aco: simplify consecutive ordered vmem/lds writes optimization
[mesa.git] / src / amd / compiler / aco_insert_waitcnt.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <algorithm>
26 #include <map>
27 #include <stack>
28 #include <math.h>
29
30 #include "aco_ir.h"
31 #include "vulkan/radv_shader.h"
32
33 namespace aco {
34
35 namespace {
36
37 /**
38 * The general idea of this pass is:
39 * The CFG is traversed in reverse postorder (forward) and loops are processed
40 * several times until no progress is made.
41 * Per BB two wait_ctx is maintained: an in-context and out-context.
42 * The in-context is the joined out-contexts of the predecessors.
43 * The context contains a map: gpr -> wait_entry
44 * consisting of the information about the cnt values to be waited for.
45 * Note: After merge-nodes, it might occur that for the same register
46 * multiple cnt values are to be waited for.
47 *
48 * The values are updated according to the encountered instructions:
49 * - additional events increment the counter of waits of the same type
50 * - or erase gprs with counters higher than to be waited for.
51 */
52
53 // TODO: do a more clever insertion of wait_cnt (lgkm_cnt) when there is a load followed by a use of a previous load
54
55 /* Instructions of the same event will finish in-order except for smem
56 * and maybe flat. Instructions of different events may not finish in-order. */
57 enum wait_event : uint16_t {
58 event_smem = 1 << 0,
59 event_lds = 1 << 1,
60 event_gds = 1 << 2,
61 event_vmem = 1 << 3,
62 event_vmem_store = 1 << 4, /* GFX10+ */
63 event_flat = 1 << 5,
64 event_exp_pos = 1 << 6,
65 event_exp_param = 1 << 7,
66 event_exp_mrt_null = 1 << 8,
67 event_gds_gpr_lock = 1 << 9,
68 event_vmem_gpr_lock = 1 << 10,
69 event_sendmsg = 1 << 11,
70 num_events = 12,
71 };
72
73 enum counter_type : uint8_t {
74 counter_exp = 1 << 0,
75 counter_lgkm = 1 << 1,
76 counter_vm = 1 << 2,
77 counter_vs = 1 << 3,
78 num_counters = 4,
79 };
80
81 static const uint16_t exp_events = event_exp_pos | event_exp_param | event_exp_mrt_null | event_gds_gpr_lock | event_vmem_gpr_lock;
82 static const uint16_t lgkm_events = event_smem | event_lds | event_gds | event_flat | event_sendmsg;
83 static const uint16_t vm_events = event_vmem | event_flat;
84 static const uint16_t vs_events = event_vmem_store;
85
86 uint8_t get_counters_for_event(wait_event ev)
87 {
88 switch (ev) {
89 case event_smem:
90 case event_lds:
91 case event_gds:
92 case event_sendmsg:
93 return counter_lgkm;
94 case event_vmem:
95 return counter_vm;
96 case event_vmem_store:
97 return counter_vs;
98 case event_flat:
99 return counter_vm | counter_lgkm;
100 case event_exp_pos:
101 case event_exp_param:
102 case event_exp_mrt_null:
103 case event_gds_gpr_lock:
104 case event_vmem_gpr_lock:
105 return counter_exp;
106 default:
107 return 0;
108 }
109 }
110
111 uint16_t get_events_for_counter(counter_type ctr)
112 {
113 switch (ctr) {
114 case counter_exp:
115 return exp_events;
116 case counter_lgkm:
117 return lgkm_events;
118 case counter_vm:
119 return vm_events;
120 case counter_vs:
121 return vs_events;
122 }
123 return 0;
124 }
125
126 struct wait_imm {
127 static const uint8_t unset_counter = 0xff;
128
129 uint8_t vm;
130 uint8_t exp;
131 uint8_t lgkm;
132 uint8_t vs;
133
134 wait_imm() :
135 vm(unset_counter), exp(unset_counter), lgkm(unset_counter), vs(unset_counter) {}
136 wait_imm(uint16_t vm_, uint16_t exp_, uint16_t lgkm_, uint16_t vs_) :
137 vm(vm_), exp(exp_), lgkm(lgkm_), vs(vs_) {}
138
139 wait_imm(enum chip_class chip, uint16_t packed) : vs(unset_counter)
140 {
141 vm = packed & 0xf;
142 if (chip >= GFX9)
143 vm |= (packed >> 10) & 0x30;
144
145 exp = (packed >> 4) & 0x7;
146
147 lgkm = (packed >> 8) & 0xf;
148 if (chip >= GFX10)
149 lgkm |= (packed >> 8) & 0x30;
150 }
151
152 uint16_t pack(enum chip_class chip) const
153 {
154 uint16_t imm = 0;
155 assert(exp == unset_counter || exp <= 0x7);
156 switch (chip) {
157 case GFX10:
158 assert(lgkm == unset_counter || lgkm <= 0x3f);
159 assert(vm == unset_counter || vm <= 0x3f);
160 imm = ((vm & 0x30) << 10) | ((lgkm & 0x3f) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
161 break;
162 case GFX9:
163 assert(lgkm == unset_counter || lgkm <= 0xf);
164 assert(vm == unset_counter || vm <= 0x3f);
165 imm = ((vm & 0x30) << 10) | ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
166 break;
167 default:
168 assert(lgkm == unset_counter || lgkm <= 0xf);
169 assert(vm == unset_counter || vm <= 0xf);
170 imm = ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf);
171 break;
172 }
173 if (chip < GFX9 && vm == wait_imm::unset_counter)
174 imm |= 0xc000; /* should have no effect on pre-GFX9 and now we won't have to worry about the architecture when interpreting the immediate */
175 if (chip < GFX10 && lgkm == wait_imm::unset_counter)
176 imm |= 0x3000; /* should have no effect on pre-GFX10 and now we won't have to worry about the architecture when interpreting the immediate */
177 return imm;
178 }
179
180 bool combine(const wait_imm& other)
181 {
182 bool changed = other.vm < vm || other.exp < exp || other.lgkm < lgkm || other.vs < vs;
183 vm = std::min(vm, other.vm);
184 exp = std::min(exp, other.exp);
185 lgkm = std::min(lgkm, other.lgkm);
186 vs = std::min(vs, other.vs);
187 return changed;
188 }
189
190 bool empty() const
191 {
192 return vm == unset_counter && exp == unset_counter &&
193 lgkm == unset_counter && vs == unset_counter;
194 }
195 };
196
197 struct wait_entry {
198 wait_imm imm;
199 uint16_t events; /* use wait_event notion */
200 uint8_t counters; /* use counter_type notion */
201 bool wait_on_read:1;
202 bool logical:1;
203
204 wait_entry(wait_event event, wait_imm imm, bool logical, bool wait_on_read)
205 : imm(imm), events(event), counters(get_counters_for_event(event)),
206 wait_on_read(wait_on_read), logical(logical) {}
207
208 bool join(const wait_entry& other)
209 {
210 bool changed = (other.events & ~events) ||
211 (other.counters & ~counters) ||
212 (other.wait_on_read && !wait_on_read);
213 events |= other.events;
214 counters |= other.counters;
215 changed |= imm.combine(other.imm);
216 wait_on_read = wait_on_read || other.wait_on_read;
217 assert(logical == other.logical);
218 return changed;
219 }
220
221 void remove_counter(counter_type counter)
222 {
223 counters &= ~counter;
224
225 if (counter == counter_lgkm) {
226 imm.lgkm = wait_imm::unset_counter;
227 events &= ~(event_smem | event_lds | event_gds | event_sendmsg);
228 }
229
230 if (counter == counter_vm) {
231 imm.vm = wait_imm::unset_counter;
232 events &= ~event_vmem;
233 }
234
235 if (counter == counter_exp) {
236 imm.exp = wait_imm::unset_counter;
237 events &= ~(event_exp_pos | event_exp_param | event_exp_mrt_null | event_gds_gpr_lock | event_vmem_gpr_lock);
238 }
239
240 if (counter == counter_vs) {
241 imm.vs = wait_imm::unset_counter;
242 events &= ~event_vmem_store;
243 }
244
245 if (!(counters & counter_lgkm) && !(counters & counter_vm))
246 events &= ~event_flat;
247 }
248 };
249
250 struct wait_ctx {
251 Program *program;
252 enum chip_class chip_class;
253 uint16_t max_vm_cnt;
254 uint16_t max_exp_cnt;
255 uint16_t max_lgkm_cnt;
256 uint16_t max_vs_cnt;
257 uint16_t unordered_events = event_smem | event_flat;
258
259 uint8_t vm_cnt = 0;
260 uint8_t exp_cnt = 0;
261 uint8_t lgkm_cnt = 0;
262 uint8_t vs_cnt = 0;
263 bool pending_flat_lgkm = false;
264 bool pending_flat_vm = false;
265 bool pending_s_buffer_store = false; /* GFX10 workaround */
266
267 wait_imm barrier_imm[barrier_count];
268 uint16_t barrier_events[barrier_count] = {}; /* use wait_event notion */
269
270 std::map<PhysReg,wait_entry> gpr_map;
271
272 /* used for vmem/smem scores */
273 bool collect_statistics;
274 Instruction *gen_instr;
275 std::map<Instruction *, unsigned> unwaited_instrs[num_counters];
276 std::map<PhysReg,std::set<Instruction *>> reg_instrs[num_counters];
277 std::vector<unsigned> wait_distances[num_events];
278
279 wait_ctx() {}
280 wait_ctx(Program *program_)
281 : program(program_),
282 chip_class(program_->chip_class),
283 max_vm_cnt(program_->chip_class >= GFX9 ? 62 : 14),
284 max_exp_cnt(6),
285 max_lgkm_cnt(program_->chip_class >= GFX10 ? 62 : 14),
286 max_vs_cnt(program_->chip_class >= GFX10 ? 62 : 0),
287 unordered_events(event_smem | (program_->chip_class < GFX10 ? event_flat : 0)) {}
288
289 bool join(const wait_ctx* other, bool logical)
290 {
291 bool changed = other->exp_cnt > exp_cnt ||
292 other->vm_cnt > vm_cnt ||
293 other->lgkm_cnt > lgkm_cnt ||
294 other->vs_cnt > vs_cnt ||
295 (other->pending_flat_lgkm && !pending_flat_lgkm) ||
296 (other->pending_flat_vm && !pending_flat_vm);
297
298 exp_cnt = std::max(exp_cnt, other->exp_cnt);
299 vm_cnt = std::max(vm_cnt, other->vm_cnt);
300 lgkm_cnt = std::max(lgkm_cnt, other->lgkm_cnt);
301 vs_cnt = std::max(vs_cnt, other->vs_cnt);
302 pending_flat_lgkm |= other->pending_flat_lgkm;
303 pending_flat_vm |= other->pending_flat_vm;
304 pending_s_buffer_store |= other->pending_s_buffer_store;
305
306 for (std::pair<PhysReg,wait_entry> entry : other->gpr_map)
307 {
308 std::map<PhysReg,wait_entry>::iterator it = gpr_map.find(entry.first);
309 if (entry.second.logical != logical)
310 continue;
311
312 if (it != gpr_map.end()) {
313 changed |= it->second.join(entry.second);
314 } else {
315 gpr_map.insert(entry);
316 changed = true;
317 }
318 }
319
320 for (unsigned i = 0; i < barrier_count; i++) {
321 changed |= barrier_imm[i].combine(other->barrier_imm[i]);
322 changed |= other->barrier_events[i] & ~barrier_events[i];
323 barrier_events[i] |= other->barrier_events[i];
324 }
325
326 /* these are used for statistics, so don't update "changed" */
327 for (unsigned i = 0; i < num_counters; i++) {
328 for (std::pair<Instruction *, unsigned> instr : other->unwaited_instrs[i]) {
329 auto pos = unwaited_instrs[i].find(instr.first);
330 if (pos == unwaited_instrs[i].end())
331 unwaited_instrs[i].insert(instr);
332 else
333 pos->second = std::min(pos->second, instr.second);
334 }
335 /* don't use a foreach loop to avoid copies */
336 for (auto it = other->reg_instrs[i].begin(); it != other->reg_instrs[i].end(); ++it)
337 reg_instrs[i][it->first].insert(it->second.begin(), it->second.end());
338 }
339
340 return changed;
341 }
342
343 void wait_and_remove_from_entry(PhysReg reg, wait_entry& entry, counter_type counter) {
344 if (collect_statistics && (entry.counters & counter)) {
345 unsigned counter_idx = ffs(counter) - 1;
346 for (Instruction *instr : reg_instrs[counter_idx][reg]) {
347 auto pos = unwaited_instrs[counter_idx].find(instr);
348 if (pos == unwaited_instrs[counter_idx].end())
349 continue;
350
351 unsigned distance = pos->second;
352 unsigned events = entry.events & get_events_for_counter(counter);
353 while (events) {
354 unsigned event_idx = u_bit_scan(&events);
355 wait_distances[event_idx].push_back(distance);
356 }
357
358 unwaited_instrs[counter_idx].erase(instr);
359 }
360 reg_instrs[counter_idx][reg].clear();
361 }
362
363 entry.remove_counter(counter);
364 }
365
366 void advance_unwaited_instrs()
367 {
368 for (unsigned i = 0; i < num_counters; i++) {
369 for (auto it = unwaited_instrs[i].begin(); it != unwaited_instrs[i].end(); ++it)
370 it->second++;
371 }
372 }
373 };
374
375 wait_imm check_instr(Instruction* instr, wait_ctx& ctx)
376 {
377 wait_imm wait;
378
379 for (const Operand op : instr->operands) {
380 if (op.isConstant() || op.isUndefined())
381 continue;
382
383 /* check consecutively read gprs */
384 for (unsigned j = 0; j < op.size(); j++) {
385 PhysReg reg{op.physReg() + j};
386 std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.find(reg);
387 if (it == ctx.gpr_map.end() || !it->second.wait_on_read)
388 continue;
389
390 wait.combine(it->second.imm);
391 }
392 }
393
394 for (const Definition& def : instr->definitions) {
395 /* check consecutively written gprs */
396 for (unsigned j = 0; j < def.getTemp().size(); j++)
397 {
398 PhysReg reg{def.physReg() + j};
399
400 std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.find(reg);
401 if (it == ctx.gpr_map.end())
402 continue;
403
404 /* Vector Memory reads and writes return in the order they were issued */
405 if (instr->isVMEM() && ((it->second.events & vm_events) == event_vmem))
406 continue;
407
408 /* LDS reads and writes return in the order they were issued. same for GDS */
409 if (instr->format == Format::DS) {
410 bool gds = static_cast<DS_instruction*>(instr)->gds;
411 if ((it->second.events & lgkm_events) == (gds ? event_gds : event_lds))
412 continue;
413 }
414
415 wait.combine(it->second.imm);
416 }
417 }
418
419 return wait;
420 }
421
422 wait_imm parse_wait_instr(wait_ctx& ctx, Instruction *instr)
423 {
424 if (instr->opcode == aco_opcode::s_waitcnt_vscnt &&
425 instr->definitions[0].physReg() == sgpr_null) {
426 wait_imm imm;
427 imm.vs = std::min<uint8_t>(imm.vs, static_cast<SOPK_instruction*>(instr)->imm);
428 return imm;
429 } else if (instr->opcode == aco_opcode::s_waitcnt) {
430 return wait_imm(ctx.chip_class, static_cast<SOPP_instruction*>(instr)->imm);
431 }
432 return wait_imm();
433 }
434
435 wait_imm kill(Instruction* instr, wait_ctx& ctx)
436 {
437 wait_imm imm;
438 if (ctx.exp_cnt || ctx.vm_cnt || ctx.lgkm_cnt)
439 imm.combine(check_instr(instr, ctx));
440
441 imm.combine(parse_wait_instr(ctx, instr));
442
443
444 /* It's required to wait for scalar stores before "writing back" data.
445 * It shouldn't cost anything anyways since we're about to do s_endpgm.
446 */
447 if (ctx.lgkm_cnt && instr->opcode == aco_opcode::s_dcache_wb) {
448 assert(ctx.chip_class >= GFX8);
449 imm.lgkm = 0;
450 }
451
452 if (ctx.chip_class >= GFX10) {
453 /* GFX10: A store followed by a load at the same address causes a problem because
454 * the load doesn't load the correct values unless we wait for the store first.
455 * This is NOT mitigated by an s_nop.
456 *
457 * TODO: Refine this when we have proper alias analysis.
458 */
459 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr);
460 if (ctx.pending_s_buffer_store &&
461 !smem->definitions.empty() &&
462 !smem->can_reorder && smem->barrier == barrier_buffer) {
463 imm.lgkm = 0;
464 }
465 }
466
467 if (instr->format == Format::PSEUDO_BARRIER) {
468 switch (instr->opcode) {
469 case aco_opcode::p_memory_barrier_common:
470 imm.combine(ctx.barrier_imm[ffs(barrier_atomic) - 1]);
471 imm.combine(ctx.barrier_imm[ffs(barrier_buffer) - 1]);
472 imm.combine(ctx.barrier_imm[ffs(barrier_image) - 1]);
473 if (ctx.program->workgroup_size > ctx.program->wave_size)
474 imm.combine(ctx.barrier_imm[ffs(barrier_shared) - 1]);
475 break;
476 case aco_opcode::p_memory_barrier_atomic:
477 imm.combine(ctx.barrier_imm[ffs(barrier_atomic) - 1]);
478 break;
479 /* see comment in aco_scheduler.cpp's can_move_instr() on why these barriers are merged */
480 case aco_opcode::p_memory_barrier_buffer:
481 case aco_opcode::p_memory_barrier_image:
482 imm.combine(ctx.barrier_imm[ffs(barrier_buffer) - 1]);
483 imm.combine(ctx.barrier_imm[ffs(barrier_image) - 1]);
484 break;
485 case aco_opcode::p_memory_barrier_shared:
486 if (ctx.program->workgroup_size > ctx.program->wave_size)
487 imm.combine(ctx.barrier_imm[ffs(barrier_shared) - 1]);
488 break;
489 case aco_opcode::p_memory_barrier_gs_data:
490 imm.combine(ctx.barrier_imm[ffs(barrier_gs_data) - 1]);
491 break;
492 case aco_opcode::p_memory_barrier_gs_sendmsg:
493 imm.combine(ctx.barrier_imm[ffs(barrier_gs_sendmsg) - 1]);
494 break;
495 default:
496 assert(false);
497 break;
498 }
499 }
500
501 if (!imm.empty()) {
502 if (ctx.pending_flat_vm && imm.vm != wait_imm::unset_counter)
503 imm.vm = 0;
504 if (ctx.pending_flat_lgkm && imm.lgkm != wait_imm::unset_counter)
505 imm.lgkm = 0;
506
507 /* reset counters */
508 ctx.exp_cnt = std::min(ctx.exp_cnt, imm.exp);
509 ctx.vm_cnt = std::min(ctx.vm_cnt, imm.vm);
510 ctx.lgkm_cnt = std::min(ctx.lgkm_cnt, imm.lgkm);
511 ctx.vs_cnt = std::min(ctx.vs_cnt, imm.vs);
512
513 /* update barrier wait imms */
514 for (unsigned i = 0; i < barrier_count; i++) {
515 wait_imm& bar = ctx.barrier_imm[i];
516 uint16_t& bar_ev = ctx.barrier_events[i];
517 if (bar.exp != wait_imm::unset_counter && imm.exp <= bar.exp) {
518 bar.exp = wait_imm::unset_counter;
519 bar_ev &= ~exp_events;
520 }
521 if (bar.vm != wait_imm::unset_counter && imm.vm <= bar.vm) {
522 bar.vm = wait_imm::unset_counter;
523 bar_ev &= ~(vm_events & ~event_flat);
524 }
525 if (bar.lgkm != wait_imm::unset_counter && imm.lgkm <= bar.lgkm) {
526 bar.lgkm = wait_imm::unset_counter;
527 bar_ev &= ~(lgkm_events & ~event_flat);
528 }
529 if (bar.vs != wait_imm::unset_counter && imm.vs <= bar.vs) {
530 bar.vs = wait_imm::unset_counter;
531 bar_ev &= ~vs_events;
532 }
533 if (bar.vm == wait_imm::unset_counter && bar.lgkm == wait_imm::unset_counter)
534 bar_ev &= ~event_flat;
535 }
536
537 /* remove all gprs with higher counter from map */
538 std::map<PhysReg,wait_entry>::iterator it = ctx.gpr_map.begin();
539 while (it != ctx.gpr_map.end())
540 {
541 if (imm.exp != wait_imm::unset_counter && imm.exp <= it->second.imm.exp)
542 ctx.wait_and_remove_from_entry(it->first, it->second, counter_exp);
543 if (imm.vm != wait_imm::unset_counter && imm.vm <= it->second.imm.vm)
544 ctx.wait_and_remove_from_entry(it->first, it->second, counter_vm);
545 if (imm.lgkm != wait_imm::unset_counter && imm.lgkm <= it->second.imm.lgkm)
546 ctx.wait_and_remove_from_entry(it->first, it->second, counter_lgkm);
547 if (imm.lgkm != wait_imm::unset_counter && imm.vs <= it->second.imm.vs)
548 ctx.wait_and_remove_from_entry(it->first, it->second, counter_vs);
549 if (!it->second.counters)
550 it = ctx.gpr_map.erase(it);
551 else
552 it++;
553 }
554 }
555
556 if (imm.vm == 0)
557 ctx.pending_flat_vm = false;
558 if (imm.lgkm == 0) {
559 ctx.pending_flat_lgkm = false;
560 ctx.pending_s_buffer_store = false;
561 }
562
563 return imm;
564 }
565
566 void update_barrier_counter(uint8_t *ctr, unsigned max)
567 {
568 if (*ctr != wait_imm::unset_counter && *ctr < max)
569 (*ctr)++;
570 }
571
572 void update_barrier_imm(wait_ctx& ctx, uint8_t counters, wait_event event, barrier_interaction barrier)
573 {
574 for (unsigned i = 0; i < barrier_count; i++) {
575 wait_imm& bar = ctx.barrier_imm[i];
576 uint16_t& bar_ev = ctx.barrier_events[i];
577 if (barrier & (1 << i)) {
578 bar_ev |= event;
579 if (counters & counter_lgkm)
580 bar.lgkm = 0;
581 if (counters & counter_vm)
582 bar.vm = 0;
583 if (counters & counter_exp)
584 bar.exp = 0;
585 if (counters & counter_vs)
586 bar.vs = 0;
587 } else if (!(bar_ev & ctx.unordered_events) && !(ctx.unordered_events & event)) {
588 if (counters & counter_lgkm && (bar_ev & lgkm_events) == event)
589 update_barrier_counter(&bar.lgkm, ctx.max_lgkm_cnt);
590 if (counters & counter_vm && (bar_ev & vm_events) == event)
591 update_barrier_counter(&bar.vm, ctx.max_vm_cnt);
592 if (counters & counter_exp && (bar_ev & exp_events) == event)
593 update_barrier_counter(&bar.exp, ctx.max_exp_cnt);
594 if (counters & counter_vs && (bar_ev & vs_events) == event)
595 update_barrier_counter(&bar.vs, ctx.max_vs_cnt);
596 }
597 }
598 }
599
600 void update_counters(wait_ctx& ctx, wait_event event, barrier_interaction barrier=barrier_none)
601 {
602 uint8_t counters = get_counters_for_event(event);
603
604 if (counters & counter_lgkm && ctx.lgkm_cnt <= ctx.max_lgkm_cnt)
605 ctx.lgkm_cnt++;
606 if (counters & counter_vm && ctx.vm_cnt <= ctx.max_vm_cnt)
607 ctx.vm_cnt++;
608 if (counters & counter_exp && ctx.exp_cnt <= ctx.max_exp_cnt)
609 ctx.exp_cnt++;
610 if (counters & counter_vs && ctx.vs_cnt <= ctx.max_vs_cnt)
611 ctx.vs_cnt++;
612
613 update_barrier_imm(ctx, counters, event, barrier);
614
615 if (ctx.unordered_events & event)
616 return;
617
618 if (ctx.pending_flat_lgkm)
619 counters &= ~counter_lgkm;
620 if (ctx.pending_flat_vm)
621 counters &= ~counter_vm;
622
623 for (std::pair<const PhysReg,wait_entry>& e : ctx.gpr_map) {
624 wait_entry& entry = e.second;
625
626 if (entry.events & ctx.unordered_events)
627 continue;
628
629 assert(entry.events);
630
631 if ((counters & counter_exp) && (entry.events & exp_events) == event && entry.imm.exp < ctx.max_exp_cnt)
632 entry.imm.exp++;
633 if ((counters & counter_lgkm) && (entry.events & lgkm_events) == event && entry.imm.lgkm < ctx.max_lgkm_cnt)
634 entry.imm.lgkm++;
635 if ((counters & counter_vm) && (entry.events & vm_events) == event && entry.imm.vm < ctx.max_vm_cnt)
636 entry.imm.vm++;
637 if ((counters & counter_vs) && (entry.events & vs_events) == event && entry.imm.vs < ctx.max_vs_cnt)
638 entry.imm.vs++;
639 }
640 }
641
642 void update_counters_for_flat_load(wait_ctx& ctx, barrier_interaction barrier=barrier_none)
643 {
644 assert(ctx.chip_class < GFX10);
645
646 if (ctx.lgkm_cnt <= ctx.max_lgkm_cnt)
647 ctx.lgkm_cnt++;
648 if (ctx.vm_cnt <= ctx.max_vm_cnt)
649 ctx.vm_cnt++;
650
651 update_barrier_imm(ctx, counter_vm | counter_lgkm, event_flat, barrier);
652
653 for (std::pair<PhysReg,wait_entry> e : ctx.gpr_map)
654 {
655 if (e.second.counters & counter_vm)
656 e.second.imm.vm = 0;
657 if (e.second.counters & counter_lgkm)
658 e.second.imm.lgkm = 0;
659 }
660 ctx.pending_flat_lgkm = true;
661 ctx.pending_flat_vm = true;
662 }
663
664 void insert_wait_entry(wait_ctx& ctx, PhysReg reg, RegClass rc, wait_event event, bool wait_on_read)
665 {
666 uint16_t counters = get_counters_for_event(event);
667 wait_imm imm;
668 if (counters & counter_lgkm)
669 imm.lgkm = 0;
670 if (counters & counter_vm)
671 imm.vm = 0;
672 if (counters & counter_exp)
673 imm.exp = 0;
674 if (counters & counter_vs)
675 imm.vs = 0;
676
677 wait_entry new_entry(event, imm, !rc.is_linear(), wait_on_read);
678
679 for (unsigned i = 0; i < rc.size(); i++) {
680 auto it = ctx.gpr_map.emplace(PhysReg{reg.reg()+i}, new_entry);
681 if (!it.second)
682 it.first->second.join(new_entry);
683 }
684
685 if (ctx.collect_statistics) {
686 unsigned counters_todo = counters;
687 while (counters_todo) {
688 unsigned i = u_bit_scan(&counters_todo);
689 ctx.unwaited_instrs[i].insert(std::make_pair(ctx.gen_instr, 0u));
690 for (unsigned j = 0; j < rc.size(); j++)
691 ctx.reg_instrs[i][PhysReg{reg.reg()+j}].insert(ctx.gen_instr);
692 }
693 }
694 }
695
696 void insert_wait_entry(wait_ctx& ctx, Operand op, wait_event event)
697 {
698 if (!op.isConstant() && !op.isUndefined())
699 insert_wait_entry(ctx, op.physReg(), op.regClass(), event, false);
700 }
701
702 void insert_wait_entry(wait_ctx& ctx, Definition def, wait_event event)
703 {
704 insert_wait_entry(ctx, def.physReg(), def.regClass(), event, true);
705 }
706
707 void gen(Instruction* instr, wait_ctx& ctx)
708 {
709 switch (instr->format) {
710 case Format::EXP: {
711 Export_instruction* exp_instr = static_cast<Export_instruction*>(instr);
712
713 wait_event ev;
714 if (exp_instr->dest <= 9)
715 ev = event_exp_mrt_null;
716 else if (exp_instr->dest <= 15)
717 ev = event_exp_pos;
718 else
719 ev = event_exp_param;
720 update_counters(ctx, ev);
721
722 /* insert new entries for exported vgprs */
723 for (unsigned i = 0; i < 4; i++)
724 {
725 if (exp_instr->enabled_mask & (1 << i)) {
726 unsigned idx = exp_instr->compressed ? i >> 1 : i;
727 assert(idx < exp_instr->operands.size());
728 insert_wait_entry(ctx, exp_instr->operands[idx], ev);
729
730 }
731 }
732 insert_wait_entry(ctx, exec, s2, ev, false);
733 break;
734 }
735 case Format::FLAT: {
736 if (ctx.chip_class < GFX10 && !instr->definitions.empty())
737 update_counters_for_flat_load(ctx, barrier_buffer);
738 else
739 update_counters(ctx, event_flat, barrier_buffer);
740
741 if (!instr->definitions.empty())
742 insert_wait_entry(ctx, instr->definitions[0], event_flat);
743 break;
744 }
745 case Format::SMEM: {
746 SMEM_instruction *smem = static_cast<SMEM_instruction*>(instr);
747 update_counters(ctx, event_smem, static_cast<SMEM_instruction*>(instr)->barrier);
748
749 if (!instr->definitions.empty())
750 insert_wait_entry(ctx, instr->definitions[0], event_smem);
751 else if (ctx.chip_class >= GFX10 &&
752 !smem->can_reorder &&
753 smem->barrier == barrier_buffer)
754 ctx.pending_s_buffer_store = true;
755
756 break;
757 }
758 case Format::DS: {
759 bool gds = static_cast<DS_instruction*>(instr)->gds;
760 update_counters(ctx, gds ? event_gds : event_lds, gds ? barrier_none : barrier_shared);
761 if (gds)
762 update_counters(ctx, event_gds_gpr_lock);
763
764 if (!instr->definitions.empty())
765 insert_wait_entry(ctx, instr->definitions[0], gds ? event_gds : event_lds);
766
767 if (gds) {
768 for (const Operand& op : instr->operands)
769 insert_wait_entry(ctx, op, event_gds_gpr_lock);
770 insert_wait_entry(ctx, exec, s2, event_gds_gpr_lock, false);
771 }
772 break;
773 }
774 case Format::MUBUF:
775 case Format::MTBUF:
776 case Format::MIMG:
777 case Format::GLOBAL: {
778 wait_event ev = !instr->definitions.empty() || ctx.chip_class < GFX10 ? event_vmem : event_vmem_store;
779 update_counters(ctx, ev, get_barrier_interaction(instr));
780
781 if (!instr->definitions.empty())
782 insert_wait_entry(ctx, instr->definitions[0], ev);
783
784 if (ctx.chip_class == GFX6 &&
785 instr->format != Format::MIMG &&
786 instr->operands.size() == 4) {
787 ctx.exp_cnt++;
788 update_counters(ctx, event_vmem_gpr_lock);
789 insert_wait_entry(ctx, instr->operands[3], event_vmem_gpr_lock);
790 } else if (ctx.chip_class == GFX6 &&
791 instr->format == Format::MIMG &&
792 instr->operands[1].regClass().type() == RegType::vgpr) {
793 ctx.exp_cnt++;
794 update_counters(ctx, event_vmem_gpr_lock);
795 insert_wait_entry(ctx, instr->operands[1], event_vmem_gpr_lock);
796 }
797
798 break;
799 }
800 case Format::SOPP: {
801 if (instr->opcode == aco_opcode::s_sendmsg ||
802 instr->opcode == aco_opcode::s_sendmsghalt)
803 update_counters(ctx, event_sendmsg, get_barrier_interaction(instr));
804 }
805 default:
806 break;
807 }
808 }
809
810 void emit_waitcnt(wait_ctx& ctx, std::vector<aco_ptr<Instruction>>& instructions, wait_imm imm)
811 {
812 if (imm.vs != wait_imm::unset_counter) {
813 assert(ctx.chip_class >= GFX10);
814 SOPK_instruction* waitcnt_vs = create_instruction<SOPK_instruction>(aco_opcode::s_waitcnt_vscnt, Format::SOPK, 0, 1);
815 waitcnt_vs->definitions[0] = Definition(sgpr_null, s1);
816 waitcnt_vs->imm = imm.vs;
817 instructions.emplace_back(waitcnt_vs);
818 imm.vs = wait_imm::unset_counter;
819 }
820 if (!imm.empty()) {
821 SOPP_instruction* waitcnt = create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt, Format::SOPP, 0, 0);
822 waitcnt->imm = imm.pack(ctx.chip_class);
823 waitcnt->block = -1;
824 instructions.emplace_back(waitcnt);
825 }
826 }
827
828 void handle_block(Program *program, Block& block, wait_ctx& ctx)
829 {
830 std::vector<aco_ptr<Instruction>> new_instructions;
831
832 wait_imm queued_imm;
833
834 ctx.collect_statistics = program->collect_statistics;
835
836 for (aco_ptr<Instruction>& instr : block.instructions) {
837 bool is_wait = !parse_wait_instr(ctx, instr.get()).empty();
838
839 queued_imm.combine(kill(instr.get(), ctx));
840
841 ctx.gen_instr = instr.get();
842 gen(instr.get(), ctx);
843
844 if (instr->format != Format::PSEUDO_BARRIER && !is_wait) {
845 if (!queued_imm.empty()) {
846 emit_waitcnt(ctx, new_instructions, queued_imm);
847 queued_imm = wait_imm();
848 }
849 new_instructions.emplace_back(std::move(instr));
850
851 if (ctx.collect_statistics)
852 ctx.advance_unwaited_instrs();
853 }
854 }
855
856 if (!queued_imm.empty())
857 emit_waitcnt(ctx, new_instructions, queued_imm);
858
859 block.instructions.swap(new_instructions);
860 }
861
862 } /* end namespace */
863
864 static uint32_t calculate_score(std::vector<wait_ctx> &ctx_vec, uint32_t event_mask)
865 {
866 double result = 0.0;
867 unsigned num_waits = 0;
868 while (event_mask) {
869 unsigned event_index = u_bit_scan(&event_mask);
870 for (const wait_ctx &ctx : ctx_vec) {
871 for (unsigned dist : ctx.wait_distances[event_index]) {
872 double score = dist;
873 /* for many events, excessive distances provide little benefit, so
874 * decrease the score in that case. */
875 double threshold = INFINITY;
876 double inv_strength = 0.000001;
877 switch (1 << event_index) {
878 case event_smem:
879 threshold = 70.0;
880 inv_strength = 75.0;
881 break;
882 case event_vmem:
883 case event_vmem_store:
884 case event_flat:
885 threshold = 230.0;
886 inv_strength = 150.0;
887 break;
888 case event_lds:
889 threshold = 16.0;
890 break;
891 default:
892 break;
893 }
894 if (score > threshold) {
895 score -= threshold;
896 score = threshold + score / (1.0 + score / inv_strength);
897 }
898
899 /* we don't want increases in high scores to hide decreases in low scores,
900 * so raise to the power of 0.1 before averaging. */
901 result += pow(score, 0.1);
902 num_waits++;
903 }
904 }
905 }
906 return round(pow(result / num_waits, 10.0) * 10.0);
907 }
908
909 void insert_wait_states(Program* program)
910 {
911 /* per BB ctx */
912 std::vector<bool> done(program->blocks.size());
913 std::vector<wait_ctx> in_ctx(program->blocks.size(), wait_ctx(program));
914 std::vector<wait_ctx> out_ctx(program->blocks.size(), wait_ctx(program));
915
916 std::stack<unsigned> loop_header_indices;
917 unsigned loop_progress = 0;
918
919 for (unsigned i = 0; i < program->blocks.size();) {
920 Block& current = program->blocks[i++];
921 wait_ctx ctx = in_ctx[current.index];
922
923 if (current.kind & block_kind_loop_header) {
924 loop_header_indices.push(current.index);
925 } else if (current.kind & block_kind_loop_exit) {
926 bool repeat = false;
927 if (loop_progress == loop_header_indices.size()) {
928 i = loop_header_indices.top();
929 repeat = true;
930 }
931 loop_header_indices.pop();
932 loop_progress = std::min<unsigned>(loop_progress, loop_header_indices.size());
933 if (repeat)
934 continue;
935 }
936
937 bool changed = false;
938 for (unsigned b : current.linear_preds)
939 changed |= ctx.join(&out_ctx[b], false);
940 for (unsigned b : current.logical_preds)
941 changed |= ctx.join(&out_ctx[b], true);
942
943 if (done[current.index] && !changed) {
944 in_ctx[current.index] = std::move(ctx);
945 continue;
946 } else {
947 in_ctx[current.index] = ctx;
948 }
949
950 if (current.instructions.empty()) {
951 out_ctx[current.index] = std::move(ctx);
952 continue;
953 }
954
955 loop_progress = std::max<unsigned>(loop_progress, current.loop_nest_depth);
956 done[current.index] = true;
957
958 handle_block(program, current, ctx);
959
960 out_ctx[current.index] = std::move(ctx);
961 }
962
963 if (program->collect_statistics) {
964 program->statistics[statistic_vmem_score] =
965 calculate_score(out_ctx, event_vmem | event_flat | event_vmem_store);
966 program->statistics[statistic_smem_score] =
967 calculate_score(out_ctx, event_smem);
968 }
969 }
970
971 }
972