60344d299ca7763cf191c6ffdb37bf6eacbe468c
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_old;
83
84 unsigned BB_if_idx;
85 unsigned invert_idx;
86 bool then_branch_divergent;
87 Block BB_invert;
88 Block BB_endif;
89 };
90
91 static void visit_cf_list(struct isel_context *ctx,
92 struct exec_list *list);
93
94 static void add_logical_edge(unsigned pred_idx, Block *succ)
95 {
96 succ->logical_preds.emplace_back(pred_idx);
97 }
98
99
100 static void add_linear_edge(unsigned pred_idx, Block *succ)
101 {
102 succ->linear_preds.emplace_back(pred_idx);
103 }
104
105 static void add_edge(unsigned pred_idx, Block *succ)
106 {
107 add_logical_edge(pred_idx, succ);
108 add_linear_edge(pred_idx, succ);
109 }
110
111 static void append_logical_start(Block *b)
112 {
113 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
114 }
115
116 static void append_logical_end(Block *b)
117 {
118 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
119 }
120
121 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
122 {
123 assert(ctx->allocated[def->index].id());
124 return ctx->allocated[def->index];
125 }
126
127 Temp emit_mbcnt(isel_context *ctx, Definition dst,
128 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
129 {
130 Builder bld(ctx->program, ctx->block);
131 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
132 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
133
134 if (ctx->program->wave_size == 32) {
135 return thread_id_lo;
136 } else {
137 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
138 return thread_id_hi;
139 }
140 }
141
142 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
143 {
144 Builder bld(ctx->program, ctx->block);
145
146 if (!dst.id())
147 dst = bld.tmp(src.regClass());
148
149 assert(src.size() == dst.size());
150
151 if (ctx->stage != fragment_fs) {
152 if (!dst.id())
153 return src;
154
155 bld.copy(Definition(dst), src);
156 return dst;
157 }
158
159 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
160 ctx->program->needs_wqm |= program_needs_wqm;
161 return dst;
162 }
163
164 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
165 {
166 if (index.regClass() == s1)
167 return bld.readlane(bld.def(s1), data, index);
168
169 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
170
171 /* Currently not implemented on GFX6-7 */
172 assert(ctx->options->chip_class >= GFX8);
173
174 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
175 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
176 }
177
178 /* GFX10, wave64 mode:
179 * The bpermute instruction is limited to half-wave operation, which means that it can't
180 * properly support subgroup shuffle like older generations (or wave32 mode), so we
181 * emulate it here.
182 */
183 if (!ctx->has_gfx10_wave64_bpermute) {
184 ctx->has_gfx10_wave64_bpermute = true;
185 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
186 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
187 }
188
189 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
190 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
191 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
192 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
193
194 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
195 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
196 }
197
198 Temp as_vgpr(isel_context *ctx, Temp val)
199 {
200 if (val.type() == RegType::sgpr) {
201 Builder bld(ctx->program, ctx->block);
202 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
203 }
204 assert(val.type() == RegType::vgpr);
205 return val;
206 }
207
208 //assumes a != 0xffffffff
209 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
210 {
211 assert(b != 0);
212 Builder bld(ctx->program, ctx->block);
213
214 if (util_is_power_of_two_or_zero(b)) {
215 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
216 return;
217 }
218
219 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
220
221 assert(info.multiplier <= 0xffffffff);
222
223 bool pre_shift = info.pre_shift != 0;
224 bool increment = info.increment != 0;
225 bool multiply = true;
226 bool post_shift = info.post_shift != 0;
227
228 if (!pre_shift && !increment && !multiply && !post_shift) {
229 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
230 return;
231 }
232
233 Temp pre_shift_dst = a;
234 if (pre_shift) {
235 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
236 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
237 }
238
239 Temp increment_dst = pre_shift_dst;
240 if (increment) {
241 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
242 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
243 }
244
245 Temp multiply_dst = increment_dst;
246 if (multiply) {
247 multiply_dst = post_shift ? bld.tmp(v1) : dst;
248 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
249 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
250 }
251
252 if (post_shift) {
253 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
254 }
255 }
256
257 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
258 {
259 Builder bld(ctx->program, ctx->block);
260 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
261 }
262
263
264 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
265 {
266 /* no need to extract the whole vector */
267 if (src.regClass() == dst_rc) {
268 assert(idx == 0);
269 return src;
270 }
271 assert(src.size() > idx);
272 Builder bld(ctx->program, ctx->block);
273 auto it = ctx->allocated_vec.find(src.id());
274 /* the size check needs to be early because elements other than 0 may be garbage */
275 if (it != ctx->allocated_vec.end() && it->second[0].size() == dst_rc.size()) {
276 if (it->second[idx].regClass() == dst_rc) {
277 return it->second[idx];
278 } else {
279 assert(dst_rc.size() == it->second[idx].regClass().size());
280 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
281 return bld.copy(bld.def(dst_rc), it->second[idx]);
282 }
283 }
284
285 if (src.size() == dst_rc.size()) {
286 assert(idx == 0);
287 return bld.copy(bld.def(dst_rc), src);
288 } else {
289 Temp dst = bld.tmp(dst_rc);
290 emit_extract_vector(ctx, src, idx, dst);
291 return dst;
292 }
293 }
294
295 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
296 {
297 if (num_components == 1)
298 return;
299 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
300 return;
301 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
302 split->operands[0] = Operand(vec_src);
303 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
304 for (unsigned i = 0; i < num_components; i++) {
305 elems[i] = {ctx->program->allocateId(), RegClass(vec_src.type(), vec_src.size() / num_components)};
306 split->definitions[i] = Definition(elems[i]);
307 }
308 ctx->block->instructions.emplace_back(std::move(split));
309 ctx->allocated_vec.emplace(vec_src.id(), elems);
310 }
311
312 /* This vector expansion uses a mask to determine which elements in the new vector
313 * come from the original vector. The other elements are undefined. */
314 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
315 {
316 emit_split_vector(ctx, vec_src, util_bitcount(mask));
317
318 if (vec_src == dst)
319 return;
320
321 Builder bld(ctx->program, ctx->block);
322 if (num_components == 1) {
323 if (dst.type() == RegType::sgpr)
324 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
325 else
326 bld.copy(Definition(dst), vec_src);
327 return;
328 }
329
330 unsigned component_size = dst.size() / num_components;
331 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
332
333 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
334 vec->definitions[0] = Definition(dst);
335 unsigned k = 0;
336 for (unsigned i = 0; i < num_components; i++) {
337 if (mask & (1 << i)) {
338 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
339 if (dst.type() == RegType::sgpr)
340 src = bld.as_uniform(src);
341 vec->operands[i] = Operand(src);
342 } else {
343 vec->operands[i] = Operand(0u);
344 }
345 elems[i] = vec->operands[i].getTemp();
346 }
347 ctx->block->instructions.emplace_back(std::move(vec));
348 ctx->allocated_vec.emplace(dst.id(), elems);
349 }
350
351 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
352 {
353 Builder bld(ctx->program, ctx->block);
354 if (!dst.id())
355 dst = bld.tmp(bld.lm);
356
357 assert(val.regClass() == s1);
358 assert(dst.regClass() == bld.lm);
359
360 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
361 }
362
363 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
364 {
365 Builder bld(ctx->program, ctx->block);
366 if (!dst.id())
367 dst = bld.tmp(s1);
368
369 assert(val.regClass() == bld.lm);
370 assert(dst.regClass() == s1);
371
372 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
373 Temp tmp = bld.tmp(s1);
374 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
375 return emit_wqm(ctx, tmp, dst);
376 }
377
378 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
379 {
380 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
381 return get_ssa_temp(ctx, src.src.ssa);
382
383 if (src.src.ssa->num_components == size) {
384 bool identity_swizzle = true;
385 for (unsigned i = 0; identity_swizzle && i < size; i++) {
386 if (src.swizzle[i] != i)
387 identity_swizzle = false;
388 }
389 if (identity_swizzle)
390 return get_ssa_temp(ctx, src.src.ssa);
391 }
392
393 Temp vec = get_ssa_temp(ctx, src.src.ssa);
394 unsigned elem_size = vec.size() / src.src.ssa->num_components;
395 assert(elem_size > 0); /* TODO: 8 and 16-bit vectors not supported */
396 assert(vec.size() % elem_size == 0);
397
398 RegClass elem_rc = RegClass(vec.type(), elem_size);
399 if (size == 1) {
400 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
401 } else {
402 assert(size <= 4);
403 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
404 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
405 for (unsigned i = 0; i < size; ++i) {
406 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
407 vec_instr->operands[i] = Operand{elems[i]};
408 }
409 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size)};
410 vec_instr->definitions[0] = Definition(dst);
411 ctx->block->instructions.emplace_back(std::move(vec_instr));
412 ctx->allocated_vec.emplace(dst.id(), elems);
413 return dst;
414 }
415 }
416
417 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
418 {
419 if (ptr.size() == 2)
420 return ptr;
421 Builder bld(ctx->program, ctx->block);
422 if (ptr.type() == RegType::vgpr)
423 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
424 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
425 ptr, Operand((unsigned)ctx->options->address32_hi));
426 }
427
428 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
429 {
430 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
431 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
432 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
433 sop2->definitions[0] = Definition(dst);
434 if (writes_scc)
435 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
436 ctx->block->instructions.emplace_back(std::move(sop2));
437 }
438
439 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
440 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
441 {
442 Builder bld(ctx->program, ctx->block);
443 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
444 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
445 if (src1.type() == RegType::sgpr) {
446 if (commutative && src0.type() == RegType::vgpr) {
447 Temp t = src0;
448 src0 = src1;
449 src1 = t;
450 } else if (src0.type() == RegType::vgpr &&
451 op != aco_opcode::v_madmk_f32 &&
452 op != aco_opcode::v_madak_f32 &&
453 op != aco_opcode::v_madmk_f16 &&
454 op != aco_opcode::v_madak_f16) {
455 /* If the instruction is not commutative, we emit a VOP3A instruction */
456 bld.vop2_e64(op, Definition(dst), src0, src1);
457 return;
458 } else {
459 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
460 }
461 }
462
463 if (flush_denorms && ctx->program->chip_class < GFX9) {
464 assert(dst.size() == 1);
465 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
466 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
467 } else {
468 bld.vop2(op, Definition(dst), src0, src1);
469 }
470 }
471
472 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
473 bool flush_denorms = false)
474 {
475 Temp src0 = get_alu_src(ctx, instr->src[0]);
476 Temp src1 = get_alu_src(ctx, instr->src[1]);
477 Temp src2 = get_alu_src(ctx, instr->src[2]);
478
479 /* ensure that the instruction has at most 1 sgpr operand
480 * The optimizer will inline constants for us */
481 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
482 src0 = as_vgpr(ctx, src0);
483 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
484 src1 = as_vgpr(ctx, src1);
485 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
486 src2 = as_vgpr(ctx, src2);
487
488 Builder bld(ctx->program, ctx->block);
489 if (flush_denorms && ctx->program->chip_class < GFX9) {
490 assert(dst.size() == 1);
491 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
492 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
493 } else {
494 bld.vop3(op, Definition(dst), src0, src1, src2);
495 }
496 }
497
498 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
499 {
500 Builder bld(ctx->program, ctx->block);
501 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
502 }
503
504 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
505 {
506 Temp src0 = get_alu_src(ctx, instr->src[0]);
507 Temp src1 = get_alu_src(ctx, instr->src[1]);
508 assert(src0.size() == src1.size());
509
510 aco_ptr<Instruction> vopc;
511 if (src1.type() == RegType::sgpr) {
512 if (src0.type() == RegType::vgpr) {
513 /* to swap the operands, we might also have to change the opcode */
514 switch (op) {
515 case aco_opcode::v_cmp_lt_f32:
516 op = aco_opcode::v_cmp_gt_f32;
517 break;
518 case aco_opcode::v_cmp_ge_f32:
519 op = aco_opcode::v_cmp_le_f32;
520 break;
521 case aco_opcode::v_cmp_lt_i32:
522 op = aco_opcode::v_cmp_gt_i32;
523 break;
524 case aco_opcode::v_cmp_ge_i32:
525 op = aco_opcode::v_cmp_le_i32;
526 break;
527 case aco_opcode::v_cmp_lt_u32:
528 op = aco_opcode::v_cmp_gt_u32;
529 break;
530 case aco_opcode::v_cmp_ge_u32:
531 op = aco_opcode::v_cmp_le_u32;
532 break;
533 case aco_opcode::v_cmp_lt_f64:
534 op = aco_opcode::v_cmp_gt_f64;
535 break;
536 case aco_opcode::v_cmp_ge_f64:
537 op = aco_opcode::v_cmp_le_f64;
538 break;
539 case aco_opcode::v_cmp_lt_i64:
540 op = aco_opcode::v_cmp_gt_i64;
541 break;
542 case aco_opcode::v_cmp_ge_i64:
543 op = aco_opcode::v_cmp_le_i64;
544 break;
545 case aco_opcode::v_cmp_lt_u64:
546 op = aco_opcode::v_cmp_gt_u64;
547 break;
548 case aco_opcode::v_cmp_ge_u64:
549 op = aco_opcode::v_cmp_le_u64;
550 break;
551 default: /* eq and ne are commutative */
552 break;
553 }
554 Temp t = src0;
555 src0 = src1;
556 src1 = t;
557 } else {
558 src1 = as_vgpr(ctx, src1);
559 }
560 }
561
562 Builder bld(ctx->program, ctx->block);
563 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
564 }
565
566 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
567 {
568 Temp src0 = get_alu_src(ctx, instr->src[0]);
569 Temp src1 = get_alu_src(ctx, instr->src[1]);
570 Builder bld(ctx->program, ctx->block);
571
572 assert(dst.regClass() == bld.lm);
573 assert(src0.type() == RegType::sgpr);
574 assert(src1.type() == RegType::sgpr);
575 assert(src0.regClass() == src1.regClass());
576
577 /* Emit the SALU comparison instruction */
578 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
579 /* Turn the result into a per-lane bool */
580 bool_to_vector_condition(ctx, cmp, dst);
581 }
582
583 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
584 aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
585 {
586 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : s32_op;
587 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : v32_op;
588 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
589 bool use_valu = s_op == aco_opcode::num_opcodes ||
590 divergent_vals ||
591 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
592 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
593 aco_opcode op = use_valu ? v_op : s_op;
594 assert(op != aco_opcode::num_opcodes);
595 assert(dst.regClass() == ctx->program->lane_mask);
596
597 if (use_valu)
598 emit_vopc_instruction(ctx, instr, op, dst);
599 else
600 emit_sopc_instruction(ctx, instr, op, dst);
601 }
602
603 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
604 {
605 Builder bld(ctx->program, ctx->block);
606 Temp src0 = get_alu_src(ctx, instr->src[0]);
607 Temp src1 = get_alu_src(ctx, instr->src[1]);
608
609 assert(dst.regClass() == bld.lm);
610 assert(src0.regClass() == bld.lm);
611 assert(src1.regClass() == bld.lm);
612
613 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
614 }
615
616 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
617 {
618 Builder bld(ctx->program, ctx->block);
619 Temp cond = get_alu_src(ctx, instr->src[0]);
620 Temp then = get_alu_src(ctx, instr->src[1]);
621 Temp els = get_alu_src(ctx, instr->src[2]);
622
623 assert(cond.regClass() == bld.lm);
624
625 if (dst.type() == RegType::vgpr) {
626 aco_ptr<Instruction> bcsel;
627 if (dst.size() == 1) {
628 then = as_vgpr(ctx, then);
629 els = as_vgpr(ctx, els);
630
631 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
632 } else if (dst.size() == 2) {
633 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
634 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
635 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
636 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
637
638 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
639 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
640
641 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
642 } else {
643 fprintf(stderr, "Unimplemented NIR instr bit size: ");
644 nir_print_instr(&instr->instr, stderr);
645 fprintf(stderr, "\n");
646 }
647 return;
648 }
649
650 if (instr->dest.dest.ssa.bit_size == 1) {
651 assert(dst.regClass() == bld.lm);
652 assert(then.regClass() == bld.lm);
653 assert(els.regClass() == bld.lm);
654 }
655
656 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
657 if (dst.regClass() == s1 || dst.regClass() == s2) {
658 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
659 assert(dst.size() == then.size());
660 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
661 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
662 } else {
663 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
664 nir_print_instr(&instr->instr, stderr);
665 fprintf(stderr, "\n");
666 }
667 return;
668 }
669
670 /* divergent boolean bcsel
671 * this implements bcsel on bools: dst = s0 ? s1 : s2
672 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
673 assert(instr->dest.dest.ssa.bit_size == 1);
674
675 if (cond.id() != then.id())
676 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
677
678 if (cond.id() == els.id())
679 bld.sop1(Builder::s_mov, Definition(dst), then);
680 else
681 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
682 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
683 }
684
685 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
686 aco_opcode op, uint32_t undo)
687 {
688 /* multiply by 16777216 to handle denormals */
689 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
690 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
691 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
692 scaled = bld.vop1(op, bld.def(v1), scaled);
693 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
694
695 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
696
697 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
698 }
699
700 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
701 {
702 if (ctx->block->fp_mode.denorm32 == 0) {
703 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
704 return;
705 }
706
707 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
708 }
709
710 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
711 {
712 if (ctx->block->fp_mode.denorm32 == 0) {
713 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
714 return;
715 }
716
717 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
718 }
719
720 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
721 {
722 if (ctx->block->fp_mode.denorm32 == 0) {
723 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
724 return;
725 }
726
727 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
728 }
729
730 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
731 {
732 if (ctx->block->fp_mode.denorm32 == 0) {
733 bld.vop1(aco_opcode::v_log_f32, dst, val);
734 return;
735 }
736
737 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
738 }
739
740 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
741 {
742 if (ctx->options->chip_class >= GFX7)
743 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
744
745 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
746 /* TODO: create more efficient code! */
747 if (val.type() == RegType::sgpr)
748 val = as_vgpr(ctx, val);
749
750 /* Split the input value. */
751 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
752 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
753
754 /* Extract the exponent and compute the unbiased value. */
755 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
756
757 /* Extract the fractional part. */
758 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
759 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
760
761 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
762 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
763
764 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
765 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
766 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
767 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
768 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
769
770 /* Get the sign bit. */
771 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
772
773 /* Decide the operation to apply depending on the unbiased exponent. */
774 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
775 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
776 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
777 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
778 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
779 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
780
781 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
782 }
783
784 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
785 {
786 if (ctx->options->chip_class >= GFX7)
787 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
788
789 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
790 Temp src0 = as_vgpr(ctx, val);
791
792 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
793 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
794
795 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
796 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
797 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
798
799 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
800 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
801 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
802 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
803
804 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
805 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
806
807 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
808
809 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
810 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
811
812 return add->definitions[0].getTemp();
813 }
814
815 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
816 {
817 if (!instr->dest.dest.is_ssa) {
818 fprintf(stderr, "nir alu dst not in ssa: ");
819 nir_print_instr(&instr->instr, stderr);
820 fprintf(stderr, "\n");
821 abort();
822 }
823 Builder bld(ctx->program, ctx->block);
824 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
825 switch(instr->op) {
826 case nir_op_vec2:
827 case nir_op_vec3:
828 case nir_op_vec4: {
829 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
830 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
831 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) {
832 elems[i] = get_alu_src(ctx, instr->src[i]);
833 vec->operands[i] = Operand{elems[i]};
834 }
835 vec->definitions[0] = Definition(dst);
836 ctx->block->instructions.emplace_back(std::move(vec));
837 ctx->allocated_vec.emplace(dst.id(), elems);
838 break;
839 }
840 case nir_op_mov: {
841 Temp src = get_alu_src(ctx, instr->src[0]);
842 aco_ptr<Instruction> mov;
843 if (dst.type() == RegType::sgpr) {
844 if (src.type() == RegType::vgpr)
845 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
846 else if (src.regClass() == s1)
847 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
848 else if (src.regClass() == s2)
849 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
850 else
851 unreachable("wrong src register class for nir_op_imov");
852 } else if (dst.regClass() == v1) {
853 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
854 } else if (dst.regClass() == v2) {
855 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
856 } else {
857 nir_print_instr(&instr->instr, stderr);
858 unreachable("Should have been lowered to scalar.");
859 }
860 break;
861 }
862 case nir_op_inot: {
863 Temp src = get_alu_src(ctx, instr->src[0]);
864 if (instr->dest.dest.ssa.bit_size == 1) {
865 assert(src.regClass() == bld.lm);
866 assert(dst.regClass() == bld.lm);
867 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
868 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
869 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
870 } else if (dst.regClass() == v1) {
871 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
872 } else if (dst.type() == RegType::sgpr) {
873 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
874 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
875 } else {
876 fprintf(stderr, "Unimplemented NIR instr bit size: ");
877 nir_print_instr(&instr->instr, stderr);
878 fprintf(stderr, "\n");
879 }
880 break;
881 }
882 case nir_op_ineg: {
883 Temp src = get_alu_src(ctx, instr->src[0]);
884 if (dst.regClass() == v1) {
885 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
886 } else if (dst.regClass() == s1) {
887 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
888 } else if (dst.size() == 2) {
889 Temp src0 = bld.tmp(dst.type(), 1);
890 Temp src1 = bld.tmp(dst.type(), 1);
891 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
892
893 if (dst.regClass() == s2) {
894 Temp carry = bld.tmp(s1);
895 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
896 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
897 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
898 } else {
899 Temp lower = bld.tmp(v1);
900 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
901 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
902 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
903 }
904 } else {
905 fprintf(stderr, "Unimplemented NIR instr bit size: ");
906 nir_print_instr(&instr->instr, stderr);
907 fprintf(stderr, "\n");
908 }
909 break;
910 }
911 case nir_op_iabs: {
912 if (dst.regClass() == s1) {
913 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
914 } else if (dst.regClass() == v1) {
915 Temp src = get_alu_src(ctx, instr->src[0]);
916 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
917 } else {
918 fprintf(stderr, "Unimplemented NIR instr bit size: ");
919 nir_print_instr(&instr->instr, stderr);
920 fprintf(stderr, "\n");
921 }
922 break;
923 }
924 case nir_op_isign: {
925 Temp src = get_alu_src(ctx, instr->src[0]);
926 if (dst.regClass() == s1) {
927 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
928 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
929 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
930 } else if (dst.regClass() == s2) {
931 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
932 Temp neqz;
933 if (ctx->program->chip_class >= GFX8)
934 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
935 else
936 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
937 /* SCC gets zero-extended to 64 bit */
938 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
939 } else if (dst.regClass() == v1) {
940 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
941 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
942 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
943 } else if (dst.regClass() == v2) {
944 Temp upper = emit_extract_vector(ctx, src, 1, v1);
945 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
946 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
947 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
948 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
949 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
950 } else {
951 fprintf(stderr, "Unimplemented NIR instr bit size: ");
952 nir_print_instr(&instr->instr, stderr);
953 fprintf(stderr, "\n");
954 }
955 break;
956 }
957 case nir_op_imax: {
958 if (dst.regClass() == v1) {
959 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
960 } else if (dst.regClass() == s1) {
961 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
962 } else {
963 fprintf(stderr, "Unimplemented NIR instr bit size: ");
964 nir_print_instr(&instr->instr, stderr);
965 fprintf(stderr, "\n");
966 }
967 break;
968 }
969 case nir_op_umax: {
970 if (dst.regClass() == v1) {
971 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
972 } else if (dst.regClass() == s1) {
973 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
974 } else {
975 fprintf(stderr, "Unimplemented NIR instr bit size: ");
976 nir_print_instr(&instr->instr, stderr);
977 fprintf(stderr, "\n");
978 }
979 break;
980 }
981 case nir_op_imin: {
982 if (dst.regClass() == v1) {
983 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
984 } else if (dst.regClass() == s1) {
985 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
986 } else {
987 fprintf(stderr, "Unimplemented NIR instr bit size: ");
988 nir_print_instr(&instr->instr, stderr);
989 fprintf(stderr, "\n");
990 }
991 break;
992 }
993 case nir_op_umin: {
994 if (dst.regClass() == v1) {
995 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
996 } else if (dst.regClass() == s1) {
997 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
998 } else {
999 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1000 nir_print_instr(&instr->instr, stderr);
1001 fprintf(stderr, "\n");
1002 }
1003 break;
1004 }
1005 case nir_op_ior: {
1006 if (instr->dest.dest.ssa.bit_size == 1) {
1007 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1008 } else if (dst.regClass() == v1) {
1009 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1010 } else if (dst.regClass() == s1) {
1011 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1012 } else if (dst.regClass() == s2) {
1013 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1014 } else {
1015 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1016 nir_print_instr(&instr->instr, stderr);
1017 fprintf(stderr, "\n");
1018 }
1019 break;
1020 }
1021 case nir_op_iand: {
1022 if (instr->dest.dest.ssa.bit_size == 1) {
1023 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1024 } else if (dst.regClass() == v1) {
1025 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1026 } else if (dst.regClass() == s1) {
1027 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1028 } else if (dst.regClass() == s2) {
1029 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1030 } else {
1031 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1032 nir_print_instr(&instr->instr, stderr);
1033 fprintf(stderr, "\n");
1034 }
1035 break;
1036 }
1037 case nir_op_ixor: {
1038 if (instr->dest.dest.ssa.bit_size == 1) {
1039 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1040 } else if (dst.regClass() == v1) {
1041 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1042 } else if (dst.regClass() == s1) {
1043 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1044 } else if (dst.regClass() == s2) {
1045 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1046 } else {
1047 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1048 nir_print_instr(&instr->instr, stderr);
1049 fprintf(stderr, "\n");
1050 }
1051 break;
1052 }
1053 case nir_op_ushr: {
1054 if (dst.regClass() == v1) {
1055 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1056 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1057 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1058 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1059 } else if (dst.regClass() == v2) {
1060 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1061 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1062 } else if (dst.regClass() == s2) {
1063 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1064 } else if (dst.regClass() == s1) {
1065 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1066 } else {
1067 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1068 nir_print_instr(&instr->instr, stderr);
1069 fprintf(stderr, "\n");
1070 }
1071 break;
1072 }
1073 case nir_op_ishl: {
1074 if (dst.regClass() == v1) {
1075 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1076 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1077 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1078 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1079 } else if (dst.regClass() == v2) {
1080 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1081 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1082 } else if (dst.regClass() == s1) {
1083 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1084 } else if (dst.regClass() == s2) {
1085 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1086 } else {
1087 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1088 nir_print_instr(&instr->instr, stderr);
1089 fprintf(stderr, "\n");
1090 }
1091 break;
1092 }
1093 case nir_op_ishr: {
1094 if (dst.regClass() == v1) {
1095 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1096 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1097 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1098 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1099 } else if (dst.regClass() == v2) {
1100 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1101 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1102 } else if (dst.regClass() == s1) {
1103 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1104 } else if (dst.regClass() == s2) {
1105 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1106 } else {
1107 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1108 nir_print_instr(&instr->instr, stderr);
1109 fprintf(stderr, "\n");
1110 }
1111 break;
1112 }
1113 case nir_op_find_lsb: {
1114 Temp src = get_alu_src(ctx, instr->src[0]);
1115 if (src.regClass() == s1) {
1116 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1117 } else if (src.regClass() == v1) {
1118 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1119 } else if (src.regClass() == s2) {
1120 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1121 } else {
1122 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1123 nir_print_instr(&instr->instr, stderr);
1124 fprintf(stderr, "\n");
1125 }
1126 break;
1127 }
1128 case nir_op_ufind_msb:
1129 case nir_op_ifind_msb: {
1130 Temp src = get_alu_src(ctx, instr->src[0]);
1131 if (src.regClass() == s1 || src.regClass() == s2) {
1132 aco_opcode op = src.regClass() == s2 ?
1133 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1134 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1135 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1136
1137 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1138 Operand(src.size() * 32u - 1u), msb_rev);
1139 Temp msb = sub.def(0).getTemp();
1140 Temp carry = sub.def(1).getTemp();
1141
1142 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, carry);
1143 } else if (src.regClass() == v1) {
1144 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1145 Temp msb_rev = bld.tmp(v1);
1146 emit_vop1_instruction(ctx, instr, op, msb_rev);
1147 Temp msb = bld.tmp(v1);
1148 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1149 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1150 } else {
1151 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1152 nir_print_instr(&instr->instr, stderr);
1153 fprintf(stderr, "\n");
1154 }
1155 break;
1156 }
1157 case nir_op_bitfield_reverse: {
1158 if (dst.regClass() == s1) {
1159 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1160 } else if (dst.regClass() == v1) {
1161 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1162 } else {
1163 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1164 nir_print_instr(&instr->instr, stderr);
1165 fprintf(stderr, "\n");
1166 }
1167 break;
1168 }
1169 case nir_op_iadd: {
1170 if (dst.regClass() == s1) {
1171 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1172 break;
1173 }
1174
1175 Temp src0 = get_alu_src(ctx, instr->src[0]);
1176 Temp src1 = get_alu_src(ctx, instr->src[1]);
1177 if (dst.regClass() == v1) {
1178 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1179 break;
1180 }
1181
1182 assert(src0.size() == 2 && src1.size() == 2);
1183 Temp src00 = bld.tmp(src0.type(), 1);
1184 Temp src01 = bld.tmp(dst.type(), 1);
1185 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1186 Temp src10 = bld.tmp(src1.type(), 1);
1187 Temp src11 = bld.tmp(dst.type(), 1);
1188 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1189
1190 if (dst.regClass() == s2) {
1191 Temp carry = bld.tmp(s1);
1192 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1193 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1194 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1195 } else if (dst.regClass() == v2) {
1196 Temp dst0 = bld.tmp(v1);
1197 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1198 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1199 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1200 } else {
1201 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1202 nir_print_instr(&instr->instr, stderr);
1203 fprintf(stderr, "\n");
1204 }
1205 break;
1206 }
1207 case nir_op_uadd_sat: {
1208 Temp src0 = get_alu_src(ctx, instr->src[0]);
1209 Temp src1 = get_alu_src(ctx, instr->src[1]);
1210 if (dst.regClass() == s1) {
1211 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1212 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1213 src0, src1);
1214 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1215 } else if (dst.regClass() == v1) {
1216 if (ctx->options->chip_class >= GFX9) {
1217 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1218 add->operands[0] = Operand(src0);
1219 add->operands[1] = Operand(src1);
1220 add->definitions[0] = Definition(dst);
1221 add->clamp = 1;
1222 ctx->block->instructions.emplace_back(std::move(add));
1223 } else {
1224 if (src1.regClass() != v1)
1225 std::swap(src0, src1);
1226 assert(src1.regClass() == v1);
1227 Temp tmp = bld.tmp(v1);
1228 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1229 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1230 }
1231 } else {
1232 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1233 nir_print_instr(&instr->instr, stderr);
1234 fprintf(stderr, "\n");
1235 }
1236 break;
1237 }
1238 case nir_op_uadd_carry: {
1239 Temp src0 = get_alu_src(ctx, instr->src[0]);
1240 Temp src1 = get_alu_src(ctx, instr->src[1]);
1241 if (dst.regClass() == s1) {
1242 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1243 break;
1244 }
1245 if (dst.regClass() == v1) {
1246 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1247 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1248 break;
1249 }
1250
1251 Temp src00 = bld.tmp(src0.type(), 1);
1252 Temp src01 = bld.tmp(dst.type(), 1);
1253 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1254 Temp src10 = bld.tmp(src1.type(), 1);
1255 Temp src11 = bld.tmp(dst.type(), 1);
1256 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1257 if (dst.regClass() == s2) {
1258 Temp carry = bld.tmp(s1);
1259 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1260 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1261 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1262 } else if (dst.regClass() == v2) {
1263 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1264 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1265 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1266 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1267 } else {
1268 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1269 nir_print_instr(&instr->instr, stderr);
1270 fprintf(stderr, "\n");
1271 }
1272 break;
1273 }
1274 case nir_op_isub: {
1275 if (dst.regClass() == s1) {
1276 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1277 break;
1278 }
1279
1280 Temp src0 = get_alu_src(ctx, instr->src[0]);
1281 Temp src1 = get_alu_src(ctx, instr->src[1]);
1282 if (dst.regClass() == v1) {
1283 bld.vsub32(Definition(dst), src0, src1);
1284 break;
1285 }
1286
1287 Temp src00 = bld.tmp(src0.type(), 1);
1288 Temp src01 = bld.tmp(dst.type(), 1);
1289 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1290 Temp src10 = bld.tmp(src1.type(), 1);
1291 Temp src11 = bld.tmp(dst.type(), 1);
1292 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1293 if (dst.regClass() == s2) {
1294 Temp carry = bld.tmp(s1);
1295 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1296 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1297 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1298 } else if (dst.regClass() == v2) {
1299 Temp lower = bld.tmp(v1);
1300 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1301 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1302 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1303 } else {
1304 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1305 nir_print_instr(&instr->instr, stderr);
1306 fprintf(stderr, "\n");
1307 }
1308 break;
1309 }
1310 case nir_op_usub_borrow: {
1311 Temp src0 = get_alu_src(ctx, instr->src[0]);
1312 Temp src1 = get_alu_src(ctx, instr->src[1]);
1313 if (dst.regClass() == s1) {
1314 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1315 break;
1316 } else if (dst.regClass() == v1) {
1317 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1318 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1319 break;
1320 }
1321
1322 Temp src00 = bld.tmp(src0.type(), 1);
1323 Temp src01 = bld.tmp(dst.type(), 1);
1324 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1325 Temp src10 = bld.tmp(src1.type(), 1);
1326 Temp src11 = bld.tmp(dst.type(), 1);
1327 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1328 if (dst.regClass() == s2) {
1329 Temp borrow = bld.tmp(s1);
1330 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1331 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1332 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1333 } else if (dst.regClass() == v2) {
1334 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1335 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1336 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1337 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1338 } else {
1339 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1340 nir_print_instr(&instr->instr, stderr);
1341 fprintf(stderr, "\n");
1342 }
1343 break;
1344 }
1345 case nir_op_imul: {
1346 if (dst.regClass() == v1) {
1347 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1348 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1349 } else if (dst.regClass() == s1) {
1350 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1351 } else {
1352 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1353 nir_print_instr(&instr->instr, stderr);
1354 fprintf(stderr, "\n");
1355 }
1356 break;
1357 }
1358 case nir_op_umul_high: {
1359 if (dst.regClass() == v1) {
1360 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1361 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1362 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1363 } else if (dst.regClass() == s1) {
1364 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1365 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1366 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1367 } else {
1368 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1369 nir_print_instr(&instr->instr, stderr);
1370 fprintf(stderr, "\n");
1371 }
1372 break;
1373 }
1374 case nir_op_imul_high: {
1375 if (dst.regClass() == v1) {
1376 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1377 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1378 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1379 } else if (dst.regClass() == s1) {
1380 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1381 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1382 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1383 } else {
1384 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1385 nir_print_instr(&instr->instr, stderr);
1386 fprintf(stderr, "\n");
1387 }
1388 break;
1389 }
1390 case nir_op_fmul: {
1391 if (dst.size() == 1) {
1392 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1393 } else if (dst.size() == 2) {
1394 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1395 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1396 } else {
1397 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1398 nir_print_instr(&instr->instr, stderr);
1399 fprintf(stderr, "\n");
1400 }
1401 break;
1402 }
1403 case nir_op_fadd: {
1404 if (dst.size() == 1) {
1405 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1406 } else if (dst.size() == 2) {
1407 bld.vop3(aco_opcode::v_add_f64, Definition(dst), get_alu_src(ctx, instr->src[0]),
1408 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1409 } else {
1410 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1411 nir_print_instr(&instr->instr, stderr);
1412 fprintf(stderr, "\n");
1413 }
1414 break;
1415 }
1416 case nir_op_fsub: {
1417 Temp src0 = get_alu_src(ctx, instr->src[0]);
1418 Temp src1 = get_alu_src(ctx, instr->src[1]);
1419 if (dst.size() == 1) {
1420 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1421 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1422 else
1423 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1424 } else if (dst.size() == 2) {
1425 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1426 get_alu_src(ctx, instr->src[0]),
1427 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1428 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1429 sub->neg[1] = true;
1430 } else {
1431 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1432 nir_print_instr(&instr->instr, stderr);
1433 fprintf(stderr, "\n");
1434 }
1435 break;
1436 }
1437 case nir_op_fmax: {
1438 if (dst.size() == 1) {
1439 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1440 } else if (dst.size() == 2) {
1441 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1442 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2),
1443 get_alu_src(ctx, instr->src[0]),
1444 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1445 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1446 } else {
1447 bld.vop3(aco_opcode::v_max_f64, Definition(dst),
1448 get_alu_src(ctx, instr->src[0]),
1449 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1450 }
1451 } else {
1452 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1453 nir_print_instr(&instr->instr, stderr);
1454 fprintf(stderr, "\n");
1455 }
1456 break;
1457 }
1458 case nir_op_fmin: {
1459 if (dst.size() == 1) {
1460 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1461 } else if (dst.size() == 2) {
1462 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1463 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2),
1464 get_alu_src(ctx, instr->src[0]),
1465 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1466 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1467 } else {
1468 bld.vop3(aco_opcode::v_min_f64, Definition(dst),
1469 get_alu_src(ctx, instr->src[0]),
1470 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1471 }
1472 } else {
1473 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1474 nir_print_instr(&instr->instr, stderr);
1475 fprintf(stderr, "\n");
1476 }
1477 break;
1478 }
1479 case nir_op_fmax3: {
1480 if (dst.size() == 1) {
1481 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1482 } else {
1483 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1484 nir_print_instr(&instr->instr, stderr);
1485 fprintf(stderr, "\n");
1486 }
1487 break;
1488 }
1489 case nir_op_fmin3: {
1490 if (dst.size() == 1) {
1491 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1492 } else {
1493 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1494 nir_print_instr(&instr->instr, stderr);
1495 fprintf(stderr, "\n");
1496 }
1497 break;
1498 }
1499 case nir_op_fmed3: {
1500 if (dst.size() == 1) {
1501 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1502 } else {
1503 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1504 nir_print_instr(&instr->instr, stderr);
1505 fprintf(stderr, "\n");
1506 }
1507 break;
1508 }
1509 case nir_op_umax3: {
1510 if (dst.size() == 1) {
1511 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1512 } else {
1513 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1514 nir_print_instr(&instr->instr, stderr);
1515 fprintf(stderr, "\n");
1516 }
1517 break;
1518 }
1519 case nir_op_umin3: {
1520 if (dst.size() == 1) {
1521 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1522 } else {
1523 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1524 nir_print_instr(&instr->instr, stderr);
1525 fprintf(stderr, "\n");
1526 }
1527 break;
1528 }
1529 case nir_op_umed3: {
1530 if (dst.size() == 1) {
1531 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1532 } else {
1533 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1534 nir_print_instr(&instr->instr, stderr);
1535 fprintf(stderr, "\n");
1536 }
1537 break;
1538 }
1539 case nir_op_imax3: {
1540 if (dst.size() == 1) {
1541 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1542 } else {
1543 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1544 nir_print_instr(&instr->instr, stderr);
1545 fprintf(stderr, "\n");
1546 }
1547 break;
1548 }
1549 case nir_op_imin3: {
1550 if (dst.size() == 1) {
1551 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1552 } else {
1553 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1554 nir_print_instr(&instr->instr, stderr);
1555 fprintf(stderr, "\n");
1556 }
1557 break;
1558 }
1559 case nir_op_imed3: {
1560 if (dst.size() == 1) {
1561 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1562 } else {
1563 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1564 nir_print_instr(&instr->instr, stderr);
1565 fprintf(stderr, "\n");
1566 }
1567 break;
1568 }
1569 case nir_op_cube_face_coord: {
1570 Temp in = get_alu_src(ctx, instr->src[0], 3);
1571 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1572 emit_extract_vector(ctx, in, 1, v1),
1573 emit_extract_vector(ctx, in, 2, v1) };
1574 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1575 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1576 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1577 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1578 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1579 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1580 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1581 break;
1582 }
1583 case nir_op_cube_face_index: {
1584 Temp in = get_alu_src(ctx, instr->src[0], 3);
1585 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1586 emit_extract_vector(ctx, in, 1, v1),
1587 emit_extract_vector(ctx, in, 2, v1) };
1588 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1589 break;
1590 }
1591 case nir_op_bcsel: {
1592 emit_bcsel(ctx, instr, dst);
1593 break;
1594 }
1595 case nir_op_frsq: {
1596 if (dst.size() == 1) {
1597 emit_rsq(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1598 } else if (dst.size() == 2) {
1599 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1600 } else {
1601 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1602 nir_print_instr(&instr->instr, stderr);
1603 fprintf(stderr, "\n");
1604 }
1605 break;
1606 }
1607 case nir_op_fneg: {
1608 Temp src = get_alu_src(ctx, instr->src[0]);
1609 if (dst.size() == 1) {
1610 if (ctx->block->fp_mode.must_flush_denorms32)
1611 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1612 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1613 } else if (dst.size() == 2) {
1614 if (ctx->block->fp_mode.must_flush_denorms16_64)
1615 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1616 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1617 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1618 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1619 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1620 } else {
1621 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1622 nir_print_instr(&instr->instr, stderr);
1623 fprintf(stderr, "\n");
1624 }
1625 break;
1626 }
1627 case nir_op_fabs: {
1628 Temp src = get_alu_src(ctx, instr->src[0]);
1629 if (dst.size() == 1) {
1630 if (ctx->block->fp_mode.must_flush_denorms32)
1631 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1632 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1633 } else if (dst.size() == 2) {
1634 if (ctx->block->fp_mode.must_flush_denorms16_64)
1635 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1636 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1637 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1638 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1639 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1640 } else {
1641 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1642 nir_print_instr(&instr->instr, stderr);
1643 fprintf(stderr, "\n");
1644 }
1645 break;
1646 }
1647 case nir_op_fsat: {
1648 Temp src = get_alu_src(ctx, instr->src[0]);
1649 if (dst.size() == 1) {
1650 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1651 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1652 // TODO: confirm that this holds under any circumstances
1653 } else if (dst.size() == 2) {
1654 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1655 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1656 vop3->clamp = true;
1657 } else {
1658 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1659 nir_print_instr(&instr->instr, stderr);
1660 fprintf(stderr, "\n");
1661 }
1662 break;
1663 }
1664 case nir_op_flog2: {
1665 if (dst.size() == 1) {
1666 emit_log2(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1667 } else {
1668 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1669 nir_print_instr(&instr->instr, stderr);
1670 fprintf(stderr, "\n");
1671 }
1672 break;
1673 }
1674 case nir_op_frcp: {
1675 if (dst.size() == 1) {
1676 emit_rcp(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1677 } else if (dst.size() == 2) {
1678 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1679 } else {
1680 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1681 nir_print_instr(&instr->instr, stderr);
1682 fprintf(stderr, "\n");
1683 }
1684 break;
1685 }
1686 case nir_op_fexp2: {
1687 if (dst.size() == 1) {
1688 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1689 } else {
1690 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1691 nir_print_instr(&instr->instr, stderr);
1692 fprintf(stderr, "\n");
1693 }
1694 break;
1695 }
1696 case nir_op_fsqrt: {
1697 if (dst.size() == 1) {
1698 emit_sqrt(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1699 } else if (dst.size() == 2) {
1700 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1701 } else {
1702 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1703 nir_print_instr(&instr->instr, stderr);
1704 fprintf(stderr, "\n");
1705 }
1706 break;
1707 }
1708 case nir_op_ffract: {
1709 if (dst.size() == 1) {
1710 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1711 } else if (dst.size() == 2) {
1712 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1713 } else {
1714 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1715 nir_print_instr(&instr->instr, stderr);
1716 fprintf(stderr, "\n");
1717 }
1718 break;
1719 }
1720 case nir_op_ffloor: {
1721 if (dst.size() == 1) {
1722 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1723 } else if (dst.size() == 2) {
1724 emit_floor_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1725 } else {
1726 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1727 nir_print_instr(&instr->instr, stderr);
1728 fprintf(stderr, "\n");
1729 }
1730 break;
1731 }
1732 case nir_op_fceil: {
1733 if (dst.size() == 1) {
1734 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1735 } else if (dst.size() == 2) {
1736 if (ctx->options->chip_class >= GFX7) {
1737 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1738 } else {
1739 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1740 Temp src0 = get_alu_src(ctx, instr->src[0]);
1741
1742 /* trunc = trunc(src0)
1743 * if (src0 > 0.0 && src0 != trunc)
1744 * trunc += 1.0
1745 */
1746 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1747 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1748 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1749 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1750 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1751 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1752 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1753 }
1754 } else {
1755 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1756 nir_print_instr(&instr->instr, stderr);
1757 fprintf(stderr, "\n");
1758 }
1759 break;
1760 }
1761 case nir_op_ftrunc: {
1762 if (dst.size() == 1) {
1763 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
1764 } else if (dst.size() == 2) {
1765 emit_trunc_f64(ctx, bld, Definition(dst), get_alu_src(ctx, instr->src[0]));
1766 } else {
1767 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1768 nir_print_instr(&instr->instr, stderr);
1769 fprintf(stderr, "\n");
1770 }
1771 break;
1772 }
1773 case nir_op_fround_even: {
1774 if (dst.size() == 1) {
1775 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
1776 } else if (dst.size() == 2) {
1777 if (ctx->options->chip_class >= GFX7) {
1778 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
1779 } else {
1780 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
1781 Temp src0 = get_alu_src(ctx, instr->src[0]);
1782
1783 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
1784 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
1785
1786 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
1787 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
1788 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1789 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
1790 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
1791 tmp = sub->definitions[0].getTemp();
1792
1793 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
1794 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
1795 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
1796 Temp cond = vop3->definitions[0].getTemp();
1797
1798 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
1799 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
1800 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
1801 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
1802
1803 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1804 }
1805 } else {
1806 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1807 nir_print_instr(&instr->instr, stderr);
1808 fprintf(stderr, "\n");
1809 }
1810 break;
1811 }
1812 case nir_op_fsin:
1813 case nir_op_fcos: {
1814 Temp src = get_alu_src(ctx, instr->src[0]);
1815 aco_ptr<Instruction> norm;
1816 if (dst.size() == 1) {
1817 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
1818 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, as_vgpr(ctx, src));
1819
1820 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
1821 if (ctx->options->chip_class < GFX9)
1822 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
1823
1824 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
1825 bld.vop1(opcode, Definition(dst), tmp);
1826 } else {
1827 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1828 nir_print_instr(&instr->instr, stderr);
1829 fprintf(stderr, "\n");
1830 }
1831 break;
1832 }
1833 case nir_op_ldexp: {
1834 if (dst.size() == 1) {
1835 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst),
1836 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1837 get_alu_src(ctx, instr->src[1]));
1838 } else if (dst.size() == 2) {
1839 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst),
1840 as_vgpr(ctx, get_alu_src(ctx, instr->src[0])),
1841 get_alu_src(ctx, instr->src[1]));
1842 } else {
1843 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1844 nir_print_instr(&instr->instr, stderr);
1845 fprintf(stderr, "\n");
1846 }
1847 break;
1848 }
1849 case nir_op_frexp_sig: {
1850 if (dst.size() == 1) {
1851 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst),
1852 get_alu_src(ctx, instr->src[0]));
1853 } else if (dst.size() == 2) {
1854 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst),
1855 get_alu_src(ctx, instr->src[0]));
1856 } else {
1857 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1858 nir_print_instr(&instr->instr, stderr);
1859 fprintf(stderr, "\n");
1860 }
1861 break;
1862 }
1863 case nir_op_frexp_exp: {
1864 if (instr->src[0].src.ssa->bit_size == 32) {
1865 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst),
1866 get_alu_src(ctx, instr->src[0]));
1867 } else if (instr->src[0].src.ssa->bit_size == 64) {
1868 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst),
1869 get_alu_src(ctx, instr->src[0]));
1870 } else {
1871 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1872 nir_print_instr(&instr->instr, stderr);
1873 fprintf(stderr, "\n");
1874 }
1875 break;
1876 }
1877 case nir_op_fsign: {
1878 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
1879 if (dst.size() == 1) {
1880 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1881 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
1882 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1883 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
1884 } else if (dst.size() == 2) {
1885 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1886 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
1887 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
1888
1889 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1890 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
1891 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
1892
1893 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
1894 } else {
1895 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1896 nir_print_instr(&instr->instr, stderr);
1897 fprintf(stderr, "\n");
1898 }
1899 break;
1900 }
1901 case nir_op_f2f32: {
1902 if (instr->src[0].src.ssa->bit_size == 64) {
1903 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
1904 } else {
1905 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1906 nir_print_instr(&instr->instr, stderr);
1907 fprintf(stderr, "\n");
1908 }
1909 break;
1910 }
1911 case nir_op_f2f64: {
1912 if (instr->src[0].src.ssa->bit_size == 32) {
1913 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_f32, dst);
1914 } else {
1915 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1916 nir_print_instr(&instr->instr, stderr);
1917 fprintf(stderr, "\n");
1918 }
1919 break;
1920 }
1921 case nir_op_i2f32: {
1922 assert(dst.size() == 1);
1923 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
1924 break;
1925 }
1926 case nir_op_i2f64: {
1927 if (instr->src[0].src.ssa->bit_size == 32) {
1928 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
1929 } else if (instr->src[0].src.ssa->bit_size == 64) {
1930 Temp src = get_alu_src(ctx, instr->src[0]);
1931 RegClass rc = RegClass(src.type(), 1);
1932 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1933 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1934 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1935 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
1936 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1937 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1938
1939 } else {
1940 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1941 nir_print_instr(&instr->instr, stderr);
1942 fprintf(stderr, "\n");
1943 }
1944 break;
1945 }
1946 case nir_op_u2f32: {
1947 assert(dst.size() == 1);
1948 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
1949 break;
1950 }
1951 case nir_op_u2f64: {
1952 if (instr->src[0].src.ssa->bit_size == 32) {
1953 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
1954 } else if (instr->src[0].src.ssa->bit_size == 64) {
1955 Temp src = get_alu_src(ctx, instr->src[0]);
1956 RegClass rc = RegClass(src.type(), 1);
1957 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
1958 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1959 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
1960 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
1961 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
1962 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
1963 } else {
1964 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1965 nir_print_instr(&instr->instr, stderr);
1966 fprintf(stderr, "\n");
1967 }
1968 break;
1969 }
1970 case nir_op_f2i32: {
1971 Temp src = get_alu_src(ctx, instr->src[0]);
1972 if (instr->src[0].src.ssa->bit_size == 32) {
1973 if (dst.type() == RegType::vgpr)
1974 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
1975 else
1976 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1977 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
1978
1979 } else if (instr->src[0].src.ssa->bit_size == 64) {
1980 if (dst.type() == RegType::vgpr)
1981 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
1982 else
1983 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
1984 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
1985
1986 } else {
1987 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1988 nir_print_instr(&instr->instr, stderr);
1989 fprintf(stderr, "\n");
1990 }
1991 break;
1992 }
1993 case nir_op_f2u32: {
1994 Temp src = get_alu_src(ctx, instr->src[0]);
1995 if (instr->src[0].src.ssa->bit_size == 32) {
1996 if (dst.type() == RegType::vgpr)
1997 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
1998 else
1999 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2000 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2001
2002 } else if (instr->src[0].src.ssa->bit_size == 64) {
2003 if (dst.type() == RegType::vgpr)
2004 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2005 else
2006 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2007 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2008
2009 } else {
2010 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2011 nir_print_instr(&instr->instr, stderr);
2012 fprintf(stderr, "\n");
2013 }
2014 break;
2015 }
2016 case nir_op_f2i64: {
2017 Temp src = get_alu_src(ctx, instr->src[0]);
2018 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2019 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2020 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2021 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2022 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2023 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2024 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2025 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2026 Temp new_exponent = bld.tmp(v1);
2027 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2028 if (ctx->program->chip_class >= GFX8)
2029 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2030 else
2031 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2032 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2033 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2034 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2035 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2036 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2037 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2038 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2039 Temp new_lower = bld.tmp(v1);
2040 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2041 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2042 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2043
2044 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2045 if (src.type() == RegType::vgpr)
2046 src = bld.as_uniform(src);
2047 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2048 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2049 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2050 exponent = bld.sop2(aco_opcode::s_min_u32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2051 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2052 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2053 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2054 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2055 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2056 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2057 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2058 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2059 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2060 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2061 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2062 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2063 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2064 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2065 Temp borrow = bld.tmp(s1);
2066 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2067 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2068 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2069
2070 } else if (instr->src[0].src.ssa->bit_size == 64) {
2071 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2072 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2073 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2074 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2075 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2076 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2077 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2078 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2079 if (dst.type() == RegType::sgpr) {
2080 lower = bld.as_uniform(lower);
2081 upper = bld.as_uniform(upper);
2082 }
2083 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2084
2085 } else {
2086 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2087 nir_print_instr(&instr->instr, stderr);
2088 fprintf(stderr, "\n");
2089 }
2090 break;
2091 }
2092 case nir_op_f2u64: {
2093 Temp src = get_alu_src(ctx, instr->src[0]);
2094 if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::vgpr) {
2095 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2096 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2097 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2098 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2099 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2100 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2101 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2102 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2103 Temp new_exponent = bld.tmp(v1);
2104 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2105 if (ctx->program->chip_class >= GFX8)
2106 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2107 else
2108 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2109 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2110 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2111 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2112 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2113 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2114 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2115 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2116
2117 } else if (instr->src[0].src.ssa->bit_size == 32 && dst.type() == RegType::sgpr) {
2118 if (src.type() == RegType::vgpr)
2119 src = bld.as_uniform(src);
2120 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2121 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2122 exponent = bld.sop2(aco_opcode::s_max_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2123 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2124 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2125 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2126 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2127 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2128 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2129 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2130 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2131 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2132 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2133 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2134 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2135 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2136 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2137 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2138
2139 } else if (instr->src[0].src.ssa->bit_size == 64) {
2140 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2141 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2142 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2143 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2144 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2145 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2146 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2147 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2148 if (dst.type() == RegType::sgpr) {
2149 lower = bld.as_uniform(lower);
2150 upper = bld.as_uniform(upper);
2151 }
2152 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2153
2154 } else {
2155 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2156 nir_print_instr(&instr->instr, stderr);
2157 fprintf(stderr, "\n");
2158 }
2159 break;
2160 }
2161 case nir_op_b2f32: {
2162 Temp src = get_alu_src(ctx, instr->src[0]);
2163 assert(src.regClass() == bld.lm);
2164
2165 if (dst.regClass() == s1) {
2166 src = bool_to_scalar_condition(ctx, src);
2167 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2168 } else if (dst.regClass() == v1) {
2169 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2170 } else {
2171 unreachable("Wrong destination register class for nir_op_b2f32.");
2172 }
2173 break;
2174 }
2175 case nir_op_b2f64: {
2176 Temp src = get_alu_src(ctx, instr->src[0]);
2177 assert(src.regClass() == bld.lm);
2178
2179 if (dst.regClass() == s2) {
2180 src = bool_to_scalar_condition(ctx, src);
2181 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2182 } else if (dst.regClass() == v2) {
2183 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2184 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2185 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2186 } else {
2187 unreachable("Wrong destination register class for nir_op_b2f64.");
2188 }
2189 break;
2190 }
2191 case nir_op_i2i32: {
2192 Temp src = get_alu_src(ctx, instr->src[0]);
2193 if (instr->src[0].src.ssa->bit_size == 64) {
2194 /* we can actually just say dst = src, as it would map the lower register */
2195 emit_extract_vector(ctx, src, 0, dst);
2196 } else {
2197 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2198 nir_print_instr(&instr->instr, stderr);
2199 fprintf(stderr, "\n");
2200 }
2201 break;
2202 }
2203 case nir_op_u2u32: {
2204 Temp src = get_alu_src(ctx, instr->src[0]);
2205 if (instr->src[0].src.ssa->bit_size == 16) {
2206 if (dst.regClass() == s1) {
2207 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2208 } else {
2209 // TODO: do better with SDWA
2210 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0xFFFFu), src);
2211 }
2212 } else if (instr->src[0].src.ssa->bit_size == 64) {
2213 /* we can actually just say dst = src, as it would map the lower register */
2214 emit_extract_vector(ctx, src, 0, dst);
2215 } else {
2216 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2217 nir_print_instr(&instr->instr, stderr);
2218 fprintf(stderr, "\n");
2219 }
2220 break;
2221 }
2222 case nir_op_i2i64: {
2223 Temp src = get_alu_src(ctx, instr->src[0]);
2224 if (src.regClass() == s1) {
2225 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2226 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2227 } else if (src.regClass() == v1) {
2228 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2229 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2230 } else {
2231 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2232 nir_print_instr(&instr->instr, stderr);
2233 fprintf(stderr, "\n");
2234 }
2235 break;
2236 }
2237 case nir_op_u2u64: {
2238 Temp src = get_alu_src(ctx, instr->src[0]);
2239 if (instr->src[0].src.ssa->bit_size == 32) {
2240 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2241 } else {
2242 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2243 nir_print_instr(&instr->instr, stderr);
2244 fprintf(stderr, "\n");
2245 }
2246 break;
2247 }
2248 case nir_op_b2i32: {
2249 Temp src = get_alu_src(ctx, instr->src[0]);
2250 assert(src.regClass() == bld.lm);
2251
2252 if (dst.regClass() == s1) {
2253 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2254 bool_to_scalar_condition(ctx, src, dst);
2255 } else if (dst.regClass() == v1) {
2256 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2257 } else {
2258 unreachable("Invalid register class for b2i32");
2259 }
2260 break;
2261 }
2262 case nir_op_i2b1: {
2263 Temp src = get_alu_src(ctx, instr->src[0]);
2264 assert(dst.regClass() == bld.lm);
2265
2266 if (src.type() == RegType::vgpr) {
2267 assert(src.regClass() == v1 || src.regClass() == v2);
2268 assert(dst.regClass() == bld.lm);
2269 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2270 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2271 } else {
2272 assert(src.regClass() == s1 || src.regClass() == s2);
2273 Temp tmp;
2274 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2275 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2276 } else {
2277 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2278 bld.scc(bld.def(s1)), Operand(0u), src);
2279 }
2280 bool_to_vector_condition(ctx, tmp, dst);
2281 }
2282 break;
2283 }
2284 case nir_op_pack_64_2x32_split: {
2285 Temp src0 = get_alu_src(ctx, instr->src[0]);
2286 Temp src1 = get_alu_src(ctx, instr->src[1]);
2287
2288 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2289 break;
2290 }
2291 case nir_op_unpack_64_2x32_split_x:
2292 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2293 break;
2294 case nir_op_unpack_64_2x32_split_y:
2295 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2296 break;
2297 case nir_op_pack_half_2x16: {
2298 Temp src = get_alu_src(ctx, instr->src[0], 2);
2299
2300 if (dst.regClass() == v1) {
2301 Temp src0 = bld.tmp(v1);
2302 Temp src1 = bld.tmp(v1);
2303 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2304 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2305 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2306 else
2307 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2308 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2309 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2310 } else {
2311 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2312 nir_print_instr(&instr->instr, stderr);
2313 fprintf(stderr, "\n");
2314 }
2315 break;
2316 }
2317 case nir_op_unpack_half_2x16_split_x: {
2318 if (dst.regClass() == v1) {
2319 Builder bld(ctx->program, ctx->block);
2320 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2321 } else {
2322 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2323 nir_print_instr(&instr->instr, stderr);
2324 fprintf(stderr, "\n");
2325 }
2326 break;
2327 }
2328 case nir_op_unpack_half_2x16_split_y: {
2329 if (dst.regClass() == v1) {
2330 Builder bld(ctx->program, ctx->block);
2331 /* TODO: use SDWA here */
2332 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2333 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2334 } else {
2335 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2336 nir_print_instr(&instr->instr, stderr);
2337 fprintf(stderr, "\n");
2338 }
2339 break;
2340 }
2341 case nir_op_fquantize2f16: {
2342 Temp src = get_alu_src(ctx, instr->src[0]);
2343 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2344 Temp f32, cmp_res;
2345
2346 if (ctx->program->chip_class >= GFX8) {
2347 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2348 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2349 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2350 } else {
2351 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2352 * so compare the result and flush to 0 if it's smaller.
2353 */
2354 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2355 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2356 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2357 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2358 cmp_res = vop3->definitions[0].getTemp();
2359 }
2360
2361 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2362 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2363 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2364 } else {
2365 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2366 }
2367 break;
2368 }
2369 case nir_op_bfm: {
2370 Temp bits = get_alu_src(ctx, instr->src[0]);
2371 Temp offset = get_alu_src(ctx, instr->src[1]);
2372
2373 if (dst.regClass() == s1) {
2374 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2375 } else if (dst.regClass() == v1) {
2376 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2377 } else {
2378 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2379 nir_print_instr(&instr->instr, stderr);
2380 fprintf(stderr, "\n");
2381 }
2382 break;
2383 }
2384 case nir_op_bitfield_select: {
2385 /* (mask & insert) | (~mask & base) */
2386 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2387 Temp insert = get_alu_src(ctx, instr->src[1]);
2388 Temp base = get_alu_src(ctx, instr->src[2]);
2389
2390 /* dst = (insert & bitmask) | (base & ~bitmask) */
2391 if (dst.regClass() == s1) {
2392 aco_ptr<Instruction> sop2;
2393 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2394 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2395 Operand lhs;
2396 if (const_insert && const_bitmask) {
2397 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2398 } else {
2399 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2400 lhs = Operand(insert);
2401 }
2402
2403 Operand rhs;
2404 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2405 if (const_base && const_bitmask) {
2406 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2407 } else {
2408 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2409 rhs = Operand(base);
2410 }
2411
2412 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2413
2414 } else if (dst.regClass() == v1) {
2415 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2416 base = as_vgpr(ctx, base);
2417 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2418 insert = as_vgpr(ctx, insert);
2419
2420 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2421
2422 } else {
2423 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2424 nir_print_instr(&instr->instr, stderr);
2425 fprintf(stderr, "\n");
2426 }
2427 break;
2428 }
2429 case nir_op_ubfe:
2430 case nir_op_ibfe: {
2431 Temp base = get_alu_src(ctx, instr->src[0]);
2432 Temp offset = get_alu_src(ctx, instr->src[1]);
2433 Temp bits = get_alu_src(ctx, instr->src[2]);
2434
2435 if (dst.type() == RegType::sgpr) {
2436 Operand extract;
2437 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2438 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2439 if (const_offset && const_bits) {
2440 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2441 extract = Operand(const_extract);
2442 } else {
2443 Operand width;
2444 if (const_bits) {
2445 width = Operand(const_bits->u32 << 16);
2446 } else {
2447 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2448 }
2449 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2450 }
2451
2452 aco_opcode opcode;
2453 if (dst.regClass() == s1) {
2454 if (instr->op == nir_op_ubfe)
2455 opcode = aco_opcode::s_bfe_u32;
2456 else
2457 opcode = aco_opcode::s_bfe_i32;
2458 } else if (dst.regClass() == s2) {
2459 if (instr->op == nir_op_ubfe)
2460 opcode = aco_opcode::s_bfe_u64;
2461 else
2462 opcode = aco_opcode::s_bfe_i64;
2463 } else {
2464 unreachable("Unsupported BFE bit size");
2465 }
2466
2467 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2468
2469 } else {
2470 aco_opcode opcode;
2471 if (dst.regClass() == v1) {
2472 if (instr->op == nir_op_ubfe)
2473 opcode = aco_opcode::v_bfe_u32;
2474 else
2475 opcode = aco_opcode::v_bfe_i32;
2476 } else {
2477 unreachable("Unsupported BFE bit size");
2478 }
2479
2480 emit_vop3a_instruction(ctx, instr, opcode, dst);
2481 }
2482 break;
2483 }
2484 case nir_op_bit_count: {
2485 Temp src = get_alu_src(ctx, instr->src[0]);
2486 if (src.regClass() == s1) {
2487 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2488 } else if (src.regClass() == v1) {
2489 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2490 } else if (src.regClass() == v2) {
2491 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2492 emit_extract_vector(ctx, src, 1, v1),
2493 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2494 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2495 } else if (src.regClass() == s2) {
2496 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2497 } else {
2498 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2499 nir_print_instr(&instr->instr, stderr);
2500 fprintf(stderr, "\n");
2501 }
2502 break;
2503 }
2504 case nir_op_flt: {
2505 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2506 break;
2507 }
2508 case nir_op_fge: {
2509 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2510 break;
2511 }
2512 case nir_op_feq: {
2513 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2514 break;
2515 }
2516 case nir_op_fne: {
2517 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
2518 break;
2519 }
2520 case nir_op_ilt: {
2521 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
2522 break;
2523 }
2524 case nir_op_ige: {
2525 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
2526 break;
2527 }
2528 case nir_op_ieq: {
2529 if (instr->src[0].src.ssa->bit_size == 1)
2530 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
2531 else
2532 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
2533 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
2534 break;
2535 }
2536 case nir_op_ine: {
2537 if (instr->src[0].src.ssa->bit_size == 1)
2538 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
2539 else
2540 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
2541 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
2542 break;
2543 }
2544 case nir_op_ult: {
2545 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
2546 break;
2547 }
2548 case nir_op_uge: {
2549 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
2550 break;
2551 }
2552 case nir_op_fddx:
2553 case nir_op_fddy:
2554 case nir_op_fddx_fine:
2555 case nir_op_fddy_fine:
2556 case nir_op_fddx_coarse:
2557 case nir_op_fddy_coarse: {
2558 Temp src = get_alu_src(ctx, instr->src[0]);
2559 uint16_t dpp_ctrl1, dpp_ctrl2;
2560 if (instr->op == nir_op_fddx_fine) {
2561 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
2562 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
2563 } else if (instr->op == nir_op_fddy_fine) {
2564 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
2565 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
2566 } else {
2567 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
2568 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
2569 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
2570 else
2571 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
2572 }
2573
2574 Temp tmp;
2575 if (ctx->program->chip_class >= GFX8) {
2576 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
2577 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
2578 } else {
2579 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
2580 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
2581 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
2582 }
2583 emit_wqm(ctx, tmp, dst, true);
2584 break;
2585 }
2586 default:
2587 fprintf(stderr, "Unknown NIR ALU instr: ");
2588 nir_print_instr(&instr->instr, stderr);
2589 fprintf(stderr, "\n");
2590 }
2591 }
2592
2593 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
2594 {
2595 Temp dst = get_ssa_temp(ctx, &instr->def);
2596
2597 // TODO: we really want to have the resulting type as this would allow for 64bit literals
2598 // which get truncated the lsb if double and msb if int
2599 // for now, we only use s_mov_b64 with 64bit inline constants
2600 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
2601 assert(dst.type() == RegType::sgpr);
2602
2603 Builder bld(ctx->program, ctx->block);
2604
2605 if (instr->def.bit_size == 1) {
2606 assert(dst.regClass() == bld.lm);
2607 int val = instr->value[0].b ? -1 : 0;
2608 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
2609 bld.sop1(Builder::s_mov, Definition(dst), op);
2610 } else if (dst.size() == 1) {
2611 bld.copy(Definition(dst), Operand(instr->value[0].u32));
2612 } else {
2613 assert(dst.size() != 1);
2614 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
2615 if (instr->def.bit_size == 64)
2616 for (unsigned i = 0; i < dst.size(); i++)
2617 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
2618 else {
2619 for (unsigned i = 0; i < dst.size(); i++)
2620 vec->operands[i] = Operand{instr->value[i].u32};
2621 }
2622 vec->definitions[0] = Definition(dst);
2623 ctx->block->instructions.emplace_back(std::move(vec));
2624 }
2625 }
2626
2627 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
2628 {
2629 uint32_t new_mask = 0;
2630 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
2631 if (mask & (1u << i))
2632 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
2633 return new_mask;
2634 }
2635
2636 Operand load_lds_size_m0(isel_context *ctx)
2637 {
2638 /* TODO: m0 does not need to be initialized on GFX9+ */
2639 Builder bld(ctx->program, ctx->block);
2640 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
2641 }
2642
2643 void load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
2644 Temp address, unsigned base_offset, unsigned align)
2645 {
2646 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2647
2648 Builder bld(ctx->program, ctx->block);
2649
2650 Operand m = load_lds_size_m0(ctx);
2651
2652 unsigned num_components = dst.size() * 4u / elem_size_bytes;
2653 unsigned bytes_read = 0;
2654 unsigned result_size = 0;
2655 unsigned total_bytes = num_components * elem_size_bytes;
2656 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
2657 bool large_ds_read = ctx->options->chip_class >= GFX7;
2658
2659 while (bytes_read < total_bytes) {
2660 unsigned todo = total_bytes - bytes_read;
2661 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
2662 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
2663
2664 aco_opcode op = aco_opcode::last_opcode;
2665 bool read2 = false;
2666 if (todo >= 16 && aligned16 && large_ds_read) {
2667 op = aco_opcode::ds_read_b128;
2668 todo = 16;
2669 } else if (todo >= 16 && aligned8) {
2670 op = aco_opcode::ds_read2_b64;
2671 read2 = true;
2672 todo = 16;
2673 } else if (todo >= 12 && aligned16 && large_ds_read) {
2674 op = aco_opcode::ds_read_b96;
2675 todo = 12;
2676 } else if (todo >= 8 && aligned8) {
2677 op = aco_opcode::ds_read_b64;
2678 todo = 8;
2679 } else if (todo >= 8) {
2680 op = aco_opcode::ds_read2_b32;
2681 read2 = true;
2682 todo = 8;
2683 } else if (todo >= 4) {
2684 op = aco_opcode::ds_read_b32;
2685 todo = 4;
2686 } else {
2687 assert(false);
2688 }
2689 assert(todo % elem_size_bytes == 0);
2690 unsigned num_elements = todo / elem_size_bytes;
2691 unsigned offset = base_offset + bytes_read;
2692 unsigned max_offset = read2 ? 1019 : 65535;
2693
2694 Temp address_offset = address;
2695 if (offset > max_offset) {
2696 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2697 offset = bytes_read;
2698 }
2699 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
2700
2701 Temp res;
2702 if (num_components == 1 && dst.type() == RegType::vgpr)
2703 res = dst;
2704 else
2705 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
2706
2707 if (read2)
2708 res = bld.ds(op, Definition(res), address_offset, m, offset >> 2, (offset >> 2) + 1);
2709 else
2710 res = bld.ds(op, Definition(res), address_offset, m, offset);
2711
2712 if (num_components == 1) {
2713 assert(todo == total_bytes);
2714 if (dst.type() == RegType::sgpr)
2715 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
2716 return;
2717 }
2718
2719 if (dst.type() == RegType::sgpr) {
2720 Temp new_res = bld.tmp(RegType::sgpr, res.size());
2721 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
2722 res = new_res;
2723 }
2724
2725 if (num_elements == 1) {
2726 result[result_size++] = res;
2727 } else {
2728 assert(res != dst && res.size() % num_elements == 0);
2729 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
2730 split->operands[0] = Operand(res);
2731 for (unsigned i = 0; i < num_elements; i++)
2732 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
2733 ctx->block->instructions.emplace_back(std::move(split));
2734 }
2735
2736 bytes_read += todo;
2737 }
2738
2739 assert(result_size == num_components && result_size > 1);
2740 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
2741 for (unsigned i = 0; i < result_size; i++)
2742 vec->operands[i] = Operand(result[i]);
2743 vec->definitions[0] = Definition(dst);
2744 ctx->block->instructions.emplace_back(std::move(vec));
2745 ctx->allocated_vec.emplace(dst.id(), result);
2746 }
2747
2748 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
2749 {
2750 if (start == 0 && size == data.size())
2751 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
2752
2753 unsigned size_hint = 1;
2754 auto it = ctx->allocated_vec.find(data.id());
2755 if (it != ctx->allocated_vec.end())
2756 size_hint = it->second[0].size();
2757 if (size % size_hint || start % size_hint)
2758 size_hint = 1;
2759
2760 start /= size_hint;
2761 size /= size_hint;
2762
2763 Temp elems[size];
2764 for (unsigned i = 0; i < size; i++)
2765 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
2766
2767 if (size == 1)
2768 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
2769
2770 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
2771 for (unsigned i = 0; i < size; i++)
2772 vec->operands[i] = Operand(elems[i]);
2773 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
2774 vec->definitions[0] = Definition(res);
2775 ctx->block->instructions.emplace_back(std::move(vec));
2776 return res;
2777 }
2778
2779 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
2780 {
2781 Builder bld(ctx->program, ctx->block);
2782 unsigned bytes_written = 0;
2783 bool large_ds_write = ctx->options->chip_class >= GFX7;
2784
2785 while (bytes_written < total_size * 4) {
2786 unsigned todo = total_size * 4 - bytes_written;
2787 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
2788 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
2789
2790 aco_opcode op = aco_opcode::last_opcode;
2791 bool write2 = false;
2792 unsigned size = 0;
2793 if (todo >= 16 && aligned16 && large_ds_write) {
2794 op = aco_opcode::ds_write_b128;
2795 size = 4;
2796 } else if (todo >= 16 && aligned8) {
2797 op = aco_opcode::ds_write2_b64;
2798 write2 = true;
2799 size = 4;
2800 } else if (todo >= 12 && aligned16 && large_ds_write) {
2801 op = aco_opcode::ds_write_b96;
2802 size = 3;
2803 } else if (todo >= 8 && aligned8) {
2804 op = aco_opcode::ds_write_b64;
2805 size = 2;
2806 } else if (todo >= 8) {
2807 op = aco_opcode::ds_write2_b32;
2808 write2 = true;
2809 size = 2;
2810 } else if (todo >= 4) {
2811 op = aco_opcode::ds_write_b32;
2812 size = 1;
2813 } else {
2814 assert(false);
2815 }
2816
2817 unsigned offset = offset0 + offset1 + bytes_written;
2818 unsigned max_offset = write2 ? 1020 : 65535;
2819 Temp address_offset = address;
2820 if (offset > max_offset) {
2821 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
2822 offset = offset1 + bytes_written;
2823 }
2824 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
2825
2826 if (write2) {
2827 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
2828 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
2829 bld.ds(op, address_offset, val0, val1, m, offset >> 2, (offset >> 2) + 1);
2830 } else {
2831 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
2832 bld.ds(op, address_offset, val, m, offset);
2833 }
2834
2835 bytes_written += size * 4;
2836 }
2837 }
2838
2839 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
2840 Temp address, unsigned base_offset, unsigned align)
2841 {
2842 assert(util_is_power_of_two_nonzero(align) && align >= 4);
2843
2844 Operand m = load_lds_size_m0(ctx);
2845
2846 /* we need at most two stores for 32bit variables */
2847 int start[2], count[2];
2848 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
2849 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
2850 assert(wrmask == 0);
2851
2852 /* one combined store is sufficient */
2853 if (count[0] == count[1]) {
2854 Builder bld(ctx->program, ctx->block);
2855
2856 Temp address_offset = address;
2857 if ((base_offset >> 2) + start[1] > 255) {
2858 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
2859 base_offset = 0;
2860 }
2861
2862 assert(count[0] == 1);
2863 Temp val0 = emit_extract_vector(ctx, data, start[0], v1);
2864 Temp val1 = emit_extract_vector(ctx, data, start[1], v1);
2865 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
2866 base_offset = base_offset / elem_size_bytes;
2867 bld.ds(op, address_offset, val0, val1, m,
2868 base_offset + start[0], base_offset + start[1]);
2869 return;
2870 }
2871
2872 for (unsigned i = 0; i < 2; i++) {
2873 if (count[i] == 0)
2874 continue;
2875
2876 unsigned elem_size_words = elem_size_bytes / 4;
2877 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
2878 base_offset, start[i] * elem_size_bytes, align);
2879 }
2880 return;
2881 }
2882
2883 void visit_store_vsgs_output(isel_context *ctx, nir_intrinsic_instr *instr)
2884 {
2885 unsigned write_mask = nir_intrinsic_write_mask(instr);
2886 unsigned component = nir_intrinsic_component(instr);
2887 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2888 unsigned idx = (nir_intrinsic_base(instr) + component) * 4u;
2889 Operand offset(s1);
2890 Builder bld(ctx->program, ctx->block);
2891
2892 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2893 if (off_instr->type != nir_instr_type_load_const)
2894 offset = bld.v_mul24_imm(bld.def(v1), get_ssa_temp(ctx, instr->src[1].ssa), 16u);
2895 else
2896 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 16u;
2897
2898 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
2899 if (ctx->stage == vertex_es) {
2900 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
2901
2902 Temp elems[NIR_MAX_VEC_COMPONENTS * 2];
2903 if (elem_size_bytes == 8) {
2904 for (unsigned i = 0; i < src.size() / 2; i++) {
2905 Temp elem = emit_extract_vector(ctx, src, i, v2);
2906 elems[i*2] = bld.tmp(v1);
2907 elems[i*2+1] = bld.tmp(v1);
2908 bld.pseudo(aco_opcode::p_split_vector, Definition(elems[i*2]), Definition(elems[i*2+1]), elem);
2909 }
2910 write_mask = widen_mask(write_mask, 2);
2911 elem_size_bytes /= 2u;
2912 } else {
2913 for (unsigned i = 0; i < src.size(); i++)
2914 elems[i] = emit_extract_vector(ctx, src, i, v1);
2915 }
2916
2917 while (write_mask) {
2918 unsigned index = u_bit_scan(&write_mask);
2919 unsigned offset = index * elem_size_bytes;
2920 Temp elem = emit_extract_vector(ctx, src, index, RegClass(RegType::vgpr, elem_size_bytes / 4));
2921
2922 Operand vaddr_offset(v1);
2923 unsigned const_offset = idx + offset;
2924 if (const_offset >= 4096u) {
2925 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
2926 const_offset %= 4096u;
2927 }
2928
2929 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
2930 mtbuf->operands[0] = vaddr_offset;
2931 mtbuf->operands[1] = Operand(esgs_ring);
2932 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->es2gs_offset));
2933 mtbuf->operands[3] = Operand(elem);
2934 mtbuf->offen = !vaddr_offset.isUndefined();
2935 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
2936 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
2937 mtbuf->offset = const_offset;
2938 mtbuf->glc = true;
2939 mtbuf->slc = true;
2940 mtbuf->barrier = barrier_none;
2941 mtbuf->can_reorder = true;
2942 bld.insert(std::move(mtbuf));
2943 }
2944 } else {
2945 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
2946
2947 Temp vertex_idx = emit_mbcnt(ctx, bld.def(v1));
2948 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
2949 vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), vertex_idx,
2950 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
2951
2952 Temp lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
2953 if (!offset.isUndefined())
2954 lds_base = bld.vadd32(bld.def(v1), offset, lds_base);
2955
2956 unsigned align = 1 << (ffs(itemsize) - 1);
2957 if (idx)
2958 align = std::min(align, 1u << (ffs(idx) - 1));
2959
2960 store_lds(ctx, elem_size_bytes, src, write_mask, lds_base, idx, align);
2961 }
2962 }
2963
2964 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
2965 {
2966 if (ctx->stage == vertex_vs ||
2967 ctx->stage == fragment_fs ||
2968 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
2969 unsigned write_mask = nir_intrinsic_write_mask(instr);
2970 unsigned component = nir_intrinsic_component(instr);
2971 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
2972 unsigned idx = nir_intrinsic_base(instr) + component;
2973
2974 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
2975 if (off_instr->type != nir_instr_type_load_const) {
2976 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
2977 nir_print_instr(off_instr, stderr);
2978 fprintf(stderr, "\n");
2979 }
2980 idx += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
2981
2982 if (instr->src[0].ssa->bit_size == 64)
2983 write_mask = widen_mask(write_mask, 2);
2984
2985 for (unsigned i = 0; i < 8; ++i) {
2986 if (write_mask & (1 << i)) {
2987 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
2988 ctx->outputs.outputs[idx / 4u][idx % 4u] = emit_extract_vector(ctx, src, i, v1);
2989 }
2990 idx++;
2991 }
2992 } else if (ctx->stage == vertex_es ||
2993 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX)) {
2994 visit_store_vsgs_output(ctx, instr);
2995 } else {
2996 unreachable("Shader stage not implemented");
2997 }
2998 }
2999
3000 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
3001 {
3002 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
3003 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
3004
3005 Builder bld(ctx->program, ctx->block);
3006 Temp tmp = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
3007 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), tmp, idx, component);
3008 }
3009
3010 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
3011 {
3012 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
3013 for (unsigned i = 0; i < num_components; i++)
3014 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
3015 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
3016 assert(num_components == 4);
3017 Builder bld(ctx->program, ctx->block);
3018 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
3019 }
3020
3021 for (Operand& op : vec->operands)
3022 op = op.isUndefined() ? Operand(0u) : op;
3023
3024 vec->definitions[0] = Definition(dst);
3025 ctx->block->instructions.emplace_back(std::move(vec));
3026 emit_split_vector(ctx, dst, num_components);
3027 return;
3028 }
3029
3030 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
3031 {
3032 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3033 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
3034 unsigned idx = nir_intrinsic_base(instr);
3035 unsigned component = nir_intrinsic_component(instr);
3036 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3037
3038 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
3039 if (offset) {
3040 assert(offset->u32 == 0);
3041 } else {
3042 /* the lower 15bit of the prim_mask contain the offset into LDS
3043 * while the upper bits contain the number of prims */
3044 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
3045 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3046 Builder bld(ctx->program, ctx->block);
3047 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3048 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3049 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3050 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3051 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3052 }
3053
3054 if (instr->dest.ssa.num_components == 1) {
3055 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
3056 } else {
3057 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
3058 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
3059 {
3060 Temp tmp = {ctx->program->allocateId(), v1};
3061 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
3062 vec->operands[i] = Operand(tmp);
3063 }
3064 vec->definitions[0] = Definition(dst);
3065 ctx->block->instructions.emplace_back(std::move(vec));
3066 }
3067 }
3068
3069 unsigned get_num_channels_from_data_format(unsigned data_format)
3070 {
3071 switch (data_format) {
3072 case V_008F0C_BUF_DATA_FORMAT_8:
3073 case V_008F0C_BUF_DATA_FORMAT_16:
3074 case V_008F0C_BUF_DATA_FORMAT_32:
3075 return 1;
3076 case V_008F0C_BUF_DATA_FORMAT_8_8:
3077 case V_008F0C_BUF_DATA_FORMAT_16_16:
3078 case V_008F0C_BUF_DATA_FORMAT_32_32:
3079 return 2;
3080 case V_008F0C_BUF_DATA_FORMAT_10_11_11:
3081 case V_008F0C_BUF_DATA_FORMAT_11_11_10:
3082 case V_008F0C_BUF_DATA_FORMAT_32_32_32:
3083 return 3;
3084 case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
3085 case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
3086 case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
3087 case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
3088 case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
3089 return 4;
3090 default:
3091 break;
3092 }
3093
3094 return 4;
3095 }
3096
3097 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
3098 * so we may need to fix it up. */
3099 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
3100 {
3101 Builder bld(ctx->program, ctx->block);
3102
3103 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
3104 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
3105
3106 /* For the integer-like cases, do a natural sign extension.
3107 *
3108 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
3109 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
3110 * exponent.
3111 */
3112 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
3113 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
3114
3115 /* Convert back to the right type. */
3116 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
3117 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3118 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
3119 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
3120 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
3121 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
3122 }
3123
3124 return alpha;
3125 }
3126
3127 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
3128 {
3129 Builder bld(ctx->program, ctx->block);
3130 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3131 if (ctx->stage & sw_vs) {
3132
3133 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3134 if (off_instr->type != nir_instr_type_load_const) {
3135 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3136 nir_print_instr(off_instr, stderr);
3137 fprintf(stderr, "\n");
3138 }
3139 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
3140
3141 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
3142
3143 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
3144 unsigned component = nir_intrinsic_component(instr);
3145 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
3146 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
3147 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
3148 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
3149
3150 unsigned dfmt = attrib_format & 0xf;
3151
3152 unsigned nfmt = (attrib_format >> 4) & 0x7;
3153 unsigned num_dfmt_channels = get_num_channels_from_data_format(dfmt);
3154 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
3155 unsigned num_channels = MIN2(util_last_bit(mask), num_dfmt_channels);
3156 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
3157 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
3158 if (post_shuffle)
3159 num_channels = MAX2(num_channels, 3);
3160
3161 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, Operand(attrib_binding * 16u));
3162
3163 Temp index;
3164 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
3165 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
3166 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
3167 if (divisor) {
3168 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
3169 if (divisor != 1) {
3170 Temp divided = bld.tmp(v1);
3171 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
3172 index = bld.vadd32(bld.def(v1), start_instance, divided);
3173 } else {
3174 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
3175 }
3176 } else {
3177 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
3178 }
3179 } else {
3180 index = bld.vadd32(bld.def(v1),
3181 get_arg(ctx, ctx->args->ac.base_vertex),
3182 get_arg(ctx, ctx->args->ac.vertex_id));
3183 }
3184
3185 if (attrib_stride != 0 && attrib_offset > attrib_stride) {
3186 index = bld.vadd32(bld.def(v1), Operand(attrib_offset / attrib_stride), index);
3187 attrib_offset = attrib_offset % attrib_stride;
3188 }
3189
3190 Operand soffset(0u);
3191 if (attrib_offset >= 4096) {
3192 soffset = bld.copy(bld.def(s1), Operand(attrib_offset));
3193 attrib_offset = 0;
3194 }
3195
3196 aco_opcode opcode;
3197 switch (num_channels) {
3198 case 1:
3199 opcode = aco_opcode::tbuffer_load_format_x;
3200 break;
3201 case 2:
3202 opcode = aco_opcode::tbuffer_load_format_xy;
3203 break;
3204 case 3:
3205 opcode = aco_opcode::tbuffer_load_format_xyz;
3206 break;
3207 case 4:
3208 opcode = aco_opcode::tbuffer_load_format_xyzw;
3209 break;
3210 default:
3211 unreachable("Unimplemented load_input vector size");
3212 }
3213
3214 Temp tmp = post_shuffle || num_channels != dst.size() || alpha_adjust != RADV_ALPHA_ADJUST_NONE || component ? bld.tmp(RegType::vgpr, num_channels) : dst;
3215
3216 aco_ptr<MTBUF_instruction> mubuf{create_instruction<MTBUF_instruction>(opcode, Format::MTBUF, 3, 1)};
3217 mubuf->operands[0] = Operand(index);
3218 mubuf->operands[1] = Operand(list);
3219 mubuf->operands[2] = soffset;
3220 mubuf->definitions[0] = Definition(tmp);
3221 mubuf->idxen = true;
3222 mubuf->can_reorder = true;
3223 mubuf->dfmt = dfmt;
3224 mubuf->nfmt = nfmt;
3225 assert(attrib_offset < 4096);
3226 mubuf->offset = attrib_offset;
3227 ctx->block->instructions.emplace_back(std::move(mubuf));
3228
3229 emit_split_vector(ctx, tmp, tmp.size());
3230
3231 if (tmp.id() != dst.id()) {
3232 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
3233 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
3234
3235 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
3236 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
3237 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
3238
3239 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3240 for (unsigned i = 0; i < dst.size(); i++) {
3241 unsigned idx = i + component;
3242 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE && num_channels >= 4) {
3243 Temp alpha = emit_extract_vector(ctx, tmp, swizzle[3], v1);
3244 vec->operands[3] = Operand(adjust_vertex_fetch_alpha(ctx, alpha_adjust, alpha));
3245 } else if (idx < num_channels) {
3246 vec->operands[i] = Operand(emit_extract_vector(ctx, tmp, swizzle[idx], v1));
3247 } else if (is_float && idx == 3) {
3248 vec->operands[i] = Operand(0x3f800000u);
3249 } else if (!is_float && idx == 3) {
3250 vec->operands[i] = Operand(1u);
3251 } else {
3252 vec->operands[i] = Operand(0u);
3253 }
3254 }
3255 vec->definitions[0] = Definition(dst);
3256 ctx->block->instructions.emplace_back(std::move(vec));
3257 emit_split_vector(ctx, dst, dst.size());
3258 }
3259
3260 } else if (ctx->stage == fragment_fs) {
3261 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
3262 if (off_instr->type != nir_instr_type_load_const ||
3263 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
3264 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
3265 nir_print_instr(off_instr, stderr);
3266 fprintf(stderr, "\n");
3267 }
3268
3269 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
3270 nir_const_value* offset = nir_src_as_const_value(instr->src[0]);
3271 if (offset) {
3272 assert(offset->u32 == 0);
3273 } else {
3274 /* the lower 15bit of the prim_mask contain the offset into LDS
3275 * while the upper bits contain the number of prims */
3276 Temp offset_src = get_ssa_temp(ctx, instr->src[0].ssa);
3277 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
3278 Builder bld(ctx->program, ctx->block);
3279 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
3280 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
3281 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
3282 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
3283 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
3284 }
3285
3286 unsigned idx = nir_intrinsic_base(instr);
3287 unsigned component = nir_intrinsic_component(instr);
3288
3289 if (dst.size() == 1) {
3290 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(2u), bld.m0(prim_mask), idx, component);
3291 } else {
3292 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3293 for (unsigned i = 0; i < dst.size(); i++)
3294 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(2u), bld.m0(prim_mask), idx, component + i);
3295 vec->definitions[0] = Definition(dst);
3296 bld.insert(std::move(vec));
3297 }
3298
3299 } else {
3300 unreachable("Shader stage not implemented");
3301 }
3302 }
3303
3304 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
3305 {
3306 assert(ctx->stage == vertex_geometry_gs || ctx->stage == geometry_gs);
3307 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
3308
3309 Builder bld(ctx->program, ctx->block);
3310 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3311
3312 Temp offset = Temp();
3313 if (instr->src[0].ssa->parent_instr->type != nir_instr_type_load_const) {
3314 /* better code could be created, but this case probably doesn't happen
3315 * much in practice */
3316 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
3317 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
3318 Temp elem;
3319 if (ctx->stage == vertex_geometry_gs) {
3320 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
3321 if (i % 2u)
3322 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
3323 } else {
3324 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
3325 }
3326 if (offset.id()) {
3327 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(s2)),
3328 Operand(i), indirect_vertex);
3329 offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), offset, elem, cond);
3330 } else {
3331 offset = elem;
3332 }
3333 }
3334 if (ctx->stage == vertex_geometry_gs)
3335 offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), offset);
3336 } else {
3337 unsigned vertex = nir_src_as_uint(instr->src[0]);
3338 if (ctx->stage == vertex_geometry_gs)
3339 offset = bld.vop3(
3340 aco_opcode::v_bfe_u32, bld.def(v1), get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
3341 Operand((vertex % 2u) * 16u), Operand(16u));
3342 else
3343 offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
3344 }
3345
3346 unsigned const_offset = nir_intrinsic_base(instr);
3347 const_offset += nir_intrinsic_component(instr);
3348
3349 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3350 if (off_instr->type != nir_instr_type_load_const) {
3351 Temp indirect_offset = get_ssa_temp(ctx, instr->src[1].ssa);
3352 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u),
3353 bld.vadd32(bld.def(v1), indirect_offset, offset));
3354 } else {
3355 const_offset += nir_instr_as_load_const(off_instr)->value[0].u32 * 4u;
3356 }
3357 const_offset *= 4u;
3358
3359 offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), offset);
3360
3361 unsigned itemsize = ctx->program->info->vs.es_info.esgs_itemsize;
3362
3363 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
3364 if (ctx->stage == geometry_gs) {
3365 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
3366
3367 const_offset *= ctx->program->wave_size;
3368
3369 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3370 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(
3371 aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1)};
3372 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++) {
3373 Temp subelems[2];
3374 for (unsigned j = 0; j < elem_size_bytes / 4; j++) {
3375 Operand soffset(0u);
3376 if (const_offset >= 4096u)
3377 soffset = bld.copy(bld.def(s1), Operand(const_offset / 4096u * 4096u));
3378
3379 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
3380 mubuf->definitions[0] = bld.def(v1);
3381 subelems[j] = mubuf->definitions[0].getTemp();
3382 mubuf->operands[0] = Operand(offset);
3383 mubuf->operands[1] = Operand(esgs_ring);
3384 mubuf->operands[2] = Operand(soffset);
3385 mubuf->offen = true;
3386 mubuf->offset = const_offset % 4096u;
3387 mubuf->glc = true;
3388 mubuf->dlc = ctx->options->chip_class >= GFX10;
3389 mubuf->barrier = barrier_none;
3390 mubuf->can_reorder = true;
3391 bld.insert(std::move(mubuf));
3392
3393 const_offset += ctx->program->wave_size * 4u;
3394 }
3395
3396 if (elem_size_bytes == 4)
3397 elems[i] = subelems[0];
3398 else
3399 elems[i] = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), subelems[0], subelems[1]);
3400 vec->operands[i] = Operand(elems[i]);
3401 }
3402 vec->definitions[0] = Definition(dst);
3403 ctx->block->instructions.emplace_back(std::move(vec));
3404 ctx->allocated_vec.emplace(dst.id(), elems);
3405 } else {
3406 unsigned align = 16; /* alignment of indirect offset */
3407 align = std::min(align, 1u << (ffs(itemsize) - 1));
3408 if (const_offset)
3409 align = std::min(align, 1u << (ffs(const_offset) - 1));
3410
3411 load_lds(ctx, elem_size_bytes, dst, offset, const_offset, align);
3412 }
3413 }
3414
3415 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
3416 {
3417 if (ctx->program->info->need_indirect_descriptor_sets) {
3418 Builder bld(ctx->program, ctx->block);
3419 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
3420 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, Operand(desc_set << 2));//, false, false, false);
3421 }
3422
3423 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
3424 }
3425
3426
3427 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
3428 {
3429 Builder bld(ctx->program, ctx->block);
3430 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
3431 if (!ctx->divergent_vals[instr->dest.ssa.index])
3432 index = bld.as_uniform(index);
3433 unsigned desc_set = nir_intrinsic_desc_set(instr);
3434 unsigned binding = nir_intrinsic_binding(instr);
3435
3436 Temp desc_ptr;
3437 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
3438 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
3439 unsigned offset = layout->binding[binding].offset;
3440 unsigned stride;
3441 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
3442 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
3443 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
3444 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
3445 offset = pipeline_layout->push_constant_size + 16 * idx;
3446 stride = 16;
3447 } else {
3448 desc_ptr = load_desc_ptr(ctx, desc_set);
3449 stride = layout->binding[binding].size;
3450 }
3451
3452 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
3453 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
3454 if (stride != 1) {
3455 if (nir_const_index) {
3456 const_index = const_index * stride;
3457 } else if (index.type() == RegType::vgpr) {
3458 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
3459 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
3460 } else {
3461 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
3462 }
3463 }
3464 if (offset) {
3465 if (nir_const_index) {
3466 const_index = const_index + offset;
3467 } else if (index.type() == RegType::vgpr) {
3468 index = bld.vadd32(bld.def(v1), Operand(offset), index);
3469 } else {
3470 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
3471 }
3472 }
3473
3474 if (nir_const_index && const_index == 0) {
3475 index = desc_ptr;
3476 } else if (index.type() == RegType::vgpr) {
3477 index = bld.vadd32(bld.def(v1),
3478 nir_const_index ? Operand(const_index) : Operand(index),
3479 Operand(desc_ptr));
3480 } else {
3481 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
3482 nir_const_index ? Operand(const_index) : Operand(index),
3483 Operand(desc_ptr));
3484 }
3485
3486 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
3487 }
3488
3489 void load_buffer(isel_context *ctx, unsigned num_components, Temp dst,
3490 Temp rsrc, Temp offset, bool glc=false, bool readonly=true)
3491 {
3492 Builder bld(ctx->program, ctx->block);
3493
3494 unsigned num_bytes = dst.size() * 4;
3495 bool dlc = glc && ctx->options->chip_class >= GFX10;
3496
3497 aco_opcode op;
3498 if (dst.type() == RegType::vgpr || (ctx->options->chip_class < GFX8 && !readonly)) {
3499 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
3500 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
3501 unsigned const_offset = 0;
3502
3503 Temp lower = Temp();
3504 if (num_bytes > 16) {
3505 assert(num_components == 3 || num_components == 4);
3506 op = aco_opcode::buffer_load_dwordx4;
3507 lower = bld.tmp(v4);
3508 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3509 mubuf->definitions[0] = Definition(lower);
3510 mubuf->operands[0] = vaddr;
3511 mubuf->operands[1] = Operand(rsrc);
3512 mubuf->operands[2] = soffset;
3513 mubuf->offen = (offset.type() == RegType::vgpr);
3514 mubuf->glc = glc;
3515 mubuf->dlc = dlc;
3516 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3517 mubuf->can_reorder = readonly;
3518 bld.insert(std::move(mubuf));
3519 emit_split_vector(ctx, lower, 2);
3520 num_bytes -= 16;
3521 const_offset = 16;
3522 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
3523 /* GFX6 doesn't support loading vec3, expand to vec4. */
3524 num_bytes = 16;
3525 }
3526
3527 switch (num_bytes) {
3528 case 4:
3529 op = aco_opcode::buffer_load_dword;
3530 break;
3531 case 8:
3532 op = aco_opcode::buffer_load_dwordx2;
3533 break;
3534 case 12:
3535 assert(ctx->options->chip_class > GFX6);
3536 op = aco_opcode::buffer_load_dwordx3;
3537 break;
3538 case 16:
3539 op = aco_opcode::buffer_load_dwordx4;
3540 break;
3541 default:
3542 unreachable("Load SSBO not implemented for this size.");
3543 }
3544 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
3545 mubuf->operands[0] = vaddr;
3546 mubuf->operands[1] = Operand(rsrc);
3547 mubuf->operands[2] = soffset;
3548 mubuf->offen = (offset.type() == RegType::vgpr);
3549 mubuf->glc = glc;
3550 mubuf->dlc = dlc;
3551 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
3552 mubuf->can_reorder = readonly;
3553 mubuf->offset = const_offset;
3554 aco_ptr<Instruction> instr = std::move(mubuf);
3555
3556 if (dst.size() > 4) {
3557 assert(lower != Temp());
3558 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
3559 instr->definitions[0] = Definition(upper);
3560 bld.insert(std::move(instr));
3561 if (dst.size() == 8)
3562 emit_split_vector(ctx, upper, 2);
3563 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
3564 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
3565 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
3566 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
3567 if (dst.size() == 8)
3568 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
3569 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
3570 Temp vec = bld.tmp(v4);
3571 instr->definitions[0] = Definition(vec);
3572 bld.insert(std::move(instr));
3573 emit_split_vector(ctx, vec, 4);
3574
3575 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
3576 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
3577 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
3578 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
3579 }
3580
3581 if (dst.type() == RegType::sgpr) {
3582 Temp vec = bld.tmp(RegType::vgpr, dst.size());
3583 instr->definitions[0] = Definition(vec);
3584 bld.insert(std::move(instr));
3585 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
3586 } else {
3587 instr->definitions[0] = Definition(dst);
3588 bld.insert(std::move(instr));
3589 emit_split_vector(ctx, dst, num_components);
3590 }
3591 } else {
3592 switch (num_bytes) {
3593 case 4:
3594 op = aco_opcode::s_buffer_load_dword;
3595 break;
3596 case 8:
3597 op = aco_opcode::s_buffer_load_dwordx2;
3598 break;
3599 case 12:
3600 case 16:
3601 op = aco_opcode::s_buffer_load_dwordx4;
3602 break;
3603 case 24:
3604 case 32:
3605 op = aco_opcode::s_buffer_load_dwordx8;
3606 break;
3607 default:
3608 unreachable("Load SSBO not implemented for this size.");
3609 }
3610 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
3611 load->operands[0] = Operand(rsrc);
3612 load->operands[1] = Operand(bld.as_uniform(offset));
3613 assert(load->operands[1].getTemp().type() == RegType::sgpr);
3614 load->definitions[0] = Definition(dst);
3615 load->glc = glc;
3616 load->dlc = dlc;
3617 load->barrier = readonly ? barrier_none : barrier_buffer;
3618 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
3619 assert(ctx->options->chip_class >= GFX8 || !glc);
3620
3621 /* trim vector */
3622 if (dst.size() == 3) {
3623 Temp vec = bld.tmp(s4);
3624 load->definitions[0] = Definition(vec);
3625 bld.insert(std::move(load));
3626 emit_split_vector(ctx, vec, 4);
3627
3628 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3629 emit_extract_vector(ctx, vec, 0, s1),
3630 emit_extract_vector(ctx, vec, 1, s1),
3631 emit_extract_vector(ctx, vec, 2, s1));
3632 } else if (dst.size() == 6) {
3633 Temp vec = bld.tmp(s8);
3634 load->definitions[0] = Definition(vec);
3635 bld.insert(std::move(load));
3636 emit_split_vector(ctx, vec, 4);
3637
3638 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3639 emit_extract_vector(ctx, vec, 0, s2),
3640 emit_extract_vector(ctx, vec, 1, s2),
3641 emit_extract_vector(ctx, vec, 2, s2));
3642 } else {
3643 bld.insert(std::move(load));
3644 }
3645 emit_split_vector(ctx, dst, num_components);
3646 }
3647 }
3648
3649 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
3650 {
3651 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3652 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
3653
3654 Builder bld(ctx->program, ctx->block);
3655
3656 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3657 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
3658 unsigned binding = nir_intrinsic_binding(idx_instr);
3659 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
3660
3661 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
3662 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3663 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3664 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3665 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3666 if (ctx->options->chip_class >= GFX10) {
3667 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3668 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3669 S_008F0C_RESOURCE_LEVEL(1);
3670 } else {
3671 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3672 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3673 }
3674 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
3675 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
3676 Operand(0xFFFFFFFFu),
3677 Operand(desc_type));
3678 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3679 rsrc, upper_dwords);
3680 } else {
3681 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
3682 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
3683 }
3684
3685 load_buffer(ctx, instr->num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa));
3686 }
3687
3688 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3689 {
3690 Builder bld(ctx->program, ctx->block);
3691 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3692
3693 unsigned offset = nir_intrinsic_base(instr);
3694 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
3695 if (index_cv && instr->dest.ssa.bit_size == 32) {
3696
3697 unsigned count = instr->dest.ssa.num_components;
3698 unsigned start = (offset + index_cv->u32) / 4u;
3699 start -= ctx->args->ac.base_inline_push_consts;
3700 if (start + count <= ctx->args->ac.num_inline_push_consts) {
3701 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
3702 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
3703 for (unsigned i = 0; i < count; ++i) {
3704 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
3705 vec->operands[i] = Operand{elems[i]};
3706 }
3707 vec->definitions[0] = Definition(dst);
3708 ctx->block->instructions.emplace_back(std::move(vec));
3709 ctx->allocated_vec.emplace(dst.id(), elems);
3710 return;
3711 }
3712 }
3713
3714 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
3715 if (offset != 0) // TODO check if index != 0 as well
3716 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
3717 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
3718 Temp vec = dst;
3719 bool trim = false;
3720 aco_opcode op;
3721
3722 switch (dst.size()) {
3723 case 1:
3724 op = aco_opcode::s_load_dword;
3725 break;
3726 case 2:
3727 op = aco_opcode::s_load_dwordx2;
3728 break;
3729 case 3:
3730 vec = bld.tmp(s4);
3731 trim = true;
3732 case 4:
3733 op = aco_opcode::s_load_dwordx4;
3734 break;
3735 case 6:
3736 vec = bld.tmp(s8);
3737 trim = true;
3738 case 8:
3739 op = aco_opcode::s_load_dwordx8;
3740 break;
3741 default:
3742 unreachable("unimplemented or forbidden load_push_constant.");
3743 }
3744
3745 bld.smem(op, Definition(vec), ptr, index);
3746
3747 if (trim) {
3748 emit_split_vector(ctx, vec, 4);
3749 RegClass rc = dst.size() == 3 ? s1 : s2;
3750 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
3751 emit_extract_vector(ctx, vec, 0, rc),
3752 emit_extract_vector(ctx, vec, 1, rc),
3753 emit_extract_vector(ctx, vec, 2, rc));
3754
3755 }
3756 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
3757 }
3758
3759 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
3760 {
3761 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3762
3763 Builder bld(ctx->program, ctx->block);
3764
3765 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
3766 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3767 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
3768 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3769 if (ctx->options->chip_class >= GFX10) {
3770 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
3771 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
3772 S_008F0C_RESOURCE_LEVEL(1);
3773 } else {
3774 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3775 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3776 }
3777
3778 unsigned base = nir_intrinsic_base(instr);
3779 unsigned range = nir_intrinsic_range(instr);
3780
3781 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
3782 if (base && offset.type() == RegType::sgpr)
3783 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
3784 else if (base && offset.type() == RegType::vgpr)
3785 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
3786
3787 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
3788 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
3789 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
3790 Operand(desc_type));
3791
3792 load_buffer(ctx, instr->num_components, dst, rsrc, offset);
3793 }
3794
3795 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
3796 {
3797 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3798 ctx->cf_info.exec_potentially_empty = true;
3799
3800 ctx->program->needs_exact = true;
3801
3802 // TODO: optimize uniform conditions
3803 Builder bld(ctx->program, ctx->block);
3804 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3805 assert(src.regClass() == bld.lm);
3806 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
3807 bld.pseudo(aco_opcode::p_discard_if, src);
3808 ctx->block->kind |= block_kind_uses_discard_if;
3809 return;
3810 }
3811
3812 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
3813 {
3814 Builder bld(ctx->program, ctx->block);
3815
3816 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
3817 ctx->cf_info.exec_potentially_empty = true;
3818
3819 bool divergent = ctx->cf_info.parent_if.is_divergent ||
3820 ctx->cf_info.parent_loop.has_divergent_continue;
3821
3822 if (ctx->block->loop_nest_depth &&
3823 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
3824 /* we handle discards the same way as jump instructions */
3825 append_logical_end(ctx->block);
3826
3827 /* in loops, discard behaves like break */
3828 Block *linear_target = ctx->cf_info.parent_loop.exit;
3829 ctx->block->kind |= block_kind_discard;
3830
3831 if (!divergent) {
3832 /* uniform discard - loop ends here */
3833 assert(nir_instr_is_last(&instr->instr));
3834 ctx->block->kind |= block_kind_uniform;
3835 ctx->cf_info.has_branch = true;
3836 bld.branch(aco_opcode::p_branch);
3837 add_linear_edge(ctx->block->index, linear_target);
3838 return;
3839 }
3840
3841 /* we add a break right behind the discard() instructions */
3842 ctx->block->kind |= block_kind_break;
3843 unsigned idx = ctx->block->index;
3844
3845 /* remove critical edges from linear CFG */
3846 bld.branch(aco_opcode::p_branch);
3847 Block* break_block = ctx->program->create_and_insert_block();
3848 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3849 break_block->kind |= block_kind_uniform;
3850 add_linear_edge(idx, break_block);
3851 add_linear_edge(break_block->index, linear_target);
3852 bld.reset(break_block);
3853 bld.branch(aco_opcode::p_branch);
3854
3855 Block* continue_block = ctx->program->create_and_insert_block();
3856 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
3857 add_linear_edge(idx, continue_block);
3858 append_logical_start(continue_block);
3859 ctx->block = continue_block;
3860
3861 return;
3862 }
3863
3864 /* it can currently happen that NIR doesn't remove the unreachable code */
3865 if (!nir_instr_is_last(&instr->instr)) {
3866 ctx->program->needs_exact = true;
3867 /* save exec somewhere temporarily so that it doesn't get
3868 * overwritten before the discard from outer exec masks */
3869 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
3870 bld.pseudo(aco_opcode::p_discard_if, cond);
3871 ctx->block->kind |= block_kind_uses_discard_if;
3872 return;
3873 }
3874
3875 /* This condition is incorrect for uniformly branched discards in a loop
3876 * predicated by a divergent condition, but the above code catches that case
3877 * and the discard would end up turning into a discard_if.
3878 * For example:
3879 * if (divergent) {
3880 * while (...) {
3881 * if (uniform) {
3882 * discard;
3883 * }
3884 * }
3885 * }
3886 */
3887 if (!ctx->cf_info.parent_if.is_divergent) {
3888 /* program just ends here */
3889 ctx->block->kind |= block_kind_uniform;
3890 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
3891 0 /* enabled mask */, 9 /* dest */,
3892 false /* compressed */, true/* done */, true /* valid mask */);
3893 bld.sopp(aco_opcode::s_endpgm);
3894 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
3895 } else {
3896 ctx->block->kind |= block_kind_discard;
3897 /* branch and linear edge is added by visit_if() */
3898 }
3899 }
3900
3901 enum aco_descriptor_type {
3902 ACO_DESC_IMAGE,
3903 ACO_DESC_FMASK,
3904 ACO_DESC_SAMPLER,
3905 ACO_DESC_BUFFER,
3906 ACO_DESC_PLANE_0,
3907 ACO_DESC_PLANE_1,
3908 ACO_DESC_PLANE_2,
3909 };
3910
3911 static bool
3912 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
3913 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
3914 return false;
3915 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
3916 return dim == ac_image_cube ||
3917 dim == ac_image_1darray ||
3918 dim == ac_image_2darray ||
3919 dim == ac_image_2darraymsaa;
3920 }
3921
3922 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
3923 enum aco_descriptor_type desc_type,
3924 const nir_tex_instr *tex_instr, bool image, bool write)
3925 {
3926 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
3927 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
3928 if (it != ctx->tex_desc.end())
3929 return it->second;
3930 */
3931 Temp index = Temp();
3932 bool index_set = false;
3933 unsigned constant_index = 0;
3934 unsigned descriptor_set;
3935 unsigned base_index;
3936 Builder bld(ctx->program, ctx->block);
3937
3938 if (!deref_instr) {
3939 assert(tex_instr && !image);
3940 descriptor_set = 0;
3941 base_index = tex_instr->sampler_index;
3942 } else {
3943 while(deref_instr->deref_type != nir_deref_type_var) {
3944 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
3945 if (!array_size)
3946 array_size = 1;
3947
3948 assert(deref_instr->deref_type == nir_deref_type_array);
3949 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
3950 if (const_value) {
3951 constant_index += array_size * const_value->u32;
3952 } else {
3953 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
3954 if (indirect.type() == RegType::vgpr)
3955 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
3956
3957 if (array_size != 1)
3958 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
3959
3960 if (!index_set) {
3961 index = indirect;
3962 index_set = true;
3963 } else {
3964 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
3965 }
3966 }
3967
3968 deref_instr = nir_src_as_deref(deref_instr->parent);
3969 }
3970 descriptor_set = deref_instr->var->data.descriptor_set;
3971 base_index = deref_instr->var->data.binding;
3972 }
3973
3974 Temp list = load_desc_ptr(ctx, descriptor_set);
3975 list = convert_pointer_to_64_bit(ctx, list);
3976
3977 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
3978 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
3979 unsigned offset = binding->offset;
3980 unsigned stride = binding->size;
3981 aco_opcode opcode;
3982 RegClass type;
3983
3984 assert(base_index < layout->binding_count);
3985
3986 switch (desc_type) {
3987 case ACO_DESC_IMAGE:
3988 type = s8;
3989 opcode = aco_opcode::s_load_dwordx8;
3990 break;
3991 case ACO_DESC_FMASK:
3992 type = s8;
3993 opcode = aco_opcode::s_load_dwordx8;
3994 offset += 32;
3995 break;
3996 case ACO_DESC_SAMPLER:
3997 type = s4;
3998 opcode = aco_opcode::s_load_dwordx4;
3999 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
4000 offset += radv_combined_image_descriptor_sampler_offset(binding);
4001 break;
4002 case ACO_DESC_BUFFER:
4003 type = s4;
4004 opcode = aco_opcode::s_load_dwordx4;
4005 break;
4006 case ACO_DESC_PLANE_0:
4007 case ACO_DESC_PLANE_1:
4008 type = s8;
4009 opcode = aco_opcode::s_load_dwordx8;
4010 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
4011 break;
4012 case ACO_DESC_PLANE_2:
4013 type = s4;
4014 opcode = aco_opcode::s_load_dwordx4;
4015 offset += 64;
4016 break;
4017 default:
4018 unreachable("invalid desc_type\n");
4019 }
4020
4021 offset += constant_index * stride;
4022
4023 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
4024 (!index_set || binding->immutable_samplers_equal)) {
4025 if (binding->immutable_samplers_equal)
4026 constant_index = 0;
4027
4028 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
4029 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4030 Operand(samplers[constant_index * 4 + 0]),
4031 Operand(samplers[constant_index * 4 + 1]),
4032 Operand(samplers[constant_index * 4 + 2]),
4033 Operand(samplers[constant_index * 4 + 3]));
4034 }
4035
4036 Operand off;
4037 if (!index_set) {
4038 off = Operand(offset);
4039 } else {
4040 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
4041 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
4042 }
4043
4044 Temp res = bld.smem(opcode, bld.def(type), list, off);
4045
4046 if (desc_type == ACO_DESC_PLANE_2) {
4047 Temp components[8];
4048 for (unsigned i = 0; i < 8; i++)
4049 components[i] = bld.tmp(s1);
4050 bld.pseudo(aco_opcode::p_split_vector,
4051 Definition(components[0]),
4052 Definition(components[1]),
4053 Definition(components[2]),
4054 Definition(components[3]),
4055 res);
4056
4057 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
4058 bld.pseudo(aco_opcode::p_split_vector,
4059 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
4060 Definition(components[4]),
4061 Definition(components[5]),
4062 Definition(components[6]),
4063 Definition(components[7]),
4064 desc2);
4065
4066 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
4067 components[0], components[1], components[2], components[3],
4068 components[4], components[5], components[6], components[7]);
4069 }
4070
4071 return res;
4072 }
4073
4074 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
4075 {
4076 switch (dim) {
4077 case GLSL_SAMPLER_DIM_BUF:
4078 return 1;
4079 case GLSL_SAMPLER_DIM_1D:
4080 return array ? 2 : 1;
4081 case GLSL_SAMPLER_DIM_2D:
4082 return array ? 3 : 2;
4083 case GLSL_SAMPLER_DIM_MS:
4084 return array ? 4 : 3;
4085 case GLSL_SAMPLER_DIM_3D:
4086 case GLSL_SAMPLER_DIM_CUBE:
4087 return 3;
4088 case GLSL_SAMPLER_DIM_RECT:
4089 case GLSL_SAMPLER_DIM_SUBPASS:
4090 return 2;
4091 case GLSL_SAMPLER_DIM_SUBPASS_MS:
4092 return 3;
4093 default:
4094 break;
4095 }
4096 return 0;
4097 }
4098
4099
4100 /* Adjust the sample index according to FMASK.
4101 *
4102 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
4103 * which is the identity mapping. Each nibble says which physical sample
4104 * should be fetched to get that sample.
4105 *
4106 * For example, 0x11111100 means there are only 2 samples stored and
4107 * the second sample covers 3/4 of the pixel. When reading samples 0
4108 * and 1, return physical sample 0 (determined by the first two 0s
4109 * in FMASK), otherwise return physical sample 1.
4110 *
4111 * The sample index should be adjusted as follows:
4112 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
4113 */
4114 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, Temp coords, Operand sample_index, Temp fmask_desc_ptr)
4115 {
4116 Builder bld(ctx->program, ctx->block);
4117 Temp fmask = bld.tmp(v1);
4118 unsigned dim = ctx->options->chip_class >= GFX10
4119 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
4120 : 0;
4121
4122 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 2, 1)};
4123 load->operands[0] = Operand(coords);
4124 load->operands[1] = Operand(fmask_desc_ptr);
4125 load->definitions[0] = Definition(fmask);
4126 load->glc = false;
4127 load->dlc = false;
4128 load->dmask = 0x1;
4129 load->unrm = true;
4130 load->da = da;
4131 load->dim = dim;
4132 load->can_reorder = true; /* fmask images shouldn't be modified */
4133 ctx->block->instructions.emplace_back(std::move(load));
4134
4135 Operand sample_index4;
4136 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
4137 sample_index4 = Operand(sample_index.constantValue() << 2);
4138 } else if (sample_index.regClass() == s1) {
4139 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
4140 } else {
4141 assert(sample_index.regClass() == v1);
4142 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
4143 }
4144
4145 Temp final_sample;
4146 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
4147 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
4148 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
4149 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
4150 else
4151 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
4152
4153 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
4154 * resource descriptor is 0 (invalid),
4155 */
4156 Temp compare = bld.tmp(bld.lm);
4157 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
4158 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
4159
4160 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
4161
4162 /* Replace the MSAA sample index. */
4163 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
4164 }
4165
4166 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
4167 {
4168
4169 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
4170 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4171 bool is_array = glsl_sampler_type_is_array(type);
4172 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4173 assert(!add_frag_pos && "Input attachments should be lowered.");
4174 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
4175 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
4176 int count = image_type_to_components_count(dim, is_array);
4177 std::vector<Operand> coords(count);
4178
4179 if (is_ms) {
4180 Operand sample_index;
4181 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
4182 if (sample_cv)
4183 sample_index = Operand(sample_cv->u32);
4184 else
4185 sample_index = Operand(emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[2].ssa), 0, v1));
4186
4187 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
4188 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, is_array ? 3 : 2, 1)};
4189 for (unsigned i = 0; i < vec->operands.size(); i++)
4190 vec->operands[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
4191 Temp fmask_load_address = {ctx->program->allocateId(), is_array ? v3 : v2};
4192 vec->definitions[0] = Definition(fmask_load_address);
4193 ctx->block->instructions.emplace_back(std::move(vec));
4194
4195 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
4196 sample_index = Operand(adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr));
4197 }
4198 count--;
4199 coords[count] = sample_index;
4200 }
4201
4202 if (count == 1 && !gfx9_1d)
4203 return emit_extract_vector(ctx, src0, 0, v1);
4204
4205 if (gfx9_1d) {
4206 coords[0] = Operand(emit_extract_vector(ctx, src0, 0, v1));
4207 coords.resize(coords.size() + 1);
4208 coords[1] = Operand((uint32_t) 0);
4209 if (is_array)
4210 coords[2] = Operand(emit_extract_vector(ctx, src0, 1, v1));
4211 } else {
4212 for (int i = 0; i < count; i++)
4213 coords[i] = Operand(emit_extract_vector(ctx, src0, i, v1));
4214 }
4215
4216 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
4217 instr->intrinsic == nir_intrinsic_image_deref_store) {
4218 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
4219 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
4220
4221 if (!level_zero)
4222 coords.emplace_back(Operand(get_ssa_temp(ctx, instr->src[lod_index].ssa)));
4223 }
4224
4225 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
4226 for (unsigned i = 0; i < coords.size(); i++)
4227 vec->operands[i] = coords[i];
4228 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
4229 vec->definitions[0] = Definition(res);
4230 ctx->block->instructions.emplace_back(std::move(vec));
4231 return res;
4232 }
4233
4234
4235 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
4236 {
4237 Builder bld(ctx->program, ctx->block);
4238 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4239 const struct glsl_type *type = glsl_without_array(var->type);
4240 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4241 bool is_array = glsl_sampler_type_is_array(type);
4242 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4243
4244 if (dim == GLSL_SAMPLER_DIM_BUF) {
4245 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
4246 unsigned num_channels = util_last_bit(mask);
4247 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4248 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4249
4250 aco_opcode opcode;
4251 switch (num_channels) {
4252 case 1:
4253 opcode = aco_opcode::buffer_load_format_x;
4254 break;
4255 case 2:
4256 opcode = aco_opcode::buffer_load_format_xy;
4257 break;
4258 case 3:
4259 opcode = aco_opcode::buffer_load_format_xyz;
4260 break;
4261 case 4:
4262 opcode = aco_opcode::buffer_load_format_xyzw;
4263 break;
4264 default:
4265 unreachable(">4 channel buffer image load");
4266 }
4267 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
4268 load->operands[0] = Operand(vindex);
4269 load->operands[1] = Operand(rsrc);
4270 load->operands[2] = Operand((uint32_t) 0);
4271 Temp tmp;
4272 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4273 tmp = dst;
4274 else
4275 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
4276 load->definitions[0] = Definition(tmp);
4277 load->idxen = true;
4278 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
4279 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4280 load->barrier = barrier_image;
4281 ctx->block->instructions.emplace_back(std::move(load));
4282
4283 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
4284 return;
4285 }
4286
4287 Temp coords = get_image_coords(ctx, instr, type);
4288 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4289
4290 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
4291 unsigned num_components = util_bitcount(dmask);
4292 Temp tmp;
4293 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
4294 tmp = dst;
4295 else
4296 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
4297
4298 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
4299 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
4300
4301 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 2, 1)};
4302 load->operands[0] = Operand(coords);
4303 load->operands[1] = Operand(resource);
4304 load->definitions[0] = Definition(tmp);
4305 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
4306 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
4307 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4308 load->dmask = dmask;
4309 load->unrm = true;
4310 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4311 load->barrier = barrier_image;
4312 ctx->block->instructions.emplace_back(std::move(load));
4313
4314 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
4315 return;
4316 }
4317
4318 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
4319 {
4320 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4321 const struct glsl_type *type = glsl_without_array(var->type);
4322 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4323 bool is_array = glsl_sampler_type_is_array(type);
4324 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4325
4326 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
4327
4328 if (dim == GLSL_SAMPLER_DIM_BUF) {
4329 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4330 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4331 aco_opcode opcode;
4332 switch (data.size()) {
4333 case 1:
4334 opcode = aco_opcode::buffer_store_format_x;
4335 break;
4336 case 2:
4337 opcode = aco_opcode::buffer_store_format_xy;
4338 break;
4339 case 3:
4340 opcode = aco_opcode::buffer_store_format_xyz;
4341 break;
4342 case 4:
4343 opcode = aco_opcode::buffer_store_format_xyzw;
4344 break;
4345 default:
4346 unreachable(">4 channel buffer image store");
4347 }
4348 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
4349 store->operands[0] = Operand(vindex);
4350 store->operands[1] = Operand(rsrc);
4351 store->operands[2] = Operand((uint32_t) 0);
4352 store->operands[3] = Operand(data);
4353 store->idxen = true;
4354 store->glc = glc;
4355 store->dlc = false;
4356 store->disable_wqm = true;
4357 store->barrier = barrier_image;
4358 ctx->program->needs_exact = true;
4359 ctx->block->instructions.emplace_back(std::move(store));
4360 return;
4361 }
4362
4363 assert(data.type() == RegType::vgpr);
4364 Temp coords = get_image_coords(ctx, instr, type);
4365 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4366
4367 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
4368 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
4369
4370 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 4, 0)};
4371 store->operands[0] = Operand(coords);
4372 store->operands[1] = Operand(resource);
4373 store->operands[2] = Operand(s4);
4374 store->operands[3] = Operand(data);
4375 store->glc = glc;
4376 store->dlc = false;
4377 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4378 store->dmask = (1 << data.size()) - 1;
4379 store->unrm = true;
4380 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4381 store->disable_wqm = true;
4382 store->barrier = barrier_image;
4383 ctx->program->needs_exact = true;
4384 ctx->block->instructions.emplace_back(std::move(store));
4385 return;
4386 }
4387
4388 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
4389 {
4390 /* return the previous value if dest is ever used */
4391 bool return_previous = false;
4392 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4393 return_previous = true;
4394 break;
4395 }
4396 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4397 return_previous = true;
4398 break;
4399 }
4400
4401 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4402 const struct glsl_type *type = glsl_without_array(var->type);
4403 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4404 bool is_array = glsl_sampler_type_is_array(type);
4405 Builder bld(ctx->program, ctx->block);
4406
4407 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
4408 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
4409
4410 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
4411 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
4412
4413 aco_opcode buf_op, image_op;
4414 switch (instr->intrinsic) {
4415 case nir_intrinsic_image_deref_atomic_add:
4416 buf_op = aco_opcode::buffer_atomic_add;
4417 image_op = aco_opcode::image_atomic_add;
4418 break;
4419 case nir_intrinsic_image_deref_atomic_umin:
4420 buf_op = aco_opcode::buffer_atomic_umin;
4421 image_op = aco_opcode::image_atomic_umin;
4422 break;
4423 case nir_intrinsic_image_deref_atomic_imin:
4424 buf_op = aco_opcode::buffer_atomic_smin;
4425 image_op = aco_opcode::image_atomic_smin;
4426 break;
4427 case nir_intrinsic_image_deref_atomic_umax:
4428 buf_op = aco_opcode::buffer_atomic_umax;
4429 image_op = aco_opcode::image_atomic_umax;
4430 break;
4431 case nir_intrinsic_image_deref_atomic_imax:
4432 buf_op = aco_opcode::buffer_atomic_smax;
4433 image_op = aco_opcode::image_atomic_smax;
4434 break;
4435 case nir_intrinsic_image_deref_atomic_and:
4436 buf_op = aco_opcode::buffer_atomic_and;
4437 image_op = aco_opcode::image_atomic_and;
4438 break;
4439 case nir_intrinsic_image_deref_atomic_or:
4440 buf_op = aco_opcode::buffer_atomic_or;
4441 image_op = aco_opcode::image_atomic_or;
4442 break;
4443 case nir_intrinsic_image_deref_atomic_xor:
4444 buf_op = aco_opcode::buffer_atomic_xor;
4445 image_op = aco_opcode::image_atomic_xor;
4446 break;
4447 case nir_intrinsic_image_deref_atomic_exchange:
4448 buf_op = aco_opcode::buffer_atomic_swap;
4449 image_op = aco_opcode::image_atomic_swap;
4450 break;
4451 case nir_intrinsic_image_deref_atomic_comp_swap:
4452 buf_op = aco_opcode::buffer_atomic_cmpswap;
4453 image_op = aco_opcode::image_atomic_cmpswap;
4454 break;
4455 default:
4456 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
4457 }
4458
4459 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4460
4461 if (dim == GLSL_SAMPLER_DIM_BUF) {
4462 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
4463 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
4464 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
4465 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4466 mubuf->operands[0] = Operand(vindex);
4467 mubuf->operands[1] = Operand(resource);
4468 mubuf->operands[2] = Operand((uint32_t)0);
4469 mubuf->operands[3] = Operand(data);
4470 if (return_previous)
4471 mubuf->definitions[0] = Definition(dst);
4472 mubuf->offset = 0;
4473 mubuf->idxen = true;
4474 mubuf->glc = return_previous;
4475 mubuf->dlc = false; /* Not needed for atomics */
4476 mubuf->disable_wqm = true;
4477 mubuf->barrier = barrier_image;
4478 ctx->program->needs_exact = true;
4479 ctx->block->instructions.emplace_back(std::move(mubuf));
4480 return;
4481 }
4482
4483 Temp coords = get_image_coords(ctx, instr, type);
4484 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
4485 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 4, return_previous ? 1 : 0)};
4486 mimg->operands[0] = Operand(coords);
4487 mimg->operands[1] = Operand(resource);
4488 mimg->operands[2] = Operand(s4); /* no sampler */
4489 mimg->operands[3] = Operand(data);
4490 if (return_previous)
4491 mimg->definitions[0] = Definition(dst);
4492 mimg->glc = return_previous;
4493 mimg->dlc = false; /* Not needed for atomics */
4494 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4495 mimg->dmask = (1 << data.size()) - 1;
4496 mimg->unrm = true;
4497 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
4498 mimg->disable_wqm = true;
4499 mimg->barrier = barrier_image;
4500 ctx->program->needs_exact = true;
4501 ctx->block->instructions.emplace_back(std::move(mimg));
4502 return;
4503 }
4504
4505 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
4506 {
4507 if (in_elements && ctx->options->chip_class == GFX8) {
4508 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
4509 Builder bld(ctx->program, ctx->block);
4510
4511 Temp size = emit_extract_vector(ctx, desc, 2, s1);
4512
4513 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
4514 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
4515
4516 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
4517 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
4518
4519 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
4520 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
4521
4522 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
4523 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
4524 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
4525 if (dst.type() == RegType::vgpr)
4526 bld.copy(Definition(dst), shr_dst);
4527
4528 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
4529 } else {
4530 emit_extract_vector(ctx, desc, 2, dst);
4531 }
4532 }
4533
4534 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
4535 {
4536 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
4537 const struct glsl_type *type = glsl_without_array(var->type);
4538 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
4539 bool is_array = glsl_sampler_type_is_array(type);
4540 Builder bld(ctx->program, ctx->block);
4541
4542 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
4543 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
4544 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
4545 }
4546
4547 /* LOD */
4548 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
4549
4550 /* Resource */
4551 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
4552
4553 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4554
4555 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1)};
4556 mimg->operands[0] = Operand(lod);
4557 mimg->operands[1] = Operand(resource);
4558 uint8_t& dmask = mimg->dmask;
4559 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
4560 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
4561 mimg->da = glsl_sampler_type_is_array(type);
4562 mimg->can_reorder = true;
4563 Definition& def = mimg->definitions[0];
4564 ctx->block->instructions.emplace_back(std::move(mimg));
4565
4566 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
4567 glsl_sampler_type_is_array(type)) {
4568
4569 assert(instr->dest.ssa.num_components == 3);
4570 Temp tmp = {ctx->program->allocateId(), v3};
4571 def = Definition(tmp);
4572 emit_split_vector(ctx, tmp, 3);
4573
4574 /* divide 3rd value by 6 by multiplying with magic number */
4575 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
4576 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
4577
4578 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4579 emit_extract_vector(ctx, tmp, 0, v1),
4580 emit_extract_vector(ctx, tmp, 1, v1),
4581 by_6);
4582
4583 } else if (ctx->options->chip_class == GFX9 &&
4584 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
4585 glsl_sampler_type_is_array(type)) {
4586 assert(instr->dest.ssa.num_components == 2);
4587 def = Definition(dst);
4588 dmask = 0x5;
4589 } else {
4590 def = Definition(dst);
4591 }
4592
4593 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
4594 }
4595
4596 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4597 {
4598 Builder bld(ctx->program, ctx->block);
4599 unsigned num_components = instr->num_components;
4600
4601 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4602 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4603 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4604
4605 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4606 load_buffer(ctx, num_components, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), glc, false);
4607 }
4608
4609 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4610 {
4611 Builder bld(ctx->program, ctx->block);
4612 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
4613 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4614 unsigned writemask = nir_intrinsic_write_mask(instr);
4615 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
4616
4617 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
4618 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4619
4620 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
4621 ctx->options->chip_class >= GFX8;
4622 if (smem)
4623 offset = bld.as_uniform(offset);
4624 bool smem_nonfs = smem && ctx->stage != fragment_fs;
4625
4626 while (writemask) {
4627 int start, count;
4628 u_bit_scan_consecutive_range(&writemask, &start, &count);
4629 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
4630 /* GFX6 doesn't support storing vec3, split it. */
4631 writemask |= 1u << (start + 2);
4632 count = 2;
4633 }
4634 int num_bytes = count * elem_size_bytes;
4635
4636 if (num_bytes > 16) {
4637 assert(elem_size_bytes == 8);
4638 writemask |= (((count - 2) << 1) - 1) << (start + 2);
4639 count = 2;
4640 num_bytes = 16;
4641 }
4642
4643 // TODO: check alignment of sub-dword stores
4644 // TODO: split 3 bytes. there is no store instruction for that
4645
4646 Temp write_data;
4647 if (count != instr->num_components) {
4648 emit_split_vector(ctx, data, instr->num_components);
4649 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4650 for (int i = 0; i < count; i++) {
4651 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
4652 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
4653 }
4654 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
4655 vec->definitions[0] = Definition(write_data);
4656 ctx->block->instructions.emplace_back(std::move(vec));
4657 } else if (!smem && data.type() != RegType::vgpr) {
4658 assert(num_bytes % 4 == 0);
4659 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
4660 } else if (smem_nonfs && data.type() == RegType::vgpr) {
4661 assert(num_bytes % 4 == 0);
4662 write_data = bld.as_uniform(data);
4663 } else {
4664 write_data = data;
4665 }
4666
4667 aco_opcode vmem_op, smem_op;
4668 switch (num_bytes) {
4669 case 4:
4670 vmem_op = aco_opcode::buffer_store_dword;
4671 smem_op = aco_opcode::s_buffer_store_dword;
4672 break;
4673 case 8:
4674 vmem_op = aco_opcode::buffer_store_dwordx2;
4675 smem_op = aco_opcode::s_buffer_store_dwordx2;
4676 break;
4677 case 12:
4678 vmem_op = aco_opcode::buffer_store_dwordx3;
4679 smem_op = aco_opcode::last_opcode;
4680 assert(!smem && ctx->options->chip_class > GFX6);
4681 break;
4682 case 16:
4683 vmem_op = aco_opcode::buffer_store_dwordx4;
4684 smem_op = aco_opcode::s_buffer_store_dwordx4;
4685 break;
4686 default:
4687 unreachable("Store SSBO not implemented for this size.");
4688 }
4689 if (ctx->stage == fragment_fs)
4690 smem_op = aco_opcode::p_fs_buffer_store_smem;
4691
4692 if (smem) {
4693 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
4694 store->operands[0] = Operand(rsrc);
4695 if (start) {
4696 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4697 offset, Operand(start * elem_size_bytes));
4698 store->operands[1] = Operand(off);
4699 } else {
4700 store->operands[1] = Operand(offset);
4701 }
4702 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
4703 store->operands[1].setFixed(m0);
4704 store->operands[2] = Operand(write_data);
4705 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4706 store->dlc = false;
4707 store->disable_wqm = true;
4708 store->barrier = barrier_buffer;
4709 ctx->block->instructions.emplace_back(std::move(store));
4710 ctx->program->wb_smem_l1_on_end = true;
4711 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
4712 ctx->block->kind |= block_kind_needs_lowering;
4713 ctx->program->needs_exact = true;
4714 }
4715 } else {
4716 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
4717 store->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4718 store->operands[1] = Operand(rsrc);
4719 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4720 store->operands[3] = Operand(write_data);
4721 store->offset = start * elem_size_bytes;
4722 store->offen = (offset.type() == RegType::vgpr);
4723 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
4724 store->dlc = false;
4725 store->disable_wqm = true;
4726 store->barrier = barrier_buffer;
4727 ctx->program->needs_exact = true;
4728 ctx->block->instructions.emplace_back(std::move(store));
4729 }
4730 }
4731 }
4732
4733 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
4734 {
4735 /* return the previous value if dest is ever used */
4736 bool return_previous = false;
4737 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
4738 return_previous = true;
4739 break;
4740 }
4741 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
4742 return_previous = true;
4743 break;
4744 }
4745
4746 Builder bld(ctx->program, ctx->block);
4747 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
4748
4749 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
4750 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
4751 get_ssa_temp(ctx, instr->src[3].ssa), data);
4752
4753 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
4754 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4755 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4756
4757 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4758
4759 aco_opcode op32, op64;
4760 switch (instr->intrinsic) {
4761 case nir_intrinsic_ssbo_atomic_add:
4762 op32 = aco_opcode::buffer_atomic_add;
4763 op64 = aco_opcode::buffer_atomic_add_x2;
4764 break;
4765 case nir_intrinsic_ssbo_atomic_imin:
4766 op32 = aco_opcode::buffer_atomic_smin;
4767 op64 = aco_opcode::buffer_atomic_smin_x2;
4768 break;
4769 case nir_intrinsic_ssbo_atomic_umin:
4770 op32 = aco_opcode::buffer_atomic_umin;
4771 op64 = aco_opcode::buffer_atomic_umin_x2;
4772 break;
4773 case nir_intrinsic_ssbo_atomic_imax:
4774 op32 = aco_opcode::buffer_atomic_smax;
4775 op64 = aco_opcode::buffer_atomic_smax_x2;
4776 break;
4777 case nir_intrinsic_ssbo_atomic_umax:
4778 op32 = aco_opcode::buffer_atomic_umax;
4779 op64 = aco_opcode::buffer_atomic_umax_x2;
4780 break;
4781 case nir_intrinsic_ssbo_atomic_and:
4782 op32 = aco_opcode::buffer_atomic_and;
4783 op64 = aco_opcode::buffer_atomic_and_x2;
4784 break;
4785 case nir_intrinsic_ssbo_atomic_or:
4786 op32 = aco_opcode::buffer_atomic_or;
4787 op64 = aco_opcode::buffer_atomic_or_x2;
4788 break;
4789 case nir_intrinsic_ssbo_atomic_xor:
4790 op32 = aco_opcode::buffer_atomic_xor;
4791 op64 = aco_opcode::buffer_atomic_xor_x2;
4792 break;
4793 case nir_intrinsic_ssbo_atomic_exchange:
4794 op32 = aco_opcode::buffer_atomic_swap;
4795 op64 = aco_opcode::buffer_atomic_swap_x2;
4796 break;
4797 case nir_intrinsic_ssbo_atomic_comp_swap:
4798 op32 = aco_opcode::buffer_atomic_cmpswap;
4799 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
4800 break;
4801 default:
4802 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
4803 }
4804 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
4805 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
4806 mubuf->operands[0] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4807 mubuf->operands[1] = Operand(rsrc);
4808 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4809 mubuf->operands[3] = Operand(data);
4810 if (return_previous)
4811 mubuf->definitions[0] = Definition(dst);
4812 mubuf->offset = 0;
4813 mubuf->offen = (offset.type() == RegType::vgpr);
4814 mubuf->glc = return_previous;
4815 mubuf->dlc = false; /* Not needed for atomics */
4816 mubuf->disable_wqm = true;
4817 mubuf->barrier = barrier_buffer;
4818 ctx->program->needs_exact = true;
4819 ctx->block->instructions.emplace_back(std::move(mubuf));
4820 }
4821
4822 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
4823
4824 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4825 Builder bld(ctx->program, ctx->block);
4826 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
4827 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
4828 }
4829
4830 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
4831 {
4832 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4833 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4834
4835 if (addr.type() == RegType::vgpr)
4836 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
4837 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
4838 }
4839
4840 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
4841 {
4842 Builder bld(ctx->program, ctx->block);
4843 unsigned num_components = instr->num_components;
4844 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
4845
4846 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4847 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
4848
4849 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
4850 bool dlc = glc && ctx->options->chip_class >= GFX10;
4851 aco_opcode op;
4852 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
4853 bool global = ctx->options->chip_class >= GFX9;
4854
4855 if (ctx->options->chip_class >= GFX7) {
4856 aco_opcode op;
4857 switch (num_bytes) {
4858 case 4:
4859 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
4860 break;
4861 case 8:
4862 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
4863 break;
4864 case 12:
4865 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
4866 break;
4867 case 16:
4868 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
4869 break;
4870 default:
4871 unreachable("load_global not implemented for this size.");
4872 }
4873
4874 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
4875 flat->operands[0] = Operand(addr);
4876 flat->operands[1] = Operand(s1);
4877 flat->glc = glc;
4878 flat->dlc = dlc;
4879 flat->barrier = barrier_buffer;
4880
4881 if (dst.type() == RegType::sgpr) {
4882 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4883 flat->definitions[0] = Definition(vec);
4884 ctx->block->instructions.emplace_back(std::move(flat));
4885 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
4886 } else {
4887 flat->definitions[0] = Definition(dst);
4888 ctx->block->instructions.emplace_back(std::move(flat));
4889 }
4890 emit_split_vector(ctx, dst, num_components);
4891 } else {
4892 assert(ctx->options->chip_class == GFX6);
4893
4894 /* GFX6 doesn't support loading vec3, expand to vec4. */
4895 num_bytes = num_bytes == 12 ? 16 : num_bytes;
4896
4897 aco_opcode op;
4898 switch (num_bytes) {
4899 case 4:
4900 op = aco_opcode::buffer_load_dword;
4901 break;
4902 case 8:
4903 op = aco_opcode::buffer_load_dwordx2;
4904 break;
4905 case 16:
4906 op = aco_opcode::buffer_load_dwordx4;
4907 break;
4908 default:
4909 unreachable("load_global not implemented for this size.");
4910 }
4911
4912 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
4913
4914 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4915 mubuf->operands[0] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
4916 mubuf->operands[1] = Operand(rsrc);
4917 mubuf->operands[2] = Operand(0u);
4918 mubuf->glc = glc;
4919 mubuf->dlc = false;
4920 mubuf->offset = 0;
4921 mubuf->addr64 = addr.type() == RegType::vgpr;
4922 mubuf->disable_wqm = false;
4923 mubuf->barrier = barrier_buffer;
4924 aco_ptr<Instruction> instr = std::move(mubuf);
4925
4926 /* expand vector */
4927 if (dst.size() == 3) {
4928 Temp vec = bld.tmp(v4);
4929 instr->definitions[0] = Definition(vec);
4930 bld.insert(std::move(instr));
4931 emit_split_vector(ctx, vec, 4);
4932
4933 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4934 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4935 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4936 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4937 }
4938
4939 if (dst.type() == RegType::sgpr) {
4940 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4941 instr->definitions[0] = Definition(vec);
4942 bld.insert(std::move(instr));
4943 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4944 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
4945 } else {
4946 instr->definitions[0] = Definition(dst);
4947 bld.insert(std::move(instr));
4948 emit_split_vector(ctx, dst, num_components);
4949 }
4950 }
4951 } else {
4952 switch (num_bytes) {
4953 case 4:
4954 op = aco_opcode::s_load_dword;
4955 break;
4956 case 8:
4957 op = aco_opcode::s_load_dwordx2;
4958 break;
4959 case 12:
4960 case 16:
4961 op = aco_opcode::s_load_dwordx4;
4962 break;
4963 default:
4964 unreachable("load_global not implemented for this size.");
4965 }
4966 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4967 load->operands[0] = Operand(addr);
4968 load->operands[1] = Operand(0u);
4969 load->definitions[0] = Definition(dst);
4970 load->glc = glc;
4971 load->dlc = dlc;
4972 load->barrier = barrier_buffer;
4973 assert(ctx->options->chip_class >= GFX8 || !glc);
4974
4975 if (dst.size() == 3) {
4976 /* trim vector */
4977 Temp vec = bld.tmp(s4);
4978 load->definitions[0] = Definition(vec);
4979 ctx->block->instructions.emplace_back(std::move(load));
4980 emit_split_vector(ctx, vec, 4);
4981
4982 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4983 emit_extract_vector(ctx, vec, 0, s1),
4984 emit_extract_vector(ctx, vec, 1, s1),
4985 emit_extract_vector(ctx, vec, 2, s1));
4986 } else {
4987 ctx->block->instructions.emplace_back(std::move(load));
4988 }
4989 }
4990 }
4991
4992 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
4993 {
4994 Builder bld(ctx->program, ctx->block);
4995 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
4996
4997 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
4998 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
4999
5000 if (ctx->options->chip_class >= GFX7)
5001 addr = as_vgpr(ctx, addr);
5002
5003 unsigned writemask = nir_intrinsic_write_mask(instr);
5004 while (writemask) {
5005 int start, count;
5006 u_bit_scan_consecutive_range(&writemask, &start, &count);
5007 if (count == 3 && ctx->options->chip_class == GFX6) {
5008 /* GFX6 doesn't support storing vec3, split it. */
5009 writemask |= 1u << (start + 2);
5010 count = 2;
5011 }
5012 unsigned num_bytes = count * elem_size_bytes;
5013
5014 Temp write_data = data;
5015 if (count != instr->num_components) {
5016 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5017 for (int i = 0; i < count; i++)
5018 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
5019 write_data = bld.tmp(RegType::vgpr, count);
5020 vec->definitions[0] = Definition(write_data);
5021 ctx->block->instructions.emplace_back(std::move(vec));
5022 }
5023
5024 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
5025 unsigned offset = start * elem_size_bytes;
5026
5027 if (ctx->options->chip_class >= GFX7) {
5028 if (offset > 0 && ctx->options->chip_class < GFX9) {
5029 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
5030 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
5031 Temp carry = bld.tmp(bld.lm);
5032 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
5033
5034 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
5035 Operand(offset), addr0);
5036 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
5037 Operand(0u), addr1,
5038 carry).def(1).setHint(vcc);
5039
5040 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
5041
5042 offset = 0;
5043 }
5044
5045 bool global = ctx->options->chip_class >= GFX9;
5046 aco_opcode op;
5047 switch (num_bytes) {
5048 case 4:
5049 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
5050 break;
5051 case 8:
5052 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
5053 break;
5054 case 12:
5055 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
5056 break;
5057 case 16:
5058 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
5059 break;
5060 default:
5061 unreachable("store_global not implemented for this size.");
5062 }
5063
5064 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
5065 flat->operands[0] = Operand(addr);
5066 flat->operands[1] = Operand(s1);
5067 flat->operands[2] = Operand(data);
5068 flat->glc = glc;
5069 flat->dlc = false;
5070 flat->offset = offset;
5071 flat->disable_wqm = true;
5072 flat->barrier = barrier_buffer;
5073 ctx->program->needs_exact = true;
5074 ctx->block->instructions.emplace_back(std::move(flat));
5075 } else {
5076 assert(ctx->options->chip_class == GFX6);
5077
5078 aco_opcode op;
5079 switch (num_bytes) {
5080 case 4:
5081 op = aco_opcode::buffer_store_dword;
5082 break;
5083 case 8:
5084 op = aco_opcode::buffer_store_dwordx2;
5085 break;
5086 case 16:
5087 op = aco_opcode::buffer_store_dwordx4;
5088 break;
5089 default:
5090 unreachable("store_global not implemented for this size.");
5091 }
5092
5093 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5094
5095 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
5096 mubuf->operands[0] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5097 mubuf->operands[1] = Operand(rsrc);
5098 mubuf->operands[2] = Operand(0u);
5099 mubuf->operands[3] = Operand(write_data);
5100 mubuf->glc = glc;
5101 mubuf->dlc = false;
5102 mubuf->offset = offset;
5103 mubuf->addr64 = addr.type() == RegType::vgpr;
5104 mubuf->disable_wqm = true;
5105 mubuf->barrier = barrier_buffer;
5106 ctx->program->needs_exact = true;
5107 ctx->block->instructions.emplace_back(std::move(mubuf));
5108 }
5109 }
5110 }
5111
5112 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5113 {
5114 /* return the previous value if dest is ever used */
5115 bool return_previous = false;
5116 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5117 return_previous = true;
5118 break;
5119 }
5120 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5121 return_previous = true;
5122 break;
5123 }
5124
5125 Builder bld(ctx->program, ctx->block);
5126 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5127 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5128
5129 if (ctx->options->chip_class >= GFX7)
5130 addr = as_vgpr(ctx, addr);
5131
5132 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
5133 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
5134 get_ssa_temp(ctx, instr->src[2].ssa), data);
5135
5136 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5137
5138 aco_opcode op32, op64;
5139
5140 if (ctx->options->chip_class >= GFX7) {
5141 bool global = ctx->options->chip_class >= GFX9;
5142 switch (instr->intrinsic) {
5143 case nir_intrinsic_global_atomic_add:
5144 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
5145 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
5146 break;
5147 case nir_intrinsic_global_atomic_imin:
5148 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
5149 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
5150 break;
5151 case nir_intrinsic_global_atomic_umin:
5152 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
5153 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
5154 break;
5155 case nir_intrinsic_global_atomic_imax:
5156 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
5157 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
5158 break;
5159 case nir_intrinsic_global_atomic_umax:
5160 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
5161 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
5162 break;
5163 case nir_intrinsic_global_atomic_and:
5164 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
5165 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
5166 break;
5167 case nir_intrinsic_global_atomic_or:
5168 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
5169 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
5170 break;
5171 case nir_intrinsic_global_atomic_xor:
5172 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
5173 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
5174 break;
5175 case nir_intrinsic_global_atomic_exchange:
5176 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
5177 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
5178 break;
5179 case nir_intrinsic_global_atomic_comp_swap:
5180 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
5181 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
5182 break;
5183 default:
5184 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5185 }
5186
5187 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5188 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
5189 flat->operands[0] = Operand(addr);
5190 flat->operands[1] = Operand(s1);
5191 flat->operands[2] = Operand(data);
5192 if (return_previous)
5193 flat->definitions[0] = Definition(dst);
5194 flat->glc = return_previous;
5195 flat->dlc = false; /* Not needed for atomics */
5196 flat->offset = 0;
5197 flat->disable_wqm = true;
5198 flat->barrier = barrier_buffer;
5199 ctx->program->needs_exact = true;
5200 ctx->block->instructions.emplace_back(std::move(flat));
5201 } else {
5202 assert(ctx->options->chip_class == GFX6);
5203
5204 switch (instr->intrinsic) {
5205 case nir_intrinsic_global_atomic_add:
5206 op32 = aco_opcode::buffer_atomic_add;
5207 op64 = aco_opcode::buffer_atomic_add_x2;
5208 break;
5209 case nir_intrinsic_global_atomic_imin:
5210 op32 = aco_opcode::buffer_atomic_smin;
5211 op64 = aco_opcode::buffer_atomic_smin_x2;
5212 break;
5213 case nir_intrinsic_global_atomic_umin:
5214 op32 = aco_opcode::buffer_atomic_umin;
5215 op64 = aco_opcode::buffer_atomic_umin_x2;
5216 break;
5217 case nir_intrinsic_global_atomic_imax:
5218 op32 = aco_opcode::buffer_atomic_smax;
5219 op64 = aco_opcode::buffer_atomic_smax_x2;
5220 break;
5221 case nir_intrinsic_global_atomic_umax:
5222 op32 = aco_opcode::buffer_atomic_umax;
5223 op64 = aco_opcode::buffer_atomic_umax_x2;
5224 break;
5225 case nir_intrinsic_global_atomic_and:
5226 op32 = aco_opcode::buffer_atomic_and;
5227 op64 = aco_opcode::buffer_atomic_and_x2;
5228 break;
5229 case nir_intrinsic_global_atomic_or:
5230 op32 = aco_opcode::buffer_atomic_or;
5231 op64 = aco_opcode::buffer_atomic_or_x2;
5232 break;
5233 case nir_intrinsic_global_atomic_xor:
5234 op32 = aco_opcode::buffer_atomic_xor;
5235 op64 = aco_opcode::buffer_atomic_xor_x2;
5236 break;
5237 case nir_intrinsic_global_atomic_exchange:
5238 op32 = aco_opcode::buffer_atomic_swap;
5239 op64 = aco_opcode::buffer_atomic_swap_x2;
5240 break;
5241 case nir_intrinsic_global_atomic_comp_swap:
5242 op32 = aco_opcode::buffer_atomic_cmpswap;
5243 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
5244 break;
5245 default:
5246 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
5247 }
5248
5249 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
5250
5251 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
5252
5253 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5254 mubuf->operands[0] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
5255 mubuf->operands[1] = Operand(rsrc);
5256 mubuf->operands[2] = Operand(0u);
5257 mubuf->operands[3] = Operand(data);
5258 if (return_previous)
5259 mubuf->definitions[0] = Definition(dst);
5260 mubuf->glc = return_previous;
5261 mubuf->dlc = false;
5262 mubuf->offset = 0;
5263 mubuf->addr64 = addr.type() == RegType::vgpr;
5264 mubuf->disable_wqm = true;
5265 mubuf->barrier = barrier_buffer;
5266 ctx->program->needs_exact = true;
5267 ctx->block->instructions.emplace_back(std::move(mubuf));
5268 }
5269 }
5270
5271 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
5272 Builder bld(ctx->program, ctx->block);
5273 switch(instr->intrinsic) {
5274 case nir_intrinsic_group_memory_barrier:
5275 case nir_intrinsic_memory_barrier:
5276 bld.barrier(aco_opcode::p_memory_barrier_common);
5277 break;
5278 case nir_intrinsic_memory_barrier_buffer:
5279 bld.barrier(aco_opcode::p_memory_barrier_buffer);
5280 break;
5281 case nir_intrinsic_memory_barrier_image:
5282 bld.barrier(aco_opcode::p_memory_barrier_image);
5283 break;
5284 case nir_intrinsic_memory_barrier_shared:
5285 bld.barrier(aco_opcode::p_memory_barrier_shared);
5286 break;
5287 default:
5288 unreachable("Unimplemented memory barrier intrinsic");
5289 break;
5290 }
5291 }
5292
5293 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5294 {
5295 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
5296 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5297 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
5298 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5299 Builder bld(ctx->program, ctx->block);
5300
5301 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
5302 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5303 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
5304 }
5305
5306 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
5307 {
5308 unsigned writemask = nir_intrinsic_write_mask(instr);
5309 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5310 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5311 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5312 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
5313
5314 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
5315 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
5316 }
5317
5318 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5319 {
5320 unsigned offset = nir_intrinsic_base(instr);
5321 Operand m = load_lds_size_m0(ctx);
5322 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5323 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5324
5325 unsigned num_operands = 3;
5326 aco_opcode op32, op64, op32_rtn, op64_rtn;
5327 switch(instr->intrinsic) {
5328 case nir_intrinsic_shared_atomic_add:
5329 op32 = aco_opcode::ds_add_u32;
5330 op64 = aco_opcode::ds_add_u64;
5331 op32_rtn = aco_opcode::ds_add_rtn_u32;
5332 op64_rtn = aco_opcode::ds_add_rtn_u64;
5333 break;
5334 case nir_intrinsic_shared_atomic_imin:
5335 op32 = aco_opcode::ds_min_i32;
5336 op64 = aco_opcode::ds_min_i64;
5337 op32_rtn = aco_opcode::ds_min_rtn_i32;
5338 op64_rtn = aco_opcode::ds_min_rtn_i64;
5339 break;
5340 case nir_intrinsic_shared_atomic_umin:
5341 op32 = aco_opcode::ds_min_u32;
5342 op64 = aco_opcode::ds_min_u64;
5343 op32_rtn = aco_opcode::ds_min_rtn_u32;
5344 op64_rtn = aco_opcode::ds_min_rtn_u64;
5345 break;
5346 case nir_intrinsic_shared_atomic_imax:
5347 op32 = aco_opcode::ds_max_i32;
5348 op64 = aco_opcode::ds_max_i64;
5349 op32_rtn = aco_opcode::ds_max_rtn_i32;
5350 op64_rtn = aco_opcode::ds_max_rtn_i64;
5351 break;
5352 case nir_intrinsic_shared_atomic_umax:
5353 op32 = aco_opcode::ds_max_u32;
5354 op64 = aco_opcode::ds_max_u64;
5355 op32_rtn = aco_opcode::ds_max_rtn_u32;
5356 op64_rtn = aco_opcode::ds_max_rtn_u64;
5357 break;
5358 case nir_intrinsic_shared_atomic_and:
5359 op32 = aco_opcode::ds_and_b32;
5360 op64 = aco_opcode::ds_and_b64;
5361 op32_rtn = aco_opcode::ds_and_rtn_b32;
5362 op64_rtn = aco_opcode::ds_and_rtn_b64;
5363 break;
5364 case nir_intrinsic_shared_atomic_or:
5365 op32 = aco_opcode::ds_or_b32;
5366 op64 = aco_opcode::ds_or_b64;
5367 op32_rtn = aco_opcode::ds_or_rtn_b32;
5368 op64_rtn = aco_opcode::ds_or_rtn_b64;
5369 break;
5370 case nir_intrinsic_shared_atomic_xor:
5371 op32 = aco_opcode::ds_xor_b32;
5372 op64 = aco_opcode::ds_xor_b64;
5373 op32_rtn = aco_opcode::ds_xor_rtn_b32;
5374 op64_rtn = aco_opcode::ds_xor_rtn_b64;
5375 break;
5376 case nir_intrinsic_shared_atomic_exchange:
5377 op32 = aco_opcode::ds_write_b32;
5378 op64 = aco_opcode::ds_write_b64;
5379 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
5380 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
5381 break;
5382 case nir_intrinsic_shared_atomic_comp_swap:
5383 op32 = aco_opcode::ds_cmpst_b32;
5384 op64 = aco_opcode::ds_cmpst_b64;
5385 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
5386 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
5387 num_operands = 4;
5388 break;
5389 default:
5390 unreachable("Unhandled shared atomic intrinsic");
5391 }
5392
5393 /* return the previous value if dest is ever used */
5394 bool return_previous = false;
5395 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5396 return_previous = true;
5397 break;
5398 }
5399 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5400 return_previous = true;
5401 break;
5402 }
5403
5404 aco_opcode op;
5405 if (data.size() == 1) {
5406 assert(instr->dest.ssa.bit_size == 32);
5407 op = return_previous ? op32_rtn : op32;
5408 } else {
5409 assert(instr->dest.ssa.bit_size == 64);
5410 op = return_previous ? op64_rtn : op64;
5411 }
5412
5413 if (offset > 65535) {
5414 Builder bld(ctx->program, ctx->block);
5415 address = bld.vadd32(bld.def(v1), Operand(offset), address);
5416 offset = 0;
5417 }
5418
5419 aco_ptr<DS_instruction> ds;
5420 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
5421 ds->operands[0] = Operand(address);
5422 ds->operands[1] = Operand(data);
5423 if (num_operands == 4)
5424 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
5425 ds->operands[num_operands - 1] = m;
5426 ds->offset0 = offset;
5427 if (return_previous)
5428 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
5429 ctx->block->instructions.emplace_back(std::move(ds));
5430 }
5431
5432 Temp get_scratch_resource(isel_context *ctx)
5433 {
5434 Builder bld(ctx->program, ctx->block);
5435 Temp scratch_addr = ctx->program->private_segment_buffer;
5436 if (ctx->stage != compute_cs)
5437 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
5438
5439 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
5440 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
5441
5442 if (ctx->program->chip_class >= GFX10) {
5443 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5444 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5445 S_008F0C_RESOURCE_LEVEL(1);
5446 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
5447 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5448 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5449 }
5450
5451 /* older generations need element size = 16 bytes. element size removed in GFX9 */
5452 if (ctx->program->chip_class <= GFX8)
5453 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
5454
5455 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
5456 }
5457
5458 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5459 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
5460 Builder bld(ctx->program, ctx->block);
5461 Temp rsrc = get_scratch_resource(ctx);
5462 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5463 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5464
5465 aco_opcode op;
5466 switch (dst.size()) {
5467 case 1:
5468 op = aco_opcode::buffer_load_dword;
5469 break;
5470 case 2:
5471 op = aco_opcode::buffer_load_dwordx2;
5472 break;
5473 case 3:
5474 op = aco_opcode::buffer_load_dwordx3;
5475 break;
5476 case 4:
5477 op = aco_opcode::buffer_load_dwordx4;
5478 break;
5479 case 6:
5480 case 8: {
5481 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
5482 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
5483 bld.def(v4), offset, rsrc,
5484 ctx->program->scratch_offset, 0, true);
5485 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
5486 aco_opcode::buffer_load_dwordx4,
5487 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
5488 offset, rsrc, ctx->program->scratch_offset, 16, true);
5489 emit_split_vector(ctx, lower, 2);
5490 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
5491 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
5492 if (dst.size() == 8) {
5493 emit_split_vector(ctx, upper, 2);
5494 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
5495 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
5496 } else {
5497 elems[2] = upper;
5498 }
5499
5500 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
5501 Format::PSEUDO, dst.size() / 2, 1)};
5502 for (unsigned i = 0; i < dst.size() / 2; i++)
5503 vec->operands[i] = Operand(elems[i]);
5504 vec->definitions[0] = Definition(dst);
5505 bld.insert(std::move(vec));
5506 ctx->allocated_vec.emplace(dst.id(), elems);
5507 return;
5508 }
5509 default:
5510 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
5511 }
5512
5513 bld.mubuf(op, Definition(dst), offset, rsrc, ctx->program->scratch_offset, 0, true);
5514 emit_split_vector(ctx, dst, instr->num_components);
5515 }
5516
5517 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
5518 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
5519 Builder bld(ctx->program, ctx->block);
5520 Temp rsrc = get_scratch_resource(ctx);
5521 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5522 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5523
5524 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5525 unsigned writemask = nir_intrinsic_write_mask(instr);
5526
5527 while (writemask) {
5528 int start, count;
5529 u_bit_scan_consecutive_range(&writemask, &start, &count);
5530 int num_bytes = count * elem_size_bytes;
5531
5532 if (num_bytes > 16) {
5533 assert(elem_size_bytes == 8);
5534 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5535 count = 2;
5536 num_bytes = 16;
5537 }
5538
5539 // TODO: check alignment of sub-dword stores
5540 // TODO: split 3 bytes. there is no store instruction for that
5541
5542 Temp write_data;
5543 if (count != instr->num_components) {
5544 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5545 for (int i = 0; i < count; i++) {
5546 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
5547 vec->operands[i] = Operand(elem);
5548 }
5549 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
5550 vec->definitions[0] = Definition(write_data);
5551 ctx->block->instructions.emplace_back(std::move(vec));
5552 } else {
5553 write_data = data;
5554 }
5555
5556 aco_opcode op;
5557 switch (num_bytes) {
5558 case 4:
5559 op = aco_opcode::buffer_store_dword;
5560 break;
5561 case 8:
5562 op = aco_opcode::buffer_store_dwordx2;
5563 break;
5564 case 12:
5565 op = aco_opcode::buffer_store_dwordx3;
5566 break;
5567 case 16:
5568 op = aco_opcode::buffer_store_dwordx4;
5569 break;
5570 default:
5571 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
5572 }
5573
5574 bld.mubuf(op, offset, rsrc, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
5575 }
5576 }
5577
5578 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
5579 uint8_t log2_ps_iter_samples;
5580 if (ctx->program->info->ps.force_persample) {
5581 log2_ps_iter_samples =
5582 util_logbase2(ctx->options->key.fs.num_samples);
5583 } else {
5584 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
5585 }
5586
5587 /* The bit pattern matches that used by fixed function fragment
5588 * processing. */
5589 static const unsigned ps_iter_masks[] = {
5590 0xffff, /* not used */
5591 0x5555,
5592 0x1111,
5593 0x0101,
5594 0x0001,
5595 };
5596 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
5597
5598 Builder bld(ctx->program, ctx->block);
5599
5600 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
5601 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
5602 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
5603 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
5604 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5605 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
5606 }
5607
5608 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
5609 Builder bld(ctx->program, ctx->block);
5610
5611 unsigned stream = nir_intrinsic_stream_id(instr);
5612 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5613 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
5614 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
5615
5616 /* get GSVS ring */
5617 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
5618
5619 unsigned num_components =
5620 ctx->program->info->gs.num_stream_output_components[stream];
5621 assert(num_components);
5622
5623 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
5624 unsigned stream_offset = 0;
5625 for (unsigned i = 0; i < stream; i++) {
5626 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
5627 stream_offset += prev_stride * ctx->program->wave_size;
5628 }
5629
5630 /* Limit on the stride field for <= GFX7. */
5631 assert(stride < (1 << 14));
5632
5633 Temp gsvs_dwords[4];
5634 for (unsigned i = 0; i < 4; i++)
5635 gsvs_dwords[i] = bld.tmp(s1);
5636 bld.pseudo(aco_opcode::p_split_vector,
5637 Definition(gsvs_dwords[0]),
5638 Definition(gsvs_dwords[1]),
5639 Definition(gsvs_dwords[2]),
5640 Definition(gsvs_dwords[3]),
5641 gsvs_ring);
5642
5643 if (stream_offset) {
5644 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
5645
5646 Temp carry = bld.tmp(s1);
5647 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
5648 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
5649 }
5650
5651 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
5652 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
5653
5654 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5655 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
5656
5657 unsigned offset = 0;
5658 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
5659 if (ctx->program->info->gs.output_streams[i] != stream)
5660 continue;
5661
5662 for (unsigned j = 0; j < 4; j++) {
5663 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
5664 continue;
5665
5666 if (ctx->outputs.mask[i] & (1 << j)) {
5667 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
5668 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
5669 if (const_offset >= 4096u) {
5670 if (vaddr_offset.isUndefined())
5671 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
5672 else
5673 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
5674 const_offset %= 4096u;
5675 }
5676
5677 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
5678 mtbuf->operands[0] = vaddr_offset;
5679 mtbuf->operands[1] = Operand(gsvs_ring);
5680 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
5681 mtbuf->operands[3] = Operand(ctx->outputs.outputs[i][j]);
5682 mtbuf->offen = !vaddr_offset.isUndefined();
5683 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
5684 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
5685 mtbuf->offset = const_offset;
5686 mtbuf->glc = true;
5687 mtbuf->slc = true;
5688 mtbuf->barrier = barrier_gs_data;
5689 mtbuf->can_reorder = true;
5690 bld.insert(std::move(mtbuf));
5691 }
5692
5693 offset += ctx->shader->info.gs.vertices_out;
5694 }
5695
5696 /* outputs for the next vertex are undefined and keeping them around can
5697 * create invalid IR with control flow */
5698 ctx->outputs.mask[i] = 0;
5699 }
5700
5701 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
5702 }
5703
5704 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
5705 {
5706 Builder bld(ctx->program, ctx->block);
5707
5708 if (cluster_size == 1) {
5709 return src;
5710 } if (op == nir_op_iand && cluster_size == 4) {
5711 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
5712 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5713 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
5714 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
5715 } else if (op == nir_op_ior && cluster_size == 4) {
5716 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
5717 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
5718 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
5719 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
5720 //subgroupAnd(val) -> (exec & ~val) == 0
5721 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
5722 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
5723 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
5724 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
5725 //subgroupOr(val) -> (val & exec) != 0
5726 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
5727 return bool_to_vector_condition(ctx, tmp);
5728 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
5729 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
5730 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5731 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
5732 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
5733 return bool_to_vector_condition(ctx, tmp);
5734 } else {
5735 //subgroupClustered{And,Or,Xor}(val, n) ->
5736 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
5737 //cluster_offset = ~(n - 1) & lane_id
5738 //cluster_mask = ((1 << n) - 1)
5739 //subgroupClusteredAnd():
5740 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
5741 //subgroupClusteredOr():
5742 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
5743 //subgroupClusteredXor():
5744 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
5745 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
5746 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
5747
5748 Temp tmp;
5749 if (op == nir_op_iand)
5750 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5751 else
5752 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5753
5754 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
5755
5756 if (ctx->program->chip_class <= GFX7)
5757 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
5758 else if (ctx->program->wave_size == 64)
5759 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
5760 else
5761 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
5762 tmp = emit_extract_vector(ctx, tmp, 0, v1);
5763 if (cluster_mask != 0xffffffff)
5764 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
5765
5766 Definition cmp_def = Definition();
5767 if (op == nir_op_iand) {
5768 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
5769 } else if (op == nir_op_ior) {
5770 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5771 } else if (op == nir_op_ixor) {
5772 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
5773 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
5774 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
5775 }
5776 cmp_def.setHint(vcc);
5777 return cmp_def.getTemp();
5778 }
5779 }
5780
5781 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
5782 {
5783 Builder bld(ctx->program, ctx->block);
5784
5785 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
5786 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
5787 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
5788 Temp tmp;
5789 if (op == nir_op_iand)
5790 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
5791 else
5792 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
5793
5794 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
5795 Temp lo = lohi.def(0).getTemp();
5796 Temp hi = lohi.def(1).getTemp();
5797 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
5798
5799 Definition cmp_def = Definition();
5800 if (op == nir_op_iand)
5801 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5802 else if (op == nir_op_ior)
5803 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
5804 else if (op == nir_op_ixor)
5805 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
5806 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
5807 cmp_def.setHint(vcc);
5808 return cmp_def.getTemp();
5809 }
5810
5811 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
5812 {
5813 Builder bld(ctx->program, ctx->block);
5814
5815 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
5816 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
5817 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
5818 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
5819 if (op == nir_op_iand)
5820 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5821 else if (op == nir_op_ior)
5822 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5823 else if (op == nir_op_ixor)
5824 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
5825
5826 assert(false);
5827 return Temp();
5828 }
5829
5830 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
5831 {
5832 Builder bld(ctx->program, ctx->block);
5833 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
5834 if (src.regClass().type() == RegType::vgpr) {
5835 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
5836 } else if (src.regClass() == s1) {
5837 bld.sop1(aco_opcode::s_mov_b32, dst, src);
5838 } else if (src.regClass() == s2) {
5839 bld.sop1(aco_opcode::s_mov_b64, dst, src);
5840 } else {
5841 fprintf(stderr, "Unimplemented NIR instr bit size: ");
5842 nir_print_instr(&instr->instr, stderr);
5843 fprintf(stderr, "\n");
5844 }
5845 }
5846
5847 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
5848 {
5849 Builder bld(ctx->program, ctx->block);
5850 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
5851 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
5852 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
5853
5854 Temp ddx_1, ddx_2, ddy_1, ddy_2;
5855 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
5856 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
5857 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
5858
5859 /* Build DD X/Y */
5860 if (ctx->program->chip_class >= GFX8) {
5861 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
5862 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
5863 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
5864 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
5865 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
5866 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
5867 } else {
5868 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
5869 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
5870 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
5871 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
5872 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
5873 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
5874 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
5875 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
5876 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
5877 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
5878 }
5879
5880 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
5881 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
5882 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
5883 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
5884 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
5885 Temp wqm1 = bld.tmp(v1);
5886 emit_wqm(ctx, tmp1, wqm1, true);
5887 Temp wqm2 = bld.tmp(v1);
5888 emit_wqm(ctx, tmp2, wqm2, true);
5889 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
5890 return;
5891 }
5892
5893 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
5894 {
5895 Builder bld(ctx->program, ctx->block);
5896 switch(instr->intrinsic) {
5897 case nir_intrinsic_load_barycentric_sample:
5898 case nir_intrinsic_load_barycentric_pixel:
5899 case nir_intrinsic_load_barycentric_centroid: {
5900 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
5901 Temp bary = Temp(0, s2);
5902 switch (mode) {
5903 case INTERP_MODE_SMOOTH:
5904 case INTERP_MODE_NONE:
5905 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
5906 bary = get_arg(ctx, ctx->args->ac.persp_center);
5907 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
5908 bary = ctx->persp_centroid;
5909 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
5910 bary = get_arg(ctx, ctx->args->ac.persp_sample);
5911 break;
5912 case INTERP_MODE_NOPERSPECTIVE:
5913 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
5914 bary = get_arg(ctx, ctx->args->ac.linear_center);
5915 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
5916 bary = ctx->linear_centroid;
5917 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
5918 bary = get_arg(ctx, ctx->args->ac.linear_sample);
5919 break;
5920 default:
5921 break;
5922 }
5923 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5924 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
5925 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
5926 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5927 Operand(p1), Operand(p2));
5928 emit_split_vector(ctx, dst, 2);
5929 break;
5930 }
5931 case nir_intrinsic_load_barycentric_at_sample: {
5932 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
5933 switch (ctx->options->key.fs.num_samples) {
5934 case 2: sample_pos_offset += 1 << 3; break;
5935 case 4: sample_pos_offset += 3 << 3; break;
5936 case 8: sample_pos_offset += 7 << 3; break;
5937 default: break;
5938 }
5939 Temp sample_pos;
5940 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
5941 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
5942 Temp private_segment_buffer = ctx->program->private_segment_buffer;
5943 if (addr.type() == RegType::sgpr) {
5944 Operand offset;
5945 if (const_addr) {
5946 sample_pos_offset += const_addr->u32 << 3;
5947 offset = Operand(sample_pos_offset);
5948 } else if (ctx->options->chip_class >= GFX9) {
5949 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
5950 } else {
5951 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
5952 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
5953 }
5954 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, Operand(offset));
5955
5956 } else if (ctx->options->chip_class >= GFX9) {
5957 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5958 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
5959 } else if (ctx->options->chip_class >= GFX7) {
5960 /* addr += private_segment_buffer + sample_pos_offset */
5961 Temp tmp0 = bld.tmp(s1);
5962 Temp tmp1 = bld.tmp(s1);
5963 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
5964 Definition scc_tmp = bld.def(s1, scc);
5965 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
5966 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
5967 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5968 Temp pck0 = bld.tmp(v1);
5969 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
5970 tmp1 = as_vgpr(ctx, tmp1);
5971 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
5972 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
5973
5974 /* sample_pos = flat_load_dwordx2 addr */
5975 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
5976 } else {
5977 assert(ctx->options->chip_class == GFX6);
5978
5979 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5980 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5981 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
5982
5983 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
5984 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
5985
5986 sample_pos = bld.tmp(v2);
5987
5988 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
5989 load->definitions[0] = Definition(sample_pos);
5990 load->operands[0] = Operand(addr);
5991 load->operands[1] = Operand(rsrc);
5992 load->operands[2] = Operand(0u);
5993 load->offset = sample_pos_offset;
5994 load->offen = 0;
5995 load->addr64 = true;
5996 load->glc = false;
5997 load->dlc = false;
5998 load->disable_wqm = false;
5999 load->barrier = barrier_none;
6000 load->can_reorder = true;
6001 ctx->block->instructions.emplace_back(std::move(load));
6002 }
6003
6004 /* sample_pos -= 0.5 */
6005 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
6006 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
6007 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
6008 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
6009 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
6010
6011 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6012 break;
6013 }
6014 case nir_intrinsic_load_barycentric_at_offset: {
6015 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
6016 RegClass rc = RegClass(offset.type(), 1);
6017 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
6018 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
6019 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
6020 break;
6021 }
6022 case nir_intrinsic_load_front_face: {
6023 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6024 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
6025 break;
6026 }
6027 case nir_intrinsic_load_view_index:
6028 case nir_intrinsic_load_layer_id: {
6029 if (instr->intrinsic == nir_intrinsic_load_view_index && (ctx->stage & (sw_vs | sw_gs))) {
6030 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6031 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
6032 break;
6033 }
6034
6035 unsigned idx = nir_intrinsic_base(instr);
6036 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6037 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
6038 break;
6039 }
6040 case nir_intrinsic_load_frag_coord: {
6041 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
6042 break;
6043 }
6044 case nir_intrinsic_load_sample_pos: {
6045 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
6046 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
6047 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6048 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
6049 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
6050 break;
6051 }
6052 case nir_intrinsic_load_interpolated_input:
6053 visit_load_interpolated_input(ctx, instr);
6054 break;
6055 case nir_intrinsic_store_output:
6056 visit_store_output(ctx, instr);
6057 break;
6058 case nir_intrinsic_load_input:
6059 visit_load_input(ctx, instr);
6060 break;
6061 case nir_intrinsic_load_per_vertex_input:
6062 visit_load_per_vertex_input(ctx, instr);
6063 break;
6064 case nir_intrinsic_load_ubo:
6065 visit_load_ubo(ctx, instr);
6066 break;
6067 case nir_intrinsic_load_push_constant:
6068 visit_load_push_constant(ctx, instr);
6069 break;
6070 case nir_intrinsic_load_constant:
6071 visit_load_constant(ctx, instr);
6072 break;
6073 case nir_intrinsic_vulkan_resource_index:
6074 visit_load_resource(ctx, instr);
6075 break;
6076 case nir_intrinsic_discard:
6077 visit_discard(ctx, instr);
6078 break;
6079 case nir_intrinsic_discard_if:
6080 visit_discard_if(ctx, instr);
6081 break;
6082 case nir_intrinsic_load_shared:
6083 visit_load_shared(ctx, instr);
6084 break;
6085 case nir_intrinsic_store_shared:
6086 visit_store_shared(ctx, instr);
6087 break;
6088 case nir_intrinsic_shared_atomic_add:
6089 case nir_intrinsic_shared_atomic_imin:
6090 case nir_intrinsic_shared_atomic_umin:
6091 case nir_intrinsic_shared_atomic_imax:
6092 case nir_intrinsic_shared_atomic_umax:
6093 case nir_intrinsic_shared_atomic_and:
6094 case nir_intrinsic_shared_atomic_or:
6095 case nir_intrinsic_shared_atomic_xor:
6096 case nir_intrinsic_shared_atomic_exchange:
6097 case nir_intrinsic_shared_atomic_comp_swap:
6098 visit_shared_atomic(ctx, instr);
6099 break;
6100 case nir_intrinsic_image_deref_load:
6101 visit_image_load(ctx, instr);
6102 break;
6103 case nir_intrinsic_image_deref_store:
6104 visit_image_store(ctx, instr);
6105 break;
6106 case nir_intrinsic_image_deref_atomic_add:
6107 case nir_intrinsic_image_deref_atomic_umin:
6108 case nir_intrinsic_image_deref_atomic_imin:
6109 case nir_intrinsic_image_deref_atomic_umax:
6110 case nir_intrinsic_image_deref_atomic_imax:
6111 case nir_intrinsic_image_deref_atomic_and:
6112 case nir_intrinsic_image_deref_atomic_or:
6113 case nir_intrinsic_image_deref_atomic_xor:
6114 case nir_intrinsic_image_deref_atomic_exchange:
6115 case nir_intrinsic_image_deref_atomic_comp_swap:
6116 visit_image_atomic(ctx, instr);
6117 break;
6118 case nir_intrinsic_image_deref_size:
6119 visit_image_size(ctx, instr);
6120 break;
6121 case nir_intrinsic_load_ssbo:
6122 visit_load_ssbo(ctx, instr);
6123 break;
6124 case nir_intrinsic_store_ssbo:
6125 visit_store_ssbo(ctx, instr);
6126 break;
6127 case nir_intrinsic_load_global:
6128 visit_load_global(ctx, instr);
6129 break;
6130 case nir_intrinsic_store_global:
6131 visit_store_global(ctx, instr);
6132 break;
6133 case nir_intrinsic_global_atomic_add:
6134 case nir_intrinsic_global_atomic_imin:
6135 case nir_intrinsic_global_atomic_umin:
6136 case nir_intrinsic_global_atomic_imax:
6137 case nir_intrinsic_global_atomic_umax:
6138 case nir_intrinsic_global_atomic_and:
6139 case nir_intrinsic_global_atomic_or:
6140 case nir_intrinsic_global_atomic_xor:
6141 case nir_intrinsic_global_atomic_exchange:
6142 case nir_intrinsic_global_atomic_comp_swap:
6143 visit_global_atomic(ctx, instr);
6144 break;
6145 case nir_intrinsic_ssbo_atomic_add:
6146 case nir_intrinsic_ssbo_atomic_imin:
6147 case nir_intrinsic_ssbo_atomic_umin:
6148 case nir_intrinsic_ssbo_atomic_imax:
6149 case nir_intrinsic_ssbo_atomic_umax:
6150 case nir_intrinsic_ssbo_atomic_and:
6151 case nir_intrinsic_ssbo_atomic_or:
6152 case nir_intrinsic_ssbo_atomic_xor:
6153 case nir_intrinsic_ssbo_atomic_exchange:
6154 case nir_intrinsic_ssbo_atomic_comp_swap:
6155 visit_atomic_ssbo(ctx, instr);
6156 break;
6157 case nir_intrinsic_load_scratch:
6158 visit_load_scratch(ctx, instr);
6159 break;
6160 case nir_intrinsic_store_scratch:
6161 visit_store_scratch(ctx, instr);
6162 break;
6163 case nir_intrinsic_get_buffer_size:
6164 visit_get_buffer_size(ctx, instr);
6165 break;
6166 case nir_intrinsic_control_barrier: {
6167 unsigned* bsize = ctx->program->info->cs.block_size;
6168 unsigned workgroup_size = bsize[0] * bsize[1] * bsize[2];
6169 if (workgroup_size > ctx->program->wave_size)
6170 bld.sopp(aco_opcode::s_barrier);
6171 break;
6172 }
6173 case nir_intrinsic_group_memory_barrier:
6174 case nir_intrinsic_memory_barrier:
6175 case nir_intrinsic_memory_barrier_buffer:
6176 case nir_intrinsic_memory_barrier_image:
6177 case nir_intrinsic_memory_barrier_shared:
6178 emit_memory_barrier(ctx, instr);
6179 break;
6180 case nir_intrinsic_memory_barrier_tcs_patch:
6181 break;
6182 case nir_intrinsic_load_num_work_groups: {
6183 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6184 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
6185 emit_split_vector(ctx, dst, 3);
6186 break;
6187 }
6188 case nir_intrinsic_load_local_invocation_id: {
6189 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6190 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
6191 emit_split_vector(ctx, dst, 3);
6192 break;
6193 }
6194 case nir_intrinsic_load_work_group_id: {
6195 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6196 struct ac_arg *args = ctx->args->ac.workgroup_ids;
6197 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6198 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
6199 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
6200 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
6201 emit_split_vector(ctx, dst, 3);
6202 break;
6203 }
6204 case nir_intrinsic_load_local_invocation_index: {
6205 Temp id = emit_mbcnt(ctx, bld.def(v1));
6206
6207 /* The tg_size bits [6:11] contain the subgroup id,
6208 * we need this multiplied by the wave size, and then OR the thread id to it.
6209 */
6210 if (ctx->program->wave_size == 64) {
6211 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
6212 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
6213 get_arg(ctx, ctx->args->ac.tg_size));
6214 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
6215 } else {
6216 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
6217 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
6218 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6219 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
6220 }
6221 break;
6222 }
6223 case nir_intrinsic_load_subgroup_id: {
6224 if (ctx->stage == compute_cs) {
6225 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
6226 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
6227 } else {
6228 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
6229 }
6230 break;
6231 }
6232 case nir_intrinsic_load_subgroup_invocation: {
6233 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
6234 break;
6235 }
6236 case nir_intrinsic_load_num_subgroups: {
6237 if (ctx->stage == compute_cs)
6238 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
6239 get_arg(ctx, ctx->args->ac.tg_size));
6240 else
6241 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
6242 break;
6243 }
6244 case nir_intrinsic_ballot: {
6245 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6246 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6247 Definition tmp = bld.def(dst.regClass());
6248 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
6249 if (instr->src[0].ssa->bit_size == 1) {
6250 assert(src.regClass() == bld.lm);
6251 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
6252 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
6253 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
6254 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
6255 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
6256 } else {
6257 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6258 nir_print_instr(&instr->instr, stderr);
6259 fprintf(stderr, "\n");
6260 }
6261 if (dst.size() != bld.lm.size()) {
6262 /* Wave32 with ballot size set to 64 */
6263 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
6264 }
6265 emit_wqm(ctx, tmp.getTemp(), dst);
6266 break;
6267 }
6268 case nir_intrinsic_shuffle:
6269 case nir_intrinsic_read_invocation: {
6270 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6271 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
6272 emit_uniform_subgroup(ctx, instr, src);
6273 } else {
6274 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
6275 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
6276 tid = bld.as_uniform(tid);
6277 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6278 if (src.regClass() == v1) {
6279 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
6280 } else if (src.regClass() == v2) {
6281 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6282 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6283 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
6284 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
6285 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6286 emit_split_vector(ctx, dst, 2);
6287 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
6288 assert(src.regClass() == bld.lm);
6289 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
6290 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6291 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
6292 assert(src.regClass() == bld.lm);
6293 Temp tmp;
6294 if (ctx->program->chip_class <= GFX7)
6295 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
6296 else if (ctx->program->wave_size == 64)
6297 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
6298 else
6299 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
6300 tmp = emit_extract_vector(ctx, tmp, 0, v1);
6301 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
6302 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
6303 } else {
6304 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6305 nir_print_instr(&instr->instr, stderr);
6306 fprintf(stderr, "\n");
6307 }
6308 }
6309 break;
6310 }
6311 case nir_intrinsic_load_sample_id: {
6312 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
6313 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6314 break;
6315 }
6316 case nir_intrinsic_load_sample_mask_in: {
6317 visit_load_sample_mask_in(ctx, instr);
6318 break;
6319 }
6320 case nir_intrinsic_read_first_invocation: {
6321 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6322 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6323 if (src.regClass() == v1) {
6324 emit_wqm(ctx,
6325 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
6326 dst);
6327 } else if (src.regClass() == v2) {
6328 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6329 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6330 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
6331 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
6332 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6333 emit_split_vector(ctx, dst, 2);
6334 } else if (instr->dest.ssa.bit_size == 1) {
6335 assert(src.regClass() == bld.lm);
6336 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
6337 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
6338 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6339 } else if (src.regClass() == s1) {
6340 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
6341 } else if (src.regClass() == s2) {
6342 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
6343 } else {
6344 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6345 nir_print_instr(&instr->instr, stderr);
6346 fprintf(stderr, "\n");
6347 }
6348 break;
6349 }
6350 case nir_intrinsic_vote_all: {
6351 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6352 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6353 assert(src.regClass() == bld.lm);
6354 assert(dst.regClass() == bld.lm);
6355
6356 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
6357 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
6358 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
6359 break;
6360 }
6361 case nir_intrinsic_vote_any: {
6362 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6363 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6364 assert(src.regClass() == bld.lm);
6365 assert(dst.regClass() == bld.lm);
6366
6367 Temp tmp = bool_to_scalar_condition(ctx, src);
6368 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
6369 break;
6370 }
6371 case nir_intrinsic_reduce:
6372 case nir_intrinsic_inclusive_scan:
6373 case nir_intrinsic_exclusive_scan: {
6374 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6375 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6376 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
6377 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
6378 nir_intrinsic_cluster_size(instr) : 0;
6379 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
6380
6381 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
6382 emit_uniform_subgroup(ctx, instr, src);
6383 } else if (instr->dest.ssa.bit_size == 1) {
6384 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
6385 op = nir_op_iand;
6386 else if (op == nir_op_iadd)
6387 op = nir_op_ixor;
6388 else if (op == nir_op_umax || op == nir_op_imax)
6389 op = nir_op_ior;
6390 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
6391
6392 switch (instr->intrinsic) {
6393 case nir_intrinsic_reduce:
6394 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
6395 break;
6396 case nir_intrinsic_exclusive_scan:
6397 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
6398 break;
6399 case nir_intrinsic_inclusive_scan:
6400 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
6401 break;
6402 default:
6403 assert(false);
6404 }
6405 } else if (cluster_size == 1) {
6406 bld.copy(Definition(dst), src);
6407 } else {
6408 src = as_vgpr(ctx, src);
6409
6410 ReduceOp reduce_op;
6411 switch (op) {
6412 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
6413 CASE(iadd)
6414 CASE(imul)
6415 CASE(fadd)
6416 CASE(fmul)
6417 CASE(imin)
6418 CASE(umin)
6419 CASE(fmin)
6420 CASE(imax)
6421 CASE(umax)
6422 CASE(fmax)
6423 CASE(iand)
6424 CASE(ior)
6425 CASE(ixor)
6426 default:
6427 unreachable("unknown reduction op");
6428 #undef CASE
6429 }
6430
6431 aco_opcode aco_op;
6432 switch (instr->intrinsic) {
6433 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
6434 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
6435 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
6436 default:
6437 unreachable("unknown reduce intrinsic");
6438 }
6439
6440 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
6441 reduce->operands[0] = Operand(src);
6442 // filled in by aco_reduce_assign.cpp, used internally as part of the
6443 // reduce sequence
6444 assert(dst.size() == 1 || dst.size() == 2);
6445 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
6446 reduce->operands[2] = Operand(v1.as_linear());
6447
6448 Temp tmp_dst = bld.tmp(dst.regClass());
6449 reduce->definitions[0] = Definition(tmp_dst);
6450 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
6451 reduce->definitions[2] = Definition();
6452 reduce->definitions[3] = Definition(scc, s1);
6453 reduce->definitions[4] = Definition();
6454 reduce->reduce_op = reduce_op;
6455 reduce->cluster_size = cluster_size;
6456 ctx->block->instructions.emplace_back(std::move(reduce));
6457
6458 emit_wqm(ctx, tmp_dst, dst);
6459 }
6460 break;
6461 }
6462 case nir_intrinsic_quad_broadcast: {
6463 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6464 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6465 emit_uniform_subgroup(ctx, instr, src);
6466 } else {
6467 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6468 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
6469 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
6470
6471 if (instr->dest.ssa.bit_size == 1) {
6472 assert(src.regClass() == bld.lm);
6473 assert(dst.regClass() == bld.lm);
6474 uint32_t half_mask = 0x11111111u << lane;
6475 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
6476 Temp tmp = bld.tmp(bld.lm);
6477 bld.sop1(Builder::s_wqm, Definition(tmp),
6478 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
6479 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
6480 emit_wqm(ctx, tmp, dst);
6481 } else if (instr->dest.ssa.bit_size == 32) {
6482 if (ctx->program->chip_class >= GFX8)
6483 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
6484 else
6485 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
6486 } else if (instr->dest.ssa.bit_size == 64) {
6487 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6488 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6489 if (ctx->program->chip_class >= GFX8) {
6490 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6491 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6492 } else {
6493 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
6494 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
6495 }
6496 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6497 emit_split_vector(ctx, dst, 2);
6498 } else {
6499 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6500 nir_print_instr(&instr->instr, stderr);
6501 fprintf(stderr, "\n");
6502 }
6503 }
6504 break;
6505 }
6506 case nir_intrinsic_quad_swap_horizontal:
6507 case nir_intrinsic_quad_swap_vertical:
6508 case nir_intrinsic_quad_swap_diagonal:
6509 case nir_intrinsic_quad_swizzle_amd: {
6510 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6511 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6512 emit_uniform_subgroup(ctx, instr, src);
6513 break;
6514 }
6515 uint16_t dpp_ctrl = 0;
6516 switch (instr->intrinsic) {
6517 case nir_intrinsic_quad_swap_horizontal:
6518 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
6519 break;
6520 case nir_intrinsic_quad_swap_vertical:
6521 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
6522 break;
6523 case nir_intrinsic_quad_swap_diagonal:
6524 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
6525 break;
6526 case nir_intrinsic_quad_swizzle_amd:
6527 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
6528 break;
6529 default:
6530 break;
6531 }
6532 if (ctx->program->chip_class < GFX8)
6533 dpp_ctrl |= (1 << 15);
6534
6535 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6536 if (instr->dest.ssa.bit_size == 1) {
6537 assert(src.regClass() == bld.lm);
6538 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
6539 if (ctx->program->chip_class >= GFX8)
6540 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6541 else
6542 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6543 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
6544 emit_wqm(ctx, tmp, dst);
6545 } else if (instr->dest.ssa.bit_size == 32) {
6546 Temp tmp;
6547 if (ctx->program->chip_class >= GFX8)
6548 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
6549 else
6550 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
6551 emit_wqm(ctx, tmp, dst);
6552 } else if (instr->dest.ssa.bit_size == 64) {
6553 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6554 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6555 if (ctx->program->chip_class >= GFX8) {
6556 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
6557 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
6558 } else {
6559 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
6560 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
6561 }
6562 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6563 emit_split_vector(ctx, dst, 2);
6564 } else {
6565 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6566 nir_print_instr(&instr->instr, stderr);
6567 fprintf(stderr, "\n");
6568 }
6569 break;
6570 }
6571 case nir_intrinsic_masked_swizzle_amd: {
6572 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6573 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
6574 emit_uniform_subgroup(ctx, instr, src);
6575 break;
6576 }
6577 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6578 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
6579 if (dst.regClass() == v1) {
6580 emit_wqm(ctx,
6581 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
6582 dst);
6583 } else if (dst.regClass() == v2) {
6584 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
6585 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
6586 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
6587 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
6588 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6589 emit_split_vector(ctx, dst, 2);
6590 } else {
6591 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6592 nir_print_instr(&instr->instr, stderr);
6593 fprintf(stderr, "\n");
6594 }
6595 break;
6596 }
6597 case nir_intrinsic_write_invocation_amd: {
6598 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6599 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
6600 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
6601 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6602 if (dst.regClass() == v1) {
6603 /* src2 is ignored for writelane. RA assigns the same reg for dst */
6604 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
6605 } else if (dst.regClass() == v2) {
6606 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
6607 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
6608 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
6609 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
6610 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
6611 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
6612 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
6613 emit_split_vector(ctx, dst, 2);
6614 } else {
6615 fprintf(stderr, "Unimplemented NIR instr bit size: ");
6616 nir_print_instr(&instr->instr, stderr);
6617 fprintf(stderr, "\n");
6618 }
6619 break;
6620 }
6621 case nir_intrinsic_mbcnt_amd: {
6622 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6623 RegClass rc = RegClass(src.type(), 1);
6624 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
6625 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
6626 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6627 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
6628 emit_wqm(ctx, wqm_tmp, dst);
6629 break;
6630 }
6631 case nir_intrinsic_load_helper_invocation: {
6632 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6633 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
6634 ctx->block->kind |= block_kind_needs_lowering;
6635 ctx->program->needs_exact = true;
6636 break;
6637 }
6638 case nir_intrinsic_is_helper_invocation: {
6639 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6640 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
6641 ctx->block->kind |= block_kind_needs_lowering;
6642 ctx->program->needs_exact = true;
6643 break;
6644 }
6645 case nir_intrinsic_demote:
6646 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
6647
6648 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6649 ctx->cf_info.exec_potentially_empty = true;
6650 ctx->block->kind |= block_kind_uses_demote;
6651 ctx->program->needs_exact = true;
6652 break;
6653 case nir_intrinsic_demote_if: {
6654 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
6655 assert(src.regClass() == bld.lm);
6656 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
6657 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
6658
6659 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
6660 ctx->cf_info.exec_potentially_empty = true;
6661 ctx->block->kind |= block_kind_uses_demote;
6662 ctx->program->needs_exact = true;
6663 break;
6664 }
6665 case nir_intrinsic_first_invocation: {
6666 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
6667 get_ssa_temp(ctx, &instr->dest.ssa));
6668 break;
6669 }
6670 case nir_intrinsic_shader_clock:
6671 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
6672 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
6673 break;
6674 case nir_intrinsic_load_vertex_id_zero_base: {
6675 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6676 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
6677 break;
6678 }
6679 case nir_intrinsic_load_first_vertex: {
6680 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6681 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
6682 break;
6683 }
6684 case nir_intrinsic_load_base_instance: {
6685 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6686 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
6687 break;
6688 }
6689 case nir_intrinsic_load_instance_id: {
6690 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6691 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
6692 break;
6693 }
6694 case nir_intrinsic_load_draw_id: {
6695 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6696 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
6697 break;
6698 }
6699 case nir_intrinsic_load_invocation_id: {
6700 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
6701 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6702 if (ctx->options->chip_class >= GFX10)
6703 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
6704 else
6705 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
6706 break;
6707 }
6708 case nir_intrinsic_load_primitive_id: {
6709 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
6710 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6711 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
6712 break;
6713 }
6714 case nir_intrinsic_emit_vertex_with_counter: {
6715 visit_emit_vertex_with_counter(ctx, instr);
6716 break;
6717 }
6718 case nir_intrinsic_end_primitive_with_counter: {
6719 unsigned stream = nir_intrinsic_stream_id(instr);
6720 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
6721 break;
6722 }
6723 case nir_intrinsic_set_vertex_count: {
6724 /* unused, the HW keeps track of this for us */
6725 break;
6726 }
6727 default:
6728 fprintf(stderr, "Unimplemented intrinsic instr: ");
6729 nir_print_instr(&instr->instr, stderr);
6730 fprintf(stderr, "\n");
6731 abort();
6732
6733 break;
6734 }
6735 }
6736
6737
6738 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
6739 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
6740 enum glsl_base_type *stype)
6741 {
6742 nir_deref_instr *texture_deref_instr = NULL;
6743 nir_deref_instr *sampler_deref_instr = NULL;
6744 int plane = -1;
6745
6746 for (unsigned i = 0; i < instr->num_srcs; i++) {
6747 switch (instr->src[i].src_type) {
6748 case nir_tex_src_texture_deref:
6749 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
6750 break;
6751 case nir_tex_src_sampler_deref:
6752 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
6753 break;
6754 case nir_tex_src_plane:
6755 plane = nir_src_as_int(instr->src[i].src);
6756 break;
6757 default:
6758 break;
6759 }
6760 }
6761
6762 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
6763
6764 if (!sampler_deref_instr)
6765 sampler_deref_instr = texture_deref_instr;
6766
6767 if (plane >= 0) {
6768 assert(instr->op != nir_texop_txf_ms &&
6769 instr->op != nir_texop_samples_identical);
6770 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
6771 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
6772 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
6773 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
6774 } else if (instr->op == nir_texop_fragment_mask_fetch) {
6775 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
6776 } else {
6777 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
6778 }
6779 if (samp_ptr) {
6780 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
6781
6782 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
6783 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
6784 Builder bld(ctx->program, ctx->block);
6785
6786 /* to avoid unnecessary moves, we split and recombine sampler and image */
6787 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
6788 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6789 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
6790 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
6791 Definition(img[2]), Definition(img[3]), Definition(img[4]),
6792 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
6793 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
6794 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
6795
6796 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
6797 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
6798 img[0], img[1], img[2], img[3],
6799 img[4], img[5], img[6], img[7]);
6800 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6801 samp[0], samp[1], samp[2], samp[3]);
6802 }
6803 }
6804 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
6805 instr->op == nir_texop_samples_identical))
6806 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
6807 }
6808
6809 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
6810 Temp *out_ma, Temp *out_sc, Temp *out_tc)
6811 {
6812 Builder bld(ctx->program, ctx->block);
6813
6814 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
6815 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
6816 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
6817
6818 Operand neg_one(0xbf800000u);
6819 Operand one(0x3f800000u);
6820 Operand two(0x40000000u);
6821 Operand four(0x40800000u);
6822
6823 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
6824 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
6825 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
6826
6827 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
6828 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
6829 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
6830 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
6831
6832 // select sc
6833 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
6834 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
6835 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
6836 one, is_ma_y);
6837 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
6838
6839 // select tc
6840 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
6841 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
6842 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
6843
6844 // select ma
6845 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
6846 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
6847 deriv_z, is_ma_z);
6848 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
6849 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
6850 }
6851
6852 void prepare_cube_coords(isel_context *ctx, Temp* coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
6853 {
6854 Builder bld(ctx->program, ctx->block);
6855 Temp coord_args[4], ma, tc, sc, id;
6856 for (unsigned i = 0; i < (is_array ? 4 : 3); i++)
6857 coord_args[i] = emit_extract_vector(ctx, *coords, i, v1);
6858
6859 if (is_array) {
6860 coord_args[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_args[3]);
6861
6862 // see comment in ac_prepare_cube_coords()
6863 if (ctx->options->chip_class <= GFX8)
6864 coord_args[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coord_args[3]);
6865 }
6866
6867 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6868
6869 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
6870 vop3a->operands[0] = Operand(ma);
6871 vop3a->abs[0] = true;
6872 Temp invma = bld.tmp(v1);
6873 vop3a->definitions[0] = Definition(invma);
6874 ctx->block->instructions.emplace_back(std::move(vop3a));
6875
6876 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6877 if (!is_deriv)
6878 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
6879
6880 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6881 if (!is_deriv)
6882 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
6883
6884 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coord_args[0], coord_args[1], coord_args[2]);
6885
6886 if (is_deriv) {
6887 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
6888 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
6889
6890 for (unsigned i = 0; i < 2; i++) {
6891 // see comment in ac_prepare_cube_coords()
6892 Temp deriv_ma;
6893 Temp deriv_sc, deriv_tc;
6894 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
6895 &deriv_ma, &deriv_sc, &deriv_tc);
6896
6897 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
6898
6899 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6900 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
6901 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
6902 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
6903 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
6904 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
6905 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
6906 }
6907
6908 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
6909 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
6910 }
6911
6912 if (is_array)
6913 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coord_args[3], id, Operand(0x41000000u/*8.0*/));
6914 *coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), sc, tc, id);
6915
6916 }
6917
6918 Temp apply_round_slice(isel_context *ctx, Temp coords, unsigned idx)
6919 {
6920 Temp coord_vec[3];
6921 for (unsigned i = 0; i < coords.size(); i++)
6922 coord_vec[i] = emit_extract_vector(ctx, coords, i, v1);
6923
6924 Builder bld(ctx->program, ctx->block);
6925 coord_vec[idx] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coord_vec[idx]);
6926
6927 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
6928 for (unsigned i = 0; i < coords.size(); i++)
6929 vec->operands[i] = Operand(coord_vec[i]);
6930 Temp res = bld.tmp(RegType::vgpr, coords.size());
6931 vec->definitions[0] = Definition(res);
6932 ctx->block->instructions.emplace_back(std::move(vec));
6933 return res;
6934 }
6935
6936 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
6937 {
6938 if (vec->parent_instr->type != nir_instr_type_alu)
6939 return;
6940 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
6941 if (vec_instr->op != nir_op_vec(vec->num_components))
6942 return;
6943
6944 for (unsigned i = 0; i < vec->num_components; i++) {
6945 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
6946 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
6947 }
6948 }
6949
6950 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
6951 {
6952 Builder bld(ctx->program, ctx->block);
6953 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
6954 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
6955 Temp resource, sampler, fmask_ptr, bias = Temp(), coords, compare = Temp(), sample_index = Temp(),
6956 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp(), derivs = Temp();
6957 nir_const_value *sample_index_cv = NULL;
6958 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
6959 enum glsl_base_type stype;
6960 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
6961
6962 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
6963 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
6964 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
6965 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
6966
6967 for (unsigned i = 0; i < instr->num_srcs; i++) {
6968 switch (instr->src[i].src_type) {
6969 case nir_tex_src_coord:
6970 coords = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[i].src.ssa));
6971 break;
6972 case nir_tex_src_bias:
6973 if (instr->op == nir_texop_txb) {
6974 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
6975 has_bias = true;
6976 }
6977 break;
6978 case nir_tex_src_lod: {
6979 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
6980
6981 if (val && val->f32 <= 0.0) {
6982 level_zero = true;
6983 } else {
6984 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
6985 has_lod = true;
6986 }
6987 break;
6988 }
6989 case nir_tex_src_comparator:
6990 if (instr->is_shadow) {
6991 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
6992 has_compare = true;
6993 }
6994 break;
6995 case nir_tex_src_offset:
6996 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
6997 get_const_vec(instr->src[i].src.ssa, const_offset);
6998 has_offset = true;
6999 break;
7000 case nir_tex_src_ddx:
7001 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
7002 has_ddx = true;
7003 break;
7004 case nir_tex_src_ddy:
7005 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
7006 has_ddy = true;
7007 break;
7008 case nir_tex_src_ms_index:
7009 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
7010 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
7011 has_sample_index = true;
7012 break;
7013 case nir_tex_src_texture_offset:
7014 case nir_tex_src_sampler_offset:
7015 default:
7016 break;
7017 }
7018 }
7019 // TODO: all other cases: structure taken from ac_nir_to_llvm.c
7020 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
7021 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
7022
7023 if (instr->op == nir_texop_texture_samples) {
7024 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
7025
7026 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
7027 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
7028 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
7029 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
7030
7031 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7032 samples, Operand(1u), bld.scc(is_msaa));
7033 return;
7034 }
7035
7036 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
7037 aco_ptr<Instruction> tmp_instr;
7038 Temp acc, pack = Temp();
7039
7040 uint32_t pack_const = 0;
7041 for (unsigned i = 0; i < offset.size(); i++) {
7042 if (!const_offset[i])
7043 continue;
7044 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
7045 }
7046
7047 if (offset.type() == RegType::sgpr) {
7048 for (unsigned i = 0; i < offset.size(); i++) {
7049 if (const_offset[i])
7050 continue;
7051
7052 acc = emit_extract_vector(ctx, offset, i, s1);
7053 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
7054
7055 if (i) {
7056 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
7057 }
7058
7059 if (pack == Temp()) {
7060 pack = acc;
7061 } else {
7062 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
7063 }
7064 }
7065
7066 if (pack_const && pack != Temp())
7067 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
7068 } else {
7069 for (unsigned i = 0; i < offset.size(); i++) {
7070 if (const_offset[i])
7071 continue;
7072
7073 acc = emit_extract_vector(ctx, offset, i, v1);
7074 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
7075
7076 if (i) {
7077 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
7078 }
7079
7080 if (pack == Temp()) {
7081 pack = acc;
7082 } else {
7083 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
7084 }
7085 }
7086
7087 if (pack_const && pack != Temp())
7088 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
7089 }
7090 if (pack_const && pack == Temp())
7091 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
7092 else if (pack == Temp())
7093 has_offset = false;
7094 else
7095 offset = pack;
7096 }
7097
7098 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
7099 prepare_cube_coords(ctx, &coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
7100
7101 /* pack derivatives */
7102 if (has_ddx || has_ddy) {
7103 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
7104 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(v4),
7105 ddx, Operand(0u), ddy, Operand(0u));
7106 } else {
7107 derivs = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, ddx.size() + ddy.size()), ddx, ddy);
7108 }
7109 has_derivs = true;
7110 }
7111
7112 if (instr->coord_components > 1 &&
7113 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7114 instr->is_array &&
7115 instr->op != nir_texop_txf)
7116 coords = apply_round_slice(ctx, coords, 1);
7117
7118 if (instr->coord_components > 2 &&
7119 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
7120 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7121 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
7122 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7123 instr->is_array &&
7124 instr->op != nir_texop_txf &&
7125 instr->op != nir_texop_txf_ms &&
7126 instr->op != nir_texop_fragment_fetch &&
7127 instr->op != nir_texop_fragment_mask_fetch)
7128 coords = apply_round_slice(ctx, coords, 2);
7129
7130 if (ctx->options->chip_class == GFX9 &&
7131 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7132 instr->op != nir_texop_lod && instr->coord_components) {
7133 assert(coords.size() > 0 && coords.size() < 3);
7134
7135 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size() + 1, 1)};
7136 vec->operands[0] = Operand(emit_extract_vector(ctx, coords, 0, v1));
7137 vec->operands[1] = instr->op == nir_texop_txf ? Operand((uint32_t) 0) : Operand((uint32_t) 0x3f000000);
7138 if (coords.size() > 1)
7139 vec->operands[2] = Operand(emit_extract_vector(ctx, coords, 1, v1));
7140 coords = bld.tmp(RegType::vgpr, coords.size() + 1);
7141 vec->definitions[0] = Definition(coords);
7142 ctx->block->instructions.emplace_back(std::move(vec));
7143 }
7144
7145 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
7146
7147 if (instr->op == nir_texop_samples_identical)
7148 resource = fmask_ptr;
7149
7150 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
7151 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
7152 instr->op != nir_texop_txs &&
7153 instr->op != nir_texop_fragment_fetch &&
7154 instr->op != nir_texop_fragment_mask_fetch) {
7155 assert(has_sample_index);
7156 Operand op(sample_index);
7157 if (sample_index_cv)
7158 op = Operand(sample_index_cv->u32);
7159 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
7160 }
7161
7162 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
7163 Temp split_coords[coords.size()];
7164 emit_split_vector(ctx, coords, coords.size());
7165 for (unsigned i = 0; i < coords.size(); i++)
7166 split_coords[i] = emit_extract_vector(ctx, coords, i, v1);
7167
7168 unsigned i = 0;
7169 for (; i < std::min(offset.size(), instr->coord_components); i++) {
7170 Temp off = emit_extract_vector(ctx, offset, i, v1);
7171 split_coords[i] = bld.vadd32(bld.def(v1), split_coords[i], off);
7172 }
7173
7174 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
7175 for (unsigned i = 0; i < coords.size(); i++)
7176 vec->operands[i] = Operand(split_coords[i]);
7177 coords = bld.tmp(coords.regClass());
7178 vec->definitions[0] = Definition(coords);
7179 ctx->block->instructions.emplace_back(std::move(vec));
7180
7181 has_offset = false;
7182 }
7183
7184 /* Build tex instruction */
7185 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
7186 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
7187 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
7188 : 0;
7189 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7190 Temp tmp_dst = dst;
7191
7192 /* gather4 selects the component by dmask and always returns vec4 */
7193 if (instr->op == nir_texop_tg4) {
7194 assert(instr->dest.ssa.num_components == 4);
7195 if (instr->is_shadow)
7196 dmask = 1;
7197 else
7198 dmask = 1 << instr->component;
7199 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
7200 tmp_dst = bld.tmp(v4);
7201 } else if (instr->op == nir_texop_samples_identical) {
7202 tmp_dst = bld.tmp(v1);
7203 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
7204 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
7205 }
7206
7207 aco_ptr<MIMG_instruction> tex;
7208 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
7209 if (!has_lod)
7210 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7211
7212 bool div_by_6 = instr->op == nir_texop_txs &&
7213 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
7214 instr->is_array &&
7215 (dmask & (1 << 2));
7216 if (tmp_dst.id() == dst.id() && div_by_6)
7217 tmp_dst = bld.tmp(tmp_dst.regClass());
7218
7219 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
7220 tex->operands[0] = Operand(as_vgpr(ctx,lod));
7221 tex->operands[1] = Operand(resource);
7222 if (ctx->options->chip_class == GFX9 &&
7223 instr->op == nir_texop_txs &&
7224 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
7225 instr->is_array) {
7226 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
7227 } else if (instr->op == nir_texop_query_levels) {
7228 tex->dmask = 1 << 3;
7229 } else {
7230 tex->dmask = dmask;
7231 }
7232 tex->da = da;
7233 tex->definitions[0] = Definition(tmp_dst);
7234 tex->dim = dim;
7235 tex->can_reorder = true;
7236 ctx->block->instructions.emplace_back(std::move(tex));
7237
7238 if (div_by_6) {
7239 /* divide 3rd value by 6 by multiplying with magic number */
7240 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7241 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
7242 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
7243 assert(instr->dest.ssa.num_components == 3);
7244 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
7245 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7246 emit_extract_vector(ctx, tmp_dst, 0, v1),
7247 emit_extract_vector(ctx, tmp_dst, 1, v1),
7248 by_6);
7249
7250 }
7251
7252 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7253 return;
7254 }
7255
7256 Temp tg4_compare_cube_wa64 = Temp();
7257
7258 if (tg4_integer_workarounds) {
7259 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 2, 1));
7260 tex->operands[0] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
7261 tex->operands[1] = Operand(resource);
7262 tex->dim = dim;
7263 tex->dmask = 0x3;
7264 tex->da = da;
7265 Temp size = bld.tmp(v2);
7266 tex->definitions[0] = Definition(size);
7267 tex->can_reorder = true;
7268 ctx->block->instructions.emplace_back(std::move(tex));
7269 emit_split_vector(ctx, size, size.size());
7270
7271 Temp half_texel[2];
7272 for (unsigned i = 0; i < 2; i++) {
7273 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
7274 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
7275 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
7276 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
7277 }
7278
7279 Temp orig_coords[2] = {
7280 emit_extract_vector(ctx, coords, 0, v1),
7281 emit_extract_vector(ctx, coords, 1, v1)};
7282 Temp new_coords[2] = {
7283 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[0], half_texel[0]),
7284 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), orig_coords[1], half_texel[1])
7285 };
7286
7287 if (tg4_integer_cube_workaround) {
7288 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
7289 Temp desc[resource.size()];
7290 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
7291 Format::PSEUDO, 1, resource.size())};
7292 split->operands[0] = Operand(resource);
7293 for (unsigned i = 0; i < resource.size(); i++) {
7294 desc[i] = bld.tmp(s1);
7295 split->definitions[i] = Definition(desc[i]);
7296 }
7297 ctx->block->instructions.emplace_back(std::move(split));
7298
7299 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
7300 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
7301 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
7302
7303 Temp nfmt;
7304 if (stype == GLSL_TYPE_UINT) {
7305 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7306 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
7307 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
7308 bld.scc(compare_cube_wa));
7309 } else {
7310 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
7311 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
7312 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
7313 bld.scc(compare_cube_wa));
7314 }
7315 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
7316 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
7317
7318 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
7319
7320 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
7321 Operand((uint32_t)C_008F14_NUM_FORMAT));
7322 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
7323
7324 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
7325 Format::PSEUDO, resource.size(), 1)};
7326 for (unsigned i = 0; i < resource.size(); i++)
7327 vec->operands[i] = Operand(desc[i]);
7328 resource = bld.tmp(resource.regClass());
7329 vec->definitions[0] = Definition(resource);
7330 ctx->block->instructions.emplace_back(std::move(vec));
7331
7332 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7333 new_coords[0], orig_coords[0], tg4_compare_cube_wa64);
7334 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
7335 new_coords[1], orig_coords[1], tg4_compare_cube_wa64);
7336 }
7337
7338 if (coords.size() == 3) {
7339 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v3),
7340 new_coords[0], new_coords[1],
7341 emit_extract_vector(ctx, coords, 2, v1));
7342 } else {
7343 assert(coords.size() == 2);
7344 coords = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2),
7345 new_coords[0], new_coords[1]);
7346 }
7347 }
7348
7349 std::vector<Operand> args;
7350 if (has_offset)
7351 args.emplace_back(Operand(offset));
7352 if (has_bias)
7353 args.emplace_back(Operand(bias));
7354 if (has_compare)
7355 args.emplace_back(Operand(compare));
7356 if (has_derivs)
7357 args.emplace_back(Operand(derivs));
7358 args.emplace_back(Operand(coords));
7359 if (has_sample_index)
7360 args.emplace_back(Operand(sample_index));
7361 if (has_lod)
7362 args.emplace_back(lod);
7363
7364 Temp arg;
7365 if (args.size() > 1) {
7366 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
7367 unsigned size = 0;
7368 for (unsigned i = 0; i < args.size(); i++) {
7369 size += args[i].size();
7370 vec->operands[i] = args[i];
7371 }
7372 RegClass rc = RegClass(RegType::vgpr, size);
7373 Temp tmp = bld.tmp(rc);
7374 vec->definitions[0] = Definition(tmp);
7375 ctx->block->instructions.emplace_back(std::move(vec));
7376 arg = tmp;
7377 } else {
7378 assert(args[0].isTemp());
7379 arg = as_vgpr(ctx, args[0].getTemp());
7380 }
7381
7382 /* we don't need the bias, sample index, compare value or offset to be
7383 * computed in WQM but if the p_create_vector copies the coordinates, then it
7384 * needs to be in WQM */
7385 if (!(has_ddx && has_ddy) && !has_lod && !level_zero &&
7386 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
7387 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
7388 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
7389
7390 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
7391 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
7392
7393 assert(coords.size() == 1);
7394 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
7395 aco_opcode op;
7396 switch (last_bit) {
7397 case 1:
7398 op = aco_opcode::buffer_load_format_x; break;
7399 case 2:
7400 op = aco_opcode::buffer_load_format_xy; break;
7401 case 3:
7402 op = aco_opcode::buffer_load_format_xyz; break;
7403 case 4:
7404 op = aco_opcode::buffer_load_format_xyzw; break;
7405 default:
7406 unreachable("Tex instruction loads more than 4 components.");
7407 }
7408
7409 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
7410 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
7411 tmp_dst = dst;
7412 else
7413 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
7414
7415 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
7416 mubuf->operands[0] = Operand(coords);
7417 mubuf->operands[1] = Operand(resource);
7418 mubuf->operands[2] = Operand((uint32_t) 0);
7419 mubuf->definitions[0] = Definition(tmp_dst);
7420 mubuf->idxen = true;
7421 mubuf->can_reorder = true;
7422 ctx->block->instructions.emplace_back(std::move(mubuf));
7423
7424 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
7425 return;
7426 }
7427
7428
7429 if (instr->op == nir_texop_txf ||
7430 instr->op == nir_texop_txf_ms ||
7431 instr->op == nir_texop_samples_identical ||
7432 instr->op == nir_texop_fragment_fetch ||
7433 instr->op == nir_texop_fragment_mask_fetch) {
7434 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
7435 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 2, 1));
7436 tex->operands[0] = Operand(arg);
7437 tex->operands[1] = Operand(resource);
7438 tex->dim = dim;
7439 tex->dmask = dmask;
7440 tex->unrm = true;
7441 tex->da = da;
7442 tex->definitions[0] = Definition(tmp_dst);
7443 tex->can_reorder = true;
7444 ctx->block->instructions.emplace_back(std::move(tex));
7445
7446 if (instr->op == nir_texop_samples_identical) {
7447 assert(dmask == 1 && dst.regClass() == v1);
7448 assert(dst.id() != tmp_dst.id());
7449
7450 Temp tmp = bld.tmp(bld.lm);
7451 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
7452 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
7453
7454 } else {
7455 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
7456 }
7457 return;
7458 }
7459
7460 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
7461 aco_opcode opcode = aco_opcode::image_sample;
7462 if (has_offset) { /* image_sample_*_o */
7463 if (has_compare) {
7464 opcode = aco_opcode::image_sample_c_o;
7465 if (has_derivs)
7466 opcode = aco_opcode::image_sample_c_d_o;
7467 if (has_bias)
7468 opcode = aco_opcode::image_sample_c_b_o;
7469 if (level_zero)
7470 opcode = aco_opcode::image_sample_c_lz_o;
7471 if (has_lod)
7472 opcode = aco_opcode::image_sample_c_l_o;
7473 } else {
7474 opcode = aco_opcode::image_sample_o;
7475 if (has_derivs)
7476 opcode = aco_opcode::image_sample_d_o;
7477 if (has_bias)
7478 opcode = aco_opcode::image_sample_b_o;
7479 if (level_zero)
7480 opcode = aco_opcode::image_sample_lz_o;
7481 if (has_lod)
7482 opcode = aco_opcode::image_sample_l_o;
7483 }
7484 } else { /* no offset */
7485 if (has_compare) {
7486 opcode = aco_opcode::image_sample_c;
7487 if (has_derivs)
7488 opcode = aco_opcode::image_sample_c_d;
7489 if (has_bias)
7490 opcode = aco_opcode::image_sample_c_b;
7491 if (level_zero)
7492 opcode = aco_opcode::image_sample_c_lz;
7493 if (has_lod)
7494 opcode = aco_opcode::image_sample_c_l;
7495 } else {
7496 opcode = aco_opcode::image_sample;
7497 if (has_derivs)
7498 opcode = aco_opcode::image_sample_d;
7499 if (has_bias)
7500 opcode = aco_opcode::image_sample_b;
7501 if (level_zero)
7502 opcode = aco_opcode::image_sample_lz;
7503 if (has_lod)
7504 opcode = aco_opcode::image_sample_l;
7505 }
7506 }
7507
7508 if (instr->op == nir_texop_tg4) {
7509 if (has_offset) {
7510 opcode = aco_opcode::image_gather4_lz_o;
7511 if (has_compare)
7512 opcode = aco_opcode::image_gather4_c_lz_o;
7513 } else {
7514 opcode = aco_opcode::image_gather4_lz;
7515 if (has_compare)
7516 opcode = aco_opcode::image_gather4_c_lz;
7517 }
7518 } else if (instr->op == nir_texop_lod) {
7519 opcode = aco_opcode::image_get_lod;
7520 }
7521
7522 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
7523 tex->operands[0] = Operand(arg);
7524 tex->operands[1] = Operand(resource);
7525 tex->operands[2] = Operand(sampler);
7526 tex->dim = dim;
7527 tex->dmask = dmask;
7528 tex->da = da;
7529 tex->definitions[0] = Definition(tmp_dst);
7530 tex->can_reorder = true;
7531 ctx->block->instructions.emplace_back(std::move(tex));
7532
7533 if (tg4_integer_cube_workaround) {
7534 assert(tmp_dst.id() != dst.id());
7535 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
7536
7537 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
7538 Temp val[4];
7539 for (unsigned i = 0; i < dst.size(); i++) {
7540 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
7541 Temp cvt_val;
7542 if (stype == GLSL_TYPE_UINT)
7543 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
7544 else
7545 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
7546 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
7547 }
7548 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
7549 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
7550 val[0], val[1], val[2], val[3]);
7551 }
7552 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
7553 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
7554
7555 }
7556
7557
7558 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
7559 {
7560 Temp tmp = get_ssa_temp(ctx, ssa);
7561 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
7562 return Operand(tmp.regClass());
7563 else
7564 return Operand(tmp);
7565 }
7566
7567 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
7568 {
7569 aco_ptr<Pseudo_instruction> phi;
7570 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7571 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
7572
7573 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
7574 logical |= ctx->block->kind & block_kind_merge;
7575 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
7576
7577 /* we want a sorted list of sources, since the predecessor list is also sorted */
7578 std::map<unsigned, nir_ssa_def*> phi_src;
7579 nir_foreach_phi_src(src, instr)
7580 phi_src[src->pred->index] = src->src.ssa;
7581
7582 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
7583 unsigned num_operands = 0;
7584 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size())];
7585 unsigned num_defined = 0;
7586 unsigned cur_pred_idx = 0;
7587 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
7588 if (cur_pred_idx < preds.size()) {
7589 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
7590 unsigned block = ctx->cf_info.nir_to_aco[src.first];
7591 unsigned skipped = 0;
7592 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
7593 skipped++;
7594 if (cur_pred_idx + skipped < preds.size()) {
7595 for (unsigned i = 0; i < skipped; i++)
7596 operands[num_operands++] = Operand(dst.regClass());
7597 cur_pred_idx += skipped;
7598 } else {
7599 continue;
7600 }
7601 }
7602 cur_pred_idx++;
7603 Operand op = get_phi_operand(ctx, src.second);
7604 operands[num_operands++] = op;
7605 num_defined += !op.isUndefined();
7606 }
7607 /* handle block_kind_continue_or_break at loop exit blocks */
7608 while (cur_pred_idx++ < preds.size())
7609 operands[num_operands++] = Operand(dst.regClass());
7610
7611 if (num_defined == 0) {
7612 Builder bld(ctx->program, ctx->block);
7613 if (dst.regClass() == s1) {
7614 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
7615 } else if (dst.regClass() == v1) {
7616 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
7617 } else {
7618 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7619 for (unsigned i = 0; i < dst.size(); i++)
7620 vec->operands[i] = Operand(0u);
7621 vec->definitions[0] = Definition(dst);
7622 ctx->block->instructions.emplace_back(std::move(vec));
7623 }
7624 return;
7625 }
7626
7627 /* we can use a linear phi in some cases if one src is undef */
7628 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
7629 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
7630
7631 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
7632 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
7633 assert(invert->kind & block_kind_invert);
7634
7635 unsigned then_block = invert->linear_preds[0];
7636
7637 Block* insert_block = NULL;
7638 for (unsigned i = 0; i < num_operands; i++) {
7639 Operand op = operands[i];
7640 if (op.isUndefined())
7641 continue;
7642 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
7643 phi->operands[0] = op;
7644 break;
7645 }
7646 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
7647 phi->operands[1] = Operand(dst.regClass());
7648 phi->definitions[0] = Definition(dst);
7649 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
7650 return;
7651 }
7652
7653 /* try to scalarize vector phis */
7654 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
7655 // TODO: scalarize linear phis on divergent ifs
7656 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
7657 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
7658 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
7659 Operand src = operands[i];
7660 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
7661 can_scalarize = false;
7662 }
7663 if (can_scalarize) {
7664 unsigned num_components = instr->dest.ssa.num_components;
7665 assert(dst.size() % num_components == 0);
7666 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
7667
7668 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
7669 for (unsigned k = 0; k < num_components; k++) {
7670 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7671 for (unsigned i = 0; i < num_operands; i++) {
7672 Operand src = operands[i];
7673 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
7674 }
7675 Temp phi_dst = {ctx->program->allocateId(), rc};
7676 phi->definitions[0] = Definition(phi_dst);
7677 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7678 new_vec[k] = phi_dst;
7679 vec->operands[k] = Operand(phi_dst);
7680 }
7681 vec->definitions[0] = Definition(dst);
7682 ctx->block->instructions.emplace_back(std::move(vec));
7683 ctx->allocated_vec.emplace(dst.id(), new_vec);
7684 return;
7685 }
7686 }
7687
7688 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
7689 for (unsigned i = 0; i < num_operands; i++)
7690 phi->operands[i] = operands[i];
7691 phi->definitions[0] = Definition(dst);
7692 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
7693 }
7694
7695
7696 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
7697 {
7698 Temp dst = get_ssa_temp(ctx, &instr->def);
7699
7700 assert(dst.type() == RegType::sgpr);
7701
7702 if (dst.size() == 1) {
7703 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
7704 } else {
7705 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
7706 for (unsigned i = 0; i < dst.size(); i++)
7707 vec->operands[i] = Operand(0u);
7708 vec->definitions[0] = Definition(dst);
7709 ctx->block->instructions.emplace_back(std::move(vec));
7710 }
7711 }
7712
7713 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
7714 {
7715 Builder bld(ctx->program, ctx->block);
7716 Block *logical_target;
7717 append_logical_end(ctx->block);
7718 unsigned idx = ctx->block->index;
7719
7720 switch (instr->type) {
7721 case nir_jump_break:
7722 logical_target = ctx->cf_info.parent_loop.exit;
7723 add_logical_edge(idx, logical_target);
7724 ctx->block->kind |= block_kind_break;
7725
7726 if (!ctx->cf_info.parent_if.is_divergent &&
7727 !ctx->cf_info.parent_loop.has_divergent_continue) {
7728 /* uniform break - directly jump out of the loop */
7729 ctx->block->kind |= block_kind_uniform;
7730 ctx->cf_info.has_branch = true;
7731 bld.branch(aco_opcode::p_branch);
7732 add_linear_edge(idx, logical_target);
7733 return;
7734 }
7735 ctx->cf_info.parent_loop.has_divergent_branch = true;
7736 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7737 break;
7738 case nir_jump_continue:
7739 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7740 add_logical_edge(idx, logical_target);
7741 ctx->block->kind |= block_kind_continue;
7742
7743 if (ctx->cf_info.parent_if.is_divergent) {
7744 /* for potential uniform breaks after this continue,
7745 we must ensure that they are handled correctly */
7746 ctx->cf_info.parent_loop.has_divergent_continue = true;
7747 ctx->cf_info.parent_loop.has_divergent_branch = true;
7748 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
7749 } else {
7750 /* uniform continue - directly jump to the loop header */
7751 ctx->block->kind |= block_kind_uniform;
7752 ctx->cf_info.has_branch = true;
7753 bld.branch(aco_opcode::p_branch);
7754 add_linear_edge(idx, logical_target);
7755 return;
7756 }
7757 break;
7758 default:
7759 fprintf(stderr, "Unknown NIR jump instr: ");
7760 nir_print_instr(&instr->instr, stderr);
7761 fprintf(stderr, "\n");
7762 abort();
7763 }
7764
7765 /* remove critical edges from linear CFG */
7766 bld.branch(aco_opcode::p_branch);
7767 Block* break_block = ctx->program->create_and_insert_block();
7768 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7769 break_block->kind |= block_kind_uniform;
7770 add_linear_edge(idx, break_block);
7771 /* the loop_header pointer might be invalidated by this point */
7772 if (instr->type == nir_jump_continue)
7773 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
7774 add_linear_edge(break_block->index, logical_target);
7775 bld.reset(break_block);
7776 bld.branch(aco_opcode::p_branch);
7777
7778 Block* continue_block = ctx->program->create_and_insert_block();
7779 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7780 add_linear_edge(idx, continue_block);
7781 append_logical_start(continue_block);
7782 ctx->block = continue_block;
7783 return;
7784 }
7785
7786 void visit_block(isel_context *ctx, nir_block *block)
7787 {
7788 nir_foreach_instr(instr, block) {
7789 switch (instr->type) {
7790 case nir_instr_type_alu:
7791 visit_alu_instr(ctx, nir_instr_as_alu(instr));
7792 break;
7793 case nir_instr_type_load_const:
7794 visit_load_const(ctx, nir_instr_as_load_const(instr));
7795 break;
7796 case nir_instr_type_intrinsic:
7797 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
7798 break;
7799 case nir_instr_type_tex:
7800 visit_tex(ctx, nir_instr_as_tex(instr));
7801 break;
7802 case nir_instr_type_phi:
7803 visit_phi(ctx, nir_instr_as_phi(instr));
7804 break;
7805 case nir_instr_type_ssa_undef:
7806 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
7807 break;
7808 case nir_instr_type_deref:
7809 break;
7810 case nir_instr_type_jump:
7811 visit_jump(ctx, nir_instr_as_jump(instr));
7812 break;
7813 default:
7814 fprintf(stderr, "Unknown NIR instr type: ");
7815 nir_print_instr(instr, stderr);
7816 fprintf(stderr, "\n");
7817 //abort();
7818 }
7819 }
7820
7821 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7822 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
7823 }
7824
7825
7826
7827 static void visit_loop(isel_context *ctx, nir_loop *loop)
7828 {
7829 append_logical_end(ctx->block);
7830 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
7831 Builder bld(ctx->program, ctx->block);
7832 bld.branch(aco_opcode::p_branch);
7833 unsigned loop_preheader_idx = ctx->block->index;
7834
7835 Block loop_exit = Block();
7836 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7837 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
7838
7839 Block* loop_header = ctx->program->create_and_insert_block();
7840 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
7841 loop_header->kind |= block_kind_loop_header;
7842 add_edge(loop_preheader_idx, loop_header);
7843 ctx->block = loop_header;
7844
7845 /* emit loop body */
7846 unsigned loop_header_idx = loop_header->index;
7847 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
7848 append_logical_start(ctx->block);
7849 visit_cf_list(ctx, &loop->body);
7850
7851 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
7852 if (!ctx->cf_info.has_branch) {
7853 append_logical_end(ctx->block);
7854 if (ctx->cf_info.exec_potentially_empty) {
7855 /* Discards can result in code running with an empty exec mask.
7856 * This would result in divergent breaks not ever being taken. As a
7857 * workaround, break the loop when the loop mask is empty instead of
7858 * always continuing. */
7859 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
7860 unsigned block_idx = ctx->block->index;
7861
7862 /* create helper blocks to avoid critical edges */
7863 Block *break_block = ctx->program->create_and_insert_block();
7864 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7865 break_block->kind = block_kind_uniform;
7866 bld.reset(break_block);
7867 bld.branch(aco_opcode::p_branch);
7868 add_linear_edge(block_idx, break_block);
7869 add_linear_edge(break_block->index, &loop_exit);
7870
7871 Block *continue_block = ctx->program->create_and_insert_block();
7872 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7873 continue_block->kind = block_kind_uniform;
7874 bld.reset(continue_block);
7875 bld.branch(aco_opcode::p_branch);
7876 add_linear_edge(block_idx, continue_block);
7877 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
7878
7879 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
7880 ctx->block = &ctx->program->blocks[block_idx];
7881 } else {
7882 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
7883 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7884 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
7885 else
7886 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
7887 }
7888
7889 bld.reset(ctx->block);
7890 bld.branch(aco_opcode::p_branch);
7891 }
7892
7893 /* fixup phis in loop header from unreachable blocks */
7894 if (ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch) {
7895 bool linear = ctx->cf_info.has_branch;
7896 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
7897 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
7898 if ((logical && instr->opcode == aco_opcode::p_phi) ||
7899 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
7900 /* the last operand should be the one that needs to be removed */
7901 instr->operands.pop_back();
7902 } else if (!is_phi(instr)) {
7903 break;
7904 }
7905 }
7906 }
7907
7908 ctx->cf_info.has_branch = false;
7909
7910 // TODO: if the loop has not a single exit, we must add one °°
7911 /* emit loop successor block */
7912 ctx->block = ctx->program->insert_block(std::move(loop_exit));
7913 append_logical_start(ctx->block);
7914
7915 #if 0
7916 // TODO: check if it is beneficial to not branch on continues
7917 /* trim linear phis in loop header */
7918 for (auto&& instr : loop_entry->instructions) {
7919 if (instr->opcode == aco_opcode::p_linear_phi) {
7920 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
7921 new_phi->definitions[0] = instr->definitions[0];
7922 for (unsigned i = 0; i < new_phi->operands.size(); i++)
7923 new_phi->operands[i] = instr->operands[i];
7924 /* check that the remaining operands are all the same */
7925 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
7926 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
7927 instr.swap(new_phi);
7928 } else if (instr->opcode == aco_opcode::p_phi) {
7929 continue;
7930 } else {
7931 break;
7932 }
7933 }
7934 #endif
7935 }
7936
7937 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
7938 {
7939 ic->cond = cond;
7940
7941 append_logical_end(ctx->block);
7942 ctx->block->kind |= block_kind_branch;
7943
7944 /* branch to linear then block */
7945 assert(cond.regClass() == ctx->program->lane_mask);
7946 aco_ptr<Pseudo_branch_instruction> branch;
7947 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
7948 branch->operands[0] = Operand(cond);
7949 ctx->block->instructions.push_back(std::move(branch));
7950
7951 ic->BB_if_idx = ctx->block->index;
7952 ic->BB_invert = Block();
7953 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7954 /* Invert blocks are intentionally not marked as top level because they
7955 * are not part of the logical cfg. */
7956 ic->BB_invert.kind |= block_kind_invert;
7957 ic->BB_endif = Block();
7958 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
7959 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
7960
7961 ic->exec_potentially_empty_old = ctx->cf_info.exec_potentially_empty;
7962 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
7963 ctx->cf_info.parent_if.is_divergent = true;
7964 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
7965
7966 /** emit logical then block */
7967 Block* BB_then_logical = ctx->program->create_and_insert_block();
7968 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7969 add_edge(ic->BB_if_idx, BB_then_logical);
7970 ctx->block = BB_then_logical;
7971 append_logical_start(BB_then_logical);
7972 }
7973
7974 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
7975 {
7976 Block *BB_then_logical = ctx->block;
7977 append_logical_end(BB_then_logical);
7978 /* branch from logical then block to invert block */
7979 aco_ptr<Pseudo_branch_instruction> branch;
7980 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7981 BB_then_logical->instructions.emplace_back(std::move(branch));
7982 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
7983 if (!ctx->cf_info.parent_loop.has_divergent_branch)
7984 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
7985 BB_then_logical->kind |= block_kind_uniform;
7986 assert(!ctx->cf_info.has_branch);
7987 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
7988 ctx->cf_info.parent_loop.has_divergent_branch = false;
7989
7990 /** emit linear then block */
7991 Block* BB_then_linear = ctx->program->create_and_insert_block();
7992 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
7993 BB_then_linear->kind |= block_kind_uniform;
7994 add_linear_edge(ic->BB_if_idx, BB_then_linear);
7995 /* branch from linear then block to invert block */
7996 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
7997 BB_then_linear->instructions.emplace_back(std::move(branch));
7998 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
7999
8000 /** emit invert merge block */
8001 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
8002 ic->invert_idx = ctx->block->index;
8003
8004 /* branch to linear else block (skip else) */
8005 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
8006 branch->operands[0] = Operand(ic->cond);
8007 ctx->block->instructions.push_back(std::move(branch));
8008
8009 ic->exec_potentially_empty_old |= ctx->cf_info.exec_potentially_empty;
8010 ctx->cf_info.exec_potentially_empty = false; /* divergent branches use cbranch_execz */
8011
8012 /** emit logical else block */
8013 Block* BB_else_logical = ctx->program->create_and_insert_block();
8014 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8015 add_logical_edge(ic->BB_if_idx, BB_else_logical);
8016 add_linear_edge(ic->invert_idx, BB_else_logical);
8017 ctx->block = BB_else_logical;
8018 append_logical_start(BB_else_logical);
8019 }
8020
8021 static void end_divergent_if(isel_context *ctx, if_context *ic)
8022 {
8023 Block *BB_else_logical = ctx->block;
8024 append_logical_end(BB_else_logical);
8025
8026 /* branch from logical else block to endif block */
8027 aco_ptr<Pseudo_branch_instruction> branch;
8028 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8029 BB_else_logical->instructions.emplace_back(std::move(branch));
8030 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
8031 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8032 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
8033 BB_else_logical->kind |= block_kind_uniform;
8034
8035 assert(!ctx->cf_info.has_branch);
8036 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
8037
8038
8039 /** emit linear else block */
8040 Block* BB_else_linear = ctx->program->create_and_insert_block();
8041 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8042 BB_else_linear->kind |= block_kind_uniform;
8043 add_linear_edge(ic->invert_idx, BB_else_linear);
8044
8045 /* branch from linear else block to endif block */
8046 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8047 BB_else_linear->instructions.emplace_back(std::move(branch));
8048 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
8049
8050
8051 /** emit endif merge block */
8052 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
8053 append_logical_start(ctx->block);
8054
8055
8056 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
8057 ctx->cf_info.exec_potentially_empty |= ic->exec_potentially_empty_old;
8058 /* uniform control flow never has an empty exec-mask */
8059 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
8060 ctx->cf_info.exec_potentially_empty = false;
8061 }
8062
8063 static void visit_if(isel_context *ctx, nir_if *if_stmt)
8064 {
8065 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
8066 Builder bld(ctx->program, ctx->block);
8067 aco_ptr<Pseudo_branch_instruction> branch;
8068
8069 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
8070 /**
8071 * Uniform conditionals are represented in the following way*) :
8072 *
8073 * The linear and logical CFG:
8074 * BB_IF
8075 * / \
8076 * BB_THEN (logical) BB_ELSE (logical)
8077 * \ /
8078 * BB_ENDIF
8079 *
8080 * *) Exceptions may be due to break and continue statements within loops
8081 * If a break/continue happens within uniform control flow, it branches
8082 * to the loop exit/entry block. Otherwise, it branches to the next
8083 * merge block.
8084 **/
8085 append_logical_end(ctx->block);
8086 ctx->block->kind |= block_kind_uniform;
8087
8088 /* emit branch */
8089 assert(cond.regClass() == bld.lm);
8090 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
8091 cond = bool_to_scalar_condition(ctx, cond);
8092
8093 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
8094 branch->operands[0] = Operand(cond);
8095 branch->operands[0].setFixed(scc);
8096 ctx->block->instructions.emplace_back(std::move(branch));
8097
8098 unsigned BB_if_idx = ctx->block->index;
8099 Block BB_endif = Block();
8100 BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
8101 BB_endif.kind |= ctx->block->kind & block_kind_top_level;
8102
8103 /** emit then block */
8104 Block* BB_then = ctx->program->create_and_insert_block();
8105 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8106 add_edge(BB_if_idx, BB_then);
8107 append_logical_start(BB_then);
8108 ctx->block = BB_then;
8109 visit_cf_list(ctx, &if_stmt->then_list);
8110 BB_then = ctx->block;
8111 bool then_branch = ctx->cf_info.has_branch;
8112 bool then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
8113
8114 if (!then_branch) {
8115 append_logical_end(BB_then);
8116 /* branch from then block to endif block */
8117 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8118 BB_then->instructions.emplace_back(std::move(branch));
8119 add_linear_edge(BB_then->index, &BB_endif);
8120 if (!then_branch_divergent)
8121 add_logical_edge(BB_then->index, &BB_endif);
8122 BB_then->kind |= block_kind_uniform;
8123 }
8124
8125 ctx->cf_info.has_branch = false;
8126 ctx->cf_info.parent_loop.has_divergent_branch = false;
8127
8128 /** emit else block */
8129 Block* BB_else = ctx->program->create_and_insert_block();
8130 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
8131 add_edge(BB_if_idx, BB_else);
8132 append_logical_start(BB_else);
8133 ctx->block = BB_else;
8134 visit_cf_list(ctx, &if_stmt->else_list);
8135 BB_else = ctx->block;
8136
8137 if (!ctx->cf_info.has_branch) {
8138 append_logical_end(BB_else);
8139 /* branch from then block to endif block */
8140 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
8141 BB_else->instructions.emplace_back(std::move(branch));
8142 add_linear_edge(BB_else->index, &BB_endif);
8143 if (!ctx->cf_info.parent_loop.has_divergent_branch)
8144 add_logical_edge(BB_else->index, &BB_endif);
8145 BB_else->kind |= block_kind_uniform;
8146 }
8147
8148 ctx->cf_info.has_branch &= then_branch;
8149 ctx->cf_info.parent_loop.has_divergent_branch &= then_branch_divergent;
8150
8151 /** emit endif merge block */
8152 if (!ctx->cf_info.has_branch) {
8153 ctx->block = ctx->program->insert_block(std::move(BB_endif));
8154 append_logical_start(ctx->block);
8155 }
8156 } else { /* non-uniform condition */
8157 /**
8158 * To maintain a logical and linear CFG without critical edges,
8159 * non-uniform conditionals are represented in the following way*) :
8160 *
8161 * The linear CFG:
8162 * BB_IF
8163 * / \
8164 * BB_THEN (logical) BB_THEN (linear)
8165 * \ /
8166 * BB_INVERT (linear)
8167 * / \
8168 * BB_ELSE (logical) BB_ELSE (linear)
8169 * \ /
8170 * BB_ENDIF
8171 *
8172 * The logical CFG:
8173 * BB_IF
8174 * / \
8175 * BB_THEN (logical) BB_ELSE (logical)
8176 * \ /
8177 * BB_ENDIF
8178 *
8179 * *) Exceptions may be due to break and continue statements within loops
8180 **/
8181
8182 if_context ic;
8183
8184 begin_divergent_if_then(ctx, &ic, cond);
8185 visit_cf_list(ctx, &if_stmt->then_list);
8186
8187 begin_divergent_if_else(ctx, &ic);
8188 visit_cf_list(ctx, &if_stmt->else_list);
8189
8190 end_divergent_if(ctx, &ic);
8191 }
8192 }
8193
8194 static void visit_cf_list(isel_context *ctx,
8195 struct exec_list *list)
8196 {
8197 foreach_list_typed(nir_cf_node, node, node, list) {
8198 switch (node->type) {
8199 case nir_cf_node_block:
8200 visit_block(ctx, nir_cf_node_as_block(node));
8201 break;
8202 case nir_cf_node_if:
8203 visit_if(ctx, nir_cf_node_as_if(node));
8204 break;
8205 case nir_cf_node_loop:
8206 visit_loop(ctx, nir_cf_node_as_loop(node));
8207 break;
8208 default:
8209 unreachable("unimplemented cf list type");
8210 }
8211 }
8212 }
8213
8214 static void export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
8215 {
8216 int offset = ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
8217 uint64_t mask = ctx->outputs.mask[slot];
8218 if (!is_pos && !mask)
8219 return;
8220 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
8221 return;
8222 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8223 exp->enabled_mask = mask;
8224 for (unsigned i = 0; i < 4; ++i) {
8225 if (mask & (1 << i))
8226 exp->operands[i] = Operand(ctx->outputs.outputs[slot][i]);
8227 else
8228 exp->operands[i] = Operand(v1);
8229 }
8230 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
8231 * Setting valid_mask=1 prevents it and has no other effect.
8232 */
8233 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
8234 exp->done = false;
8235 exp->compressed = false;
8236 if (is_pos)
8237 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8238 else
8239 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
8240 ctx->block->instructions.emplace_back(std::move(exp));
8241 }
8242
8243 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
8244 {
8245 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
8246 exp->enabled_mask = 0;
8247 for (unsigned i = 0; i < 4; ++i)
8248 exp->operands[i] = Operand(v1);
8249 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
8250 exp->operands[0] = Operand(ctx->outputs.outputs[VARYING_SLOT_PSIZ][0]);
8251 exp->enabled_mask |= 0x1;
8252 }
8253 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
8254 exp->operands[2] = Operand(ctx->outputs.outputs[VARYING_SLOT_LAYER][0]);
8255 exp->enabled_mask |= 0x4;
8256 }
8257 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
8258 if (ctx->options->chip_class < GFX9) {
8259 exp->operands[3] = Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]);
8260 exp->enabled_mask |= 0x8;
8261 } else {
8262 Builder bld(ctx->program, ctx->block);
8263
8264 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
8265 Operand(ctx->outputs.outputs[VARYING_SLOT_VIEWPORT][0]));
8266 if (exp->operands[2].isTemp())
8267 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
8268
8269 exp->operands[2] = Operand(out);
8270 exp->enabled_mask |= 0x4;
8271 }
8272 }
8273 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
8274 exp->done = false;
8275 exp->compressed = false;
8276 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
8277 ctx->block->instructions.emplace_back(std::move(exp));
8278 }
8279
8280 static void create_vs_exports(isel_context *ctx)
8281 {
8282 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
8283
8284 if (outinfo->export_prim_id) {
8285 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
8286 ctx->outputs.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = get_arg(ctx, ctx->args->vs_prim_id);
8287 }
8288
8289 if (ctx->options->key.has_multiview_view_index) {
8290 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
8291 ctx->outputs.outputs[VARYING_SLOT_LAYER][0] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
8292 }
8293
8294 /* the order these position exports are created is important */
8295 int next_pos = 0;
8296 export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
8297 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
8298 export_vs_psiz_layer_viewport(ctx, &next_pos);
8299 }
8300 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8301 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
8302 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8303 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
8304
8305 if (ctx->export_clip_dists) {
8306 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
8307 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
8308 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
8309 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
8310 }
8311
8312 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
8313 if (i < VARYING_SLOT_VAR0 && i != VARYING_SLOT_LAYER &&
8314 i != VARYING_SLOT_PRIMITIVE_ID)
8315 continue;
8316
8317 export_vs_varying(ctx, i, false, NULL);
8318 }
8319 }
8320
8321 static void export_fs_mrt_z(isel_context *ctx)
8322 {
8323 Builder bld(ctx->program, ctx->block);
8324 unsigned enabled_channels = 0;
8325 bool compr = false;
8326 Operand values[4];
8327
8328 for (unsigned i = 0; i < 4; ++i) {
8329 values[i] = Operand(v1);
8330 }
8331
8332 /* Both stencil and sample mask only need 16-bits. */
8333 if (!ctx->program->info->ps.writes_z &&
8334 (ctx->program->info->ps.writes_stencil ||
8335 ctx->program->info->ps.writes_sample_mask)) {
8336 compr = true; /* COMPR flag */
8337
8338 if (ctx->program->info->ps.writes_stencil) {
8339 /* Stencil should be in X[23:16]. */
8340 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8341 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
8342 enabled_channels |= 0x3;
8343 }
8344
8345 if (ctx->program->info->ps.writes_sample_mask) {
8346 /* SampleMask should be in Y[15:0]. */
8347 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8348 enabled_channels |= 0xc;
8349 }
8350 } else {
8351 if (ctx->program->info->ps.writes_z) {
8352 values[0] = Operand(ctx->outputs.outputs[FRAG_RESULT_DEPTH][0]);
8353 enabled_channels |= 0x1;
8354 }
8355
8356 if (ctx->program->info->ps.writes_stencil) {
8357 values[1] = Operand(ctx->outputs.outputs[FRAG_RESULT_STENCIL][0]);
8358 enabled_channels |= 0x2;
8359 }
8360
8361 if (ctx->program->info->ps.writes_sample_mask) {
8362 values[2] = Operand(ctx->outputs.outputs[FRAG_RESULT_SAMPLE_MASK][0]);
8363 enabled_channels |= 0x4;
8364 }
8365 }
8366
8367 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
8368 * writemask component.
8369 */
8370 if (ctx->options->chip_class == GFX6 &&
8371 ctx->options->family != CHIP_OLAND &&
8372 ctx->options->family != CHIP_HAINAN) {
8373 enabled_channels |= 0x1;
8374 }
8375
8376 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8377 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
8378 }
8379
8380 static void export_fs_mrt_color(isel_context *ctx, int slot)
8381 {
8382 Builder bld(ctx->program, ctx->block);
8383 unsigned write_mask = ctx->outputs.mask[slot];
8384 Operand values[4];
8385
8386 for (unsigned i = 0; i < 4; ++i) {
8387 if (write_mask & (1 << i)) {
8388 values[i] = Operand(ctx->outputs.outputs[slot][i]);
8389 } else {
8390 values[i] = Operand(v1);
8391 }
8392 }
8393
8394 unsigned target, col_format;
8395 unsigned enabled_channels = 0;
8396 aco_opcode compr_op = (aco_opcode)0;
8397
8398 slot -= FRAG_RESULT_DATA0;
8399 target = V_008DFC_SQ_EXP_MRT + slot;
8400 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
8401
8402 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
8403 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
8404
8405 switch (col_format)
8406 {
8407 case V_028714_SPI_SHADER_ZERO:
8408 enabled_channels = 0; /* writemask */
8409 target = V_008DFC_SQ_EXP_NULL;
8410 break;
8411
8412 case V_028714_SPI_SHADER_32_R:
8413 enabled_channels = 1;
8414 break;
8415
8416 case V_028714_SPI_SHADER_32_GR:
8417 enabled_channels = 0x3;
8418 break;
8419
8420 case V_028714_SPI_SHADER_32_AR:
8421 if (ctx->options->chip_class >= GFX10) {
8422 /* Special case: on GFX10, the outputs are different for 32_AR */
8423 enabled_channels = 0x3;
8424 values[1] = values[3];
8425 values[3] = Operand(v1);
8426 } else {
8427 enabled_channels = 0x9;
8428 }
8429 break;
8430
8431 case V_028714_SPI_SHADER_FP16_ABGR:
8432 enabled_channels = 0x5;
8433 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
8434 break;
8435
8436 case V_028714_SPI_SHADER_UNORM16_ABGR:
8437 enabled_channels = 0x5;
8438 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
8439 break;
8440
8441 case V_028714_SPI_SHADER_SNORM16_ABGR:
8442 enabled_channels = 0x5;
8443 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
8444 break;
8445
8446 case V_028714_SPI_SHADER_UINT16_ABGR: {
8447 enabled_channels = 0x5;
8448 compr_op = aco_opcode::v_cvt_pk_u16_u32;
8449 if (is_int8 || is_int10) {
8450 /* clamp */
8451 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
8452 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8453
8454 for (unsigned i = 0; i < 4; i++) {
8455 if ((write_mask >> i) & 1) {
8456 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
8457 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
8458 values[i]);
8459 }
8460 }
8461 }
8462 break;
8463 }
8464
8465 case V_028714_SPI_SHADER_SINT16_ABGR:
8466 enabled_channels = 0x5;
8467 compr_op = aco_opcode::v_cvt_pk_i16_i32;
8468 if (is_int8 || is_int10) {
8469 /* clamp */
8470 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
8471 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
8472 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
8473 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
8474
8475 for (unsigned i = 0; i < 4; i++) {
8476 if ((write_mask >> i) & 1) {
8477 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
8478 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
8479 values[i]);
8480 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
8481 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
8482 values[i]);
8483 }
8484 }
8485 }
8486 break;
8487
8488 case V_028714_SPI_SHADER_32_ABGR:
8489 enabled_channels = 0xF;
8490 break;
8491
8492 default:
8493 break;
8494 }
8495
8496 if (target == V_008DFC_SQ_EXP_NULL)
8497 return;
8498
8499 if ((bool) compr_op) {
8500 for (int i = 0; i < 2; i++) {
8501 /* check if at least one of the values to be compressed is enabled */
8502 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
8503 if (enabled) {
8504 enabled_channels |= enabled << (i*2);
8505 values[i] = bld.vop3(compr_op, bld.def(v1),
8506 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
8507 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
8508 } else {
8509 values[i] = Operand(v1);
8510 }
8511 }
8512 values[2] = Operand(v1);
8513 values[3] = Operand(v1);
8514 } else {
8515 for (int i = 0; i < 4; i++)
8516 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
8517 }
8518
8519 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
8520 enabled_channels, target, (bool) compr_op);
8521 }
8522
8523 static void create_fs_exports(isel_context *ctx)
8524 {
8525 /* Export depth, stencil and sample mask. */
8526 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
8527 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
8528 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK]) {
8529 export_fs_mrt_z(ctx);
8530 }
8531
8532 /* Export all color render targets. */
8533 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i) {
8534 if (ctx->outputs.mask[i])
8535 export_fs_mrt_color(ctx, i);
8536 }
8537 }
8538
8539 static void emit_stream_output(isel_context *ctx,
8540 Temp const *so_buffers,
8541 Temp const *so_write_offset,
8542 const struct radv_stream_output *output)
8543 {
8544 unsigned num_comps = util_bitcount(output->component_mask);
8545 unsigned writemask = (1 << num_comps) - 1;
8546 unsigned loc = output->location;
8547 unsigned buf = output->buffer;
8548
8549 assert(num_comps && num_comps <= 4);
8550 if (!num_comps || num_comps > 4)
8551 return;
8552
8553 unsigned start = ffs(output->component_mask) - 1;
8554
8555 Temp out[4];
8556 bool all_undef = true;
8557 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
8558 for (unsigned i = 0; i < num_comps; i++) {
8559 out[i] = ctx->outputs.outputs[loc][start + i];
8560 all_undef = all_undef && !out[i].id();
8561 }
8562 if (all_undef)
8563 return;
8564
8565 while (writemask) {
8566 int start, count;
8567 u_bit_scan_consecutive_range(&writemask, &start, &count);
8568 if (count == 3 && ctx->options->chip_class == GFX6) {
8569 /* GFX6 doesn't support storing vec3, split it. */
8570 writemask |= 1u << (start + 2);
8571 count = 2;
8572 }
8573
8574 unsigned offset = output->offset + start * 4;
8575
8576 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
8577 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
8578 for (int i = 0; i < count; ++i)
8579 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
8580 vec->definitions[0] = Definition(write_data);
8581 ctx->block->instructions.emplace_back(std::move(vec));
8582
8583 aco_opcode opcode;
8584 switch (count) {
8585 case 1:
8586 opcode = aco_opcode::buffer_store_dword;
8587 break;
8588 case 2:
8589 opcode = aco_opcode::buffer_store_dwordx2;
8590 break;
8591 case 3:
8592 opcode = aco_opcode::buffer_store_dwordx3;
8593 break;
8594 case 4:
8595 opcode = aco_opcode::buffer_store_dwordx4;
8596 break;
8597 default:
8598 unreachable("Unsupported dword count.");
8599 }
8600
8601 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
8602 store->operands[0] = Operand(so_write_offset[buf]);
8603 store->operands[1] = Operand(so_buffers[buf]);
8604 store->operands[2] = Operand((uint32_t) 0);
8605 store->operands[3] = Operand(write_data);
8606 if (offset > 4095) {
8607 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
8608 Builder bld(ctx->program, ctx->block);
8609 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
8610 } else {
8611 store->offset = offset;
8612 }
8613 store->offen = true;
8614 store->glc = true;
8615 store->dlc = false;
8616 store->slc = true;
8617 store->can_reorder = true;
8618 ctx->block->instructions.emplace_back(std::move(store));
8619 }
8620 }
8621
8622 static void emit_streamout(isel_context *ctx, unsigned stream)
8623 {
8624 Builder bld(ctx->program, ctx->block);
8625
8626 Temp so_buffers[4];
8627 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
8628 for (unsigned i = 0; i < 4; i++) {
8629 unsigned stride = ctx->program->info->so.strides[i];
8630 if (!stride)
8631 continue;
8632
8633 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, Operand(i * 16u));
8634 }
8635
8636 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
8637 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
8638
8639 Temp tid = emit_mbcnt(ctx, bld.def(v1));
8640
8641 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
8642
8643 if_context ic;
8644 begin_divergent_if_then(ctx, &ic, can_emit);
8645
8646 bld.reset(ctx->block);
8647
8648 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
8649
8650 Temp so_write_offset[4];
8651
8652 for (unsigned i = 0; i < 4; i++) {
8653 unsigned stride = ctx->program->info->so.strides[i];
8654 if (!stride)
8655 continue;
8656
8657 if (stride == 1) {
8658 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
8659 get_arg(ctx, ctx->args->streamout_write_idx),
8660 get_arg(ctx, ctx->args->streamout_offset[i]));
8661 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
8662
8663 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
8664 } else {
8665 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
8666 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
8667 get_arg(ctx, ctx->args->streamout_offset[i]));
8668 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
8669 }
8670 }
8671
8672 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
8673 struct radv_stream_output *output =
8674 &ctx->program->info->so.outputs[i];
8675 if (stream != output->stream)
8676 continue;
8677
8678 emit_stream_output(ctx, so_buffers, so_write_offset, output);
8679 }
8680
8681 begin_divergent_if_else(ctx, &ic);
8682 end_divergent_if(ctx, &ic);
8683 }
8684
8685 } /* end namespace */
8686
8687 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
8688 {
8689 /* Split all arguments except for the first (ring_offsets) and the last
8690 * (exec) so that the dead channels don't stay live throughout the program.
8691 */
8692 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
8693 if (startpgm->definitions[i].regClass().size() > 1) {
8694 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
8695 startpgm->definitions[i].regClass().size());
8696 }
8697 }
8698 }
8699
8700 void handle_bc_optimize(isel_context *ctx)
8701 {
8702 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
8703 Builder bld(ctx->program, ctx->block);
8704 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
8705 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
8706 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
8707 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
8708 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
8709 if (uses_center && uses_centroid) {
8710 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
8711 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
8712
8713 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
8714 Temp new_coord[2];
8715 for (unsigned i = 0; i < 2; i++) {
8716 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
8717 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
8718 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8719 persp_centroid, persp_center, sel);
8720 }
8721 ctx->persp_centroid = bld.tmp(v2);
8722 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
8723 Operand(new_coord[0]), Operand(new_coord[1]));
8724 emit_split_vector(ctx, ctx->persp_centroid, 2);
8725 }
8726
8727 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
8728 Temp new_coord[2];
8729 for (unsigned i = 0; i < 2; i++) {
8730 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
8731 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
8732 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8733 linear_centroid, linear_center, sel);
8734 }
8735 ctx->linear_centroid = bld.tmp(v2);
8736 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
8737 Operand(new_coord[0]), Operand(new_coord[1]));
8738 emit_split_vector(ctx, ctx->linear_centroid, 2);
8739 }
8740 }
8741 }
8742
8743 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
8744 {
8745 Program *program = ctx->program;
8746
8747 unsigned float_controls = shader->info.float_controls_execution_mode;
8748
8749 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
8750 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
8751 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
8752 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
8753 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
8754
8755 program->next_fp_mode.must_flush_denorms32 =
8756 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
8757 program->next_fp_mode.must_flush_denorms16_64 =
8758 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
8759 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
8760
8761 program->next_fp_mode.care_about_round32 =
8762 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
8763
8764 program->next_fp_mode.care_about_round16_64 =
8765 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
8766 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
8767
8768 /* default to preserving fp16 and fp64 denorms, since it's free */
8769 if (program->next_fp_mode.must_flush_denorms16_64)
8770 program->next_fp_mode.denorm16_64 = 0;
8771 else
8772 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
8773
8774 /* preserving fp32 denorms is expensive, so only do it if asked */
8775 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
8776 program->next_fp_mode.denorm32 = fp_denorm_keep;
8777 else
8778 program->next_fp_mode.denorm32 = 0;
8779
8780 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
8781 program->next_fp_mode.round32 = fp_round_tz;
8782 else
8783 program->next_fp_mode.round32 = fp_round_ne;
8784
8785 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
8786 program->next_fp_mode.round16_64 = fp_round_tz;
8787 else
8788 program->next_fp_mode.round16_64 = fp_round_ne;
8789
8790 ctx->block->fp_mode = program->next_fp_mode;
8791 }
8792
8793 void cleanup_cfg(Program *program)
8794 {
8795 /* create linear_succs/logical_succs */
8796 for (Block& BB : program->blocks) {
8797 for (unsigned idx : BB.linear_preds)
8798 program->blocks[idx].linear_succs.emplace_back(BB.index);
8799 for (unsigned idx : BB.logical_preds)
8800 program->blocks[idx].logical_succs.emplace_back(BB.index);
8801 }
8802 }
8803
8804 void select_program(Program *program,
8805 unsigned shader_count,
8806 struct nir_shader *const *shaders,
8807 ac_shader_config* config,
8808 struct radv_shader_args *args)
8809 {
8810 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
8811
8812 for (unsigned i = 0; i < shader_count; i++) {
8813 nir_shader *nir = shaders[i];
8814 init_context(&ctx, nir);
8815
8816 setup_fp_mode(&ctx, nir);
8817
8818 if (!i) {
8819 /* needs to be after init_context() for FS */
8820 Pseudo_instruction *startpgm = add_startpgm(&ctx);
8821 append_logical_start(ctx.block);
8822 split_arguments(&ctx, startpgm);
8823 }
8824
8825 if_context ic;
8826 if (shader_count >= 2) {
8827 Builder bld(ctx.program, ctx.block);
8828 Temp count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | (i * 8u)));
8829 Temp thread_id = emit_mbcnt(&ctx, bld.def(v1));
8830 Temp cond = bld.vopc(aco_opcode::v_cmp_gt_u32, bld.hint_vcc(bld.def(bld.lm)), count, thread_id);
8831
8832 begin_divergent_if_then(&ctx, &ic, cond);
8833 }
8834
8835 if (i) {
8836 Builder bld(ctx.program, ctx.block);
8837 assert(ctx.stage == vertex_geometry_gs);
8838 bld.barrier(aco_opcode::p_memory_barrier_shared);
8839 bld.sopp(aco_opcode::s_barrier);
8840
8841 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
8842 } else if (ctx.stage == geometry_gs)
8843 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
8844
8845 if (ctx.stage == fragment_fs)
8846 handle_bc_optimize(&ctx);
8847
8848 nir_function_impl *func = nir_shader_get_entrypoint(nir);
8849 visit_cf_list(&ctx, &func->body);
8850
8851 if (ctx.program->info->so.num_outputs && ctx.stage == vertex_vs)
8852 emit_streamout(&ctx, 0);
8853
8854 if (ctx.stage == vertex_vs) {
8855 create_vs_exports(&ctx);
8856 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
8857 Builder bld(ctx.program, ctx.block);
8858 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
8859 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
8860 }
8861
8862 if (ctx.stage == fragment_fs)
8863 create_fs_exports(&ctx);
8864
8865 if (shader_count >= 2) {
8866 begin_divergent_if_else(&ctx, &ic);
8867 end_divergent_if(&ctx, &ic);
8868 }
8869
8870 ralloc_free(ctx.divergent_vals);
8871 }
8872
8873 program->config->float_mode = program->blocks[0].fp_mode.val;
8874
8875 append_logical_end(ctx.block);
8876 ctx.block->kind |= block_kind_uniform | block_kind_export_end;
8877 Builder bld(ctx.program, ctx.block);
8878 if (ctx.program->wb_smem_l1_on_end)
8879 bld.smem(aco_opcode::s_dcache_wb, false);
8880 bld.sopp(aco_opcode::s_endpgm);
8881
8882 cleanup_cfg(program);
8883 }
8884
8885 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
8886 ac_shader_config* config,
8887 struct radv_shader_args *args)
8888 {
8889 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
8890
8891 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
8892 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
8893 program->next_fp_mode.must_flush_denorms32 = false;
8894 program->next_fp_mode.must_flush_denorms16_64 = false;
8895 program->next_fp_mode.care_about_round32 = false;
8896 program->next_fp_mode.care_about_round16_64 = false;
8897 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
8898 program->next_fp_mode.denorm32 = 0;
8899 program->next_fp_mode.round32 = fp_round_ne;
8900 program->next_fp_mode.round16_64 = fp_round_ne;
8901 ctx.block->fp_mode = program->next_fp_mode;
8902
8903 add_startpgm(&ctx);
8904 append_logical_start(ctx.block);
8905
8906 Builder bld(ctx.program, ctx.block);
8907
8908 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
8909
8910 Operand stream_id(0u);
8911 if (args->shader_info->so.num_outputs)
8912 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
8913 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
8914
8915 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
8916
8917 std::stack<Block> endif_blocks;
8918
8919 for (unsigned stream = 0; stream < 4; stream++) {
8920 if (stream_id.isConstant() && stream != stream_id.constantValue())
8921 continue;
8922
8923 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
8924 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
8925 continue;
8926
8927 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
8928
8929 unsigned BB_if_idx = ctx.block->index;
8930 Block BB_endif = Block();
8931 if (!stream_id.isConstant()) {
8932 /* begin IF */
8933 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
8934 append_logical_end(ctx.block);
8935 ctx.block->kind |= block_kind_uniform;
8936 bld.branch(aco_opcode::p_cbranch_z, cond);
8937
8938 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
8939
8940 ctx.block = ctx.program->create_and_insert_block();
8941 add_edge(BB_if_idx, ctx.block);
8942 bld.reset(ctx.block);
8943 append_logical_start(ctx.block);
8944 }
8945
8946 unsigned offset = 0;
8947 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
8948 if (args->shader_info->gs.output_streams[i] != stream)
8949 continue;
8950
8951 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
8952 unsigned length = util_last_bit(output_usage_mask);
8953 for (unsigned j = 0; j < length; ++j) {
8954 if (!(output_usage_mask & (1 << j)))
8955 continue;
8956
8957 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
8958 Temp voffset = vtx_offset;
8959 if (const_offset >= 4096u) {
8960 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
8961 const_offset %= 4096u;
8962 }
8963
8964 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
8965 mubuf->definitions[0] = bld.def(v1);
8966 mubuf->operands[0] = Operand(voffset);
8967 mubuf->operands[1] = Operand(gsvs_ring);
8968 mubuf->operands[2] = Operand(0u);
8969 mubuf->offen = true;
8970 mubuf->offset = const_offset;
8971 mubuf->glc = true;
8972 mubuf->slc = true;
8973 mubuf->dlc = args->options->chip_class >= GFX10;
8974 mubuf->barrier = barrier_none;
8975 mubuf->can_reorder = true;
8976
8977 ctx.outputs.mask[i] |= 1 << j;
8978 ctx.outputs.outputs[i][j] = mubuf->definitions[0].getTemp();
8979
8980 bld.insert(std::move(mubuf));
8981
8982 offset++;
8983 }
8984 }
8985
8986 if (args->shader_info->so.num_outputs) {
8987 emit_streamout(&ctx, stream);
8988 bld.reset(ctx.block);
8989 }
8990
8991 if (stream == 0) {
8992 create_vs_exports(&ctx);
8993 ctx.block->kind |= block_kind_export_end;
8994 }
8995
8996 if (!stream_id.isConstant()) {
8997 append_logical_end(ctx.block);
8998
8999 /* branch from then block to endif block */
9000 bld.branch(aco_opcode::p_branch);
9001 add_edge(ctx.block->index, &BB_endif);
9002 ctx.block->kind |= block_kind_uniform;
9003
9004 /* emit else block */
9005 ctx.block = ctx.program->create_and_insert_block();
9006 add_edge(BB_if_idx, ctx.block);
9007 bld.reset(ctx.block);
9008 append_logical_start(ctx.block);
9009
9010 endif_blocks.push(std::move(BB_endif));
9011 }
9012 }
9013
9014 while (!endif_blocks.empty()) {
9015 Block BB_endif = std::move(endif_blocks.top());
9016 endif_blocks.pop();
9017
9018 Block *BB_else = ctx.block;
9019
9020 append_logical_end(BB_else);
9021 /* branch from else block to endif block */
9022 bld.branch(aco_opcode::p_branch);
9023 add_edge(BB_else->index, &BB_endif);
9024 BB_else->kind |= block_kind_uniform;
9025
9026 /** emit endif merge block */
9027 ctx.block = program->insert_block(std::move(BB_endif));
9028 bld.reset(ctx.block);
9029 append_logical_start(ctx.block);
9030 }
9031
9032 program->config->float_mode = program->blocks[0].fp_mode.val;
9033
9034 append_logical_end(ctx.block);
9035 ctx.block->kind |= block_kind_uniform;
9036 bld.sopp(aco_opcode::s_endpgm);
9037
9038 cleanup_cfg(program);
9039 }
9040 }