250f7011b044d6ac55c04d2f686f45c3dff21165
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <map>
29
30 #include "ac_shader_util.h"
31 #include "aco_ir.h"
32 #include "aco_builder.h"
33 #include "aco_interface.h"
34 #include "aco_instruction_selection_setup.cpp"
35 #include "util/fast_idiv_by_const.h"
36
37 namespace aco {
38 namespace {
39
40 class loop_info_RAII {
41 isel_context* ctx;
42 unsigned header_idx_old;
43 Block* exit_old;
44 bool divergent_cont_old;
45 bool divergent_branch_old;
46 bool divergent_if_old;
47
48 public:
49 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
50 : ctx(ctx),
51 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
52 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
53 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
54 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
55 {
56 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
57 ctx->cf_info.parent_loop.exit = loop_exit;
58 ctx->cf_info.parent_loop.has_divergent_continue = false;
59 ctx->cf_info.parent_loop.has_divergent_branch = false;
60 ctx->cf_info.parent_if.is_divergent = false;
61 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
62 }
63
64 ~loop_info_RAII()
65 {
66 ctx->cf_info.parent_loop.header_idx = header_idx_old;
67 ctx->cf_info.parent_loop.exit = exit_old;
68 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
69 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
70 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
71 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
72 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
73 ctx->cf_info.exec_potentially_empty = false;
74 }
75 };
76
77 struct if_context {
78 Temp cond;
79
80 bool divergent_old;
81 bool exec_potentially_empty_old;
82
83 unsigned BB_if_idx;
84 unsigned invert_idx;
85 bool then_branch_divergent;
86 Block BB_invert;
87 Block BB_endif;
88 };
89
90 static void visit_cf_list(struct isel_context *ctx,
91 struct exec_list *list);
92
93 static void add_logical_edge(unsigned pred_idx, Block *succ)
94 {
95 succ->logical_preds.emplace_back(pred_idx);
96 }
97
98
99 static void add_linear_edge(unsigned pred_idx, Block *succ)
100 {
101 succ->linear_preds.emplace_back(pred_idx);
102 }
103
104 static void add_edge(unsigned pred_idx, Block *succ)
105 {
106 add_logical_edge(pred_idx, succ);
107 add_linear_edge(pred_idx, succ);
108 }
109
110 static void append_logical_start(Block *b)
111 {
112 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
113 }
114
115 static void append_logical_end(Block *b)
116 {
117 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
118 }
119
120 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
121 {
122 assert(ctx->allocated[def->index].id());
123 return ctx->allocated[def->index];
124 }
125
126 Temp emit_mbcnt(isel_context *ctx, Definition dst,
127 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
128 {
129 Builder bld(ctx->program, ctx->block);
130 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
131 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
132
133 if (ctx->program->wave_size == 32) {
134 return thread_id_lo;
135 } else {
136 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
137 return thread_id_hi;
138 }
139 }
140
141 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
142 {
143 Builder bld(ctx->program, ctx->block);
144
145 if (!dst.id())
146 dst = bld.tmp(src.regClass());
147
148 assert(src.size() == dst.size());
149
150 if (ctx->stage != fragment_fs) {
151 if (!dst.id())
152 return src;
153
154 bld.copy(Definition(dst), src);
155 return dst;
156 }
157
158 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
159 ctx->program->needs_wqm |= program_needs_wqm;
160 return dst;
161 }
162
163 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
164 {
165 if (index.regClass() == s1)
166 return bld.readlane(bld.def(s1), data, index);
167
168 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
169
170 /* Currently not implemented on GFX6-7 */
171 assert(ctx->options->chip_class >= GFX8);
172
173 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
174 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
175 }
176
177 /* GFX10, wave64 mode:
178 * The bpermute instruction is limited to half-wave operation, which means that it can't
179 * properly support subgroup shuffle like older generations (or wave32 mode), so we
180 * emulate it here.
181 */
182 if (!ctx->has_gfx10_wave64_bpermute) {
183 ctx->has_gfx10_wave64_bpermute = true;
184 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
185 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
186 }
187
188 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
189 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
190 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
191 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
192
193 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
194 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
195 }
196
197 Temp as_vgpr(isel_context *ctx, Temp val)
198 {
199 if (val.type() == RegType::sgpr) {
200 Builder bld(ctx->program, ctx->block);
201 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
202 }
203 assert(val.type() == RegType::vgpr);
204 return val;
205 }
206
207 //assumes a != 0xffffffff
208 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
209 {
210 assert(b != 0);
211 Builder bld(ctx->program, ctx->block);
212
213 if (util_is_power_of_two_or_zero(b)) {
214 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
215 return;
216 }
217
218 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
219
220 assert(info.multiplier <= 0xffffffff);
221
222 bool pre_shift = info.pre_shift != 0;
223 bool increment = info.increment != 0;
224 bool multiply = true;
225 bool post_shift = info.post_shift != 0;
226
227 if (!pre_shift && !increment && !multiply && !post_shift) {
228 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
229 return;
230 }
231
232 Temp pre_shift_dst = a;
233 if (pre_shift) {
234 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
235 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
236 }
237
238 Temp increment_dst = pre_shift_dst;
239 if (increment) {
240 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
241 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
242 }
243
244 Temp multiply_dst = increment_dst;
245 if (multiply) {
246 multiply_dst = post_shift ? bld.tmp(v1) : dst;
247 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
248 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
249 }
250
251 if (post_shift) {
252 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
253 }
254 }
255
256 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
257 {
258 Builder bld(ctx->program, ctx->block);
259 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
260 }
261
262
263 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
264 {
265 /* no need to extract the whole vector */
266 if (src.regClass() == dst_rc) {
267 assert(idx == 0);
268 return src;
269 }
270 assert(src.size() > idx);
271 Builder bld(ctx->program, ctx->block);
272 auto it = ctx->allocated_vec.find(src.id());
273 /* the size check needs to be early because elements other than 0 may be garbage */
274 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
275 if (it->second[idx].regClass() == dst_rc) {
276 return it->second[idx];
277 } else {
278 assert(dst_rc.size() == it->second[idx].regClass().size());
279 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
280 return bld.copy(bld.def(dst_rc), it->second[idx]);
281 }
282 }
283
284 if (src.size() == dst_rc.size()) {
285 assert(idx == 0);
286 return bld.copy(bld.def(dst_rc), src);
287 } else {
288 Temp dst = bld.tmp(dst_rc);
289 emit_extract_vector(ctx, src, idx, dst);
290 return dst;
291 }
292 }
293
294 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
295 {
296 if (num_components == 1)
297 return;
298 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
299 return;
300 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
301 split->operands[0] = Operand(vec_src);
302 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
303 for (unsigned i = 0; i < num_components; i++) {
304 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
305 split->definitions[i] = Definition(elems[i]);
306 }
307 ctx->block->instructions.emplace_back(std::move(split));
308 ctx->allocated_vec.emplace(vec_src.id(), elems);
309 }
310
311 /* This vector expansion uses a mask to determine which elements in the new vector
312 * come from the original vector. The other elements are undefined. */
313 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
314 {
315 emit_split_vector(ctx, vec_src, util_bitcount(mask));
316
317 if (vec_src == dst)
318 return;
319
320 Builder bld(ctx->program, ctx->block);
321 if (num_components == 1) {
322 if (dst.type() == RegType::sgpr)
323 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
324 else
325 bld.copy(Definition(dst), vec_src);
326 return;
327 }
328
329 unsigned component_size = dst.size() / num_components;
330 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
331
332 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
333 vec->definitions[0] = Definition(dst);
334 unsigned k = 0;
335 for (unsigned i = 0; i < num_components; i++) {
336 if (mask & (1 << i)) {
337 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
338 if (dst.type() == RegType::sgpr)
339 src = bld.as_uniform(src);
340 vec->operands[i] = Operand(src);
341 } else {
342 vec->operands[i] = Operand(0u);
343 }
344 elems[i] = vec->operands[i].getTemp();
345 }
346 ctx->block->instructions.emplace_back(std::move(vec));
347 ctx->allocated_vec.emplace(dst.id(), elems);
348 }
349
350 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
351 {
352 Builder bld(ctx->program, ctx->block);
353 if (!dst.id())
354 dst = bld.tmp(bld.lm);
355
356 assert(val.regClass() == s1);
357 assert(dst.regClass() == bld.lm);
358
359 return bld.sop2(Builder::s_cselect, bld.hint_vcc(Definition(dst)), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
360 }
361
362 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
363 {
364 Builder bld(ctx->program, ctx->block);
365 if (!dst.id())
366 dst = bld.tmp(s1);
367
368 assert(val.regClass() == bld.lm);
369 assert(dst.regClass() == s1);
370
371 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
372 Temp tmp = bld.tmp(s1);
373 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
374 return emit_wqm(ctx, tmp, dst);
375 }
376
377 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
378 {
379 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
380 return get_ssa_temp(ctx, src.src.ssa);
381
382 if (src.src.ssa->num_components == size) {
383 bool identity_swizzle = true;
384 for (unsigned i = 0; identity_swizzle && i < size; i++) {
385 if (src.swizzle[i] != i)
386 identity_swizzle = false;
387 }
388 if (identity_swizzle)
389 return get_ssa_temp(ctx, src.src.ssa);
390 }
391
392 Temp vec = get_ssa_temp(ctx, src.src.ssa);
393 unsigned elem_size = vec.size() / src.src.ssa->num_components;
394 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
395 assert(vec.size() % elem_size == 0);
396
397 RegClass elem_rc = RegClass(vec.type(), elem_size);
398 if (size == 1) {
399 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
400 } else {
401 assert(size <= 4);
402 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
403 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
404 for (unsigned i = 0; i < size; ++i) {
405 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
406 vec_instr->operands[i] = Operand{elems[i]};
407 }
408 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
409 vec_instr->definitions[0] = Definition(dst);
410 ctx->block->instructions.emplace_back(std::move(vec_instr));
411 ctx->allocated_vec.emplace(dst.id(), elems);
412 return dst;
413 }
414 }
415
416 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
417 {
418 if (ptr.size() == 2)
419 return ptr;
420 Builder bld(ctx->program, ctx->block);
421 if (ptr.type() == RegType::vgpr)
422 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
423 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
424 ptr, Operand((unsigned)ctx->options->address32_hi));
425 }
426
427 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
428 {
429 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
430 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
431 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
432 sop2->definitions[0] = Definition(dst);
433 if (writes_scc)
434 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
435 ctx->block->instructions.emplace_back(std::move(sop2));
436 }
437
438 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
439 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
440 {
441 Builder bld(ctx->program, ctx->block);
442 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
443 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
444 if (src1.type() == RegType::sgpr) {
445 if (commutative && src0.type() == RegType::vgpr) {
446 Temp t = src0;
447 src0 = src1;
448 src1 = t;
449 } else if (src0.type() == RegType::vgpr &&
450 op != aco_opcode::v_madmk_f32 &&
451 op != aco_opcode::v_madak_f32 &&
452 op != aco_opcode::v_madmk_f16 &&
453 op != aco_opcode::v_madak_f16) {
454 /* If the instruction is not commutative, we emit a VOP3A instruction */
455 bld.vop2_e64(op, Definition(dst), src0, src1);
456 return;
457 } else {
458 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
459 }
460 }
461
462 if (flush_denorms && ctx->program->chip_class < GFX9) {
463 assert(dst.size() == 1);
464 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
465 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
466 } else {
467 bld.vop2(op, Definition(dst), src0, src1);
468 }
469 }
470
471 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
472 bool flush_denorms = false)
473 {
474 Temp src0 = get_alu_src(ctx, instr->src[0]);
475 Temp src1 = get_alu_src(ctx, instr->src[1]);
476 Temp src2 = get_alu_src(ctx, instr->src[2]);
477
478 /* ensure that the instruction has at most 1 sgpr operand
479 * The optimizer will inline constants for us */
480 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
481 src0 = as_vgpr(ctx, src0);
482 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
483 src1 = as_vgpr(ctx, src1);
484 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
485 src2 = as_vgpr(ctx, src2);
486
487 Builder bld(ctx->program, ctx->block);
488 if (flush_denorms && ctx->program->chip_class < GFX9) {
489 assert(dst.size() == 1);
490 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
491 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
492 } else {
493 bld.vop3(op, Definition(dst), src0, src1, src2);
494 }
495 }
496
497 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
498 {
499 Builder bld(ctx->program, ctx->block);
500 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
501 }
502
503 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
504 {
505 Temp src0 = get_alu_src(ctx, instr->src[0]);
506 Temp src1 = get_alu_src(ctx, instr->src[1]);
507 assert(src0.size() == src1.size());
508
509 aco_ptr<Instruction> vopc;
510 if (src1.type() == RegType::sgpr) {
511 if (src0.type() == RegType::vgpr) {
512 /* to swap the operands, we might also have to change the opcode */
513 switch (op) {
514 case aco_opcode::v_cmp_lt_f32:
515 op = aco_opcode::v_cmp_gt_f32;
516 break;
517 case aco_opcode::v_cmp_ge_f32:
518 op = aco_opcode::v_cmp_le_f32;
519 break;
520 case aco_opcode::v_cmp_lt_i32:
521 op = aco_opcode::v_cmp_gt_i32;
522 break;
523 case aco_opcode::v_cmp_ge_i32:
524 op = aco_opcode::v_cmp_le_i32;
525 break;
526 case aco_opcode::v_cmp_lt_u32:
527 op = aco_opcode::v_cmp_gt_u32;
528 break;
529 case aco_opcode::v_cmp_ge_u32:
530 op = aco_opcode::v_cmp_le_u32;
531 break;
532 case aco_opcode::v_cmp_lt_f64:
533 op = aco_opcode::v_cmp_gt_f64;
534 break;
535 case aco_opcode::v_cmp_ge_f64:
536 op = aco_opcode::v_cmp_le_f64;
537 break;
538 case aco_opcode::v_cmp_lt_i64:
539 op = aco_opcode::v_cmp_gt_i64;
540 break;
541 case aco_opcode::v_cmp_ge_i64:
542 op = aco_opcode::v_cmp_le_i64;
543 break;
544 case aco_opcode::v_cmp_lt_u64:
545 op = aco_opcode::v_cmp_gt_u64;
546 break;
547 case aco_opcode::v_cmp_ge_u64:
548 op = aco_opcode::v_cmp_le_u64;
549 break;
550 default: /* eq and ne are commutative */
551 break;
552 }
553 Temp t = src0;
554 src0 = src1;
555 src1 = t;
556 } else {
557 src1 = as_vgpr(ctx, src1);
558 }
559 }
560
561 Builder bld(ctx->program, ctx->block);
562 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
563 }
564
565 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
566 {
567 Temp src0 = get_alu_src(ctx, instr->src[0]);
568 Temp src1 = get_alu_src(ctx, instr->src[1]);
569 Builder bld(ctx->program, ctx->block);
570
571 assert(dst.regClass() == bld.lm);
572 assert(src0.type() == RegType::sgpr);
573 assert(src1.type() == RegType::sgpr);
574 assert(src0.regClass() == src1.regClass());
575
576 /* Emit the SALU comparison instruction */
577 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
578 /* Turn the result into a per-lane bool */
579 bool_to_vector_condition(ctx, cmp, dst);
580 }
581
582 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
583 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
584 {
585 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
586 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
587 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
588 bool use_valu = s_op == aco_opcode::num_opcodes ||
589 divergent_vals ||
590 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
591 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
592 aco_opcode op = use_valu ? v_op : s_op;
593 assert(op != aco_opcode::num_opcodes);
594 assert(dst.regClass() == ctx->program->lane_mask);
595
596 if (use_valu)
597 emit_vopc_instruction(ctx, instr, op, dst);
598 else
599 emit_sopc_instruction(ctx, instr, op, dst);
600 }
601
602 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
603 {
604 Builder bld(ctx->program, ctx->block);
605 Temp src0 = get_alu_src(ctx, instr->src[0]);
606 Temp src1 = get_alu_src(ctx, instr->src[1]);
607
608 assert(dst.regClass() == bld.lm);
609 assert(src0.regClass() == bld.lm);
610 assert(src1.regClass() == bld.lm);
611
612 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
613 }
614
615 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
616 {
617 Builder bld(ctx->program, ctx->block);
618 Temp cond = get_alu_src(ctx, instr->src[0]);
619 Temp then = get_alu_src(ctx, instr->src[1]);
620 Temp els = get_alu_src(ctx, instr->src[2]);
621
622 assert(cond.regClass() == bld.lm);
623
624 if (dst.type() == RegType::vgpr) {
625 aco_ptr<Instruction> bcsel;
626 if (dst.size() == 1) {
627 then = as_vgpr(ctx, then);
628 els = as_vgpr(ctx, els);
629
630 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
631 } else if (dst.size() == 2) {
632 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
633 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
634 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
635 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
636
637 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
638 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
639
640 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
641 } else {
642 fprintf(stderr, "Unimplemented NIR instr bit size: ");
643 nir_print_instr(&instr->instr, stderr);
644 fprintf(stderr, "\n");
645 }
646 return;
647 }
648
649 if (instr->dest.dest.ssa.bit_size == 1) {
650 assert(dst.regClass() == bld.lm);
651 assert(then.regClass() == bld.lm);
652 assert(els.regClass() == bld.lm);
653 }
654
655 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
656 if (dst.regClass() == s1 || dst.regClass() == s2) {
657 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
658 assert(dst.size() == then.size());
659 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
660 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
661 } else {
662 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
663 nir_print_instr(&instr->instr, stderr);
664 fprintf(stderr, "\n");
665 }
666 return;
667 }
668
669 /* divergent boolean bcsel
670 * this implements bcsel on bools: dst = s0 ? s1 : s2
671 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
672 assert(instr->dest.dest.ssa.bit_size == 1);
673
674 if (cond.id() != then.id())
675 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
676
677 if (cond.id() == els.id())
678 bld.sop1(Builder::s_mov, Definition(dst), then);
679 else
680 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
681 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
682 }
683
684 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
685 aco_opcode op, uint32_t undo)
686 {
687 /* multiply by 16777216 to handle denormals */
688 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
689 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
690 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
691 scaled = bld.vop1(op, bld.def(v1), scaled);
692 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
693
694 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
695
696 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
697 }
698
699 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
700 {
701 if (ctx->block->fp_mode.denorm32 == 0) {
702 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
703 return;
704 }
705
706 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
707 }
708
709 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
710 {
711 if (ctx->block->fp_mode.denorm32 == 0) {
712 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
713 return;
714 }
715
716 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
717 }
718
719 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
720 {
721 if (ctx->block->fp_mode.denorm32 == 0) {
722 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
723 return;
724 }
725
726 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
727 }
728
729 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
730 {
731 if (ctx->block->fp_mode.denorm32 == 0) {
732 bld.vop1(aco_opcode::v_log_f32, dst, val);
733 return;
734 }
735
736 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
737 }
738
739 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
740 {
741 if (!instr->dest.dest.is_ssa) {
742 fprintf(stderr, "nir alu dst not in ssa: ");
743 nir_print_instr(&instr->instr, stderr);
744 fprintf(stderr, "\n");
745 abort();
746 }
747 Builder bld(ctx->program, ctx->block);
748 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
749 switch(instr->op) {
750 case nir_op_vec2:
751 case nir_op_vec3:
752 case nir_op_vec4: {
753 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
754 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
755 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
756 elems[i] = get_alu_src(ctx, instr->src[i]);
757 vec->operands[i] = Operand{elems[i]};
758 }
759 vec->definitions[0] = Definition(dst);
760 ctx->block->instructions.emplace_back(std::move(vec));
761 ctx->allocated_vec.emplace(dst.id(), elems);
762 break;
763 }
764 case nir_op_mov: {
765 Temp src = get_alu_src(ctx, instr->src[0]);
766 aco_ptr<Instruction> mov;
767 if (dst.type() == RegType::sgpr) {
768 if (src.type() == RegType::vgpr)
769 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
770 else if (src.regClass() == s1)
771 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
772 else if (src.regClass() == s2)
773 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
774 else
775 unreachable("wrong src register class for nir_op_imov");
776 } else if (dst.regClass() == v1) {
777 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
778 } else if (dst.regClass() == v2) {
779 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
780 } else {
781 nir_print_instr(&instr->instr, stderr);
782 unreachable("Should have been lowered to scalar.");
783 }
784 break;
785 }
786 case nir_op_inot: {
787 Temp src = get_alu_src(ctx, instr->src[0]);
788 if (instr->dest.dest.ssa.bit_size == 1) {
789 assert(src.regClass() == bld.lm);
790 assert(dst.regClass() == bld.lm);
791 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
792 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
793 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
794 } else if (dst.regClass() == v1) {
795 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
796 } else if (dst.type() == RegType::sgpr) {
797 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
798 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
799 } else {
800 fprintf(stderr, "Unimplemented NIR instr bit size: ");
801 nir_print_instr(&instr->instr, stderr);
802 fprintf(stderr, "\n");
803 }
804 break;
805 }
806 case nir_op_ineg: {
807 Temp src = get_alu_src(ctx, instr->src[0]);
808 if (dst.regClass() == v1) {
809 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
810 } else if (dst.regClass() == s1) {
811 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
812 } else if (dst.size() == 2) {
813 Temp src0 = bld.tmp(dst.type(), 1);
814 Temp src1 = bld.tmp(dst.type(), 1);
815 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
816
817 if (dst.regClass() == s2) {
818 Temp carry = bld.tmp(s1);
819 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
820 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
821 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
822 } else {
823 Temp lower = bld.tmp(v1);
824 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
825 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
826 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
827 }
828 } else {
829 fprintf(stderr, "Unimplemented NIR instr bit size: ");
830 nir_print_instr(&instr->instr, stderr);
831 fprintf(stderr, "\n");
832 }
833 break;
834 }
835 case nir_op_iabs: {
836 if (dst.regClass() == s1) {
837 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
838 } else if (dst.regClass() == v1) {
839 Temp src = get_alu_src(ctx, instr->src[0]);
840 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
841 } else {
842 fprintf(stderr, "Unimplemented NIR instr bit size: ");
843 nir_print_instr(&instr->instr, stderr);
844 fprintf(stderr, "\n");
845 }
846 break;
847 }
848 case nir_op_isign: {
849 Temp src = get_alu_src(ctx, instr->src[0]);
850 if (dst.regClass() == s1) {
851 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
852 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
853 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
854 } else if (dst.regClass() == s2) {
855 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
856 Temp neqz;
857 if (ctx->program->chip_class >= GFX8)
858 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
859 else
860 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
861 /* SCC gets zero-extended to 64 bit */
862 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
863 } else if (dst.regClass() == v1) {
864 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
865 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
866 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
867 } else if (dst.regClass() == v2) {
868 Temp upper = emit_extract_vector(ctx, src, 1, v1);
869 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
870 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
871 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
872 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
873 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
874 } else {
875 fprintf(stderr, "Unimplemented NIR instr bit size: ");
876 nir_print_instr(&instr->instr, stderr);
877 fprintf(stderr, "\n");
878 }
879 break;
880 }
881 case nir_op_imax: {
882 if (dst.regClass() == v1) {
883 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
884 } else if (dst.regClass() == s1) {
885 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
886 } else {
887 fprintf(stderr, "Unimplemented NIR instr bit size: ");
888 nir_print_instr(&instr->instr, stderr);
889 fprintf(stderr, "\n");
890 }
891 break;
892 }
893 case nir_op_umax: {
894 if (dst.regClass() == v1) {
895 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
896 } else if (dst.regClass() == s1) {
897 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
898 } else {
899 fprintf(stderr, "Unimplemented NIR instr bit size: ");
900 nir_print_instr(&instr->instr, stderr);
901 fprintf(stderr, "\n");
902 }
903 break;
904 }
905 case nir_op_imin: {
906 if (dst.regClass() == v1) {
907 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
908 } else if (dst.regClass() == s1) {
909 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
910 } else {
911 fprintf(stderr, "Unimplemented NIR instr bit size: ");
912 nir_print_instr(&instr->instr, stderr);
913 fprintf(stderr, "\n");
914 }
915 break;
916 }
917 case nir_op_umin: {
918 if (dst.regClass() == v1) {
919 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
920 } else if (dst.regClass() == s1) {
921 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
922 } else {
923 fprintf(stderr, "Unimplemented NIR instr bit size: ");
924 nir_print_instr(&instr->instr, stderr);
925 fprintf(stderr, "\n");
926 }
927 break;
928 }
929 case nir_op_ior: {
930 if (instr->dest.dest.ssa.bit_size == 1) {
931 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
932 } else if (dst.regClass() == v1) {
933 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
934 } else if (dst.regClass() == s1) {
935 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
936 } else if (dst.regClass() == s2) {
937 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
938 } else {
939 fprintf(stderr, "Unimplemented NIR instr bit size: ");
940 nir_print_instr(&instr->instr, stderr);
941 fprintf(stderr, "\n");
942 }
943 break;
944 }
945 case nir_op_iand: {
946 if (instr->dest.dest.ssa.bit_size == 1) {
947 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
948 } else if (dst.regClass() == v1) {
949 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
950 } else if (dst.regClass() == s1) {
951 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
952 } else if (dst.regClass() == s2) {
953 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
954 } else {
955 fprintf(stderr, "Unimplemented NIR instr bit size: ");
956 nir_print_instr(&instr->instr, stderr);
957 fprintf(stderr, "\n");
958 }
959 break;
960 }
961 case nir_op_ixor: {
962 if (instr->dest.dest.ssa.bit_size == 1) {
963 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
964 } else if (dst.regClass() == v1) {
965 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
966 } else if (dst.regClass() == s1) {
967 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
968 } else if (dst.regClass() == s2) {
969 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
970 } else {
971 fprintf(stderr, "Unimplemented NIR instr bit size: ");
972 nir_print_instr(&instr->instr, stderr);
973 fprintf(stderr, "\n");
974 }
975 break;
976 }
977 case nir_op_ushr: {
978 if (dst.regClass() == v1) {
979 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
980 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
981 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
982 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
983 } else if (dst.regClass() == v2) {
984 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
985 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
986 } else if (dst.regClass() == s2) {
987 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
988 } else if (dst.regClass() == s1) {
989 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
990 } else {
991 fprintf(stderr, "Unimplemented NIR instr bit size: ");
992 nir_print_instr(&instr->instr, stderr);
993 fprintf(stderr, "\n");
994 }
995 break;
996 }
997 case nir_op_ishl: {
998 if (dst.regClass() == v1) {
999 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1000 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1001 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1002 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1003 } else if (dst.regClass() == v2) {
1004 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1005 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1006 } else if (dst.regClass() == s1) {
1007 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1008 } else if (dst.regClass() == s2) {
1009 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1010 } else {
1011 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1012 nir_print_instr(&instr->instr, stderr);
1013 fprintf(stderr, "\n");
1014 }
1015 break;
1016 }
1017 case nir_op_ishr: {
1018 if (dst.regClass() == v1) {
1019 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1020 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1021 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1022 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1023 } else if (dst.regClass() == v2) {
1024 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1025 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1026 } else if (dst.regClass() == s1) {
1027 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1028 } else if (dst.regClass() == s2) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1030 } else {
1031 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1032 nir_print_instr(&instr->instr, stderr);
1033 fprintf(stderr, "\n");
1034 }
1035 break;
1036 }
1037 case nir_op_find_lsb: {
1038 Temp src = get_alu_src(ctx, instr->src[0]);
1039 if (src.regClass() == s1) {
1040 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1041 } else if (src.regClass() == v1) {
1042 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1043 } else if (src.regClass() == s2) {
1044 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1045 } else {
1046 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1047 nir_print_instr(&instr->instr, stderr);
1048 fprintf(stderr, "\n");
1049 }
1050 break;
1051 }
1052 case nir_op_ufind_msb:
1053 case nir_op_ifind_msb: {
1054 Temp src = get_alu_src(ctx, instr->src[0]);
1055 if (src.regClass() == s1 || src.regClass() == s2) {
1056 aco_opcode op = src.regClass() == s2 ?
1057 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1058 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1059 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1060
1061 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1062 Operand(src.size() * 32u - 1u), msb_rev);
1063 Temp msb = sub.def(0).getTemp();
1064 Temp carry = sub.def(1).getTemp();
1065
1066 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, carry);
1067 } else if (src.regClass() == v1) {
1068 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1069 Temp msb_rev = bld.tmp(v1);
1070 emit_vop1_instruction(ctx, instr, op, msb_rev);
1071 Temp msb = bld.tmp(v1);
1072 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1073 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1074 } else {
1075 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1076 nir_print_instr(&instr->instr, stderr);
1077 fprintf(stderr, "\n");
1078 }
1079 break;
1080 }
1081 case nir_op_bitfield_reverse: {
1082 if (dst.regClass() == s1) {
1083 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1084 } else if (dst.regClass() == v1) {
1085 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1086 } else {
1087 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1088 nir_print_instr(&instr->instr, stderr);
1089 fprintf(stderr, "\n");
1090 }
1091 break;
1092 }
1093 case nir_op_iadd: {
1094 if (dst.regClass() == s1) {
1095 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1096 break;
1097 }
1098
1099 Temp src0 = get_alu_src(ctx, instr->src[0]);
1100 Temp src1 = get_alu_src(ctx, instr->src[1]);
1101 if (dst.regClass() == v1) {
1102 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1103 break;
1104 }
1105
1106 assert(src0.size() == 2 && src1.size() == 2);
1107 Temp src00 = bld.tmp(src0.type(), 1);
1108 Temp src01 = bld.tmp(dst.type(), 1);
1109 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1110 Temp src10 = bld.tmp(src1.type(), 1);
1111 Temp src11 = bld.tmp(dst.type(), 1);
1112 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1113
1114 if (dst.regClass() == s2) {
1115 Temp carry = bld.tmp(s1);
1116 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1117 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1118 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1119 } else if (dst.regClass() == v2) {
1120 Temp dst0 = bld.tmp(v1);
1121 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1122 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1123 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1124 } else {
1125 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1126 nir_print_instr(&instr->instr, stderr);
1127 fprintf(stderr, "\n");
1128 }
1129 break;
1130 }
1131 case nir_op_uadd_sat: {
1132 Temp src0 = get_alu_src(ctx, instr->src[0]);
1133 Temp src1 = get_alu_src(ctx, instr->src[1]);
1134 if (dst.regClass() == s1) {
1135 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1136 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1137 src0, src1);
1138 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1139 } else if (dst.regClass() == v1) {
1140 if (ctx->options->chip_class >= GFX9) {
1141 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1142 add->operands[0] = Operand(src0);
1143 add->operands[1] = Operand(src1);
1144 add->definitions[0] = Definition(dst);
1145 add->clamp = 1;
1146 ctx->block->instructions.emplace_back(std::move(add));
1147 } else {
1148 if (src1.regClass() != v1)
1149 std::swap(src0, src1);
1150 assert(src1.regClass() == v1);
1151 Temp tmp = bld.tmp(v1);
1152 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1153 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1154 }
1155 } else {
1156 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1157 nir_print_instr(&instr->instr, stderr);
1158 fprintf(stderr, "\n");
1159 }
1160 break;
1161 }
1162 case nir_op_uadd_carry: {
1163 Temp src0 = get_alu_src(ctx, instr->src[0]);
1164 Temp src1 = get_alu_src(ctx, instr->src[1]);
1165 if (dst.regClass() == s1) {
1166 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1167 break;
1168 }
1169 if (dst.regClass() == v1) {
1170 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1171 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1172 break;
1173 }
1174
1175 Temp src00 = bld.tmp(src0.type(), 1);
1176 Temp src01 = bld.tmp(dst.type(), 1);
1177 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1178 Temp src10 = bld.tmp(src1.type(), 1);
1179 Temp src11 = bld.tmp(dst.type(), 1);
1180 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1181 if (dst.regClass() == s2) {
1182 Temp carry = bld.tmp(s1);
1183 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1184 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1185 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1186 } else if (dst.regClass() == v2) {
1187 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1188 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1189 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1190 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1191 } else {
1192 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1193 nir_print_instr(&instr->instr, stderr);
1194 fprintf(stderr, "\n");
1195 }
1196 break;
1197 }
1198 case nir_op_isub: {
1199 if (dst.regClass() == s1) {
1200 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1201 break;
1202 }
1203
1204 Temp src0 = get_alu_src(ctx, instr->src[0]);
1205 Temp src1 = get_alu_src(ctx, instr->src[1]);
1206 if (dst.regClass() == v1) {
1207 bld.vsub32(Definition(dst), src0, src1);
1208 break;
1209 }
1210
1211 Temp src00 = bld.tmp(src0.type(), 1);
1212 Temp src01 = bld.tmp(dst.type(), 1);
1213 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1214 Temp src10 = bld.tmp(src1.type(), 1);
1215 Temp src11 = bld.tmp(dst.type(), 1);
1216 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1217 if (dst.regClass() == s2) {
1218 Temp carry = bld.tmp(s1);
1219 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1220 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1221 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1222 } else if (dst.regClass() == v2) {
1223 Temp lower = bld.tmp(v1);
1224 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1225 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1226 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1227 } else {
1228 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1229 nir_print_instr(&instr->instr, stderr);
1230 fprintf(stderr, "\n");
1231 }
1232 break;
1233 }
1234 case nir_op_usub_borrow: {
1235 Temp src0 = get_alu_src(ctx, instr->src[0]);
1236 Temp src1 = get_alu_src(ctx, instr->src[1]);
1237 if (dst.regClass() == s1) {
1238 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1239 break;
1240 } else if (dst.regClass() == v1) {
1241 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1242 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1243 break;
1244 }
1245
1246 Temp src00 = bld.tmp(src0.type(), 1);
1247 Temp src01 = bld.tmp(dst.type(), 1);
1248 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1249 Temp src10 = bld.tmp(src1.type(), 1);
1250 Temp src11 = bld.tmp(dst.type(), 1);
1251 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1252 if (dst.regClass() == s2) {
1253 Temp borrow = bld.tmp(s1);
1254 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1255 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1256 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1257 } else if (dst.regClass() == v2) {
1258 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1259 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1260 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1261 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1262 } else {
1263 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1264 nir_print_instr(&instr->instr, stderr);
1265 fprintf(stderr, "\n");
1266 }
1267 break;
1268 }
1269 case nir_op_imul: {
1270 if (dst.regClass() == v1) {
1271 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1272 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1273 } else if (dst.regClass() == s1) {
1274 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1275 } else {
1276 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1277 nir_print_instr(&instr->instr, stderr);
1278 fprintf(stderr, "\n");
1279 }
1280 break;
1281 }
1282 case nir_op_umul_high: {
1283 if (dst.regClass() == v1) {
1284 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1285 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1286 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1287 } else if (dst.regClass() == s1) {
1288 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1289 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1290 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1291 } else {
1292 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1293 nir_print_instr(&instr->instr, stderr);
1294 fprintf(stderr, "\n");
1295 }
1296 break;
1297 }
1298 case nir_op_imul_high: {
1299 if (dst.regClass() == v1) {
1300 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1301 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1302 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1303 } else if (dst.regClass() == s1) {
1304 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1305 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1306 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1307 } else {
1308 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1309 nir_print_instr(&instr->instr, stderr);
1310 fprintf(stderr, "\n");
1311 }
1312 break;
1313 }
1314 case nir_op_fmul: {
1315 if (dst.size() == 1) {
1316 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1317 } else if (dst.size() == 2) {
1318 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1319 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1320 } else {
1321 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1322 nir_print_instr(&instr->instr, stderr);
1323 fprintf(stderr, "\n");
1324 }
1325 break;
1326 }
1327 case nir_op_fadd: {
1328 if (dst.size() == 1) {
1329 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1330 } else if (dst.size() == 2) {
1331 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1332 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1333 } else {
1334 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1335 nir_print_instr(&instr->instr, stderr);
1336 fprintf(stderr, "\n");
1337 }
1338 break;
1339 }
1340 case nir_op_fsub: {
1341 Temp src0 = get_alu_src(ctx, instr->src[0]);
1342 Temp src1 = get_alu_src(ctx, instr->src[1]);
1343 if (dst.size() == 1) {
1344 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1345 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1346 else
1347 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1348 } else if (dst.size() == 2) {
1349 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1350 get_alu_src(ctx, instr->src[0]),
1351 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1352 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1353 sub->neg[1] = true;
1354 } else {
1355 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1356 nir_print_instr(&instr->instr, stderr);
1357 fprintf(stderr, "\n");
1358 }
1359 break;
1360 }
1361 case nir_op_fmax: {
1362 if (dst.size() == 1) {
1363 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1364 } else if (dst.size() == 2) {
1365 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1366 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1367 get_alu_src(ctx, instr->src[0]),
1368 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1369 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1370 } else {
1371 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1372 get_alu_src(ctx, instr->src[0]),
1373 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1374 }
1375 } else {
1376 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1377 nir_print_instr(&instr->instr, stderr);
1378 fprintf(stderr, "\n");
1379 }
1380 break;
1381 }
1382 case nir_op_fmin: {
1383 if (dst.size() == 1) {
1384 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1385 } else if (dst.size() == 2) {
1386 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1387 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1388 get_alu_src(ctx, instr->src[0]),
1389 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1390 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1391 } else {
1392 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1393 get_alu_src(ctx, instr->src[0]),
1394 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1395 }
1396 } else {
1397 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1398 nir_print_instr(&instr->instr, stderr);
1399 fprintf(stderr, "\n");
1400 }
1401 break;
1402 }
1403 case nir_op_fmax3: {
1404 if (dst.size() == 1) {
1405 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1406 } else {
1407 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1408 nir_print_instr(&instr->instr, stderr);
1409 fprintf(stderr, "\n");
1410 }
1411 break;
1412 }
1413 case nir_op_fmin3: {
1414 if (dst.size() == 1) {
1415 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1416 } else {
1417 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1418 nir_print_instr(&instr->instr, stderr);
1419 fprintf(stderr, "\n");
1420 }
1421 break;
1422 }
1423 case nir_op_fmed3: {
1424 if (dst.size() == 1) {
1425 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1426 } else {
1427 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1428 nir_print_instr(&instr->instr, stderr);
1429 fprintf(stderr, "\n");
1430 }
1431 break;
1432 }
1433 case nir_op_umax3: {
1434 if (dst.size() == 1) {
1435 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1436 } else {
1437 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1438 nir_print_instr(&instr->instr, stderr);
1439 fprintf(stderr, "\n");
1440 }
1441 break;
1442 }
1443 case nir_op_umin3: {
1444 if (dst.size() == 1) {
1445 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1446 } else {
1447 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1448 nir_print_instr(&instr->instr, stderr);
1449 fprintf(stderr, "\n");
1450 }
1451 break;
1452 }
1453 case nir_op_umed3: {
1454 if (dst.size() == 1) {
1455 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1456 } else {
1457 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1458 nir_print_instr(&instr->instr, stderr);
1459 fprintf(stderr, "\n");
1460 }
1461 break;
1462 }
1463 case nir_op_imax3: {
1464 if (dst.size() == 1) {
1465 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1466 } else {
1467 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1468 nir_print_instr(&instr->instr, stderr);
1469 fprintf(stderr, "\n");
1470 }
1471 break;
1472 }
1473 case nir_op_imin3: {
1474 if (dst.size() == 1) {
1475 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1476 } else {
1477 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1478 nir_print_instr(&instr->instr, stderr);
1479 fprintf(stderr, "\n");
1480 }
1481 break;
1482 }
1483 case nir_op_imed3: {
1484 if (dst.size() == 1) {
1485 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1486 } else {
1487 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1488 nir_print_instr(&instr->instr, stderr);
1489 fprintf(stderr, "\n");
1490 }
1491 break;
1492 }
1493 case nir_op_cube_face_coord: {
1494 Temp in = get_alu_src(ctx, instr->src[0], 3);
1495 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1496 emit_extract_vector(ctx, in, 1, v1),
1497 emit_extract_vector(ctx, in, 2, v1) };
1498 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1499 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1500 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1501 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1502 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1503 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1504 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1505 break;
1506 }
1507 case nir_op_cube_face_index: {
1508 Temp in = get_alu_src(ctx, instr->src[0], 3);
1509 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1510 emit_extract_vector(ctx, in, 1, v1),
1511 emit_extract_vector(ctx, in, 2, v1) };
1512 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1513 break;
1514 }
1515 case nir_op_bcsel: {
1516 emit_bcsel(ctx, instr, dst);
1517 break;
1518 }
1519 case nir_op_frsq: {
1520 if (dst.size() == 1) {
1521 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1522 } else if (dst.size() == 2) {
1523 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1524 } else {
1525 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1526 nir_print_instr(&instr->instr, stderr);
1527 fprintf(stderr, "\n");
1528 }
1529 break;
1530 }
1531 case nir_op_fneg: {
1532 Temp src = get_alu_src(ctx, instr->src[0]);
1533 if (dst.size() == 1) {
1534 if (ctx->block->fp_mode.must_flush_denorms32)
1535 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1536 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1537 } else if (dst.size() == 2) {
1538 if (ctx->block->fp_mode.must_flush_denorms16_64)
1539 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1540 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1541 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1542 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1543 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1544 } else {
1545 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1546 nir_print_instr(&instr->instr, stderr);
1547 fprintf(stderr, "\n");
1548 }
1549 break;
1550 }
1551 case nir_op_fabs: {
1552 Temp src = get_alu_src(ctx, instr->src[0]);
1553 if (dst.size() == 1) {
1554 if (ctx->block->fp_mode.must_flush_denorms32)
1555 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1556 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1557 } else if (dst.size() == 2) {
1558 if (ctx->block->fp_mode.must_flush_denorms16_64)
1559 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1560 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1561 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1562 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1563 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1564 } else {
1565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1566 nir_print_instr(&instr->instr, stderr);
1567 fprintf(stderr, "\n");
1568 }
1569 break;
1570 }
1571 case nir_op_fsat: {
1572 Temp src = get_alu_src(ctx, instr->src[0]);
1573 if (dst.size() == 1) {
1574 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1575 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1576 // TODO: confirm that this holds under any circumstances
1577 } else if (dst.size() == 2) {
1578 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1579 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1580 vop3->clamp = true;
1581 } else {
1582 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1583 nir_print_instr(&instr->instr, stderr);
1584 fprintf(stderr, "\n");
1585 }
1586 break;
1587 }
1588 case nir_op_flog2: {
1589 if (dst.size() == 1) {
1590 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1591 } else {
1592 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1593 nir_print_instr(&instr->instr, stderr);
1594 fprintf(stderr, "\n");
1595 }
1596 break;
1597 }
1598 case nir_op_frcp: {
1599 if (dst.size() == 1) {
1600 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1601 } else if (dst.size() == 2) {
1602 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1603 } else {
1604 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1605 nir_print_instr(&instr->instr, stderr);
1606 fprintf(stderr, "\n");
1607 }
1608 break;
1609 }
1610 case nir_op_fexp2: {
1611 if (dst.size() == 1) {
1612 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1613 } else {
1614 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1615 nir_print_instr(&instr->instr, stderr);
1616 fprintf(stderr, "\n");
1617 }
1618 break;
1619 }
1620 case nir_op_fsqrt: {
1621 if (dst.size() == 1) {
1622 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1623 } else if (dst.size() == 2) {
1624 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1625 } else {
1626 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1627 nir_print_instr(&instr->instr, stderr);
1628 fprintf(stderr, "\n");
1629 }
1630 break;
1631 }
1632 case nir_op_ffract: {
1633 if (dst.size() == 1) {
1634 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1635 } else if (dst.size() == 2) {
1636 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1637 } else {
1638 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1639 nir_print_instr(&instr->instr, stderr);
1640 fprintf(stderr, "\n");
1641 }
1642 break;
1643 }
1644 case nir_op_ffloor: {
1645 if (dst.size() == 1) {
1646 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1647 } else if (dst.size() == 2) {
1648 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f64, dst);
1649 } else {
1650 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1651 nir_print_instr(&instr->instr, stderr);
1652 fprintf(stderr, "\n");
1653 }
1654 break;
1655 }
1656 case nir_op_fceil: {
1657 if (dst.size() == 1) {
1658 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1659 } else if (dst.size() == 2) {
1660 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1661 } else {
1662 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1663 nir_print_instr(&instr->instr, stderr);
1664 fprintf(stderr, "\n");
1665 }
1666 break;
1667 }
1668 case nir_op_ftrunc: {
1669 if (dst.size() == 1) {
1670 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1671 } else if (dst.size() == 2) {
1672 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f64, dst);
1673 } else {
1674 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1675 nir_print_instr(&instr->instr, stderr);
1676 fprintf(stderr, "\n");
1677 }
1678 break;
1679 }
1680 case nir_op_fround_even: {
1681 if (dst.size() == 1) {
1682 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1683 } else if (dst.size() == 2) {
1684 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1685 } else {
1686 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1687 nir_print_instr(&instr->instr, stderr);
1688 fprintf(stderr, "\n");
1689 }
1690 break;
1691 }
1692 case nir_op_fsin:
1693 case nir_op_fcos: {
1694 Temp src = get_alu_src(ctx, instr->src[0]);
1695 aco_ptr<Instruction> norm;
1696 if (dst.size() == 1) {
1697 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1698 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1699
1700 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1701 if (ctx->options->chip_class < GFX9)
1702 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1703
1704 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1705 bld.vop1(opcode, Definition(dst), tmp);
1706 } else {
1707 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1708 nir_print_instr(&instr->instr, stderr);
1709 fprintf(stderr, "\n");
1710 }
1711 break;
1712 }
1713 case nir_op_ldexp: {
1714 if (dst.size() == 1) {
1715 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1716 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1717 get_alu_src(ctx, instr->src[1]));
1718 } else if (dst.size() == 2) {
1719 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1720 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1721 get_alu_src(ctx, instr->src[1]));
1722 } else {
1723 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1724 nir_print_instr(&instr->instr, stderr);
1725 fprintf(stderr, "\n");
1726 }
1727 break;
1728 }
1729 case nir_op_frexp_sig: {
1730 if (dst.size() == 1) {
1731 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1732 get_alu_src(ctx, instr->src[0]));
1733 } else if (dst.size() == 2) {
1734 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1735 get_alu_src(ctx, instr->src[0]));
1736 } else {
1737 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1738 nir_print_instr(&instr->instr, stderr);
1739 fprintf(stderr, "\n");
1740 }
1741 break;
1742 }
1743 case nir_op_frexp_exp: {
1744 if (instr->src[0].src.ssa->bit_size == 32) {
1745 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1746 get_alu_src(ctx, instr->src[0]));
1747 } else if (instr->src[0].src.ssa->bit_size == 64) {
1748 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1749 get_alu_src(ctx, instr->src[0]));
1750 } else {
1751 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1752 nir_print_instr(&instr->instr, stderr);
1753 fprintf(stderr, "\n");
1754 }
1755 break;
1756 }
1757 case nir_op_fsign: {
1758 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1759 if (dst.size() == 1) {
1760 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1761 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1762 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1763 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1764 } else if (dst.size() == 2) {
1765 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1766 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1767 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1768
1769 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1770 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1771 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1772
1773 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1774 } else {
1775 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1776 nir_print_instr(&instr->instr, stderr);
1777 fprintf(stderr, "\n");
1778 }
1779 break;
1780 }
1781 case nir_op_f2f32: {
1782 if (instr->src[0].src.ssa->bit_size == 64) {
1783 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1784 } else {
1785 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1786 nir_print_instr(&instr->instr, stderr);
1787 fprintf(stderr, "\n");
1788 }
1789 break;
1790 }
1791 case nir_op_f2f64: {
1792 if (instr->src[0].src.ssa->bit_size == 32) {
1793 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1794 } else {
1795 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1796 nir_print_instr(&instr->instr, stderr);
1797 fprintf(stderr, "\n");
1798 }
1799 break;
1800 }
1801 case nir_op_i2f32: {
1802 assert(dst.size() == 1);
1803 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1804 break;
1805 }
1806 case nir_op_i2f64: {
1807 if (instr->src[0].src.ssa->bit_size == 32) {
1808 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1809 } else if (instr->src[0].src.ssa->bit_size == 64) {
1810 Temp src = get_alu_src(ctx, instr->src[0]);
1811 RegClass rc = RegClass(src.type(), 1);
1812 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1813 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1814 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1815 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1816 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1817 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1818
1819 } else {
1820 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1821 nir_print_instr(&instr->instr, stderr);
1822 fprintf(stderr, "\n");
1823 }
1824 break;
1825 }
1826 case nir_op_u2f32: {
1827 assert(dst.size() == 1);
1828 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1829 break;
1830 }
1831 case nir_op_u2f64: {
1832 if (instr->src[0].src.ssa->bit_size == 32) {
1833 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1834 } else if (instr->src[0].src.ssa->bit_size == 64) {
1835 Temp src = get_alu_src(ctx, instr->src[0]);
1836 RegClass rc = RegClass(src.type(), 1);
1837 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1838 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1839 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1840 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1841 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1842 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1843 } else {
1844 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1845 nir_print_instr(&instr->instr, stderr);
1846 fprintf(stderr, "\n");
1847 }
1848 break;
1849 }
1850 case nir_op_f2i32: {
1851 Temp src = get_alu_src(ctx, instr->src[0]);
1852 if (instr->src[0].src.ssa->bit_size == 32) {
1853 if (dst.type() == RegType::vgpr)
1854 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1855 else
1856 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1857 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1858
1859 } else if (instr->src[0].src.ssa->bit_size == 64) {
1860 if (dst.type() == RegType::vgpr)
1861 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1862 else
1863 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1864 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1865
1866 } else {
1867 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1868 nir_print_instr(&instr->instr, stderr);
1869 fprintf(stderr, "\n");
1870 }
1871 break;
1872 }
1873 case nir_op_f2u32: {
1874 Temp src = get_alu_src(ctx, instr->src[0]);
1875 if (instr->src[0].src.ssa->bit_size == 32) {
1876 if (dst.type() == RegType::vgpr)
1877 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
1878 else
1879 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1880 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
1881
1882 } else if (instr->src[0].src.ssa->bit_size == 64) {
1883 if (dst.type() == RegType::vgpr)
1884 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
1885 else
1886 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1887 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
1888
1889 } else {
1890 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1891 nir_print_instr(&instr->instr, stderr);
1892 fprintf(stderr, "\n");
1893 }
1894 break;
1895 }
1896 case nir_op_f2i64: {
1897 Temp src = get_alu_src(ctx, instr->src[0]);
1898 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
1899 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
1900 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
1901 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
1902 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
1903 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
1904 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
1905 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
1906 Temp new_exponent = bld.tmp(v1);
1907 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
1908 if (ctx->program->chip_class >= GFX8)
1909 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
1910 else
1911 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
1912 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
1913 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
1914 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1915 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
1916 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
1917 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
1918 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
1919 Temp new_lower = bld.tmp(v1);
1920 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
1921 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
1922 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
1923
1924 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
1925 if (src.type() == RegType::vgpr)
1926 src = bld.as_uniform(src);
1927 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
1928 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
1929 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
1930 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
1931 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
1932 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
1933 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
1934 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
1935 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
1936 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
1937 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
1938 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
1939 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
1940 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
1941 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
1942 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1943 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
1944 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
1945 Temp borrow = bld.tmp(s1);
1946 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
1947 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
1948 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1949
1950 } else if (instr->src[0].src.ssa->bit_size == 64) {
1951 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
1952 Temp trunc = bld.vop1(aco_opcode::v_trunc_f64, bld.def(v2), src);
1953 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
1954 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
1955 Temp floor = bld.vop1(aco_opcode::v_floor_f64, bld.def(v2), mul);
1956 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
1957 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
1958 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
1959 if (dst.type() == RegType::sgpr) {
1960 lower = bld.as_uniform(lower);
1961 upper = bld.as_uniform(upper);
1962 }
1963 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1964
1965 } else {
1966 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1967 nir_print_instr(&instr->instr, stderr);
1968 fprintf(stderr, "\n");
1969 }
1970 break;
1971 }
1972 case nir_op_f2u64: {
1973 Temp src = get_alu_src(ctx, instr->src[0]);
1974 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
1975 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
1976 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
1977 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
1978 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
1979 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
1980 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
1981 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
1982 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
1983 Temp new_exponent = bld.tmp(v1);
1984 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
1985 if (ctx->program->chip_class >= GFX8)
1986 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
1987 else
1988 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
1989 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
1990 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
1991 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
1992 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
1993 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
1994 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
1995 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1996
1997 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
1998 if (src.type() == RegType::vgpr)
1999 src = bld.as_uniform(src);
2000 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2001 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2002 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2003 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2004 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2005 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2006 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2007 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2008 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2009 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2010 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2011 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2012 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2013 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2014 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2015 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2016 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2017 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2018
2019 } else if (instr->src[0].src.ssa->bit_size == 64) {
2020 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2021 Temp trunc = bld.vop1(aco_opcode::v_trunc_f64, bld.def(v2), src);
2022 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2023 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2024 Temp floor = bld.vop1(aco_opcode::v_floor_f64, bld.def(v2), mul);
2025 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2026 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2027 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2028 if (dst.type() == RegType::sgpr) {
2029 lower = bld.as_uniform(lower);
2030 upper = bld.as_uniform(upper);
2031 }
2032 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2033
2034 } else {
2035 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2036 nir_print_instr(&instr->instr, stderr);
2037 fprintf(stderr, "\n");
2038 }
2039 break;
2040 }
2041 case nir_op_b2f32: {
2042 Temp src = get_alu_src(ctx, instr->src[0]);
2043 assert(src.regClass() == bld.lm);
2044
2045 if (dst.regClass() == s1) {
2046 src = bool_to_scalar_condition(ctx, src);
2047 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2048 } else if (dst.regClass() == v1) {
2049 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2050 } else {
2051 unreachable("Wrong destination register class for nir_op_b2f32.");
2052 }
2053 break;
2054 }
2055 case nir_op_b2f64: {
2056 Temp src = get_alu_src(ctx, instr->src[0]);
2057 assert(src.regClass() == bld.lm);
2058
2059 if (dst.regClass() == s2) {
2060 src = bool_to_scalar_condition(ctx, src);
2061 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2062 } else if (dst.regClass() == v2) {
2063 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2064 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2065 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2066 } else {
2067 unreachable("Wrong destination register class for nir_op_b2f64.");
2068 }
2069 break;
2070 }
2071 case nir_op_i2i32: {
2072 Temp src = get_alu_src(ctx, instr->src[0]);
2073 if (instr->src[0].src.ssa->bit_size == 64) {
2074 /* we can actually just say dst = src, as it would map the lower register */
2075 emit_extract_vector(ctx, src, 0, dst);
2076 } else {
2077 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2078 nir_print_instr(&instr->instr, stderr);
2079 fprintf(stderr, "\n");
2080 }
2081 break;
2082 }
2083 case nir_op_u2u32: {
2084 Temp src = get_alu_src(ctx, instr->src[0]);
2085 if (instr->src[0].src.ssa->bit_size == 16) {
2086 if (dst.regClass() == s1) {
2087 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2088 } else {
2089 // TODO: do better with SDWA
2090 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2091 }
2092 } else if (instr->src[0].src.ssa->bit_size == 64) {
2093 /* we can actually just say dst = src, as it would map the lower register */
2094 emit_extract_vector(ctx, src, 0, dst);
2095 } else {
2096 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2097 nir_print_instr(&instr->instr, stderr);
2098 fprintf(stderr, "\n");
2099 }
2100 break;
2101 }
2102 case nir_op_i2i64: {
2103 Temp src = get_alu_src(ctx, instr->src[0]);
2104 if (src.regClass() == s1) {
2105 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2106 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2107 } else if (src.regClass() == v1) {
2108 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2109 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2110 } else {
2111 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2112 nir_print_instr(&instr->instr, stderr);
2113 fprintf(stderr, "\n");
2114 }
2115 break;
2116 }
2117 case nir_op_u2u64: {
2118 Temp src = get_alu_src(ctx, instr->src[0]);
2119 if (instr->src[0].src.ssa->bit_size == 32) {
2120 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2121 } else {
2122 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2123 nir_print_instr(&instr->instr, stderr);
2124 fprintf(stderr, "\n");
2125 }
2126 break;
2127 }
2128 case nir_op_b2i32: {
2129 Temp src = get_alu_src(ctx, instr->src[0]);
2130 assert(src.regClass() == bld.lm);
2131
2132 if (dst.regClass() == s1) {
2133 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2134 bool_to_scalar_condition(ctx, src, dst);
2135 } else if (dst.regClass() == v1) {
2136 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2137 } else {
2138 unreachable("Invalid register class for b2i32");
2139 }
2140 break;
2141 }
2142 case nir_op_i2b1: {
2143 Temp src = get_alu_src(ctx, instr->src[0]);
2144 assert(dst.regClass() == bld.lm);
2145
2146 if (src.type() == RegType::vgpr) {
2147 assert(src.regClass() == v1 || src.regClass() == v2);
2148 assert(dst.regClass() == bld.lm);
2149 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2150 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2151 } else {
2152 assert(src.regClass() == s1 || src.regClass() == s2);
2153 Temp tmp;
2154 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2155 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2156 } else {
2157 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2158 bld.scc(bld.def(s1)), Operand(0u), src);
2159 }
2160 bool_to_vector_condition(ctx, tmp, dst);
2161 }
2162 break;
2163 }
2164 case nir_op_pack_64_2x32_split: {
2165 Temp src0 = get_alu_src(ctx, instr->src[0]);
2166 Temp src1 = get_alu_src(ctx, instr->src[1]);
2167
2168 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2169 break;
2170 }
2171 case nir_op_unpack_64_2x32_split_x:
2172 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2173 break;
2174 case nir_op_unpack_64_2x32_split_y:
2175 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2176 break;
2177 case nir_op_pack_half_2x16: {
2178 Temp src = get_alu_src(ctx, instr->src[0], 2);
2179
2180 if (dst.regClass() == v1) {
2181 Temp src0 = bld.tmp(v1);
2182 Temp src1 = bld.tmp(v1);
2183 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2184 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2185 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2186 else
2187 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2188 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2189 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2190 } else {
2191 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2192 nir_print_instr(&instr->instr, stderr);
2193 fprintf(stderr, "\n");
2194 }
2195 break;
2196 }
2197 case nir_op_unpack_half_2x16_split_x: {
2198 if (dst.regClass() == v1) {
2199 Builder bld(ctx->program, ctx->block);
2200 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2201 } else {
2202 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2203 nir_print_instr(&instr->instr, stderr);
2204 fprintf(stderr, "\n");
2205 }
2206 break;
2207 }
2208 case nir_op_unpack_half_2x16_split_y: {
2209 if (dst.regClass() == v1) {
2210 Builder bld(ctx->program, ctx->block);
2211 /* TODO: use SDWA here */
2212 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2213 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2214 } else {
2215 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2216 nir_print_instr(&instr->instr, stderr);
2217 fprintf(stderr, "\n");
2218 }
2219 break;
2220 }
2221 case nir_op_fquantize2f16: {
2222 Temp src = get_alu_src(ctx, instr->src[0]);
2223 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2224 Temp f32, cmp_res;
2225
2226 if (ctx->program->chip_class >= GFX8) {
2227 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2228 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2229 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2230 } else {
2231 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2232 * so compare the result and flush to 0 if it's smaller.
2233 */
2234 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2235 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2236 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2237 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2238 cmp_res = vop3->definitions[0].getTemp();
2239 }
2240
2241 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2242 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2243 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2244 } else {
2245 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2246 }
2247 break;
2248 }
2249 case nir_op_bfm: {
2250 Temp bits = get_alu_src(ctx, instr->src[0]);
2251 Temp offset = get_alu_src(ctx, instr->src[1]);
2252
2253 if (dst.regClass() == s1) {
2254 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2255 } else if (dst.regClass() == v1) {
2256 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2257 } else {
2258 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2259 nir_print_instr(&instr->instr, stderr);
2260 fprintf(stderr, "\n");
2261 }
2262 break;
2263 }
2264 case nir_op_bitfield_select: {
2265 /* (mask & insert) | (~mask & base) */
2266 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2267 Temp insert = get_alu_src(ctx, instr->src[1]);
2268 Temp base = get_alu_src(ctx, instr->src[2]);
2269
2270 /* dst = (insert & bitmask) | (base & ~bitmask) */
2271 if (dst.regClass() == s1) {
2272 aco_ptr<Instruction> sop2;
2273 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2274 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2275 Operand lhs;
2276 if (const_insert && const_bitmask) {
2277 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2278 } else {
2279 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2280 lhs = Operand(insert);
2281 }
2282
2283 Operand rhs;
2284 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2285 if (const_base && const_bitmask) {
2286 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2287 } else {
2288 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2289 rhs = Operand(base);
2290 }
2291
2292 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2293
2294 } else if (dst.regClass() == v1) {
2295 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2296 base = as_vgpr(ctx, base);
2297 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2298 insert = as_vgpr(ctx, insert);
2299
2300 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2301
2302 } else {
2303 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2304 nir_print_instr(&instr->instr, stderr);
2305 fprintf(stderr, "\n");
2306 }
2307 break;
2308 }
2309 case nir_op_ubfe:
2310 case nir_op_ibfe: {
2311 Temp base = get_alu_src(ctx, instr->src[0]);
2312 Temp offset = get_alu_src(ctx, instr->src[1]);
2313 Temp bits = get_alu_src(ctx, instr->src[2]);
2314
2315 if (dst.type() == RegType::sgpr) {
2316 Operand extract;
2317 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2318 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2319 if (const_offset && const_bits) {
2320 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2321 extract = Operand(const_extract);
2322 } else {
2323 Operand width;
2324 if (const_bits) {
2325 width = Operand(const_bits->u32 << 16);
2326 } else {
2327 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2328 }
2329 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2330 }
2331
2332 aco_opcode opcode;
2333 if (dst.regClass() == s1) {
2334 if (instr->op == nir_op_ubfe)
2335 opcode = aco_opcode::s_bfe_u32;
2336 else
2337 opcode = aco_opcode::s_bfe_i32;
2338 } else if (dst.regClass() == s2) {
2339 if (instr->op == nir_op_ubfe)
2340 opcode = aco_opcode::s_bfe_u64;
2341 else
2342 opcode = aco_opcode::s_bfe_i64;
2343 } else {
2344 unreachable("Unsupported BFE bit size");
2345 }
2346
2347 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2348
2349 } else {
2350 aco_opcode opcode;
2351 if (dst.regClass() == v1) {
2352 if (instr->op == nir_op_ubfe)
2353 opcode = aco_opcode::v_bfe_u32;
2354 else
2355 opcode = aco_opcode::v_bfe_i32;
2356 } else {
2357 unreachable("Unsupported BFE bit size");
2358 }
2359
2360 emit_vop3a_instruction(ctx, instr, opcode, dst);
2361 }
2362 break;
2363 }
2364 case nir_op_bit_count: {
2365 Temp src = get_alu_src(ctx, instr->src[0]);
2366 if (src.regClass() == s1) {
2367 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2368 } else if (src.regClass() == v1) {
2369 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2370 } else if (src.regClass() == v2) {
2371 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2372 emit_extract_vector(ctx, src, 1, v1),
2373 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2374 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2375 } else if (src.regClass() == s2) {
2376 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2377 } else {
2378 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2379 nir_print_instr(&instr->instr, stderr);
2380 fprintf(stderr, "\n");
2381 }
2382 break;
2383 }
2384 case nir_op_flt: {
2385 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2386 break;
2387 }
2388 case nir_op_fge: {
2389 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2390 break;
2391 }
2392 case nir_op_feq: {
2393 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2394 break;
2395 }
2396 case nir_op_fne: {
2397 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2398 break;
2399 }
2400 case nir_op_ilt: {
2401 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2402 break;
2403 }
2404 case nir_op_ige: {
2405 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2406 break;
2407 }
2408 case nir_op_ieq: {
2409 if (instr->src[0].src.ssa->bit_size == 1)
2410 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2411 else
2412 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2413 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2414 break;
2415 }
2416 case nir_op_ine: {
2417 if (instr->src[0].src.ssa->bit_size == 1)
2418 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2419 else
2420 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2421 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2422 break;
2423 }
2424 case nir_op_ult: {
2425 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2426 break;
2427 }
2428 case nir_op_uge: {
2429 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2430 break;
2431 }
2432 case nir_op_fddx:
2433 case nir_op_fddy:
2434 case nir_op_fddx_fine:
2435 case nir_op_fddy_fine:
2436 case nir_op_fddx_coarse:
2437 case nir_op_fddy_coarse: {
2438 Temp src = get_alu_src(ctx, instr->src[0]);
2439 uint16_t dpp_ctrl1, dpp_ctrl2;
2440 if (instr->op == nir_op_fddx_fine) {
2441 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2442 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2443 } else if (instr->op == nir_op_fddy_fine) {
2444 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2445 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2446 } else {
2447 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2448 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2449 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2450 else
2451 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2452 }
2453
2454 Temp tmp;
2455 if (ctx->program->chip_class >= GFX8) {
2456 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2457 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2458 } else {
2459 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2460 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2461 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2462 }
2463 emit_wqm(ctx, tmp, dst, true);
2464 break;
2465 }
2466 default:
2467 fprintf(stderr, "Unknown NIR ALU instr: ");
2468 nir_print_instr(&instr->instr, stderr);
2469 fprintf(stderr, "\n");
2470 }
2471 }
2472
2473 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2474 {
2475 Temp dst = get_ssa_temp(ctx, &instr->def);
2476
2477 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2478 // which get truncated the lsb if double and msb if int
2479 // for now, we only use s_mov_b64 with 64bit inline constants
2480 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2481 assert(dst.type() == RegType::sgpr);
2482
2483 Builder bld(ctx->program, ctx->block);
2484
2485 if (instr->def.bit_size == 1) {
2486 assert(dst.regClass() == bld.lm);
2487 int val = instr->value[0].b ? -1 : 0;
2488 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2489 bld.sop1(Builder::s_mov, Definition(dst), op);
2490 } else if (dst.size() == 1) {
2491 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2492 } else {
2493 assert(dst.size() != 1);
2494 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2495 if (instr->def.bit_size == 64)
2496 for (unsigned i = 0; i < dst.size(); i++)
2497 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2498 else {
2499 for (unsigned i = 0; i < dst.size(); i++)
2500 vec->operands[i] = Operand{instr->value[i].u32};
2501 }
2502 vec->definitions[0] = Definition(dst);
2503 ctx->block->instructions.emplace_back(std::move(vec));
2504 }
2505 }
2506
2507 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2508 {
2509 uint32_t new_mask = 0;
2510 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2511 if (mask & (1u << i))
2512 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2513 return new_mask;
2514 }
2515
2516 void visit_store_vs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2517 {
2518 /* This wouldn't work inside control flow or with indirect offsets but
2519 * that doesn't happen because of nir_lower_io_to_temporaries(). */
2520
2521 unsigned write_mask = nir_intrinsic_write_mask(instr);
2522 unsigned component = nir_intrinsic_component(instr);
2523 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2524 unsigned idx = nir_intrinsic_base(instr) + component;
2525
2526 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2527 if (off_instr->type != nir_instr_type_load_const) {
2528 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2529 nir_print_instr(off_instr, stderr);
2530 fprintf(stderr, "\n");
2531 }
2532 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
2533
2534 if (instr->src[0].ssa->bit_size == 64)
2535 write_mask = widen_mask(write_mask, 2);
2536
2537 for (unsigned i = 0; i < 8; ++i) {
2538 if (write_mask & (1 << i)) {
2539 ctx->vs_output.mask[idx / 4u] |= 1 << (idx % 4u);
2540 ctx->vs_output.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
2541 }
2542 idx++;
2543 }
2544 }
2545
2546 void visit_store_fs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2547 {
2548 Builder bld(ctx->program, ctx->block);
2549 unsigned write_mask = nir_intrinsic_write_mask(instr);
2550 Operand values[4];
2551 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2552 for (unsigned i = 0; i < 4; ++i) {
2553 if (write_mask & (1 << i)) {
2554 Temp tmp = emit_extract_vector(ctx, src, i, v1);
2555 values[i] = Operand(tmp);
2556 } else {
2557 values[i] = Operand(v1);
2558 }
2559 }
2560
2561 unsigned index = nir_intrinsic_base(instr) / 4;
2562 unsigned target, col_format;
2563 unsigned enabled_channels = 0xF;
2564 aco_opcode compr_op = (aco_opcode)0;
2565
2566 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
2567 assert(offset && "Non-const offsets on exports not yet supported");
2568 index += offset->u32;
2569
2570 assert(index != FRAG_RESULT_COLOR);
2571
2572 /* Unlike vertex shader exports, it's fine to use multiple exports to
2573 * export separate channels of one target. So shaders which export both
2574 * FRAG_RESULT_SAMPLE_MASK and FRAG_RESULT_DEPTH should work fine.
2575 * TODO: combine the exports in those cases and create better code
2576 */
2577
2578 if (index == FRAG_RESULT_SAMPLE_MASK) {
2579
2580 if (ctx->program->info->ps.writes_z) {
2581 target = V_008DFC_SQ_EXP_MRTZ;
2582 enabled_channels = 0x4;
2583 col_format = (unsigned) -1;
2584
2585 values[2] = values[0];
2586 values[0] = Operand(v1);
2587 } else {
2588 bld.exp(aco_opcode::exp, Operand(v1), Operand(values[0]), Operand(v1), Operand(v1),
2589 0xc, V_008DFC_SQ_EXP_MRTZ, true);
2590 return;
2591 }
2592
2593 } else if (index == FRAG_RESULT_DEPTH) {
2594
2595 target = V_008DFC_SQ_EXP_MRTZ;
2596 enabled_channels = 0x1;
2597 col_format = (unsigned) -1;
2598
2599 } else if (index == FRAG_RESULT_STENCIL) {
2600
2601 if (ctx->program->info->ps.writes_z) {
2602 target = V_008DFC_SQ_EXP_MRTZ;
2603 enabled_channels = 0x2;
2604 col_format = (unsigned) -1;
2605
2606 values[1] = values[0];
2607 values[0] = Operand(v1);
2608 } else {
2609 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
2610 bld.exp(aco_opcode::exp, values[0], Operand(v1), Operand(v1), Operand(v1),
2611 0x3, V_008DFC_SQ_EXP_MRTZ, true);
2612 return;
2613 }
2614
2615 } else {
2616 index -= FRAG_RESULT_DATA0;
2617 target = V_008DFC_SQ_EXP_MRT + index;
2618 col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
2619 }
2620 bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
2621 bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
2622
2623 switch (col_format)
2624 {
2625 case V_028714_SPI_SHADER_ZERO:
2626 enabled_channels = 0; /* writemask */
2627 target = V_008DFC_SQ_EXP_NULL;
2628 break;
2629
2630 case V_028714_SPI_SHADER_32_R:
2631 enabled_channels = 1;
2632 break;
2633
2634 case V_028714_SPI_SHADER_32_GR:
2635 enabled_channels = 0x3;
2636 break;
2637
2638 case V_028714_SPI_SHADER_32_AR:
2639 if (ctx->options->chip_class >= GFX10) {
2640 /* Special case: on GFX10, the outputs are different for 32_AR */
2641 enabled_channels = 0x3;
2642 values[1] = values[3];
2643 values[3] = Operand(v1);
2644 } else {
2645 enabled_channels = 0x9;
2646 }
2647 break;
2648
2649 case V_028714_SPI_SHADER_FP16_ABGR:
2650 enabled_channels = 0x5;
2651 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
2652 break;
2653
2654 case V_028714_SPI_SHADER_UNORM16_ABGR:
2655 enabled_channels = 0x5;
2656 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
2657 break;
2658
2659 case V_028714_SPI_SHADER_SNORM16_ABGR:
2660 enabled_channels = 0x5;
2661 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
2662 break;
2663
2664 case V_028714_SPI_SHADER_UINT16_ABGR: {
2665 enabled_channels = 0x5;
2666 compr_op = aco_opcode::v_cvt_pk_u16_u32;
2667 if (is_int8 || is_int10) {
2668 /* clamp */
2669 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
2670 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
2671
2672 for (unsigned i = 0; i < 4; i++) {
2673 if ((write_mask >> i) & 1) {
2674 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
2675 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
2676 values[i]);
2677 }
2678 }
2679 }
2680 break;
2681 }
2682
2683 case V_028714_SPI_SHADER_SINT16_ABGR:
2684 enabled_channels = 0x5;
2685 compr_op = aco_opcode::v_cvt_pk_i16_i32;
2686 if (is_int8 || is_int10) {
2687 /* clamp */
2688 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
2689 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
2690 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
2691 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
2692
2693 for (unsigned i = 0; i < 4; i++) {
2694 if ((write_mask >> i) & 1) {
2695 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
2696 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
2697 values[i]);
2698 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
2699 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
2700 values[i]);
2701 }
2702 }
2703 }
2704 break;
2705
2706 case V_028714_SPI_SHADER_32_ABGR:
2707 enabled_channels = 0xF;
2708 break;
2709
2710 default:
2711 break;
2712 }
2713
2714 if (target == V_008DFC_SQ_EXP_NULL)
2715 return;
2716
2717 if ((bool) compr_op) {
2718 for (int i = 0; i < 2; i++) {
2719 /* check if at least one of the values to be compressed is enabled */
2720 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
2721 if (enabled) {
2722 enabled_channels |= enabled << (i*2);
2723 values[i] = bld.vop3(compr_op, bld.def(v1),
2724 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
2725 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
2726 } else {
2727 values[i] = Operand(v1);
2728 }
2729 }
2730 values[2] = Operand(v1);
2731 values[3] = Operand(v1);
2732 } else {
2733 for (int i = 0; i < 4; i++)
2734 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
2735 }
2736
2737 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
2738 enabled_channels, target, (bool) compr_op);
2739 }
2740
2741 Operand load_lds_size_m0(isel_context *ctx)
2742 {
2743 /* TODO: m0 does not need to be initialized on GFX9+ */
2744 Builder bld(ctx->program, ctx->block);
2745 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2746 }
2747
2748 void load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2749 Temp address, unsigned base_offset, unsigned align)
2750 {
2751 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2752
2753 Builder bld(ctx->program, ctx->block);
2754
2755 Operand m = load_lds_size_m0(ctx);
2756
2757 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2758 unsigned bytes_read = 0;
2759 unsigned result_size = 0;
2760 unsigned total_bytes = num_components * elem_size_bytes;
2761 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2762 bool large_ds_read = ctx->options->chip_class >= GFX7;
2763
2764 while (bytes_read < total_bytes) {
2765 unsigned todo = total_bytes - bytes_read;
2766 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2767 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2768
2769 aco_opcode op = aco_opcode::last_opcode;
2770 bool read2 = false;
2771 if (todo >= 16 && aligned16 && large_ds_read) {
2772 op = aco_opcode::ds_read_b128;
2773 todo = 16;
2774 } else if (todo >= 16 && aligned8) {
2775 op = aco_opcode::ds_read2_b64;
2776 read2 = true;
2777 todo = 16;
2778 } else if (todo >= 12 && aligned16 && large_ds_read) {
2779 op = aco_opcode::ds_read_b96;
2780 todo = 12;
2781 } else if (todo >= 8 && aligned8) {
2782 op = aco_opcode::ds_read_b64;
2783 todo = 8;
2784 } else if (todo >= 8) {
2785 op = aco_opcode::ds_read2_b32;
2786 read2 = true;
2787 todo = 8;
2788 } else if (todo >= 4) {
2789 op = aco_opcode::ds_read_b32;
2790 todo = 4;
2791 } else {
2792 assert(false);
2793 }
2794 assert(todo % elem_size_bytes == 0);
2795 unsigned num_elements = todo / elem_size_bytes;
2796 unsigned offset = base_offset + bytes_read;
2797 unsigned max_offset = read2 ? 1019 : 65535;
2798
2799 Temp address_offset = address;
2800 if (offset > max_offset) {
2801 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2802 offset = bytes_read;
2803 }
2804 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2805
2806 Temp res;
2807 if (num_components == 1 && dst.type() == RegType::vgpr)
2808 res = dst;
2809 else
2810 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2811
2812 if (read2)
2813 res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
2814 else
2815 res = bld.ds(op, Definition(res), address_offset, m, offset);
2816
2817 if (num_components == 1) {
2818 assert(todo == total_bytes);
2819 if (dst.type() == RegType::sgpr)
2820 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2821 return;
2822 }
2823
2824 if (dst.type() == RegType::sgpr) {
2825 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2826 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2827 res = new_res;
2828 }
2829
2830 if (num_elements == 1) {
2831 result[result_size++] = res;
2832 } else {
2833 assert(res != dst && res.size() % num_elements == 0);
2834 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2835 split->operands[0] = Operand(res);
2836 for (unsigned i = 0; i < num_elements; i++)
2837 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2838 ctx->block->instructions.emplace_back(std::move(split));
2839 }
2840
2841 bytes_read += todo;
2842 }
2843
2844 assert(result_size == num_components && result_size > 1);
2845 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2846 for (unsigned i = 0; i < result_size; i++)
2847 vec->operands[i] = Operand(result[i]);
2848 vec->definitions[0] = Definition(dst);
2849 ctx->block->instructions.emplace_back(std::move(vec));
2850 ctx->allocated_vec.emplace(dst.id(), result);
2851 }
2852
2853 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2854 {
2855 if (start == 0 && size == data.size())
2856 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2857
2858 unsigned size_hint = 1;
2859 auto it = ctx->allocated_vec.find(data.id());
2860 if (it != ctx->allocated_vec.end())
2861 size_hint = it->second[0].size();
2862 if (size % size_hint || start % size_hint)
2863 size_hint = 1;
2864
2865 start /= size_hint;
2866 size /= size_hint;
2867
2868 Temp elems[size];
2869 for (unsigned i = 0; i < size; i++)
2870 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2871
2872 if (size == 1)
2873 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2874
2875 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2876 for (unsigned i = 0; i < size; i++)
2877 vec->operands[i] = Operand(elems[i]);
2878 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2879 vec->definitions[0] = Definition(res);
2880 ctx->block->instructions.emplace_back(std::move(vec));
2881 return res;
2882 }
2883
2884 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2885 {
2886 Builder bld(ctx->program, ctx->block);
2887 unsigned bytes_written = 0;
2888 bool large_ds_write = ctx->options->chip_class >= GFX7;
2889
2890 while (bytes_written < total_size * 4) {
2891 unsigned todo = total_size * 4 - bytes_written;
2892 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2893 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2894
2895 aco_opcode op = aco_opcode::last_opcode;
2896 bool write2 = false;
2897 unsigned size = 0;
2898 if (todo >= 16 && aligned16 && large_ds_write) {
2899 op = aco_opcode::ds_write_b128;
2900 size = 4;
2901 } else if (todo >= 16 && aligned8) {
2902 op = aco_opcode::ds_write2_b64;
2903 write2 = true;
2904 size = 4;
2905 } else if (todo >= 12 && aligned16 && large_ds_write) {
2906 op = aco_opcode::ds_write_b96;
2907 size = 3;
2908 } else if (todo >= 8 && aligned8) {
2909 op = aco_opcode::ds_write_b64;
2910 size = 2;
2911 } else if (todo >= 8) {
2912 op = aco_opcode::ds_write2_b32;
2913 write2 = true;
2914 size = 2;
2915 } else if (todo >= 4) {
2916 op = aco_opcode::ds_write_b32;
2917 size = 1;
2918 } else {
2919 assert(false);
2920 }
2921
2922 unsigned offset = offset0 + offset1 + bytes_written;
2923 unsigned max_offset = write2 ? 1020 : 65535;
2924 Temp address_offset = address;
2925 if (offset > max_offset) {
2926 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2927 offset = offset1 + bytes_written;
2928 }
2929 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2930
2931 if (write2) {
2932 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2933 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2934 bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
2935 } else {
2936 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2937 bld.ds(op, address_offset, val, m, offset);
2938 }
2939
2940 bytes_written += size * 4;
2941 }
2942 }
2943
2944 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2945 Temp address, unsigned base_offset, unsigned align)
2946 {
2947 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2948
2949 Operand m = load_lds_size_m0(ctx);
2950
2951 /* we need at most two stores for 32bit variables */
2952 int start[2], count[2];
2953 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2954 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2955 assert(wrmask == 0);
2956
2957 /* one combined store is sufficient */
2958 if (count[0] == count[1]) {
2959 Builder bld(ctx->program, ctx->block);
2960
2961 Temp address_offset = address;
2962 if ((base_offset >> 2) + start[1] > 255) {
2963 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2964 base_offset = 0;
2965 }
2966
2967 assert(count[0] == 1);
2968 Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
2969 Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
2970 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2971 base_offset = base_offset / elem_size_bytes;
2972 bld.ds(op, address_offset, val0, val1, m,
2973 base_offset + start[0], base_offset + start[1]);
2974 return;
2975 }
2976
2977 for (unsigned i = 0; i < 2; i++) {
2978 if (count[i] == 0)
2979 continue;
2980
2981 unsigned elem_size_words = elem_size_bytes / 4;
2982 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2983 base_offset, start[i] * elem_size_bytes, align);
2984 }
2985 return;
2986 }
2987
2988 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
2989 {
2990 if (ctx->stage == vertex_vs) {
2991 visit_store_vs_output(ctx, instr);
2992 } else if (ctx->stage == fragment_fs) {
2993 visit_store_fs_output(ctx, instr);
2994 } else {
2995 unreachable("Shader stage not implemented");
2996 }
2997 }
2998
2999 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3000 {
3001 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3002 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3003
3004 Builder bld(ctx->program, ctx->block);
3005 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3006 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
3007 }
3008
3009 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3010 {
3011 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3012 for (unsigned i = 0; i < num_components; i++)
3013 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3014 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3015 assert(num_components == 4);
3016 Builder bld(ctx->program, ctx->block);
3017 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3018 }
3019
3020 for (Operand& op : vec->operands)
3021 op = op.isUndefined() ? Operand(0u) : op;
3022
3023 vec->definitions[0] = Definition(dst);
3024 ctx->block->instructions.emplace_back(std::move(vec));
3025 emit_split_vector(ctx, dst, num_components);
3026 return;
3027 }
3028
3029 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3030 {
3031 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3032 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3033 unsigned idx = nir_intrinsic_base(instr);
3034 unsigned component = nir_intrinsic_component(instr);
3035 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3036
3037 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3038 if (offset) {
3039 assert(offset->u32 == 0);
3040 } else {
3041 /* the lower 15bit of the prim_mask contain the offset into LDS
3042 * while the upper bits contain the number of prims */
3043 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3044 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3045 Builder bld(ctx->program, ctx->block);
3046 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3047 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3048 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3049 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3050 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3051 }
3052
3053 if (instr->dest.ssa.num_components == 1) {
3054 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3055 } else {
3056 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3057 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3058 {
3059 Temp tmp = {ctx->program->allocateId(), v1};
3060 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3061 vec->operands[i] = Operand(tmp);
3062 }
3063 vec->definitions[0] = Definition(dst);
3064 ctx->block->instructions.emplace_back(std::move(vec));
3065 }
3066 }
3067
3068 unsigned get_num_channels_from_data_format(unsigned data_format)
3069 {
3070 switch (data_format) {
3071 case V_008F0C_BUF_DATA_FORMAT_8:
3072 case V_008F0C_BUF_DATA_FORMAT_16:
3073 case V_008F0C_BUF_DATA_FORMAT_32:
3074 return 1;
3075 case V_008F0C_BUF_DATA_FORMAT_8_8:
3076 case V_008F0C_BUF_DATA_FORMAT_16_16:
3077 case V_008F0C_BUF_DATA_FORMAT_32_32:
3078 return 2;
3079 case V_008F0C_BUF_DATA_FORMAT_10_11_11:
3080 case V_008F0C_BUF_DATA_FORMAT_11_11_10:
3081 case V_008F0C_BUF_DATA_FORMAT_32_32_32:
3082 return 3;
3083 case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
3084 case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
3085 case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
3086 case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
3087 case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
3088 return 4;
3089 default:
3090 break;
3091 }
3092
3093 return 4;
3094 }
3095
3096 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3097 * so we may need to fix it up. */
3098 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3099 {
3100 Builder bld(ctx->program, ctx->block);
3101
3102 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3103 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3104
3105 /* For the integer-like cases, do a natural sign extension.
3106 *
3107 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3108 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3109 * exponent.
3110 */
3111 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3112 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3113
3114 /* Convert back to the right type. */
3115 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3116 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3117 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3118 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3119 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3120 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3121 }
3122
3123 return alpha;
3124 }
3125
3126 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3127 {
3128 Builder bld(ctx->program, ctx->block);
3129 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3130 if (ctx->stage & sw_vs) {
3131
3132 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3133 if (off_instr->type != nir_instr_type_load_const) {
3134 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3135 nir_print_instr(off_instr, stderr);
3136 fprintf(stderr, "\n");
3137 }
3138 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3139
3140 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3141
3142 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3143 unsigned component = nir_intrinsic_component(instr);
3144 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3145 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3146 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3147 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3148
3149 unsigned dfmt = attrib_format & 0xf;
3150
3151 unsigned nfmt = (attrib_format >> 4) & 0x7;
3152 unsigned num_dfmt_channels = get_num_channels_from_data_format(dfmt);
3153 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3154 unsigned num_channels = MIN2(util_last_bit(mask), num_dfmt_channels);
3155 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3156 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3157 if (post_shuffle)
3158 num_channels = MAX2(num_channels, 3);
3159
3160 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, Operand(attrib_binding * 16u));
3161
3162 Temp index;
3163 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3164 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3165 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3166 if (divisor) {
3167 ctx->needs_instance_id = true;
3168 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3169 if (divisor != 1) {
3170 Temp divided = bld.tmp(v1);
3171 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3172 index = bld.vadd32(bld.def(v1), start_instance, divided);
3173 } else {
3174 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3175 }
3176 } else {
3177 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3178 }
3179 } else {
3180 index = bld.vadd32(bld.def(v1),
3181 get_arg(ctx, ctx->args->ac.base_vertex),
3182 get_arg(ctx, ctx->args->ac.vertex_id));
3183 }
3184
3185 if (attrib_stride != 0 && attrib_offset > attrib_stride) {
3186 index = bld.vadd32(bld.def(v1), Operand(attrib_offset / attrib_stride), index);
3187 attrib_offset = attrib_offset % attrib_stride;
3188 }
3189
3190 Operand soffset(0u);
3191 if (attrib_offset >= 4096) {
3192 soffset = bld.copy(bld.def(s1), Operand(attrib_offset));
3193 attrib_offset = 0;
3194 }
3195
3196 aco_opcode opcode;
3197 switch (num_channels) {
3198 case 1:
3199 opcode = aco_opcode::tbuffer_load_format_x;
3200 break;
3201 case 2:
3202 opcode = aco_opcode::tbuffer_load_format_xy;
3203 break;
3204 case 3:
3205 opcode = aco_opcode::tbuffer_load_format_xyz;
3206 break;
3207 case 4:
3208 opcode = aco_opcode::tbuffer_load_format_xyzw;
3209 break;
3210 default:
3211 unreachable("Unimplemented load_input vector size");
3212 }
3213
3214 Temp tmp = post_shuffle || num_channels != dst.size() || alpha_adjust != RADV_ALPHA_ADJUST_NONE || component ? bld.tmp(RegType::vgpr, num_channels) : dst;
3215
3216 aco_ptr<MTBUF_instruction> mubuf{create_instruction<MTBUF_instruction>(opcode, Format::MTBUF, 3, 1)};
3217 mubuf->operands[0] = Operand(index);
3218 mubuf->operands[1] = Operand(list);
3219 mubuf->operands[2] = soffset;
3220 mubuf->definitions[0] = Definition(tmp);
3221 mubuf->idxen = true;
3222 mubuf->can_reorder = true;
3223 mubuf->dfmt = dfmt;
3224 mubuf->nfmt = nfmt;
3225 assert(attrib_offset < 4096);
3226 mubuf->offset = attrib_offset;
3227 ctx->block->instructions.emplace_back(std::move(mubuf));
3228
3229 emit_split_vector(ctx, tmp, tmp.size());
3230
3231 if (tmp.id() != dst.id()) {
3232 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3233 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3234
3235 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3236 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3237 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3238
3239 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3240 for (unsigned i = 0; i < dst.size(); i++) {
3241 unsigned idx = i + component;
3242 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE && num_channels >= 4) {
3243 Temp alpha = emit_extract_vector(ctx, tmp, swizzle[3], v1);
3244 vec->operands[3] = Operand(adjust_vertex_fetch_alpha(ctx, alpha_adjust, alpha));
3245 } else if (idx < num_channels) {
3246 vec->operands[i] = Operand(emit_extract_vector(ctx, tmp, swizzle[idx], v1));
3247 } else if (is_float && idx == 3) {
3248 vec->operands[i] = Operand(0x3f800000u);
3249 } else if (!is_float && idx == 3) {
3250 vec->operands[i] = Operand(1u);
3251 } else {
3252 vec->operands[i] = Operand(0u);
3253 }
3254 }
3255 vec->definitions[0] = Definition(dst);
3256 ctx->block->instructions.emplace_back(std::move(vec));
3257 emit_split_vector(ctx, dst, dst.size());
3258 }
3259
3260 } else if (ctx->stage == fragment_fs) {
3261 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3262 if (off_instr->type != nir_instr_type_load_const ||
3263 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3264 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3265 nir_print_instr(off_instr, stderr);
3266 fprintf(stderr, "\n");
3267 }
3268
3269 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3270 nir_const_value* offset = nir_src_as_const_value(instr->src[0]);
3271 if (offset) {
3272 assert(offset->u32 == 0);
3273 } else {
3274 /* the lower 15bit of the prim_mask contain the offset into LDS
3275 * while the upper bits contain the number of prims */
3276 Temp offset_src = get_ssa_temp(ctx, instr->src[0].ssa);
3277 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3278 Builder bld(ctx->program, ctx->block);
3279 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3280 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3281 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3282 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3283 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3284 }
3285
3286 unsigned idx = nir_intrinsic_base(instr);
3287 unsigned component = nir_intrinsic_component(instr);
3288
3289 if (dst.size() == 1) {
3290 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(2u), bld.m0(prim_mask), idx, component);
3291 } else {
3292 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3293 for (unsigned i = 0; i < dst.size(); i++)
3294 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(2u), bld.m0(prim_mask), idx, component + i);
3295 vec->definitions[0] = Definition(dst);
3296 bld.insert(std::move(vec));
3297 }
3298
3299 } else {
3300 unreachable("Shader stage not implemented");
3301 }
3302 }
3303
3304 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
3305 {
3306 if (ctx->program->info->need_indirect_descriptor_sets) {
3307 Builder bld(ctx->program, ctx->block);
3308 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
3309 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, Operand(desc_set << 2));//, false, false, false);
3310 }
3311
3312 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
3313 }
3314
3315
3316 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
3317 {
3318 Builder bld(ctx->program, ctx->block);
3319 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
3320 if (!ctx->divergent_vals[instr->dest.ssa.index])
3321 index = bld.as_uniform(index);
3322 unsigned desc_set = nir_intrinsic_desc_set(instr);
3323 unsigned binding = nir_intrinsic_binding(instr);
3324
3325 Temp desc_ptr;
3326 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
3327 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
3328 unsigned offset = layout->binding[binding].offset;
3329 unsigned stride;
3330 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
3331 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
3332 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
3333 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
3334 offset = pipeline_layout->push_constant_size + 16 * idx;
3335 stride = 16;
3336 } else {
3337 desc_ptr = load_desc_ptr(ctx, desc_set);
3338 stride = layout->binding[binding].size;
3339 }
3340
3341 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
3342 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
3343 if (stride != 1) {
3344 if (nir_const_index) {
3345 const_index = const_index * stride;
3346 } else if (index.type() == RegType::vgpr) {
3347 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
3348 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
3349 } else {
3350 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
3351 }
3352 }
3353 if (offset) {
3354 if (nir_const_index) {
3355 const_index = const_index + offset;
3356 } else if (index.type() == RegType::vgpr) {
3357 index = bld.vadd32(bld.def(v1), Operand(offset), index);
3358 } else {
3359 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
3360 }
3361 }
3362
3363 if (nir_const_index && const_index == 0) {
3364 index = desc_ptr;
3365 } else if (index.type() == RegType::vgpr) {
3366 index = bld.vadd32(bld.def(v1),
3367 nir_const_index ? Operand(const_index) : Operand(index),
3368 Operand(desc_ptr));
3369 } else {
3370 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3371 nir_const_index ? Operand(const_index) : Operand(index),
3372 Operand(desc_ptr));
3373 }
3374
3375 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
3376 }
3377
3378 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
3379 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
3380 {
3381 Builder bld(ctx->program, ctx->block);
3382
3383 unsigned num_bytes = dst.size() * 4;
3384 bool dlc = glc && ctx->options->chip_class >= GFX10;
3385
3386 aco_opcode op;
3387 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
3388 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3389 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3390 unsigned const_offset = 0;
3391
3392 Temp lower = Temp();
3393 if (num_bytes > 16) {
3394 assert(num_components == 3 || num_components == 4);
3395 op = aco_opcode::buffer_load_dwordx4;
3396 lower = bld.tmp(v4);
3397 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3398 mubuf->definitions[0] = Definition(lower);
3399 mubuf->operands[0] = vaddr;
3400 mubuf->operands[1] = Operand(rsrc);
3401 mubuf->operands[2] = soffset;
3402 mubuf->offen = (offset.type() == RegType::vgpr);
3403 mubuf->glc = glc;
3404 mubuf->dlc = dlc;
3405 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3406 mubuf->can_reorder = readonly;
3407 bld.insert(std::move(mubuf));
3408 emit_split_vector(ctx, lower, 2);
3409 num_bytes -= 16;
3410 const_offset = 16;
3411 }
3412
3413 switch (num_bytes) {
3414 case 4:
3415 op = aco_opcode::buffer_load_dword;
3416 break;
3417 case 8:
3418 op = aco_opcode::buffer_load_dwordx2;
3419 break;
3420 case 12:
3421 op = aco_opcode::buffer_load_dwordx3;
3422 break;
3423 case 16:
3424 op = aco_opcode::buffer_load_dwordx4;
3425 break;
3426 default:
3427 unreachable("Load SSBO not implemented for this size.");
3428 }
3429 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3430 mubuf->operands[0] = vaddr;
3431 mubuf->operands[1] = Operand(rsrc);
3432 mubuf->operands[2] = soffset;
3433 mubuf->offen = (offset.type() == RegType::vgpr);
3434 mubuf->glc = glc;
3435 mubuf->dlc = dlc;
3436 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3437 mubuf->can_reorder = readonly;
3438 mubuf->offset = const_offset;
3439 aco_ptr<Instruction> instr = std::move(mubuf);
3440
3441 if (dst.size() > 4) {
3442 assert(lower != Temp());
3443 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
3444 instr->definitions[0] = Definition(upper);
3445 bld.insert(std::move(instr));
3446 if (dst.size() == 8)
3447 emit_split_vector(ctx, upper, 2);
3448 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
3449 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
3450 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
3451 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
3452 if (dst.size() == 8)
3453 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
3454 }
3455
3456 if (dst.type() == RegType::sgpr) {
3457 Temp vec = bld.tmp(RegType::vgpr, dst.size());
3458 instr->definitions[0] = Definition(vec);
3459 bld.insert(std::move(instr));
3460 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
3461 } else {
3462 instr->definitions[0] = Definition(dst);
3463 bld.insert(std::move(instr));
3464 emit_split_vector(ctx, dst, num_components);
3465 }
3466 } else {
3467 switch (num_bytes) {
3468 case 4:
3469 op = aco_opcode::s_buffer_load_dword;
3470 break;
3471 case 8:
3472 op = aco_opcode::s_buffer_load_dwordx2;
3473 break;
3474 case 12:
3475 case 16:
3476 op = aco_opcode::s_buffer_load_dwordx4;
3477 break;
3478 case 24:
3479 case 32:
3480 op = aco_opcode::s_buffer_load_dwordx8;
3481 break;
3482 default:
3483 unreachable("Load SSBO not implemented for this size.");
3484 }
3485 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3486 load->operands[0] = Operand(rsrc);
3487 load->operands[1] = Operand(bld.as_uniform(offset));
3488 assert(load->operands[1].getTemp().type() == RegType::sgpr);
3489 load->definitions[0] = Definition(dst);
3490 load->glc = glc;
3491 load->dlc = dlc;
3492 load->barrier = readonly ? barrier_none : barrier_buffer;
3493 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
3494 assert(ctx->options->chip_class >= GFX8 || !glc);
3495
3496 /* trim vector */
3497 if (dst.size() == 3) {
3498 Temp vec = bld.tmp(s4);
3499 load->definitions[0] = Definition(vec);
3500 bld.insert(std::move(load));
3501 emit_split_vector(ctx, vec, 4);
3502
3503 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3504 emit_extract_vector(ctx, vec, 0, s1),
3505 emit_extract_vector(ctx, vec, 1, s1),
3506 emit_extract_vector(ctx, vec, 2, s1));
3507 } else if (dst.size() == 6) {
3508 Temp vec = bld.tmp(s8);
3509 load->definitions[0] = Definition(vec);
3510 bld.insert(std::move(load));
3511 emit_split_vector(ctx, vec, 4);
3512
3513 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3514 emit_extract_vector(ctx, vec, 0, s2),
3515 emit_extract_vector(ctx, vec, 1, s2),
3516 emit_extract_vector(ctx, vec, 2, s2));
3517 } else {
3518 bld.insert(std::move(load));
3519 }
3520 emit_split_vector(ctx, dst, num_components);
3521 }
3522 }
3523
3524 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
3525 {
3526 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3527 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
3528
3529 Builder bld(ctx->program, ctx->block);
3530
3531 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3532 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
3533 unsigned binding = nir_intrinsic_binding(idx_instr);
3534 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
3535
3536 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
3537 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3538 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3539 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3540 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3541 if (ctx->options->chip_class >= GFX10) {
3542 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3543 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3544 S_008F0C_RESOURCE_LEVEL(1);
3545 } else {
3546 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3547 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3548 }
3549 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
3550 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
3551 Operand(0xFFFFFFFFu),
3552 Operand(desc_type));
3553 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3554 rsrc, upper_dwords);
3555 } else {
3556 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
3557 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
3558 }
3559
3560 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
3561 }
3562
3563 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3564 {
3565 Builder bld(ctx->program, ctx->block);
3566 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3567
3568 unsigned offset = nir_intrinsic_base(instr);
3569 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
3570 if (index_cv && instr->dest.ssa.bit_size == 32) {
3571
3572 unsigned count = instr->dest.ssa.num_components;
3573 unsigned start = (offset + index_cv->u32) / 4u;
3574 start -= ctx->args->ac.base_inline_push_consts;
3575 if (start + count <= ctx->args->ac.num_inline_push_consts) {
3576 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3577 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
3578 for (unsigned i = 0; i < count; ++i) {
3579 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
3580 vec->operands[i] = Operand{elems[i]};
3581 }
3582 vec->definitions[0] = Definition(dst);
3583 ctx->block->instructions.emplace_back(std::move(vec));
3584 ctx->allocated_vec.emplace(dst.id(), elems);
3585 return;
3586 }
3587 }
3588
3589 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
3590 if (offset != 0) // TODO check if index != 0 as well
3591 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
3592 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
3593 Temp vec = dst;
3594 bool trim = false;
3595 aco_opcode op;
3596
3597 switch (dst.size()) {
3598 case 1:
3599 op = aco_opcode::s_load_dword;
3600 break;
3601 case 2:
3602 op = aco_opcode::s_load_dwordx2;
3603 break;
3604 case 3:
3605 vec = bld.tmp(s4);
3606 trim = true;
3607 case 4:
3608 op = aco_opcode::s_load_dwordx4;
3609 break;
3610 case 6:
3611 vec = bld.tmp(s8);
3612 trim = true;
3613 case 8:
3614 op = aco_opcode::s_load_dwordx8;
3615 break;
3616 default:
3617 unreachable("unimplemented or forbidden load_push_constant.");
3618 }
3619
3620 bld.smem(op, Definition(vec), ptr, index);
3621
3622 if (trim) {
3623 emit_split_vector(ctx, vec, 4);
3624 RegClass rc = dst.size() == 3 ? s1 : s2;
3625 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3626 emit_extract_vector(ctx, vec, 0, rc),
3627 emit_extract_vector(ctx, vec, 1, rc),
3628 emit_extract_vector(ctx, vec, 2, rc));
3629
3630 }
3631 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
3632 }
3633
3634 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3635 {
3636 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3637
3638 Builder bld(ctx->program, ctx->block);
3639
3640 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3641 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3642 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3643 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3644 if (ctx->options->chip_class >= GFX10) {
3645 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3646 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3647 S_008F0C_RESOURCE_LEVEL(1);
3648 } else {
3649 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3650 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3651 }
3652
3653 unsigned base = nir_intrinsic_base(instr);
3654 unsigned range = nir_intrinsic_range(instr);
3655
3656 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
3657 if (base && offset.type() == RegType::sgpr)
3658 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
3659 else if (base && offset.type() == RegType::vgpr)
3660 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
3661
3662 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3663 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
3664 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
3665 Operand(desc_type));
3666
3667 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
3668 }
3669
3670 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
3671 {
3672 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3673 ctx->cf_info.exec_potentially_empty = true;
3674
3675 ctx->program->needs_exact = true;
3676
3677 // TODO: optimize uniform conditions
3678 Builder bld(ctx->program, ctx->block);
3679 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3680 assert(src.regClass() == bld.lm);
3681 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
3682 bld.pseudo(aco_opcode::p_discard_if, src);
3683 ctx->block->kind |= block_kind_uses_discard_if;
3684 return;
3685 }
3686
3687 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
3688 {
3689 Builder bld(ctx->program, ctx->block);
3690
3691 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3692 ctx->cf_info.exec_potentially_empty = true;
3693
3694 bool divergent = ctx->cf_info.parent_if.is_divergent ||
3695 ctx->cf_info.parent_loop.has_divergent_continue;
3696
3697 if (ctx->block->loop_nest_depth &&
3698 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
3699 /* we handle discards the same way as jump instructions */
3700 append_logical_end(ctx->block);
3701
3702 /* in loops, discard behaves like break */
3703 Block *linear_target = ctx->cf_info.parent_loop.exit;
3704 ctx->block->kind |= block_kind_discard;
3705
3706 if (!divergent) {
3707 /* uniform discard - loop ends here */
3708 assert(nir_instr_is_last(&instr->instr));
3709 ctx->block->kind |= block_kind_uniform;
3710 ctx->cf_info.has_branch = true;
3711 bld.branch(aco_opcode::p_branch);
3712 add_linear_edge(ctx->block->index, linear_target);
3713 return;
3714 }
3715
3716 /* we add a break right behind the discard() instructions */
3717 ctx->block->kind |= block_kind_break;
3718 unsigned idx = ctx->block->index;
3719
3720 /* remove critical edges from linear CFG */
3721 bld.branch(aco_opcode::p_branch);
3722 Block* break_block = ctx->program->create_and_insert_block();
3723 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3724 break_block->kind |= block_kind_uniform;
3725 add_linear_edge(idx, break_block);
3726 add_linear_edge(break_block->index, linear_target);
3727 bld.reset(break_block);
3728 bld.branch(aco_opcode::p_branch);
3729
3730 Block* continue_block = ctx->program->create_and_insert_block();
3731 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3732 add_linear_edge(idx, continue_block);
3733 append_logical_start(continue_block);
3734 ctx->block = continue_block;
3735
3736 return;
3737 }
3738
3739 /* it can currently happen that NIR doesn't remove the unreachable code */
3740 if (!nir_instr_is_last(&instr->instr)) {
3741 ctx->program->needs_exact = true;
3742 /* save exec somewhere temporarily so that it doesn't get
3743 * overwritten before the discard from outer exec masks */
3744 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
3745 bld.pseudo(aco_opcode::p_discard_if, cond);
3746 ctx->block->kind |= block_kind_uses_discard_if;
3747 return;
3748 }
3749
3750 /* This condition is incorrect for uniformly branched discards in a loop
3751 * predicated by a divergent condition, but the above code catches that case
3752 * and the discard would end up turning into a discard_if.
3753 * For example:
3754 * if (divergent) {
3755 * while (...) {
3756 * if (uniform) {
3757 * discard;
3758 * }
3759 * }
3760 * }
3761 */
3762 if (!ctx->cf_info.parent_if.is_divergent) {
3763 /* program just ends here */
3764 ctx->block->kind |= block_kind_uniform;
3765 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
3766 0 /* enabled mask */, 9 /* dest */,
3767 false /* compressed */, true/* done */, true /* valid mask */);
3768 bld.sopp(aco_opcode::s_endpgm);
3769 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
3770 } else {
3771 ctx->block->kind |= block_kind_discard;
3772 /* branch and linear edge is added by visit_if() */
3773 }
3774 }
3775
3776 enum aco_descriptor_type {
3777 ACO_DESC_IMAGE,
3778 ACO_DESC_FMASK,
3779 ACO_DESC_SAMPLER,
3780 ACO_DESC_BUFFER,
3781 ACO_DESC_PLANE_0,
3782 ACO_DESC_PLANE_1,
3783 ACO_DESC_PLANE_2,
3784 };
3785
3786 static bool
3787 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
3788 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
3789 return false;
3790 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
3791 return dim == ac_image_cube ||
3792 dim == ac_image_1darray ||
3793 dim == ac_image_2darray ||
3794 dim == ac_image_2darraymsaa;
3795 }
3796
3797 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
3798 enum aco_descriptor_type desc_type,
3799 const nir_tex_instr *tex_instr, bool image, bool write)
3800 {
3801 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
3802 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
3803 if (it != ctx->tex_desc.end())
3804 return it->second;
3805 */
3806 Temp index = Temp();
3807 bool index_set = false;
3808 unsigned constant_index = 0;
3809 unsigned descriptor_set;
3810 unsigned base_index;
3811 Builder bld(ctx->program, ctx->block);
3812
3813 if (!deref_instr) {
3814 assert(tex_instr && !image);
3815 descriptor_set = 0;
3816 base_index = tex_instr->sampler_index;
3817 } else {
3818 while(deref_instr->deref_type != nir_deref_type_var) {
3819 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
3820 if (!array_size)
3821 array_size = 1;
3822
3823 assert(deref_instr->deref_type == nir_deref_type_array);
3824 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
3825 if (const_value) {
3826 constant_index += array_size * const_value->u32;
3827 } else {
3828 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
3829 if (indirect.type() == RegType::vgpr)
3830 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
3831
3832 if (array_size != 1)
3833 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
3834
3835 if (!index_set) {
3836 index = indirect;
3837 index_set = true;
3838 } else {
3839 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
3840 }
3841 }
3842
3843 deref_instr = nir_src_as_deref(deref_instr->parent);
3844 }
3845 descriptor_set = deref_instr->var->data.descriptor_set;
3846 base_index = deref_instr->var->data.binding;
3847 }
3848
3849 Temp list = load_desc_ptr(ctx, descriptor_set);
3850 list = convert_pointer_to_64_bit(ctx, list);
3851
3852 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
3853 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
3854 unsigned offset = binding->offset;
3855 unsigned stride = binding->size;
3856 aco_opcode opcode;
3857 RegClass type;
3858
3859 assert(base_index < layout->binding_count);
3860
3861 switch (desc_type) {
3862 case ACO_DESC_IMAGE:
3863 type = s8;
3864 opcode = aco_opcode::s_load_dwordx8;
3865 break;
3866 case ACO_DESC_FMASK:
3867 type = s8;
3868 opcode = aco_opcode::s_load_dwordx8;
3869 offset += 32;
3870 break;
3871 case ACO_DESC_SAMPLER:
3872 type = s4;
3873 opcode = aco_opcode::s_load_dwordx4;
3874 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
3875 offset += radv_combined_image_descriptor_sampler_offset(binding);
3876 break;
3877 case ACO_DESC_BUFFER:
3878 type = s4;
3879 opcode = aco_opcode::s_load_dwordx4;
3880 break;
3881 case ACO_DESC_PLANE_0:
3882 case ACO_DESC_PLANE_1:
3883 type = s8;
3884 opcode = aco_opcode::s_load_dwordx8;
3885 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
3886 break;
3887 case ACO_DESC_PLANE_2:
3888 type = s4;
3889 opcode = aco_opcode::s_load_dwordx4;
3890 offset += 64;
3891 break;
3892 default:
3893 unreachable("invalid desc_type\n");
3894 }
3895
3896 offset += constant_index * stride;
3897
3898 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
3899 (!index_set || binding->immutable_samplers_equal)) {
3900 if (binding->immutable_samplers_equal)
3901 constant_index = 0;
3902
3903 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
3904 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3905 Operand(samplers[constant_index * 4 + 0]),
3906 Operand(samplers[constant_index * 4 + 1]),
3907 Operand(samplers[constant_index * 4 + 2]),
3908 Operand(samplers[constant_index * 4 + 3]));
3909 }
3910
3911 Operand off;
3912 if (!index_set) {
3913 off = Operand(offset);
3914 } else {
3915 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
3916 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
3917 }
3918
3919 Temp res = bld.smem(opcode, bld.def(type), list, off);
3920
3921 if (desc_type == ACO_DESC_PLANE_2) {
3922 Temp components[8];
3923 for (unsigned i = 0; i < 8; i++)
3924 components[i] = bld.tmp(s1);
3925 bld.pseudo(aco_opcode::p_split_vector,
3926 Definition(components[0]),
3927 Definition(components[1]),
3928 Definition(components[2]),
3929 Definition(components[3]),
3930 res);
3931
3932 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
3933 bld.pseudo(aco_opcode::p_split_vector,
3934 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
3935 Definition(components[4]),
3936 Definition(components[5]),
3937 Definition(components[6]),
3938 Definition(components[7]),
3939 desc2);
3940
3941 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
3942 components[0], components[1], components[2], components[3],
3943 components[4], components[5], components[6], components[7]);
3944 }
3945
3946 return res;
3947 }
3948
3949 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
3950 {
3951 switch (dim) {
3952 case GLSL_SAMPLER_DIM_BUF:
3953 return 1;
3954 case GLSL_SAMPLER_DIM_1D:
3955 return array ? 2 : 1;
3956 case GLSL_SAMPLER_DIM_2D:
3957 return array ? 3 : 2;
3958 case GLSL_SAMPLER_DIM_MS:
3959 return array ? 4 : 3;
3960 case GLSL_SAMPLER_DIM_3D:
3961 case GLSL_SAMPLER_DIM_CUBE:
3962 return 3;
3963 case GLSL_SAMPLER_DIM_RECT:
3964 case GLSL_SAMPLER_DIM_SUBPASS:
3965 return 2;
3966 case GLSL_SAMPLER_DIM_SUBPASS_MS:
3967 return 3;
3968 default:
3969 break;
3970 }
3971 return 0;
3972 }
3973
3974
3975 /* Adjust the sample index according to FMASK.
3976 *
3977 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
3978 * which is the identity mapping. Each nibble says which physical sample
3979 * should be fetched to get that sample.
3980 *
3981 * For example, 0x11111100 means there are only 2 samples stored and
3982 * the second sample covers 3/4 of the pixel. When reading samples 0
3983 * and 1, return physical sample 0 (determined by the first two 0s
3984 * in FMASK), otherwise return physical sample 1.
3985 *
3986 * The sample index should be adjusted as follows:
3987 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
3988 */
3989 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, Temp coords, Operand sample_index, Temp fmask_desc_ptr)
3990 {
3991 Builder bld(ctx->program, ctx->block);
3992 Temp fmask = bld.tmp(v1);
3993 unsigned dim = ctx->options->chip_class >= GFX10
3994 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
3995 : 0;
3996
3997 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
3998 load->operands[0] = Operand(coords);
3999 load->operands[1] = Operand(fmask_desc_ptr);
4000 load->definitions[0] = Definition(fmask);
4001 load->glc = false;
4002 load->dlc = false;
4003 load->dmask = 0x1;
4004 load->unrm = true;
4005 load->da = da;
4006 load->dim = dim;
4007 load->can_reorder = true; /* fmask images shouldn't be modified */
4008 ctx->block->instructions.emplace_back(std::move(load));
4009
4010 Operand sample_index4;
4011 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4012 sample_index4 = Operand(sample_index.constantValue() << 2);
4013 } else if (sample_index.regClass() == s1) {
4014 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4015 } else {
4016 assert(sample_index.regClass() == v1);
4017 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4018 }
4019
4020 Temp final_sample;
4021 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4022 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4023 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4024 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4025 else
4026 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4027
4028 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4029 * resource descriptor is 0 (invalid),
4030 */
4031 Temp compare = bld.tmp(bld.lm);
4032 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4033 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4034
4035 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4036
4037 /* Replace the MSAA sample index. */
4038 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4039 }
4040
4041 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4042 {
4043
4044 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4045 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4046 bool is_array = glsl_sampler_type_is_array(type);
4047 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4048 assert(!add_frag_pos && "Input attachments should be lowered.");
4049 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4050 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4051 int count = image_type_to_components_count(dim, is_array);
4052 std::vector<Operand> coords(count);
4053
4054 if (is_ms) {
4055 Operand sample_index;
4056 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4057 if (sample_cv)
4058 sample_index = Operand(sample_cv->u32);
4059 else
4060 sample_index = Operand(emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[2].ssa), 0, v1));
4061
4062 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4063 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, is_array ? 3 : 2, 1)};
4064 for (unsigned i = 0; i < vec->operands.size(); i++)
4065 vec->operands[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
4066 Temp fmask_load_address = {ctx->program->allocateId(), is_array ? v3 : v2};
4067 vec->definitions[0] = Definition(fmask_load_address);
4068 ctx->block->instructions.emplace_back(std::move(vec));
4069
4070 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4071 sample_index = Operand(adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr));
4072 }
4073 count--;
4074 coords[count] = sample_index;
4075 }
4076
4077 if (count == 1 && !gfx9_1d)
4078 return emit_extract_vector(ctx, src0, 0, v1);
4079
4080 if (gfx9_1d) {
4081 coords[0] = Operand(emit_extract_vector(ctx, src0, 0, v1));
4082 coords.resize(coords.size() + 1);
4083 coords[1] = Operand((uint32_t) 0);
4084 if (is_array)
4085 coords[2] = Operand(emit_extract_vector(ctx, src0, 1, v1));
4086 } else {
4087 for (int i = 0; i < count; i++)
4088 coords[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
4089 }
4090
4091 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4092 instr->intrinsic == nir_intrinsic_image_deref_store) {
4093 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4094 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4095
4096 if (!level_zero)
4097 coords.emplace_back(Operand(get_ssa_temp(ctx, instr->src[lod_index].ssa)));
4098 }
4099
4100 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4101 for (unsigned i = 0; i < coords.size(); i++)
4102 vec->operands[i] = coords[i];
4103 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4104 vec->definitions[0] = Definition(res);
4105 ctx->block->instructions.emplace_back(std::move(vec));
4106 return res;
4107 }
4108
4109
4110 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4111 {
4112 Builder bld(ctx->program, ctx->block);
4113 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4114 const struct glsl_type *type = glsl_without_array(var->type);
4115 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4116 bool is_array = glsl_sampler_type_is_array(type);
4117 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4118
4119 if (dim == GLSL_SAMPLER_DIM_BUF) {
4120 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4121 unsigned num_channels = util_last_bit(mask);
4122 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4123 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4124
4125 aco_opcode opcode;
4126 switch (num_channels) {
4127 case 1:
4128 opcode = aco_opcode::buffer_load_format_x;
4129 break;
4130 case 2:
4131 opcode = aco_opcode::buffer_load_format_xy;
4132 break;
4133 case 3:
4134 opcode = aco_opcode::buffer_load_format_xyz;
4135 break;
4136 case 4:
4137 opcode = aco_opcode::buffer_load_format_xyzw;
4138 break;
4139 default:
4140 unreachable(">4 channel buffer image load");
4141 }
4142 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4143 load->operands[0] = Operand(vindex);
4144 load->operands[1] = Operand(rsrc);
4145 load->operands[2] = Operand((uint32_t) 0);
4146 Temp tmp;
4147 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4148 tmp = dst;
4149 else
4150 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4151 load->definitions[0] = Definition(tmp);
4152 load->idxen = true;
4153 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4154 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4155 load->barrier = barrier_image;
4156 ctx->block->instructions.emplace_back(std::move(load));
4157
4158 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4159 return;
4160 }
4161
4162 Temp coords = get_image_coords(ctx, instr, type);
4163 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4164
4165 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4166 unsigned num_components = util_bitcount(dmask);
4167 Temp tmp;
4168 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4169 tmp = dst;
4170 else
4171 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4172
4173 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4174 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4175
4176 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 2, 1)};
4177 load->operands[0] = Operand(coords);
4178 load->operands[1] = Operand(resource);
4179 load->definitions[0] = Definition(tmp);
4180 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4181 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4182 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4183 load->dmask = dmask;
4184 load->unrm = true;
4185 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4186 load->barrier = barrier_image;
4187 ctx->block->instructions.emplace_back(std::move(load));
4188
4189 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4190 return;
4191 }
4192
4193 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4194 {
4195 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4196 const struct glsl_type *type = glsl_without_array(var->type);
4197 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4198 bool is_array = glsl_sampler_type_is_array(type);
4199 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4200
4201 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4202
4203 if (dim == GLSL_SAMPLER_DIM_BUF) {
4204 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4205 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4206 aco_opcode opcode;
4207 switch (data.size()) {
4208 case 1:
4209 opcode = aco_opcode::buffer_store_format_x;
4210 break;
4211 case 2:
4212 opcode = aco_opcode::buffer_store_format_xy;
4213 break;
4214 case 3:
4215 opcode = aco_opcode::buffer_store_format_xyz;
4216 break;
4217 case 4:
4218 opcode = aco_opcode::buffer_store_format_xyzw;
4219 break;
4220 default:
4221 unreachable(">4 channel buffer image store");
4222 }
4223 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4224 store->operands[0] = Operand(vindex);
4225 store->operands[1] = Operand(rsrc);
4226 store->operands[2] = Operand((uint32_t) 0);
4227 store->operands[3] = Operand(data);
4228 store->idxen = true;
4229 store->glc = glc;
4230 store->dlc = false;
4231 store->disable_wqm = true;
4232 store->barrier = barrier_image;
4233 ctx->program->needs_exact = true;
4234 ctx->block->instructions.emplace_back(std::move(store));
4235 return;
4236 }
4237
4238 assert(data.type() == RegType::vgpr);
4239 Temp coords = get_image_coords(ctx, instr, type);
4240 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4241
4242 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4243 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4244
4245 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 4, 0)};
4246 store->operands[0] = Operand(coords);
4247 store->operands[1] = Operand(resource);
4248 store->operands[2] = Operand(s4);
4249 store->operands[3] = Operand(data);
4250 store->glc = glc;
4251 store->dlc = false;
4252 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4253 store->dmask = (1 << data.size()) - 1;
4254 store->unrm = true;
4255 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4256 store->disable_wqm = true;
4257 store->barrier = barrier_image;
4258 ctx->program->needs_exact = true;
4259 ctx->block->instructions.emplace_back(std::move(store));
4260 return;
4261 }
4262
4263 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4264 {
4265 /* return the previous value if dest is ever used */
4266 bool return_previous = false;
4267 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4268 return_previous = true;
4269 break;
4270 }
4271 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4272 return_previous = true;
4273 break;
4274 }
4275
4276 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4277 const struct glsl_type *type = glsl_without_array(var->type);
4278 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4279 bool is_array = glsl_sampler_type_is_array(type);
4280 Builder bld(ctx->program, ctx->block);
4281
4282 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4283 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
4284
4285 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
4286 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
4287
4288 aco_opcode buf_op, image_op;
4289 switch (instr->intrinsic) {
4290 case nir_intrinsic_image_deref_atomic_add:
4291 buf_op = aco_opcode::buffer_atomic_add;
4292 image_op = aco_opcode::image_atomic_add;
4293 break;
4294 case nir_intrinsic_image_deref_atomic_umin:
4295 buf_op = aco_opcode::buffer_atomic_umin;
4296 image_op = aco_opcode::image_atomic_umin;
4297 break;
4298 case nir_intrinsic_image_deref_atomic_imin:
4299 buf_op = aco_opcode::buffer_atomic_smin;
4300 image_op = aco_opcode::image_atomic_smin;
4301 break;
4302 case nir_intrinsic_image_deref_atomic_umax:
4303 buf_op = aco_opcode::buffer_atomic_umax;
4304 image_op = aco_opcode::image_atomic_umax;
4305 break;
4306 case nir_intrinsic_image_deref_atomic_imax:
4307 buf_op = aco_opcode::buffer_atomic_smax;
4308 image_op = aco_opcode::image_atomic_smax;
4309 break;
4310 case nir_intrinsic_image_deref_atomic_and:
4311 buf_op = aco_opcode::buffer_atomic_and;
4312 image_op = aco_opcode::image_atomic_and;
4313 break;
4314 case nir_intrinsic_image_deref_atomic_or:
4315 buf_op = aco_opcode::buffer_atomic_or;
4316 image_op = aco_opcode::image_atomic_or;
4317 break;
4318 case nir_intrinsic_image_deref_atomic_xor:
4319 buf_op = aco_opcode::buffer_atomic_xor;
4320 image_op = aco_opcode::image_atomic_xor;
4321 break;
4322 case nir_intrinsic_image_deref_atomic_exchange:
4323 buf_op = aco_opcode::buffer_atomic_swap;
4324 image_op = aco_opcode::image_atomic_swap;
4325 break;
4326 case nir_intrinsic_image_deref_atomic_comp_swap:
4327 buf_op = aco_opcode::buffer_atomic_cmpswap;
4328 image_op = aco_opcode::image_atomic_cmpswap;
4329 break;
4330 default:
4331 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
4332 }
4333
4334 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4335
4336 if (dim == GLSL_SAMPLER_DIM_BUF) {
4337 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4338 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4339 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
4340 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4341 mubuf->operands[0] = Operand(vindex);
4342 mubuf->operands[1] = Operand(resource);
4343 mubuf->operands[2] = Operand((uint32_t)0);
4344 mubuf->operands[3] = Operand(data);
4345 if (return_previous)
4346 mubuf->definitions[0] = Definition(dst);
4347 mubuf->offset = 0;
4348 mubuf->idxen = true;
4349 mubuf->glc = return_previous;
4350 mubuf->dlc = false; /* Not needed for atomics */
4351 mubuf->disable_wqm = true;
4352 mubuf->barrier = barrier_image;
4353 ctx->program->needs_exact = true;
4354 ctx->block->instructions.emplace_back(std::move(mubuf));
4355 return;
4356 }
4357
4358 Temp coords = get_image_coords(ctx, instr, type);
4359 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4360 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 4, return_previous ? 1 : 0)};
4361 mimg->operands[0] = Operand(coords);
4362 mimg->operands[1] = Operand(resource);
4363 mimg->operands[2] = Operand(s4); /* no sampler */
4364 mimg->operands[3] = Operand(data);
4365 if (return_previous)
4366 mimg->definitions[0] = Definition(dst);
4367 mimg->glc = return_previous;
4368 mimg->dlc = false; /* Not needed for atomics */
4369 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4370 mimg->dmask = (1 << data.size()) - 1;
4371 mimg->unrm = true;
4372 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4373 mimg->disable_wqm = true;
4374 mimg->barrier = barrier_image;
4375 ctx->program->needs_exact = true;
4376 ctx->block->instructions.emplace_back(std::move(mimg));
4377 return;
4378 }
4379
4380 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
4381 {
4382 if (in_elements && ctx->options->chip_class == GFX8) {
4383 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
4384 Builder bld(ctx->program, ctx->block);
4385
4386 Temp size = emit_extract_vector(ctx, desc, 2, s1);
4387
4388 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
4389 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
4390
4391 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
4392 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
4393
4394 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
4395 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
4396
4397 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
4398 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
4399 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
4400 if (dst.type() == RegType::vgpr)
4401 bld.copy(Definition(dst), shr_dst);
4402
4403 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
4404 } else {
4405 emit_extract_vector(ctx, desc, 2, dst);
4406 }
4407 }
4408
4409 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
4410 {
4411 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4412 const struct glsl_type *type = glsl_without_array(var->type);
4413 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4414 bool is_array = glsl_sampler_type_is_array(type);
4415 Builder bld(ctx->program, ctx->block);
4416
4417 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
4418 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
4419 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
4420 }
4421
4422 /* LOD */
4423 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
4424
4425 /* Resource */
4426 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
4427
4428 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4429
4430 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1)};
4431 mimg->operands[0] = Operand(lod);
4432 mimg->operands[1] = Operand(resource);
4433 uint8_t& dmask = mimg->dmask;
4434 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4435 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
4436 mimg->da = glsl_sampler_type_is_array(type);
4437 mimg->can_reorder = true;
4438 Definition& def = mimg->definitions[0];
4439 ctx->block->instructions.emplace_back(std::move(mimg));
4440
4441 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
4442 glsl_sampler_type_is_array(type)) {
4443
4444 assert(instr->dest.ssa.num_components == 3);
4445 Temp tmp = {ctx->program->allocateId(), v3};
4446 def = Definition(tmp);
4447 emit_split_vector(ctx, tmp, 3);
4448
4449 /* divide 3rd value by 6 by multiplying with magic number */
4450 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
4451 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
4452
4453 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4454 emit_extract_vector(ctx, tmp, 0, v1),
4455 emit_extract_vector(ctx, tmp, 1, v1),
4456 by_6);
4457
4458 } else if (ctx->options->chip_class == GFX9 &&
4459 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
4460 glsl_sampler_type_is_array(type)) {
4461 assert(instr->dest.ssa.num_components == 2);
4462 def = Definition(dst);
4463 dmask = 0x5;
4464 } else {
4465 def = Definition(dst);
4466 }
4467
4468 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4469 }
4470
4471 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4472 {
4473 Builder bld(ctx->program, ctx->block);
4474 unsigned num_components = instr->num_components;
4475
4476 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4477 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4478 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4479
4480 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4481 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
4482 }
4483
4484 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4485 {
4486 Builder bld(ctx->program, ctx->block);
4487 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4488 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4489 unsigned writemask = nir_intrinsic_write_mask(instr);
4490 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
4491
4492 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4493 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4494
4495 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
4496 ctx->options->chip_class >= GFX8;
4497 if (smem)
4498 offset = bld.as_uniform(offset);
4499 bool smem_nonfs = smem && ctx->stage != fragment_fs;
4500
4501 while (writemask) {
4502 int start, count;
4503 u_bit_scan_consecutive_range(&writemask, &start, &count);
4504 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
4505 /* GFX6 doesn't support storing vec3, split it. */
4506 writemask |= 1u << (start + 2);
4507 count = 2;
4508 }
4509 int num_bytes = count * elem_size_bytes;
4510
4511 if (num_bytes > 16) {
4512 assert(elem_size_bytes == 8);
4513 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4514 count = 2;
4515 num_bytes = 16;
4516 }
4517
4518 // TODO: check alignment of sub-dword stores
4519 // TODO: split 3 bytes. there is no store instruction for that
4520
4521 Temp write_data;
4522 if (count != instr->num_components) {
4523 emit_split_vector(ctx, data, instr->num_components);
4524 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4525 for (int i = 0; i < count; i++) {
4526 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
4527 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
4528 }
4529 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
4530 vec->definitions[0] = Definition(write_data);
4531 ctx->block->instructions.emplace_back(std::move(vec));
4532 } else if (!smem && data.type() != RegType::vgpr) {
4533 assert(num_bytes % 4 == 0);
4534 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
4535 } else if (smem_nonfs && data.type() == RegType::vgpr) {
4536 assert(num_bytes % 4 == 0);
4537 write_data = bld.as_uniform(data);
4538 } else {
4539 write_data = data;
4540 }
4541
4542 aco_opcode vmem_op, smem_op;
4543 switch (num_bytes) {
4544 case 4:
4545 vmem_op = aco_opcode::buffer_store_dword;
4546 smem_op = aco_opcode::s_buffer_store_dword;
4547 break;
4548 case 8:
4549 vmem_op = aco_opcode::buffer_store_dwordx2;
4550 smem_op = aco_opcode::s_buffer_store_dwordx2;
4551 break;
4552 case 12:
4553 vmem_op = aco_opcode::buffer_store_dwordx3;
4554 smem_op = aco_opcode::last_opcode;
4555 assert(!smem && ctx->options->chip_class > GFX6);
4556 break;
4557 case 16:
4558 vmem_op = aco_opcode::buffer_store_dwordx4;
4559 smem_op = aco_opcode::s_buffer_store_dwordx4;
4560 break;
4561 default:
4562 unreachable("Store SSBO not implemented for this size.");
4563 }
4564 if (ctx->stage == fragment_fs)
4565 smem_op = aco_opcode::p_fs_buffer_store_smem;
4566
4567 if (smem) {
4568 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
4569 store->operands[0] = Operand(rsrc);
4570 if (start) {
4571 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4572 offset, Operand(start * elem_size_bytes));
4573 store->operands[1] = Operand(off);
4574 } else {
4575 store->operands[1] = Operand(offset);
4576 }
4577 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
4578 store->operands[1].setFixed(m0);
4579 store->operands[2] = Operand(write_data);
4580 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4581 store->dlc = false;
4582 store->disable_wqm = true;
4583 store->barrier = barrier_buffer;
4584 ctx->block->instructions.emplace_back(std::move(store));
4585 ctx->program->wb_smem_l1_on_end = true;
4586 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
4587 ctx->block->kind |= block_kind_needs_lowering;
4588 ctx->program->needs_exact = true;
4589 }
4590 } else {
4591 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
4592 store->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4593 store->operands[1] = Operand(rsrc);
4594 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4595 store->operands[3] = Operand(write_data);
4596 store->offset = start * elem_size_bytes;
4597 store->offen = (offset.type() == RegType::vgpr);
4598 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4599 store->dlc = false;
4600 store->disable_wqm = true;
4601 store->barrier = barrier_buffer;
4602 ctx->program->needs_exact = true;
4603 ctx->block->instructions.emplace_back(std::move(store));
4604 }
4605 }
4606 }
4607
4608 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4609 {
4610 /* return the previous value if dest is ever used */
4611 bool return_previous = false;
4612 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4613 return_previous = true;
4614 break;
4615 }
4616 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4617 return_previous = true;
4618 break;
4619 }
4620
4621 Builder bld(ctx->program, ctx->block);
4622 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
4623
4624 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
4625 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
4626 get_ssa_temp(ctx, instr->src[3].ssa), data);
4627
4628 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
4629 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4630 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4631
4632 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4633
4634 aco_opcode op32, op64;
4635 switch (instr->intrinsic) {
4636 case nir_intrinsic_ssbo_atomic_add:
4637 op32 = aco_opcode::buffer_atomic_add;
4638 op64 = aco_opcode::buffer_atomic_add_x2;
4639 break;
4640 case nir_intrinsic_ssbo_atomic_imin:
4641 op32 = aco_opcode::buffer_atomic_smin;
4642 op64 = aco_opcode::buffer_atomic_smin_x2;
4643 break;
4644 case nir_intrinsic_ssbo_atomic_umin:
4645 op32 = aco_opcode::buffer_atomic_umin;
4646 op64 = aco_opcode::buffer_atomic_umin_x2;
4647 break;
4648 case nir_intrinsic_ssbo_atomic_imax:
4649 op32 = aco_opcode::buffer_atomic_smax;
4650 op64 = aco_opcode::buffer_atomic_smax_x2;
4651 break;
4652 case nir_intrinsic_ssbo_atomic_umax:
4653 op32 = aco_opcode::buffer_atomic_umax;
4654 op64 = aco_opcode::buffer_atomic_umax_x2;
4655 break;
4656 case nir_intrinsic_ssbo_atomic_and:
4657 op32 = aco_opcode::buffer_atomic_and;
4658 op64 = aco_opcode::buffer_atomic_and_x2;
4659 break;
4660 case nir_intrinsic_ssbo_atomic_or:
4661 op32 = aco_opcode::buffer_atomic_or;
4662 op64 = aco_opcode::buffer_atomic_or_x2;
4663 break;
4664 case nir_intrinsic_ssbo_atomic_xor:
4665 op32 = aco_opcode::buffer_atomic_xor;
4666 op64 = aco_opcode::buffer_atomic_xor_x2;
4667 break;
4668 case nir_intrinsic_ssbo_atomic_exchange:
4669 op32 = aco_opcode::buffer_atomic_swap;
4670 op64 = aco_opcode::buffer_atomic_swap_x2;
4671 break;
4672 case nir_intrinsic_ssbo_atomic_comp_swap:
4673 op32 = aco_opcode::buffer_atomic_cmpswap;
4674 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
4675 break;
4676 default:
4677 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
4678 }
4679 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
4680 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4681 mubuf->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4682 mubuf->operands[1] = Operand(rsrc);
4683 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4684 mubuf->operands[3] = Operand(data);
4685 if (return_previous)
4686 mubuf->definitions[0] = Definition(dst);
4687 mubuf->offset = 0;
4688 mubuf->offen = (offset.type() == RegType::vgpr);
4689 mubuf->glc = return_previous;
4690 mubuf->dlc = false; /* Not needed for atomics */
4691 mubuf->disable_wqm = true;
4692 mubuf->barrier = barrier_buffer;
4693 ctx->program->needs_exact = true;
4694 ctx->block->instructions.emplace_back(std::move(mubuf));
4695 }
4696
4697 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
4698
4699 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4700 Builder bld(ctx->program, ctx->block);
4701 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
4702 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
4703 }
4704
4705 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
4706 {
4707 Builder bld(ctx->program, ctx->block);
4708 unsigned num_components = instr->num_components;
4709 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
4710
4711 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4712 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
4713
4714 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4715 bool dlc = glc && ctx->options->chip_class >= GFX10;
4716 aco_opcode op;
4717 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
4718 bool global = ctx->options->chip_class >= GFX9;
4719 aco_opcode op;
4720 switch (num_bytes) {
4721 case 4:
4722 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
4723 break;
4724 case 8:
4725 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
4726 break;
4727 case 12:
4728 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
4729 break;
4730 case 16:
4731 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
4732 break;
4733 default:
4734 unreachable("load_global not implemented for this size.");
4735 }
4736 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
4737 flat->operands[0] = Operand(addr);
4738 flat->operands[1] = Operand(s1);
4739 flat->glc = glc;
4740 flat->dlc = dlc;
4741 flat->barrier = barrier_buffer;
4742
4743 if (dst.type() == RegType::sgpr) {
4744 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4745 flat->definitions[0] = Definition(vec);
4746 ctx->block->instructions.emplace_back(std::move(flat));
4747 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
4748 } else {
4749 flat->definitions[0] = Definition(dst);
4750 ctx->block->instructions.emplace_back(std::move(flat));
4751 }
4752 emit_split_vector(ctx, dst, num_components);
4753 } else {
4754 switch (num_bytes) {
4755 case 4:
4756 op = aco_opcode::s_load_dword;
4757 break;
4758 case 8:
4759 op = aco_opcode::s_load_dwordx2;
4760 break;
4761 case 12:
4762 case 16:
4763 op = aco_opcode::s_load_dwordx4;
4764 break;
4765 default:
4766 unreachable("load_global not implemented for this size.");
4767 }
4768 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4769 load->operands[0] = Operand(addr);
4770 load->operands[1] = Operand(0u);
4771 load->definitions[0] = Definition(dst);
4772 load->glc = glc;
4773 load->dlc = dlc;
4774 load->barrier = barrier_buffer;
4775 assert(ctx->options->chip_class >= GFX8 || !glc);
4776
4777 if (dst.size() == 3) {
4778 /* trim vector */
4779 Temp vec = bld.tmp(s4);
4780 load->definitions[0] = Definition(vec);
4781 ctx->block->instructions.emplace_back(std::move(load));
4782 emit_split_vector(ctx, vec, 4);
4783
4784 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4785 emit_extract_vector(ctx, vec, 0, s1),
4786 emit_extract_vector(ctx, vec, 1, s1),
4787 emit_extract_vector(ctx, vec, 2, s1));
4788 } else {
4789 ctx->block->instructions.emplace_back(std::move(load));
4790 }
4791 }
4792 }
4793
4794 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
4795 {
4796 Builder bld(ctx->program, ctx->block);
4797 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4798
4799 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4800 Temp addr = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4801
4802 unsigned writemask = nir_intrinsic_write_mask(instr);
4803 while (writemask) {
4804 int start, count;
4805 u_bit_scan_consecutive_range(&writemask, &start, &count);
4806 unsigned num_bytes = count * elem_size_bytes;
4807
4808 Temp write_data = data;
4809 if (count != instr->num_components) {
4810 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4811 for (int i = 0; i < count; i++)
4812 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
4813 write_data = bld.tmp(RegType::vgpr, count);
4814 vec->definitions[0] = Definition(write_data);
4815 ctx->block->instructions.emplace_back(std::move(vec));
4816 }
4817
4818 unsigned offset = start * elem_size_bytes;
4819 if (offset > 0 && ctx->options->chip_class < GFX9) {
4820 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
4821 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
4822 Temp carry = bld.tmp(bld.lm);
4823 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
4824
4825 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
4826 Operand(offset), addr0);
4827 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
4828 Operand(0u), addr1,
4829 carry).def(1).setHint(vcc);
4830
4831 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
4832
4833 offset = 0;
4834 }
4835
4836 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4837 bool global = ctx->options->chip_class >= GFX9;
4838 aco_opcode op;
4839 switch (num_bytes) {
4840 case 4:
4841 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
4842 break;
4843 case 8:
4844 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
4845 break;
4846 case 12:
4847 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
4848 break;
4849 case 16:
4850 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
4851 break;
4852 default:
4853 unreachable("store_global not implemented for this size.");
4854 }
4855 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
4856 flat->operands[0] = Operand(addr);
4857 flat->operands[1] = Operand(s1);
4858 flat->operands[2] = Operand(data);
4859 flat->glc = glc;
4860 flat->dlc = false;
4861 flat->offset = offset;
4862 flat->disable_wqm = true;
4863 flat->barrier = barrier_buffer;
4864 ctx->program->needs_exact = true;
4865 ctx->block->instructions.emplace_back(std::move(flat));
4866 }
4867 }
4868
4869 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4870 {
4871 /* return the previous value if dest is ever used */
4872 bool return_previous = false;
4873 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4874 return_previous = true;
4875 break;
4876 }
4877 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4878 return_previous = true;
4879 break;
4880 }
4881
4882 Builder bld(ctx->program, ctx->block);
4883 Temp addr = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4884 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4885
4886 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
4887 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
4888 get_ssa_temp(ctx, instr->src[2].ssa), data);
4889
4890 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4891
4892 bool global = ctx->options->chip_class >= GFX9;
4893 aco_opcode op32, op64;
4894 switch (instr->intrinsic) {
4895 case nir_intrinsic_global_atomic_add:
4896 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
4897 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
4898 break;
4899 case nir_intrinsic_global_atomic_imin:
4900 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
4901 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
4902 break;
4903 case nir_intrinsic_global_atomic_umin:
4904 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
4905 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
4906 break;
4907 case nir_intrinsic_global_atomic_imax:
4908 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
4909 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
4910 break;
4911 case nir_intrinsic_global_atomic_umax:
4912 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
4913 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
4914 break;
4915 case nir_intrinsic_global_atomic_and:
4916 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
4917 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
4918 break;
4919 case nir_intrinsic_global_atomic_or:
4920 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
4921 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
4922 break;
4923 case nir_intrinsic_global_atomic_xor:
4924 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
4925 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
4926 break;
4927 case nir_intrinsic_global_atomic_exchange:
4928 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
4929 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
4930 break;
4931 case nir_intrinsic_global_atomic_comp_swap:
4932 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
4933 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
4934 break;
4935 default:
4936 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
4937 }
4938 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
4939 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
4940 flat->operands[0] = Operand(addr);
4941 flat->operands[1] = Operand(s1);
4942 flat->operands[2] = Operand(data);
4943 if (return_previous)
4944 flat->definitions[0] = Definition(dst);
4945 flat->glc = return_previous;
4946 flat->dlc = false; /* Not needed for atomics */
4947 flat->offset = 0;
4948 flat->disable_wqm = true;
4949 flat->barrier = barrier_buffer;
4950 ctx->program->needs_exact = true;
4951 ctx->block->instructions.emplace_back(std::move(flat));
4952 }
4953
4954 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
4955 Builder bld(ctx->program, ctx->block);
4956 switch(instr->intrinsic) {
4957 case nir_intrinsic_group_memory_barrier:
4958 case nir_intrinsic_memory_barrier:
4959 bld.barrier(aco_opcode::p_memory_barrier_all);
4960 break;
4961 case nir_intrinsic_memory_barrier_buffer:
4962 bld.barrier(aco_opcode::p_memory_barrier_buffer);
4963 break;
4964 case nir_intrinsic_memory_barrier_image:
4965 bld.barrier(aco_opcode::p_memory_barrier_image);
4966 break;
4967 case nir_intrinsic_memory_barrier_shared:
4968 bld.barrier(aco_opcode::p_memory_barrier_shared);
4969 break;
4970 default:
4971 unreachable("Unimplemented memory barrier intrinsic");
4972 break;
4973 }
4974 }
4975
4976 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
4977 {
4978 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
4979 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4980 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
4981 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4982 Builder bld(ctx->program, ctx->block);
4983
4984 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4985 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
4986 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
4987 }
4988
4989 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
4990 {
4991 unsigned writemask = nir_intrinsic_write_mask(instr);
4992 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4993 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4994 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4995 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
4996
4997 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
4998 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
4999 }
5000
5001 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5002 {
5003 unsigned offset = nir_intrinsic_base(instr);
5004 Operand m = load_lds_size_m0(ctx);
5005 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5006 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5007
5008 unsigned num_operands = 3;
5009 aco_opcode op32, op64, op32_rtn, op64_rtn;
5010 switch(instr->intrinsic) {
5011 case nir_intrinsic_shared_atomic_add:
5012 op32 = aco_opcode::ds_add_u32;
5013 op64 = aco_opcode::ds_add_u64;
5014 op32_rtn = aco_opcode::ds_add_rtn_u32;
5015 op64_rtn = aco_opcode::ds_add_rtn_u64;
5016 break;
5017 case nir_intrinsic_shared_atomic_imin:
5018 op32 = aco_opcode::ds_min_i32;
5019 op64 = aco_opcode::ds_min_i64;
5020 op32_rtn = aco_opcode::ds_min_rtn_i32;
5021 op64_rtn = aco_opcode::ds_min_rtn_i64;
5022 break;
5023 case nir_intrinsic_shared_atomic_umin:
5024 op32 = aco_opcode::ds_min_u32;
5025 op64 = aco_opcode::ds_min_u64;
5026 op32_rtn = aco_opcode::ds_min_rtn_u32;
5027 op64_rtn = aco_opcode::ds_min_rtn_u64;
5028 break;
5029 case nir_intrinsic_shared_atomic_imax:
5030 op32 = aco_opcode::ds_max_i32;
5031 op64 = aco_opcode::ds_max_i64;
5032 op32_rtn = aco_opcode::ds_max_rtn_i32;
5033 op64_rtn = aco_opcode::ds_max_rtn_i64;
5034 break;
5035 case nir_intrinsic_shared_atomic_umax:
5036 op32 = aco_opcode::ds_max_u32;
5037 op64 = aco_opcode::ds_max_u64;
5038 op32_rtn = aco_opcode::ds_max_rtn_u32;
5039 op64_rtn = aco_opcode::ds_max_rtn_u64;
5040 break;
5041 case nir_intrinsic_shared_atomic_and:
5042 op32 = aco_opcode::ds_and_b32;
5043 op64 = aco_opcode::ds_and_b64;
5044 op32_rtn = aco_opcode::ds_and_rtn_b32;
5045 op64_rtn = aco_opcode::ds_and_rtn_b64;
5046 break;
5047 case nir_intrinsic_shared_atomic_or:
5048 op32 = aco_opcode::ds_or_b32;
5049 op64 = aco_opcode::ds_or_b64;
5050 op32_rtn = aco_opcode::ds_or_rtn_b32;
5051 op64_rtn = aco_opcode::ds_or_rtn_b64;
5052 break;
5053 case nir_intrinsic_shared_atomic_xor:
5054 op32 = aco_opcode::ds_xor_b32;
5055 op64 = aco_opcode::ds_xor_b64;
5056 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5057 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5058 break;
5059 case nir_intrinsic_shared_atomic_exchange:
5060 op32 = aco_opcode::ds_write_b32;
5061 op64 = aco_opcode::ds_write_b64;
5062 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5063 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5064 break;
5065 case nir_intrinsic_shared_atomic_comp_swap:
5066 op32 = aco_opcode::ds_cmpst_b32;
5067 op64 = aco_opcode::ds_cmpst_b64;
5068 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
5069 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
5070 num_operands = 4;
5071 break;
5072 default:
5073 unreachable("Unhandled shared atomic intrinsic");
5074 }
5075
5076 /* return the previous value if dest is ever used */
5077 bool return_previous = false;
5078 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5079 return_previous = true;
5080 break;
5081 }
5082 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5083 return_previous = true;
5084 break;
5085 }
5086
5087 aco_opcode op;
5088 if (data.size() == 1) {
5089 assert(instr->dest.ssa.bit_size == 32);
5090 op = return_previous ? op32_rtn : op32;
5091 } else {
5092 assert(instr->dest.ssa.bit_size == 64);
5093 op = return_previous ? op64_rtn : op64;
5094 }
5095
5096 if (offset > 65535) {
5097 Builder bld(ctx->program, ctx->block);
5098 address = bld.vadd32(bld.def(v1), Operand(offset), address);
5099 offset = 0;
5100 }
5101
5102 aco_ptr<DS_instruction> ds;
5103 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
5104 ds->operands[0] = Operand(address);
5105 ds->operands[1] = Operand(data);
5106 if (num_operands == 4)
5107 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
5108 ds->operands[num_operands - 1] = m;
5109 ds->offset0 = offset;
5110 if (return_previous)
5111 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
5112 ctx->block->instructions.emplace_back(std::move(ds));
5113 }
5114
5115 Temp get_scratch_resource(isel_context *ctx)
5116 {
5117 Builder bld(ctx->program, ctx->block);
5118 Temp scratch_addr = ctx->program->private_segment_buffer;
5119 if (ctx->stage != compute_cs)
5120 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
5121
5122 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
5123 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
5124
5125 if (ctx->program->chip_class >= GFX10) {
5126 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5127 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5128 S_008F0C_RESOURCE_LEVEL(1);
5129 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
5130 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5131 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5132 }
5133
5134 /* older generations need element size = 16 bytes. element size removed in GFX9 */
5135 if (ctx->program->chip_class <= GFX8)
5136 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
5137
5138 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
5139 }
5140
5141 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5142 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
5143 Builder bld(ctx->program, ctx->block);
5144 Temp rsrc = get_scratch_resource(ctx);
5145 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5146 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5147
5148 aco_opcode op;
5149 switch (dst.size()) {
5150 case 1:
5151 op = aco_opcode::buffer_load_dword;
5152 break;
5153 case 2:
5154 op = aco_opcode::buffer_load_dwordx2;
5155 break;
5156 case 3:
5157 op = aco_opcode::buffer_load_dwordx3;
5158 break;
5159 case 4:
5160 op = aco_opcode::buffer_load_dwordx4;
5161 break;
5162 case 6:
5163 case 8: {
5164 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5165 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
5166 bld.def(v4), offset, rsrc,
5167 ctx->program->scratch_offset, 0, true);
5168 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
5169 aco_opcode::buffer_load_dwordx4,
5170 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
5171 offset, rsrc, ctx->program->scratch_offset, 16, true);
5172 emit_split_vector(ctx, lower, 2);
5173 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
5174 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
5175 if (dst.size() == 8) {
5176 emit_split_vector(ctx, upper, 2);
5177 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
5178 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
5179 } else {
5180 elems[2] = upper;
5181 }
5182
5183 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
5184 Format::PSEUDO, dst.size() / 2, 1)};
5185 for (unsigned i = 0; i < dst.size() / 2; i++)
5186 vec->operands[i] = Operand(elems[i]);
5187 vec->definitions[0] = Definition(dst);
5188 bld.insert(std::move(vec));
5189 ctx->allocated_vec.emplace(dst.id(), elems);
5190 return;
5191 }
5192 default:
5193 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
5194 }
5195
5196 bld.mubuf(op, Definition(dst), offset, rsrc, ctx->program->scratch_offset, 0, true);
5197 emit_split_vector(ctx, dst, instr->num_components);
5198 }
5199
5200 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5201 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
5202 Builder bld(ctx->program, ctx->block);
5203 Temp rsrc = get_scratch_resource(ctx);
5204 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5205 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5206
5207 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5208 unsigned writemask = nir_intrinsic_write_mask(instr);
5209
5210 while (writemask) {
5211 int start, count;
5212 u_bit_scan_consecutive_range(&writemask, &start, &count);
5213 int num_bytes = count * elem_size_bytes;
5214
5215 if (num_bytes > 16) {
5216 assert(elem_size_bytes == 8);
5217 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5218 count = 2;
5219 num_bytes = 16;
5220 }
5221
5222 // TODO: check alignment of sub-dword stores
5223 // TODO: split 3 bytes. there is no store instruction for that
5224
5225 Temp write_data;
5226 if (count != instr->num_components) {
5227 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5228 for (int i = 0; i < count; i++) {
5229 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
5230 vec->operands[i] = Operand(elem);
5231 }
5232 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
5233 vec->definitions[0] = Definition(write_data);
5234 ctx->block->instructions.emplace_back(std::move(vec));
5235 } else {
5236 write_data = data;
5237 }
5238
5239 aco_opcode op;
5240 switch (num_bytes) {
5241 case 4:
5242 op = aco_opcode::buffer_store_dword;
5243 break;
5244 case 8:
5245 op = aco_opcode::buffer_store_dwordx2;
5246 break;
5247 case 12:
5248 op = aco_opcode::buffer_store_dwordx3;
5249 break;
5250 case 16:
5251 op = aco_opcode::buffer_store_dwordx4;
5252 break;
5253 default:
5254 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
5255 }
5256
5257 bld.mubuf(op, offset, rsrc, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
5258 }
5259 }
5260
5261 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
5262 uint8_t log2_ps_iter_samples;
5263 if (ctx->program->info->ps.force_persample) {
5264 log2_ps_iter_samples =
5265 util_logbase2(ctx->options->key.fs.num_samples);
5266 } else {
5267 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
5268 }
5269
5270 /* The bit pattern matches that used by fixed function fragment
5271 * processing. */
5272 static const unsigned ps_iter_masks[] = {
5273 0xffff, /* not used */
5274 0x5555,
5275 0x1111,
5276 0x0101,
5277 0x0001,
5278 };
5279 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
5280
5281 Builder bld(ctx->program, ctx->block);
5282
5283 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
5284 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
5285 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
5286 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
5287 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5288 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
5289 }
5290
5291 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
5292 {
5293 Builder bld(ctx->program, ctx->block);
5294
5295 if (cluster_size == 1) {
5296 return src;
5297 } if (op == nir_op_iand && cluster_size == 4) {
5298 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
5299 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5300 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
5301 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
5302 } else if (op == nir_op_ior && cluster_size == 4) {
5303 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
5304 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
5305 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
5306 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
5307 //subgroupAnd(val) -> (exec & ~val) == 0
5308 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
5309 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
5310 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
5311 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
5312 //subgroupOr(val) -> (val & exec) != 0
5313 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
5314 return bool_to_vector_condition(ctx, tmp);
5315 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
5316 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
5317 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5318 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
5319 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
5320 return bool_to_vector_condition(ctx, tmp);
5321 } else {
5322 //subgroupClustered{And,Or,Xor}(val, n) ->
5323 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
5324 //cluster_offset = ~(n - 1) & lane_id
5325 //cluster_mask = ((1 << n) - 1)
5326 //subgroupClusteredAnd():
5327 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
5328 //subgroupClusteredOr():
5329 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
5330 //subgroupClusteredXor():
5331 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
5332 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
5333 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
5334
5335 Temp tmp;
5336 if (op == nir_op_iand)
5337 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5338 else
5339 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5340
5341 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
5342
5343 if (ctx->program->chip_class <= GFX7)
5344 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
5345 else if (ctx->program->wave_size == 64)
5346 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
5347 else
5348 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
5349 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5350 if (cluster_mask != 0xffffffff)
5351 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
5352
5353 Definition cmp_def = Definition();
5354 if (op == nir_op_iand) {
5355 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
5356 } else if (op == nir_op_ior) {
5357 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5358 } else if (op == nir_op_ixor) {
5359 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
5360 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
5361 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5362 }
5363 cmp_def.setHint(vcc);
5364 return cmp_def.getTemp();
5365 }
5366 }
5367
5368 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
5369 {
5370 Builder bld(ctx->program, ctx->block);
5371
5372 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
5373 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
5374 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
5375 Temp tmp;
5376 if (op == nir_op_iand)
5377 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5378 else
5379 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
5380
5381 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
5382 Temp lo = lohi.def(0).getTemp();
5383 Temp hi = lohi.def(1).getTemp();
5384 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
5385
5386 Definition cmp_def = Definition();
5387 if (op == nir_op_iand)
5388 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5389 else if (op == nir_op_ior)
5390 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5391 else if (op == nir_op_ixor)
5392 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
5393 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
5394 cmp_def.setHint(vcc);
5395 return cmp_def.getTemp();
5396 }
5397
5398 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
5399 {
5400 Builder bld(ctx->program, ctx->block);
5401
5402 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
5403 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
5404 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
5405 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
5406 if (op == nir_op_iand)
5407 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5408 else if (op == nir_op_ior)
5409 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5410 else if (op == nir_op_ixor)
5411 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5412
5413 assert(false);
5414 return Temp();
5415 }
5416
5417 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
5418 {
5419 Builder bld(ctx->program, ctx->block);
5420 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
5421 if (src.regClass().type() == RegType::vgpr) {
5422 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
5423 } else if (src.regClass() == s1) {
5424 bld.sop1(aco_opcode::s_mov_b32, dst, src);
5425 } else if (src.regClass() == s2) {
5426 bld.sop1(aco_opcode::s_mov_b64, dst, src);
5427 } else {
5428 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5429 nir_print_instr(&instr->instr, stderr);
5430 fprintf(stderr, "\n");
5431 }
5432 }
5433
5434 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
5435 {
5436 Builder bld(ctx->program, ctx->block);
5437 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
5438 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
5439 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
5440
5441 Temp ddx_1, ddx_2, ddy_1, ddy_2;
5442 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
5443 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
5444 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
5445
5446 /* Build DD X/Y */
5447 if (ctx->program->chip_class >= GFX8) {
5448 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
5449 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
5450 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
5451 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
5452 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
5453 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
5454 } else {
5455 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
5456 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
5457 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
5458 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
5459 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
5460 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
5461 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
5462 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
5463 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
5464 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
5465 }
5466
5467 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
5468 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
5469 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
5470 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
5471 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
5472 Temp wqm1 = bld.tmp(v1);
5473 emit_wqm(ctx, tmp1, wqm1, true);
5474 Temp wqm2 = bld.tmp(v1);
5475 emit_wqm(ctx, tmp2, wqm2, true);
5476 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
5477 return;
5478 }
5479
5480 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
5481 {
5482 Builder bld(ctx->program, ctx->block);
5483 switch(instr->intrinsic) {
5484 case nir_intrinsic_load_barycentric_sample:
5485 case nir_intrinsic_load_barycentric_pixel:
5486 case nir_intrinsic_load_barycentric_centroid: {
5487 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
5488 Temp bary = Temp(0, s2);
5489 switch (mode) {
5490 case INTERP_MODE_SMOOTH:
5491 case INTERP_MODE_NONE:
5492 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
5493 bary = get_arg(ctx, ctx->args->ac.persp_center);
5494 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
5495 bary = ctx->persp_centroid;
5496 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
5497 bary = get_arg(ctx, ctx->args->ac.persp_sample);
5498 break;
5499 case INTERP_MODE_NOPERSPECTIVE:
5500 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
5501 bary = get_arg(ctx, ctx->args->ac.linear_center);
5502 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
5503 bary = ctx->linear_centroid;
5504 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
5505 bary = get_arg(ctx, ctx->args->ac.linear_sample);
5506 break;
5507 default:
5508 break;
5509 }
5510 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5511 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
5512 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
5513 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5514 Operand(p1), Operand(p2));
5515 emit_split_vector(ctx, dst, 2);
5516 break;
5517 }
5518 case nir_intrinsic_load_barycentric_at_sample: {
5519 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
5520 switch (ctx->options->key.fs.num_samples) {
5521 case 2: sample_pos_offset += 1 << 3; break;
5522 case 4: sample_pos_offset += 3 << 3; break;
5523 case 8: sample_pos_offset += 7 << 3; break;
5524 default: break;
5525 }
5526 Temp sample_pos;
5527 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5528 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
5529 Temp private_segment_buffer = ctx->program->private_segment_buffer;
5530 if (addr.type() == RegType::sgpr) {
5531 Operand offset;
5532 if (const_addr) {
5533 sample_pos_offset += const_addr->u32 << 3;
5534 offset = Operand(sample_pos_offset);
5535 } else if (ctx->options->chip_class >= GFX9) {
5536 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
5537 } else {
5538 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
5539 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
5540 }
5541 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, Operand(offset));
5542
5543 } else if (ctx->options->chip_class >= GFX9) {
5544 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5545 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
5546 } else {
5547 /* addr += private_segment_buffer + sample_pos_offset */
5548 Temp tmp0 = bld.tmp(s1);
5549 Temp tmp1 = bld.tmp(s1);
5550 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
5551 Definition scc_tmp = bld.def(s1, scc);
5552 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
5553 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
5554 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5555 Temp pck0 = bld.tmp(v1);
5556 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
5557 tmp1 = as_vgpr(ctx, tmp1);
5558 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
5559 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
5560
5561 /* sample_pos = flat_load_dwordx2 addr */
5562 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
5563 }
5564
5565 /* sample_pos -= 0.5 */
5566 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
5567 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
5568 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
5569 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
5570 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
5571
5572 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
5573 break;
5574 }
5575 case nir_intrinsic_load_barycentric_at_offset: {
5576 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5577 RegClass rc = RegClass(offset.type(), 1);
5578 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
5579 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
5580 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
5581 break;
5582 }
5583 case nir_intrinsic_load_front_face: {
5584 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5585 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
5586 break;
5587 }
5588 case nir_intrinsic_load_view_index:
5589 case nir_intrinsic_load_layer_id: {
5590 if (instr->intrinsic == nir_intrinsic_load_view_index && (ctx->stage & sw_vs)) {
5591 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5592 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
5593 break;
5594 }
5595
5596 unsigned idx = nir_intrinsic_base(instr);
5597 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5598 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
5599 break;
5600 }
5601 case nir_intrinsic_load_frag_coord: {
5602 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
5603 break;
5604 }
5605 case nir_intrinsic_load_sample_pos: {
5606 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
5607 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
5608 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5609 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
5610 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
5611 break;
5612 }
5613 case nir_intrinsic_load_interpolated_input:
5614 visit_load_interpolated_input(ctx, instr);
5615 break;
5616 case nir_intrinsic_store_output:
5617 visit_store_output(ctx, instr);
5618 break;
5619 case nir_intrinsic_load_input:
5620 visit_load_input(ctx, instr);
5621 break;
5622 case nir_intrinsic_load_ubo:
5623 visit_load_ubo(ctx, instr);
5624 break;
5625 case nir_intrinsic_load_push_constant:
5626 visit_load_push_constant(ctx, instr);
5627 break;
5628 case nir_intrinsic_load_constant:
5629 visit_load_constant(ctx, instr);
5630 break;
5631 case nir_intrinsic_vulkan_resource_index:
5632 visit_load_resource(ctx, instr);
5633 break;
5634 case nir_intrinsic_discard:
5635 visit_discard(ctx, instr);
5636 break;
5637 case nir_intrinsic_discard_if:
5638 visit_discard_if(ctx, instr);
5639 break;
5640 case nir_intrinsic_load_shared:
5641 visit_load_shared(ctx, instr);
5642 break;
5643 case nir_intrinsic_store_shared:
5644 visit_store_shared(ctx, instr);
5645 break;
5646 case nir_intrinsic_shared_atomic_add:
5647 case nir_intrinsic_shared_atomic_imin:
5648 case nir_intrinsic_shared_atomic_umin:
5649 case nir_intrinsic_shared_atomic_imax:
5650 case nir_intrinsic_shared_atomic_umax:
5651 case nir_intrinsic_shared_atomic_and:
5652 case nir_intrinsic_shared_atomic_or:
5653 case nir_intrinsic_shared_atomic_xor:
5654 case nir_intrinsic_shared_atomic_exchange:
5655 case nir_intrinsic_shared_atomic_comp_swap:
5656 visit_shared_atomic(ctx, instr);
5657 break;
5658 case nir_intrinsic_image_deref_load:
5659 visit_image_load(ctx, instr);
5660 break;
5661 case nir_intrinsic_image_deref_store:
5662 visit_image_store(ctx, instr);
5663 break;
5664 case nir_intrinsic_image_deref_atomic_add:
5665 case nir_intrinsic_image_deref_atomic_umin:
5666 case nir_intrinsic_image_deref_atomic_imin:
5667 case nir_intrinsic_image_deref_atomic_umax:
5668 case nir_intrinsic_image_deref_atomic_imax:
5669 case nir_intrinsic_image_deref_atomic_and:
5670 case nir_intrinsic_image_deref_atomic_or:
5671 case nir_intrinsic_image_deref_atomic_xor:
5672 case nir_intrinsic_image_deref_atomic_exchange:
5673 case nir_intrinsic_image_deref_atomic_comp_swap:
5674 visit_image_atomic(ctx, instr);
5675 break;
5676 case nir_intrinsic_image_deref_size:
5677 visit_image_size(ctx, instr);
5678 break;
5679 case nir_intrinsic_load_ssbo:
5680 visit_load_ssbo(ctx, instr);
5681 break;
5682 case nir_intrinsic_store_ssbo:
5683 visit_store_ssbo(ctx, instr);
5684 break;
5685 case nir_intrinsic_load_global:
5686 visit_load_global(ctx, instr);
5687 break;
5688 case nir_intrinsic_store_global:
5689 visit_store_global(ctx, instr);
5690 break;
5691 case nir_intrinsic_global_atomic_add:
5692 case nir_intrinsic_global_atomic_imin:
5693 case nir_intrinsic_global_atomic_umin:
5694 case nir_intrinsic_global_atomic_imax:
5695 case nir_intrinsic_global_atomic_umax:
5696 case nir_intrinsic_global_atomic_and:
5697 case nir_intrinsic_global_atomic_or:
5698 case nir_intrinsic_global_atomic_xor:
5699 case nir_intrinsic_global_atomic_exchange:
5700 case nir_intrinsic_global_atomic_comp_swap:
5701 visit_global_atomic(ctx, instr);
5702 break;
5703 case nir_intrinsic_ssbo_atomic_add:
5704 case nir_intrinsic_ssbo_atomic_imin:
5705 case nir_intrinsic_ssbo_atomic_umin:
5706 case nir_intrinsic_ssbo_atomic_imax:
5707 case nir_intrinsic_ssbo_atomic_umax:
5708 case nir_intrinsic_ssbo_atomic_and:
5709 case nir_intrinsic_ssbo_atomic_or:
5710 case nir_intrinsic_ssbo_atomic_xor:
5711 case nir_intrinsic_ssbo_atomic_exchange:
5712 case nir_intrinsic_ssbo_atomic_comp_swap:
5713 visit_atomic_ssbo(ctx, instr);
5714 break;
5715 case nir_intrinsic_load_scratch:
5716 visit_load_scratch(ctx, instr);
5717 break;
5718 case nir_intrinsic_store_scratch:
5719 visit_store_scratch(ctx, instr);
5720 break;
5721 case nir_intrinsic_get_buffer_size:
5722 visit_get_buffer_size(ctx, instr);
5723 break;
5724 case nir_intrinsic_control_barrier: {
5725 unsigned* bsize = ctx->program->info->cs.block_size;
5726 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
5727 if (workgroup_size > ctx->program->wave_size)
5728 bld.sopp(aco_opcode::s_barrier);
5729 break;
5730 }
5731 case nir_intrinsic_group_memory_barrier:
5732 case nir_intrinsic_memory_barrier:
5733 case nir_intrinsic_memory_barrier_buffer:
5734 case nir_intrinsic_memory_barrier_image:
5735 case nir_intrinsic_memory_barrier_shared:
5736 emit_memory_barrier(ctx, instr);
5737 break;
5738 case nir_intrinsic_memory_barrier_tcs_patch:
5739 break;
5740 case nir_intrinsic_load_num_work_groups: {
5741 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5742 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
5743 emit_split_vector(ctx, dst, 3);
5744 break;
5745 }
5746 case nir_intrinsic_load_local_invocation_id: {
5747 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5748 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
5749 emit_split_vector(ctx, dst, 3);
5750 break;
5751 }
5752 case nir_intrinsic_load_work_group_id: {
5753 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5754 struct ac_arg *args = ctx->args->ac.workgroup_ids;
5755 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5756 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
5757 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
5758 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
5759 emit_split_vector(ctx, dst, 3);
5760 break;
5761 }
5762 case nir_intrinsic_load_local_invocation_index: {
5763 Temp id = emit_mbcnt(ctx, bld.def(v1));
5764
5765 /* The tg_size bits [6:11] contain the subgroup id,
5766 * we need this multiplied by the wave size, and then OR the thread id to it.
5767 */
5768 if (ctx->program->wave_size == 64) {
5769 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
5770 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
5771 get_arg(ctx, ctx->args->ac.tg_size));
5772 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
5773 } else {
5774 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
5775 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
5776 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
5777 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
5778 }
5779 break;
5780 }
5781 case nir_intrinsic_load_subgroup_id: {
5782 if (ctx->stage == compute_cs) {
5783 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
5784 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
5785 } else {
5786 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
5787 }
5788 break;
5789 }
5790 case nir_intrinsic_load_subgroup_invocation: {
5791 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
5792 break;
5793 }
5794 case nir_intrinsic_load_num_subgroups: {
5795 if (ctx->stage == compute_cs)
5796 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
5797 get_arg(ctx, ctx->args->ac.tg_size));
5798 else
5799 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
5800 break;
5801 }
5802 case nir_intrinsic_ballot: {
5803 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5804 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5805 Definition tmp = bld.def(dst.regClass());
5806 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
5807 if (instr->src[0].ssa->bit_size == 1) {
5808 assert(src.regClass() == bld.lm);
5809 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
5810 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
5811 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
5812 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
5813 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
5814 } else {
5815 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5816 nir_print_instr(&instr->instr, stderr);
5817 fprintf(stderr, "\n");
5818 }
5819 if (dst.size() != bld.lm.size()) {
5820 /* Wave32 with ballot size set to 64 */
5821 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
5822 }
5823 emit_wqm(ctx, tmp.getTemp(), dst);
5824 break;
5825 }
5826 case nir_intrinsic_shuffle:
5827 case nir_intrinsic_read_invocation: {
5828 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5829 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
5830 emit_uniform_subgroup(ctx, instr, src);
5831 } else {
5832 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
5833 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
5834 tid = bld.as_uniform(tid);
5835 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5836 if (src.regClass() == v1) {
5837 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
5838 } else if (src.regClass() == v2) {
5839 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5840 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5841 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
5842 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
5843 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5844 emit_split_vector(ctx, dst, 2);
5845 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
5846 assert(src.regClass() == bld.lm);
5847 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
5848 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
5849 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
5850 assert(src.regClass() == bld.lm);
5851 Temp tmp;
5852 if (ctx->program->chip_class <= GFX7)
5853 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
5854 else if (ctx->program->wave_size == 64)
5855 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
5856 else
5857 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
5858 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5859 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
5860 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
5861 } else {
5862 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5863 nir_print_instr(&instr->instr, stderr);
5864 fprintf(stderr, "\n");
5865 }
5866 }
5867 break;
5868 }
5869 case nir_intrinsic_load_sample_id: {
5870 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
5871 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
5872 break;
5873 }
5874 case nir_intrinsic_load_sample_mask_in: {
5875 visit_load_sample_mask_in(ctx, instr);
5876 break;
5877 }
5878 case nir_intrinsic_read_first_invocation: {
5879 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5880 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5881 if (src.regClass() == v1) {
5882 emit_wqm(ctx,
5883 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
5884 dst);
5885 } else if (src.regClass() == v2) {
5886 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
5887 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
5888 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
5889 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
5890 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
5891 emit_split_vector(ctx, dst, 2);
5892 } else if (instr->dest.ssa.bit_size == 1) {
5893 assert(src.regClass() == bld.lm);
5894 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
5895 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
5896 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
5897 } else if (src.regClass() == s1) {
5898 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
5899 } else if (src.regClass() == s2) {
5900 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
5901 } else {
5902 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5903 nir_print_instr(&instr->instr, stderr);
5904 fprintf(stderr, "\n");
5905 }
5906 break;
5907 }
5908 case nir_intrinsic_vote_all: {
5909 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5910 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5911 assert(src.regClass() == bld.lm);
5912 assert(dst.regClass() == bld.lm);
5913
5914 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
5915 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
5916 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
5917 break;
5918 }
5919 case nir_intrinsic_vote_any: {
5920 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5921 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5922 assert(src.regClass() == bld.lm);
5923 assert(dst.regClass() == bld.lm);
5924
5925 Temp tmp = bool_to_scalar_condition(ctx, src);
5926 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
5927 break;
5928 }
5929 case nir_intrinsic_reduce:
5930 case nir_intrinsic_inclusive_scan:
5931 case nir_intrinsic_exclusive_scan: {
5932 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5933 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5934 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
5935 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
5936 nir_intrinsic_cluster_size(instr) : 0;
5937 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
5938
5939 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
5940 emit_uniform_subgroup(ctx, instr, src);
5941 } else if (instr->dest.ssa.bit_size == 1) {
5942 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
5943 op = nir_op_iand;
5944 else if (op == nir_op_iadd)
5945 op = nir_op_ixor;
5946 else if (op == nir_op_umax || op == nir_op_imax)
5947 op = nir_op_ior;
5948 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
5949
5950 switch (instr->intrinsic) {
5951 case nir_intrinsic_reduce:
5952 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
5953 break;
5954 case nir_intrinsic_exclusive_scan:
5955 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
5956 break;
5957 case nir_intrinsic_inclusive_scan:
5958 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
5959 break;
5960 default:
5961 assert(false);
5962 }
5963 } else if (cluster_size == 1) {
5964 bld.copy(Definition(dst), src);
5965 } else {
5966 src = as_vgpr(ctx, src);
5967
5968 ReduceOp reduce_op;
5969 switch (op) {
5970 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
5971 CASE(iadd)
5972 CASE(imul)
5973 CASE(fadd)
5974 CASE(fmul)
5975 CASE(imin)
5976 CASE(umin)
5977 CASE(fmin)
5978 CASE(imax)
5979 CASE(umax)
5980 CASE(fmax)
5981 CASE(iand)
5982 CASE(ior)
5983 CASE(ixor)
5984 default:
5985 unreachable("unknown reduction op");
5986 #undef CASE
5987 }
5988
5989 aco_opcode aco_op;
5990 switch (instr->intrinsic) {
5991 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
5992 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
5993 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
5994 default:
5995 unreachable("unknown reduce intrinsic");
5996 }
5997
5998 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
5999 reduce->operands[0] = Operand(src);
6000 // filled in by aco_reduce_assign.cpp, used internally as part of the
6001 // reduce sequence
6002 assert(dst.size() == 1 || dst.size() == 2);
6003 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
6004 reduce->operands[2] = Operand(v1.as_linear());
6005
6006 Temp tmp_dst = bld.tmp(dst.regClass());
6007 reduce->definitions[0] = Definition(tmp_dst);
6008 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
6009 reduce->definitions[2] = Definition();
6010 reduce->definitions[3] = Definition(scc, s1);
6011 reduce->definitions[4] = Definition();
6012 reduce->reduce_op = reduce_op;
6013 reduce->cluster_size = cluster_size;
6014 ctx->block->instructions.emplace_back(std::move(reduce));
6015
6016 emit_wqm(ctx, tmp_dst, dst);
6017 }
6018 break;
6019 }
6020 case nir_intrinsic_quad_broadcast: {
6021 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6022 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6023 emit_uniform_subgroup(ctx, instr, src);
6024 } else {
6025 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6026 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
6027 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
6028
6029 if (instr->dest.ssa.bit_size == 1) {
6030 assert(src.regClass() == bld.lm);
6031 assert(dst.regClass() == bld.lm);
6032 uint32_t half_mask = 0x11111111u << lane;
6033 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
6034 Temp tmp = bld.tmp(bld.lm);
6035 bld.sop1(Builder::s_wqm, Definition(tmp),
6036 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
6037 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
6038 emit_wqm(ctx, tmp, dst);
6039 } else if (instr->dest.ssa.bit_size == 32) {
6040 if (ctx->program->chip_class >= GFX8)
6041 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
6042 else
6043 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
6044 } else if (instr->dest.ssa.bit_size == 64) {
6045 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6046 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6047 if (ctx->program->chip_class >= GFX8) {
6048 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6049 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6050 } else {
6051 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
6052 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
6053 }
6054 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6055 emit_split_vector(ctx, dst, 2);
6056 } else {
6057 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6058 nir_print_instr(&instr->instr, stderr);
6059 fprintf(stderr, "\n");
6060 }
6061 }
6062 break;
6063 }
6064 case nir_intrinsic_quad_swap_horizontal:
6065 case nir_intrinsic_quad_swap_vertical:
6066 case nir_intrinsic_quad_swap_diagonal:
6067 case nir_intrinsic_quad_swizzle_amd: {
6068 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6069 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6070 emit_uniform_subgroup(ctx, instr, src);
6071 break;
6072 }
6073 uint16_t dpp_ctrl = 0;
6074 switch (instr->intrinsic) {
6075 case nir_intrinsic_quad_swap_horizontal:
6076 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
6077 break;
6078 case nir_intrinsic_quad_swap_vertical:
6079 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
6080 break;
6081 case nir_intrinsic_quad_swap_diagonal:
6082 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
6083 break;
6084 case nir_intrinsic_quad_swizzle_amd:
6085 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
6086 break;
6087 default:
6088 break;
6089 }
6090 if (ctx->program->chip_class < GFX8)
6091 dpp_ctrl |= (1 << 15);
6092
6093 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6094 if (instr->dest.ssa.bit_size == 1) {
6095 assert(src.regClass() == bld.lm);
6096 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
6097 if (ctx->program->chip_class >= GFX8)
6098 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6099 else
6100 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6101 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
6102 emit_wqm(ctx, tmp, dst);
6103 } else if (instr->dest.ssa.bit_size == 32) {
6104 Temp tmp;
6105 if (ctx->program->chip_class >= GFX8)
6106 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6107 else
6108 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6109 emit_wqm(ctx, tmp, dst);
6110 } else if (instr->dest.ssa.bit_size == 64) {
6111 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6112 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6113 if (ctx->program->chip_class >= GFX8) {
6114 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6115 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6116 } else {
6117 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
6118 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
6119 }
6120 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6121 emit_split_vector(ctx, dst, 2);
6122 } else {
6123 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6124 nir_print_instr(&instr->instr, stderr);
6125 fprintf(stderr, "\n");
6126 }
6127 break;
6128 }
6129 case nir_intrinsic_masked_swizzle_amd: {
6130 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6131 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6132 emit_uniform_subgroup(ctx, instr, src);
6133 break;
6134 }
6135 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6136 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
6137 if (dst.regClass() == v1) {
6138 emit_wqm(ctx,
6139 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
6140 dst);
6141 } else if (dst.regClass() == v2) {
6142 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6143 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6144 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
6145 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
6146 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6147 emit_split_vector(ctx, dst, 2);
6148 } else {
6149 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6150 nir_print_instr(&instr->instr, stderr);
6151 fprintf(stderr, "\n");
6152 }
6153 break;
6154 }
6155 case nir_intrinsic_write_invocation_amd: {
6156 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6157 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
6158 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
6159 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6160 if (dst.regClass() == v1) {
6161 /* src2 is ignored for writelane. RA assigns the same reg for dst */
6162 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
6163 } else if (dst.regClass() == v2) {
6164 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
6165 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
6166 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
6167 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
6168 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
6169 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
6170 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6171 emit_split_vector(ctx, dst, 2);
6172 } else {
6173 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6174 nir_print_instr(&instr->instr, stderr);
6175 fprintf(stderr, "\n");
6176 }
6177 break;
6178 }
6179 case nir_intrinsic_mbcnt_amd: {
6180 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6181 RegClass rc = RegClass(src.type(), 1);
6182 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
6183 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
6184 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6185 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
6186 emit_wqm(ctx, wqm_tmp, dst);
6187 break;
6188 }
6189 case nir_intrinsic_load_helper_invocation: {
6190 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6191 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
6192 ctx->block->kind |= block_kind_needs_lowering;
6193 ctx->program->needs_exact = true;
6194 break;
6195 }
6196 case nir_intrinsic_is_helper_invocation: {
6197 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6198 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
6199 ctx->block->kind |= block_kind_needs_lowering;
6200 ctx->program->needs_exact = true;
6201 break;
6202 }
6203 case nir_intrinsic_demote:
6204 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
6205
6206 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6207 ctx->cf_info.exec_potentially_empty = true;
6208 ctx->block->kind |= block_kind_uses_demote;
6209 ctx->program->needs_exact = true;
6210 break;
6211 case nir_intrinsic_demote_if: {
6212 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6213 assert(src.regClass() == bld.lm);
6214 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6215 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
6216
6217 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6218 ctx->cf_info.exec_potentially_empty = true;
6219 ctx->block->kind |= block_kind_uses_demote;
6220 ctx->program->needs_exact = true;
6221 break;
6222 }
6223 case nir_intrinsic_first_invocation: {
6224 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
6225 get_ssa_temp(ctx, &instr->dest.ssa));
6226 break;
6227 }
6228 case nir_intrinsic_shader_clock:
6229 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
6230 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
6231 break;
6232 case nir_intrinsic_load_vertex_id_zero_base: {
6233 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6234 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
6235 break;
6236 }
6237 case nir_intrinsic_load_first_vertex: {
6238 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6239 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
6240 break;
6241 }
6242 case nir_intrinsic_load_base_instance: {
6243 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6244 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
6245 break;
6246 }
6247 case nir_intrinsic_load_instance_id: {
6248 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6249 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
6250 break;
6251 }
6252 case nir_intrinsic_load_draw_id: {
6253 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6254 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
6255 break;
6256 }
6257 default:
6258 fprintf(stderr, "Unimplemented intrinsic instr: ");
6259 nir_print_instr(&instr->instr, stderr);
6260 fprintf(stderr, "\n");
6261 abort();
6262
6263 break;
6264 }
6265 }
6266
6267
6268 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
6269 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
6270 enum glsl_base_type *stype)
6271 {
6272 nir_deref_instr *texture_deref_instr = NULL;
6273 nir_deref_instr *sampler_deref_instr = NULL;
6274 int plane = -1;
6275
6276 for (unsigned i = 0; i < instr->num_srcs; i++) {
6277 switch (instr->src[i].src_type) {
6278 case nir_tex_src_texture_deref:
6279 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
6280 break;
6281 case nir_tex_src_sampler_deref:
6282 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
6283 break;
6284 case nir_tex_src_plane:
6285 plane = nir_src_as_int(instr->src[i].src);
6286 break;
6287 default:
6288 break;
6289 }
6290 }
6291
6292 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
6293
6294 if (!sampler_deref_instr)
6295 sampler_deref_instr = texture_deref_instr;
6296
6297 if (plane >= 0) {
6298 assert(instr->op != nir_texop_txf_ms &&
6299 instr->op != nir_texop_samples_identical);
6300 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
6301 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
6302 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
6303 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
6304 } else {
6305 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
6306 }
6307 if (samp_ptr) {
6308 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
6309
6310 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
6311 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
6312 Builder bld(ctx->program, ctx->block);
6313
6314 /* to avoid unnecessary moves, we split and recombine sampler and image */
6315 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
6316 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6317 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6318 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
6319 Definition(img[2]), Definition(img[3]), Definition(img[4]),
6320 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
6321 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
6322 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
6323
6324 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
6325 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
6326 img[0], img[1], img[2], img[3],
6327 img[4], img[5], img[6], img[7]);
6328 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6329 samp[0], samp[1], samp[2], samp[3]);
6330 }
6331 }
6332 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
6333 instr->op == nir_texop_samples_identical))
6334 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
6335 }
6336
6337 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
6338 Temp *out_ma, Temp *out_sc, Temp *out_tc)
6339 {
6340 Builder bld(ctx->program, ctx->block);
6341
6342 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
6343 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
6344 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
6345
6346 Operand neg_one(0xbf800000u);
6347 Operand one(0x3f800000u);
6348 Operand two(0x40000000u);
6349 Operand four(0x40800000u);
6350
6351 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
6352 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
6353 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
6354
6355 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
6356 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
6357 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
6358 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
6359
6360 // select sc
6361 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
6362 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
6363 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
6364 one, is_ma_y);
6365 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
6366
6367 // select tc
6368 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
6369 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
6370 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
6371
6372 // select ma
6373 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6374 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
6375 deriv_z, is_ma_z);
6376 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
6377 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
6378 }
6379
6380 void prepare_cube_coords(isel_context *ctx, Temp* coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
6381 {
6382 Builder bld(ctx->program, ctx->block);
6383 Temp coord_args[4], ma, tc, sc, id;
6384 for (unsigned i = 0; i < (is_array ? 4 : 3); i++)
6385 coord_args[i] = emit_extract_vector(ctx, *coords, i, v1);
6386
6387 if (is_array) {
6388 coord_args[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_args[3]);
6389
6390 // see comment in ac_prepare_cube_coords()
6391 if (ctx->options->chip_class <= GFX8)
6392 coord_args[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coord_args[3]);
6393 }
6394
6395 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6396
6397 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
6398 vop3a->operands[0] = Operand(ma);
6399 vop3a->abs[0] = true;
6400 Temp invma = bld.tmp(v1);
6401 vop3a->definitions[0] = Definition(invma);
6402 ctx->block->instructions.emplace_back(std::move(vop3a));
6403
6404 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6405 if (!is_deriv)
6406 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
6407
6408 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6409 if (!is_deriv)
6410 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
6411
6412 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6413
6414 if (is_deriv) {
6415 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
6416 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
6417
6418 for (unsigned i = 0; i < 2; i++) {
6419 // see comment in ac_prepare_cube_coords()
6420 Temp deriv_ma;
6421 Temp deriv_sc, deriv_tc;
6422 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
6423 &deriv_ma, &deriv_sc, &deriv_tc);
6424
6425 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
6426
6427 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6428 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
6429 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
6430 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6431 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
6432 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
6433 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
6434 }
6435
6436 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
6437 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
6438 }
6439
6440 if (is_array)
6441 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coord_args[3], id, Operand(0x41000000u/*8.0*/));
6442 *coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), sc, tc, id);
6443
6444 }
6445
6446 Temp apply_round_slice(isel_context *ctx, Temp coords, unsigned idx)
6447 {
6448 Temp coord_vec[3];
6449 for (unsigned i = 0; i < coords.size(); i++)
6450 coord_vec[i] = emit_extract_vector(ctx, coords, i, v1);
6451
6452 Builder bld(ctx->program, ctx->block);
6453 coord_vec[idx] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_vec[idx]);
6454
6455 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
6456 for (unsigned i = 0; i < coords.size(); i++)
6457 vec->operands[i] = Operand(coord_vec[i]);
6458 Temp res = bld.tmp(RegType::vgpr, coords.size());
6459 vec->definitions[0] = Definition(res);
6460 ctx->block->instructions.emplace_back(std::move(vec));
6461 return res;
6462 }
6463
6464 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
6465 {
6466 if (vec->parent_instr->type != nir_instr_type_alu)
6467 return;
6468 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
6469 if (vec_instr->op != nir_op_vec(vec->num_components))
6470 return;
6471
6472 for (unsigned i = 0; i < vec->num_components; i++) {
6473 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
6474 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
6475 }
6476 }
6477
6478 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
6479 {
6480 Builder bld(ctx->program, ctx->block);
6481 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
6482 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
6483 Temp resource, sampler, fmask_ptr, bias = Temp(), coords, compare = Temp(), sample_index = Temp(),
6484 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(), derivs = Temp();
6485 nir_const_value *sample_index_cv = NULL;
6486 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
6487 enum glsl_base_type stype;
6488 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
6489
6490 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
6491 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
6492 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
6493 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
6494
6495 for (unsigned i = 0; i < instr->num_srcs; i++) {
6496 switch (instr->src[i].src_type) {
6497 case nir_tex_src_coord:
6498 coords = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[i].src.ssa));
6499 break;
6500 case nir_tex_src_bias:
6501 if (instr->op == nir_texop_txb) {
6502 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
6503 has_bias = true;
6504 }
6505 break;
6506 case nir_tex_src_lod: {
6507 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
6508
6509 if (val && val->f32 <= 0.0) {
6510 level_zero = true;
6511 } else {
6512 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
6513 has_lod = true;
6514 }
6515 break;
6516 }
6517 case nir_tex_src_comparator:
6518 if (instr->is_shadow) {
6519 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
6520 has_compare = true;
6521 }
6522 break;
6523 case nir_tex_src_offset:
6524 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
6525 get_const_vec(instr->src[i].src.ssa, const_offset);
6526 has_offset = true;
6527 break;
6528 case nir_tex_src_ddx:
6529 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
6530 has_ddx = true;
6531 break;
6532 case nir_tex_src_ddy:
6533 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
6534 has_ddy = true;
6535 break;
6536 case nir_tex_src_ms_index:
6537 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
6538 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
6539 has_sample_index = true;
6540 break;
6541 case nir_tex_src_texture_offset:
6542 case nir_tex_src_sampler_offset:
6543 default:
6544 break;
6545 }
6546 }
6547 // TODO: all other cases: structure taken from ac_nir_to_llvm.c
6548 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
6549 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
6550
6551 if (instr->op == nir_texop_texture_samples) {
6552 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
6553
6554 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
6555 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
6556 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
6557 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
6558
6559 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6560 samples, Operand(1u), bld.scc(is_msaa));
6561 return;
6562 }
6563
6564 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
6565 aco_ptr<Instruction> tmp_instr;
6566 Temp acc, pack = Temp();
6567
6568 uint32_t pack_const = 0;
6569 for (unsigned i = 0; i < offset.size(); i++) {
6570 if (!const_offset[i])
6571 continue;
6572 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
6573 }
6574
6575 if (offset.type() == RegType::sgpr) {
6576 for (unsigned i = 0; i < offset.size(); i++) {
6577 if (const_offset[i])
6578 continue;
6579
6580 acc = emit_extract_vector(ctx, offset, i, s1);
6581 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
6582
6583 if (i) {
6584 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
6585 }
6586
6587 if (pack == Temp()) {
6588 pack = acc;
6589 } else {
6590 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
6591 }
6592 }
6593
6594 if (pack_const && pack != Temp())
6595 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
6596 } else {
6597 for (unsigned i = 0; i < offset.size(); i++) {
6598 if (const_offset[i])
6599 continue;
6600
6601 acc = emit_extract_vector(ctx, offset, i, v1);
6602 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
6603
6604 if (i) {
6605 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
6606 }
6607
6608 if (pack == Temp()) {
6609 pack = acc;
6610 } else {
6611 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
6612 }
6613 }
6614
6615 if (pack_const && pack != Temp())
6616 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
6617 }
6618 if (pack_const && pack == Temp())
6619 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
6620 else if (pack == Temp())
6621 has_offset = false;
6622 else
6623 offset = pack;
6624 }
6625
6626 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
6627 prepare_cube_coords(ctx, &coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
6628
6629 /* pack derivatives */
6630 if (has_ddx || has_ddy) {
6631 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
6632 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4),
6633 ddx, Operand(0u), ddy, Operand(0u));
6634 } else {
6635 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, ddx.size() + ddy.size()), ddx, ddy);
6636 }
6637 has_derivs = true;
6638 }
6639
6640 if (instr->coord_components > 1 &&
6641 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6642 instr->is_array &&
6643 instr->op != nir_texop_txf)
6644 coords = apply_round_slice(ctx, coords, 1);
6645
6646 if (instr->coord_components > 2 &&
6647 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
6648 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
6649 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
6650 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
6651 instr->is_array &&
6652 instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms)
6653 coords = apply_round_slice(ctx, coords, 2);
6654
6655 if (ctx->options->chip_class == GFX9 &&
6656 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6657 instr->op != nir_texop_lod && instr->coord_components) {
6658 assert(coords.size() > 0 && coords.size() < 3);
6659
6660 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size() + 1, 1)};
6661 vec->operands[0] = Operand(emit_extract_vector(ctx, coords, 0, v1));
6662 vec->operands[1] = instr->op == nir_texop_txf ? Operand((uint32_t) 0) : Operand((uint32_t) 0x3f000000);
6663 if (coords.size() > 1)
6664 vec->operands[2] = Operand(emit_extract_vector(ctx, coords, 1, v1));
6665 coords = bld.tmp(RegType::vgpr, coords.size() + 1);
6666 vec->definitions[0] = Definition(coords);
6667 ctx->block->instructions.emplace_back(std::move(vec));
6668 }
6669
6670 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
6671
6672 if (instr->op == nir_texop_samples_identical)
6673 resource = fmask_ptr;
6674
6675 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
6676 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
6677 instr->op != nir_texop_txs) {
6678 assert(has_sample_index);
6679 Operand op(sample_index);
6680 if (sample_index_cv)
6681 op = Operand(sample_index_cv->u32);
6682 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
6683 }
6684
6685 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
6686 Temp split_coords[coords.size()];
6687 emit_split_vector(ctx, coords, coords.size());
6688 for (unsigned i = 0; i < coords.size(); i++)
6689 split_coords[i] = emit_extract_vector(ctx, coords, i, v1);
6690
6691 unsigned i = 0;
6692 for (; i < std::min(offset.size(), instr->coord_components); i++) {
6693 Temp off = emit_extract_vector(ctx, offset, i, v1);
6694 split_coords[i] = bld.vadd32(bld.def(v1), split_coords[i], off);
6695 }
6696
6697 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
6698 for (unsigned i = 0; i < coords.size(); i++)
6699 vec->operands[i] = Operand(split_coords[i]);
6700 coords = bld.tmp(coords.regClass());
6701 vec->definitions[0] = Definition(coords);
6702 ctx->block->instructions.emplace_back(std::move(vec));
6703
6704 has_offset = false;
6705 }
6706
6707 /* Build tex instruction */
6708 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
6709 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
6710 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
6711 : 0;
6712 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6713 Temp tmp_dst = dst;
6714
6715 /* gather4 selects the component by dmask and always returns vec4 */
6716 if (instr->op == nir_texop_tg4) {
6717 assert(instr->dest.ssa.num_components == 4);
6718 if (instr->is_shadow)
6719 dmask = 1;
6720 else
6721 dmask = 1 << instr->component;
6722 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
6723 tmp_dst = bld.tmp(v4);
6724 } else if (instr->op == nir_texop_samples_identical) {
6725 tmp_dst = bld.tmp(v1);
6726 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
6727 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
6728 }
6729
6730 aco_ptr<MIMG_instruction> tex;
6731 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
6732 if (!has_lod)
6733 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6734
6735 bool div_by_6 = instr->op == nir_texop_txs &&
6736 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
6737 instr->is_array &&
6738 (dmask & (1 << 2));
6739 if (tmp_dst.id() == dst.id() && div_by_6)
6740 tmp_dst = bld.tmp(tmp_dst.regClass());
6741
6742 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
6743 tex->operands[0] = Operand(as_vgpr(ctx,lod));
6744 tex->operands[1] = Operand(resource);
6745 if (ctx->options->chip_class == GFX9 &&
6746 instr->op == nir_texop_txs &&
6747 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
6748 instr->is_array) {
6749 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
6750 } else if (instr->op == nir_texop_query_levels) {
6751 tex->dmask = 1 << 3;
6752 } else {
6753 tex->dmask = dmask;
6754 }
6755 tex->da = da;
6756 tex->definitions[0] = Definition(tmp_dst);
6757 tex->dim = dim;
6758 tex->can_reorder = true;
6759 ctx->block->instructions.emplace_back(std::move(tex));
6760
6761 if (div_by_6) {
6762 /* divide 3rd value by 6 by multiplying with magic number */
6763 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
6764 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
6765 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
6766 assert(instr->dest.ssa.num_components == 3);
6767 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
6768 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
6769 emit_extract_vector(ctx, tmp_dst, 0, v1),
6770 emit_extract_vector(ctx, tmp_dst, 1, v1),
6771 by_6);
6772
6773 }
6774
6775 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
6776 return;
6777 }
6778
6779 Temp tg4_compare_cube_wa64 = Temp();
6780
6781 if (tg4_integer_workarounds) {
6782 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
6783 tex->operands[0] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
6784 tex->operands[1] = Operand(resource);
6785 tex->dim = dim;
6786 tex->dmask = 0x3;
6787 tex->da = da;
6788 Temp size = bld.tmp(v2);
6789 tex->definitions[0] = Definition(size);
6790 tex->can_reorder = true;
6791 ctx->block->instructions.emplace_back(std::move(tex));
6792 emit_split_vector(ctx, size, size.size());
6793
6794 Temp half_texel[2];
6795 for (unsigned i = 0; i < 2; i++) {
6796 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
6797 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
6798 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
6799 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
6800 }
6801
6802 Temp orig_coords[2] = {
6803 emit_extract_vector(ctx, coords, 0, v1),
6804 emit_extract_vector(ctx, coords, 1, v1)};
6805 Temp new_coords[2] = {
6806 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[0], half_texel[0]),
6807 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[1], half_texel[1])
6808 };
6809
6810 if (tg4_integer_cube_workaround) {
6811 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
6812 Temp desc[resource.size()];
6813 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
6814 Format::PSEUDO, 1, resource.size())};
6815 split->operands[0] = Operand(resource);
6816 for (unsigned i = 0; i < resource.size(); i++) {
6817 desc[i] = bld.tmp(s1);
6818 split->definitions[i] = Definition(desc[i]);
6819 }
6820 ctx->block->instructions.emplace_back(std::move(split));
6821
6822 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
6823 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
6824 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
6825
6826 Temp nfmt;
6827 if (stype == GLSL_TYPE_UINT) {
6828 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
6829 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
6830 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
6831 bld.scc(compare_cube_wa));
6832 } else {
6833 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
6834 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
6835 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
6836 bld.scc(compare_cube_wa));
6837 }
6838 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
6839 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
6840
6841 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
6842
6843 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
6844 Operand((uint32_t)C_008F14_NUM_FORMAT));
6845 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
6846
6847 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6848 Format::PSEUDO, resource.size(), 1)};
6849 for (unsigned i = 0; i < resource.size(); i++)
6850 vec->operands[i] = Operand(desc[i]);
6851 resource = bld.tmp(resource.regClass());
6852 vec->definitions[0] = Definition(resource);
6853 ctx->block->instructions.emplace_back(std::move(vec));
6854
6855 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6856 new_coords[0], orig_coords[0], tg4_compare_cube_wa64);
6857 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6858 new_coords[1], orig_coords[1], tg4_compare_cube_wa64);
6859 }
6860
6861 if (coords.size() == 3) {
6862 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3),
6863 new_coords[0], new_coords[1],
6864 emit_extract_vector(ctx, coords, 2, v1));
6865 } else {
6866 assert(coords.size() == 2);
6867 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2),
6868 new_coords[0], new_coords[1]);
6869 }
6870 }
6871
6872 std::vector<Operand> args;
6873 if (has_offset)
6874 args.emplace_back(Operand(offset));
6875 if (has_bias)
6876 args.emplace_back(Operand(bias));
6877 if (has_compare)
6878 args.emplace_back(Operand(compare));
6879 if (has_derivs)
6880 args.emplace_back(Operand(derivs));
6881 args.emplace_back(Operand(coords));
6882 if (has_sample_index)
6883 args.emplace_back(Operand(sample_index));
6884 if (has_lod)
6885 args.emplace_back(lod);
6886
6887 Temp arg;
6888 if (args.size() > 1) {
6889 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
6890 unsigned size = 0;
6891 for (unsigned i = 0; i < args.size(); i++) {
6892 size += args[i].size();
6893 vec->operands[i] = args[i];
6894 }
6895 RegClass rc = RegClass(RegType::vgpr, size);
6896 Temp tmp = bld.tmp(rc);
6897 vec->definitions[0] = Definition(tmp);
6898 ctx->block->instructions.emplace_back(std::move(vec));
6899 arg = tmp;
6900 } else {
6901 assert(args[0].isTemp());
6902 arg = as_vgpr(ctx, args[0].getTemp());
6903 }
6904
6905 /* we don't need the bias, sample index, compare value or offset to be
6906 * computed in WQM but if the p_create_vector copies the coordinates, then it
6907 * needs to be in WQM */
6908 if (!(has_ddx && has_ddy) && !has_lod && !level_zero &&
6909 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
6910 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
6911 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
6912
6913 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
6914 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
6915
6916 assert(coords.size() == 1);
6917 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
6918 aco_opcode op;
6919 switch (last_bit) {
6920 case 1:
6921 op = aco_opcode::buffer_load_format_x; break;
6922 case 2:
6923 op = aco_opcode::buffer_load_format_xy; break;
6924 case 3:
6925 op = aco_opcode::buffer_load_format_xyz; break;
6926 case 4:
6927 op = aco_opcode::buffer_load_format_xyzw; break;
6928 default:
6929 unreachable("Tex instruction loads more than 4 components.");
6930 }
6931
6932 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
6933 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
6934 tmp_dst = dst;
6935 else
6936 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
6937
6938 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6939 mubuf->operands[0] = Operand(coords);
6940 mubuf->operands[1] = Operand(resource);
6941 mubuf->operands[2] = Operand((uint32_t) 0);
6942 mubuf->definitions[0] = Definition(tmp_dst);
6943 mubuf->idxen = true;
6944 mubuf->can_reorder = true;
6945 ctx->block->instructions.emplace_back(std::move(mubuf));
6946
6947 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
6948 return;
6949 }
6950
6951
6952 if (instr->op == nir_texop_txf ||
6953 instr->op == nir_texop_txf_ms ||
6954 instr->op == nir_texop_samples_identical) {
6955 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
6956 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 2, 1));
6957 tex->operands[0] = Operand(arg);
6958 tex->operands[1] = Operand(resource);
6959 tex->dim = dim;
6960 tex->dmask = dmask;
6961 tex->unrm = true;
6962 tex->da = da;
6963 tex->definitions[0] = Definition(tmp_dst);
6964 tex->can_reorder = true;
6965 ctx->block->instructions.emplace_back(std::move(tex));
6966
6967 if (instr->op == nir_texop_samples_identical) {
6968 assert(dmask == 1 && dst.regClass() == v1);
6969 assert(dst.id() != tmp_dst.id());
6970
6971 Temp tmp = bld.tmp(bld.lm);
6972 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
6973 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
6974
6975 } else {
6976 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
6977 }
6978 return;
6979 }
6980
6981 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
6982 aco_opcode opcode = aco_opcode::image_sample;
6983 if (has_offset) { /* image_sample_*_o */
6984 if (has_compare) {
6985 opcode = aco_opcode::image_sample_c_o;
6986 if (has_derivs)
6987 opcode = aco_opcode::image_sample_c_d_o;
6988 if (has_bias)
6989 opcode = aco_opcode::image_sample_c_b_o;
6990 if (level_zero)
6991 opcode = aco_opcode::image_sample_c_lz_o;
6992 if (has_lod)
6993 opcode = aco_opcode::image_sample_c_l_o;
6994 } else {
6995 opcode = aco_opcode::image_sample_o;
6996 if (has_derivs)
6997 opcode = aco_opcode::image_sample_d_o;
6998 if (has_bias)
6999 opcode = aco_opcode::image_sample_b_o;
7000 if (level_zero)
7001 opcode = aco_opcode::image_sample_lz_o;
7002 if (has_lod)
7003 opcode = aco_opcode::image_sample_l_o;
7004 }
7005 } else { /* no offset */
7006 if (has_compare) {
7007 opcode = aco_opcode::image_sample_c;
7008 if (has_derivs)
7009 opcode = aco_opcode::image_sample_c_d;
7010 if (has_bias)
7011 opcode = aco_opcode::image_sample_c_b;
7012 if (level_zero)
7013 opcode = aco_opcode::image_sample_c_lz;
7014 if (has_lod)
7015 opcode = aco_opcode::image_sample_c_l;
7016 } else {
7017 opcode = aco_opcode::image_sample;
7018 if (has_derivs)
7019 opcode = aco_opcode::image_sample_d;
7020 if (has_bias)
7021 opcode = aco_opcode::image_sample_b;
7022 if (level_zero)
7023 opcode = aco_opcode::image_sample_lz;
7024 if (has_lod)
7025 opcode = aco_opcode::image_sample_l;
7026 }
7027 }
7028
7029 if (instr->op == nir_texop_tg4) {
7030 if (has_offset) {
7031 opcode = aco_opcode::image_gather4_lz_o;
7032 if (has_compare)
7033 opcode = aco_opcode::image_gather4_c_lz_o;
7034 } else {
7035 opcode = aco_opcode::image_gather4_lz;
7036 if (has_compare)
7037 opcode = aco_opcode::image_gather4_c_lz;
7038 }
7039 } else if (instr->op == nir_texop_lod) {
7040 opcode = aco_opcode::image_get_lod;
7041 }
7042
7043 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
7044 tex->operands[0] = Operand(arg);
7045 tex->operands[1] = Operand(resource);
7046 tex->operands[2] = Operand(sampler);
7047 tex->dim = dim;
7048 tex->dmask = dmask;
7049 tex->da = da;
7050 tex->definitions[0] = Definition(tmp_dst);
7051 tex->can_reorder = true;
7052 ctx->block->instructions.emplace_back(std::move(tex));
7053
7054 if (tg4_integer_cube_workaround) {
7055 assert(tmp_dst.id() != dst.id());
7056 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
7057
7058 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7059 Temp val[4];
7060 for (unsigned i = 0; i < dst.size(); i++) {
7061 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
7062 Temp cvt_val;
7063 if (stype == GLSL_TYPE_UINT)
7064 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
7065 else
7066 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
7067 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
7068 }
7069 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
7070 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7071 val[0], val[1], val[2], val[3]);
7072 }
7073 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
7074 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
7075
7076 }
7077
7078
7079 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
7080 {
7081 Temp tmp = get_ssa_temp(ctx, ssa);
7082 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
7083 return Operand(tmp.regClass());
7084 else
7085 return Operand(tmp);
7086 }
7087
7088 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
7089 {
7090 aco_ptr<Pseudo_instruction> phi;
7091 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7092 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
7093
7094 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
7095 logical |= ctx->block->kind & block_kind_merge;
7096 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
7097
7098 /* we want a sorted list of sources, since the predecessor list is also sorted */
7099 std::map<unsigned, nir_ssa_def*> phi_src;
7100 nir_foreach_phi_src(src, instr)
7101 phi_src[src->pred->index] = src->src.ssa;
7102
7103 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
7104 unsigned num_operands = 0;
7105 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
7106 unsigned num_defined = 0;
7107 unsigned cur_pred_idx = 0;
7108 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
7109 if (cur_pred_idx < preds.size()) {
7110 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
7111 unsigned block = ctx->cf_info.nir_to_aco[src.first];
7112 unsigned skipped = 0;
7113 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
7114 skipped++;
7115 if (cur_pred_idx + skipped < preds.size()) {
7116 for (unsigned i = 0; i < skipped; i++)
7117 operands[num_operands++] = Operand(dst.regClass());
7118 cur_pred_idx += skipped;
7119 } else {
7120 continue;
7121 }
7122 }
7123 cur_pred_idx++;
7124 Operand op = get_phi_operand(ctx, src.second);
7125 operands[num_operands++] = op;
7126 num_defined += !op.isUndefined();
7127 }
7128 /* handle block_kind_continue_or_break at loop exit blocks */
7129 while (cur_pred_idx++ < preds.size())
7130 operands[num_operands++] = Operand(dst.regClass());
7131
7132 if (num_defined == 0) {
7133 Builder bld(ctx->program, ctx->block);
7134 if (dst.regClass() == s1) {
7135 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
7136 } else if (dst.regClass() == v1) {
7137 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
7138 } else {
7139 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7140 for (unsigned i = 0; i < dst.size(); i++)
7141 vec->operands[i] = Operand(0u);
7142 vec->definitions[0] = Definition(dst);
7143 ctx->block->instructions.emplace_back(std::move(vec));
7144 }
7145 return;
7146 }
7147
7148 /* we can use a linear phi in some cases if one src is undef */
7149 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
7150 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
7151
7152 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
7153 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
7154 assert(invert->kind & block_kind_invert);
7155
7156 unsigned then_block = invert->linear_preds[0];
7157
7158 Block* insert_block = NULL;
7159 for (unsigned i = 0; i < num_operands; i++) {
7160 Operand op = operands[i];
7161 if (op.isUndefined())
7162 continue;
7163 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
7164 phi->operands[0] = op;
7165 break;
7166 }
7167 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
7168 phi->operands[1] = Operand(dst.regClass());
7169 phi->definitions[0] = Definition(dst);
7170 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
7171 return;
7172 }
7173
7174 /* try to scalarize vector phis */
7175 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
7176 // TODO: scalarize linear phis on divergent ifs
7177 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
7178 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
7179 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
7180 Operand src = operands[i];
7181 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
7182 can_scalarize = false;
7183 }
7184 if (can_scalarize) {
7185 unsigned num_components = instr->dest.ssa.num_components;
7186 assert(dst.size() % num_components == 0);
7187 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
7188
7189 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
7190 for (unsigned k = 0; k < num_components; k++) {
7191 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7192 for (unsigned i = 0; i < num_operands; i++) {
7193 Operand src = operands[i];
7194 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
7195 }
7196 Temp phi_dst = {ctx->program->allocateId(), rc};
7197 phi->definitions[0] = Definition(phi_dst);
7198 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7199 new_vec[k] = phi_dst;
7200 vec->operands[k] = Operand(phi_dst);
7201 }
7202 vec->definitions[0] = Definition(dst);
7203 ctx->block->instructions.emplace_back(std::move(vec));
7204 ctx->allocated_vec.emplace(dst.id(), new_vec);
7205 return;
7206 }
7207 }
7208
7209 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7210 for (unsigned i = 0; i < num_operands; i++)
7211 phi->operands[i] = operands[i];
7212 phi->definitions[0] = Definition(dst);
7213 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7214 }
7215
7216
7217 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
7218 {
7219 Temp dst = get_ssa_temp(ctx, &instr->def);
7220
7221 assert(dst.type() == RegType::sgpr);
7222
7223 if (dst.size() == 1) {
7224 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
7225 } else {
7226 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7227 for (unsigned i = 0; i < dst.size(); i++)
7228 vec->operands[i] = Operand(0u);
7229 vec->definitions[0] = Definition(dst);
7230 ctx->block->instructions.emplace_back(std::move(vec));
7231 }
7232 }
7233
7234 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
7235 {
7236 Builder bld(ctx->program, ctx->block);
7237 Block *logical_target;
7238 append_logical_end(ctx->block);
7239 unsigned idx = ctx->block->index;
7240
7241 switch (instr->type) {
7242 case nir_jump_break:
7243 logical_target = ctx->cf_info.parent_loop.exit;
7244 add_logical_edge(idx, logical_target);
7245 ctx->block->kind |= block_kind_break;
7246
7247 if (!ctx->cf_info.parent_if.is_divergent &&
7248 !ctx->cf_info.parent_loop.has_divergent_continue) {
7249 /* uniform break - directly jump out of the loop */
7250 ctx->block->kind |= block_kind_uniform;
7251 ctx->cf_info.has_branch = true;
7252 bld.branch(aco_opcode::p_branch);
7253 add_linear_edge(idx, logical_target);
7254 return;
7255 }
7256 ctx->cf_info.parent_loop.has_divergent_branch = true;
7257 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7258 break;
7259 case nir_jump_continue:
7260 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7261 add_logical_edge(idx, logical_target);
7262 ctx->block->kind |= block_kind_continue;
7263
7264 if (ctx->cf_info.parent_if.is_divergent) {
7265 /* for potential uniform breaks after this continue,
7266 we must ensure that they are handled correctly */
7267 ctx->cf_info.parent_loop.has_divergent_continue = true;
7268 ctx->cf_info.parent_loop.has_divergent_branch = true;
7269 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7270 } else {
7271 /* uniform continue - directly jump to the loop header */
7272 ctx->block->kind |= block_kind_uniform;
7273 ctx->cf_info.has_branch = true;
7274 bld.branch(aco_opcode::p_branch);
7275 add_linear_edge(idx, logical_target);
7276 return;
7277 }
7278 break;
7279 default:
7280 fprintf(stderr, "Unknown NIR jump instr: ");
7281 nir_print_instr(&instr->instr, stderr);
7282 fprintf(stderr, "\n");
7283 abort();
7284 }
7285
7286 /* remove critical edges from linear CFG */
7287 bld.branch(aco_opcode::p_branch);
7288 Block* break_block = ctx->program->create_and_insert_block();
7289 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7290 break_block->kind |= block_kind_uniform;
7291 add_linear_edge(idx, break_block);
7292 /* the loop_header pointer might be invalidated by this point */
7293 if (instr->type == nir_jump_continue)
7294 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7295 add_linear_edge(break_block->index, logical_target);
7296 bld.reset(break_block);
7297 bld.branch(aco_opcode::p_branch);
7298
7299 Block* continue_block = ctx->program->create_and_insert_block();
7300 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7301 add_linear_edge(idx, continue_block);
7302 append_logical_start(continue_block);
7303 ctx->block = continue_block;
7304 return;
7305 }
7306
7307 void visit_block(isel_context *ctx, nir_block *block)
7308 {
7309 nir_foreach_instr(instr, block) {
7310 switch (instr->type) {
7311 case nir_instr_type_alu:
7312 visit_alu_instr(ctx, nir_instr_as_alu(instr));
7313 break;
7314 case nir_instr_type_load_const:
7315 visit_load_const(ctx, nir_instr_as_load_const(instr));
7316 break;
7317 case nir_instr_type_intrinsic:
7318 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
7319 break;
7320 case nir_instr_type_tex:
7321 visit_tex(ctx, nir_instr_as_tex(instr));
7322 break;
7323 case nir_instr_type_phi:
7324 visit_phi(ctx, nir_instr_as_phi(instr));
7325 break;
7326 case nir_instr_type_ssa_undef:
7327 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
7328 break;
7329 case nir_instr_type_deref:
7330 break;
7331 case nir_instr_type_jump:
7332 visit_jump(ctx, nir_instr_as_jump(instr));
7333 break;
7334 default:
7335 fprintf(stderr, "Unknown NIR instr type: ");
7336 nir_print_instr(instr, stderr);
7337 fprintf(stderr, "\n");
7338 //abort();
7339 }
7340 }
7341
7342 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7343 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
7344 }
7345
7346
7347
7348 static void visit_loop(isel_context *ctx, nir_loop *loop)
7349 {
7350 append_logical_end(ctx->block);
7351 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
7352 Builder bld(ctx->program, ctx->block);
7353 bld.branch(aco_opcode::p_branch);
7354 unsigned loop_preheader_idx = ctx->block->index;
7355
7356 Block loop_exit = Block();
7357 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7358 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
7359
7360 Block* loop_header = ctx->program->create_and_insert_block();
7361 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
7362 loop_header->kind |= block_kind_loop_header;
7363 add_edge(loop_preheader_idx, loop_header);
7364 ctx->block = loop_header;
7365
7366 /* emit loop body */
7367 unsigned loop_header_idx = loop_header->index;
7368 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
7369 append_logical_start(ctx->block);
7370 visit_cf_list(ctx, &loop->body);
7371
7372 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
7373 if (!ctx->cf_info.has_branch) {
7374 append_logical_end(ctx->block);
7375 if (ctx->cf_info.exec_potentially_empty) {
7376 /* Discards can result in code running with an empty exec mask.
7377 * This would result in divergent breaks not ever being taken. As a
7378 * workaround, break the loop when the loop mask is empty instead of
7379 * always continuing. */
7380 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
7381 unsigned block_idx = ctx->block->index;
7382
7383 /* create helper blocks to avoid critical edges */
7384 Block *break_block = ctx->program->create_and_insert_block();
7385 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7386 break_block->kind = block_kind_uniform;
7387 bld.reset(break_block);
7388 bld.branch(aco_opcode::p_branch);
7389 add_linear_edge(block_idx, break_block);
7390 add_linear_edge(break_block->index, &loop_exit);
7391
7392 Block *continue_block = ctx->program->create_and_insert_block();
7393 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7394 continue_block->kind = block_kind_uniform;
7395 bld.reset(continue_block);
7396 bld.branch(aco_opcode::p_branch);
7397 add_linear_edge(block_idx, continue_block);
7398 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
7399
7400 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
7401 ctx->block = &ctx->program->blocks[block_idx];
7402 } else {
7403 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
7404 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7405 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
7406 else
7407 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
7408 }
7409
7410 bld.reset(ctx->block);
7411 bld.branch(aco_opcode::p_branch);
7412 }
7413
7414 /* fixup phis in loop header from unreachable blocks */
7415 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
7416 bool linear = ctx->cf_info.has_branch;
7417 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
7418 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
7419 if ((logical && instr->opcode == aco_opcode::p_phi) ||
7420 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
7421 /* the last operand should be the one that needs to be removed */
7422 instr->operands.pop_back();
7423 } else if (!is_phi(instr)) {
7424 break;
7425 }
7426 }
7427 }
7428
7429 ctx->cf_info.has_branch = false;
7430
7431 // TODO: if the loop has not a single exit, we must add one °°
7432 /* emit loop successor block */
7433 ctx->block = ctx->program->insert_block(std::move(loop_exit));
7434 append_logical_start(ctx->block);
7435
7436 #if 0
7437 // TODO: check if it is beneficial to not branch on continues
7438 /* trim linear phis in loop header */
7439 for (auto&& instr : loop_entry->instructions) {
7440 if (instr->opcode == aco_opcode::p_linear_phi) {
7441 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
7442 new_phi->definitions[0] = instr->definitions[0];
7443 for (unsigned i = 0; i < new_phi->operands.size(); i++)
7444 new_phi->operands[i] = instr->operands[i];
7445 /* check that the remaining operands are all the same */
7446 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
7447 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
7448 instr.swap(new_phi);
7449 } else if (instr->opcode == aco_opcode::p_phi) {
7450 continue;
7451 } else {
7452 break;
7453 }
7454 }
7455 #endif
7456 }
7457
7458 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
7459 {
7460 ic->cond = cond;
7461
7462 append_logical_end(ctx->block);
7463 ctx->block->kind |= block_kind_branch;
7464
7465 /* branch to linear then block */
7466 assert(cond.regClass() == ctx->program->lane_mask);
7467 aco_ptr<Pseudo_branch_instruction> branch;
7468 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
7469 branch->operands[0] = Operand(cond);
7470 ctx->block->instructions.push_back(std::move(branch));
7471
7472 ic->BB_if_idx = ctx->block->index;
7473 ic->BB_invert = Block();
7474 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7475 /* Invert blocks are intentionally not marked as top level because they
7476 * are not part of the logical cfg. */
7477 ic->BB_invert.kind |= block_kind_invert;
7478 ic->BB_endif = Block();
7479 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7480 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
7481
7482 ic->exec_potentially_empty_old = ctx->cf_info.exec_potentially_empty;
7483 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
7484 ctx->cf_info.parent_if.is_divergent = true;
7485 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
7486
7487 /** emit logical then block */
7488 Block* BB_then_logical = ctx->program->create_and_insert_block();
7489 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7490 add_edge(ic->BB_if_idx, BB_then_logical);
7491 ctx->block = BB_then_logical;
7492 append_logical_start(BB_then_logical);
7493 }
7494
7495 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
7496 {
7497 Block *BB_then_logical = ctx->block;
7498 append_logical_end(BB_then_logical);
7499 /* branch from logical then block to invert block */
7500 aco_ptr<Pseudo_branch_instruction> branch;
7501 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7502 BB_then_logical->instructions.emplace_back(std::move(branch));
7503 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
7504 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7505 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
7506 BB_then_logical->kind |= block_kind_uniform;
7507 assert(!ctx->cf_info.has_branch);
7508 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
7509 ctx->cf_info.parent_loop.has_divergent_branch = false;
7510
7511 /** emit linear then block */
7512 Block* BB_then_linear = ctx->program->create_and_insert_block();
7513 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7514 BB_then_linear->kind |= block_kind_uniform;
7515 add_linear_edge(ic->BB_if_idx, BB_then_linear);
7516 /* branch from linear then block to invert block */
7517 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7518 BB_then_linear->instructions.emplace_back(std::move(branch));
7519 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
7520
7521 /** emit invert merge block */
7522 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
7523 ic->invert_idx = ctx->block->index;
7524
7525 /* branch to linear else block (skip else) */
7526 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
7527 branch->operands[0] = Operand(ic->cond);
7528 ctx->block->instructions.push_back(std::move(branch));
7529
7530 ic->exec_potentially_empty_old |= ctx->cf_info.exec_potentially_empty;
7531 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
7532
7533 /** emit logical else block */
7534 Block* BB_else_logical = ctx->program->create_and_insert_block();
7535 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7536 add_logical_edge(ic->BB_if_idx, BB_else_logical);
7537 add_linear_edge(ic->invert_idx, BB_else_logical);
7538 ctx->block = BB_else_logical;
7539 append_logical_start(BB_else_logical);
7540 }
7541
7542 static void end_divergent_if(isel_context *ctx, if_context *ic)
7543 {
7544 Block *BB_else_logical = ctx->block;
7545 append_logical_end(BB_else_logical);
7546
7547 /* branch from logical else block to endif block */
7548 aco_ptr<Pseudo_branch_instruction> branch;
7549 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7550 BB_else_logical->instructions.emplace_back(std::move(branch));
7551 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
7552 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7553 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
7554 BB_else_logical->kind |= block_kind_uniform;
7555
7556 assert(!ctx->cf_info.has_branch);
7557 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
7558
7559
7560 /** emit linear else block */
7561 Block* BB_else_linear = ctx->program->create_and_insert_block();
7562 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7563 BB_else_linear->kind |= block_kind_uniform;
7564 add_linear_edge(ic->invert_idx, BB_else_linear);
7565
7566 /* branch from linear else block to endif block */
7567 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7568 BB_else_linear->instructions.emplace_back(std::move(branch));
7569 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
7570
7571
7572 /** emit endif merge block */
7573 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
7574 append_logical_start(ctx->block);
7575
7576
7577 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
7578 ctx->cf_info.exec_potentially_empty |= ic->exec_potentially_empty_old;
7579 /* uniform control flow never has an empty exec-mask */
7580 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
7581 ctx->cf_info.exec_potentially_empty = false;
7582 }
7583
7584 static void visit_if(isel_context *ctx, nir_if *if_stmt)
7585 {
7586 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
7587 Builder bld(ctx->program, ctx->block);
7588 aco_ptr<Pseudo_branch_instruction> branch;
7589
7590 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
7591 /**
7592 * Uniform conditionals are represented in the following way*) :
7593 *
7594 * The linear and logical CFG:
7595 * BB_IF
7596 * / \
7597 * BB_THEN (logical) BB_ELSE (logical)
7598 * \ /
7599 * BB_ENDIF
7600 *
7601 * *) Exceptions may be due to break and continue statements within loops
7602 * If a break/continue happens within uniform control flow, it branches
7603 * to the loop exit/entry block. Otherwise, it branches to the next
7604 * merge block.
7605 **/
7606 append_logical_end(ctx->block);
7607 ctx->block->kind |= block_kind_uniform;
7608
7609 /* emit branch */
7610 assert(cond.regClass() == bld.lm);
7611 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
7612 cond = bool_to_scalar_condition(ctx, cond);
7613
7614 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
7615 branch->operands[0] = Operand(cond);
7616 branch->operands[0].setFixed(scc);
7617 ctx->block->instructions.emplace_back(std::move(branch));
7618
7619 unsigned BB_if_idx = ctx->block->index;
7620 Block BB_endif = Block();
7621 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7622 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
7623
7624 /** emit then block */
7625 Block* BB_then = ctx->program->create_and_insert_block();
7626 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7627 add_edge(BB_if_idx, BB_then);
7628 append_logical_start(BB_then);
7629 ctx->block = BB_then;
7630 visit_cf_list(ctx, &if_stmt->then_list);
7631 BB_then = ctx->block;
7632 bool then_branch = ctx->cf_info.has_branch;
7633 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
7634
7635 if (!then_branch) {
7636 append_logical_end(BB_then);
7637 /* branch from then block to endif block */
7638 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7639 BB_then->instructions.emplace_back(std::move(branch));
7640 add_linear_edge(BB_then->index, &BB_endif);
7641 if (!then_branch_divergent)
7642 add_logical_edge(BB_then->index, &BB_endif);
7643 BB_then->kind |= block_kind_uniform;
7644 }
7645
7646 ctx->cf_info.has_branch = false;
7647 ctx->cf_info.parent_loop.has_divergent_branch = false;
7648
7649 /** emit else block */
7650 Block* BB_else = ctx->program->create_and_insert_block();
7651 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7652 add_edge(BB_if_idx, BB_else);
7653 append_logical_start(BB_else);
7654 ctx->block = BB_else;
7655 visit_cf_list(ctx, &if_stmt->else_list);
7656 BB_else = ctx->block;
7657
7658 if (!ctx->cf_info.has_branch) {
7659 append_logical_end(BB_else);
7660 /* branch from then block to endif block */
7661 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7662 BB_else->instructions.emplace_back(std::move(branch));
7663 add_linear_edge(BB_else->index, &BB_endif);
7664 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7665 add_logical_edge(BB_else->index, &BB_endif);
7666 BB_else->kind |= block_kind_uniform;
7667 }
7668
7669 ctx->cf_info.has_branch &= then_branch;
7670 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
7671
7672 /** emit endif merge block */
7673 if (!ctx->cf_info.has_branch) {
7674 ctx->block = ctx->program->insert_block(std::move(BB_endif));
7675 append_logical_start(ctx->block);
7676 }
7677 } else { /* non-uniform condition */
7678 /**
7679 * To maintain a logical and linear CFG without critical edges,
7680 * non-uniform conditionals are represented in the following way*) :
7681 *
7682 * The linear CFG:
7683 * BB_IF
7684 * / \
7685 * BB_THEN (logical) BB_THEN (linear)
7686 * \ /
7687 * BB_INVERT (linear)
7688 * / \
7689 * BB_ELSE (logical) BB_ELSE (linear)
7690 * \ /
7691 * BB_ENDIF
7692 *
7693 * The logical CFG:
7694 * BB_IF
7695 * / \
7696 * BB_THEN (logical) BB_ELSE (logical)
7697 * \ /
7698 * BB_ENDIF
7699 *
7700 * *) Exceptions may be due to break and continue statements within loops
7701 **/
7702
7703 if_context ic;
7704
7705 begin_divergent_if_then(ctx, &ic, cond);
7706 visit_cf_list(ctx, &if_stmt->then_list);
7707
7708 begin_divergent_if_else(ctx, &ic);
7709 visit_cf_list(ctx, &if_stmt->else_list);
7710
7711 end_divergent_if(ctx, &ic);
7712 }
7713 }
7714
7715 static void visit_cf_list(isel_context *ctx,
7716 struct exec_list *list)
7717 {
7718 foreach_list_typed(nir_cf_node, node, node, list) {
7719 switch (node->type) {
7720 case nir_cf_node_block:
7721 visit_block(ctx, nir_cf_node_as_block(node));
7722 break;
7723 case nir_cf_node_if:
7724 visit_if(ctx, nir_cf_node_as_if(node));
7725 break;
7726 case nir_cf_node_loop:
7727 visit_loop(ctx, nir_cf_node_as_loop(node));
7728 break;
7729 default:
7730 unreachable("unimplemented cf list type");
7731 }
7732 }
7733 }
7734
7735 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
7736 {
7737 int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
7738 uint64_t mask = ctx->vs_output.mask[slot];
7739 if (!is_pos && !mask)
7740 return;
7741 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
7742 return;
7743 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
7744 exp->enabled_mask = mask;
7745 for (unsigned i = 0; i < 4; ++i) {
7746 if (mask & (1 << i))
7747 exp->operands[i] = Operand(ctx->vs_output.outputs[slot][i]);
7748 else
7749 exp->operands[i] = Operand(v1);
7750 }
7751 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
7752 * Setting valid_mask=1 prevents it and has no other effect.
7753 */
7754 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
7755 exp->done = false;
7756 exp->compressed = false;
7757 if (is_pos)
7758 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
7759 else
7760 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
7761 ctx->block->instructions.emplace_back(std::move(exp));
7762 }
7763
7764 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
7765 {
7766 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
7767 exp->enabled_mask = 0;
7768 for (unsigned i = 0; i < 4; ++i)
7769 exp->operands[i] = Operand(v1);
7770 if (ctx->vs_output.mask[VARYING_SLOT_PSIZ]) {
7771 exp->operands[0] = Operand(ctx->vs_output.outputs[VARYING_SLOT_PSIZ][0]);
7772 exp->enabled_mask |= 0x1;
7773 }
7774 if (ctx->vs_output.mask[VARYING_SLOT_LAYER]) {
7775 exp->operands[2] = Operand(ctx->vs_output.outputs[VARYING_SLOT_LAYER][0]);
7776 exp->enabled_mask |= 0x4;
7777 }
7778 if (ctx->vs_output.mask[VARYING_SLOT_VIEWPORT]) {
7779 if (ctx->options->chip_class < GFX9) {
7780 exp->operands[3] = Operand(ctx->vs_output.outputs[VARYING_SLOT_VIEWPORT][0]);
7781 exp->enabled_mask |= 0x8;
7782 } else {
7783 Builder bld(ctx->program, ctx->block);
7784
7785 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
7786 Operand(ctx->vs_output.outputs[VARYING_SLOT_VIEWPORT][0]));
7787 if (exp->operands[2].isTemp())
7788 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
7789
7790 exp->operands[2] = Operand(out);
7791 exp->enabled_mask |= 0x4;
7792 }
7793 }
7794 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
7795 exp->done = false;
7796 exp->compressed = false;
7797 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
7798 ctx->block->instructions.emplace_back(std::move(exp));
7799 }
7800
7801 static void create_vs_exports(isel_context *ctx)
7802 {
7803 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
7804
7805 if (outinfo->export_prim_id) {
7806 ctx->vs_output.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
7807 ctx->vs_output.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
7808 }
7809
7810 if (ctx->options->key.has_multiview_view_index) {
7811 ctx->vs_output.mask[VARYING_SLOT_LAYER] |= 0x1;
7812 ctx->vs_output.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
7813 }
7814
7815 /* the order these position exports are created is important */
7816 int next_pos = 0;
7817 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
7818 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
7819 export_vs_psiz_layer_viewport(ctx, &next_pos);
7820 }
7821 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
7822 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
7823 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
7824 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
7825
7826 if (ctx->options->key.vs_common_out.export_clip_dists) {
7827 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
7828 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
7829 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
7830 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
7831 }
7832
7833 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
7834 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
7835 i != VARYING_SLOT_PRIMITIVE_ID)
7836 continue;
7837
7838 export_vs_varying(ctx, i, false, NULL);
7839 }
7840 }
7841
7842 static void emit_stream_output(isel_context *ctx,
7843 Temp const *so_buffers,
7844 Temp const *so_write_offset,
7845 const struct radv_stream_output *output)
7846 {
7847 unsigned num_comps = util_bitcount(output->component_mask);
7848 unsigned writemask = (1 << num_comps) - 1;
7849 unsigned loc = output->location;
7850 unsigned buf = output->buffer;
7851
7852 assert(num_comps && num_comps <= 4);
7853 if (!num_comps || num_comps > 4)
7854 return;
7855
7856 unsigned start = ffs(output->component_mask) - 1;
7857
7858 Temp out[4];
7859 bool all_undef = true;
7860 assert(ctx->stage == vertex_vs);
7861 for (unsigned i = 0; i < num_comps; i++) {
7862 out[i] = ctx->vs_output.outputs[loc][start + i];
7863 all_undef = all_undef && !out[i].id();
7864 }
7865 if (all_undef)
7866 return;
7867
7868 while (writemask) {
7869 int start, count;
7870 u_bit_scan_consecutive_range(&writemask, &start, &count);
7871 if (count == 3 && ctx->options->chip_class == GFX6) {
7872 /* GFX6 doesn't support storing vec3, split it. */
7873 writemask |= 1u << (start + 2);
7874 count = 2;
7875 }
7876
7877 unsigned offset = output->offset + start * 4;
7878
7879 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
7880 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
7881 for (int i = 0; i < count; ++i)
7882 vec->operands[i] = (ctx->vs_output.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
7883 vec->definitions[0] = Definition(write_data);
7884 ctx->block->instructions.emplace_back(std::move(vec));
7885
7886 aco_opcode opcode;
7887 switch (count) {
7888 case 1:
7889 opcode = aco_opcode::buffer_store_dword;
7890 break;
7891 case 2:
7892 opcode = aco_opcode::buffer_store_dwordx2;
7893 break;
7894 case 3:
7895 opcode = aco_opcode::buffer_store_dwordx3;
7896 break;
7897 case 4:
7898 opcode = aco_opcode::buffer_store_dwordx4;
7899 break;
7900 }
7901
7902 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
7903 store->operands[0] = Operand(so_write_offset[buf]);
7904 store->operands[1] = Operand(so_buffers[buf]);
7905 store->operands[2] = Operand((uint32_t) 0);
7906 store->operands[3] = Operand(write_data);
7907 if (offset > 4095) {
7908 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
7909 Builder bld(ctx->program, ctx->block);
7910 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
7911 } else {
7912 store->offset = offset;
7913 }
7914 store->offen = true;
7915 store->glc = true;
7916 store->dlc = false;
7917 store->slc = true;
7918 store->can_reorder = true;
7919 ctx->block->instructions.emplace_back(std::move(store));
7920 }
7921 }
7922
7923 static void emit_streamout(isel_context *ctx, unsigned stream)
7924 {
7925 Builder bld(ctx->program, ctx->block);
7926
7927 Temp so_buffers[4];
7928 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
7929 for (unsigned i = 0; i < 4; i++) {
7930 unsigned stride = ctx->program->info->so.strides[i];
7931 if (!stride)
7932 continue;
7933
7934 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, Operand(i * 16u));
7935 }
7936
7937 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7938 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
7939
7940 Temp tid = emit_mbcnt(ctx, bld.def(v1));
7941
7942 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
7943
7944 if_context ic;
7945 begin_divergent_if_then(ctx, &ic, can_emit);
7946
7947 bld.reset(ctx->block);
7948
7949 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
7950
7951 Temp so_write_offset[4];
7952
7953 for (unsigned i = 0; i < 4; i++) {
7954 unsigned stride = ctx->program->info->so.strides[i];
7955 if (!stride)
7956 continue;
7957
7958 if (stride == 1) {
7959 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
7960 get_arg(ctx, ctx->args->streamout_write_idx),
7961 get_arg(ctx, ctx->args->streamout_offset[i]));
7962 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
7963
7964 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
7965 } else {
7966 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
7967 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
7968 get_arg(ctx, ctx->args->streamout_offset[i]));
7969 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
7970 }
7971 }
7972
7973 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
7974 struct radv_stream_output *output =
7975 &ctx->program->info->so.outputs[i];
7976 if (stream != output->stream)
7977 continue;
7978
7979 emit_stream_output(ctx, so_buffers, so_write_offset, output);
7980 }
7981
7982 begin_divergent_if_else(ctx, &ic);
7983 end_divergent_if(ctx, &ic);
7984 }
7985
7986 } /* end namespace */
7987
7988 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
7989 {
7990 /* Split all arguments except for the first (ring_offsets) and the last
7991 * (exec) so that the dead channels don't stay live throughout the program.
7992 */
7993 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
7994 if (startpgm->definitions[i].regClass().size() > 1) {
7995 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
7996 startpgm->definitions[i].regClass().size());
7997 }
7998 }
7999 }
8000
8001 void handle_bc_optimize(isel_context *ctx)
8002 {
8003 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
8004 Builder bld(ctx->program, ctx->block);
8005 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
8006 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
8007 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
8008 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
8009 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
8010 if (uses_center && uses_centroid) {
8011 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
8012 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
8013
8014 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
8015 Temp new_coord[2];
8016 for (unsigned i = 0; i < 2; i++) {
8017 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
8018 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
8019 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8020 persp_centroid, persp_center, sel);
8021 }
8022 ctx->persp_centroid = bld.tmp(v2);
8023 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
8024 Operand(new_coord[0]), Operand(new_coord[1]));
8025 emit_split_vector(ctx, ctx->persp_centroid, 2);
8026 }
8027
8028 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
8029 Temp new_coord[2];
8030 for (unsigned i = 0; i < 2; i++) {
8031 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
8032 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
8033 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8034 linear_centroid, linear_center, sel);
8035 }
8036 ctx->linear_centroid = bld.tmp(v2);
8037 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
8038 Operand(new_coord[0]), Operand(new_coord[1]));
8039 emit_split_vector(ctx, ctx->linear_centroid, 2);
8040 }
8041 }
8042 }
8043
8044 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
8045 {
8046 Program *program = ctx->program;
8047
8048 unsigned float_controls = shader->info.float_controls_execution_mode;
8049
8050 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
8051 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
8052 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
8053 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
8054 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
8055
8056 program->next_fp_mode.must_flush_denorms32 =
8057 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
8058 program->next_fp_mode.must_flush_denorms16_64 =
8059 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
8060 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
8061
8062 program->next_fp_mode.care_about_round32 =
8063 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
8064
8065 program->next_fp_mode.care_about_round16_64 =
8066 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
8067 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
8068
8069 /* default to preserving fp16 and fp64 denorms, since it's free */
8070 if (program->next_fp_mode.must_flush_denorms16_64)
8071 program->next_fp_mode.denorm16_64 = 0;
8072 else
8073 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
8074
8075 /* preserving fp32 denorms is expensive, so only do it if asked */
8076 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
8077 program->next_fp_mode.denorm32 = fp_denorm_keep;
8078 else
8079 program->next_fp_mode.denorm32 = 0;
8080
8081 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
8082 program->next_fp_mode.round32 = fp_round_tz;
8083 else
8084 program->next_fp_mode.round32 = fp_round_ne;
8085
8086 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
8087 program->next_fp_mode.round16_64 = fp_round_tz;
8088 else
8089 program->next_fp_mode.round16_64 = fp_round_ne;
8090
8091 ctx->block->fp_mode = program->next_fp_mode;
8092 }
8093
8094 void select_program(Program *program,
8095 unsigned shader_count,
8096 struct nir_shader *const *shaders,
8097 ac_shader_config* config,
8098 struct radv_shader_args *args)
8099 {
8100 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args);
8101
8102 for (unsigned i = 0; i < shader_count; i++) {
8103 nir_shader *nir = shaders[i];
8104 init_context(&ctx, nir);
8105
8106 setup_fp_mode(&ctx, nir);
8107
8108 if (!i) {
8109 /* needs to be after init_context() for FS */
8110 Pseudo_instruction *startpgm = add_startpgm(&ctx);
8111 append_logical_start(ctx.block);
8112 split_arguments(&ctx, startpgm);
8113 }
8114
8115 if_context ic;
8116 if (shader_count >= 2) {
8117 Builder bld(ctx.program, ctx.block);
8118 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), ctx.merged_wave_info, Operand((8u << 16) | (i * 8u)));
8119 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
8120 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
8121
8122 begin_divergent_if_then(&ctx, &ic, cond);
8123 }
8124
8125 if (i) {
8126 Builder bld(ctx.program, ctx.block);
8127 bld.barrier(aco_opcode::p_memory_barrier_shared); //TODO: different barriers are needed for different stages
8128 bld.sopp(aco_opcode::s_barrier);
8129 }
8130
8131 if (ctx.stage == fragment_fs)
8132 handle_bc_optimize(&ctx);
8133
8134 nir_function_impl *func = nir_shader_get_entrypoint(nir);
8135 visit_cf_list(&ctx, &func->body);
8136
8137 if (ctx.program->info->so.num_outputs/*&& !ctx->is_gs_copy_shader */)
8138 emit_streamout(&ctx, 0);
8139
8140 if (ctx.stage == vertex_vs)
8141 create_vs_exports(&ctx);
8142
8143 if (shader_count >= 2) {
8144 begin_divergent_if_else(&ctx, &ic);
8145 end_divergent_if(&ctx, &ic);
8146 }
8147
8148 ralloc_free(ctx.divergent_vals);
8149 }
8150
8151 program->config->float_mode = program->blocks[0].fp_mode.val;
8152
8153 append_logical_end(ctx.block);
8154 ctx.block->kind |= block_kind_uniform;
8155 Builder bld(ctx.program, ctx.block);
8156 if (ctx.program->wb_smem_l1_on_end)
8157 bld.smem(aco_opcode::s_dcache_wb, false);
8158 bld.sopp(aco_opcode::s_endpgm);
8159
8160 /* cleanup CFG */
8161 for (Block& BB : program->blocks) {
8162 for (unsigned idx : BB.linear_preds)
8163 program->blocks[idx].linear_succs.emplace_back(BB.index);
8164 for (unsigned idx : BB.logical_preds)
8165 program->blocks[idx].logical_succs.emplace_back(BB.index);
8166 }
8167 }
8168 }