample ? ".f32" : ".i32";
2221
2222 args[num_args++] = a->resource;
2223 if (sample) {
2224 args[num_args++] = a->sampler;
2225 args[num_args++] = LLVMConstInt(ctx->i1, a->unorm, false);
2226 }
2227
2228 args[num_args++] = ctx->i32_0; /* texfailctrl */
2229 args[num_args++] = LLVMConstInt(ctx->i32, a->cache_policy, false);
2230
2231 const char *name;
2232 const char *atomic_subop = "";
2233 switch (a->opcode) {
2234 case ac_image_sample: name = "sample"; break;
2235 case ac_image_gather4: name = "gather4"; break;
2236 case ac_image_load: name = "load"; break;
2237 case ac_image_load_mip: name = "load.mip"; break;
2238 case ac_image_store: name = "store"; break;
2239 case ac_image_store_mip: name = "store.mip"; break;
2240 case ac_image_atomic:
2241 name = "atomic.";
2242 atomic_subop = get_atomic_name(a->atomic);
2243 break;
2244 case ac_image_atomic_cmpswap:
2245 name = "atomic.";
2246 atomic_subop = "cmpswap";
2247 break;
2248 case ac_image_get_lod: name = "getlod"; break;
2249 case ac_image_get_resinfo: name = "getresinfo"; break;
2250 default: unreachable("invalid image opcode");
2251 }
2252
2253 const char *dimname;
2254 switch (dim) {
2255 case ac_image_1d: dimname = "1d"; break;
2256 case ac_image_2d: dimname = "2d"; break;
2257 case ac_image_3d: dimname = "3d"; break;
2258 case ac_image_cube: dimname = "cube"; break;
2259 case ac_image_1darray: dimname = "1darray"; break;
2260 case ac_image_2darray: dimname = "2darray"; break;
2261 case ac_image_2dmsaa: dimname = "2dmsaa"; break;
2262 case ac_image_2darraymsaa: dimname = "2darraymsaa"; break;
2263 default: unreachable("invalid dim");
2264 }
2265
2266 bool lod_suffix =
2267 a->lod && (a->opcode == ac_image_sample || a->opcode == ac_image_gather4);
2268 char intr_name[96];
2269 snprintf(intr_name, sizeof(intr_name),
2270 "llvm.amdgcn.image.%s%s" /* base name */
2271 "%s%s%s" /* sample/gather modifiers */
2272 ".%s.%s%s%s%s", /* dimension and type overloads */
2273 name, atomic_subop,
2274 a->compare ? ".c" : "",
2275 a->bias ? ".b" :
2276 lod_suffix ? ".l" :
2277 a->derivs[0] ? ".d" :
2278 a->level_zero ? ".lz" : "",
2279 a->offset ? ".o" : "",
2280 dimname,
2281 atomic ? "i32" : "v4f32",
2282 overload[0], overload[1], overload[2]);
2283
2284 LLVMTypeRef retty;
2285 if (atomic)
2286 retty = ctx->i32;
2287 else if (a->opcode == ac_image_store || a->opcode == ac_image_store_mip)
2288 retty = ctx->voidt;
2289 else
2290 retty = ctx->v4f32;
2291
2292 LLVMValueRef result =
2293 ac_build_intrinsic(ctx, intr_name, retty, args, num_args,
2294 a->attributes);
2295 if (!sample && retty == ctx->v4f32) {
2296 result = LLVMBuildBitCast(ctx->builder, result,
2297 ctx->v4i32, "");
2298 }
2299 return result;
2300 }
2301
2302 LLVMValueRef ac_build_cvt_pkrtz_f16(struct ac_llvm_context *ctx,
2303 LLVMValueRef args[2])
2304 {
2305 LLVMTypeRef v2f16 =
2306 LLVMVectorType(LLVMHalfTypeInContext(ctx->context), 2);
2307
2308 return ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pkrtz", v2f16,
2309 args, 2, AC_FUNC_ATTR_READNONE);
2310 }
2311
2312 LLVMValueRef ac_build_cvt_pknorm_i16(struct ac_llvm_context *ctx,
2313 LLVMValueRef args[2])
2314 {
2315 LLVMValueRef res =
2316 ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pknorm.i16",
2317 ctx->v2i16, args, 2,
2318 AC_FUNC_ATTR_READNONE);
2319 return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
2320 }
2321
2322 LLVMValueRef ac_build_cvt_pknorm_u16(struct ac_llvm_context *ctx,
2323 LLVMValueRef args[2])
2324 {
2325 LLVMValueRef res =
2326 ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pknorm.u16",
2327 ctx->v2i16, args, 2,
2328 AC_FUNC_ATTR_READNONE);
2329 return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
2330 }
2331
2332 /* The 8-bit and 10-bit clamping is for HW workarounds. */
2333 LLVMValueRef ac_build_cvt_pk_i16(struct ac_llvm_context *ctx,
2334 LLVMValueRef args[2], unsigned bits, bool hi)
2335 {
2336 assert(bits == 8 || bits == 10 || bits == 16);
2337
2338 LLVMValueRef max_rgb = LLVMConstInt(ctx->i32,
2339 bits == 8 ? 127 : bits == 10 ? 511 : 32767, 0);
2340 LLVMValueRef min_rgb = LLVMConstInt(ctx->i32,
2341 bits == 8 ? -128 : bits == 10 ? -512 : -32768, 0);
2342 LLVMValueRef max_alpha =
2343 bits != 10 ? max_rgb : ctx->i32_1;
2344 LLVMValueRef min_alpha =
2345 bits != 10 ? min_rgb : LLVMConstInt(ctx->i32, -2, 0);
2346
2347 /* Clamp. */
2348 if (bits != 16) {
2349 for (int i = 0; i < 2; i++) {
2350 bool alpha = hi && i == 1;
2351 args[i] = ac_build_imin(ctx, args[i],
2352 alpha ? max_alpha : max_rgb);
2353 args[i] = ac_build_imax(ctx, args[i],
2354 alpha ? min_alpha : min_rgb);
2355 }
2356 }
2357
2358 LLVMValueRef res =
2359 ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pk.i16",
2360 ctx->v2i16, args, 2,
2361 AC_FUNC_ATTR_READNONE);
2362 return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
2363 }
2364
2365 /* The 8-bit and 10-bit clamping is for HW workarounds. */
2366 LLVMValueRef ac_build_cvt_pk_u16(struct ac_llvm_context *ctx,
2367 LLVMValueRef args[2], unsigned bits, bool hi)
2368 {
2369 assert(bits == 8 || bits == 10 || bits == 16);
2370
2371 LLVMValueRef max_rgb = LLVMConstInt(ctx->i32,
2372 bits == 8 ? 255 : bits == 10 ? 1023 : 65535, 0);
2373 LLVMValueRef max_alpha =
2374 bits != 10 ? max_rgb : LLVMConstInt(ctx->i32, 3, 0);
2375
2376 /* Clamp. */
2377 if (bits != 16) {
2378 for (int i = 0; i < 2; i++) {
2379 bool alpha = hi && i == 1;
2380 args[i] = ac_build_umin(ctx, args[i],
2381 alpha ? max_alpha : max_rgb);
2382 }
2383 }
2384
2385 LLVMValueRef res =
2386 ac_build_intrinsic(ctx, "llvm.amdgcn.cvt.pk.u16",
2387 ctx->v2i16, args, 2,
2388 AC_FUNC_ATTR_READNONE);
2389 return LLVMBuildBitCast(ctx->builder, res, ctx->i32, "");
2390 }
2391
2392 LLVMValueRef ac_build_wqm_vote(struct ac_llvm_context *ctx, LLVMValueRef i1)
2393 {
2394 return ac_build_intrinsic(ctx, "llvm.amdgcn.wqm.vote", ctx->i1,
2395 &i1, 1, AC_FUNC_ATTR_READNONE);
2396 }
2397
2398 void ac_build_kill_if_false(struct ac_llvm_context *ctx, LLVMValueRef i1)
2399 {
2400 ac_build_intrinsic(ctx, "llvm.amdgcn.kill", ctx->voidt,
2401 &i1, 1, 0);
2402 }
2403
2404 LLVMValueRef ac_build_bfe(struct ac_llvm_context *ctx, LLVMValueRef input,
2405 LLVMValueRef offset, LLVMValueRef width,
2406 bool is_signed)
2407 {
2408 LLVMValueRef args[] = {
2409 input,
2410 offset,
2411 width,
2412 };
2413
2414 return ac_build_intrinsic(ctx,
2415 is_signed ? "llvm.amdgcn.sbfe.i32" :
2416 "llvm.amdgcn.ubfe.i32",
2417 ctx->i32, args, 3,
2418 AC_FUNC_ATTR_READNONE);
2419 }
2420
2421 LLVMValueRef ac_build_imad(struct ac_llvm_context *ctx, LLVMValueRef s0,
2422 LLVMValueRef s1, LLVMValueRef s2)
2423 {
2424 return LLVMBuildAdd(ctx->builder,
2425 LLVMBuildMul(ctx->builder, s0, s1, ""), s2, "");
2426 }
2427
2428 LLVMValueRef ac_build_fmad(struct ac_llvm_context *ctx, LLVMValueRef s0,
2429 LLVMValueRef s1, LLVMValueRef s2)
2430 {
2431 return LLVMBuildFAdd(ctx->builder,
2432 LLVMBuildFMul(ctx->builder, s0, s1, ""), s2, "");
2433 }
2434
2435 void ac_build_waitcnt(struct ac_llvm_context *ctx, unsigned simm16)
2436 {
2437 LLVMValueRef args[1] = {
2438 LLVMConstInt(ctx->i32, simm16, false),
2439 };
2440 ac_build_intrinsic(ctx, "llvm.amdgcn.s.waitcnt",
2441 ctx->voidt, args, 1, 0);
2442 }
2443
2444 LLVMValueRef ac_build_fmed3(struct ac_llvm_context *ctx, LLVMValueRef src0,
2445 LLVMValueRef src1, LLVMValueRef src2,
2446 unsigned bitsize)
2447 {
2448 LLVMTypeRef type;
2449 char *intr;
2450
2451 if (bitsize == 16) {
2452 intr = "llvm.amdgcn.fmed3.f16";
2453 type = ctx->f16;
2454 } else if (bitsize == 32) {
2455 intr = "llvm.amdgcn.fmed3.f32";
2456 type = ctx->f32;
2457 } else {
2458 intr = "llvm.amdgcn.fmed3.f64";
2459 type = ctx->f64;
2460 }
2461
2462 LLVMValueRef params[] = {
2463 src0,
2464 src1,
2465 src2,
2466 };
2467 return ac_build_intrinsic(ctx, intr, type, params, 3,
2468 AC_FUNC_ATTR_READNONE);
2469 }
2470
2471 LLVMValueRef ac_build_fract(struct ac_llvm_context *ctx, LLVMValueRef src0,
2472 unsigned bitsize)
2473 {
2474 LLVMTypeRef type;
2475 char *intr;
2476
2477 if (bitsize == 16) {
2478 intr = "llvm.amdgcn.fract.f16";
2479 type = ctx->f16;
2480 } else if (bitsize == 32) {
2481 intr = "llvm.amdgcn.fract.f32";
2482 type = ctx->f32;
2483 } else {
2484 intr = "llvm.amdgcn.fract.f64";
2485 type = ctx->f64;
2486 }
2487
2488 LLVMValueRef params[] = {
2489 src0,
2490 };
2491 return ac_build_intrinsic(ctx, intr, type, params, 1,
2492 AC_FUNC_ATTR_READNONE);
2493 }
2494
2495 LLVMValueRef ac_build_isign(struct ac_llvm_context *ctx, LLVMValueRef src0,
2496 unsigned bitsize)
2497 {
2498 LLVMTypeRef type = LLVMIntTypeInContext(ctx->context, bitsize);
2499 LLVMValueRef zero = LLVMConstInt(type, 0, false);
2500 LLVMValueRef one = LLVMConstInt(type, 1, false);
2501
2502 LLVMValueRef cmp, val;
2503 cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGT, src0, zero, "");
2504 val = LLVMBuildSelect(ctx->builder, cmp, one, src0, "");
2505 cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGE, val, zero, "");
2506 val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstInt(type, -1, true), "");
2507 return val;
2508 }
2509
2510 LLVMValueRef ac_build_fsign(struct ac_llvm_context *ctx, LLVMValueRef src0,
2511 unsigned bitsize)
2512 {
2513 LLVMValueRef cmp, val, zero, one;
2514 LLVMTypeRef type;
2515
2516 if (bitsize == 16) {
2517 type = ctx->f16;
2518 zero = ctx->f16_0;
2519 one = ctx->f16_1;
2520 } else if (bitsize == 32) {
2521 type = ctx->f32;
2522 zero = ctx->f32_0;
2523 one = ctx->f32_1;
2524 } else {
2525 type = ctx->f64;
2526 zero = ctx->f64_0;
2527 one = ctx->f64_1;
2528 }
2529
2530 cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGT, src0, zero, "");
2531 val = LLVMBuildSelect(ctx->builder, cmp, one, src0, "");
2532 cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGE, val, zero, "");
2533 val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstReal(type, -1.0), "");
2534 return val;
2535 }
2536
2537 LLVMValueRef ac_build_bit_count(struct ac_llvm_context *ctx, LLVMValueRef src0)
2538 {
2539 LLVMValueRef result;
2540 unsigned bitsize;
2541
2542 bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(src0));
2543
2544 switch (bitsize) {
2545 case 64:
2546 result = ac_build_intrinsic(ctx, "llvm.ctpop.i64", ctx->i64,
2547 (LLVMValueRef []) { src0 }, 1,
2548 AC_FUNC_ATTR_READNONE);
2549
2550 result = LLVMBuildTrunc(ctx->builder, result, ctx->i32, "");
2551 break;
2552 case 32:
2553 result = ac_build_intrinsic(ctx, "llvm.ctpop.i32", ctx->i32,
2554 (LLVMValueRef []) { src0 }, 1,
2555 AC_FUNC_ATTR_READNONE);
2556 break;
2557 case 16:
2558 result = ac_build_intrinsic(ctx, "llvm.ctpop.i16", ctx->i16,
2559 (LLVMValueRef []) { src0 }, 1,
2560 AC_FUNC_ATTR_READNONE);
2561
2562 result = LLVMBuildZExt(ctx->builder, result, ctx->i32, "");
2563 break;
2564 case 8:
2565 result = ac_build_intrinsic(ctx, "llvm.ctpop.i8", ctx->i8,
2566 (LLVMValueRef []) { src0 }, 1,
2567 AC_FUNC_ATTR_READNONE);
2568
2569 result = LLVMBuildZExt(ctx->builder, result, ctx->i32, "");
2570 break;
2571 default:
2572 unreachable(!"invalid bitsize");
2573 break;
2574 }
2575
2576 return result;
2577 }
2578
2579 LLVMValueRef ac_build_bitfield_reverse(struct ac_llvm_context *ctx,
2580 LLVMValueRef src0)
2581 {
2582 LLVMValueRef result;
2583 unsigned bitsize;
2584
2585 bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(src0));
2586
2587 switch (bitsize) {
2588 case 64:
2589 result = ac_build_intrinsic(ctx, "llvm.bitreverse.i64", ctx->i64,
2590 (LLVMValueRef []) { src0 }, 1,
2591 AC_FUNC_ATTR_READNONE);
2592
2593 result = LLVMBuildTrunc(ctx->builder, result, ctx->i32, "");
2594 break;
2595 case 32:
2596 result = ac_build_intrinsic(ctx, "llvm.bitreverse.i32", ctx->i32,
2597 (LLVMValueRef []) { src0 }, 1,
2598 AC_FUNC_ATTR_READNONE);
2599 break;
2600 case 16:
2601 result = ac_build_intrinsic(ctx, "llvm.bitreverse.i16", ctx->i16,
2602 (LLVMValueRef []) { src0 }, 1,
2603 AC_FUNC_ATTR_READNONE);
2604
2605 result = LLVMBuildZExt(ctx->builder, result, ctx->i32, "");
2606 break;
2607 case 8:
2608 result = ac_build_intrinsic(ctx, "llvm.bitreverse.i8", ctx->i8,
2609 (LLVMValueRef []) { src0 }, 1,
2610 AC_FUNC_ATTR_READNONE);
2611
2612 result = LLVMBuildZExt(ctx->builder, result, ctx->i32, "");
2613 break;
2614 default:
2615 unreachable(!"invalid bitsize");
2616 break;
2617 }
2618
2619 return result;
2620 }
2621
2622 #define AC_EXP_TARGET 0
2623 #define AC_EXP_ENABLED_CHANNELS 1
2624 #define AC_EXP_OUT0 2
2625
2626 enum ac_ir_type {
2627 AC_IR_UNDEF,
2628 AC_IR_CONST,
2629 AC_IR_VALUE,
2630 };
2631
2632 struct ac_vs_exp_chan
2633 {
2634 LLVMValueRef value;
2635 float const_float;
2636 enum ac_ir_type type;
2637 };
2638
2639 struct ac_vs_exp_inst {
2640 unsigned offset;
2641 LLVMValueRef inst;
2642 struct ac_vs_exp_chan chan[4];
2643 };
2644
2645 struct ac_vs_exports {
2646 unsigned num;
2647 struct ac_vs_exp_inst exp[VARYING_SLOT_MAX];
2648 };
2649
2650 /* Return true if the PARAM export has been eliminated. */
2651 static bool ac_eliminate_const_output(uint8_t *vs_output_param_offset,
2652 uint32_t num_outputs,
2653 struct ac_vs_exp_inst *exp)
2654 {
2655 unsigned i, default_val; /* SPI_PS_INPUT_CNTL_i.DEFAULT_VAL */
2656 bool is_zero[4] = {}, is_one[4] = {};
2657
2658 for (i = 0; i < 4; i++) {
2659 /* It's a constant expression. Undef outputs are eliminated too. */
2660 if (exp->chan[i].type == AC_IR_UNDEF) {
2661 is_zero[i] = true;
2662 is_one[i] = true;
2663 } else if (exp->chan[i].type == AC_IR_CONST) {
2664 if (exp->chan[i].const_float == 0)
2665 is_zero[i] = true;
2666 else if (exp->chan[i].const_float == 1)
2667 is_one[i] = true;
2668 else
2669 return false; /* other constant */
2670 } else
2671 return false;
2672 }
2673
2674 /* Only certain combinations of 0 and 1 can be eliminated. */
2675 if (is_zero[0] && is_zero[1] && is_zero[2])
2676 default_val = is_zero[3] ? 0 : 1;
2677 else if (is_one[0] && is_one[1] && is_one[2])
2678 default_val = is_zero[3] ? 2 : 3;
2679 else
2680 return false;
2681
2682 /* The PARAM export can be represented as DEFAULT_VAL. Kill it. */
2683 LLVMInstructionEraseFromParent(exp->inst);
2684
2685 /* Change OFFSET to DEFAULT_VAL. */
2686 for (i = 0; i < num_outputs; i++) {
2687 if (vs_output_param_offset[i] == exp->offset) {
2688 vs_output_param_offset[i] =
2689 AC_EXP_PARAM_DEFAULT_VAL_0000 + default_val;
2690 break;
2691 }
2692 }
2693 return true;
2694 }
2695
2696 static bool ac_eliminate_duplicated_output(struct ac_llvm_context *ctx,
2697 uint8_t *vs_output_param_offset,
2698 uint32_t num_outputs,
2699 struct ac_vs_exports *processed,
2700 struct ac_vs_exp_inst *exp)
2701 {
2702 unsigned p, copy_back_channels = 0;
2703
2704 /* See if the output is already in the list of processed outputs.
2705 * The LLVMValueRef comparison relies on SSA.
2706 */
2707 for (p = 0; p < processed->num; p++) {
2708 bool different = false;
2709
2710 for (unsigned j = 0; j < 4; j++) {
2711 struct ac_vs_exp_chan *c1 = &processed->exp[p].chan[j];
2712 struct ac_vs_exp_chan *c2 = &exp->chan[j];
2713
2714 /* Treat undef as a match. */
2715 if (c2->type == AC_IR_UNDEF)
2716 continue;
2717
2718 /* If c1 is undef but c2 isn't, we can copy c2 to c1
2719 * and consider the instruction duplicated.
2720 */
2721 if (c1->type == AC_IR_UNDEF) {
2722 copy_back_channels |= 1 << j;
2723 continue;
2724 }
2725
2726 /* Test whether the channels are not equal. */
2727 if (c1->type != c2->type ||
2728 (c1->type == AC_IR_CONST &&
2729 c1->const_float != c2->const_float) ||
2730 (c1->type == AC_IR_VALUE &&
2731 c1->value != c2->value)) {
2732 different = true;
2733 break;
2734 }
2735 }
2736 if (!different)
2737 break;
2738
2739 copy_back_channels = 0;
2740 }
2741 if (p == processed->num)
2742 return false;
2743
2744 /* If a match was found, but the matching export has undef where the new
2745 * one has a normal value, copy the normal value to the undef channel.
2746 */
2747 struct ac_vs_exp_inst *match = &processed->exp[p];
2748
2749 /* Get current enabled channels mask. */
2750 LLVMValueRef arg = LLVMGetOperand(match->inst, AC_EXP_ENABLED_CHANNELS);
2751 unsigned enabled_channels = LLVMConstIntGetZExtValue(arg);
2752
2753 while (copy_back_channels) {
2754 unsigned chan = u_bit_scan(&copy_back_channels);
2755
2756 assert(match->chan[chan].type == AC_IR_UNDEF);
2757 LLVMSetOperand(match->inst, AC_EXP_OUT0 + chan,
2758 exp->chan[chan].value);
2759 match->chan[chan] = exp->chan[chan];
2760
2761 /* Update number of enabled channels because the original mask
2762 * is not always 0xf.
2763 */
2764 enabled_channels |= (1 << chan);
2765 LLVMSetOperand(match->inst, AC_EXP_ENABLED_CHANNELS,
2766 LLVMConstInt(ctx->i32, enabled_channels, 0));
2767 }
2768
2769 /* The PARAM export is duplicated. Kill it. */
2770 LLVMInstructionEraseFromParent(exp->inst);
2771
2772 /* Change OFFSET to the matching export. */
2773 for (unsigned i = 0; i < num_outputs; i++) {
2774 if (vs_output_param_offset[i] == exp->offset) {
2775 vs_output_param_offset[i] = match->offset;
2776 break;
2777 }
2778 }
2779 return true;
2780 }
2781
2782 void ac_optimize_vs_outputs(struct ac_llvm_context *ctx,
2783 LLVMValueRef main_fn,
2784 uint8_t *vs_output_param_offset,
2785 uint32_t num_outputs,
2786 uint8_t *num_param_exports)
2787 {
2788 LLVMBasicBlockRef bb;
2789 bool removed_any = false;
2790 struct ac_vs_exports exports;
2791
2792 exports.num = 0;
2793
2794 /* Process all LLVM instructions. */
2795 bb = LLVMGetFirstBasicBlock(main_fn);
2796 while (bb) {
2797 LLVMValueRef inst = LLVMGetFirstInstruction(bb);
2798
2799 while (inst) {
2800 LLVMValueRef cur = inst;
2801 inst = LLVMGetNextInstruction(inst);
2802 struct ac_vs_exp_inst exp;
2803
2804 if (LLVMGetInstructionOpcode(cur) != LLVMCall)
2805 continue;
2806
2807 LLVMValueRef callee = ac_llvm_get_called_value(cur);
2808
2809 if (!ac_llvm_is_function(callee))
2810 continue;
2811
2812 const char *name = LLVMGetValueName(callee);
2813 unsigned num_args = LLVMCountParams(callee);
2814
2815 /* Check if this is an export instruction. */
2816 if ((num_args != 9 && num_args != 8) ||
2817 (strcmp(name, "llvm.SI.export") &&
2818 strcmp(name, "llvm.amdgcn.exp.f32")))
2819 continue;
2820
2821 LLVMValueRef arg = LLVMGetOperand(cur, AC_EXP_TARGET);
2822 unsigned target = LLVMConstIntGetZExtValue(arg);
2823
2824 if (target < V_008DFC_SQ_EXP_PARAM)
2825 continue;
2826
2827 target -= V_008DFC_SQ_EXP_PARAM;
2828
2829 /* Parse the instruction. */
2830 memset(&exp, 0, sizeof(exp));
2831 exp.offset = target;
2832 exp.inst = cur;
2833
2834 for (unsigned i = 0; i < 4; i++) {
2835 LLVMValueRef v = LLVMGetOperand(cur, AC_EXP_OUT0 + i);
2836
2837 exp.chan[i].value = v;
2838
2839 if (LLVMIsUndef(v)) {
2840 exp.chan[i].type = AC_IR_UNDEF;
2841 } else if (LLVMIsAConstantFP(v)) {
2842 LLVMBool loses_info;
2843 exp.chan[i].type = AC_IR_CONST;
2844 exp.chan[i].const_float =
2845 LLVMConstRealGetDouble(v, &loses_info);
2846 } else {
2847 exp.chan[i].type = AC_IR_VALUE;
2848 }
2849 }
2850
2851 /* Eliminate constant and duplicated PARAM exports. */
2852 if (ac_eliminate_const_output(vs_output_param_offset,
2853 num_outputs, &exp) ||
2854 ac_eliminate_duplicated_output(ctx,
2855 vs_output_param_offset,
2856 num_outputs, &exports,
2857 &exp)) {
2858 removed_any = true;
2859 } else {
2860 exports.exp[exports.num++] = exp;
2861 }
2862 }
2863 bb = LLVMGetNextBasicBlock(bb);
2864 }
2865
2866 /* Remove holes in export memory due to removed PARAM exports.
2867 * This is done by renumbering all PARAM exports.
2868 */
2869 if (removed_any) {
2870 uint8_t old_offset[VARYING_SLOT_MAX];
2871 unsigned out, i;
2872
2873 /* Make a copy of the offsets. We need the old version while
2874 * we are modifying some of them. */
2875 memcpy(old_offset, vs_output_param_offset,
2876 sizeof(old_offset));
2877
2878 for (i = 0; i < exports.num; i++) {
2879 unsigned offset = exports.exp[i].offset;
2880
2881 /* Update vs_output_param_offset. Multiple outputs can
2882 * have the same offset.
2883 */
2884 for (out = 0; out < num_outputs; out++) {
2885 if (old_offset[out] == offset)
2886 vs_output_param_offset[out] = i;
2887 }
2888
2889 /* Change the PARAM offset in the instruction. */
2890 LLVMSetOperand(exports.exp[i].inst, AC_EXP_TARGET,
2891 LLVMConstInt(ctx->i32,
2892 V_008DFC_SQ_EXP_PARAM + i, 0));
2893 }
2894 *num_param_exports = exports.num;
2895 }
2896 }
2897
2898 void ac_init_exec_full_mask(struct ac_llvm_context *ctx)
2899 {
2900 LLVMValueRef full_mask = LLVMConstInt(ctx->i64, ~0ull, 0);
2901 ac_build_intrinsic(ctx,
2902 "llvm.amdgcn.init.exec", ctx->voidt,
2903 &full_mask, 1, AC_FUNC_ATTR_CONVERGENT);
2904 }
2905
2906 void ac_declare_lds_as_pointer(struct ac_llvm_context *ctx)
2907 {
2908 unsigned lds_size = ctx->chip_class >= CIK ? 65536 : 32768;
2909 ctx->lds = LLVMBuildIntToPtr(ctx->builder, ctx->i32_0,
2910 LLVMPointerType(LLVMArrayType(ctx->i32, lds_size / 4), AC_ADDR_SPACE_LDS),
2911 "lds");
2912 }
2913
2914 LLVMValueRef ac_lds_load(struct ac_llvm_context *ctx,
2915 LLVMValueRef dw_addr)
2916 {
2917 return ac_build_load(ctx, ctx->lds, dw_addr);
2918 }
2919
2920 void ac_lds_store(struct ac_llvm_context *ctx,
2921 LLVMValueRef dw_addr,
2922 LLVMValueRef value)
2923 {
2924 value = ac_to_integer(ctx, value);
2925 ac_build_indexed_store(ctx, ctx->lds,
2926 dw_addr, value);
2927 }
2928
2929 LLVMValueRef ac_find_lsb(struct ac_llvm_context *ctx,
2930 LLVMTypeRef dst_type,
2931 LLVMValueRef src0)
2932 {
2933 unsigned src0_bitsize = ac_get_elem_bits(ctx, LLVMTypeOf(src0));
2934 const char *intrin_name;
2935 LLVMTypeRef type;
2936 LLVMValueRef zero;
2937
2938 switch (src0_bitsize) {
2939 case 64:
2940 intrin_name = "llvm.cttz.i64";
2941 type = ctx->i64;
2942 zero = ctx->i64_0;
2943 break;
2944 case 32:
2945 intrin_name = "llvm.cttz.i32";
2946 type = ctx->i32;
2947 zero = ctx->i32_0;
2948 break;
2949 case 16:
2950 intrin_name = "llvm.cttz.i16";
2951 type = ctx->i16;
2952 zero = ctx->i16_0;
2953 break;
2954 case 8:
2955 intrin_name = "llvm.cttz.i8";
2956 type = ctx->i8;
2957 zero = ctx->i8_0;
2958 break;
2959 default:
2960 unreachable(!"invalid bitsize");
2961 }
2962
2963 LLVMValueRef params[2] = {
2964 src0,
2965
2966 /* The value of 1 means that ffs(x=0) = undef, so LLVM won't
2967 * add special code to check for x=0. The reason is that
2968 * the LLVM behavior for x=0 is different from what we
2969 * need here. However, LLVM also assumes that ffs(x) is
2970 * in [0, 31], but GLSL expects that ffs(0) = -1, so
2971 * a conditional assignment to handle 0 is still required.
2972 *
2973 * The hardware already implements the correct behavior.
2974 */
2975 ctx->i1true,
2976 };
2977
2978 LLVMValueRef lsb = ac_build_intrinsic(ctx, intrin_name, type,
2979 params, 2,
2980 AC_FUNC_ATTR_READNONE);
2981
2982 if (src0_bitsize == 64) {
2983 lsb = LLVMBuildTrunc(ctx->builder, lsb, ctx->i32, "");
2984 } else if (src0_bitsize < 32) {
2985 lsb = LLVMBuildSExt(ctx->builder, lsb, ctx->i32, "");
2986 }
2987
2988 /* TODO: We need an intrinsic to skip this conditional. */
2989 /* Check for zero: */
2990 return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder,
2991 LLVMIntEQ, src0,
2992 zero, ""),
2993 LLVMConstInt(ctx->i32, -1, 0), lsb, "");
2994 }
2995
2996 LLVMTypeRef ac_array_in_const_addr_space(LLVMTypeRef elem_type)
2997 {
2998 return LLVMPointerType(LLVMArrayType(elem_type, 0),
2999 AC_ADDR_SPACE_CONST);
3000 }
3001
3002 LLVMTypeRef ac_array_in_const32_addr_space(LLVMTypeRef elem_type)
3003 {
3004 return LLVMPointerType(LLVMArrayType(elem_type, 0),
3005 AC_ADDR_SPACE_CONST_32BIT);
3006 }
3007
3008 static struct ac_llvm_flow *
3009 get_current_flow(struct ac_llvm_context *ctx)
3010 {
3011 if (ctx->flow_depth > 0)
3012 return &ctx->flow[ctx->flow_depth - 1];
3013 return NULL;
3014 }
3015
3016 static struct ac_llvm_flow *
3017 get_innermost_loop(struct ac_llvm_context *ctx)
3018 {
3019 for (unsigned i = ctx->flow_depth; i > 0; --i) {
3020 if (ctx->flow[i - 1].loop_entry_block)
3021 return &ctx->flow[i - 1];
3022 }
3023 return NULL;
3024 }
3025
3026 static struct ac_llvm_flow *
3027 push_flow(struct ac_llvm_context *ctx)
3028 {
3029 struct ac_llvm_flow *flow;
3030
3031 if (ctx->flow_depth >= ctx->flow_depth_max) {
3032 unsigned new_max = MAX2(ctx->flow_depth << 1,
3033 AC_LLVM_INITIAL_CF_DEPTH);
3034
3035 ctx->flow = realloc(ctx->flow, new_max * sizeof(*ctx->flow));
3036 ctx->flow_depth_max = new_max;
3037 }
3038
3039 flow = &ctx->flow[ctx->flow_depth];
3040 ctx->flow_depth++;
3041
3042 flow->next_block = NULL;
3043 flow->loop_entry_block = NULL;
3044 return flow;
3045 }
3046
3047 static void set_basicblock_name(LLVMBasicBlockRef bb, const char *base,
3048 int label_id)
3049 {
3050 char buf[32];
3051 snprintf(buf, sizeof(buf), "%s%d", base, label_id);
3052 LLVMSetValueName(LLVMBasicBlockAsValue(bb), buf);
3053 }
3054
3055 /* Append a basic block at the level of the parent flow.
3056 */
3057 static LLVMBasicBlockRef append_basic_block(struct ac_llvm_context *ctx,
3058 const char *name)
3059 {
3060 assert(ctx->flow_depth >= 1);
3061
3062 if (ctx->flow_depth >= 2) {
3063 struct ac_llvm_flow *flow = &ctx->flow[ctx->flow_depth - 2];
3064
3065 return LLVMInsertBasicBlockInContext(ctx->context,
3066 flow->next_block, name);
3067 }
3068
3069 LLVMValueRef main_fn =
3070 LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->builder));
3071 return LLVMAppendBasicBlockInContext(ctx->context, main_fn, name);
3072 }
3073
3074 /* Emit a branch to the given default target for the current block if
3075 * applicable -- that is, if the current block does not already contain a
3076 * branch from a break or continue.
3077 */
3078 static void emit_default_branch(LLVMBuilderRef builder,
3079 LLVMBasicBlockRef target)
3080 {
3081 if (!LLVMGetBasicBlockTerminator(LLVMGetInsertBlock(builder)))
3082 LLVMBuildBr(builder, target);
3083 }
3084
3085 void ac_build_bgnloop(struct ac_llvm_context *ctx, int label_id)
3086 {
3087 struct ac_llvm_flow *flow = push_flow(ctx);
3088 flow->loop_entry_block = append_basic_block(ctx, "LOOP");
3089 flow->next_block = append_basic_block(ctx, "ENDLOOP");
3090 set_basicblock_name(flow->loop_entry_block, "loop", label_id);
3091 LLVMBuildBr(ctx->builder, flow->loop_entry_block);
3092 LLVMPositionBuilderAtEnd(ctx->builder, flow->loop_entry_block);
3093 }
3094
3095 void ac_build_break(struct ac_llvm_context *ctx)
3096 {
3097 struct ac_llvm_flow *flow = get_innermost_loop(ctx);
3098 LLVMBuildBr(ctx->builder, flow->next_block);
3099 }
3100
3101 void ac_build_continue(struct ac_llvm_context *ctx)
3102 {
3103 struct ac_llvm_flow *flow = get_innermost_loop(ctx);
3104 LLVMBuildBr(ctx->builder, flow->loop_entry_block);
3105 }
3106
3107 void ac_build_else(struct ac_llvm_context *ctx, int label_id)
3108 {
3109 struct ac_llvm_flow *current_branch = get_current_flow(ctx);
3110 LLVMBasicBlockRef endif_block;
3111
3112 assert(!current_branch->loop_entry_block);
3113
3114 endif_block = append_basic_block(ctx, "ENDIF");
3115 emit_default_branch(ctx->builder, endif_block);
3116
3117 LLVMPositionBuilderAtEnd(ctx->builder, current_branch->next_block);
3118 set_basicblock_name(current_branch->next_block, "else", label_id);
3119
3120 current_branch->next_block = endif_block;
3121 }
3122
3123 void ac_build_endif(struct ac_llvm_context *ctx, int label_id)
3124 {
3125 struct ac_llvm_flow *current_branch = get_current_flow(ctx);
3126
3127 assert(!current_branch->loop_entry_block);
3128
3129 emit_default_branch(ctx->builder, current_branch->next_block);
3130 LLVMPositionBuilderAtEnd(ctx->builder, current_branch->next_block);
3131 set_basicblock_name(current_branch->next_block, "endif", label_id);
3132
3133 ctx->flow_depth--;
3134 }
3135
3136 void ac_build_endloop(struct ac_llvm_context *ctx, int label_id)
3137 {
3138 struct ac_llvm_flow *current_loop = get_current_flow(ctx);
3139
3140 assert(current_loop->loop_entry_block);
3141
3142 emit_default_branch(ctx->builder, current_loop->loop_entry_block);
3143
3144 LLVMPositionBuilderAtEnd(ctx->builder, current_loop->next_block);
3145 set_basicblock_name(current_loop->next_block, "endloop", label_id);
3146 ctx->flow_depth--;
3147 }
3148
3149 void ac_build_ifcc(struct ac_llvm_context *ctx, LLVMValueRef cond, int label_id)
3150 {
3151 struct ac_llvm_flow *flow = push_flow(ctx);
3152 LLVMBasicBlockRef if_block;
3153
3154 if_block = append_basic_block(ctx, "IF");
3155 flow->next_block = append_basic_block(ctx, "ELSE");
3156 set_basicblock_name(if_block, "if", label_id);
3157 LLVMBuildCondBr(ctx->builder, cond, if_block, flow->next_block);
3158 LLVMPositionBuilderAtEnd(ctx->builder, if_block);
3159 }
3160
3161 void ac_build_if(struct ac_llvm_context *ctx, LLVMValueRef value,
3162 int label_id)
3163 {
3164 LLVMValueRef cond = LLVMBuildFCmp(ctx->builder, LLVMRealUNE,
3165 value, ctx->f32_0, "");
3166 ac_build_ifcc(ctx, cond, label_id);
3167 }
3168
3169 void ac_build_uif(struct ac_llvm_context *ctx, LLVMValueRef value,
3170 int label_id)
3171 {
3172 LLVMValueRef cond = LLVMBuildICmp(ctx->builder, LLVMIntNE,
3173 ac_to_integer(ctx, value),
3174 ctx->i32_0, "");
3175 ac_build_ifcc(ctx, cond, label_id);
3176 }
3177
3178 LLVMValueRef ac_build_alloca_undef(struct ac_llvm_context *ac, LLVMTypeRef type,
3179 const char *name)
3180 {
3181 LLVMBuilderRef builder = ac->builder;
3182 LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
3183 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
3184 LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
3185 LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
3186 LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(ac->context);
3187 LLVMValueRef res;
3188
3189 if (first_instr) {
3190 LLVMPositionBuilderBefore(first_builder, first_instr);
3191 } else {
3192 LLVMPositionBuilderAtEnd(first_builder, first_block);
3193 }
3194
3195 res = LLVMBuildAlloca(first_builder, type, name);
3196 LLVMDisposeBuilder(first_builder);
3197 return res;
3198 }
3199
3200 LLVMValueRef ac_build_alloca(struct ac_llvm_context *ac,
3201 LLVMTypeRef type, const char *name)
3202 {
3203 LLVMValueRef ptr = ac_build_alloca_undef(ac, type, name);
3204 LLVMBuildStore(ac->builder, LLVMConstNull(type), ptr);
3205 return ptr;
3206 }
3207
3208 LLVMValueRef ac_cast_ptr(struct ac_llvm_context *ctx, LLVMValueRef ptr,
3209 LLVMTypeRef type)
3210 {
3211 int addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
3212 return LLVMBuildBitCast(ctx->builder, ptr,
3213 LLVMPointerType(type, addr_space), "");
3214 }
3215
3216 LLVMValueRef ac_trim_vector(struct ac_llvm_context *ctx, LLVMValueRef value,
3217 unsigned count)
3218 {
3219 unsigned num_components = ac_get_llvm_num_components(value);
3220 if (count == num_components)
3221 return value;
3222
3223 LLVMValueRef masks[MAX2(count, 2)];
3224 masks[0] = ctx->i32_0;
3225 masks[1] = ctx->i32_1;
3226 for (unsigned i = 2; i < count; i++)
3227 masks[i] = LLVMConstInt(ctx->i32, i, false);
3228
3229 if (count == 1)
3230 return LLVMBuildExtractElement(ctx->builder, value, masks[0],
3231 "");
3232
3233 LLVMValueRef swizzle = LLVMConstVector(masks, count);
3234 return LLVMBuildShuffleVector(ctx->builder, value, value, swizzle, "");
3235 }
3236
3237 LLVMValueRef ac_unpack_param(struct ac_llvm_context *ctx, LLVMValueRef param,
3238 unsigned rshift, unsigned bitwidth)
3239 {
3240 LLVMValueRef value = param;
3241 if (rshift)
3242 value = LLVMBuildLShr(ctx->builder, value,
3243 LLVMConstInt(ctx->i32, rshift, false), "");
3244
3245 if (rshift + bitwidth < 32) {
3246 unsigned mask = (1 << bitwidth) - 1;
3247 value = LLVMBuildAnd(ctx->builder, value,
3248 LLVMConstInt(ctx->i32, mask, false), "");
3249 }
3250 return value;
3251 }
3252
3253 /* Adjust the sample index according to FMASK.
3254 *
3255 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
3256 * which is the identity mapping. Each nibble says which physical sample
3257 * should be fetched to get that sample.
3258 *
3259 * For example, 0x11111100 means there are only 2 samples stored and
3260 * the second sample covers 3/4 of the pixel. When reading samples 0
3261 * and 1, return physical sample 0 (determined by the first two 0s
3262 * in FMASK), otherwise return physical sample 1.
3263 *
3264 * The sample index should be adjusted as follows:
3265 * addr[sample_index] = (fmask >> (addr[sample_index] * 4)) & 0xF;
3266 */
3267 void ac_apply_fmask_to_sample(struct ac_llvm_context *ac, LLVMValueRef fmask,
3268 LLVMValueRef *addr, bool is_array_tex)
3269 {
3270 struct ac_image_args fmask_load = {};
3271 fmask_load.opcode = ac_image_load;
3272 fmask_load.resource = fmask;
3273 fmask_load.dmask = 0xf;
3274 fmask_load.dim = is_array_tex ? ac_image_2darray : ac_image_2d;
3275
3276 fmask_load.coords[0] = addr[0];
3277 fmask_load.coords[1] = addr[1];
3278 if (is_array_tex)
3279 fmask_load.coords[2] = addr[2];
3280
3281 LLVMValueRef fmask_value = ac_build_image_opcode(ac, &fmask_load);
3282 fmask_value = LLVMBuildExtractElement(ac->builder, fmask_value,
3283 ac->i32_0, "");
3284
3285 /* Apply the formula. */
3286 unsigned sample_chan = is_array_tex ? 3 : 2;
3287 LLVMValueRef final_sample;
3288 final_sample = LLVMBuildMul(ac->builder, addr[sample_chan],
3289 LLVMConstInt(ac->i32, 4, 0), "");
3290 final_sample = LLVMBuildLShr(ac->builder, fmask_value, final_sample, "");
3291 /* Mask the sample index by 0x7, because 0x8 means an unknown value
3292 * with EQAA, so those will map to 0. */
3293 final_sample = LLVMBuildAnd(ac->builder, final_sample,
3294 LLVMConstInt(ac->i32, 0x7, 0), "");
3295
3296 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
3297 * resource descriptor is 0 (invalid).
3298 */
3299 LLVMValueRef tmp;
3300 tmp = LLVMBuildBitCast(ac->builder, fmask, ac->v8i32, "");
3301 tmp = LLVMBuildExtractElement(ac->builder, tmp, ac->i32_1, "");
3302 tmp = LLVMBuildICmp(ac->builder, LLVMIntNE, tmp, ac->i32_0, "");
3303
3304 /* Replace the MSAA sample index. */
3305 addr[sample_chan] = LLVMBuildSelect(ac->builder, tmp, final_sample,
3306 addr[sample_chan], "");
3307 }
3308
3309 static LLVMValueRef
3310 _ac_build_readlane(struct ac_llvm_context *ctx, LLVMValueRef src, LLVMValueRef lane)
3311 {
3312 ac_build_optimization_barrier(ctx, &src);
3313 return ac_build_intrinsic(ctx,
3314 lane == NULL ? "llvm.amdgcn.readfirstlane" : "llvm.amdgcn.readlane",
3315 LLVMTypeOf(src), (LLVMValueRef []) {
3316 src, lane },
3317 lane == NULL ? 1 : 2,
3318 AC_FUNC_ATTR_READNONE |
3319 AC_FUNC_ATTR_CONVERGENT);
3320 }
3321
3322 /**
3323 * Builds the "llvm.amdgcn.readlane" or "llvm.amdgcn.readfirstlane" intrinsic.
3324 * @param ctx
3325 * @param src
3326 * @param lane - id of the lane or NULL for the first active lane
3327 * @return value of the lane
3328 */
3329 LLVMValueRef
3330 ac_build_readlane(struct ac_llvm_context *ctx, LLVMValueRef src, LLVMValueRef lane)
3331 {
3332 LLVMTypeRef src_type = LLVMTypeOf(src);
3333 src = ac_to_integer(ctx, src);
3334 unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(src));
3335 LLVMValueRef ret;
3336
3337 if (bits == 32) {
3338 ret = _ac_build_readlane(ctx, src, lane);
3339 } else {
3340 assert(bits % 32 == 0);
3341 LLVMTypeRef vec_type = LLVMVectorType(ctx->i32, bits / 32);
3342 LLVMValueRef src_vector =
3343 LLVMBuildBitCast(ctx->builder, src, vec_type, "");
3344 ret = LLVMGetUndef(vec_type);
3345 for (unsigned i = 0; i < bits / 32; i++) {
3346 src = LLVMBuildExtractElement(ctx->builder, src_vector,
3347 LLVMConstInt(ctx->i32, i, 0), "");
3348 LLVMValueRef ret_comp = _ac_build_readlane(ctx, src, lane);
3349 ret = LLVMBuildInsertElement(ctx->builder, ret, ret_comp,
3350 LLVMConstInt(ctx->i32, i, 0), "");
3351 }
3352 }
3353 return LLVMBuildBitCast(ctx->builder, ret, src_type, "");
3354 }
3355
3356 LLVMValueRef
3357 ac_build_writelane(struct ac_llvm_context *ctx, LLVMValueRef src, LLVMValueRef value, LLVMValueRef lane)
3358 {
3359 /* TODO: Use the actual instruction when LLVM adds an intrinsic for it.
3360 */
3361 LLVMValueRef pred = LLVMBuildICmp(ctx->builder, LLVMIntEQ, lane,
3362 ac_get_thread_id(ctx), "");
3363 return LLVMBuildSelect(ctx->builder, pred, value, src, "");
3364 }
3365
3366 LLVMValueRef
3367 ac_build_mbcnt(struct ac_llvm_context *ctx, LLVMValueRef mask)
3368 {
3369 LLVMValueRef mask_vec = LLVMBuildBitCast(ctx->builder, mask,
3370 LLVMVectorType(ctx->i32, 2),
3371 "");
3372 LLVMValueRef mask_lo = LLVMBuildExtractElement(ctx->builder, mask_vec,
3373 ctx->i32_0, "");
3374 LLVMValueRef mask_hi = LLVMBuildExtractElement(ctx->builder, mask_vec,
3375 ctx->i32_1, "");
3376 LLVMValueRef val =
3377 ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.lo", ctx->i32,
3378 (LLVMValueRef []) { mask_lo, ctx->i32_0 },
3379 2, AC_FUNC_ATTR_READNONE);
3380 val = ac_build_intrinsic(ctx, "llvm.amdgcn.mbcnt.hi", ctx->i32,
3381 (LLVMValueRef []) { mask_hi, val },
3382 2, AC_FUNC_ATTR_READNONE);
3383 return val;
3384 }
3385
3386 enum dpp_ctrl {
3387 _dpp_quad_perm = 0x000,
3388 _dpp_row_sl = 0x100,
3389 _dpp_row_sr = 0x110,
3390 _dpp_row_rr = 0x120,
3391 dpp_wf_sl1 = 0x130,
3392 dpp_wf_rl1 = 0x134,
3393 dpp_wf_sr1 = 0x138,
3394 dpp_wf_rr1 = 0x13C,
3395 dpp_row_mirror = 0x140,
3396 dpp_row_half_mirror = 0x141,
3397 dpp_row_bcast15 = 0x142,
3398 dpp_row_bcast31 = 0x143
3399 };
3400
3401 static inline enum dpp_ctrl
3402 dpp_quad_perm(unsigned lane0, unsigned lane1, unsigned lane2, unsigned lane3)
3403 {
3404 assert(lane0 < 4 && lane1 < 4 && lane2 < 4 && lane3 < 4);
3405 return _dpp_quad_perm | lane0 | (lane1 << 2) | (lane2 << 4) | (lane3 << 6);
3406 }
3407
3408 static inline enum dpp_ctrl
3409 dpp_row_sl(unsigned amount)
3410 {
3411 assert(amount > 0 && amount < 16);
3412 return _dpp_row_sl | amount;
3413 }
3414
3415 static inline enum dpp_ctrl
3416 dpp_row_sr(unsigned amount)
3417 {
3418 assert(amount > 0 && amount < 16);
3419 return _dpp_row_sr | amount;
3420 }
3421
3422 static LLVMValueRef
3423 _ac_build_dpp(struct ac_llvm_context *ctx, LLVMValueRef old, LLVMValueRef src,
3424 enum dpp_ctrl dpp_ctrl, unsigned row_mask, unsigned bank_mask,
3425 bool bound_ctrl)
3426 {
3427 return ac_build_intrinsic(ctx, "llvm.amdgcn.update.dpp.i32",
3428 LLVMTypeOf(old),
3429 (LLVMValueRef[]) {
3430 old, src,
3431 LLVMConstInt(ctx->i32, dpp_ctrl, 0),
3432 LLVMConstInt(ctx->i32, row_mask, 0),
3433 LLVMConstInt(ctx->i32, bank_mask, 0),
3434 LLVMConstInt(ctx->i1, bound_ctrl, 0) },
3435 6, AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_CONVERGENT);
3436 }
3437
3438 static LLVMValueRef
3439 ac_build_dpp(struct ac_llvm_context *ctx, LLVMValueRef old, LLVMValueRef src,
3440 enum dpp_ctrl dpp_ctrl, unsigned row_mask, unsigned bank_mask,
3441 bool bound_ctrl)
3442 {
3443 LLVMTypeRef src_type = LLVMTypeOf(src);
3444 src = ac_to_integer(ctx, src);
3445 old = ac_to_integer(ctx, old);
3446 unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(src));
3447 LLVMValueRef ret;
3448 if (bits == 32) {
3449 ret = _ac_build_dpp(ctx, old, src, dpp_ctrl, row_mask,
3450 bank_mask, bound_ctrl);
3451 } else {
3452 assert(bits % 32 == 0);
3453 LLVMTypeRef vec_type = LLVMVectorType(ctx->i32, bits / 32);
3454 LLVMValueRef src_vector =
3455 LLVMBuildBitCast(ctx->builder, src, vec_type, "");
3456 LLVMValueRef old_vector =
3457 LLVMBuildBitCast(ctx->builder, old, vec_type, "");
3458 ret = LLVMGetUndef(vec_type);
3459 for (unsigned i = 0; i < bits / 32; i++) {
3460 src = LLVMBuildExtractElement(ctx->builder, src_vector,
3461 LLVMConstInt(ctx->i32, i,
3462 0), "");
3463 old = LLVMBuildExtractElement(ctx->builder, old_vector,
3464 LLVMConstInt(ctx->i32, i,
3465 0), "");
3466 LLVMValueRef ret_comp = _ac_build_dpp(ctx, old, src,
3467 dpp_ctrl,
3468 row_mask,
3469 bank_mask,
3470 bound_ctrl);
3471 ret = LLVMBuildInsertElement(ctx->builder, ret,
3472 ret_comp,
3473 LLVMConstInt(ctx->i32, i,
3474 0), "");
3475 }
3476 }
3477 return LLVMBuildBitCast(ctx->builder, ret, src_type, "");
3478 }
3479
3480 static inline unsigned
3481 ds_pattern_bitmode(unsigned and_mask, unsigned or_mask, unsigned xor_mask)
3482 {
3483 assert(and_mask < 32 && or_mask < 32 && xor_mask < 32);
3484 return and_mask | (or_mask << 5) | (xor_mask << 10);
3485 }
3486
3487 static LLVMValueRef
3488 _ac_build_ds_swizzle(struct ac_llvm_context *ctx, LLVMValueRef src, unsigned mask)
3489 {
3490 return ac_build_intrinsic(ctx, "llvm.amdgcn.ds.swizzle",
3491 LLVMTypeOf(src), (LLVMValueRef []) {
3492 src, LLVMConstInt(ctx->i32, mask, 0) },
3493 2, AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_CONVERGENT);
3494 }
3495
3496 LLVMValueRef
3497 ac_build_ds_swizzle(struct ac_llvm_context *ctx, LLVMValueRef src, unsigned mask)
3498 {
3499 LLVMTypeRef src_type = LLVMTypeOf(src);
3500 src = ac_to_integer(ctx, src);
3501 unsigned bits = LLVMGetIntTypeWidth(LLVMTypeOf(src));
3502 LLVMValueRef ret;
3503 if (bits == 32) {
3504 ret = _ac_build_ds_swizzle(ctx, src, mask);
3505 } else {
3506 assert(bits % 32 == 0);
3507 LLVMTypeRef vec_type = LLVMVectorType(ctx->i32, bits / 32);
3508 LLVMValueRef src_vector =
3509 LLVMBuildBitCast(ctx->builder, src, vec_type, "");
3510 ret = LLVMGetUndef(vec_type);
3511 for (unsigned i = 0; i < bits / 32; i++) {
3512 src = LLVMBuildExtractElement(ctx->builder, src_vector,
3513 LLVMConstInt(ctx->i32, i,
3514 0), "");
3515 LLVMValueRef ret_comp = _ac_build_ds_swizzle(ctx, src,
3516 mask);
3517 ret = LLVMBuildInsertElement(ctx->builder, ret,
3518 ret_comp,
3519 LLVMConstInt(ctx->i32, i,
3520 0), "");
3521 }
3522 }
3523 return LLVMBuildBitCast(ctx->builder, ret, src_type, "");
3524 }
3525
3526 static LLVMValueRef
3527 ac_build_wwm(struct ac_llvm_context *ctx, LLVMValueRef src)
3528 {
3529 char name[32], type[8];
3530 ac_build_type_name_for_intr(LLVMTypeOf(src), type, sizeof(type));
3531 snprintf(name, sizeof(name), "llvm.amdgcn.wwm.%s", type);
3532 return ac_build_intrinsic(ctx, name, LLVMTypeOf(src),
3533 (LLVMValueRef []) { src }, 1,
3534 AC_FUNC_ATTR_READNONE);
3535 }
3536
3537 static LLVMValueRef
3538 ac_build_set_inactive(struct ac_llvm_context *ctx, LLVMValueRef src,
3539 LLVMValueRef inactive)
3540 {
3541 char name[33], type[8];
3542 LLVMTypeRef src_type = LLVMTypeOf(src);
3543 src = ac_to_integer(ctx, src);
3544 inactive = ac_to_integer(ctx, inactive);
3545 ac_build_type_name_for_intr(LLVMTypeOf(src), type, sizeof(type));
3546 snprintf(name, sizeof(name), "llvm.amdgcn.set.inactive.%s", type);
3547 LLVMValueRef ret =
3548 ac_build_intrinsic(ctx, name,
3549 LLVMTypeOf(src), (LLVMValueRef []) {
3550 src, inactive }, 2,
3551 AC_FUNC_ATTR_READNONE |
3552 AC_FUNC_ATTR_CONVERGENT);
3553 return LLVMBuildBitCast(ctx->builder, ret, src_type, "");
3554 }
3555
3556 static LLVMValueRef
3557 get_reduction_identity(struct ac_llvm_context *ctx, nir_op op, unsigned type_size)
3558 {
3559 if (type_size == 4) {
3560 switch (op) {
3561 case nir_op_iadd: return ctx->i32_0;
3562 case nir_op_fadd: return ctx->f32_0;
3563 case nir_op_imul: return ctx->i32_1;
3564 case nir_op_fmul: return ctx->f32_1;
3565 case nir_op_imin: return LLVMConstInt(ctx->i32, INT32_MAX, 0);
3566 case nir_op_umin: return LLVMConstInt(ctx->i32, UINT32_MAX, 0);
3567 case nir_op_fmin: return LLVMConstReal(ctx->f32, INFINITY);
3568 case nir_op_imax: return LLVMConstInt(ctx->i32, INT32_MIN, 0);
3569 case nir_op_umax: return ctx->i32_0;
3570 case nir_op_fmax: return LLVMConstReal(ctx->f32, -INFINITY);
3571 case nir_op_iand: return LLVMConstInt(ctx->i32, -1, 0);
3572 case nir_op_ior: return ctx->i32_0;
3573 case nir_op_ixor: return ctx->i32_0;
3574 default:
3575 unreachable("bad reduction intrinsic");
3576 }
3577 } else { /* type_size == 64bit */
3578 switch (op) {
3579 case nir_op_iadd: return ctx->i64_0;
3580 case nir_op_fadd: return ctx->f64_0;
3581 case nir_op_imul: return ctx->i64_1;
3582 case nir_op_fmul: return ctx->f64_1;
3583 case nir_op_imin: return LLVMConstInt(ctx->i64, INT64_MAX, 0);
3584 case nir_op_umin: return LLVMConstInt(ctx->i64, UINT64_MAX, 0);
3585 case nir_op_fmin: return LLVMConstReal(ctx->f64, INFINITY);
3586 case nir_op_imax: return LLVMConstInt(ctx->i64, INT64_MIN, 0);
3587 case nir_op_umax: return ctx->i64_0;
3588 case nir_op_fmax: return LLVMConstReal(ctx->f64, -INFINITY);
3589 case nir_op_iand: return LLVMConstInt(ctx->i64, -1, 0);
3590 case nir_op_ior: return ctx->i64_0;
3591 case nir_op_ixor: return ctx->i64_0;
3592 default:
3593 unreachable("bad reduction intrinsic");
3594 }
3595 }
3596 }
3597
3598 static LLVMValueRef
3599 ac_build_alu_op(struct ac_llvm_context *ctx, LLVMValueRef lhs, LLVMValueRef rhs, nir_op op)
3600 {
3601 bool _64bit = ac_get_type_size(LLVMTypeOf(lhs)) == 8;
3602 switch (op) {
3603 case nir_op_iadd: return LLVMBuildAdd(ctx->builder, lhs, rhs, "");
3604 case nir_op_fadd: return LLVMBuildFAdd(ctx->builder, lhs, rhs, "");
3605 case nir_op_imul: return LLVMBuildMul(ctx->builder, lhs, rhs, "");
3606 case nir_op_fmul: return LLVMBuildFMul(ctx->builder, lhs, rhs, "");
3607 case nir_op_imin: return LLVMBuildSelect(ctx->builder,
3608 LLVMBuildICmp(ctx->builder, LLVMIntSLT, lhs, rhs, ""),
3609 lhs, rhs, "");
3610 case nir_op_umin: return LLVMBuildSelect(ctx->builder,
3611 LLVMBuildICmp(ctx->builder, LLVMIntULT, lhs, rhs, ""),
3612 lhs, rhs, "");
3613 case nir_op_fmin: return ac_build_intrinsic(ctx,
3614 _64bit ? "llvm.minnum.f64" : "llvm.minnum.f32",
3615 _64bit ? ctx->f64 : ctx->f32,
3616 (LLVMValueRef[]){lhs, rhs}, 2, AC_FUNC_ATTR_READNONE);
3617 case nir_op_imax: return LLVMBuildSelect(ctx->builder,
3618 LLVMBuildICmp(ctx->builder, LLVMIntSGT, lhs, rhs, ""),
3619 lhs, rhs, "");
3620 case nir_op_umax: return LLVMBuildSelect(ctx->builder,
3621 LLVMBuildICmp(ctx->builder, LLVMIntUGT, lhs, rhs, ""),
3622 lhs, rhs, "");
3623 case nir_op_fmax: return ac_build_intrinsic(ctx,
3624 _64bit ? "llvm.maxnum.f64" : "llvm.maxnum.f32",
3625 _64bit ? ctx->f64 : ctx->f32,
3626 (LLVMValueRef[]){lhs, rhs}, 2, AC_FUNC_ATTR_READNONE);
3627 case nir_op_iand: return LLVMBuildAnd(ctx->builder, lhs, rhs, "");
3628 case nir_op_ior: return LLVMBuildOr(ctx->builder, lhs, rhs, "");
3629 case nir_op_ixor: return LLVMBuildXor(ctx->builder, lhs, rhs, "");
3630 default:
3631 unreachable("bad reduction intrinsic");
3632 }
3633 }
3634
3635 /**
3636 * \param maxprefix specifies that the result only needs to be correct for a
3637 * prefix of this many threads
3638 *
3639 * TODO: add inclusive and excluse scan functions for SI chip class.
3640 */
3641 static LLVMValueRef
3642 ac_build_scan(struct ac_llvm_context *ctx, nir_op op, LLVMValueRef src, LLVMValueRef identity,
3643 unsigned maxprefix)
3644 {
3645 LLVMValueRef result, tmp;
3646 result = src;
3647 if (maxprefix <= 1)
3648 return result;
3649 tmp = ac_build_dpp(ctx, identity, src, dpp_row_sr(1), 0xf, 0xf, false);
3650 result = ac_build_alu_op(ctx, result, tmp, op);
3651 if (maxprefix <= 2)
3652 return result;
3653 tmp = ac_build_dpp(ctx, identity, src, dpp_row_sr(2), 0xf, 0xf, false);
3654 result = ac_build_alu_op(ctx, result, tmp, op);
3655 if (maxprefix <= 3)
3656 return result;
3657 tmp = ac_build_dpp(ctx, identity, src, dpp_row_sr(3), 0xf, 0xf, false);
3658 result = ac_build_alu_op(ctx, result, tmp, op);
3659 if (maxprefix <= 4)
3660 return result;
3661 tmp = ac_build_dpp(ctx, identity, result, dpp_row_sr(4), 0xf, 0xe, false);
3662 result = ac_build_alu_op(ctx, result, tmp, op);
3663 if (maxprefix <= 8)
3664 return result;
3665 tmp = ac_build_dpp(ctx, identity, result, dpp_row_sr(8), 0xf, 0xc, false);
3666 result = ac_build_alu_op(ctx, result, tmp, op);
3667 if (maxprefix <= 16)
3668 return result;
3669 tmp = ac_build_dpp(ctx, identity, result, dpp_row_bcast15, 0xa, 0xf, false);
3670 result = ac_build_alu_op(ctx, result, tmp, op);
3671 if (maxprefix <= 32)
3672 return result;
3673 tmp = ac_build_dpp(ctx, identity, result, dpp_row_bcast31, 0xc, 0xf, false);
3674 result = ac_build_alu_op(ctx, result, tmp, op);
3675 return result;
3676 }
3677
3678 LLVMValueRef
3679 ac_build_inclusive_scan(struct ac_llvm_context *ctx, LLVMValueRef src, nir_op op)
3680 {
3681 LLVMValueRef result;
3682
3683 if (LLVMTypeOf(src) == ctx->i1 && op == nir_op_iadd) {
3684 LLVMBuilderRef builder = ctx->builder;
3685 src = LLVMBuildZExt(builder, src, ctx->i32, "");
3686 result = ac_build_ballot(ctx, src);
3687 result = ac_build_mbcnt(ctx, result);
3688 result = LLVMBuildAdd(builder, result, src, "");
3689 return result;
3690 }
3691
3692 ac_build_optimization_barrier(ctx, &src);
3693
3694 LLVMValueRef identity =
3695 get_reduction_identity(ctx, op, ac_get_type_size(LLVMTypeOf(src)));
3696 result = LLVMBuildBitCast(ctx->builder, ac_build_set_inactive(ctx, src, identity),
3697 LLVMTypeOf(identity), "");
3698 result = ac_build_scan(ctx, op, result, identity, 64);
3699
3700 return ac_build_wwm(ctx, result);
3701 }
3702
3703 LLVMValueRef
3704 ac_build_exclusive_scan(struct ac_llvm_context *ctx, LLVMValueRef src, nir_op op)
3705 {
3706 LLVMValueRef result;
3707
3708 if (LLVMTypeOf(src) == ctx->i1 && op == nir_op_iadd) {
3709 LLVMBuilderRef builder = ctx->builder;
3710 src = LLVMBuildZExt(builder, src, ctx->i32, "");
3711 result = ac_build_ballot(ctx, src);
3712 result = ac_build_mbcnt(ctx, result);
3713 return result;
3714 }
3715
3716 ac_build_optimization_barrier(ctx, &src);
3717
3718 LLVMValueRef identity =
3719 get_reduction_identity(ctx, op, ac_get_type_size(LLVMTypeOf(src)));
3720 result = LLVMBuildBitCast(ctx->builder, ac_build_set_inactive(ctx, src, identity),
3721 LLVMTypeOf(identity), "");
3722 result = ac_build_dpp(ctx, identity, result, dpp_wf_sr1, 0xf, 0xf, false);
3723 result = ac_build_scan(ctx, op, result, identity, 64);
3724
3725 return ac_build_wwm(ctx, result);
3726 }
3727
3728 LLVMValueRef
3729 ac_build_reduce(struct ac_llvm_context *ctx, LLVMValueRef src, nir_op op, unsigned cluster_size)
3730 {
3731 if (cluster_size == 1) return src;
3732 ac_build_optimization_barrier(ctx, &src);
3733 LLVMValueRef result, swap;
3734 LLVMValueRef identity = get_reduction_identity(ctx, op,
3735 ac_get_type_size(LLVMTypeOf(src)));
3736 result = LLVMBuildBitCast(ctx->builder,
3737 ac_build_set_inactive(ctx, src, identity),
3738 LLVMTypeOf(identity), "");
3739 swap = ac_build_quad_swizzle(ctx, result, 1, 0, 3, 2);
3740 result = ac_build_alu_op(ctx, result, swap, op);
3741 if (cluster_size == 2) return ac_build_wwm(ctx, result);
3742
3743 swap = ac_build_quad_swizzle(ctx, result, 2, 3, 0, 1);
3744 result = ac_build_alu_op(ctx, result, swap, op);
3745 if (cluster_size == 4) return ac_build_wwm(ctx, result);
3746
3747 if (ctx->chip_class >= VI)
3748 swap = ac_build_dpp(ctx, identity, result, dpp_row_half_mirror, 0xf, 0xf, false);
3749 else
3750 swap = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x1f, 0, 0x04));
3751 result = ac_build_alu_op(ctx, result, swap, op);
3752 if (cluster_size == 8) return ac_build_wwm(ctx, result);
3753
3754 if (ctx->chip_class >= VI)
3755 swap = ac_build_dpp(ctx, identity, result, dpp_row_mirror, 0xf, 0xf, false);
3756 else
3757 swap = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x1f, 0, 0x08));
3758 result = ac_build_alu_op(ctx, result, swap, op);
3759 if (cluster_size == 16) return ac_build_wwm(ctx, result);
3760
3761 if (ctx->chip_class >= VI && cluster_size != 32)
3762 swap = ac_build_dpp(ctx, identity, result, dpp_row_bcast15, 0xa, 0xf, false);
3763 else
3764 swap = ac_build_ds_swizzle(ctx, result, ds_pattern_bitmode(0x1f, 0, 0x10));
3765 result = ac_build_alu_op(ctx, result, swap, op);
3766 if (cluster_size == 32) return ac_build_wwm(ctx, result);
3767
3768 if (ctx->chip_class >= VI) {
3769 swap = ac_build_dpp(ctx, identity, result, dpp_row_bcast31, 0xc, 0xf, false);
3770 result = ac_build_alu_op(ctx, result, swap, op);
3771 result = ac_build_readlane(ctx, result, LLVMConstInt(ctx->i32, 63, 0));
3772 return ac_build_wwm(ctx, result);
3773 } else {
3774 swap = ac_build_readlane(ctx, result, ctx->i32_0);
3775 result = ac_build_readlane(ctx, result, LLVMConstInt(ctx->i32, 32, 0));
3776 result = ac_build_alu_op(ctx, result, swap, op);
3777 return ac_build_wwm(ctx, result);
3778 }
3779 }
3780
3781 /**
3782 * "Top half" of a scan that reduces per-wave values across an entire
3783 * workgroup.
3784 *
3785 * The source value must be present in the highest lane of the wave, and the
3786 * highest lane must be live.
3787 */
3788 void
3789 ac_build_wg_wavescan_top(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
3790 {
3791 if (ws->maxwaves <= 1)
3792 return;
3793
3794 const LLVMValueRef i32_63 = LLVMConstInt(ctx->i32, 63, false);
3795 LLVMBuilderRef builder = ctx->builder;
3796 LLVMValueRef tid = ac_get_thread_id(ctx);
3797 LLVMValueRef tmp;
3798
3799 tmp = LLVMBuildICmp(builder, LLVMIntEQ, tid, i32_63, "");
3800 ac_build_ifcc(ctx, tmp, 1000);
3801 LLVMBuildStore(builder, ws->src, LLVMBuildGEP(builder, ws->scratch, &ws->waveidx, 1, ""));
3802 ac_build_endif(ctx, 1000);
3803 }
3804
3805 /**
3806 * "Bottom half" of a scan that reduces per-wave values across an entire
3807 * workgroup.
3808 *
3809 * The caller must place a barrier between the top and bottom halves.
3810 */
3811 void
3812 ac_build_wg_wavescan_bottom(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
3813 {
3814 const LLVMTypeRef type = LLVMTypeOf(ws->src);
3815 const LLVMValueRef identity =
3816 get_reduction_identity(ctx, ws->op, ac_get_type_size(type));
3817
3818 if (ws->maxwaves <= 1) {
3819 ws->result_reduce = ws->src;
3820 ws->result_inclusive = ws->src;
3821 ws->result_exclusive = identity;
3822 return;
3823 }
3824 assert(ws->maxwaves <= 32);
3825
3826 LLVMBuilderRef builder = ctx->builder;
3827 LLVMValueRef tid = ac_get_thread_id(ctx);
3828 LLVMBasicBlockRef bbs[2];
3829 LLVMValueRef phivalues_scan[2];
3830 LLVMValueRef tmp, tmp2;
3831
3832 bbs[0] = LLVMGetInsertBlock(builder);
3833 phivalues_scan[0] = LLVMGetUndef(type);
3834
3835 if (ws->enable_reduce)
3836 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, ws->numwaves, "");
3837 else if (ws->enable_inclusive)
3838 tmp = LLVMBuildICmp(builder, LLVMIntULE, tid, ws->waveidx, "");
3839 else
3840 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, ws->waveidx, "");
3841 ac_build_ifcc(ctx, tmp, 1001);
3842 {
3843 tmp = LLVMBuildLoad(builder, LLVMBuildGEP(builder, ws->scratch, &tid, 1, ""), "");
3844
3845 ac_build_optimization_barrier(ctx, &tmp);
3846
3847 bbs[1] = LLVMGetInsertBlock(builder);
3848 phivalues_scan[1] = ac_build_scan(ctx, ws->op, tmp, identity, ws->maxwaves);
3849 }
3850 ac_build_endif(ctx, 1001);
3851
3852 const LLVMValueRef scan = ac_build_phi(ctx, type, 2, phivalues_scan, bbs);
3853
3854 if (ws->enable_reduce) {
3855 tmp = LLVMBuildSub(builder, ws->numwaves, ctx->i32_1, "");
3856 ws->result_reduce = ac_build_readlane(ctx, scan, tmp);
3857 }
3858 if (ws->enable_inclusive)
3859 ws->result_inclusive = ac_build_readlane(ctx, scan, ws->waveidx);
3860 if (ws->enable_exclusive) {
3861 tmp = LLVMBuildSub(builder, ws->waveidx, ctx->i32_1, "");
3862 tmp = ac_build_readlane(ctx, scan, tmp);
3863 tmp2 = LLVMBuildICmp(builder, LLVMIntEQ, ws->waveidx, ctx->i32_0, "");
3864 ws->result_exclusive = LLVMBuildSelect(builder, tmp2, identity, tmp, "");
3865 }
3866 }
3867
3868 /**
3869 * Inclusive scan of a per-wave value across an entire workgroup.
3870 *
3871 * This implies an s_barrier instruction.
3872 *
3873 * Unlike ac_build_inclusive_scan, the caller \em must ensure that all threads
3874 * of the workgroup are live. (This requirement cannot easily be relaxed in a
3875 * useful manner because of the barrier in the algorithm.)
3876 */
3877 void
3878 ac_build_wg_wavescan(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
3879 {
3880 ac_build_wg_wavescan_top(ctx, ws);
3881 ac_build_s_barrier(ctx);
3882 ac_build_wg_wavescan_bottom(ctx, ws);
3883 }
3884
3885 /**
3886 * "Top half" of a scan that reduces per-thread values across an entire
3887 * workgroup.
3888 *
3889 * All lanes must be active when this code runs.
3890 */
3891 void
3892 ac_build_wg_scan_top(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
3893 {
3894 if (ws->enable_exclusive) {
3895 ws->extra = ac_build_exclusive_scan(ctx, ws->src, ws->op);
3896 if (LLVMTypeOf(ws->src) == ctx->i1 && ws->op == nir_op_iadd)
3897 ws->src = LLVMBuildZExt(ctx->builder, ws->src, ctx->i32, "");
3898 ws->src = ac_build_alu_op(ctx, ws->extra, ws->src, ws->op);
3899 } else {
3900 ws->src = ac_build_inclusive_scan(ctx, ws->src, ws->op);
3901 }
3902
3903 bool enable_inclusive = ws->enable_inclusive;
3904 bool enable_exclusive = ws->enable_exclusive;
3905 ws->enable_inclusive = false;
3906 ws->enable_exclusive = ws->enable_exclusive || enable_inclusive;
3907 ac_build_wg_wavescan_top(ctx, ws);
3908 ws->enable_inclusive = enable_inclusive;
3909 ws->enable_exclusive = enable_exclusive;
3910 }
3911
3912 /**
3913 * "Bottom half" of a scan that reduces per-thread values across an entire
3914 * workgroup.
3915 *
3916 * The caller must place a barrier between the top and bottom halves.
3917 */
3918 void
3919 ac_build_wg_scan_bottom(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
3920 {
3921 bool enable_inclusive = ws->enable_inclusive;
3922 bool enable_exclusive = ws->enable_exclusive;
3923 ws->enable_inclusive = false;
3924 ws->enable_exclusive = ws->enable_exclusive || enable_inclusive;
3925 ac_build_wg_wavescan_bottom(ctx, ws);
3926 ws->enable_inclusive = enable_inclusive;
3927 ws->enable_exclusive = enable_exclusive;
3928
3929 /* ws->result_reduce is already the correct value */
3930 if (ws->enable_inclusive)
3931 ws->result_inclusive = ac_build_alu_op(ctx, ws->result_exclusive, ws->src, ws->op);
3932 if (ws->enable_exclusive)
3933 ws->result_exclusive = ac_build_alu_op(ctx, ws->result_exclusive, ws->extra, ws->op);
3934 }
3935
3936 /**
3937 * A scan that reduces per-thread values across an entire workgroup.
3938 *
3939 * The caller must ensure that all lanes are active when this code runs
3940 * (WWM is insufficient!), because there is an implied barrier.
3941 */
3942 void
3943 ac_build_wg_scan(struct ac_llvm_context *ctx, struct ac_wg_scan *ws)
3944 {
3945 ac_build_wg_scan_top(ctx, ws);
3946 ac_build_s_barrier(ctx);
3947 ac_build_wg_scan_bottom(ctx, ws);
3948 }
3949
3950 LLVMValueRef
3951 ac_build_quad_swizzle(struct ac_llvm_context *ctx, LLVMValueRef src,
3952 unsigned lane0, unsigned lane1, unsigned lane2, unsigned lane3)
3953 {
3954 unsigned mask = dpp_quad_perm(lane0, lane1, lane2, lane3);
3955 if (ctx->chip_class >= VI) {
3956 return ac_build_dpp(ctx, src, src, mask, 0xf, 0xf, false);
3957 } else {
3958 return ac_build_ds_swizzle(ctx, src, (1 << 15) | mask);
3959 }
3960 }
3961
3962 LLVMValueRef
3963 ac_build_shuffle(struct ac_llvm_context *ctx, LLVMValueRef src, LLVMValueRef index)
3964 {
3965 index = LLVMBuildMul(ctx->builder, index, LLVMConstInt(ctx->i32, 4, 0), "");
3966 return ac_build_intrinsic(ctx,
3967 "llvm.amdgcn.ds.bpermute", ctx->i32,
3968 (LLVMValueRef []) {index, src}, 2,
3969 AC_FUNC_ATTR_READNONE |
3970 AC_FUNC_ATTR_CONVERGENT);
3971 }
3972
3973 LLVMValueRef
3974 ac_build_frexp_exp(struct ac_llvm_context *ctx, LLVMValueRef src0,
3975 unsigned bitsize)
3976 {
3977 LLVMTypeRef type;
3978 char *intr;
3979
3980 if (bitsize == 16) {
3981 intr = "llvm.amdgcn.frexp.exp.i16.f16";
3982 type = ctx->i16;
3983 } else if (bitsize == 32) {
3984 intr = "llvm.amdgcn.frexp.exp.i32.f32";
3985 type = ctx->i32;
3986 } else {
3987 intr = "llvm.amdgcn.frexp.exp.i32.f64";
3988 type = ctx->i32;
3989 }
3990
3991 LLVMValueRef params[] = {
3992 src0,
3993 };
3994 return ac_build_intrinsic(ctx, intr, type, params, 1,
3995 AC_FUNC_ATTR_READNONE);
3996 }
3997 LLVMValueRef
3998 ac_build_frexp_mant(struct ac_llvm_context *ctx, LLVMValueRef src0,
3999 unsigned bitsize)
4000 {
4001 LLVMTypeRef type;
4002 char *intr;
4003
4004 if (bitsize == 16) {
4005 intr = "llvm.amdgcn.frexp.mant.f16";
4006 type = ctx->f16;
4007 } else if (bitsize == 32) {
4008 intr = "llvm.amdgcn.frexp.mant.f32";
4009 type = ctx->f32;
4010 } else {
4011 intr = "llvm.amdgcn.frexp.mant.f64";
4012 type = ctx->f64;
4013 }
4014
4015 LLVMValueRef params[] = {
4016 src0,
4017 };
4018 return ac_build_intrinsic(ctx, intr, type, params, 1,
4019 AC_FUNC_ATTR_READNONE);
4020 }