aco/gfx10: Mitigate SMEMtoVectorWriteHazard.
[mesa.git] / src / amd / compiler / aco_insert_NOPs.cpp
1 /*
2 * Copyright © 2019 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <algorithm>
26
27 #include "aco_ir.h"
28
29 namespace aco {
30 namespace {
31
32 struct NOP_ctx {
33 enum chip_class chip_class;
34 unsigned vcc_physical;
35
36 /* pre-GFX10 */
37 /* just initialize these with something less than max NOPs */
38 int VALU_wrexec = -10;
39 int VALU_wrvcc = -10;
40 int VALU_wrsgpr = -10;
41
42 /* GFX10 */
43 int last_VMEM_since_scalar_write = -1;
44 bool has_VOPC = false;
45 bool has_nonVALU_exec_read = false;
46 std::bitset<128> sgprs_read_by_SMEM;
47
48 NOP_ctx(Program* program) : chip_class(program->chip_class) {
49 vcc_physical = program->config->num_sgprs - 2;
50 }
51 };
52
53 template <std::size_t N>
54 bool check_written_regs(const aco_ptr<Instruction> &instr, const std::bitset<N> &check_regs)
55 {
56 return std::any_of(instr->definitions.begin(), instr->definitions.end(), [&check_regs](const Definition &def) -> bool {
57 bool writes_any = false;
58 for (unsigned i = 0; i < def.size(); i++) {
59 unsigned def_reg = def.physReg() + i;
60 writes_any |= def_reg < check_regs.size() && check_regs[def_reg];
61 }
62 return writes_any;
63 });
64 }
65
66 template <std::size_t N>
67 void mark_read_regs(const aco_ptr<Instruction> &instr, std::bitset<N> &reg_reads)
68 {
69 for (const Operand &op : instr->operands) {
70 for (unsigned i = 0; i < op.size(); i++) {
71 unsigned reg = op.physReg() + i;
72 if (reg < reg_reads.size())
73 reg_reads.set(reg);
74 }
75 }
76 }
77
78 bool VALU_writes_sgpr(aco_ptr<Instruction>& instr)
79 {
80 if ((uint32_t) instr->format & (uint32_t) Format::VOPC)
81 return true;
82 if (instr->isVOP3() && instr->definitions.size() == 2)
83 return true;
84 if (instr->opcode == aco_opcode::v_readfirstlane_b32 || instr->opcode == aco_opcode::v_readlane_b32)
85 return true;
86 return false;
87 }
88
89 bool instr_reads_exec(const aco_ptr<Instruction>& instr)
90 {
91 return std::any_of(instr->operands.begin(), instr->operands.end(), [](const Operand &op) -> bool {
92 return op.physReg() == exec_lo || op.physReg() == exec_hi;
93 });
94 }
95
96 bool instr_writes_exec(const aco_ptr<Instruction>& instr)
97 {
98 return std::any_of(instr->definitions.begin(), instr->definitions.end(), [](const Definition &def) -> bool {
99 return def.physReg() == exec_lo || def.physReg() == exec_hi;
100 });
101 }
102
103 bool instr_writes_sgpr(const aco_ptr<Instruction>& instr)
104 {
105 return std::any_of(instr->definitions.begin(), instr->definitions.end(), [](const Definition &def) -> bool {
106 return def.getTemp().type() == RegType::sgpr;
107 });
108 }
109
110 bool regs_intersect(PhysReg a_reg, unsigned a_size, PhysReg b_reg, unsigned b_size)
111 {
112 return a_reg > b_reg ?
113 (a_reg - b_reg < b_size) :
114 (b_reg - a_reg < a_size);
115 }
116
117 unsigned handle_SMEM_clause(aco_ptr<Instruction>& instr, int new_idx,
118 std::vector<aco_ptr<Instruction>>& new_instructions)
119 {
120 //TODO: s_dcache_inv needs to be in it's own group on GFX10 (and previous versions?)
121 const bool is_store = instr->definitions.empty();
122 for (int pred_idx = new_idx - 1; pred_idx >= 0; pred_idx--) {
123 aco_ptr<Instruction>& pred = new_instructions[pred_idx];
124 if (pred->format != Format::SMEM)
125 break;
126
127 /* Don't allow clauses with store instructions since the clause's
128 * instructions may use the same address. */
129 if (is_store || pred->definitions.empty())
130 return 1;
131
132 Definition& instr_def = instr->definitions[0];
133 Definition& pred_def = pred->definitions[0];
134
135 /* ISA reference doesn't say anything about this, but best to be safe */
136 if (regs_intersect(instr_def.physReg(), instr_def.size(), pred_def.physReg(), pred_def.size()))
137 return 1;
138
139 for (const Operand& op : pred->operands) {
140 if (op.isConstant() || !op.isFixed())
141 continue;
142 if (regs_intersect(instr_def.physReg(), instr_def.size(), op.physReg(), op.size()))
143 return 1;
144 }
145 for (const Operand& op : instr->operands) {
146 if (op.isConstant() || !op.isFixed())
147 continue;
148 if (regs_intersect(pred_def.physReg(), pred_def.size(), op.physReg(), op.size()))
149 return 1;
150 }
151 }
152
153 return 0;
154 }
155
156 int handle_instruction(NOP_ctx& ctx, aco_ptr<Instruction>& instr,
157 std::vector<aco_ptr<Instruction>>& old_instructions,
158 std::vector<aco_ptr<Instruction>>& new_instructions)
159 {
160 int new_idx = new_instructions.size();
161
162 // TODO: setreg / getreg / m0 writes
163 // TODO: try to schedule the NOP-causing instruction up to reduce the number of stall cycles
164
165 /* break off from prevous SMEM clause if needed */
166 if (instr->format == Format::SMEM && ctx.chip_class >= GFX8) {
167 return handle_SMEM_clause(instr, new_idx, new_instructions);
168 } else if (instr->isVALU() || instr->format == Format::VINTRP) {
169 int NOPs = 0;
170
171 if (instr->isDPP()) {
172 /* VALU does not forward EXEC to DPP. */
173 if (ctx.VALU_wrexec + 5 >= new_idx)
174 NOPs = 5 + ctx.VALU_wrexec - new_idx + 1;
175
176 /* VALU DPP reads VGPR written by VALU */
177 for (int pred_idx = new_idx - 1; pred_idx >= 0 && pred_idx >= new_idx - 2; pred_idx--) {
178 aco_ptr<Instruction>& pred = new_instructions[pred_idx];
179 if ((pred->isVALU() || pred->format == Format::VINTRP) &&
180 !pred->definitions.empty() &&
181 pred->definitions[0].physReg() == instr->operands[0].physReg()) {
182 NOPs = std::max(NOPs, 2 + pred_idx - new_idx + 1);
183 break;
184 }
185 }
186 }
187
188 /* SALU writes M0 */
189 if (instr->format == Format::VINTRP && new_idx > 0 && ctx.chip_class >= GFX9) {
190 aco_ptr<Instruction>& pred = new_instructions.back();
191 if (pred->isSALU() &&
192 !pred->definitions.empty() &&
193 pred->definitions[0].physReg() == m0)
194 NOPs = std::max(NOPs, 1);
195 }
196
197 for (const Operand& op : instr->operands) {
198 /* VALU which uses VCCZ */
199 if (op.physReg() == PhysReg{251} &&
200 ctx.VALU_wrvcc + 5 >= new_idx)
201 NOPs = std::max(NOPs, 5 + ctx.VALU_wrvcc - new_idx + 1);
202
203 /* VALU which uses EXECZ */
204 if (op.physReg() == PhysReg{252} &&
205 ctx.VALU_wrexec + 5 >= new_idx)
206 NOPs = std::max(NOPs, 5 + ctx.VALU_wrexec - new_idx + 1);
207
208 /* VALU which reads VCC as a constant */
209 if (ctx.VALU_wrvcc + 1 >= new_idx) {
210 for (unsigned k = 0; k < op.size(); k++) {
211 unsigned reg = op.physReg() + k;
212 if (reg == ctx.vcc_physical || reg == ctx.vcc_physical + 1)
213 NOPs = std::max(NOPs, 1);
214 }
215 }
216 }
217
218 switch (instr->opcode) {
219 case aco_opcode::v_readlane_b32:
220 case aco_opcode::v_writelane_b32: {
221 if (ctx.VALU_wrsgpr + 4 < new_idx)
222 break;
223 PhysReg reg = instr->operands[1].physReg();
224 for (int pred_idx = new_idx - 1; pred_idx >= 0 && pred_idx >= new_idx - 4; pred_idx--) {
225 aco_ptr<Instruction>& pred = new_instructions[pred_idx];
226 if (!pred->isVALU() || !VALU_writes_sgpr(pred))
227 continue;
228 for (const Definition& def : pred->definitions) {
229 if (def.physReg() == reg)
230 NOPs = std::max(NOPs, 4 + pred_idx - new_idx + 1);
231 }
232 }
233 break;
234 }
235 case aco_opcode::v_div_fmas_f32:
236 case aco_opcode::v_div_fmas_f64: {
237 if (ctx.VALU_wrvcc + 4 >= new_idx)
238 NOPs = std::max(NOPs, 4 + ctx.VALU_wrvcc - new_idx + 1);
239 break;
240 }
241 default:
242 break;
243 }
244
245 /* Write VGPRs holding writedata > 64 bit from MIMG/MUBUF instructions */
246 // FIXME: handle case if the last instruction of a block without branch is such store
247 // TODO: confirm that DS instructions cannot cause WAR hazards here
248 if (new_idx > 0) {
249 aco_ptr<Instruction>& pred = new_instructions.back();
250 if (pred->isVMEM() &&
251 pred->operands.size() == 4 &&
252 pred->operands[3].size() > 2 &&
253 pred->operands[1].size() != 8 &&
254 (pred->format != Format::MUBUF || pred->operands[2].physReg() >= 102)) {
255 /* Ops that use a 256-bit T# do not need a wait state.
256 * BUFFER_STORE_* operations that use an SGPR for "offset"
257 * do not require any wait states. */
258 PhysReg wrdata = pred->operands[3].physReg();
259 unsigned size = pred->operands[3].size();
260 assert(wrdata >= 256);
261 for (const Definition& def : instr->definitions) {
262 if (regs_intersect(def.physReg(), def.size(), wrdata, size))
263 NOPs = std::max(NOPs, 1);
264 }
265 }
266 }
267
268 if (VALU_writes_sgpr(instr)) {
269 for (const Definition& def : instr->definitions) {
270 if (def.physReg() == vcc)
271 ctx.VALU_wrvcc = NOPs ? new_idx : new_idx + 1;
272 else if (def.physReg() == exec)
273 ctx.VALU_wrexec = NOPs ? new_idx : new_idx + 1;
274 else if (def.physReg() <= 102)
275 ctx.VALU_wrsgpr = NOPs ? new_idx : new_idx + 1;
276 }
277 }
278 return NOPs;
279 } else if (instr->isVMEM() && ctx.VALU_wrsgpr + 5 >= new_idx) {
280 /* If the VALU writes the SGPR that is used by a VMEM, the user must add five wait states. */
281 for (int pred_idx = new_idx - 1; pred_idx >= 0 && pred_idx >= new_idx - 5; pred_idx--) {
282 aco_ptr<Instruction>& pred = new_instructions[pred_idx];
283 if (!(pred->isVALU() && VALU_writes_sgpr(pred)))
284 continue;
285
286 for (const Definition& def : pred->definitions) {
287 if (def.physReg() > 102)
288 continue;
289
290 if (instr->operands.size() > 1 &&
291 regs_intersect(instr->operands[1].physReg(), instr->operands[1].size(),
292 def.physReg(), def.size())) {
293 return 5 + pred_idx - new_idx + 1;
294 }
295
296 if (instr->operands.size() > 2 &&
297 regs_intersect(instr->operands[2].physReg(), instr->operands[2].size(),
298 def.physReg(), def.size())) {
299 return 5 + pred_idx - new_idx + 1;
300 }
301 }
302 }
303 }
304
305 return 0;
306 }
307
308 std::pair<int, int> handle_instruction_gfx10(NOP_ctx& ctx, aco_ptr<Instruction>& instr,
309 std::vector<aco_ptr<Instruction>>& old_instructions,
310 std::vector<aco_ptr<Instruction>>& new_instructions)
311 {
312 int new_idx = new_instructions.size();
313 unsigned vNOPs = 0;
314 unsigned sNOPs = 0;
315
316 /* break off from prevous SMEM group ("clause" seems to mean something different in RDNA) if needed */
317 if (instr->format == Format::SMEM)
318 sNOPs = std::max(sNOPs, handle_SMEM_clause(instr, new_idx, new_instructions));
319
320 /* handle EXEC/M0/SGPR write following a VMEM instruction without a VALU or "waitcnt vmcnt(0)" in-between */
321 if (instr->isSALU() || instr->format == Format::SMEM) {
322 if (!instr->definitions.empty() && ctx.last_VMEM_since_scalar_write != -1) {
323 ctx.last_VMEM_since_scalar_write = -1;
324 vNOPs = 1;
325 }
326 } else if (instr->isVMEM() || instr->isFlatOrGlobal()) {
327 ctx.last_VMEM_since_scalar_write = new_idx;
328 } else if (instr->opcode == aco_opcode::s_waitcnt) {
329 uint16_t imm = static_cast<SOPP_instruction*>(instr.get())->imm;
330 unsigned vmcnt = (imm & 0xF) | ((imm & (0x3 << 14)) >> 10);
331 if (vmcnt == 0)
332 ctx.last_VMEM_since_scalar_write = -1;
333 } else if (instr->isVALU()) {
334 ctx.last_VMEM_since_scalar_write = -1;
335 }
336
337 /* VcmpxPermlaneHazard
338 * Handle any permlane following a VOPC instruction, insert v_mov between them.
339 */
340 if (instr->format == Format::VOPC) {
341 ctx.has_VOPC = true;
342 } else if (ctx.has_VOPC &&
343 (instr->opcode == aco_opcode::v_permlane16_b32 ||
344 instr->opcode == aco_opcode::v_permlanex16_b32)) {
345 ctx.has_VOPC = false;
346
347 /* v_nop would be discarded by SQ, so use v_mov with the first operand of the permlane */
348 aco_ptr<VOP1_instruction> v_mov{create_instruction<VOP1_instruction>(aco_opcode::v_mov_b32, Format::VOP1, 1, 1)};
349 v_mov->definitions[0] = Definition(instr->operands[0].physReg(), v1);
350 v_mov->operands[0] = Operand(instr->operands[0].physReg(), v1);
351 new_instructions.emplace_back(std::move(v_mov));
352 } else if (instr->isVALU() && instr->opcode != aco_opcode::v_nop) {
353 ctx.has_VOPC = false;
354 }
355
356 /* VcmpxExecWARHazard
357 * Handle any VALU instruction writing the exec mask after it was read by a non-VALU instruction.
358 */
359 if (!instr->isVALU() && instr_reads_exec(instr)) {
360 ctx.has_nonVALU_exec_read = true;
361 } else if (instr->isVALU()) {
362 if (instr_writes_exec(instr)) {
363 ctx.has_nonVALU_exec_read = false;
364
365 /* Insert s_waitcnt_depctr instruction with magic imm to mitigate the problem */
366 aco_ptr<SOPP_instruction> depctr{create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt_depctr, Format::SOPP, 0, 1)};
367 depctr->imm = 0xfffe;
368 depctr->definitions[0] = Definition(sgpr_null, s1);
369 new_instructions.emplace_back(std::move(depctr));
370 } else if (instr_writes_sgpr(instr)) {
371 /* Any VALU instruction that writes an SGPR mitigates the problem */
372 ctx.has_nonVALU_exec_read = false;
373 }
374 } else if (instr->opcode == aco_opcode::s_waitcnt_depctr) {
375 /* s_waitcnt_depctr can mitigate the problem if it has a magic imm */
376 const SOPP_instruction *sopp = static_cast<const SOPP_instruction *>(instr.get());
377 if ((sopp->imm & 0xfffe) == 0xfffe)
378 ctx.has_nonVALU_exec_read = false;
379 }
380
381 /* SMEMtoVectorWriteHazard
382 * Handle any VALU instruction writing an SGPR after an SMEM reads it.
383 */
384 if (instr->format == Format::SMEM) {
385 /* Remember all SGPRs that are read by the SMEM instruction */
386 mark_read_regs(instr, ctx.sgprs_read_by_SMEM);
387 } else if (VALU_writes_sgpr(instr)) {
388 /* Check if VALU writes an SGPR that was previously read by SMEM */
389 if (check_written_regs(instr, ctx.sgprs_read_by_SMEM)) {
390 ctx.sgprs_read_by_SMEM.reset();
391
392 /* Insert s_mov to mitigate the problem */
393 aco_ptr<SOP1_instruction> s_mov{create_instruction<SOP1_instruction>(aco_opcode::s_mov_b32, Format::SOP1, 1, 1)};
394 s_mov->definitions[0] = Definition(sgpr_null, s1);
395 s_mov->operands[0] = Operand(0u);
396 new_instructions.emplace_back(std::move(s_mov));
397 }
398 } else if (instr->isSALU()) {
399 if (instr->format != Format::SOPP) {
400 /* SALU can mitigate the hazard */
401 ctx.sgprs_read_by_SMEM.reset();
402 } else {
403 /* Reducing lgkmcnt count to 0 always mitigates the hazard. */
404 const SOPP_instruction *sopp = static_cast<const SOPP_instruction *>(instr.get());
405 if (sopp->opcode == aco_opcode::s_waitcnt_lgkmcnt) {
406 if (sopp->imm == 0 && sopp->definitions[0].physReg() == sgpr_null)
407 ctx.sgprs_read_by_SMEM.reset();
408 } else if (sopp->opcode == aco_opcode::s_waitcnt) {
409 unsigned lgkm = (sopp->imm >> 8) & 0x3f;
410 if (lgkm == 0)
411 ctx.sgprs_read_by_SMEM.reset();
412 }
413 }
414 }
415
416 return std::make_pair(sNOPs, vNOPs);
417 }
418
419
420 void handle_block(NOP_ctx& ctx, Block& block)
421 {
422 std::vector<aco_ptr<Instruction>> instructions;
423 instructions.reserve(block.instructions.size());
424 for (unsigned i = 0; i < block.instructions.size(); i++) {
425 aco_ptr<Instruction>& instr = block.instructions[i];
426 unsigned NOPs = handle_instruction(ctx, instr, block.instructions, instructions);
427 if (NOPs) {
428 // TODO: try to move the instruction down
429 /* create NOP */
430 aco_ptr<SOPP_instruction> nop{create_instruction<SOPP_instruction>(aco_opcode::s_nop, Format::SOPP, 0, 0)};
431 nop->imm = NOPs - 1;
432 nop->block = -1;
433 instructions.emplace_back(std::move(nop));
434 }
435
436 instructions.emplace_back(std::move(instr));
437 }
438
439 ctx.VALU_wrvcc -= instructions.size();
440 ctx.VALU_wrexec -= instructions.size();
441 ctx.VALU_wrsgpr -= instructions.size();
442 block.instructions = std::move(instructions);
443 }
444
445 void handle_block_gfx10(NOP_ctx& ctx, Block& block)
446 {
447 std::vector<aco_ptr<Instruction>> instructions;
448 instructions.reserve(block.instructions.size());
449 for (unsigned i = 0; i < block.instructions.size(); i++) {
450 aco_ptr<Instruction>& instr = block.instructions[i];
451 std::pair<int, int> NOPs = handle_instruction_gfx10(ctx, instr, block.instructions, instructions);
452 for (int i = 0; i < NOPs.second; i++) {
453 // TODO: try to move the instruction down
454 /* create NOP */
455 aco_ptr<VOP1_instruction> nop{create_instruction<VOP1_instruction>(aco_opcode::v_nop, Format::VOP1, 0, 0)};
456 instructions.emplace_back(std::move(nop));
457 }
458 if (NOPs.first) {
459 // TODO: try to move the instruction down
460 /* create NOP */
461 aco_ptr<SOPP_instruction> nop{create_instruction<SOPP_instruction>(aco_opcode::s_nop, Format::SOPP, 0, 0)};
462 nop->imm = NOPs.first - 1;
463 nop->block = -1;
464 instructions.emplace_back(std::move(nop));
465 }
466
467 instructions.emplace_back(std::move(instr));
468 }
469
470 block.instructions = std::move(instructions);
471 }
472
473 } /* end namespace */
474
475
476 void insert_NOPs(Program* program)
477 {
478 NOP_ctx ctx(program);
479
480 for (Block& block : program->blocks) {
481 if (block.instructions.empty())
482 continue;
483
484 if (ctx.chip_class >= GFX10)
485 handle_block_gfx10(ctx, block);
486 else
487 handle_block(ctx, block);
488 }
489 }
490
491 }