aco: move s_andn2_b64 instructions out of the p_discard_if
[mesa.git] / src / amd / compiler / aco_insert_exec_mask.cpp
1 /*
2 * Copyright © 2019 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "aco_ir.h"
26 #include "aco_builder.h"
27
28 namespace aco {
29
30 namespace {
31
32 enum WQMState : uint8_t {
33 Unspecified = 0,
34 Exact = 1 << 0,
35 WQM = 1 << 1, /* with control flow applied */
36 Preserve_WQM = 1 << 2,
37 Exact_Branch = 1 << 3,
38 };
39
40 enum mask_type : uint8_t {
41 mask_type_global = 1 << 0,
42 mask_type_exact = 1 << 1,
43 mask_type_wqm = 1 << 2,
44 mask_type_loop = 1 << 3, /* active lanes of a loop */
45 mask_type_initial = 1 << 4, /* initially active lanes */
46 };
47
48 struct wqm_ctx {
49 Program* program;
50 /* state for WQM propagation */
51 std::set<unsigned> worklist;
52 std::vector<uint16_t> defined_in;
53 std::vector<bool> needs_wqm;
54 std::vector<bool> branch_wqm; /* true if the branch condition in this block should be in wqm */
55 bool loop;
56 bool wqm;
57 wqm_ctx(Program* program) : program(program),
58 defined_in(program->peekAllocationId(), 0xFFFF),
59 needs_wqm(program->peekAllocationId()),
60 branch_wqm(program->blocks.size()),
61 loop(false),
62 wqm(false)
63 {
64 for (unsigned i = 0; i < program->blocks.size(); i++)
65 worklist.insert(i);
66 }
67 };
68
69 struct loop_info {
70 Block* loop_header;
71 uint16_t num_exec_masks;
72 uint8_t needs;
73 bool has_divergent_break;
74 bool has_divergent_continue;
75 bool has_discard; /* has a discard or demote */
76 loop_info(Block* b, uint16_t num, uint8_t needs, bool breaks, bool cont, bool discard) :
77 loop_header(b), num_exec_masks(num), needs(needs), has_divergent_break(breaks),
78 has_divergent_continue(cont), has_discard(discard) {}
79 };
80
81 struct block_info {
82 std::vector<std::pair<Temp, uint8_t>> exec;
83 std::vector<WQMState> instr_needs;
84 uint8_t block_needs;
85 uint8_t ever_again_needs;
86 /* more... */
87 };
88
89 struct exec_ctx {
90 Program *program;
91 std::vector<block_info> info;
92 std::vector<loop_info> loop;
93 bool handle_wqm = false;
94 exec_ctx(Program *program) : program(program), info(program->blocks.size()) {}
95 };
96
97 bool pred_by_exec_mask(aco_ptr<Instruction>& instr) {
98 if (instr->format == Format::SMEM || instr->isSALU())
99 return false;
100 if (instr->format == Format::PSEUDO_BARRIER)
101 return false;
102
103 if (instr->format == Format::PSEUDO) {
104 switch (instr->opcode) {
105 case aco_opcode::p_create_vector:
106 return instr->definitions[0].getTemp().type() == RegType::vgpr;
107 case aco_opcode::p_extract_vector:
108 case aco_opcode::p_split_vector:
109 return instr->operands[0].getTemp().type() == RegType::vgpr;
110 case aco_opcode::p_spill:
111 case aco_opcode::p_reload:
112 return false;
113 default:
114 break;
115 }
116 }
117
118 if (instr->opcode == aco_opcode::v_readlane_b32 ||
119 instr->opcode == aco_opcode::v_writelane_b32)
120 return false;
121
122 return true;
123 }
124
125 bool needs_exact(aco_ptr<Instruction>& instr) {
126 if (instr->format == Format::MUBUF) {
127 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
128 return mubuf->disable_wqm;
129 } else if (instr->format == Format::MTBUF) {
130 MTBUF_instruction *mtbuf = static_cast<MTBUF_instruction *>(instr.get());
131 return mtbuf->disable_wqm;
132 } else if (instr->format == Format::MIMG) {
133 MIMG_instruction *mimg = static_cast<MIMG_instruction *>(instr.get());
134 return mimg->disable_wqm;
135 } else {
136 return instr->format == Format::EXP || instr->opcode == aco_opcode::p_fs_buffer_store_smem;
137 }
138 }
139
140 void set_needs_wqm(wqm_ctx &ctx, Temp tmp)
141 {
142 if (!ctx.needs_wqm[tmp.id()]) {
143 ctx.needs_wqm[tmp.id()] = true;
144 if (ctx.defined_in[tmp.id()] != 0xFFFF)
145 ctx.worklist.insert(ctx.defined_in[tmp.id()]);
146 }
147 }
148
149 void mark_block_wqm(wqm_ctx &ctx, unsigned block_idx)
150 {
151 if (ctx.branch_wqm[block_idx])
152 return;
153
154 ctx.branch_wqm[block_idx] = true;
155 Block& block = ctx.program->blocks[block_idx];
156 aco_ptr<Instruction>& branch = block.instructions.back();
157
158 if (branch->opcode != aco_opcode::p_branch) {
159 assert(!branch->operands.empty() && branch->operands[0].isTemp());
160 set_needs_wqm(ctx, branch->operands[0].getTemp());
161 }
162
163 /* TODO: this sets more branch conditions to WQM than it needs to
164 * it should be enough to stop at the "exec mask top level" */
165 if (block.kind & block_kind_top_level)
166 return;
167
168 for (unsigned pred_idx : block.logical_preds)
169 mark_block_wqm(ctx, pred_idx);
170 }
171
172 void get_block_needs(wqm_ctx &ctx, exec_ctx &exec_ctx, Block* block)
173 {
174 block_info& info = exec_ctx.info[block->index];
175
176 std::vector<WQMState> instr_needs(block->instructions.size());
177
178 if (block->kind & block_kind_top_level) {
179 if (ctx.loop && ctx.wqm) {
180 /* mark all break conditions as WQM */
181 unsigned block_idx = block->index + 1;
182 while (!(ctx.program->blocks[block_idx].kind & block_kind_top_level)) {
183 if (ctx.program->blocks[block_idx].kind & block_kind_break)
184 mark_block_wqm(ctx, block_idx);
185 block_idx++;
186 }
187 } else if (ctx.loop && !ctx.wqm) {
188 /* Ensure a branch never results in an exec mask with only helper
189 * invocations (which can cause a loop to repeat infinitively if it's
190 * break branches are done in exact). */
191 unsigned block_idx = block->index;
192 do {
193 if ((ctx.program->blocks[block_idx].kind & block_kind_branch))
194 exec_ctx.info[block_idx].block_needs |= Exact_Branch;
195 block_idx++;
196 } while (!(ctx.program->blocks[block_idx].kind & block_kind_top_level));
197 }
198
199 ctx.loop = false;
200 ctx.wqm = false;
201 }
202
203 for (int i = block->instructions.size() - 1; i >= 0; --i)
204 {
205 aco_ptr<Instruction>& instr = block->instructions[i];
206
207 WQMState needs = needs_exact(instr) ? Exact : Unspecified;
208 bool propagate_wqm = instr->opcode == aco_opcode::p_wqm;
209 bool preserve_wqm = instr->opcode == aco_opcode::p_discard_if;
210 bool pred_by_exec = pred_by_exec_mask(instr);
211 for (const Definition& definition : instr->definitions) {
212 if (!definition.isTemp())
213 continue;
214 const unsigned def = definition.tempId();
215 ctx.defined_in[def] = block->index;
216 if (needs == Unspecified && ctx.needs_wqm[def]) {
217 needs = pred_by_exec ? WQM : Unspecified;
218 propagate_wqm = true;
219 }
220 }
221
222 if (propagate_wqm) {
223 for (const Operand& op : instr->operands) {
224 if (op.isTemp()) {
225 set_needs_wqm(ctx, op.getTemp());
226 }
227 }
228 } else if (preserve_wqm && info.block_needs & WQM) {
229 needs = Preserve_WQM;
230 }
231
232 /* ensure the condition controlling the control flow for this phi is in WQM */
233 if (needs == WQM && instr->opcode == aco_opcode::p_phi) {
234 for (unsigned pred_idx : block->logical_preds)
235 mark_block_wqm(ctx, pred_idx);
236 }
237
238 instr_needs[i] = needs;
239 info.block_needs |= needs;
240 }
241
242 info.instr_needs = instr_needs;
243
244 /* for "if (<cond>) <wqm code>" or "while (<cond>) <wqm code>",
245 * <cond> should be computed in WQM */
246 if (info.block_needs & WQM && !(block->kind & block_kind_top_level)) {
247 for (unsigned pred_idx : block->logical_preds)
248 mark_block_wqm(ctx, pred_idx);
249 ctx.wqm = true;
250 }
251 if (block->kind & block_kind_loop_header)
252 ctx.loop = true;
253 }
254
255 void calculate_wqm_needs(exec_ctx& exec_ctx)
256 {
257 wqm_ctx ctx(exec_ctx.program);
258
259 while (!ctx.worklist.empty()) {
260 unsigned block_index = *std::prev(ctx.worklist.end());
261 ctx.worklist.erase(std::prev(ctx.worklist.end()));
262
263 get_block_needs(ctx, exec_ctx, &exec_ctx.program->blocks[block_index]);
264 }
265
266 uint8_t ever_again_needs = 0;
267 for (int i = exec_ctx.program->blocks.size() - 1; i >= 0; i--) {
268 exec_ctx.info[i].ever_again_needs = ever_again_needs;
269 Block& block = exec_ctx.program->blocks[i];
270
271 if (block.kind & block_kind_needs_lowering)
272 exec_ctx.info[i].block_needs |= Exact;
273
274 /* if discard is used somewhere in nested CF, we need to preserve the WQM mask */
275 if ((block.kind & block_kind_discard ||
276 block.kind & block_kind_uses_discard_if) &&
277 ever_again_needs & WQM)
278 exec_ctx.info[i].block_needs |= Preserve_WQM;
279
280 ever_again_needs |= exec_ctx.info[i].block_needs & ~Exact_Branch;
281 if (block.kind & block_kind_discard ||
282 block.kind & block_kind_uses_discard_if ||
283 block.kind & block_kind_uses_demote)
284 ever_again_needs |= Exact;
285
286 /* don't propagate WQM preservation further than the next top_level block */
287 if (block.kind & block_kind_top_level)
288 ever_again_needs &= ~Preserve_WQM;
289 else
290 exec_ctx.info[i].block_needs &= ~Preserve_WQM;
291 }
292 exec_ctx.handle_wqm = true;
293 }
294
295 void transition_to_WQM(exec_ctx& ctx, Builder bld, unsigned idx)
296 {
297 if (ctx.info[idx].exec.back().second & mask_type_wqm)
298 return;
299 if (ctx.info[idx].exec.back().second & mask_type_global) {
300 Temp exec_mask = ctx.info[idx].exec.back().first;
301 exec_mask = bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2, exec), bld.def(s1, scc), exec_mask);
302 ctx.info[idx].exec.emplace_back(exec_mask, mask_type_global | mask_type_wqm);
303 return;
304 }
305 /* otherwise, the WQM mask should be one below the current mask */
306 ctx.info[idx].exec.pop_back();
307 assert(ctx.info[idx].exec.back().second & mask_type_wqm);
308 ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec),
309 ctx.info[idx].exec.back().first);
310 }
311
312 void transition_to_Exact(exec_ctx& ctx, Builder bld, unsigned idx)
313 {
314 if (ctx.info[idx].exec.back().second & mask_type_exact)
315 return;
316 /* We can't remove the loop exec mask, because that can cause exec.size() to
317 * be less than num_exec_masks. The loop exec mask also needs to be kept
318 * around for various uses. */
319 if ((ctx.info[idx].exec.back().second & mask_type_global) &&
320 !(ctx.info[idx].exec.back().second & mask_type_loop)) {
321 ctx.info[idx].exec.pop_back();
322 assert(ctx.info[idx].exec.back().second & mask_type_exact);
323 ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec),
324 ctx.info[idx].exec.back().first);
325 return;
326 }
327 /* otherwise, we create an exact mask and push to the stack */
328 Temp wqm = ctx.info[idx].exec.back().first;
329 Temp exact = bld.tmp(s2);
330 wqm = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc),
331 bld.exec(Definition(exact)), ctx.info[idx].exec[0].first, bld.exec(wqm));
332 ctx.info[idx].exec.back().first = wqm;
333 ctx.info[idx].exec.emplace_back(exact, mask_type_exact);
334 }
335
336 unsigned add_coupling_code(exec_ctx& ctx, Block* block,
337 std::vector<aco_ptr<Instruction>>& instructions)
338 {
339 unsigned idx = block->index;
340 Builder bld(ctx.program, &instructions);
341 std::vector<unsigned>& preds = block->linear_preds;
342
343 /* start block */
344 if (idx == 0) {
345 aco_ptr<Instruction>& startpgm = block->instructions[0];
346 assert(startpgm->opcode == aco_opcode::p_startpgm);
347 Temp exec_mask = startpgm->definitions.back().getTemp();
348 bld.insert(std::move(startpgm));
349
350 if (ctx.handle_wqm) {
351 ctx.info[0].exec.emplace_back(exec_mask, mask_type_global | mask_type_exact | mask_type_initial);
352 /* if this block only needs WQM, initialize already */
353 if (ctx.info[0].block_needs == WQM)
354 transition_to_WQM(ctx, bld, 0);
355 } else {
356 uint8_t mask = mask_type_global;
357 if (ctx.program->needs_wqm) {
358 exec_mask = bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2, exec), bld.def(s1, scc), bld.exec(exec_mask));
359 mask |= mask_type_wqm;
360 } else {
361 mask |= mask_type_exact;
362 }
363 ctx.info[0].exec.emplace_back(exec_mask, mask);
364 }
365
366 return 1;
367 }
368
369 /* loop entry block */
370 if (block->kind & block_kind_loop_header) {
371 assert(preds[0] == idx - 1);
372 ctx.info[idx].exec = ctx.info[idx - 1].exec;
373 loop_info& info = ctx.loop.back();
374 while (ctx.info[idx].exec.size() > info.num_exec_masks)
375 ctx.info[idx].exec.pop_back();
376
377 /* create ssa names for outer exec masks */
378 if (info.has_discard) {
379 aco_ptr<Pseudo_instruction> phi;
380 for (int i = 0; i < info.num_exec_masks - 1; i++) {
381 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1));
382 phi->definitions[0] = bld.def(s2);
383 phi->operands[0] = Operand(ctx.info[preds[0]].exec[i].first);
384 ctx.info[idx].exec[i].first = bld.insert(std::move(phi));
385 }
386 }
387
388 /* create ssa name for restore mask */
389 if (info.has_divergent_break) {
390 /* this phi might be trivial but ensures a parallelcopy on the loop header */
391 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
392 phi->definitions[0] = bld.def(s2);
393 phi->operands[0] = Operand(ctx.info[preds[0]].exec[info.num_exec_masks - 1].first);
394 ctx.info[idx].exec.back().first = bld.insert(std::move(phi));
395 }
396
397 /* create ssa name for loop active mask */
398 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
399 if (info.has_divergent_continue)
400 phi->definitions[0] = bld.def(s2);
401 else
402 phi->definitions[0] = bld.def(s2, exec);
403 phi->operands[0] = Operand(ctx.info[preds[0]].exec.back().first);
404 Temp loop_active = bld.insert(std::move(phi));
405
406 if (info.has_divergent_break) {
407 uint8_t mask_type = (ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact)) | mask_type_loop;
408 ctx.info[idx].exec.emplace_back(loop_active, mask_type);
409 } else {
410 ctx.info[idx].exec.back().first = loop_active;
411 ctx.info[idx].exec.back().second |= mask_type_loop;
412 }
413
414 /* create a parallelcopy to move the active mask to exec */
415 unsigned i = 0;
416 if (info.has_divergent_continue) {
417 while (block->instructions[i]->opcode != aco_opcode::p_logical_start) {
418 bld.insert(std::move(block->instructions[i]));
419 i++;
420 }
421 uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact);
422 ctx.info[idx].exec.emplace_back(bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec),
423 ctx.info[idx].exec.back().first), mask_type);
424 }
425
426 return i;
427 }
428
429 /* loop exit block */
430 if (block->kind & block_kind_loop_exit) {
431 Block* header = ctx.loop.back().loop_header;
432 loop_info& info = ctx.loop.back();
433
434 for (ASSERTED unsigned pred : preds)
435 assert(ctx.info[pred].exec.size() >= info.num_exec_masks);
436
437 /* fill the loop header phis */
438 std::vector<unsigned>& header_preds = header->linear_preds;
439 int k = 0;
440 if (info.has_discard) {
441 while (k < info.num_exec_masks - 1) {
442 aco_ptr<Instruction>& phi = header->instructions[k];
443 assert(phi->opcode == aco_opcode::p_linear_phi);
444 for (unsigned i = 1; i < phi->operands.size(); i++)
445 phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[k].first);
446 k++;
447 }
448 }
449 aco_ptr<Instruction>& phi = header->instructions[k++];
450 assert(phi->opcode == aco_opcode::p_linear_phi);
451 for (unsigned i = 1; i < phi->operands.size(); i++)
452 phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[info.num_exec_masks - 1].first);
453
454 if (info.has_divergent_break) {
455 aco_ptr<Instruction>& phi = header->instructions[k];
456 assert(phi->opcode == aco_opcode::p_linear_phi);
457 for (unsigned i = 1; i < phi->operands.size(); i++)
458 phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[info.num_exec_masks].first);
459 }
460
461 assert(!(block->kind & block_kind_top_level) || info.num_exec_masks <= 2);
462
463 /* create the loop exit phis if not trivial */
464 for (unsigned k = 0; k < info.num_exec_masks; k++) {
465 Temp same = ctx.info[preds[0]].exec[k].first;
466 uint8_t type = ctx.info[header_preds[0]].exec[k].second;
467 bool trivial = true;
468
469 for (unsigned i = 1; i < preds.size() && trivial; i++) {
470 if (ctx.info[preds[i]].exec[k].first != same)
471 trivial = false;
472 }
473
474 if (trivial) {
475 ctx.info[idx].exec.emplace_back(same, type);
476 } else {
477 /* create phi for loop footer */
478 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
479 phi->definitions[0] = bld.def(s2);
480 for (unsigned i = 0; i < phi->operands.size(); i++)
481 phi->operands[i] = Operand(ctx.info[preds[i]].exec[k].first);
482 ctx.info[idx].exec.emplace_back(bld.insert(std::move(phi)), type);
483 }
484 }
485 assert(ctx.info[idx].exec.size() == info.num_exec_masks);
486
487 /* create a parallelcopy to move the live mask to exec */
488 unsigned i = 0;
489 while (block->instructions[i]->opcode != aco_opcode::p_logical_start) {
490 bld.insert(std::move(block->instructions[i]));
491 i++;
492 }
493
494 if (ctx.handle_wqm) {
495 if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) {
496 if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 ||
497 (ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) {
498 ctx.info[idx].exec.back().second |= mask_type_global;
499 transition_to_Exact(ctx, bld, idx);
500 ctx.handle_wqm = false;
501 }
502 }
503 if (ctx.info[idx].block_needs == WQM)
504 transition_to_WQM(ctx, bld, idx);
505 else if (ctx.info[idx].block_needs == Exact)
506 transition_to_Exact(ctx, bld, idx);
507 }
508
509 ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec),
510 ctx.info[idx].exec.back().first);
511
512 ctx.loop.pop_back();
513 return i;
514 }
515
516 if (preds.size() == 1) {
517 ctx.info[idx].exec = ctx.info[preds[0]].exec;
518 } else {
519 assert(preds.size() == 2);
520 /* if one of the predecessors ends in exact mask, we pop it from stack */
521 unsigned num_exec_masks = std::min(ctx.info[preds[0]].exec.size(),
522 ctx.info[preds[1]].exec.size());
523 if (block->kind & block_kind_top_level && !(block->kind & block_kind_merge))
524 num_exec_masks = std::min(num_exec_masks, 2u);
525
526 /* create phis for diverged exec masks */
527 for (unsigned i = 0; i < num_exec_masks; i++) {
528 bool in_exec = i == num_exec_masks - 1 && !(block->kind & block_kind_merge);
529 if (!in_exec && ctx.info[preds[0]].exec[i].first == ctx.info[preds[1]].exec[i].first) {
530 assert(ctx.info[preds[0]].exec[i].second == ctx.info[preds[1]].exec[i].second);
531 ctx.info[idx].exec.emplace_back(ctx.info[preds[0]].exec[i]);
532 continue;
533 }
534
535 Temp phi = bld.pseudo(aco_opcode::p_linear_phi, in_exec ? bld.def(s2, exec) : bld.def(s2),
536 ctx.info[preds[0]].exec[i].first,
537 ctx.info[preds[1]].exec[i].first);
538 uint8_t mask_type = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second;
539 ctx.info[idx].exec.emplace_back(phi, mask_type);
540 }
541 }
542
543 unsigned i = 0;
544 while (block->instructions[i]->opcode == aco_opcode::p_phi ||
545 block->instructions[i]->opcode == aco_opcode::p_linear_phi) {
546 bld.insert(std::move(block->instructions[i]));
547 i++;
548 }
549
550 if (block->kind & block_kind_merge)
551 ctx.info[idx].exec.pop_back();
552
553 if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 3) {
554 assert(ctx.info[idx].exec.back().second == mask_type_exact);
555 assert(block->kind & block_kind_merge);
556 ctx.info[idx].exec.pop_back();
557 }
558
559 /* try to satisfy the block's needs */
560 if (ctx.handle_wqm) {
561 if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) {
562 if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 ||
563 (ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) {
564 ctx.info[idx].exec.back().second |= mask_type_global;
565 transition_to_Exact(ctx, bld, idx);
566 ctx.handle_wqm = false;
567 }
568 }
569 if (ctx.info[idx].block_needs == WQM)
570 transition_to_WQM(ctx, bld, idx);
571 else if (ctx.info[idx].block_needs == Exact)
572 transition_to_Exact(ctx, bld, idx);
573 }
574
575 if (block->kind & block_kind_merge) {
576 Temp restore = ctx.info[idx].exec.back().first;
577 ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec), restore);
578 }
579
580 return i;
581 }
582
583 void lower_fs_buffer_store_smem(Builder& bld, bool need_check, aco_ptr<Instruction>& instr, Temp cur_exec)
584 {
585 Operand offset = instr->operands[1];
586 if (need_check) {
587 /* if exec is zero, then use UINT32_MAX as an offset and make this store a no-op */
588 Temp nonempty = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), cur_exec, Operand(0u));
589
590 if (offset.isLiteral())
591 offset = bld.sop1(aco_opcode::s_mov_b32, bld.def(s1), offset);
592
593 offset = bld.sop2(aco_opcode::s_cselect_b32, bld.hint_m0(bld.def(s1)),
594 offset, Operand(UINT32_MAX), bld.scc(nonempty));
595 } else if (offset.isConstant() && offset.constantValue() > 0xFFFFF) {
596 offset = bld.sop1(aco_opcode::s_mov_b32, bld.hint_m0(bld.def(s1)), offset);
597 }
598 if (!offset.isConstant())
599 offset.setFixed(m0);
600
601 switch (instr->operands[2].size()) {
602 case 1:
603 instr->opcode = aco_opcode::s_buffer_store_dword;
604 break;
605 case 2:
606 instr->opcode = aco_opcode::s_buffer_store_dwordx2;
607 break;
608 case 4:
609 instr->opcode = aco_opcode::s_buffer_store_dwordx4;
610 break;
611 default:
612 unreachable("Invalid SMEM buffer store size");
613 }
614 instr->operands[1] = offset;
615 /* as_uniform() needs to be done here so it's done in exact mode and helper
616 * lanes don't contribute. */
617 instr->operands[2] = Operand(bld.as_uniform(instr->operands[2]));
618 }
619
620 void process_instructions(exec_ctx& ctx, Block* block,
621 std::vector<aco_ptr<Instruction>>& instructions,
622 unsigned idx)
623 {
624 WQMState state;
625 if (ctx.info[block->index].exec.back().second & mask_type_wqm)
626 state = WQM;
627 else {
628 assert(!ctx.handle_wqm || ctx.info[block->index].exec.back().second & mask_type_exact);
629 state = Exact;
630 }
631
632 /* if the block doesn't need both, WQM and Exact, we can skip processing the instructions */
633 bool process = (ctx.handle_wqm &&
634 (ctx.info[block->index].block_needs & state) !=
635 (ctx.info[block->index].block_needs & (WQM | Exact))) ||
636 block->kind & block_kind_uses_discard_if ||
637 block->kind & block_kind_uses_demote ||
638 block->kind & block_kind_needs_lowering;
639 if (!process) {
640 std::vector<aco_ptr<Instruction>>::iterator it = std::next(block->instructions.begin(), idx);
641 instructions.insert(instructions.end(),
642 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(it),
643 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(block->instructions.end()));
644 return;
645 }
646
647 Builder bld(ctx.program, &instructions);
648
649 for (; idx < block->instructions.size(); idx++) {
650 aco_ptr<Instruction> instr = std::move(block->instructions[idx]);
651
652 WQMState needs = ctx.handle_wqm ? ctx.info[block->index].instr_needs[idx] : Unspecified;
653
654 if (instr->opcode == aco_opcode::p_discard_if) {
655 if (ctx.info[block->index].block_needs & Preserve_WQM) {
656 assert(block->kind & block_kind_top_level);
657 transition_to_WQM(ctx, bld, block->index);
658 ctx.info[block->index].exec.back().second &= ~mask_type_global;
659 }
660 int num = ctx.info[block->index].exec.size();
661 assert(num);
662 Operand cond = instr->operands[0];
663 for (int i = num - 1; i >= 0; i--) {
664 Instruction *andn2 = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc),
665 ctx.info[block->index].exec[i].first, cond);
666 if (i == num - 1) {
667 andn2->operands[0].setFixed(exec);
668 andn2->definitions[0].setFixed(exec);
669 }
670 if (i == 0) {
671 instr->opcode = aco_opcode::p_exit_early_if;
672 instr->operands[0] = bld.scc(andn2->definitions[1].getTemp());
673 }
674 ctx.info[block->index].exec[i].first = andn2->definitions[0].getTemp();
675 }
676 assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0);
677
678 } else if (needs == WQM && state != WQM) {
679 transition_to_WQM(ctx, bld, block->index);
680 state = WQM;
681 } else if (needs == Exact && state != Exact) {
682 transition_to_Exact(ctx, bld, block->index);
683 state = Exact;
684 }
685
686 if (instr->opcode == aco_opcode::p_is_helper || instr->opcode == aco_opcode::p_load_helper) {
687 Definition dst = instr->definitions[0];
688 if (state == Exact) {
689 instr.reset(create_instruction<SOP1_instruction>(aco_opcode::s_mov_b64, Format::SOP1, 1, 1));
690 instr->operands[0] = Operand(0u);
691 instr->definitions[0] = dst;
692 } else {
693 std::pair<Temp, uint8_t>& exact_mask = ctx.info[block->index].exec[0];
694 if (instr->opcode == aco_opcode::p_load_helper &&
695 !(ctx.info[block->index].exec[0].second & mask_type_initial)) {
696 /* find last initial exact mask */
697 for (int i = block->index; i >= 0; i--) {
698 if (ctx.program->blocks[i].kind & block_kind_top_level &&
699 ctx.info[i].exec[0].second & mask_type_initial) {
700 exact_mask = ctx.info[i].exec[0];
701 break;
702 }
703 }
704 }
705
706 assert(instr->opcode == aco_opcode::p_is_helper || exact_mask.second & mask_type_initial);
707 assert(exact_mask.second & mask_type_exact);
708
709 instr.reset(create_instruction<SOP2_instruction>(aco_opcode::s_andn2_b64, Format::SOP2, 2, 2));
710 instr->operands[0] = Operand(ctx.info[block->index].exec.back().first); /* current exec */
711 instr->operands[1] = Operand(exact_mask.first);
712 instr->definitions[0] = dst;
713 instr->definitions[1] = bld.def(s1, scc);
714 }
715 } else if (instr->opcode == aco_opcode::p_demote_to_helper) {
716 /* turn demote into discard_if with only exact masks */
717 assert((ctx.info[block->index].exec[0].second & (mask_type_exact | mask_type_global)) == (mask_type_exact | mask_type_global));
718 ctx.info[block->index].exec[0].second &= ~mask_type_initial;
719
720 int num = 0;
721 Temp cond;
722 if (instr->operands.empty()) {
723 /* transition to exact and set exec to zero */
724 Temp old_exec = ctx.info[block->index].exec.back().first;
725 Temp new_exec = bld.tmp(s2);
726 cond = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc),
727 bld.exec(Definition(new_exec)), Operand(0u), bld.exec(old_exec));
728 if (ctx.info[block->index].exec.back().second & mask_type_exact) {
729 ctx.info[block->index].exec.back().first = new_exec;
730 } else {
731 ctx.info[block->index].exec.back().first = cond;
732 ctx.info[block->index].exec.emplace_back(new_exec, mask_type_exact);
733 }
734 } else {
735 /* demote_if: transition to exact */
736 transition_to_Exact(ctx, bld, block->index);
737 assert(instr->operands[0].isTemp());
738 cond = instr->operands[0].getTemp();
739 num = 1;
740 }
741
742 num += ctx.info[block->index].exec.size() - 1;
743 for (int i = num - 1; i >= 0; i--) {
744 if (ctx.info[block->index].exec[i].second & mask_type_exact) {
745 Instruction *andn2 = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc),
746 ctx.info[block->index].exec[i].first, cond);
747 if (i == num - 1) {
748 andn2->operands[0].setFixed(exec);
749 andn2->definitions[0].setFixed(exec);
750 }
751 if (i == 0) {
752 instr->opcode = aco_opcode::p_exit_early_if;
753 instr->operands[0] = bld.scc(andn2->definitions[1].getTemp());
754 }
755 ctx.info[block->index].exec[i].first = andn2->definitions[0].getTemp();
756 } else {
757 assert(i != 0);
758 }
759 }
760 state = Exact;
761
762 } else if (instr->opcode == aco_opcode::p_fs_buffer_store_smem) {
763 bool need_check = ctx.info[block->index].exec.size() != 1 &&
764 !(ctx.info[block->index].exec[ctx.info[block->index].exec.size() - 2].second & Exact);
765 lower_fs_buffer_store_smem(bld, need_check, instr, ctx.info[block->index].exec.back().first);
766 }
767
768 bld.insert(std::move(instr));
769 }
770 }
771
772 void add_branch_code(exec_ctx& ctx, Block* block)
773 {
774 unsigned idx = block->index;
775 Builder bld(ctx.program, block);
776
777 if (idx == ctx.program->blocks.size() - 1)
778 return;
779
780 /* try to disable wqm handling */
781 if (ctx.handle_wqm && block->kind & block_kind_top_level) {
782 if (ctx.info[idx].exec.size() == 3) {
783 assert(ctx.info[idx].exec[1].second == mask_type_wqm);
784 ctx.info[idx].exec.pop_back();
785 }
786 assert(ctx.info[idx].exec.size() <= 2);
787
788 if (ctx.info[idx].ever_again_needs == 0 ||
789 ctx.info[idx].ever_again_needs == Exact) {
790 /* transition to Exact */
791 aco_ptr<Instruction> branch = std::move(block->instructions.back());
792 block->instructions.pop_back();
793 ctx.info[idx].exec.back().second |= mask_type_global;
794 transition_to_Exact(ctx, bld, idx);
795 bld.insert(std::move(branch));
796 ctx.handle_wqm = false;
797
798 } else if (ctx.info[idx].block_needs & Preserve_WQM) {
799 /* transition to WQM and remove global flag */
800 aco_ptr<Instruction> branch = std::move(block->instructions.back());
801 block->instructions.pop_back();
802 transition_to_WQM(ctx, bld, idx);
803 ctx.info[idx].exec.back().second &= ~mask_type_global;
804 bld.insert(std::move(branch));
805 }
806 }
807
808 if (block->kind & block_kind_loop_preheader) {
809 /* collect information about the succeeding loop */
810 bool has_divergent_break = false;
811 bool has_divergent_continue = false;
812 bool has_discard = false;
813 uint8_t needs = 0;
814 unsigned loop_nest_depth = ctx.program->blocks[idx + 1].loop_nest_depth;
815
816 for (unsigned i = idx + 1; ctx.program->blocks[i].loop_nest_depth >= loop_nest_depth; i++) {
817 Block& loop_block = ctx.program->blocks[i];
818 needs |= ctx.info[i].block_needs;
819
820 if (loop_block.kind & block_kind_uses_discard_if ||
821 loop_block.kind & block_kind_discard ||
822 loop_block.kind & block_kind_uses_demote)
823 has_discard = true;
824 if (loop_block.loop_nest_depth != loop_nest_depth)
825 continue;
826
827 if (loop_block.kind & block_kind_uniform)
828 continue;
829 else if (loop_block.kind & block_kind_break)
830 has_divergent_break = true;
831 else if (loop_block.kind & block_kind_continue)
832 has_divergent_continue = true;
833 }
834
835 if (ctx.handle_wqm) {
836 if (needs & WQM) {
837 aco_ptr<Instruction> branch = std::move(block->instructions.back());
838 block->instructions.pop_back();
839 transition_to_WQM(ctx, bld, idx);
840 bld.insert(std::move(branch));
841 } else {
842 aco_ptr<Instruction> branch = std::move(block->instructions.back());
843 block->instructions.pop_back();
844 transition_to_Exact(ctx, bld, idx);
845 bld.insert(std::move(branch));
846 }
847 }
848
849 unsigned num_exec_masks = ctx.info[idx].exec.size();
850 if (block->kind & block_kind_top_level)
851 num_exec_masks = std::min(num_exec_masks, 2u);
852
853 ctx.loop.emplace_back(&ctx.program->blocks[block->linear_succs[0]],
854 num_exec_masks,
855 needs,
856 has_divergent_break,
857 has_divergent_continue,
858 has_discard);
859 }
860
861 if (block->kind & block_kind_discard) {
862
863 assert(block->instructions.back()->format == Format::PSEUDO_BRANCH);
864 aco_ptr<Instruction> branch = std::move(block->instructions.back());
865 block->instructions.pop_back();
866
867 /* create a discard_if() instruction with the exec mask as condition */
868 unsigned num = 0;
869 if (ctx.loop.size()) {
870 /* if we're in a loop, only discard from the outer exec masks */
871 num = ctx.loop.back().num_exec_masks;
872 } else {
873 num = ctx.info[idx].exec.size() - 1;
874 }
875
876 Temp old_exec = ctx.info[idx].exec.back().first;
877 Temp new_exec = bld.tmp(s2);
878 Temp cond = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc),
879 bld.exec(Definition(new_exec)), Operand(0u), bld.exec(old_exec));
880 ctx.info[idx].exec.back().first = new_exec;
881
882 for (int i = num - 1; i >= 0; i--) {
883 Instruction *andn2 = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.def(s1, scc),
884 ctx.info[block->index].exec[i].first, cond);
885 if (i == 0)
886 bld.pseudo(aco_opcode::p_exit_early_if, bld.scc(andn2->definitions[1].getTemp()));
887 ctx.info[block->index].exec[i].first = andn2->definitions[0].getTemp();
888 }
889 assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0);
890
891 if ((block->kind & (block_kind_break | block_kind_uniform)) == block_kind_break)
892 ctx.info[idx].exec.back().first = cond;
893 bld.insert(std::move(branch));
894 /* no return here as it can be followed by a divergent break */
895 }
896
897 if (block->kind & block_kind_continue_or_break) {
898 assert(block->instructions.back()->opcode == aco_opcode::p_branch);
899 block->instructions.pop_back();
900
901 /* because of how linear_succs is created, this needs to be swapped */
902 std::swap(block->linear_succs[0], block->linear_succs[1]);
903
904 assert(ctx.program->blocks[block->linear_succs[1]].kind & block_kind_loop_header);
905 assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[0]].linear_succs[0]].kind & block_kind_loop_exit);
906
907 if (ctx.info[idx].exec.back().second & mask_type_loop) {
908 bld.branch(aco_opcode::p_cbranch_nz, bld.exec(ctx.info[idx].exec.back().first), block->linear_succs[1], block->linear_succs[0]);
909 } else {
910 Temp cond = Temp();
911 for (int exec_idx = ctx.info[idx].exec.size() - 1; exec_idx >= 0; exec_idx--) {
912 if (ctx.info[idx].exec[exec_idx].second & mask_type_loop) {
913 cond = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), ctx.info[idx].exec[exec_idx].first, Operand(0u));
914 break;
915 }
916 }
917 assert(cond != Temp());
918
919 bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]);
920 }
921 return;
922 }
923
924 if (block->kind & block_kind_uniform) {
925 Pseudo_branch_instruction* branch = static_cast<Pseudo_branch_instruction*>(block->instructions.back().get());
926 if (branch->opcode == aco_opcode::p_branch) {
927 branch->target[0] = block->linear_succs[0];
928 } else {
929 branch->target[0] = block->linear_succs[1];
930 branch->target[1] = block->linear_succs[0];
931 }
932 return;
933 }
934
935 if (block->kind & block_kind_branch) {
936
937 if (ctx.handle_wqm &&
938 ctx.info[idx].exec.size() >= 2 &&
939 ctx.info[idx].exec.back().second == mask_type_exact &&
940 !(ctx.info[idx].block_needs & Exact_Branch) &&
941 ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].second & mask_type_wqm) {
942 /* return to wqm before branching */
943 ctx.info[idx].exec.pop_back();
944 }
945
946 // orig = s_and_saveexec_b64
947 assert(block->linear_succs.size() == 2);
948 assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_z);
949 Temp cond = block->instructions.back()->operands[0].getTemp();
950 block->instructions.pop_back();
951
952 if (ctx.info[idx].block_needs & Exact_Branch)
953 transition_to_Exact(ctx, bld, idx);
954
955 Temp current_exec = ctx.info[idx].exec.back().first;
956 uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact);
957
958 Temp then_mask = bld.tmp(s2);
959 Temp old_exec = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc),
960 bld.exec(Definition(then_mask)), cond, bld.exec(current_exec));
961
962 ctx.info[idx].exec.back().first = old_exec;
963
964 /* add next current exec to the stack */
965 ctx.info[idx].exec.emplace_back(then_mask, mask_type);
966
967 bld.branch(aco_opcode::p_cbranch_z, bld.exec(then_mask), block->linear_succs[1], block->linear_succs[0]);
968 return;
969 }
970
971 if (block->kind & block_kind_invert) {
972 // exec = s_andn2_b64 (original_exec, exec)
973 assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_nz);
974 block->instructions.pop_back();
975 Temp then_mask = ctx.info[idx].exec.back().first;
976 uint8_t mask_type = ctx.info[idx].exec.back().second;
977 ctx.info[idx].exec.pop_back();
978 Temp orig_exec = ctx.info[idx].exec.back().first;
979 Temp else_mask = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2, exec),
980 bld.def(s1, scc), orig_exec, bld.exec(then_mask));
981
982 /* add next current exec to the stack */
983 ctx.info[idx].exec.emplace_back(else_mask, mask_type);
984
985 bld.branch(aco_opcode::p_cbranch_z, bld.exec(else_mask), block->linear_succs[1], block->linear_succs[0]);
986 return;
987 }
988
989 if (block->kind & block_kind_break) {
990 // loop_mask = s_andn2_b64 (loop_mask, exec)
991 assert(block->instructions.back()->opcode == aco_opcode::p_branch);
992 block->instructions.pop_back();
993
994 Temp current_exec = ctx.info[idx].exec.back().first;
995 Temp cond = Temp();
996 for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) {
997 cond = bld.tmp(s1);
998 Temp exec_mask = ctx.info[idx].exec[exec_idx].first;
999 exec_mask = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.scc(Definition(cond)),
1000 exec_mask, current_exec);
1001 ctx.info[idx].exec[exec_idx].first = exec_mask;
1002 if (ctx.info[idx].exec[exec_idx].second & mask_type_loop)
1003 break;
1004 }
1005
1006 /* check if the successor is the merge block, otherwise set exec to 0 */
1007 // TODO: this could be done better by directly branching to the merge block
1008 unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0];
1009 Block& succ = ctx.program->blocks[succ_idx];
1010 if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) {
1011 ctx.info[idx].exec.back().first = bld.sop1(aco_opcode::s_mov_b64, bld.def(s2, exec), Operand(0u));
1012 }
1013
1014 bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]);
1015 return;
1016 }
1017
1018 if (block->kind & block_kind_continue) {
1019 assert(block->instructions.back()->opcode == aco_opcode::p_branch);
1020 block->instructions.pop_back();
1021
1022 Temp current_exec = ctx.info[idx].exec.back().first;
1023 Temp cond = Temp();
1024 for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) {
1025 if (ctx.info[idx].exec[exec_idx].second & mask_type_loop)
1026 break;
1027 cond = bld.tmp(s1);
1028 Temp exec_mask = ctx.info[idx].exec[exec_idx].first;
1029 exec_mask = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.scc(Definition(cond)),
1030 exec_mask, bld.exec(current_exec));
1031 ctx.info[idx].exec[exec_idx].first = exec_mask;
1032 }
1033 assert(cond != Temp());
1034
1035 /* check if the successor is the merge block, otherwise set exec to 0 */
1036 // TODO: this could be done better by directly branching to the merge block
1037 unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0];
1038 Block& succ = ctx.program->blocks[succ_idx];
1039 if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) {
1040 ctx.info[idx].exec.back().first = bld.sop1(aco_opcode::s_mov_b64, bld.def(s2, exec), Operand(0u));
1041 }
1042
1043 bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]);
1044 return;
1045 }
1046 }
1047
1048 void process_block(exec_ctx& ctx, Block* block)
1049 {
1050 std::vector<aco_ptr<Instruction>> instructions;
1051 instructions.reserve(block->instructions.size());
1052
1053 unsigned idx = add_coupling_code(ctx, block, instructions);
1054
1055 assert(block->index != ctx.program->blocks.size() - 1 ||
1056 ctx.info[block->index].exec.size() <= 2);
1057
1058 process_instructions(ctx, block, instructions, idx);
1059
1060 block->instructions = std::move(instructions);
1061
1062 add_branch_code(ctx, block);
1063
1064 block->live_out_exec = ctx.info[block->index].exec.back().first;
1065 }
1066
1067 } /* end namespace */
1068
1069
1070 void insert_exec_mask(Program *program)
1071 {
1072 exec_ctx ctx(program);
1073
1074 if (program->needs_wqm && program->needs_exact)
1075 calculate_wqm_needs(ctx);
1076
1077 for (Block& block : program->blocks)
1078 process_block(ctx, &block);
1079
1080 }
1081
1082 }
1083