f713a7610083ba4330f6eb826e9835c4de3b312b
[mesa.git] / src / amd / compiler / aco_instruction_selection.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <algorithm>
27 #include <array>
28 #include <stack>
29 #include <map>
30
31 #include "ac_shader_util.h"
32 #include "aco_ir.h"
33 #include "aco_builder.h"
34 #include "aco_interface.h"
35 #include "aco_instruction_selection_setup.cpp"
36 #include "util/fast_idiv_by_const.h"
37
38 namespace aco {
39 namespace {
40
41 class loop_info_RAII {
42 isel_context* ctx;
43 unsigned header_idx_old;
44 Block* exit_old;
45 bool divergent_cont_old;
46 bool divergent_branch_old;
47 bool divergent_if_old;
48
49 public:
50 loop_info_RAII(isel_context* ctx, unsigned loop_header_idx, Block* loop_exit)
51 : ctx(ctx),
52 header_idx_old(ctx->cf_info.parent_loop.header_idx), exit_old(ctx->cf_info.parent_loop.exit),
53 divergent_cont_old(ctx->cf_info.parent_loop.has_divergent_continue),
54 divergent_branch_old(ctx->cf_info.parent_loop.has_divergent_branch),
55 divergent_if_old(ctx->cf_info.parent_if.is_divergent)
56 {
57 ctx->cf_info.parent_loop.header_idx = loop_header_idx;
58 ctx->cf_info.parent_loop.exit = loop_exit;
59 ctx->cf_info.parent_loop.has_divergent_continue = false;
60 ctx->cf_info.parent_loop.has_divergent_branch = false;
61 ctx->cf_info.parent_if.is_divergent = false;
62 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
63 }
64
65 ~loop_info_RAII()
66 {
67 ctx->cf_info.parent_loop.header_idx = header_idx_old;
68 ctx->cf_info.parent_loop.exit = exit_old;
69 ctx->cf_info.parent_loop.has_divergent_continue = divergent_cont_old;
70 ctx->cf_info.parent_loop.has_divergent_branch = divergent_branch_old;
71 ctx->cf_info.parent_if.is_divergent = divergent_if_old;
72 ctx->cf_info.loop_nest_depth = ctx->cf_info.loop_nest_depth - 1;
73 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent)
74 ctx->cf_info.exec_potentially_empty_discard = false;
75 }
76 };
77
78 struct if_context {
79 Temp cond;
80
81 bool divergent_old;
82 bool exec_potentially_empty_discard_old;
83 bool exec_potentially_empty_break_old;
84 uint16_t exec_potentially_empty_break_depth_old;
85
86 unsigned BB_if_idx;
87 unsigned invert_idx;
88 bool uniform_has_then_branch;
89 bool then_branch_divergent;
90 Block BB_invert;
91 Block BB_endif;
92 };
93
94 static bool visit_cf_list(struct isel_context *ctx,
95 struct exec_list *list);
96
97 static void add_logical_edge(unsigned pred_idx, Block *succ)
98 {
99 succ->logical_preds.emplace_back(pred_idx);
100 }
101
102
103 static void add_linear_edge(unsigned pred_idx, Block *succ)
104 {
105 succ->linear_preds.emplace_back(pred_idx);
106 }
107
108 static void add_edge(unsigned pred_idx, Block *succ)
109 {
110 add_logical_edge(pred_idx, succ);
111 add_linear_edge(pred_idx, succ);
112 }
113
114 static void append_logical_start(Block *b)
115 {
116 Builder(NULL, b).pseudo(aco_opcode::p_logical_start);
117 }
118
119 static void append_logical_end(Block *b)
120 {
121 Builder(NULL, b).pseudo(aco_opcode::p_logical_end);
122 }
123
124 Temp get_ssa_temp(struct isel_context *ctx, nir_ssa_def *def)
125 {
126 assert(ctx->allocated[def->index].id());
127 return ctx->allocated[def->index];
128 }
129
130 Temp emit_mbcnt(isel_context *ctx, Definition dst,
131 Operand mask_lo = Operand((uint32_t) -1), Operand mask_hi = Operand((uint32_t) -1))
132 {
133 Builder bld(ctx->program, ctx->block);
134 Definition lo_def = ctx->program->wave_size == 32 ? dst : bld.def(v1);
135 Temp thread_id_lo = bld.vop3(aco_opcode::v_mbcnt_lo_u32_b32, lo_def, mask_lo, Operand(0u));
136
137 if (ctx->program->wave_size == 32) {
138 return thread_id_lo;
139 } else {
140 Temp thread_id_hi = bld.vop3(aco_opcode::v_mbcnt_hi_u32_b32, dst, mask_hi, thread_id_lo);
141 return thread_id_hi;
142 }
143 }
144
145 Temp emit_wqm(isel_context *ctx, Temp src, Temp dst=Temp(0, s1), bool program_needs_wqm = false)
146 {
147 Builder bld(ctx->program, ctx->block);
148
149 if (!dst.id())
150 dst = bld.tmp(src.regClass());
151
152 assert(src.size() == dst.size());
153
154 if (ctx->stage != fragment_fs) {
155 if (!dst.id())
156 return src;
157
158 bld.copy(Definition(dst), src);
159 return dst;
160 }
161
162 bld.pseudo(aco_opcode::p_wqm, Definition(dst), src);
163 ctx->program->needs_wqm |= program_needs_wqm;
164 return dst;
165 }
166
167 static Temp emit_bpermute(isel_context *ctx, Builder &bld, Temp index, Temp data)
168 {
169 if (index.regClass() == s1)
170 return bld.readlane(bld.def(s1), data, index);
171
172 Temp index_x4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), index);
173
174 /* Currently not implemented on GFX6-7 */
175 assert(ctx->options->chip_class >= GFX8);
176
177 if (ctx->options->chip_class <= GFX9 || ctx->program->wave_size == 32) {
178 return bld.ds(aco_opcode::ds_bpermute_b32, bld.def(v1), index_x4, data);
179 }
180
181 /* GFX10, wave64 mode:
182 * The bpermute instruction is limited to half-wave operation, which means that it can't
183 * properly support subgroup shuffle like older generations (or wave32 mode), so we
184 * emulate it here.
185 */
186 if (!ctx->has_gfx10_wave64_bpermute) {
187 ctx->has_gfx10_wave64_bpermute = true;
188 ctx->program->config->num_shared_vgprs = 8; /* Shared VGPRs are allocated in groups of 8 */
189 ctx->program->vgpr_limit -= 4; /* We allocate 8 shared VGPRs, so we'll have 4 fewer normal VGPRs */
190 }
191
192 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
193 Temp lane_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), lane_id);
194 Temp index_is_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x20u), index);
195 Temp cmp = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm, vcc), lane_is_hi, index_is_hi);
196
197 return bld.reduction(aco_opcode::p_wave64_bpermute, bld.def(v1), bld.def(s2), bld.def(s1, scc),
198 bld.vcc(cmp), Operand(v2.as_linear()), index_x4, data, gfx10_wave64_bpermute);
199 }
200
201 Temp as_vgpr(isel_context *ctx, Temp val)
202 {
203 if (val.type() == RegType::sgpr) {
204 Builder bld(ctx->program, ctx->block);
205 return bld.copy(bld.def(RegType::vgpr, val.size()), val);
206 }
207 assert(val.type() == RegType::vgpr);
208 return val;
209 }
210
211 //assumes a != 0xffffffff
212 void emit_v_div_u32(isel_context *ctx, Temp dst, Temp a, uint32_t b)
213 {
214 assert(b != 0);
215 Builder bld(ctx->program, ctx->block);
216
217 if (util_is_power_of_two_or_zero(b)) {
218 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)util_logbase2(b)), a);
219 return;
220 }
221
222 util_fast_udiv_info info = util_compute_fast_udiv_info(b, 32, 32);
223
224 assert(info.multiplier <= 0xffffffff);
225
226 bool pre_shift = info.pre_shift != 0;
227 bool increment = info.increment != 0;
228 bool multiply = true;
229 bool post_shift = info.post_shift != 0;
230
231 if (!pre_shift && !increment && !multiply && !post_shift) {
232 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), a);
233 return;
234 }
235
236 Temp pre_shift_dst = a;
237 if (pre_shift) {
238 pre_shift_dst = (increment || multiply || post_shift) ? bld.tmp(v1) : dst;
239 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(pre_shift_dst), Operand((uint32_t)info.pre_shift), a);
240 }
241
242 Temp increment_dst = pre_shift_dst;
243 if (increment) {
244 increment_dst = (post_shift || multiply) ? bld.tmp(v1) : dst;
245 bld.vadd32(Definition(increment_dst), Operand((uint32_t) info.increment), pre_shift_dst);
246 }
247
248 Temp multiply_dst = increment_dst;
249 if (multiply) {
250 multiply_dst = post_shift ? bld.tmp(v1) : dst;
251 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(multiply_dst), increment_dst,
252 bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand((uint32_t)info.multiplier)));
253 }
254
255 if (post_shift) {
256 bld.vop2(aco_opcode::v_lshrrev_b32, Definition(dst), Operand((uint32_t)info.post_shift), multiply_dst);
257 }
258 }
259
260 void emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, Temp dst)
261 {
262 Builder bld(ctx->program, ctx->block);
263 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), src, Operand(idx));
264 }
265
266
267 Temp emit_extract_vector(isel_context* ctx, Temp src, uint32_t idx, RegClass dst_rc)
268 {
269 /* no need to extract the whole vector */
270 if (src.regClass() == dst_rc) {
271 assert(idx == 0);
272 return src;
273 }
274
275 assert(src.bytes() > (idx * dst_rc.bytes()));
276 Builder bld(ctx->program, ctx->block);
277 auto it = ctx->allocated_vec.find(src.id());
278 if (it != ctx->allocated_vec.end() && dst_rc.bytes() == it->second[idx].regClass().bytes()) {
279 if (it->second[idx].regClass() == dst_rc) {
280 return it->second[idx];
281 } else {
282 assert(!dst_rc.is_subdword());
283 assert(dst_rc.type() == RegType::vgpr && it->second[idx].type() == RegType::sgpr);
284 return bld.copy(bld.def(dst_rc), it->second[idx]);
285 }
286 }
287
288 if (dst_rc.is_subdword())
289 src = as_vgpr(ctx, src);
290
291 if (src.bytes() == dst_rc.bytes()) {
292 assert(idx == 0);
293 return bld.copy(bld.def(dst_rc), src);
294 } else {
295 Temp dst = bld.tmp(dst_rc);
296 emit_extract_vector(ctx, src, idx, dst);
297 return dst;
298 }
299 }
300
301 void emit_split_vector(isel_context* ctx, Temp vec_src, unsigned num_components)
302 {
303 if (num_components == 1)
304 return;
305 if (ctx->allocated_vec.find(vec_src.id()) != ctx->allocated_vec.end())
306 return;
307 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_components)};
308 split->operands[0] = Operand(vec_src);
309 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
310 RegClass rc;
311 if (num_components > vec_src.size()) {
312 if (vec_src.type() == RegType::sgpr)
313 return;
314
315 /* sub-dword split */
316 assert(vec_src.type() == RegType::vgpr);
317 rc = RegClass(RegType::vgpr, vec_src.bytes() / num_components).as_subdword();
318 } else {
319 rc = RegClass(vec_src.type(), vec_src.size() / num_components);
320 }
321 for (unsigned i = 0; i < num_components; i++) {
322 elems[i] = {ctx->program->allocateId(), rc};
323 split->definitions[i] = Definition(elems[i]);
324 }
325 ctx->block->instructions.emplace_back(std::move(split));
326 ctx->allocated_vec.emplace(vec_src.id(), elems);
327 }
328
329 /* This vector expansion uses a mask to determine which elements in the new vector
330 * come from the original vector. The other elements are undefined. */
331 void expand_vector(isel_context* ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
332 {
333 emit_split_vector(ctx, vec_src, util_bitcount(mask));
334
335 if (vec_src == dst)
336 return;
337
338 Builder bld(ctx->program, ctx->block);
339 if (num_components == 1) {
340 if (dst.type() == RegType::sgpr)
341 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
342 else
343 bld.copy(Definition(dst), vec_src);
344 return;
345 }
346
347 unsigned component_size = dst.size() / num_components;
348 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
349
350 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
351 vec->definitions[0] = Definition(dst);
352 unsigned k = 0;
353 for (unsigned i = 0; i < num_components; i++) {
354 if (mask & (1 << i)) {
355 Temp src = emit_extract_vector(ctx, vec_src, k++, RegClass(vec_src.type(), component_size));
356 if (dst.type() == RegType::sgpr)
357 src = bld.as_uniform(src);
358 vec->operands[i] = Operand(src);
359 } else {
360 vec->operands[i] = Operand(0u);
361 }
362 elems[i] = vec->operands[i].getTemp();
363 }
364 ctx->block->instructions.emplace_back(std::move(vec));
365 ctx->allocated_vec.emplace(dst.id(), elems);
366 }
367
368 /* adjust misaligned small bit size loads */
369 void byte_align_scalar(isel_context *ctx, Temp vec, Operand offset, Temp dst)
370 {
371 Builder bld(ctx->program, ctx->block);
372 Operand shift;
373 Temp select = Temp();
374 if (offset.isConstant()) {
375 assert(offset.constantValue() && offset.constantValue() < 4);
376 shift = Operand(offset.constantValue() * 8);
377 } else {
378 /* bit_offset = 8 * (offset & 0x3) */
379 Temp tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), offset, Operand(3u));
380 select = bld.tmp(s1);
381 shift = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.scc(Definition(select)), tmp, Operand(3u));
382 }
383
384 if (vec.size() == 1) {
385 bld.sop2(aco_opcode::s_lshr_b32, Definition(dst), bld.def(s1, scc), vec, shift);
386 } else if (vec.size() == 2) {
387 Temp tmp = dst.size() == 2 ? dst : bld.tmp(s2);
388 bld.sop2(aco_opcode::s_lshr_b64, Definition(tmp), bld.def(s1, scc), vec, shift);
389 if (tmp == dst)
390 emit_split_vector(ctx, dst, 2);
391 else
392 emit_extract_vector(ctx, tmp, 0, dst);
393 } else if (vec.size() == 4) {
394 Temp lo = bld.tmp(s2), hi = bld.tmp(s2);
395 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), vec);
396 hi = bld.pseudo(aco_opcode::p_extract_vector, bld.def(s1), hi, Operand(0u));
397 if (select != Temp())
398 hi = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), hi, Operand(0u), select);
399 lo = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), lo, shift);
400 Temp mid = bld.tmp(s1);
401 lo = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), Definition(mid), lo);
402 hi = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), hi, shift);
403 mid = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), hi, mid);
404 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, mid);
405 emit_split_vector(ctx, dst, 2);
406 }
407 }
408
409 /* this function trims subdword vectors:
410 * if dst is vgpr - split the src and create a shrunk version according to the mask.
411 * if dst is sgpr - split the src, but move the original to sgpr. */
412 void trim_subdword_vector(isel_context *ctx, Temp vec_src, Temp dst, unsigned num_components, unsigned mask)
413 {
414 assert(vec_src.type() == RegType::vgpr);
415 emit_split_vector(ctx, vec_src, num_components);
416
417 Builder bld(ctx->program, ctx->block);
418 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
419 unsigned component_size = vec_src.bytes() / num_components;
420 RegClass rc = RegClass(RegType::vgpr, component_size).as_subdword();
421
422 unsigned k = 0;
423 for (unsigned i = 0; i < num_components; i++) {
424 if (mask & (1 << i))
425 elems[k++] = emit_extract_vector(ctx, vec_src, i, rc);
426 }
427
428 if (dst.type() == RegType::vgpr) {
429 assert(dst.bytes() == k * component_size);
430 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, k, 1)};
431 for (unsigned i = 0; i < k; i++)
432 vec->operands[i] = Operand(elems[i]);
433 vec->definitions[0] = Definition(dst);
434 bld.insert(std::move(vec));
435 } else {
436 // TODO: alignbyte if mask doesn't start with 1?
437 assert(mask & 1);
438 assert(dst.size() == vec_src.size());
439 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec_src);
440 }
441 ctx->allocated_vec.emplace(dst.id(), elems);
442 }
443
444 Temp bool_to_vector_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s2))
445 {
446 Builder bld(ctx->program, ctx->block);
447 if (!dst.id())
448 dst = bld.tmp(bld.lm);
449
450 assert(val.regClass() == s1);
451 assert(dst.regClass() == bld.lm);
452
453 return bld.sop2(Builder::s_cselect, Definition(dst), Operand((uint32_t) -1), Operand(0u), bld.scc(val));
454 }
455
456 Temp bool_to_scalar_condition(isel_context *ctx, Temp val, Temp dst = Temp(0, s1))
457 {
458 Builder bld(ctx->program, ctx->block);
459 if (!dst.id())
460 dst = bld.tmp(s1);
461
462 assert(val.regClass() == bld.lm);
463 assert(dst.regClass() == s1);
464
465 /* if we're currently in WQM mode, ensure that the source is also computed in WQM */
466 Temp tmp = bld.tmp(s1);
467 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.scc(Definition(tmp)), val, Operand(exec, bld.lm));
468 return emit_wqm(ctx, tmp, dst);
469 }
470
471 Temp get_alu_src(struct isel_context *ctx, nir_alu_src src, unsigned size=1)
472 {
473 if (src.src.ssa->num_components == 1 && src.swizzle[0] == 0 && size == 1)
474 return get_ssa_temp(ctx, src.src.ssa);
475
476 if (src.src.ssa->num_components == size) {
477 bool identity_swizzle = true;
478 for (unsigned i = 0; identity_swizzle && i < size; i++) {
479 if (src.swizzle[i] != i)
480 identity_swizzle = false;
481 }
482 if (identity_swizzle)
483 return get_ssa_temp(ctx, src.src.ssa);
484 }
485
486 Temp vec = get_ssa_temp(ctx, src.src.ssa);
487 unsigned elem_size = vec.bytes() / src.src.ssa->num_components;
488 assert(elem_size > 0);
489 assert(vec.bytes() % elem_size == 0);
490
491 if (elem_size < 4 && vec.type() == RegType::sgpr) {
492 assert(src.src.ssa->bit_size == 8 || src.src.ssa->bit_size == 16);
493 assert(size == 1);
494 unsigned swizzle = src.swizzle[0];
495 if (vec.size() > 1) {
496 assert(src.src.ssa->bit_size == 16);
497 vec = emit_extract_vector(ctx, vec, swizzle / 2, s1);
498 swizzle = swizzle & 1;
499 }
500 if (swizzle == 0)
501 return vec;
502
503 Temp dst{ctx->program->allocateId(), s1};
504 aco_ptr<SOP2_instruction> bfe{create_instruction<SOP2_instruction>(aco_opcode::s_bfe_u32, Format::SOP2, 2, 1)};
505 bfe->operands[0] = Operand(vec);
506 bfe->operands[1] = Operand(uint32_t((src.src.ssa->bit_size << 16) | (src.src.ssa->bit_size * swizzle)));
507 bfe->definitions[0] = Definition(dst);
508 ctx->block->instructions.emplace_back(std::move(bfe));
509 return dst;
510 }
511
512 RegClass elem_rc = elem_size < 4 ? RegClass(vec.type(), elem_size).as_subdword() : RegClass(vec.type(), elem_size / 4);
513 if (size == 1) {
514 return emit_extract_vector(ctx, vec, src.swizzle[0], elem_rc);
515 } else {
516 assert(size <= 4);
517 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
518 aco_ptr<Pseudo_instruction> vec_instr{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
519 for (unsigned i = 0; i < size; ++i) {
520 elems[i] = emit_extract_vector(ctx, vec, src.swizzle[i], elem_rc);
521 vec_instr->operands[i] = Operand{elems[i]};
522 }
523 Temp dst{ctx->program->allocateId(), RegClass(vec.type(), elem_size * size / 4)};
524 vec_instr->definitions[0] = Definition(dst);
525 ctx->block->instructions.emplace_back(std::move(vec_instr));
526 ctx->allocated_vec.emplace(dst.id(), elems);
527 return dst;
528 }
529 }
530
531 Temp convert_pointer_to_64_bit(isel_context *ctx, Temp ptr)
532 {
533 if (ptr.size() == 2)
534 return ptr;
535 Builder bld(ctx->program, ctx->block);
536 if (ptr.type() == RegType::vgpr)
537 ptr = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), ptr);
538 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s2),
539 ptr, Operand((unsigned)ctx->options->address32_hi));
540 }
541
542 void emit_sop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst, bool writes_scc)
543 {
544 aco_ptr<SOP2_instruction> sop2{create_instruction<SOP2_instruction>(op, Format::SOP2, 2, writes_scc ? 2 : 1)};
545 sop2->operands[0] = Operand(get_alu_src(ctx, instr->src[0]));
546 sop2->operands[1] = Operand(get_alu_src(ctx, instr->src[1]));
547 sop2->definitions[0] = Definition(dst);
548 if (writes_scc)
549 sop2->definitions[1] = Definition(ctx->program->allocateId(), scc, s1);
550 ctx->block->instructions.emplace_back(std::move(sop2));
551 }
552
553 void emit_vop2_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
554 bool commutative, bool swap_srcs=false, bool flush_denorms = false)
555 {
556 Builder bld(ctx->program, ctx->block);
557 Temp src0 = get_alu_src(ctx, instr->src[swap_srcs ? 1 : 0]);
558 Temp src1 = get_alu_src(ctx, instr->src[swap_srcs ? 0 : 1]);
559 if (src1.type() == RegType::sgpr) {
560 if (commutative && src0.type() == RegType::vgpr) {
561 Temp t = src0;
562 src0 = src1;
563 src1 = t;
564 } else if (src0.type() == RegType::vgpr &&
565 op != aco_opcode::v_madmk_f32 &&
566 op != aco_opcode::v_madak_f32 &&
567 op != aco_opcode::v_madmk_f16 &&
568 op != aco_opcode::v_madak_f16) {
569 /* If the instruction is not commutative, we emit a VOP3A instruction */
570 bld.vop2_e64(op, Definition(dst), src0, src1);
571 return;
572 } else {
573 src1 = bld.copy(bld.def(RegType::vgpr, src1.size()), src1); //TODO: as_vgpr
574 }
575 }
576
577 if (flush_denorms && ctx->program->chip_class < GFX9) {
578 assert(dst.size() == 1);
579 Temp tmp = bld.vop2(op, bld.def(v1), src0, src1);
580 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
581 } else {
582 bld.vop2(op, Definition(dst), src0, src1);
583 }
584 }
585
586 void emit_vop3a_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst,
587 bool flush_denorms = false)
588 {
589 Temp src0 = get_alu_src(ctx, instr->src[0]);
590 Temp src1 = get_alu_src(ctx, instr->src[1]);
591 Temp src2 = get_alu_src(ctx, instr->src[2]);
592
593 /* ensure that the instruction has at most 1 sgpr operand
594 * The optimizer will inline constants for us */
595 if (src0.type() == RegType::sgpr && src1.type() == RegType::sgpr)
596 src0 = as_vgpr(ctx, src0);
597 if (src1.type() == RegType::sgpr && src2.type() == RegType::sgpr)
598 src1 = as_vgpr(ctx, src1);
599 if (src2.type() == RegType::sgpr && src0.type() == RegType::sgpr)
600 src2 = as_vgpr(ctx, src2);
601
602 Builder bld(ctx->program, ctx->block);
603 if (flush_denorms && ctx->program->chip_class < GFX9) {
604 assert(dst.size() == 1);
605 Temp tmp = bld.vop3(op, Definition(dst), src0, src1, src2);
606 bld.vop2(aco_opcode::v_mul_f32, Definition(dst), Operand(0x3f800000u), tmp);
607 } else {
608 bld.vop3(op, Definition(dst), src0, src1, src2);
609 }
610 }
611
612 void emit_vop1_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
613 {
614 Builder bld(ctx->program, ctx->block);
615 bld.vop1(op, Definition(dst), get_alu_src(ctx, instr->src[0]));
616 }
617
618 void emit_vopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
619 {
620 Temp src0 = get_alu_src(ctx, instr->src[0]);
621 Temp src1 = get_alu_src(ctx, instr->src[1]);
622 assert(src0.size() == src1.size());
623
624 aco_ptr<Instruction> vopc;
625 if (src1.type() == RegType::sgpr) {
626 if (src0.type() == RegType::vgpr) {
627 /* to swap the operands, we might also have to change the opcode */
628 switch (op) {
629 case aco_opcode::v_cmp_lt_f16:
630 op = aco_opcode::v_cmp_gt_f16;
631 break;
632 case aco_opcode::v_cmp_ge_f16:
633 op = aco_opcode::v_cmp_le_f16;
634 break;
635 case aco_opcode::v_cmp_lt_i16:
636 op = aco_opcode::v_cmp_gt_i16;
637 break;
638 case aco_opcode::v_cmp_ge_i16:
639 op = aco_opcode::v_cmp_le_i16;
640 break;
641 case aco_opcode::v_cmp_lt_u16:
642 op = aco_opcode::v_cmp_gt_u16;
643 break;
644 case aco_opcode::v_cmp_ge_u16:
645 op = aco_opcode::v_cmp_le_u16;
646 break;
647 case aco_opcode::v_cmp_lt_f32:
648 op = aco_opcode::v_cmp_gt_f32;
649 break;
650 case aco_opcode::v_cmp_ge_f32:
651 op = aco_opcode::v_cmp_le_f32;
652 break;
653 case aco_opcode::v_cmp_lt_i32:
654 op = aco_opcode::v_cmp_gt_i32;
655 break;
656 case aco_opcode::v_cmp_ge_i32:
657 op = aco_opcode::v_cmp_le_i32;
658 break;
659 case aco_opcode::v_cmp_lt_u32:
660 op = aco_opcode::v_cmp_gt_u32;
661 break;
662 case aco_opcode::v_cmp_ge_u32:
663 op = aco_opcode::v_cmp_le_u32;
664 break;
665 case aco_opcode::v_cmp_lt_f64:
666 op = aco_opcode::v_cmp_gt_f64;
667 break;
668 case aco_opcode::v_cmp_ge_f64:
669 op = aco_opcode::v_cmp_le_f64;
670 break;
671 case aco_opcode::v_cmp_lt_i64:
672 op = aco_opcode::v_cmp_gt_i64;
673 break;
674 case aco_opcode::v_cmp_ge_i64:
675 op = aco_opcode::v_cmp_le_i64;
676 break;
677 case aco_opcode::v_cmp_lt_u64:
678 op = aco_opcode::v_cmp_gt_u64;
679 break;
680 case aco_opcode::v_cmp_ge_u64:
681 op = aco_opcode::v_cmp_le_u64;
682 break;
683 default: /* eq and ne are commutative */
684 break;
685 }
686 Temp t = src0;
687 src0 = src1;
688 src1 = t;
689 } else {
690 src1 = as_vgpr(ctx, src1);
691 }
692 }
693
694 Builder bld(ctx->program, ctx->block);
695 bld.vopc(op, bld.hint_vcc(Definition(dst)), src0, src1);
696 }
697
698 void emit_sopc_instruction(isel_context *ctx, nir_alu_instr *instr, aco_opcode op, Temp dst)
699 {
700 Temp src0 = get_alu_src(ctx, instr->src[0]);
701 Temp src1 = get_alu_src(ctx, instr->src[1]);
702 Builder bld(ctx->program, ctx->block);
703
704 assert(dst.regClass() == bld.lm);
705 assert(src0.type() == RegType::sgpr);
706 assert(src1.type() == RegType::sgpr);
707 assert(src0.regClass() == src1.regClass());
708
709 /* Emit the SALU comparison instruction */
710 Temp cmp = bld.sopc(op, bld.scc(bld.def(s1)), src0, src1);
711 /* Turn the result into a per-lane bool */
712 bool_to_vector_condition(ctx, cmp, dst);
713 }
714
715 void emit_comparison(isel_context *ctx, nir_alu_instr *instr, Temp dst,
716 aco_opcode v16_op, aco_opcode v32_op, aco_opcode v64_op, aco_opcode s32_op = aco_opcode::num_opcodes, aco_opcode s64_op = aco_opcode::num_opcodes)
717 {
718 aco_opcode s_op = instr->src[0].src.ssa->bit_size == 64 ? s64_op : instr->src[0].src.ssa->bit_size == 32 ? s32_op : aco_opcode::num_opcodes;
719 aco_opcode v_op = instr->src[0].src.ssa->bit_size == 64 ? v64_op : instr->src[0].src.ssa->bit_size == 32 ? v32_op : v16_op;
720 bool divergent_vals = ctx->divergent_vals[instr->dest.dest.ssa.index];
721 bool use_valu = s_op == aco_opcode::num_opcodes ||
722 divergent_vals ||
723 ctx->allocated[instr->src[0].src.ssa->index].type() == RegType::vgpr ||
724 ctx->allocated[instr->src[1].src.ssa->index].type() == RegType::vgpr;
725 aco_opcode op = use_valu ? v_op : s_op;
726 assert(op != aco_opcode::num_opcodes);
727 assert(dst.regClass() == ctx->program->lane_mask);
728
729 if (use_valu)
730 emit_vopc_instruction(ctx, instr, op, dst);
731 else
732 emit_sopc_instruction(ctx, instr, op, dst);
733 }
734
735 void emit_boolean_logic(isel_context *ctx, nir_alu_instr *instr, Builder::WaveSpecificOpcode op, Temp dst)
736 {
737 Builder bld(ctx->program, ctx->block);
738 Temp src0 = get_alu_src(ctx, instr->src[0]);
739 Temp src1 = get_alu_src(ctx, instr->src[1]);
740
741 assert(dst.regClass() == bld.lm);
742 assert(src0.regClass() == bld.lm);
743 assert(src1.regClass() == bld.lm);
744
745 bld.sop2(op, Definition(dst), bld.def(s1, scc), src0, src1);
746 }
747
748 void emit_bcsel(isel_context *ctx, nir_alu_instr *instr, Temp dst)
749 {
750 Builder bld(ctx->program, ctx->block);
751 Temp cond = get_alu_src(ctx, instr->src[0]);
752 Temp then = get_alu_src(ctx, instr->src[1]);
753 Temp els = get_alu_src(ctx, instr->src[2]);
754
755 assert(cond.regClass() == bld.lm);
756
757 if (dst.type() == RegType::vgpr) {
758 aco_ptr<Instruction> bcsel;
759 if (dst.regClass() == v2b) {
760 then = as_vgpr(ctx, then);
761 els = as_vgpr(ctx, els);
762
763 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), els, then, cond);
764 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
765 } else if (dst.regClass() == v1) {
766 then = as_vgpr(ctx, then);
767 els = as_vgpr(ctx, els);
768
769 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), els, then, cond);
770 } else if (dst.regClass() == v2) {
771 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
772 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), then);
773 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
774 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), els);
775
776 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, cond);
777 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, cond);
778
779 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
780 } else {
781 fprintf(stderr, "Unimplemented NIR instr bit size: ");
782 nir_print_instr(&instr->instr, stderr);
783 fprintf(stderr, "\n");
784 }
785 return;
786 }
787
788 if (instr->dest.dest.ssa.bit_size == 1) {
789 assert(dst.regClass() == bld.lm);
790 assert(then.regClass() == bld.lm);
791 assert(els.regClass() == bld.lm);
792 }
793
794 if (!ctx->divergent_vals[instr->src[0].src.ssa->index]) { /* uniform condition and values in sgpr */
795 if (dst.regClass() == s1 || dst.regClass() == s2) {
796 assert((then.regClass() == s1 || then.regClass() == s2) && els.regClass() == then.regClass());
797 assert(dst.size() == then.size());
798 aco_opcode op = dst.regClass() == s1 ? aco_opcode::s_cselect_b32 : aco_opcode::s_cselect_b64;
799 bld.sop2(op, Definition(dst), then, els, bld.scc(bool_to_scalar_condition(ctx, cond)));
800 } else {
801 fprintf(stderr, "Unimplemented uniform bcsel bit size: ");
802 nir_print_instr(&instr->instr, stderr);
803 fprintf(stderr, "\n");
804 }
805 return;
806 }
807
808 /* divergent boolean bcsel
809 * this implements bcsel on bools: dst = s0 ? s1 : s2
810 * are going to be: dst = (s0 & s1) | (~s0 & s2) */
811 assert(instr->dest.dest.ssa.bit_size == 1);
812
813 if (cond.id() != then.id())
814 then = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), cond, then);
815
816 if (cond.id() == els.id())
817 bld.sop1(Builder::s_mov, Definition(dst), then);
818 else
819 bld.sop2(Builder::s_or, Definition(dst), bld.def(s1, scc), then,
820 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), els, cond));
821 }
822
823 void emit_scaled_op(isel_context *ctx, Builder& bld, Definition dst, Temp val,
824 aco_opcode op, uint32_t undo)
825 {
826 /* multiply by 16777216 to handle denormals */
827 Temp is_denormal = bld.vopc(aco_opcode::v_cmp_class_f32, bld.hint_vcc(bld.def(bld.lm)),
828 as_vgpr(ctx, val), bld.copy(bld.def(v1), Operand((1u << 7) | (1u << 4))));
829 Temp scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x4b800000u), val);
830 scaled = bld.vop1(op, bld.def(v1), scaled);
831 scaled = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(undo), scaled);
832
833 Temp not_scaled = bld.vop1(op, bld.def(v1), val);
834
835 bld.vop2(aco_opcode::v_cndmask_b32, dst, not_scaled, scaled, is_denormal);
836 }
837
838 void emit_rcp(isel_context *ctx, Builder& bld, Definition dst, Temp val)
839 {
840 if (ctx->block->fp_mode.denorm32 == 0) {
841 bld.vop1(aco_opcode::v_rcp_f32, dst, val);
842 return;
843 }
844
845 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rcp_f32, 0x4b800000u);
846 }
847
848 void emit_rsq(isel_context *ctx, Builder& bld, Definition dst, Temp val)
849 {
850 if (ctx->block->fp_mode.denorm32 == 0) {
851 bld.vop1(aco_opcode::v_rsq_f32, dst, val);
852 return;
853 }
854
855 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_rsq_f32, 0x45800000u);
856 }
857
858 void emit_sqrt(isel_context *ctx, Builder& bld, Definition dst, Temp val)
859 {
860 if (ctx->block->fp_mode.denorm32 == 0) {
861 bld.vop1(aco_opcode::v_sqrt_f32, dst, val);
862 return;
863 }
864
865 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_sqrt_f32, 0x39800000u);
866 }
867
868 void emit_log2(isel_context *ctx, Builder& bld, Definition dst, Temp val)
869 {
870 if (ctx->block->fp_mode.denorm32 == 0) {
871 bld.vop1(aco_opcode::v_log_f32, dst, val);
872 return;
873 }
874
875 emit_scaled_op(ctx, bld, dst, val, aco_opcode::v_log_f32, 0xc1c00000u);
876 }
877
878 Temp emit_trunc_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
879 {
880 if (ctx->options->chip_class >= GFX7)
881 return bld.vop1(aco_opcode::v_trunc_f64, Definition(dst), val);
882
883 /* GFX6 doesn't support V_TRUNC_F64, lower it. */
884 /* TODO: create more efficient code! */
885 if (val.type() == RegType::sgpr)
886 val = as_vgpr(ctx, val);
887
888 /* Split the input value. */
889 Temp val_lo = bld.tmp(v1), val_hi = bld.tmp(v1);
890 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
891
892 /* Extract the exponent and compute the unbiased value. */
893 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f64, bld.def(v1), val);
894
895 /* Extract the fractional part. */
896 Temp fract_mask = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x000fffffu));
897 fract_mask = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), fract_mask, exponent);
898
899 Temp fract_mask_lo = bld.tmp(v1), fract_mask_hi = bld.tmp(v1);
900 bld.pseudo(aco_opcode::p_split_vector, Definition(fract_mask_lo), Definition(fract_mask_hi), fract_mask);
901
902 Temp fract_lo = bld.tmp(v1), fract_hi = bld.tmp(v1);
903 Temp tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_lo);
904 fract_lo = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_lo, tmp);
905 tmp = bld.vop1(aco_opcode::v_not_b32, bld.def(v1), fract_mask_hi);
906 fract_hi = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), val_hi, tmp);
907
908 /* Get the sign bit. */
909 Temp sign = bld.vop2(aco_opcode::v_ashr_i32, bld.def(v1), Operand(31u), val_hi);
910
911 /* Decide the operation to apply depending on the unbiased exponent. */
912 Temp exp_lt0 = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)), exponent, Operand(0u));
913 Temp dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_lo, bld.copy(bld.def(v1), Operand(0u)), exp_lt0);
914 Temp dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), fract_hi, sign, exp_lt0);
915 Temp exp_gt51 = bld.vopc_e64(aco_opcode::v_cmp_gt_i32, bld.def(s2), exponent, Operand(51u));
916 dst_lo = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_lo, val_lo, exp_gt51);
917 dst_hi = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), dst_hi, val_hi, exp_gt51);
918
919 return bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst_lo, dst_hi);
920 }
921
922 Temp emit_floor_f64(isel_context *ctx, Builder& bld, Definition dst, Temp val)
923 {
924 if (ctx->options->chip_class >= GFX7)
925 return bld.vop1(aco_opcode::v_floor_f64, Definition(dst), val);
926
927 /* GFX6 doesn't support V_FLOOR_F64, lower it. */
928 Temp src0 = as_vgpr(ctx, val);
929
930 Temp mask = bld.copy(bld.def(s1), Operand(3u)); /* isnan */
931 Temp min_val = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(-1u), Operand(0x3fefffffu));
932
933 Temp isnan = bld.vopc_e64(aco_opcode::v_cmp_class_f64, bld.hint_vcc(bld.def(bld.lm)), src0, mask);
934 Temp fract = bld.vop1(aco_opcode::v_fract_f64, bld.def(v2), src0);
935 Temp min = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), fract, min_val);
936
937 Temp then_lo = bld.tmp(v1), then_hi = bld.tmp(v1);
938 bld.pseudo(aco_opcode::p_split_vector, Definition(then_lo), Definition(then_hi), src0);
939 Temp else_lo = bld.tmp(v1), else_hi = bld.tmp(v1);
940 bld.pseudo(aco_opcode::p_split_vector, Definition(else_lo), Definition(else_hi), min);
941
942 Temp dst0 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_lo, then_lo, isnan);
943 Temp dst1 = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), else_hi, then_hi, isnan);
944
945 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), dst0, dst1);
946
947 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, v);
948 static_cast<VOP3A_instruction*>(add)->neg[1] = true;
949
950 return add->definitions[0].getTemp();
951 }
952
953 void visit_alu_instr(isel_context *ctx, nir_alu_instr *instr)
954 {
955 if (!instr->dest.dest.is_ssa) {
956 fprintf(stderr, "nir alu dst not in ssa: ");
957 nir_print_instr(&instr->instr, stderr);
958 fprintf(stderr, "\n");
959 abort();
960 }
961 Builder bld(ctx->program, ctx->block);
962 Temp dst = get_ssa_temp(ctx, &instr->dest.dest.ssa);
963 switch(instr->op) {
964 case nir_op_vec2:
965 case nir_op_vec3:
966 case nir_op_vec4: {
967 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
968 unsigned num = instr->dest.dest.ssa.num_components;
969 for (unsigned i = 0; i < num; ++i)
970 elems[i] = get_alu_src(ctx, instr->src[i]);
971
972 if (instr->dest.dest.ssa.bit_size >= 32 || dst.type() == RegType::vgpr) {
973 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.dest.ssa.num_components, 1)};
974 for (unsigned i = 0; i < num; ++i)
975 vec->operands[i] = Operand{elems[i]};
976 vec->definitions[0] = Definition(dst);
977 ctx->block->instructions.emplace_back(std::move(vec));
978 ctx->allocated_vec.emplace(dst.id(), elems);
979 } else {
980 // TODO: that is a bit suboptimal..
981 Temp mask = bld.copy(bld.def(s1), Operand((1u << instr->dest.dest.ssa.bit_size) - 1));
982 for (unsigned i = 0; i < num - 1; ++i)
983 if (((i+1) * instr->dest.dest.ssa.bit_size) % 32)
984 elems[i] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), elems[i], mask);
985 for (unsigned i = 0; i < num; ++i) {
986 unsigned bit = i * instr->dest.dest.ssa.bit_size;
987 if (bit % 32 == 0) {
988 elems[bit / 32] = elems[i];
989 } else {
990 elems[i] = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc),
991 elems[i], Operand((i * instr->dest.dest.ssa.bit_size) % 32));
992 elems[bit / 32] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), elems[bit / 32], elems[i]);
993 }
994 }
995 if (dst.size() == 1)
996 bld.copy(Definition(dst), elems[0]);
997 else
998 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), elems[0], elems[1]);
999 }
1000 break;
1001 }
1002 case nir_op_mov: {
1003 Temp src = get_alu_src(ctx, instr->src[0]);
1004 aco_ptr<Instruction> mov;
1005 if (dst.type() == RegType::sgpr) {
1006 if (src.type() == RegType::vgpr)
1007 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
1008 else if (src.regClass() == s1)
1009 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
1010 else if (src.regClass() == s2)
1011 bld.sop1(aco_opcode::s_mov_b64, Definition(dst), src);
1012 else
1013 unreachable("wrong src register class for nir_op_imov");
1014 } else if (dst.regClass() == v1) {
1015 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), src);
1016 } else if (dst.regClass() == v2) {
1017 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
1018 } else {
1019 nir_print_instr(&instr->instr, stderr);
1020 unreachable("Should have been lowered to scalar.");
1021 }
1022 break;
1023 }
1024 case nir_op_inot: {
1025 Temp src = get_alu_src(ctx, instr->src[0]);
1026 if (instr->dest.dest.ssa.bit_size == 1) {
1027 assert(src.regClass() == bld.lm);
1028 assert(dst.regClass() == bld.lm);
1029 /* Don't use s_andn2 here, this allows the optimizer to make a better decision */
1030 Temp tmp = bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), src);
1031 bld.sop2(Builder::s_and, Definition(dst), bld.def(s1, scc), tmp, Operand(exec, bld.lm));
1032 } else if (dst.regClass() == v1) {
1033 emit_vop1_instruction(ctx, instr, aco_opcode::v_not_b32, dst);
1034 } else if (dst.type() == RegType::sgpr) {
1035 aco_opcode opcode = dst.size() == 1 ? aco_opcode::s_not_b32 : aco_opcode::s_not_b64;
1036 bld.sop1(opcode, Definition(dst), bld.def(s1, scc), src);
1037 } else {
1038 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1039 nir_print_instr(&instr->instr, stderr);
1040 fprintf(stderr, "\n");
1041 }
1042 break;
1043 }
1044 case nir_op_ineg: {
1045 Temp src = get_alu_src(ctx, instr->src[0]);
1046 if (dst.regClass() == v1) {
1047 bld.vsub32(Definition(dst), Operand(0u), Operand(src));
1048 } else if (dst.regClass() == s1) {
1049 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand((uint32_t) -1), src);
1050 } else if (dst.size() == 2) {
1051 Temp src0 = bld.tmp(dst.type(), 1);
1052 Temp src1 = bld.tmp(dst.type(), 1);
1053 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
1054
1055 if (dst.regClass() == s2) {
1056 Temp carry = bld.tmp(s1);
1057 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), Operand(0u), src0);
1058 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), Operand(0u), src1, carry);
1059 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1060 } else {
1061 Temp lower = bld.tmp(v1);
1062 Temp borrow = bld.vsub32(Definition(lower), Operand(0u), src0, true).def(1).getTemp();
1063 Temp upper = bld.vsub32(bld.def(v1), Operand(0u), src1, false, borrow);
1064 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1065 }
1066 } else {
1067 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1068 nir_print_instr(&instr->instr, stderr);
1069 fprintf(stderr, "\n");
1070 }
1071 break;
1072 }
1073 case nir_op_iabs: {
1074 if (dst.regClass() == s1) {
1075 bld.sop1(aco_opcode::s_abs_i32, Definition(dst), bld.def(s1, scc), get_alu_src(ctx, instr->src[0]));
1076 } else if (dst.regClass() == v1) {
1077 Temp src = get_alu_src(ctx, instr->src[0]);
1078 bld.vop2(aco_opcode::v_max_i32, Definition(dst), src, bld.vsub32(bld.def(v1), Operand(0u), src));
1079 } else {
1080 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1081 nir_print_instr(&instr->instr, stderr);
1082 fprintf(stderr, "\n");
1083 }
1084 break;
1085 }
1086 case nir_op_isign: {
1087 Temp src = get_alu_src(ctx, instr->src[0]);
1088 if (dst.regClass() == s1) {
1089 Temp tmp = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
1090 Temp gtz = bld.sopc(aco_opcode::s_cmp_gt_i32, bld.def(s1, scc), src, Operand(0u));
1091 bld.sop2(aco_opcode::s_add_i32, Definition(dst), bld.def(s1, scc), gtz, tmp);
1092 } else if (dst.regClass() == s2) {
1093 Temp neg = bld.sop2(aco_opcode::s_ashr_i64, bld.def(s2), bld.def(s1, scc), src, Operand(63u));
1094 Temp neqz;
1095 if (ctx->program->chip_class >= GFX8)
1096 neqz = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), src, Operand(0u));
1097 else
1098 neqz = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), src, Operand(0u)).def(1).getTemp();
1099 /* SCC gets zero-extended to 64 bit */
1100 bld.sop2(aco_opcode::s_or_b64, Definition(dst), bld.def(s1, scc), neg, bld.scc(neqz));
1101 } else if (dst.regClass() == v1) {
1102 Temp tmp = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
1103 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1104 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(1u), tmp, gtz);
1105 } else if (dst.regClass() == v2) {
1106 Temp upper = emit_extract_vector(ctx, src, 1, v1);
1107 Temp neg = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), upper);
1108 Temp gtz = bld.vopc(aco_opcode::v_cmp_ge_i64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
1109 Temp lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(1u), neg, gtz);
1110 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), neg, gtz);
1111 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1112 } else {
1113 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1114 nir_print_instr(&instr->instr, stderr);
1115 fprintf(stderr, "\n");
1116 }
1117 break;
1118 }
1119 case nir_op_imax: {
1120 if (dst.regClass() == v1) {
1121 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_i32, dst, true);
1122 } else if (dst.regClass() == s1) {
1123 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_i32, dst, true);
1124 } else {
1125 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1126 nir_print_instr(&instr->instr, stderr);
1127 fprintf(stderr, "\n");
1128 }
1129 break;
1130 }
1131 case nir_op_umax: {
1132 if (dst.regClass() == v1) {
1133 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_u32, dst, true);
1134 } else if (dst.regClass() == s1) {
1135 emit_sop2_instruction(ctx, instr, aco_opcode::s_max_u32, dst, true);
1136 } else {
1137 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1138 nir_print_instr(&instr->instr, stderr);
1139 fprintf(stderr, "\n");
1140 }
1141 break;
1142 }
1143 case nir_op_imin: {
1144 if (dst.regClass() == v1) {
1145 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_i32, dst, true);
1146 } else if (dst.regClass() == s1) {
1147 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_i32, dst, true);
1148 } else {
1149 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1150 nir_print_instr(&instr->instr, stderr);
1151 fprintf(stderr, "\n");
1152 }
1153 break;
1154 }
1155 case nir_op_umin: {
1156 if (dst.regClass() == v1) {
1157 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_u32, dst, true);
1158 } else if (dst.regClass() == s1) {
1159 emit_sop2_instruction(ctx, instr, aco_opcode::s_min_u32, dst, true);
1160 } else {
1161 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1162 nir_print_instr(&instr->instr, stderr);
1163 fprintf(stderr, "\n");
1164 }
1165 break;
1166 }
1167 case nir_op_ior: {
1168 if (instr->dest.dest.ssa.bit_size == 1) {
1169 emit_boolean_logic(ctx, instr, Builder::s_or, dst);
1170 } else if (dst.regClass() == v1) {
1171 emit_vop2_instruction(ctx, instr, aco_opcode::v_or_b32, dst, true);
1172 } else if (dst.regClass() == s1) {
1173 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b32, dst, true);
1174 } else if (dst.regClass() == s2) {
1175 emit_sop2_instruction(ctx, instr, aco_opcode::s_or_b64, dst, true);
1176 } else {
1177 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1178 nir_print_instr(&instr->instr, stderr);
1179 fprintf(stderr, "\n");
1180 }
1181 break;
1182 }
1183 case nir_op_iand: {
1184 if (instr->dest.dest.ssa.bit_size == 1) {
1185 emit_boolean_logic(ctx, instr, Builder::s_and, dst);
1186 } else if (dst.regClass() == v1) {
1187 emit_vop2_instruction(ctx, instr, aco_opcode::v_and_b32, dst, true);
1188 } else if (dst.regClass() == s1) {
1189 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b32, dst, true);
1190 } else if (dst.regClass() == s2) {
1191 emit_sop2_instruction(ctx, instr, aco_opcode::s_and_b64, dst, true);
1192 } else {
1193 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1194 nir_print_instr(&instr->instr, stderr);
1195 fprintf(stderr, "\n");
1196 }
1197 break;
1198 }
1199 case nir_op_ixor: {
1200 if (instr->dest.dest.ssa.bit_size == 1) {
1201 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
1202 } else if (dst.regClass() == v1) {
1203 emit_vop2_instruction(ctx, instr, aco_opcode::v_xor_b32, dst, true);
1204 } else if (dst.regClass() == s1) {
1205 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b32, dst, true);
1206 } else if (dst.regClass() == s2) {
1207 emit_sop2_instruction(ctx, instr, aco_opcode::s_xor_b64, dst, true);
1208 } else {
1209 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1210 nir_print_instr(&instr->instr, stderr);
1211 fprintf(stderr, "\n");
1212 }
1213 break;
1214 }
1215 case nir_op_ushr: {
1216 if (dst.regClass() == v1) {
1217 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshrrev_b32, dst, false, true);
1218 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1219 bld.vop3(aco_opcode::v_lshrrev_b64, Definition(dst),
1220 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1221 } else if (dst.regClass() == v2) {
1222 bld.vop3(aco_opcode::v_lshr_b64, Definition(dst),
1223 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1224 } else if (dst.regClass() == s2) {
1225 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b64, dst, true);
1226 } else if (dst.regClass() == s1) {
1227 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshr_b32, dst, true);
1228 } else {
1229 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1230 nir_print_instr(&instr->instr, stderr);
1231 fprintf(stderr, "\n");
1232 }
1233 break;
1234 }
1235 case nir_op_ishl: {
1236 if (dst.regClass() == v1) {
1237 emit_vop2_instruction(ctx, instr, aco_opcode::v_lshlrev_b32, dst, false, true);
1238 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1239 bld.vop3(aco_opcode::v_lshlrev_b64, Definition(dst),
1240 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1241 } else if (dst.regClass() == v2) {
1242 bld.vop3(aco_opcode::v_lshl_b64, Definition(dst),
1243 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1244 } else if (dst.regClass() == s1) {
1245 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b32, dst, true);
1246 } else if (dst.regClass() == s2) {
1247 emit_sop2_instruction(ctx, instr, aco_opcode::s_lshl_b64, dst, true);
1248 } else {
1249 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1250 nir_print_instr(&instr->instr, stderr);
1251 fprintf(stderr, "\n");
1252 }
1253 break;
1254 }
1255 case nir_op_ishr: {
1256 if (dst.regClass() == v1) {
1257 emit_vop2_instruction(ctx, instr, aco_opcode::v_ashrrev_i32, dst, false, true);
1258 } else if (dst.regClass() == v2 && ctx->program->chip_class >= GFX8) {
1259 bld.vop3(aco_opcode::v_ashrrev_i64, Definition(dst),
1260 get_alu_src(ctx, instr->src[1]), get_alu_src(ctx, instr->src[0]));
1261 } else if (dst.regClass() == v2) {
1262 bld.vop3(aco_opcode::v_ashr_i64, Definition(dst),
1263 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1264 } else if (dst.regClass() == s1) {
1265 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i32, dst, true);
1266 } else if (dst.regClass() == s2) {
1267 emit_sop2_instruction(ctx, instr, aco_opcode::s_ashr_i64, dst, true);
1268 } else {
1269 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1270 nir_print_instr(&instr->instr, stderr);
1271 fprintf(stderr, "\n");
1272 }
1273 break;
1274 }
1275 case nir_op_find_lsb: {
1276 Temp src = get_alu_src(ctx, instr->src[0]);
1277 if (src.regClass() == s1) {
1278 bld.sop1(aco_opcode::s_ff1_i32_b32, Definition(dst), src);
1279 } else if (src.regClass() == v1) {
1280 emit_vop1_instruction(ctx, instr, aco_opcode::v_ffbl_b32, dst);
1281 } else if (src.regClass() == s2) {
1282 bld.sop1(aco_opcode::s_ff1_i32_b64, Definition(dst), src);
1283 } else {
1284 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1285 nir_print_instr(&instr->instr, stderr);
1286 fprintf(stderr, "\n");
1287 }
1288 break;
1289 }
1290 case nir_op_ufind_msb:
1291 case nir_op_ifind_msb: {
1292 Temp src = get_alu_src(ctx, instr->src[0]);
1293 if (src.regClass() == s1 || src.regClass() == s2) {
1294 aco_opcode op = src.regClass() == s2 ?
1295 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b64 : aco_opcode::s_flbit_i32_i64) :
1296 (instr->op == nir_op_ufind_msb ? aco_opcode::s_flbit_i32_b32 : aco_opcode::s_flbit_i32);
1297 Temp msb_rev = bld.sop1(op, bld.def(s1), src);
1298
1299 Builder::Result sub = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc),
1300 Operand(src.size() * 32u - 1u), msb_rev);
1301 Temp msb = sub.def(0).getTemp();
1302 Temp carry = sub.def(1).getTemp();
1303
1304 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t)-1), msb, bld.scc(carry));
1305 } else if (src.regClass() == v1) {
1306 aco_opcode op = instr->op == nir_op_ufind_msb ? aco_opcode::v_ffbh_u32 : aco_opcode::v_ffbh_i32;
1307 Temp msb_rev = bld.tmp(v1);
1308 emit_vop1_instruction(ctx, instr, op, msb_rev);
1309 Temp msb = bld.tmp(v1);
1310 Temp carry = bld.vsub32(Definition(msb), Operand(31u), Operand(msb_rev), true).def(1).getTemp();
1311 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), msb, Operand((uint32_t)-1), carry);
1312 } else {
1313 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1314 nir_print_instr(&instr->instr, stderr);
1315 fprintf(stderr, "\n");
1316 }
1317 break;
1318 }
1319 case nir_op_bitfield_reverse: {
1320 if (dst.regClass() == s1) {
1321 bld.sop1(aco_opcode::s_brev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1322 } else if (dst.regClass() == v1) {
1323 bld.vop1(aco_opcode::v_bfrev_b32, Definition(dst), get_alu_src(ctx, instr->src[0]));
1324 } else {
1325 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1326 nir_print_instr(&instr->instr, stderr);
1327 fprintf(stderr, "\n");
1328 }
1329 break;
1330 }
1331 case nir_op_iadd: {
1332 if (dst.regClass() == s1) {
1333 emit_sop2_instruction(ctx, instr, aco_opcode::s_add_u32, dst, true);
1334 break;
1335 }
1336
1337 Temp src0 = get_alu_src(ctx, instr->src[0]);
1338 Temp src1 = get_alu_src(ctx, instr->src[1]);
1339 if (dst.regClass() == v1) {
1340 bld.vadd32(Definition(dst), Operand(src0), Operand(src1));
1341 break;
1342 }
1343
1344 assert(src0.size() == 2 && src1.size() == 2);
1345 Temp src00 = bld.tmp(src0.type(), 1);
1346 Temp src01 = bld.tmp(dst.type(), 1);
1347 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1348 Temp src10 = bld.tmp(src1.type(), 1);
1349 Temp src11 = bld.tmp(dst.type(), 1);
1350 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1351
1352 if (dst.regClass() == s2) {
1353 Temp carry = bld.tmp(s1);
1354 Temp dst0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1355 Temp dst1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), src01, src11, bld.scc(carry));
1356 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1357 } else if (dst.regClass() == v2) {
1358 Temp dst0 = bld.tmp(v1);
1359 Temp carry = bld.vadd32(Definition(dst0), src00, src10, true).def(1).getTemp();
1360 Temp dst1 = bld.vadd32(bld.def(v1), src01, src11, false, carry);
1361 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1362 } else {
1363 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1364 nir_print_instr(&instr->instr, stderr);
1365 fprintf(stderr, "\n");
1366 }
1367 break;
1368 }
1369 case nir_op_uadd_sat: {
1370 Temp src0 = get_alu_src(ctx, instr->src[0]);
1371 Temp src1 = get_alu_src(ctx, instr->src[1]);
1372 if (dst.regClass() == s1) {
1373 Temp tmp = bld.tmp(s1), carry = bld.tmp(s1);
1374 bld.sop2(aco_opcode::s_add_u32, Definition(tmp), bld.scc(Definition(carry)),
1375 src0, src1);
1376 bld.sop2(aco_opcode::s_cselect_b32, Definition(dst), Operand((uint32_t) -1), tmp, bld.scc(carry));
1377 } else if (dst.regClass() == v1) {
1378 if (ctx->options->chip_class >= GFX9) {
1379 aco_ptr<VOP3A_instruction> add{create_instruction<VOP3A_instruction>(aco_opcode::v_add_u32, asVOP3(Format::VOP2), 2, 1)};
1380 add->operands[0] = Operand(src0);
1381 add->operands[1] = Operand(src1);
1382 add->definitions[0] = Definition(dst);
1383 add->clamp = 1;
1384 ctx->block->instructions.emplace_back(std::move(add));
1385 } else {
1386 if (src1.regClass() != v1)
1387 std::swap(src0, src1);
1388 assert(src1.regClass() == v1);
1389 Temp tmp = bld.tmp(v1);
1390 Temp carry = bld.vadd32(Definition(tmp), src0, src1, true).def(1).getTemp();
1391 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), tmp, Operand((uint32_t) -1), carry);
1392 }
1393 } else {
1394 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1395 nir_print_instr(&instr->instr, stderr);
1396 fprintf(stderr, "\n");
1397 }
1398 break;
1399 }
1400 case nir_op_uadd_carry: {
1401 Temp src0 = get_alu_src(ctx, instr->src[0]);
1402 Temp src1 = get_alu_src(ctx, instr->src[1]);
1403 if (dst.regClass() == s1) {
1404 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1405 break;
1406 }
1407 if (dst.regClass() == v1) {
1408 Temp carry = bld.vadd32(bld.def(v1), src0, src1, true).def(1).getTemp();
1409 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), carry);
1410 break;
1411 }
1412
1413 Temp src00 = bld.tmp(src0.type(), 1);
1414 Temp src01 = bld.tmp(dst.type(), 1);
1415 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1416 Temp src10 = bld.tmp(src1.type(), 1);
1417 Temp src11 = bld.tmp(dst.type(), 1);
1418 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1419 if (dst.regClass() == s2) {
1420 Temp carry = bld.tmp(s1);
1421 bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1422 carry = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(carry)).def(1).getTemp();
1423 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1424 } else if (dst.regClass() == v2) {
1425 Temp carry = bld.vadd32(bld.def(v1), src00, src10, true).def(1).getTemp();
1426 carry = bld.vadd32(bld.def(v1), src01, src11, true, carry).def(1).getTemp();
1427 carry = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), carry);
1428 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), carry, Operand(0u));
1429 } else {
1430 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1431 nir_print_instr(&instr->instr, stderr);
1432 fprintf(stderr, "\n");
1433 }
1434 break;
1435 }
1436 case nir_op_isub: {
1437 if (dst.regClass() == s1) {
1438 emit_sop2_instruction(ctx, instr, aco_opcode::s_sub_i32, dst, true);
1439 break;
1440 }
1441
1442 Temp src0 = get_alu_src(ctx, instr->src[0]);
1443 Temp src1 = get_alu_src(ctx, instr->src[1]);
1444 if (dst.regClass() == v1) {
1445 bld.vsub32(Definition(dst), src0, src1);
1446 break;
1447 }
1448
1449 Temp src00 = bld.tmp(src0.type(), 1);
1450 Temp src01 = bld.tmp(dst.type(), 1);
1451 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1452 Temp src10 = bld.tmp(src1.type(), 1);
1453 Temp src11 = bld.tmp(dst.type(), 1);
1454 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1455 if (dst.regClass() == s2) {
1456 Temp carry = bld.tmp(s1);
1457 Temp dst0 = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(carry)), src00, src10);
1458 Temp dst1 = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), src01, src11, carry);
1459 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
1460 } else if (dst.regClass() == v2) {
1461 Temp lower = bld.tmp(v1);
1462 Temp borrow = bld.vsub32(Definition(lower), src00, src10, true).def(1).getTemp();
1463 Temp upper = bld.vsub32(bld.def(v1), src01, src11, false, borrow);
1464 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1465 } else {
1466 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1467 nir_print_instr(&instr->instr, stderr);
1468 fprintf(stderr, "\n");
1469 }
1470 break;
1471 }
1472 case nir_op_usub_borrow: {
1473 Temp src0 = get_alu_src(ctx, instr->src[0]);
1474 Temp src1 = get_alu_src(ctx, instr->src[1]);
1475 if (dst.regClass() == s1) {
1476 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(dst)), src0, src1);
1477 break;
1478 } else if (dst.regClass() == v1) {
1479 Temp borrow = bld.vsub32(bld.def(v1), src0, src1, true).def(1).getTemp();
1480 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), borrow);
1481 break;
1482 }
1483
1484 Temp src00 = bld.tmp(src0.type(), 1);
1485 Temp src01 = bld.tmp(dst.type(), 1);
1486 bld.pseudo(aco_opcode::p_split_vector, Definition(src00), Definition(src01), src0);
1487 Temp src10 = bld.tmp(src1.type(), 1);
1488 Temp src11 = bld.tmp(dst.type(), 1);
1489 bld.pseudo(aco_opcode::p_split_vector, Definition(src10), Definition(src11), src1);
1490 if (dst.regClass() == s2) {
1491 Temp borrow = bld.tmp(s1);
1492 bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), src00, src10);
1493 borrow = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.scc(bld.def(s1)), src01, src11, bld.scc(borrow)).def(1).getTemp();
1494 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1495 } else if (dst.regClass() == v2) {
1496 Temp borrow = bld.vsub32(bld.def(v1), src00, src10, true).def(1).getTemp();
1497 borrow = bld.vsub32(bld.def(v1), src01, src11, true, Operand(borrow)).def(1).getTemp();
1498 borrow = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand(1u), borrow);
1499 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), borrow, Operand(0u));
1500 } else {
1501 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1502 nir_print_instr(&instr->instr, stderr);
1503 fprintf(stderr, "\n");
1504 }
1505 break;
1506 }
1507 case nir_op_imul: {
1508 if (dst.regClass() == v1) {
1509 bld.vop3(aco_opcode::v_mul_lo_u32, Definition(dst),
1510 get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1511 } else if (dst.regClass() == s1) {
1512 emit_sop2_instruction(ctx, instr, aco_opcode::s_mul_i32, dst, false);
1513 } else {
1514 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1515 nir_print_instr(&instr->instr, stderr);
1516 fprintf(stderr, "\n");
1517 }
1518 break;
1519 }
1520 case nir_op_umul_high: {
1521 if (dst.regClass() == v1) {
1522 bld.vop3(aco_opcode::v_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1523 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1524 bld.sop2(aco_opcode::s_mul_hi_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1525 } else if (dst.regClass() == s1) {
1526 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1527 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1528 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1529 } else {
1530 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1531 nir_print_instr(&instr->instr, stderr);
1532 fprintf(stderr, "\n");
1533 }
1534 break;
1535 }
1536 case nir_op_imul_high: {
1537 if (dst.regClass() == v1) {
1538 bld.vop3(aco_opcode::v_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1539 } else if (dst.regClass() == s1 && ctx->options->chip_class >= GFX9) {
1540 bld.sop2(aco_opcode::s_mul_hi_i32, Definition(dst), get_alu_src(ctx, instr->src[0]), get_alu_src(ctx, instr->src[1]));
1541 } else if (dst.regClass() == s1) {
1542 Temp tmp = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), get_alu_src(ctx, instr->src[0]),
1543 as_vgpr(ctx, get_alu_src(ctx, instr->src[1])));
1544 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), tmp);
1545 } else {
1546 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1547 nir_print_instr(&instr->instr, stderr);
1548 fprintf(stderr, "\n");
1549 }
1550 break;
1551 }
1552 case nir_op_fmul: {
1553 Temp src0 = get_alu_src(ctx, instr->src[0]);
1554 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1555 if (dst.regClass() == v2b) {
1556 Temp tmp = bld.tmp(v1);
1557 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f16, tmp, true);
1558 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1559 } else if (dst.regClass() == v1) {
1560 emit_vop2_instruction(ctx, instr, aco_opcode::v_mul_f32, dst, true);
1561 } else if (dst.regClass() == v2) {
1562 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), src0, src1);
1563 } else {
1564 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1565 nir_print_instr(&instr->instr, stderr);
1566 fprintf(stderr, "\n");
1567 }
1568 break;
1569 }
1570 case nir_op_fadd: {
1571 Temp src0 = get_alu_src(ctx, instr->src[0]);
1572 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1573 if (dst.regClass() == v2b) {
1574 Temp tmp = bld.tmp(v1);
1575 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f16, tmp, true);
1576 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1577 } else if (dst.regClass() == v1) {
1578 emit_vop2_instruction(ctx, instr, aco_opcode::v_add_f32, dst, true);
1579 } else if (dst.regClass() == v2) {
1580 bld.vop3(aco_opcode::v_add_f64, Definition(dst), src0, src1);
1581 } else {
1582 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1583 nir_print_instr(&instr->instr, stderr);
1584 fprintf(stderr, "\n");
1585 }
1586 break;
1587 }
1588 case nir_op_fsub: {
1589 Temp src0 = get_alu_src(ctx, instr->src[0]);
1590 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1591 if (dst.regClass() == v2b) {
1592 Temp tmp = bld.tmp(v1);
1593 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1594 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f16, tmp, false);
1595 else
1596 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f16, tmp, true);
1597 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1598 } else if (dst.regClass() == v1) {
1599 if (src1.type() == RegType::vgpr || src0.type() != RegType::vgpr)
1600 emit_vop2_instruction(ctx, instr, aco_opcode::v_sub_f32, dst, false);
1601 else
1602 emit_vop2_instruction(ctx, instr, aco_opcode::v_subrev_f32, dst, true);
1603 } else if (dst.regClass() == v2) {
1604 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst),
1605 src0, src1);
1606 VOP3A_instruction* sub = static_cast<VOP3A_instruction*>(add);
1607 sub->neg[1] = true;
1608 } else {
1609 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1610 nir_print_instr(&instr->instr, stderr);
1611 fprintf(stderr, "\n");
1612 }
1613 break;
1614 }
1615 case nir_op_fmax: {
1616 Temp src0 = get_alu_src(ctx, instr->src[0]);
1617 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1618 if (dst.regClass() == v2b) {
1619 // TODO: check fp_mode.must_flush_denorms16_64
1620 Temp tmp = bld.tmp(v1);
1621 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f16, tmp, true);
1622 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1623 } else if (dst.regClass() == v1) {
1624 emit_vop2_instruction(ctx, instr, aco_opcode::v_max_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1625 } else if (dst.regClass() == v2) {
1626 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1627 Temp tmp = bld.vop3(aco_opcode::v_max_f64, bld.def(v2), src0, src1);
1628 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1629 } else {
1630 bld.vop3(aco_opcode::v_max_f64, Definition(dst), src0, src1);
1631 }
1632 } else {
1633 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1634 nir_print_instr(&instr->instr, stderr);
1635 fprintf(stderr, "\n");
1636 }
1637 break;
1638 }
1639 case nir_op_fmin: {
1640 Temp src0 = get_alu_src(ctx, instr->src[0]);
1641 Temp src1 = as_vgpr(ctx, get_alu_src(ctx, instr->src[1]));
1642 if (dst.regClass() == v2b) {
1643 // TODO: check fp_mode.must_flush_denorms16_64
1644 Temp tmp = bld.tmp(v1);
1645 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f16, tmp, true);
1646 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1647 } else if (dst.regClass() == v1) {
1648 emit_vop2_instruction(ctx, instr, aco_opcode::v_min_f32, dst, true, false, ctx->block->fp_mode.must_flush_denorms32);
1649 } else if (dst.regClass() == v2) {
1650 if (ctx->block->fp_mode.must_flush_denorms16_64 && ctx->program->chip_class < GFX9) {
1651 Temp tmp = bld.vop3(aco_opcode::v_min_f64, bld.def(v2), src0, src1);
1652 bld.vop3(aco_opcode::v_mul_f64, Definition(dst), Operand(0x3FF0000000000000lu), tmp);
1653 } else {
1654 bld.vop3(aco_opcode::v_min_f64, Definition(dst), src0, src1);
1655 }
1656 } else {
1657 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1658 nir_print_instr(&instr->instr, stderr);
1659 fprintf(stderr, "\n");
1660 }
1661 break;
1662 }
1663 case nir_op_fmax3: {
1664 if (dst.regClass() == v2b) {
1665 Temp tmp = bld.tmp(v1);
1666 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f16, tmp, false);
1667 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1668 } else if (dst.regClass() == v1) {
1669 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1670 } else {
1671 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1672 nir_print_instr(&instr->instr, stderr);
1673 fprintf(stderr, "\n");
1674 }
1675 break;
1676 }
1677 case nir_op_fmin3: {
1678 if (dst.regClass() == v2b) {
1679 Temp tmp = bld.tmp(v1);
1680 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f16, tmp, false);
1681 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1682 } else if (dst.regClass() == v1) {
1683 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1684 } else {
1685 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1686 nir_print_instr(&instr->instr, stderr);
1687 fprintf(stderr, "\n");
1688 }
1689 break;
1690 }
1691 case nir_op_fmed3: {
1692 if (dst.regClass() == v2b) {
1693 Temp tmp = bld.tmp(v1);
1694 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f16, tmp, false);
1695 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1696 } else if (dst.regClass() == v1) {
1697 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_f32, dst, ctx->block->fp_mode.must_flush_denorms32);
1698 } else {
1699 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1700 nir_print_instr(&instr->instr, stderr);
1701 fprintf(stderr, "\n");
1702 }
1703 break;
1704 }
1705 case nir_op_umax3: {
1706 if (dst.size() == 1) {
1707 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_u32, dst);
1708 } else {
1709 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1710 nir_print_instr(&instr->instr, stderr);
1711 fprintf(stderr, "\n");
1712 }
1713 break;
1714 }
1715 case nir_op_umin3: {
1716 if (dst.size() == 1) {
1717 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_u32, dst);
1718 } else {
1719 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1720 nir_print_instr(&instr->instr, stderr);
1721 fprintf(stderr, "\n");
1722 }
1723 break;
1724 }
1725 case nir_op_umed3: {
1726 if (dst.size() == 1) {
1727 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_u32, dst);
1728 } else {
1729 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1730 nir_print_instr(&instr->instr, stderr);
1731 fprintf(stderr, "\n");
1732 }
1733 break;
1734 }
1735 case nir_op_imax3: {
1736 if (dst.size() == 1) {
1737 emit_vop3a_instruction(ctx, instr, aco_opcode::v_max3_i32, dst);
1738 } else {
1739 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1740 nir_print_instr(&instr->instr, stderr);
1741 fprintf(stderr, "\n");
1742 }
1743 break;
1744 }
1745 case nir_op_imin3: {
1746 if (dst.size() == 1) {
1747 emit_vop3a_instruction(ctx, instr, aco_opcode::v_min3_i32, dst);
1748 } else {
1749 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1750 nir_print_instr(&instr->instr, stderr);
1751 fprintf(stderr, "\n");
1752 }
1753 break;
1754 }
1755 case nir_op_imed3: {
1756 if (dst.size() == 1) {
1757 emit_vop3a_instruction(ctx, instr, aco_opcode::v_med3_i32, dst);
1758 } else {
1759 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1760 nir_print_instr(&instr->instr, stderr);
1761 fprintf(stderr, "\n");
1762 }
1763 break;
1764 }
1765 case nir_op_cube_face_coord: {
1766 Temp in = get_alu_src(ctx, instr->src[0], 3);
1767 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1768 emit_extract_vector(ctx, in, 1, v1),
1769 emit_extract_vector(ctx, in, 2, v1) };
1770 Temp ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), src[0], src[1], src[2]);
1771 ma = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), ma);
1772 Temp sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), src[0], src[1], src[2]);
1773 Temp tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), src[0], src[1], src[2]);
1774 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, ma, Operand(0x3f000000u/*0.5*/));
1775 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, ma, Operand(0x3f000000u/*0.5*/));
1776 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), sc, tc);
1777 break;
1778 }
1779 case nir_op_cube_face_index: {
1780 Temp in = get_alu_src(ctx, instr->src[0], 3);
1781 Temp src[3] = { emit_extract_vector(ctx, in, 0, v1),
1782 emit_extract_vector(ctx, in, 1, v1),
1783 emit_extract_vector(ctx, in, 2, v1) };
1784 bld.vop3(aco_opcode::v_cubeid_f32, Definition(dst), src[0], src[1], src[2]);
1785 break;
1786 }
1787 case nir_op_bcsel: {
1788 emit_bcsel(ctx, instr, dst);
1789 break;
1790 }
1791 case nir_op_frsq: {
1792 Temp src = get_alu_src(ctx, instr->src[0]);
1793 if (dst.regClass() == v2b) {
1794 Temp tmp = bld.vop1(aco_opcode::v_rsq_f16, bld.def(v1), src);
1795 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1796 } else if (dst.regClass() == v1) {
1797 emit_rsq(ctx, bld, Definition(dst), src);
1798 } else if (dst.regClass() == v2) {
1799 emit_vop1_instruction(ctx, instr, aco_opcode::v_rsq_f64, dst);
1800 } else {
1801 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1802 nir_print_instr(&instr->instr, stderr);
1803 fprintf(stderr, "\n");
1804 }
1805 break;
1806 }
1807 case nir_op_fneg: {
1808 Temp src = get_alu_src(ctx, instr->src[0]);
1809 if (dst.regClass() == v2b) {
1810 Temp tmp = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x8000u), as_vgpr(ctx, src));
1811 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1812 } else if (dst.regClass() == v1) {
1813 if (ctx->block->fp_mode.must_flush_denorms32)
1814 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1815 bld.vop2(aco_opcode::v_xor_b32, Definition(dst), Operand(0x80000000u), as_vgpr(ctx, src));
1816 } else if (dst.regClass() == v2) {
1817 if (ctx->block->fp_mode.must_flush_denorms16_64)
1818 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1819 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1820 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1821 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), Operand(0x80000000u), upper);
1822 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1823 } else {
1824 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1825 nir_print_instr(&instr->instr, stderr);
1826 fprintf(stderr, "\n");
1827 }
1828 break;
1829 }
1830 case nir_op_fabs: {
1831 Temp src = get_alu_src(ctx, instr->src[0]);
1832 if (dst.regClass() == v2b) {
1833 Temp tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFu), as_vgpr(ctx, src));
1834 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1835 } else if (dst.regClass() == v1) {
1836 if (ctx->block->fp_mode.must_flush_denorms32)
1837 src = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0x3f800000u), as_vgpr(ctx, src));
1838 bld.vop2(aco_opcode::v_and_b32, Definition(dst), Operand(0x7FFFFFFFu), as_vgpr(ctx, src));
1839 } else if (dst.regClass() == v2) {
1840 if (ctx->block->fp_mode.must_flush_denorms16_64)
1841 src = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), Operand(0x3FF0000000000000lu), as_vgpr(ctx, src));
1842 Temp upper = bld.tmp(v1), lower = bld.tmp(v1);
1843 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
1844 upper = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7FFFFFFFu), upper);
1845 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
1846 } else {
1847 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1848 nir_print_instr(&instr->instr, stderr);
1849 fprintf(stderr, "\n");
1850 }
1851 break;
1852 }
1853 case nir_op_fsat: {
1854 Temp src = get_alu_src(ctx, instr->src[0]);
1855 if (dst.regClass() == v2b) {
1856 Temp tmp = bld.vop3(aco_opcode::v_med3_f16, bld.def(v1), Operand(0u), Operand(0x3f800000u), src);
1857 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1858 } else if (dst.regClass() == v1) {
1859 bld.vop3(aco_opcode::v_med3_f32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
1860 /* apparently, it is not necessary to flush denorms if this instruction is used with these operands */
1861 // TODO: confirm that this holds under any circumstances
1862 } else if (dst.regClass() == v2) {
1863 Instruction* add = bld.vop3(aco_opcode::v_add_f64, Definition(dst), src, Operand(0u));
1864 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(add);
1865 vop3->clamp = true;
1866 } else {
1867 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1868 nir_print_instr(&instr->instr, stderr);
1869 fprintf(stderr, "\n");
1870 }
1871 break;
1872 }
1873 case nir_op_flog2: {
1874 Temp src = get_alu_src(ctx, instr->src[0]);
1875 if (dst.regClass() == v2b) {
1876 Temp tmp = bld.vop1(aco_opcode::v_log_f16, bld.def(v1), src);
1877 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1878 } else if (dst.regClass() == v1) {
1879 emit_log2(ctx, bld, Definition(dst), src);
1880 } else {
1881 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1882 nir_print_instr(&instr->instr, stderr);
1883 fprintf(stderr, "\n");
1884 }
1885 break;
1886 }
1887 case nir_op_frcp: {
1888 Temp src = get_alu_src(ctx, instr->src[0]);
1889 if (dst.regClass() == v2b) {
1890 Temp tmp = bld.vop1(aco_opcode::v_rcp_f16, bld.def(v1), src);
1891 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1892 } else if (dst.regClass() == v1) {
1893 emit_rcp(ctx, bld, Definition(dst), src);
1894 } else if (dst.regClass() == v2) {
1895 emit_vop1_instruction(ctx, instr, aco_opcode::v_rcp_f64, dst);
1896 } else {
1897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1898 nir_print_instr(&instr->instr, stderr);
1899 fprintf(stderr, "\n");
1900 }
1901 break;
1902 }
1903 case nir_op_fexp2: {
1904 if (dst.regClass() == v2b) {
1905 Temp src = get_alu_src(ctx, instr->src[0]);
1906 Temp tmp = bld.vop1(aco_opcode::v_exp_f16, bld.def(v1), src);
1907 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1908 } else if (dst.regClass() == v1) {
1909 emit_vop1_instruction(ctx, instr, aco_opcode::v_exp_f32, dst);
1910 } else {
1911 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1912 nir_print_instr(&instr->instr, stderr);
1913 fprintf(stderr, "\n");
1914 }
1915 break;
1916 }
1917 case nir_op_fsqrt: {
1918 Temp src = get_alu_src(ctx, instr->src[0]);
1919 if (dst.regClass() == v2b) {
1920 Temp tmp = bld.vop1(aco_opcode::v_sqrt_f16, bld.def(v1), src);
1921 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1922 } else if (dst.regClass() == v1) {
1923 emit_sqrt(ctx, bld, Definition(dst), src);
1924 } else if (dst.regClass() == v2) {
1925 emit_vop1_instruction(ctx, instr, aco_opcode::v_sqrt_f64, dst);
1926 } else {
1927 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1928 nir_print_instr(&instr->instr, stderr);
1929 fprintf(stderr, "\n");
1930 }
1931 break;
1932 }
1933 case nir_op_ffract: {
1934 if (dst.regClass() == v2b) {
1935 Temp src = get_alu_src(ctx, instr->src[0]);
1936 Temp tmp = bld.vop1(aco_opcode::v_fract_f16, bld.def(v1), src);
1937 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1938 } else if (dst.regClass() == v1) {
1939 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f32, dst);
1940 } else if (dst.regClass() == v2) {
1941 emit_vop1_instruction(ctx, instr, aco_opcode::v_fract_f64, dst);
1942 } else {
1943 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1944 nir_print_instr(&instr->instr, stderr);
1945 fprintf(stderr, "\n");
1946 }
1947 break;
1948 }
1949 case nir_op_ffloor: {
1950 Temp src = get_alu_src(ctx, instr->src[0]);
1951 if (dst.regClass() == v2b) {
1952 Temp tmp = bld.vop1(aco_opcode::v_floor_f16, bld.def(v1), src);
1953 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1954 } else if (dst.regClass() == v1) {
1955 emit_vop1_instruction(ctx, instr, aco_opcode::v_floor_f32, dst);
1956 } else if (dst.regClass() == v2) {
1957 emit_floor_f64(ctx, bld, Definition(dst), src);
1958 } else {
1959 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1960 nir_print_instr(&instr->instr, stderr);
1961 fprintf(stderr, "\n");
1962 }
1963 break;
1964 }
1965 case nir_op_fceil: {
1966 Temp src0 = get_alu_src(ctx, instr->src[0]);
1967 if (dst.regClass() == v2b) {
1968 Temp tmp = bld.vop1(aco_opcode::v_ceil_f16, bld.def(v1), src0);
1969 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
1970 } else if (dst.regClass() == v1) {
1971 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f32, dst);
1972 } else if (dst.regClass() == v2) {
1973 if (ctx->options->chip_class >= GFX7) {
1974 emit_vop1_instruction(ctx, instr, aco_opcode::v_ceil_f64, dst);
1975 } else {
1976 /* GFX6 doesn't support V_CEIL_F64, lower it. */
1977 /* trunc = trunc(src0)
1978 * if (src0 > 0.0 && src0 != trunc)
1979 * trunc += 1.0
1980 */
1981 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src0);
1982 Temp tmp0 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.def(bld.lm), src0, Operand(0u));
1983 Temp tmp1 = bld.vopc(aco_opcode::v_cmp_lg_f64, bld.hint_vcc(bld.def(bld.lm)), src0, trunc);
1984 Temp cond = bld.sop2(aco_opcode::s_and_b64, bld.hint_vcc(bld.def(s2)), bld.def(s1, scc), tmp0, tmp1);
1985 Temp add = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), bld.copy(bld.def(v1), Operand(0u)), bld.copy(bld.def(v1), Operand(0x3ff00000u)), cond);
1986 add = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), bld.copy(bld.def(v1), Operand(0u)), add);
1987 bld.vop3(aco_opcode::v_add_f64, Definition(dst), trunc, add);
1988 }
1989 } else {
1990 fprintf(stderr, "Unimplemented NIR instr bit size: ");
1991 nir_print_instr(&instr->instr, stderr);
1992 fprintf(stderr, "\n");
1993 }
1994 break;
1995 }
1996 case nir_op_ftrunc: {
1997 Temp src = get_alu_src(ctx, instr->src[0]);
1998 if (dst.regClass() == v2b) {
1999 Temp tmp = bld.vop1(aco_opcode::v_trunc_f16, bld.def(v1), src);
2000 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2001 } else if (dst.regClass() == v1) {
2002 emit_vop1_instruction(ctx, instr, aco_opcode::v_trunc_f32, dst);
2003 } else if (dst.regClass() == v2) {
2004 emit_trunc_f64(ctx, bld, Definition(dst), src);
2005 } else {
2006 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2007 nir_print_instr(&instr->instr, stderr);
2008 fprintf(stderr, "\n");
2009 }
2010 break;
2011 }
2012 case nir_op_fround_even: {
2013 Temp src0 = get_alu_src(ctx, instr->src[0]);
2014 if (dst.regClass() == v2b) {
2015 Temp tmp = bld.vop1(aco_opcode::v_rndne_f16, bld.def(v1), src0);
2016 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2017 } else if (dst.regClass() == v1) {
2018 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f32, dst);
2019 } else if (dst.regClass() == v2) {
2020 if (ctx->options->chip_class >= GFX7) {
2021 emit_vop1_instruction(ctx, instr, aco_opcode::v_rndne_f64, dst);
2022 } else {
2023 /* GFX6 doesn't support V_RNDNE_F64, lower it. */
2024 Temp src0_lo = bld.tmp(v1), src0_hi = bld.tmp(v1);
2025 bld.pseudo(aco_opcode::p_split_vector, Definition(src0_lo), Definition(src0_hi), src0);
2026
2027 Temp bitmask = bld.sop1(aco_opcode::s_brev_b32, bld.def(s1), bld.copy(bld.def(s1), Operand(-2u)));
2028 Temp bfi = bld.vop3(aco_opcode::v_bfi_b32, bld.def(v1), bitmask, bld.copy(bld.def(v1), Operand(0x43300000u)), as_vgpr(ctx, src0_hi));
2029 Temp tmp = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), src0, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2030 Instruction *sub = bld.vop3(aco_opcode::v_add_f64, bld.def(v2), tmp, bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), bfi));
2031 static_cast<VOP3A_instruction*>(sub)->neg[1] = true;
2032 tmp = sub->definitions[0].getTemp();
2033
2034 Temp v = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(-1u), Operand(0x432fffffu));
2035 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_gt_f64, bld.hint_vcc(bld.def(bld.lm)), src0, v);
2036 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2037 Temp cond = vop3->definitions[0].getTemp();
2038
2039 Temp tmp_lo = bld.tmp(v1), tmp_hi = bld.tmp(v1);
2040 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp_lo), Definition(tmp_hi), tmp);
2041 Temp dst0 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_lo, as_vgpr(ctx, src0_lo), cond);
2042 Temp dst1 = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp_hi, as_vgpr(ctx, src0_hi), cond);
2043
2044 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), dst0, dst1);
2045 }
2046 } else {
2047 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2048 nir_print_instr(&instr->instr, stderr);
2049 fprintf(stderr, "\n");
2050 }
2051 break;
2052 }
2053 case nir_op_fsin:
2054 case nir_op_fcos: {
2055 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2056 aco_ptr<Instruction> norm;
2057 Temp half_pi = bld.copy(bld.def(s1), Operand(0x3e22f983u));
2058 if (dst.regClass() == v2b) {
2059 Temp tmp = bld.vop2(aco_opcode::v_mul_f16, bld.def(v1), half_pi, src);
2060 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f16 : aco_opcode::v_cos_f16;
2061 tmp = bld.vop1(opcode, bld.def(v1), tmp);
2062 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2063 } else if (dst.regClass() == v1) {
2064 Temp tmp = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), half_pi, src);
2065
2066 /* before GFX9, v_sin_f32 and v_cos_f32 had a valid input domain of [-256, +256] */
2067 if (ctx->options->chip_class < GFX9)
2068 tmp = bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), tmp);
2069
2070 aco_opcode opcode = instr->op == nir_op_fsin ? aco_opcode::v_sin_f32 : aco_opcode::v_cos_f32;
2071 bld.vop1(opcode, Definition(dst), tmp);
2072 } else {
2073 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2074 nir_print_instr(&instr->instr, stderr);
2075 fprintf(stderr, "\n");
2076 }
2077 break;
2078 }
2079 case nir_op_ldexp: {
2080 Temp src0 = get_alu_src(ctx, instr->src[0]);
2081 Temp src1 = get_alu_src(ctx, instr->src[1]);
2082 if (dst.regClass() == v2b) {
2083 Temp tmp = bld.tmp(v1);
2084 emit_vop2_instruction(ctx, instr, aco_opcode::v_ldexp_f16, tmp, false);
2085 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2086 } else if (dst.regClass() == v1) {
2087 bld.vop3(aco_opcode::v_ldexp_f32, Definition(dst), as_vgpr(ctx, src0), src1);
2088 } else if (dst.regClass() == v2) {
2089 bld.vop3(aco_opcode::v_ldexp_f64, Definition(dst), as_vgpr(ctx, src0), src1);
2090 } else {
2091 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2092 nir_print_instr(&instr->instr, stderr);
2093 fprintf(stderr, "\n");
2094 }
2095 break;
2096 }
2097 case nir_op_frexp_sig: {
2098 Temp src = get_alu_src(ctx, instr->src[0]);
2099 if (dst.regClass() == v2b) {
2100 Temp tmp = bld.vop1(aco_opcode::v_frexp_mant_f16, bld.def(v1), src);
2101 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2102 } else if (dst.regClass() == v1) {
2103 bld.vop1(aco_opcode::v_frexp_mant_f32, Definition(dst), src);
2104 } else if (dst.regClass() == v2) {
2105 bld.vop1(aco_opcode::v_frexp_mant_f64, Definition(dst), src);
2106 } else {
2107 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2108 nir_print_instr(&instr->instr, stderr);
2109 fprintf(stderr, "\n");
2110 }
2111 break;
2112 }
2113 case nir_op_frexp_exp: {
2114 Temp src = get_alu_src(ctx, instr->src[0]);
2115 if (instr->src[0].src.ssa->bit_size == 16) {
2116 Temp tmp = bld.vop1(aco_opcode::v_frexp_exp_i16_f16, bld.def(v1), src);
2117 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), tmp, Operand(0u));
2118 } else if (instr->src[0].src.ssa->bit_size == 32) {
2119 bld.vop1(aco_opcode::v_frexp_exp_i32_f32, Definition(dst), src);
2120 } else if (instr->src[0].src.ssa->bit_size == 64) {
2121 bld.vop1(aco_opcode::v_frexp_exp_i32_f64, Definition(dst), src);
2122 } else {
2123 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2124 nir_print_instr(&instr->instr, stderr);
2125 fprintf(stderr, "\n");
2126 }
2127 break;
2128 }
2129 case nir_op_fsign: {
2130 Temp src = as_vgpr(ctx, get_alu_src(ctx, instr->src[0]));
2131 if (dst.regClass() == v2b) {
2132 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2133 Temp minus_one = bld.copy(bld.def(v1), Operand(0xbc00u));
2134 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2135 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), one, src, cond);
2136 cond = bld.vopc(aco_opcode::v_cmp_le_f16, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2137 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), minus_one, src, cond);
2138 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2139 } else if (dst.regClass() == v1) {
2140 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2141 src = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0x3f800000u), src, cond);
2142 cond = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2143 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0xbf800000u), src, cond);
2144 } else if (dst.regClass() == v2) {
2145 Temp cond = bld.vopc(aco_opcode::v_cmp_nlt_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2146 Temp tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0x3FF00000u));
2147 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, emit_extract_vector(ctx, src, 1, v1), cond);
2148
2149 cond = bld.vopc(aco_opcode::v_cmp_le_f64, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), src);
2150 tmp = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0xBFF00000u));
2151 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), tmp, upper, cond);
2152
2153 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2154 } else {
2155 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2156 nir_print_instr(&instr->instr, stderr);
2157 fprintf(stderr, "\n");
2158 }
2159 break;
2160 }
2161 case nir_op_f2f16:
2162 case nir_op_f2f16_rtne: {
2163 Temp src = get_alu_src(ctx, instr->src[0]);
2164 if (instr->src[0].src.ssa->bit_size == 64)
2165 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2166 src = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2167 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2168 break;
2169 }
2170 case nir_op_f2f16_rtz: {
2171 Temp src = get_alu_src(ctx, instr->src[0]);
2172 if (instr->src[0].src.ssa->bit_size == 64)
2173 src = bld.vop1(aco_opcode::v_cvt_f32_f64, bld.def(v1), src);
2174 src = bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, bld.def(v1), src, Operand(0u));
2175 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2176 break;
2177 }
2178 case nir_op_f2f32: {
2179 if (instr->src[0].src.ssa->bit_size == 16) {
2180 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f16, dst);
2181 } else if (instr->src[0].src.ssa->bit_size == 64) {
2182 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_f64, dst);
2183 } else {
2184 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2185 nir_print_instr(&instr->instr, stderr);
2186 fprintf(stderr, "\n");
2187 }
2188 break;
2189 }
2190 case nir_op_f2f64: {
2191 Temp src = get_alu_src(ctx, instr->src[0]);
2192 if (instr->src[0].src.ssa->bit_size == 16)
2193 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2194 bld.vop1(aco_opcode::v_cvt_f64_f32, Definition(dst), src);
2195 break;
2196 }
2197 case nir_op_i2f16: {
2198 assert(dst.regClass() == v2b);
2199 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_i16, bld.def(v1),
2200 get_alu_src(ctx, instr->src[0]));
2201 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2202 break;
2203 }
2204 case nir_op_i2f32: {
2205 assert(dst.size() == 1);
2206 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_i32, dst);
2207 break;
2208 }
2209 case nir_op_i2f64: {
2210 if (instr->src[0].src.ssa->bit_size == 32) {
2211 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_i32, dst);
2212 } else if (instr->src[0].src.ssa->bit_size == 64) {
2213 Temp src = get_alu_src(ctx, instr->src[0]);
2214 RegClass rc = RegClass(src.type(), 1);
2215 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2216 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2217 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2218 upper = bld.vop1(aco_opcode::v_cvt_f64_i32, bld.def(v2), upper);
2219 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2220 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2221
2222 } else {
2223 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2224 nir_print_instr(&instr->instr, stderr);
2225 fprintf(stderr, "\n");
2226 }
2227 break;
2228 }
2229 case nir_op_u2f16: {
2230 assert(dst.regClass() == v2b);
2231 Temp tmp = bld.vop1(aco_opcode::v_cvt_f16_u16, bld.def(v1),
2232 get_alu_src(ctx, instr->src[0]));
2233 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2234 break;
2235 }
2236 case nir_op_u2f32: {
2237 assert(dst.size() == 1);
2238 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f32_u32, dst);
2239 break;
2240 }
2241 case nir_op_u2f64: {
2242 if (instr->src[0].src.ssa->bit_size == 32) {
2243 emit_vop1_instruction(ctx, instr, aco_opcode::v_cvt_f64_u32, dst);
2244 } else if (instr->src[0].src.ssa->bit_size == 64) {
2245 Temp src = get_alu_src(ctx, instr->src[0]);
2246 RegClass rc = RegClass(src.type(), 1);
2247 Temp lower = bld.tmp(rc), upper = bld.tmp(rc);
2248 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), src);
2249 lower = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), lower);
2250 upper = bld.vop1(aco_opcode::v_cvt_f64_u32, bld.def(v2), upper);
2251 upper = bld.vop3(aco_opcode::v_ldexp_f64, bld.def(v2), upper, Operand(32u));
2252 bld.vop3(aco_opcode::v_add_f64, Definition(dst), lower, upper);
2253 } else {
2254 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2255 nir_print_instr(&instr->instr, stderr);
2256 fprintf(stderr, "\n");
2257 }
2258 break;
2259 }
2260 case nir_op_f2i16: {
2261 Temp src = get_alu_src(ctx, instr->src[0]);
2262 if (instr->src[0].src.ssa->bit_size == 16)
2263 src = bld.vop1(aco_opcode::v_cvt_i16_f16, bld.def(v1), src);
2264 else if (instr->src[0].src.ssa->bit_size == 32)
2265 src = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src);
2266 else
2267 src = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src);
2268
2269 if (dst.type() == RegType::vgpr)
2270 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2271 else
2272 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2273 break;
2274 }
2275 case nir_op_f2u16: {
2276 Temp src = get_alu_src(ctx, instr->src[0]);
2277 if (instr->src[0].src.ssa->bit_size == 16)
2278 src = bld.vop1(aco_opcode::v_cvt_u16_f16, bld.def(v1), src);
2279 else if (instr->src[0].src.ssa->bit_size == 32)
2280 src = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src);
2281 else
2282 src = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src);
2283
2284 if (dst.type() == RegType::vgpr)
2285 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), src);
2286 else
2287 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), src);
2288 break;
2289 }
2290 case nir_op_f2i32: {
2291 Temp src = get_alu_src(ctx, instr->src[0]);
2292 if (instr->src[0].src.ssa->bit_size == 16) {
2293 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2294 if (dst.type() == RegType::vgpr) {
2295 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), tmp);
2296 } else {
2297 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2298 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), tmp));
2299 }
2300 } else if (instr->src[0].src.ssa->bit_size == 32) {
2301 if (dst.type() == RegType::vgpr)
2302 bld.vop1(aco_opcode::v_cvt_i32_f32, Definition(dst), src);
2303 else
2304 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2305 bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), src));
2306
2307 } else if (instr->src[0].src.ssa->bit_size == 64) {
2308 if (dst.type() == RegType::vgpr)
2309 bld.vop1(aco_opcode::v_cvt_i32_f64, Definition(dst), src);
2310 else
2311 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2312 bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), src));
2313
2314 } else {
2315 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2316 nir_print_instr(&instr->instr, stderr);
2317 fprintf(stderr, "\n");
2318 }
2319 break;
2320 }
2321 case nir_op_f2u32: {
2322 Temp src = get_alu_src(ctx, instr->src[0]);
2323 if (instr->src[0].src.ssa->bit_size == 16) {
2324 Temp tmp = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2325 if (dst.type() == RegType::vgpr) {
2326 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), tmp);
2327 } else {
2328 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2329 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), tmp));
2330 }
2331 } else if (instr->src[0].src.ssa->bit_size == 32) {
2332 if (dst.type() == RegType::vgpr)
2333 bld.vop1(aco_opcode::v_cvt_u32_f32, Definition(dst), src);
2334 else
2335 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2336 bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), src));
2337
2338 } else if (instr->src[0].src.ssa->bit_size == 64) {
2339 if (dst.type() == RegType::vgpr)
2340 bld.vop1(aco_opcode::v_cvt_u32_f64, Definition(dst), src);
2341 else
2342 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst),
2343 bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), src));
2344
2345 } else {
2346 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2347 nir_print_instr(&instr->instr, stderr);
2348 fprintf(stderr, "\n");
2349 }
2350 break;
2351 }
2352 case nir_op_f2i64: {
2353 Temp src = get_alu_src(ctx, instr->src[0]);
2354 if (instr->src[0].src.ssa->bit_size == 16)
2355 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2356
2357 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2358 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2359 exponent = bld.vop3(aco_opcode::v_med3_i32, bld.def(v1), Operand(0x0u), exponent, Operand(64u));
2360 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2361 Temp sign = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2362 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2363 mantissa = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(7u), mantissa);
2364 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2365 Temp new_exponent = bld.tmp(v1);
2366 Temp borrow = bld.vsub32(Definition(new_exponent), Operand(63u), exponent, true).def(1).getTemp();
2367 if (ctx->program->chip_class >= GFX8)
2368 mantissa = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), new_exponent, mantissa);
2369 else
2370 mantissa = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), mantissa, new_exponent);
2371 Temp saturate = bld.vop1(aco_opcode::v_bfrev_b32, bld.def(v1), Operand(0xfffffffeu));
2372 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2373 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2374 lower = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), lower, Operand(0xffffffffu), borrow);
2375 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), upper, saturate, borrow);
2376 lower = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, lower);
2377 upper = bld.vop2(aco_opcode::v_xor_b32, bld.def(v1), sign, upper);
2378 Temp new_lower = bld.tmp(v1);
2379 borrow = bld.vsub32(Definition(new_lower), lower, sign, true).def(1).getTemp();
2380 Temp new_upper = bld.vsub32(bld.def(v1), upper, sign, false, borrow);
2381 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), new_lower, new_upper);
2382
2383 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2384 if (src.type() == RegType::vgpr)
2385 src = bld.as_uniform(src);
2386 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2387 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2388 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2389 exponent = bld.sop2(aco_opcode::s_min_i32, bld.def(s1), bld.def(s1, scc), Operand(64u), exponent);
2390 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2391 Temp sign = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2392 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2393 mantissa = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), mantissa, Operand(7u));
2394 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2395 exponent = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(63u), exponent);
2396 mantissa = bld.sop2(aco_opcode::s_lshr_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent);
2397 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), exponent, Operand(0xffffffffu)); // exp >= 64
2398 Temp saturate = bld.sop1(aco_opcode::s_brev_b64, bld.def(s2), Operand(0xfffffffeu));
2399 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), saturate, mantissa, cond);
2400 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2401 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2402 lower = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, lower);
2403 upper = bld.sop2(aco_opcode::s_xor_b32, bld.def(s1), bld.def(s1, scc), sign, upper);
2404 Temp borrow = bld.tmp(s1);
2405 lower = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.scc(Definition(borrow)), lower, sign);
2406 upper = bld.sop2(aco_opcode::s_subb_u32, bld.def(s1), bld.def(s1, scc), upper, sign, borrow);
2407 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2408
2409 } else if (instr->src[0].src.ssa->bit_size == 64) {
2410 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2411 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2412 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2413 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2414 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2415 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2416 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2417 Temp upper = bld.vop1(aco_opcode::v_cvt_i32_f64, bld.def(v1), floor);
2418 if (dst.type() == RegType::sgpr) {
2419 lower = bld.as_uniform(lower);
2420 upper = bld.as_uniform(upper);
2421 }
2422 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2423
2424 } else {
2425 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2426 nir_print_instr(&instr->instr, stderr);
2427 fprintf(stderr, "\n");
2428 }
2429 break;
2430 }
2431 case nir_op_f2u64: {
2432 Temp src = get_alu_src(ctx, instr->src[0]);
2433 if (instr->src[0].src.ssa->bit_size == 16)
2434 src = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src);
2435
2436 if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::vgpr) {
2437 Temp exponent = bld.vop1(aco_opcode::v_frexp_exp_i32_f32, bld.def(v1), src);
2438 Temp exponent_in_range = bld.vopc(aco_opcode::v_cmp_ge_i32, bld.hint_vcc(bld.def(bld.lm)), Operand(64u), exponent);
2439 exponent = bld.vop2(aco_opcode::v_max_i32, bld.def(v1), Operand(0x0u), exponent);
2440 Temp mantissa = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffu), src);
2441 mantissa = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(0x800000u), mantissa);
2442 Temp exponent_small = bld.vsub32(bld.def(v1), Operand(24u), exponent);
2443 Temp small = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), exponent_small, mantissa);
2444 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), Operand(0u), mantissa);
2445 Temp new_exponent = bld.tmp(v1);
2446 Temp cond_small = bld.vsub32(Definition(new_exponent), exponent, Operand(24u), true).def(1).getTemp();
2447 if (ctx->program->chip_class >= GFX8)
2448 mantissa = bld.vop3(aco_opcode::v_lshlrev_b64, bld.def(v2), new_exponent, mantissa);
2449 else
2450 mantissa = bld.vop3(aco_opcode::v_lshl_b64, bld.def(v2), mantissa, new_exponent);
2451 Temp lower = bld.tmp(v1), upper = bld.tmp(v1);
2452 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2453 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), lower, small, cond_small);
2454 upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), upper, Operand(0u), cond_small);
2455 lower = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), lower, exponent_in_range);
2456 upper = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xffffffffu), upper, exponent_in_range);
2457 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2458
2459 } else if (instr->src[0].src.ssa->bit_size <= 32 && dst.type() == RegType::sgpr) {
2460 if (src.type() == RegType::vgpr)
2461 src = bld.as_uniform(src);
2462 Temp exponent = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), src, Operand(0x80017u));
2463 exponent = bld.sop2(aco_opcode::s_sub_i32, bld.def(s1), bld.def(s1, scc), exponent, Operand(126u));
2464 exponent = bld.sop2(aco_opcode::s_max_i32, bld.def(s1), bld.def(s1, scc), Operand(0u), exponent);
2465 Temp mantissa = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0x7fffffu), src);
2466 mantissa = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(0x800000u), mantissa);
2467 Temp exponent_small = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), Operand(24u), exponent);
2468 Temp small = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), mantissa, exponent_small);
2469 mantissa = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), mantissa);
2470 Temp exponent_large = bld.sop2(aco_opcode::s_sub_u32, bld.def(s1), bld.def(s1, scc), exponent, Operand(24u));
2471 mantissa = bld.sop2(aco_opcode::s_lshl_b64, bld.def(s2), bld.def(s1, scc), mantissa, exponent_large);
2472 Temp cond = bld.sopc(aco_opcode::s_cmp_ge_i32, bld.def(s1, scc), Operand(64u), exponent);
2473 mantissa = bld.sop2(aco_opcode::s_cselect_b64, bld.def(s2), mantissa, Operand(0xffffffffu), cond);
2474 Temp lower = bld.tmp(s1), upper = bld.tmp(s1);
2475 bld.pseudo(aco_opcode::p_split_vector, Definition(lower), Definition(upper), mantissa);
2476 Temp cond_small = bld.sopc(aco_opcode::s_cmp_le_i32, bld.def(s1, scc), exponent, Operand(24u));
2477 lower = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), small, lower, cond_small);
2478 upper = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), Operand(0u), upper, cond_small);
2479 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2480
2481 } else if (instr->src[0].src.ssa->bit_size == 64) {
2482 Temp vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0x3df00000u));
2483 Temp trunc = emit_trunc_f64(ctx, bld, bld.def(v2), src);
2484 Temp mul = bld.vop3(aco_opcode::v_mul_f64, bld.def(v2), trunc, vec);
2485 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(0u), Operand(0xc1f00000u));
2486 Temp floor = emit_floor_f64(ctx, bld, bld.def(v2), mul);
2487 Temp fma = bld.vop3(aco_opcode::v_fma_f64, bld.def(v2), floor, vec, trunc);
2488 Temp lower = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), fma);
2489 Temp upper = bld.vop1(aco_opcode::v_cvt_u32_f64, bld.def(v1), floor);
2490 if (dst.type() == RegType::sgpr) {
2491 lower = bld.as_uniform(lower);
2492 upper = bld.as_uniform(upper);
2493 }
2494 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lower, upper);
2495
2496 } else {
2497 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2498 nir_print_instr(&instr->instr, stderr);
2499 fprintf(stderr, "\n");
2500 }
2501 break;
2502 }
2503 case nir_op_b2f16: {
2504 Temp src = get_alu_src(ctx, instr->src[0]);
2505 assert(src.regClass() == bld.lm);
2506
2507 if (dst.regClass() == s1) {
2508 src = bool_to_scalar_condition(ctx, src);
2509 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3c00u), src);
2510 } else if (dst.regClass() == v2b) {
2511 Temp one = bld.copy(bld.def(v1), Operand(0x3c00u));
2512 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2513 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(v2b), tmp);
2514 } else {
2515 unreachable("Wrong destination register class for nir_op_b2f16.");
2516 }
2517 break;
2518 }
2519 case nir_op_b2f32: {
2520 Temp src = get_alu_src(ctx, instr->src[0]);
2521 assert(src.regClass() == bld.lm);
2522
2523 if (dst.regClass() == s1) {
2524 src = bool_to_scalar_condition(ctx, src);
2525 bld.sop2(aco_opcode::s_mul_i32, Definition(dst), Operand(0x3f800000u), src);
2526 } else if (dst.regClass() == v1) {
2527 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(0x3f800000u), src);
2528 } else {
2529 unreachable("Wrong destination register class for nir_op_b2f32.");
2530 }
2531 break;
2532 }
2533 case nir_op_b2f64: {
2534 Temp src = get_alu_src(ctx, instr->src[0]);
2535 assert(src.regClass() == bld.lm);
2536
2537 if (dst.regClass() == s2) {
2538 src = bool_to_scalar_condition(ctx, src);
2539 bld.sop2(aco_opcode::s_cselect_b64, Definition(dst), Operand(0x3f800000u), Operand(0u), bld.scc(src));
2540 } else if (dst.regClass() == v2) {
2541 Temp one = bld.vop1(aco_opcode::v_mov_b32, bld.def(v2), Operand(0x3FF00000u));
2542 Temp upper = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), one, src);
2543 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), Operand(0u), upper);
2544 } else {
2545 unreachable("Wrong destination register class for nir_op_b2f64.");
2546 }
2547 break;
2548 }
2549 case nir_op_i2i8:
2550 case nir_op_u2u8: {
2551 Temp src = get_alu_src(ctx, instr->src[0]);
2552 /* we can actually just say dst = src */
2553 if (src.regClass() == s1)
2554 bld.copy(Definition(dst), src);
2555 else
2556 emit_extract_vector(ctx, src, 0, dst);
2557 break;
2558 }
2559 case nir_op_i2i16: {
2560 Temp src = get_alu_src(ctx, instr->src[0]);
2561 if (instr->src[0].src.ssa->bit_size == 8) {
2562 if (dst.regClass() == s1) {
2563 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(dst), Operand(src));
2564 } else {
2565 assert(src.regClass() == v1b);
2566 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2567 sdwa->operands[0] = Operand(src);
2568 sdwa->definitions[0] = Definition(dst);
2569 sdwa->sel[0] = sdwa_sbyte;
2570 sdwa->dst_sel = sdwa_sword;
2571 ctx->block->instructions.emplace_back(std::move(sdwa));
2572 }
2573 } else {
2574 Temp src = get_alu_src(ctx, instr->src[0]);
2575 /* we can actually just say dst = src */
2576 if (src.regClass() == s1)
2577 bld.copy(Definition(dst), src);
2578 else
2579 emit_extract_vector(ctx, src, 0, dst);
2580 }
2581 break;
2582 }
2583 case nir_op_u2u16: {
2584 Temp src = get_alu_src(ctx, instr->src[0]);
2585 if (instr->src[0].src.ssa->bit_size == 8) {
2586 if (dst.regClass() == s1)
2587 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFu), src);
2588 else {
2589 assert(src.regClass() == v1b);
2590 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2591 sdwa->operands[0] = Operand(src);
2592 sdwa->definitions[0] = Definition(dst);
2593 sdwa->sel[0] = sdwa_ubyte;
2594 sdwa->dst_sel = sdwa_uword;
2595 ctx->block->instructions.emplace_back(std::move(sdwa));
2596 }
2597 } else {
2598 Temp src = get_alu_src(ctx, instr->src[0]);
2599 /* we can actually just say dst = src */
2600 if (src.regClass() == s1)
2601 bld.copy(Definition(dst), src);
2602 else
2603 emit_extract_vector(ctx, src, 0, dst);
2604 }
2605 break;
2606 }
2607 case nir_op_i2i32: {
2608 Temp src = get_alu_src(ctx, instr->src[0]);
2609 if (instr->src[0].src.ssa->bit_size == 8) {
2610 if (dst.regClass() == s1) {
2611 bld.sop1(aco_opcode::s_sext_i32_i8, Definition(dst), Operand(src));
2612 } else {
2613 assert(src.regClass() == v1b);
2614 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2615 sdwa->operands[0] = Operand(src);
2616 sdwa->definitions[0] = Definition(dst);
2617 sdwa->sel[0] = sdwa_sbyte;
2618 sdwa->dst_sel = sdwa_sdword;
2619 ctx->block->instructions.emplace_back(std::move(sdwa));
2620 }
2621 } else if (instr->src[0].src.ssa->bit_size == 16) {
2622 if (dst.regClass() == s1) {
2623 bld.sop1(aco_opcode::s_sext_i32_i16, Definition(dst), Operand(src));
2624 } else {
2625 assert(src.regClass() == v2b);
2626 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2627 sdwa->operands[0] = Operand(src);
2628 sdwa->definitions[0] = Definition(dst);
2629 sdwa->sel[0] = sdwa_sword;
2630 sdwa->dst_sel = sdwa_udword;
2631 ctx->block->instructions.emplace_back(std::move(sdwa));
2632 }
2633 } else if (instr->src[0].src.ssa->bit_size == 64) {
2634 /* we can actually just say dst = src, as it would map the lower register */
2635 emit_extract_vector(ctx, src, 0, dst);
2636 } else {
2637 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2638 nir_print_instr(&instr->instr, stderr);
2639 fprintf(stderr, "\n");
2640 }
2641 break;
2642 }
2643 case nir_op_u2u32: {
2644 Temp src = get_alu_src(ctx, instr->src[0]);
2645 if (instr->src[0].src.ssa->bit_size == 8) {
2646 if (dst.regClass() == s1)
2647 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFu), src);
2648 else {
2649 assert(src.regClass() == v1b);
2650 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2651 sdwa->operands[0] = Operand(src);
2652 sdwa->definitions[0] = Definition(dst);
2653 sdwa->sel[0] = sdwa_ubyte;
2654 sdwa->dst_sel = sdwa_udword;
2655 ctx->block->instructions.emplace_back(std::move(sdwa));
2656 }
2657 } else if (instr->src[0].src.ssa->bit_size == 16) {
2658 if (dst.regClass() == s1) {
2659 bld.sop2(aco_opcode::s_and_b32, Definition(dst), bld.def(s1, scc), Operand(0xFFFFu), src);
2660 } else {
2661 assert(src.regClass() == v2b);
2662 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
2663 sdwa->operands[0] = Operand(src);
2664 sdwa->definitions[0] = Definition(dst);
2665 sdwa->sel[0] = sdwa_uword;
2666 sdwa->dst_sel = sdwa_udword;
2667 ctx->block->instructions.emplace_back(std::move(sdwa));
2668 }
2669 } else if (instr->src[0].src.ssa->bit_size == 64) {
2670 /* we can actually just say dst = src, as it would map the lower register */
2671 emit_extract_vector(ctx, src, 0, dst);
2672 } else {
2673 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2674 nir_print_instr(&instr->instr, stderr);
2675 fprintf(stderr, "\n");
2676 }
2677 break;
2678 }
2679 case nir_op_i2i64: {
2680 Temp src = get_alu_src(ctx, instr->src[0]);
2681 if (src.regClass() == s1) {
2682 Temp high = bld.sop2(aco_opcode::s_ashr_i32, bld.def(s1), bld.def(s1, scc), src, Operand(31u));
2683 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2684 } else if (src.regClass() == v1) {
2685 Temp high = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(31u), src);
2686 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, high);
2687 } else {
2688 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2689 nir_print_instr(&instr->instr, stderr);
2690 fprintf(stderr, "\n");
2691 }
2692 break;
2693 }
2694 case nir_op_u2u64: {
2695 Temp src = get_alu_src(ctx, instr->src[0]);
2696 if (instr->src[0].src.ssa->bit_size == 32) {
2697 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src, Operand(0u));
2698 } else {
2699 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2700 nir_print_instr(&instr->instr, stderr);
2701 fprintf(stderr, "\n");
2702 }
2703 break;
2704 }
2705 case nir_op_b2b32:
2706 case nir_op_b2i32: {
2707 Temp src = get_alu_src(ctx, instr->src[0]);
2708 assert(src.regClass() == bld.lm);
2709
2710 if (dst.regClass() == s1) {
2711 // TODO: in a post-RA optimization, we can check if src is in VCC, and directly use VCCNZ
2712 bool_to_scalar_condition(ctx, src, dst);
2713 } else if (dst.regClass() == v1) {
2714 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand(1u), src);
2715 } else {
2716 unreachable("Invalid register class for b2i32");
2717 }
2718 break;
2719 }
2720 case nir_op_b2b1:
2721 case nir_op_i2b1: {
2722 Temp src = get_alu_src(ctx, instr->src[0]);
2723 assert(dst.regClass() == bld.lm);
2724
2725 if (src.type() == RegType::vgpr) {
2726 assert(src.regClass() == v1 || src.regClass() == v2);
2727 assert(dst.regClass() == bld.lm);
2728 bld.vopc(src.size() == 2 ? aco_opcode::v_cmp_lg_u64 : aco_opcode::v_cmp_lg_u32,
2729 Definition(dst), Operand(0u), src).def(0).setHint(vcc);
2730 } else {
2731 assert(src.regClass() == s1 || src.regClass() == s2);
2732 Temp tmp;
2733 if (src.regClass() == s2 && ctx->program->chip_class <= GFX7) {
2734 tmp = bld.sop2(aco_opcode::s_or_b64, bld.def(s2), bld.def(s1, scc), Operand(0u), src).def(1).getTemp();
2735 } else {
2736 tmp = bld.sopc(src.size() == 2 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::s_cmp_lg_u32,
2737 bld.scc(bld.def(s1)), Operand(0u), src);
2738 }
2739 bool_to_vector_condition(ctx, tmp, dst);
2740 }
2741 break;
2742 }
2743 case nir_op_pack_64_2x32_split: {
2744 Temp src0 = get_alu_src(ctx, instr->src[0]);
2745 Temp src1 = get_alu_src(ctx, instr->src[1]);
2746
2747 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2748 break;
2749 }
2750 case nir_op_unpack_64_2x32_split_x:
2751 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2752 break;
2753 case nir_op_unpack_64_2x32_split_y:
2754 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2755 break;
2756 case nir_op_unpack_32_2x16_split_x:
2757 if (dst.type() == RegType::vgpr) {
2758 bld.pseudo(aco_opcode::p_split_vector, Definition(dst), bld.def(dst.regClass()), get_alu_src(ctx, instr->src[0]));
2759 } else {
2760 bld.copy(Definition(dst), get_alu_src(ctx, instr->src[0]));
2761 }
2762 break;
2763 case nir_op_unpack_32_2x16_split_y:
2764 if (dst.type() == RegType::vgpr) {
2765 bld.pseudo(aco_opcode::p_split_vector, bld.def(dst.regClass()), Definition(dst), get_alu_src(ctx, instr->src[0]));
2766 } else {
2767 bld.sop2(aco_opcode::s_bfe_u32, Definition(dst), get_alu_src(ctx, instr->src[0]), Operand(uint32_t(16 << 16 | 16)));
2768 }
2769 break;
2770 case nir_op_pack_32_2x16_split: {
2771 Temp src0 = get_alu_src(ctx, instr->src[0]);
2772 Temp src1 = get_alu_src(ctx, instr->src[1]);
2773 if (dst.regClass() == v1) {
2774 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src0, src1);
2775 } else {
2776 src0 = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), src0, Operand(0xFFFFu));
2777 src1 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), src1, Operand(16u));
2778 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), src0, src1);
2779 }
2780 break;
2781 }
2782 case nir_op_pack_half_2x16: {
2783 Temp src = get_alu_src(ctx, instr->src[0], 2);
2784
2785 if (dst.regClass() == v1) {
2786 Temp src0 = bld.tmp(v1);
2787 Temp src1 = bld.tmp(v1);
2788 bld.pseudo(aco_opcode::p_split_vector, Definition(src0), Definition(src1), src);
2789 if (!ctx->block->fp_mode.care_about_round32 || ctx->block->fp_mode.round32 == fp_round_tz)
2790 bld.vop3(aco_opcode::v_cvt_pkrtz_f16_f32, Definition(dst), src0, src1);
2791 else
2792 bld.vop3(aco_opcode::v_cvt_pk_u16_u32, Definition(dst),
2793 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src0),
2794 bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), src1));
2795 } else {
2796 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2797 nir_print_instr(&instr->instr, stderr);
2798 fprintf(stderr, "\n");
2799 }
2800 break;
2801 }
2802 case nir_op_unpack_half_2x16_split_x: {
2803 if (dst.regClass() == v1) {
2804 Builder bld(ctx->program, ctx->block);
2805 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst), get_alu_src(ctx, instr->src[0]));
2806 } else {
2807 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2808 nir_print_instr(&instr->instr, stderr);
2809 fprintf(stderr, "\n");
2810 }
2811 break;
2812 }
2813 case nir_op_unpack_half_2x16_split_y: {
2814 if (dst.regClass() == v1) {
2815 Builder bld(ctx->program, ctx->block);
2816 /* TODO: use SDWA here */
2817 bld.vop1(aco_opcode::v_cvt_f32_f16, Definition(dst),
2818 bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), as_vgpr(ctx, get_alu_src(ctx, instr->src[0]))));
2819 } else {
2820 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2821 nir_print_instr(&instr->instr, stderr);
2822 fprintf(stderr, "\n");
2823 }
2824 break;
2825 }
2826 case nir_op_fquantize2f16: {
2827 Temp src = get_alu_src(ctx, instr->src[0]);
2828 Temp f16 = bld.vop1(aco_opcode::v_cvt_f16_f32, bld.def(v1), src);
2829 Temp f32, cmp_res;
2830
2831 if (ctx->program->chip_class >= GFX8) {
2832 Temp mask = bld.copy(bld.def(s1), Operand(0x36Fu)); /* value is NOT negative/positive denormal value */
2833 cmp_res = bld.vopc_e64(aco_opcode::v_cmp_class_f16, bld.hint_vcc(bld.def(bld.lm)), f16, mask);
2834 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2835 } else {
2836 /* 0x38800000 is smallest half float value (2^-14) in 32-bit float,
2837 * so compare the result and flush to 0 if it's smaller.
2838 */
2839 f32 = bld.vop1(aco_opcode::v_cvt_f32_f16, bld.def(v1), f16);
2840 Temp smallest = bld.copy(bld.def(s1), Operand(0x38800000u));
2841 Instruction* vop3 = bld.vopc_e64(aco_opcode::v_cmp_nlt_f32, bld.hint_vcc(bld.def(bld.lm)), f32, smallest);
2842 static_cast<VOP3A_instruction*>(vop3)->abs[0] = true;
2843 cmp_res = vop3->definitions[0].getTemp();
2844 }
2845
2846 if (ctx->block->fp_mode.preserve_signed_zero_inf_nan32 || ctx->program->chip_class < GFX8) {
2847 Temp copysign_0 = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0u), as_vgpr(ctx, src));
2848 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), copysign_0, f32, cmp_res);
2849 } else {
2850 bld.vop2(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), f32, cmp_res);
2851 }
2852 break;
2853 }
2854 case nir_op_bfm: {
2855 Temp bits = get_alu_src(ctx, instr->src[0]);
2856 Temp offset = get_alu_src(ctx, instr->src[1]);
2857
2858 if (dst.regClass() == s1) {
2859 bld.sop2(aco_opcode::s_bfm_b32, Definition(dst), bits, offset);
2860 } else if (dst.regClass() == v1) {
2861 bld.vop3(aco_opcode::v_bfm_b32, Definition(dst), bits, offset);
2862 } else {
2863 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2864 nir_print_instr(&instr->instr, stderr);
2865 fprintf(stderr, "\n");
2866 }
2867 break;
2868 }
2869 case nir_op_bitfield_select: {
2870 /* (mask & insert) | (~mask & base) */
2871 Temp bitmask = get_alu_src(ctx, instr->src[0]);
2872 Temp insert = get_alu_src(ctx, instr->src[1]);
2873 Temp base = get_alu_src(ctx, instr->src[2]);
2874
2875 /* dst = (insert & bitmask) | (base & ~bitmask) */
2876 if (dst.regClass() == s1) {
2877 aco_ptr<Instruction> sop2;
2878 nir_const_value* const_bitmask = nir_src_as_const_value(instr->src[0].src);
2879 nir_const_value* const_insert = nir_src_as_const_value(instr->src[1].src);
2880 Operand lhs;
2881 if (const_insert && const_bitmask) {
2882 lhs = Operand(const_insert->u32 & const_bitmask->u32);
2883 } else {
2884 insert = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), insert, bitmask);
2885 lhs = Operand(insert);
2886 }
2887
2888 Operand rhs;
2889 nir_const_value* const_base = nir_src_as_const_value(instr->src[2].src);
2890 if (const_base && const_bitmask) {
2891 rhs = Operand(const_base->u32 & ~const_bitmask->u32);
2892 } else {
2893 base = bld.sop2(aco_opcode::s_andn2_b32, bld.def(s1), bld.def(s1, scc), base, bitmask);
2894 rhs = Operand(base);
2895 }
2896
2897 bld.sop2(aco_opcode::s_or_b32, Definition(dst), bld.def(s1, scc), rhs, lhs);
2898
2899 } else if (dst.regClass() == v1) {
2900 if (base.type() == RegType::sgpr && (bitmask.type() == RegType::sgpr || (insert.type() == RegType::sgpr)))
2901 base = as_vgpr(ctx, base);
2902 if (insert.type() == RegType::sgpr && bitmask.type() == RegType::sgpr)
2903 insert = as_vgpr(ctx, insert);
2904
2905 bld.vop3(aco_opcode::v_bfi_b32, Definition(dst), bitmask, insert, base);
2906
2907 } else {
2908 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2909 nir_print_instr(&instr->instr, stderr);
2910 fprintf(stderr, "\n");
2911 }
2912 break;
2913 }
2914 case nir_op_ubfe:
2915 case nir_op_ibfe: {
2916 Temp base = get_alu_src(ctx, instr->src[0]);
2917 Temp offset = get_alu_src(ctx, instr->src[1]);
2918 Temp bits = get_alu_src(ctx, instr->src[2]);
2919
2920 if (dst.type() == RegType::sgpr) {
2921 Operand extract;
2922 nir_const_value* const_offset = nir_src_as_const_value(instr->src[1].src);
2923 nir_const_value* const_bits = nir_src_as_const_value(instr->src[2].src);
2924 if (const_offset && const_bits) {
2925 uint32_t const_extract = (const_bits->u32 << 16) | const_offset->u32;
2926 extract = Operand(const_extract);
2927 } else {
2928 Operand width;
2929 if (const_bits) {
2930 width = Operand(const_bits->u32 << 16);
2931 } else {
2932 width = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), bits, Operand(16u));
2933 }
2934 extract = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), offset, width);
2935 }
2936
2937 aco_opcode opcode;
2938 if (dst.regClass() == s1) {
2939 if (instr->op == nir_op_ubfe)
2940 opcode = aco_opcode::s_bfe_u32;
2941 else
2942 opcode = aco_opcode::s_bfe_i32;
2943 } else if (dst.regClass() == s2) {
2944 if (instr->op == nir_op_ubfe)
2945 opcode = aco_opcode::s_bfe_u64;
2946 else
2947 opcode = aco_opcode::s_bfe_i64;
2948 } else {
2949 unreachable("Unsupported BFE bit size");
2950 }
2951
2952 bld.sop2(opcode, Definition(dst), bld.def(s1, scc), base, extract);
2953
2954 } else {
2955 aco_opcode opcode;
2956 if (dst.regClass() == v1) {
2957 if (instr->op == nir_op_ubfe)
2958 opcode = aco_opcode::v_bfe_u32;
2959 else
2960 opcode = aco_opcode::v_bfe_i32;
2961 } else {
2962 unreachable("Unsupported BFE bit size");
2963 }
2964
2965 emit_vop3a_instruction(ctx, instr, opcode, dst);
2966 }
2967 break;
2968 }
2969 case nir_op_bit_count: {
2970 Temp src = get_alu_src(ctx, instr->src[0]);
2971 if (src.regClass() == s1) {
2972 bld.sop1(aco_opcode::s_bcnt1_i32_b32, Definition(dst), bld.def(s1, scc), src);
2973 } else if (src.regClass() == v1) {
2974 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst), src, Operand(0u));
2975 } else if (src.regClass() == v2) {
2976 bld.vop3(aco_opcode::v_bcnt_u32_b32, Definition(dst),
2977 emit_extract_vector(ctx, src, 1, v1),
2978 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1),
2979 emit_extract_vector(ctx, src, 0, v1), Operand(0u)));
2980 } else if (src.regClass() == s2) {
2981 bld.sop1(aco_opcode::s_bcnt1_i32_b64, Definition(dst), bld.def(s1, scc), src);
2982 } else {
2983 fprintf(stderr, "Unimplemented NIR instr bit size: ");
2984 nir_print_instr(&instr->instr, stderr);
2985 fprintf(stderr, "\n");
2986 }
2987 break;
2988 }
2989 case nir_op_flt: {
2990 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_f16, aco_opcode::v_cmp_lt_f32, aco_opcode::v_cmp_lt_f64);
2991 break;
2992 }
2993 case nir_op_fge: {
2994 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_f16, aco_opcode::v_cmp_ge_f32, aco_opcode::v_cmp_ge_f64);
2995 break;
2996 }
2997 case nir_op_feq: {
2998 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_f16, aco_opcode::v_cmp_eq_f32, aco_opcode::v_cmp_eq_f64);
2999 break;
3000 }
3001 case nir_op_fne: {
3002 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_neq_f16, aco_opcode::v_cmp_neq_f32, aco_opcode::v_cmp_neq_f64);
3003 break;
3004 }
3005 case nir_op_ilt: {
3006 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_i16, aco_opcode::v_cmp_lt_i32, aco_opcode::v_cmp_lt_i64, aco_opcode::s_cmp_lt_i32);
3007 break;
3008 }
3009 case nir_op_ige: {
3010 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_i16, aco_opcode::v_cmp_ge_i32, aco_opcode::v_cmp_ge_i64, aco_opcode::s_cmp_ge_i32);
3011 break;
3012 }
3013 case nir_op_ieq: {
3014 if (instr->src[0].src.ssa->bit_size == 1)
3015 emit_boolean_logic(ctx, instr, Builder::s_xnor, dst);
3016 else
3017 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_eq_i16, aco_opcode::v_cmp_eq_i32, aco_opcode::v_cmp_eq_i64, aco_opcode::s_cmp_eq_i32,
3018 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_eq_u64 : aco_opcode::num_opcodes);
3019 break;
3020 }
3021 case nir_op_ine: {
3022 if (instr->src[0].src.ssa->bit_size == 1)
3023 emit_boolean_logic(ctx, instr, Builder::s_xor, dst);
3024 else
3025 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lg_i16, aco_opcode::v_cmp_lg_i32, aco_opcode::v_cmp_lg_i64, aco_opcode::s_cmp_lg_i32,
3026 ctx->program->chip_class >= GFX8 ? aco_opcode::s_cmp_lg_u64 : aco_opcode::num_opcodes);
3027 break;
3028 }
3029 case nir_op_ult: {
3030 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_lt_u16, aco_opcode::v_cmp_lt_u32, aco_opcode::v_cmp_lt_u64, aco_opcode::s_cmp_lt_u32);
3031 break;
3032 }
3033 case nir_op_uge: {
3034 emit_comparison(ctx, instr, dst, aco_opcode::v_cmp_ge_u16, aco_opcode::v_cmp_ge_u32, aco_opcode::v_cmp_ge_u64, aco_opcode::s_cmp_ge_u32);
3035 break;
3036 }
3037 case nir_op_fddx:
3038 case nir_op_fddy:
3039 case nir_op_fddx_fine:
3040 case nir_op_fddy_fine:
3041 case nir_op_fddx_coarse:
3042 case nir_op_fddy_coarse: {
3043 Temp src = get_alu_src(ctx, instr->src[0]);
3044 uint16_t dpp_ctrl1, dpp_ctrl2;
3045 if (instr->op == nir_op_fddx_fine) {
3046 dpp_ctrl1 = dpp_quad_perm(0, 0, 2, 2);
3047 dpp_ctrl2 = dpp_quad_perm(1, 1, 3, 3);
3048 } else if (instr->op == nir_op_fddy_fine) {
3049 dpp_ctrl1 = dpp_quad_perm(0, 1, 0, 1);
3050 dpp_ctrl2 = dpp_quad_perm(2, 3, 2, 3);
3051 } else {
3052 dpp_ctrl1 = dpp_quad_perm(0, 0, 0, 0);
3053 if (instr->op == nir_op_fddx || instr->op == nir_op_fddx_coarse)
3054 dpp_ctrl2 = dpp_quad_perm(1, 1, 1, 1);
3055 else
3056 dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
3057 }
3058
3059 Temp tmp;
3060 if (ctx->program->chip_class >= GFX8) {
3061 Temp tl = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl1);
3062 tmp = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), src, tl, dpp_ctrl2);
3063 } else {
3064 Temp tl = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl1);
3065 Temp tr = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl2);
3066 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), tr, tl);
3067 }
3068 emit_wqm(ctx, tmp, dst, true);
3069 break;
3070 }
3071 default:
3072 fprintf(stderr, "Unknown NIR ALU instr: ");
3073 nir_print_instr(&instr->instr, stderr);
3074 fprintf(stderr, "\n");
3075 }
3076 }
3077
3078 void visit_load_const(isel_context *ctx, nir_load_const_instr *instr)
3079 {
3080 Temp dst = get_ssa_temp(ctx, &instr->def);
3081
3082 // TODO: we really want to have the resulting type as this would allow for 64bit literals
3083 // which get truncated the lsb if double and msb if int
3084 // for now, we only use s_mov_b64 with 64bit inline constants
3085 assert(instr->def.num_components == 1 && "Vector load_const should be lowered to scalar.");
3086 assert(dst.type() == RegType::sgpr);
3087
3088 Builder bld(ctx->program, ctx->block);
3089
3090 if (instr->def.bit_size == 1) {
3091 assert(dst.regClass() == bld.lm);
3092 int val = instr->value[0].b ? -1 : 0;
3093 Operand op = bld.lm.size() == 1 ? Operand((uint32_t) val) : Operand((uint64_t) val);
3094 bld.sop1(Builder::s_mov, Definition(dst), op);
3095 } else if (instr->def.bit_size == 8) {
3096 /* ensure that the value is correctly represented in the low byte of the register */
3097 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u8);
3098 } else if (instr->def.bit_size == 16) {
3099 /* ensure that the value is correctly represented in the low half of the register */
3100 bld.sopk(aco_opcode::s_movk_i32, Definition(dst), instr->value[0].u16);
3101 } else if (dst.size() == 1) {
3102 bld.copy(Definition(dst), Operand(instr->value[0].u32));
3103 } else {
3104 assert(dst.size() != 1);
3105 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
3106 if (instr->def.bit_size == 64)
3107 for (unsigned i = 0; i < dst.size(); i++)
3108 vec->operands[i] = Operand{(uint32_t)(instr->value[0].u64 >> i * 32)};
3109 else {
3110 for (unsigned i = 0; i < dst.size(); i++)
3111 vec->operands[i] = Operand{instr->value[i].u32};
3112 }
3113 vec->definitions[0] = Definition(dst);
3114 ctx->block->instructions.emplace_back(std::move(vec));
3115 }
3116 }
3117
3118 uint32_t widen_mask(uint32_t mask, unsigned multiplier)
3119 {
3120 uint32_t new_mask = 0;
3121 for(unsigned i = 0; i < 32 && (1u << i) <= mask; ++i)
3122 if (mask & (1u << i))
3123 new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
3124 return new_mask;
3125 }
3126
3127 Operand load_lds_size_m0(isel_context *ctx)
3128 {
3129 /* TODO: m0 does not need to be initialized on GFX9+ */
3130 Builder bld(ctx->program, ctx->block);
3131 return bld.m0((Temp)bld.sopk(aco_opcode::s_movk_i32, bld.def(s1, m0), 0xffff));
3132 }
3133
3134 Temp load_lds(isel_context *ctx, unsigned elem_size_bytes, Temp dst,
3135 Temp address, unsigned base_offset, unsigned align)
3136 {
3137 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3138
3139 Builder bld(ctx->program, ctx->block);
3140
3141 Operand m = load_lds_size_m0(ctx);
3142
3143 unsigned num_components = dst.size() * 4u / elem_size_bytes;
3144 unsigned bytes_read = 0;
3145 unsigned result_size = 0;
3146 unsigned total_bytes = num_components * elem_size_bytes;
3147 std::array<Temp, NIR_MAX_VEC_COMPONENTS> result;
3148 bool large_ds_read = ctx->options->chip_class >= GFX7;
3149 bool usable_read2 = ctx->options->chip_class >= GFX7;
3150
3151 while (bytes_read < total_bytes) {
3152 unsigned todo = total_bytes - bytes_read;
3153 bool aligned8 = bytes_read % 8 == 0 && align % 8 == 0;
3154 bool aligned16 = bytes_read % 16 == 0 && align % 16 == 0;
3155
3156 aco_opcode op = aco_opcode::last_opcode;
3157 bool read2 = false;
3158 if (todo >= 16 && aligned16 && large_ds_read) {
3159 op = aco_opcode::ds_read_b128;
3160 todo = 16;
3161 } else if (todo >= 16 && aligned8 && usable_read2) {
3162 op = aco_opcode::ds_read2_b64;
3163 read2 = true;
3164 todo = 16;
3165 } else if (todo >= 12 && aligned16 && large_ds_read) {
3166 op = aco_opcode::ds_read_b96;
3167 todo = 12;
3168 } else if (todo >= 8 && aligned8) {
3169 op = aco_opcode::ds_read_b64;
3170 todo = 8;
3171 } else if (todo >= 8 && usable_read2) {
3172 op = aco_opcode::ds_read2_b32;
3173 read2 = true;
3174 todo = 8;
3175 } else if (todo >= 4) {
3176 op = aco_opcode::ds_read_b32;
3177 todo = 4;
3178 } else {
3179 assert(false);
3180 }
3181 assert(todo % elem_size_bytes == 0);
3182 unsigned num_elements = todo / elem_size_bytes;
3183 unsigned offset = base_offset + bytes_read;
3184 unsigned max_offset = read2 ? 1019 : 65535;
3185
3186 Temp address_offset = address;
3187 if (offset > max_offset) {
3188 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3189 offset = bytes_read;
3190 }
3191 assert(offset <= max_offset); /* bytes_read shouldn't be large enough for this to happen */
3192
3193 Temp res;
3194 if (num_components == 1 && dst.type() == RegType::vgpr)
3195 res = dst;
3196 else
3197 res = bld.tmp(RegClass(RegType::vgpr, todo / 4));
3198
3199 if (read2)
3200 res = bld.ds(op, Definition(res), address_offset, m, offset / (todo / 2), (offset / (todo / 2)) + 1);
3201 else
3202 res = bld.ds(op, Definition(res), address_offset, m, offset);
3203
3204 if (num_components == 1) {
3205 assert(todo == total_bytes);
3206 if (dst.type() == RegType::sgpr)
3207 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), res);
3208 return dst;
3209 }
3210
3211 if (dst.type() == RegType::sgpr) {
3212 Temp new_res = bld.tmp(RegType::sgpr, res.size());
3213 expand_vector(ctx, res, new_res, res.size(), (1 << res.size()) - 1);
3214 res = new_res;
3215 }
3216
3217 if (num_elements == 1) {
3218 result[result_size++] = res;
3219 } else {
3220 assert(res != dst && res.size() % num_elements == 0);
3221 aco_ptr<Pseudo_instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector, Format::PSEUDO, 1, num_elements)};
3222 split->operands[0] = Operand(res);
3223 for (unsigned i = 0; i < num_elements; i++)
3224 split->definitions[i] = Definition(result[result_size++] = bld.tmp(res.type(), elem_size_bytes / 4));
3225 ctx->block->instructions.emplace_back(std::move(split));
3226 }
3227
3228 bytes_read += todo;
3229 }
3230
3231 assert(result_size == num_components && result_size > 1);
3232 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, result_size, 1)};
3233 for (unsigned i = 0; i < result_size; i++)
3234 vec->operands[i] = Operand(result[i]);
3235 vec->definitions[0] = Definition(dst);
3236 ctx->block->instructions.emplace_back(std::move(vec));
3237 ctx->allocated_vec.emplace(dst.id(), result);
3238
3239 return dst;
3240 }
3241
3242 Temp extract_subvector(isel_context *ctx, Temp data, unsigned start, unsigned size, RegType type)
3243 {
3244 if (start == 0 && size == data.size())
3245 return type == RegType::vgpr ? as_vgpr(ctx, data) : data;
3246
3247 unsigned size_hint = 1;
3248 auto it = ctx->allocated_vec.find(data.id());
3249 if (it != ctx->allocated_vec.end())
3250 size_hint = it->second[0].size();
3251 if (size % size_hint || start % size_hint)
3252 size_hint = 1;
3253
3254 start /= size_hint;
3255 size /= size_hint;
3256
3257 Temp elems[size];
3258 for (unsigned i = 0; i < size; i++)
3259 elems[i] = emit_extract_vector(ctx, data, start + i, RegClass(type, size_hint));
3260
3261 if (size == 1)
3262 return type == RegType::vgpr ? as_vgpr(ctx, elems[0]) : elems[0];
3263
3264 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, size, 1)};
3265 for (unsigned i = 0; i < size; i++)
3266 vec->operands[i] = Operand(elems[i]);
3267 Temp res = {ctx->program->allocateId(), RegClass(type, size * size_hint)};
3268 vec->definitions[0] = Definition(res);
3269 ctx->block->instructions.emplace_back(std::move(vec));
3270 return res;
3271 }
3272
3273 void ds_write_helper(isel_context *ctx, Operand m, Temp address, Temp data, unsigned data_start, unsigned total_size, unsigned offset0, unsigned offset1, unsigned align)
3274 {
3275 Builder bld(ctx->program, ctx->block);
3276 unsigned bytes_written = 0;
3277 bool large_ds_write = ctx->options->chip_class >= GFX7;
3278 bool usable_write2 = ctx->options->chip_class >= GFX7;
3279
3280 while (bytes_written < total_size * 4) {
3281 unsigned todo = total_size * 4 - bytes_written;
3282 bool aligned8 = bytes_written % 8 == 0 && align % 8 == 0;
3283 bool aligned16 = bytes_written % 16 == 0 && align % 16 == 0;
3284
3285 aco_opcode op = aco_opcode::last_opcode;
3286 bool write2 = false;
3287 unsigned size = 0;
3288 if (todo >= 16 && aligned16 && large_ds_write) {
3289 op = aco_opcode::ds_write_b128;
3290 size = 4;
3291 } else if (todo >= 16 && aligned8 && usable_write2) {
3292 op = aco_opcode::ds_write2_b64;
3293 write2 = true;
3294 size = 4;
3295 } else if (todo >= 12 && aligned16 && large_ds_write) {
3296 op = aco_opcode::ds_write_b96;
3297 size = 3;
3298 } else if (todo >= 8 && aligned8) {
3299 op = aco_opcode::ds_write_b64;
3300 size = 2;
3301 } else if (todo >= 8 && usable_write2) {
3302 op = aco_opcode::ds_write2_b32;
3303 write2 = true;
3304 size = 2;
3305 } else if (todo >= 4) {
3306 op = aco_opcode::ds_write_b32;
3307 size = 1;
3308 } else {
3309 assert(false);
3310 }
3311
3312 unsigned offset = offset0 + offset1 + bytes_written;
3313 unsigned max_offset = write2 ? 1020 : 65535;
3314 Temp address_offset = address;
3315 if (offset > max_offset) {
3316 address_offset = bld.vadd32(bld.def(v1), Operand(offset0), address_offset);
3317 offset = offset1 + bytes_written;
3318 }
3319 assert(offset <= max_offset); /* offset1 shouldn't be large enough for this to happen */
3320
3321 if (write2) {
3322 Temp val0 = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size / 2, RegType::vgpr);
3323 Temp val1 = extract_subvector(ctx, data, data_start + (bytes_written >> 2) + 1, size / 2, RegType::vgpr);
3324 bld.ds(op, address_offset, val0, val1, m, offset / size / 2, (offset / size / 2) + 1);
3325 } else {
3326 Temp val = extract_subvector(ctx, data, data_start + (bytes_written >> 2), size, RegType::vgpr);
3327 bld.ds(op, address_offset, val, m, offset);
3328 }
3329
3330 bytes_written += size * 4;
3331 }
3332 }
3333
3334 void store_lds(isel_context *ctx, unsigned elem_size_bytes, Temp data, uint32_t wrmask,
3335 Temp address, unsigned base_offset, unsigned align)
3336 {
3337 assert(util_is_power_of_two_nonzero(align) && align >= 4);
3338 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3339
3340 Operand m = load_lds_size_m0(ctx);
3341
3342 /* we need at most two stores, assuming that the writemask is at most 4 bits wide */
3343 assert(wrmask <= 0x0f);
3344 int start[2], count[2];
3345 u_bit_scan_consecutive_range(&wrmask, &start[0], &count[0]);
3346 u_bit_scan_consecutive_range(&wrmask, &start[1], &count[1]);
3347 assert(wrmask == 0);
3348
3349 /* one combined store is sufficient */
3350 if (count[0] == count[1] && (align % elem_size_bytes) == 0 && (base_offset % elem_size_bytes) == 0) {
3351 Builder bld(ctx->program, ctx->block);
3352
3353 Temp address_offset = address;
3354 if ((base_offset / elem_size_bytes) + start[1] > 255) {
3355 address_offset = bld.vadd32(bld.def(v1), Operand(base_offset), address_offset);
3356 base_offset = 0;
3357 }
3358
3359 assert(count[0] == 1);
3360 RegClass xtract_rc(RegType::vgpr, elem_size_bytes / 4);
3361
3362 Temp val0 = emit_extract_vector(ctx, data, start[0], xtract_rc);
3363 Temp val1 = emit_extract_vector(ctx, data, start[1], xtract_rc);
3364 aco_opcode op = elem_size_bytes == 4 ? aco_opcode::ds_write2_b32 : aco_opcode::ds_write2_b64;
3365 base_offset = base_offset / elem_size_bytes;
3366 bld.ds(op, address_offset, val0, val1, m,
3367 base_offset + start[0], base_offset + start[1]);
3368 return;
3369 }
3370
3371 for (unsigned i = 0; i < 2; i++) {
3372 if (count[i] == 0)
3373 continue;
3374
3375 unsigned elem_size_words = elem_size_bytes / 4;
3376 ds_write_helper(ctx, m, address, data, start[i] * elem_size_words, count[i] * elem_size_words,
3377 base_offset, start[i] * elem_size_bytes, align);
3378 }
3379 return;
3380 }
3381
3382 unsigned calculate_lds_alignment(isel_context *ctx, unsigned const_offset)
3383 {
3384 unsigned align = 16;
3385 if (const_offset)
3386 align = std::min(align, 1u << (ffs(const_offset) - 1));
3387
3388 return align;
3389 }
3390
3391
3392 Temp create_vec_from_array(isel_context *ctx, Temp arr[], unsigned cnt, RegType reg_type, unsigned elem_size_bytes,
3393 unsigned split_cnt = 0u, Temp dst = Temp())
3394 {
3395 Builder bld(ctx->program, ctx->block);
3396 unsigned dword_size = elem_size_bytes / 4;
3397
3398 if (!dst.id())
3399 dst = bld.tmp(RegClass(reg_type, cnt * dword_size));
3400
3401 std::array<Temp, NIR_MAX_VEC_COMPONENTS> allocated_vec;
3402 aco_ptr<Pseudo_instruction> instr {create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, cnt, 1)};
3403 instr->definitions[0] = Definition(dst);
3404
3405 for (unsigned i = 0; i < cnt; ++i) {
3406 if (arr[i].id()) {
3407 assert(arr[i].size() == dword_size);
3408 allocated_vec[i] = arr[i];
3409 instr->operands[i] = Operand(arr[i]);
3410 } else {
3411 Temp zero = bld.copy(bld.def(RegClass(reg_type, dword_size)), Operand(0u, dword_size == 2));
3412 allocated_vec[i] = zero;
3413 instr->operands[i] = Operand(zero);
3414 }
3415 }
3416
3417 bld.insert(std::move(instr));
3418
3419 if (split_cnt)
3420 emit_split_vector(ctx, dst, split_cnt);
3421 else
3422 ctx->allocated_vec.emplace(dst.id(), allocated_vec); /* emit_split_vector already does this */
3423
3424 return dst;
3425 }
3426
3427 inline unsigned resolve_excess_vmem_const_offset(Builder &bld, Temp &voffset, unsigned const_offset)
3428 {
3429 if (const_offset >= 4096) {
3430 unsigned excess_const_offset = const_offset / 4096u * 4096u;
3431 const_offset %= 4096u;
3432
3433 if (!voffset.id())
3434 voffset = bld.copy(bld.def(v1), Operand(excess_const_offset));
3435 else if (unlikely(voffset.regClass() == s1))
3436 voffset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), Operand(excess_const_offset), Operand(voffset));
3437 else if (likely(voffset.regClass() == v1))
3438 voffset = bld.vadd32(bld.def(v1), Operand(voffset), Operand(excess_const_offset));
3439 else
3440 unreachable("Unsupported register class of voffset");
3441 }
3442
3443 return const_offset;
3444 }
3445
3446 void emit_single_mubuf_store(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset, Temp vdata,
3447 unsigned const_offset = 0u, bool allow_reorder = true, bool slc = false)
3448 {
3449 assert(vdata.id());
3450 assert(vdata.size() != 3 || ctx->program->chip_class != GFX6);
3451 assert(vdata.size() >= 1 && vdata.size() <= 4);
3452
3453 Builder bld(ctx->program, ctx->block);
3454 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_store_dword + vdata.size() - 1);
3455 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3456
3457 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3458 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3459 Builder::Result r = bld.mubuf(op, Operand(descriptor), voffset_op, soffset_op, Operand(vdata), const_offset,
3460 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3461 /* disable_wqm */ false, /* glc */ true, /* dlc*/ false, /* slc */ slc);
3462
3463 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3464 }
3465
3466 void store_vmem_mubuf(isel_context *ctx, Temp src, Temp descriptor, Temp voffset, Temp soffset,
3467 unsigned base_const_offset, unsigned elem_size_bytes, unsigned write_mask,
3468 bool allow_combining = true, bool reorder = true, bool slc = false)
3469 {
3470 Builder bld(ctx->program, ctx->block);
3471 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3472 assert(write_mask);
3473
3474 if (elem_size_bytes == 8) {
3475 elem_size_bytes = 4;
3476 write_mask = widen_mask(write_mask, 2);
3477 }
3478
3479 while (write_mask) {
3480 int start = 0;
3481 int count = 0;
3482 u_bit_scan_consecutive_range(&write_mask, &start, &count);
3483 assert(count > 0);
3484 assert(start >= 0);
3485
3486 while (count > 0) {
3487 unsigned sub_count = allow_combining ? MIN2(count, 4) : 1;
3488 unsigned const_offset = (unsigned) start * elem_size_bytes + base_const_offset;
3489
3490 /* GFX6 doesn't have buffer_store_dwordx3, so make sure not to emit that here either. */
3491 if (unlikely(ctx->program->chip_class == GFX6 && sub_count == 3))
3492 sub_count = 2;
3493
3494 Temp elem = extract_subvector(ctx, src, start, sub_count, RegType::vgpr);
3495 emit_single_mubuf_store(ctx, descriptor, voffset, soffset, elem, const_offset, reorder, slc);
3496
3497 count -= sub_count;
3498 start += sub_count;
3499 }
3500
3501 assert(count == 0);
3502 }
3503 }
3504
3505 Temp emit_single_mubuf_load(isel_context *ctx, Temp descriptor, Temp voffset, Temp soffset,
3506 unsigned const_offset, unsigned size_dwords, bool allow_reorder = true)
3507 {
3508 assert(size_dwords != 3 || ctx->program->chip_class != GFX6);
3509 assert(size_dwords >= 1 && size_dwords <= 4);
3510
3511 Builder bld(ctx->program, ctx->block);
3512 Temp vdata = bld.tmp(RegClass(RegType::vgpr, size_dwords));
3513 aco_opcode op = (aco_opcode) ((unsigned) aco_opcode::buffer_load_dword + size_dwords - 1);
3514 const_offset = resolve_excess_vmem_const_offset(bld, voffset, const_offset);
3515
3516 Operand voffset_op = voffset.id() ? Operand(as_vgpr(ctx, voffset)) : Operand(v1);
3517 Operand soffset_op = soffset.id() ? Operand(soffset) : Operand(0u);
3518 Builder::Result r = bld.mubuf(op, Definition(vdata), Operand(descriptor), voffset_op, soffset_op, const_offset,
3519 /* offen */ !voffset_op.isUndefined(), /* idxen*/ false, /* addr64 */ false,
3520 /* disable_wqm */ false, /* glc */ true,
3521 /* dlc*/ ctx->program->chip_class >= GFX10, /* slc */ false);
3522
3523 static_cast<MUBUF_instruction *>(r.instr)->can_reorder = allow_reorder;
3524
3525 return vdata;
3526 }
3527
3528 void load_vmem_mubuf(isel_context *ctx, Temp dst, Temp descriptor, Temp voffset, Temp soffset,
3529 unsigned base_const_offset, unsigned elem_size_bytes, unsigned num_components,
3530 unsigned stride = 0u, bool allow_combining = true, bool allow_reorder = true)
3531 {
3532 assert(elem_size_bytes == 4 || elem_size_bytes == 8);
3533 assert((num_components * elem_size_bytes / 4) == dst.size());
3534 assert(!!stride != allow_combining);
3535
3536 Builder bld(ctx->program, ctx->block);
3537 unsigned split_cnt = num_components;
3538
3539 if (elem_size_bytes == 8) {
3540 elem_size_bytes = 4;
3541 num_components *= 2;
3542 }
3543
3544 if (!stride)
3545 stride = elem_size_bytes;
3546
3547 unsigned load_size = 1;
3548 if (allow_combining) {
3549 if ((num_components % 4) == 0)
3550 load_size = 4;
3551 else if ((num_components % 3) == 0 && ctx->program->chip_class != GFX6)
3552 load_size = 3;
3553 else if ((num_components % 2) == 0)
3554 load_size = 2;
3555 }
3556
3557 unsigned num_loads = num_components / load_size;
3558 std::array<Temp, NIR_MAX_VEC_COMPONENTS> elems;
3559
3560 for (unsigned i = 0; i < num_loads; ++i) {
3561 unsigned const_offset = i * stride * load_size + base_const_offset;
3562 elems[i] = emit_single_mubuf_load(ctx, descriptor, voffset, soffset, const_offset, load_size, allow_reorder);
3563 }
3564
3565 create_vec_from_array(ctx, elems.data(), num_loads, RegType::vgpr, load_size * 4u, split_cnt, dst);
3566 }
3567
3568 std::pair<Temp, unsigned> offset_add_from_nir(isel_context *ctx, const std::pair<Temp, unsigned> &base_offset, nir_src *off_src, unsigned stride = 1u)
3569 {
3570 Builder bld(ctx->program, ctx->block);
3571 Temp offset = base_offset.first;
3572 unsigned const_offset = base_offset.second;
3573
3574 if (!nir_src_is_const(*off_src)) {
3575 Temp indirect_offset_arg = get_ssa_temp(ctx, off_src->ssa);
3576 Temp with_stride;
3577
3578 /* Calculate indirect offset with stride */
3579 if (likely(indirect_offset_arg.regClass() == v1))
3580 with_stride = bld.v_mul_imm(bld.def(v1), indirect_offset_arg, stride);
3581 else if (indirect_offset_arg.regClass() == s1)
3582 with_stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), indirect_offset_arg);
3583 else
3584 unreachable("Unsupported register class of indirect offset");
3585
3586 /* Add to the supplied base offset */
3587 if (offset.id() == 0)
3588 offset = with_stride;
3589 else if (unlikely(offset.regClass() == s1 && with_stride.regClass() == s1))
3590 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), with_stride, offset);
3591 else if (offset.size() == 1 && with_stride.size() == 1)
3592 offset = bld.vadd32(bld.def(v1), with_stride, offset);
3593 else
3594 unreachable("Unsupported register class of indirect offset");
3595 } else {
3596 unsigned const_offset_arg = nir_src_as_uint(*off_src);
3597 const_offset += const_offset_arg * stride;
3598 }
3599
3600 return std::make_pair(offset, const_offset);
3601 }
3602
3603 std::pair<Temp, unsigned> offset_add(isel_context *ctx, const std::pair<Temp, unsigned> &off1, const std::pair<Temp, unsigned> &off2)
3604 {
3605 Builder bld(ctx->program, ctx->block);
3606 Temp offset;
3607
3608 if (off1.first.id() && off2.first.id()) {
3609 if (unlikely(off1.first.regClass() == s1 && off2.first.regClass() == s1))
3610 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), off1.first, off2.first);
3611 else if (off1.first.size() == 1 && off2.first.size() == 1)
3612 offset = bld.vadd32(bld.def(v1), off1.first, off2.first);
3613 else
3614 unreachable("Unsupported register class of indirect offset");
3615 } else {
3616 offset = off1.first.id() ? off1.first : off2.first;
3617 }
3618
3619 return std::make_pair(offset, off1.second + off2.second);
3620 }
3621
3622 std::pair<Temp, unsigned> offset_mul(isel_context *ctx, const std::pair<Temp, unsigned> &offs, unsigned multiplier)
3623 {
3624 Builder bld(ctx->program, ctx->block);
3625 unsigned const_offset = offs.second * multiplier;
3626
3627 if (!offs.first.id())
3628 return std::make_pair(offs.first, const_offset);
3629
3630 Temp offset = unlikely(offs.first.regClass() == s1)
3631 ? bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(multiplier), offs.first)
3632 : bld.v_mul_imm(bld.def(v1), offs.first, multiplier);
3633
3634 return std::make_pair(offset, const_offset);
3635 }
3636
3637 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride, unsigned component_stride)
3638 {
3639 Builder bld(ctx->program, ctx->block);
3640
3641 /* base is the driver_location, which is already multiplied by 4, so is in dwords */
3642 unsigned const_offset = nir_intrinsic_base(instr) * base_stride;
3643 /* component is in bytes */
3644 const_offset += nir_intrinsic_component(instr) * component_stride;
3645
3646 /* offset should be interpreted in relation to the base, so the instruction effectively reads/writes another input/output when it has an offset */
3647 nir_src *off_src = nir_get_io_offset_src(instr);
3648 return offset_add_from_nir(ctx, std::make_pair(Temp(), const_offset), off_src, 4u * base_stride);
3649 }
3650
3651 std::pair<Temp, unsigned> get_intrinsic_io_basic_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned stride = 1u)
3652 {
3653 return get_intrinsic_io_basic_offset(ctx, instr, stride, stride);
3654 }
3655
3656 Temp get_tess_rel_patch_id(isel_context *ctx)
3657 {
3658 Builder bld(ctx->program, ctx->block);
3659
3660 switch (ctx->shader->info.stage) {
3661 case MESA_SHADER_TESS_CTRL:
3662 return bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffu),
3663 get_arg(ctx, ctx->args->ac.tcs_rel_ids));
3664 case MESA_SHADER_TESS_EVAL:
3665 return get_arg(ctx, ctx->args->tes_rel_patch_id);
3666 default:
3667 unreachable("Unsupported stage in get_tess_rel_patch_id");
3668 }
3669 }
3670
3671 std::pair<Temp, unsigned> get_tcs_per_vertex_input_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3672 {
3673 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3674 Builder bld(ctx->program, ctx->block);
3675
3676 uint32_t tcs_in_patch_stride = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 4;
3677 uint32_t tcs_in_vertex_stride = ctx->tcs_num_inputs * 4;
3678
3679 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr);
3680
3681 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3682 offs = offset_add_from_nir(ctx, offs, vertex_index_src, tcs_in_vertex_stride);
3683
3684 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3685 Temp tcs_in_current_patch_offset = bld.v_mul24_imm(bld.def(v1), rel_patch_id, tcs_in_patch_stride);
3686 offs = offset_add(ctx, offs, std::make_pair(tcs_in_current_patch_offset, 0));
3687
3688 return offset_mul(ctx, offs, 4u);
3689 }
3690
3691 std::pair<Temp, unsigned> get_tcs_output_lds_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, bool per_vertex = false)
3692 {
3693 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3694 Builder bld(ctx->program, ctx->block);
3695
3696 uint32_t input_patch_size = ctx->args->options->key.tcs.input_vertices * ctx->tcs_num_inputs * 16;
3697 uint32_t num_tcs_outputs = util_last_bit64(ctx->args->shader_info->tcs.outputs_written);
3698 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->args->shader_info->tcs.patch_outputs_written);
3699 uint32_t output_vertex_size = num_tcs_outputs * 16;
3700 uint32_t pervertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3701 uint32_t output_patch_stride = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
3702
3703 std::pair<Temp, unsigned> offs = instr
3704 ? get_intrinsic_io_basic_offset(ctx, instr, 4u)
3705 : std::make_pair(Temp(), 0u);
3706
3707 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3708 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, output_patch_stride);
3709
3710 if (per_vertex) {
3711 assert(instr);
3712
3713 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3714 offs = offset_add_from_nir(ctx, offs, vertex_index_src, output_vertex_size);
3715
3716 uint32_t output_patch0_offset = (input_patch_size * ctx->tcs_num_patches);
3717 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_offset));
3718 } else {
3719 uint32_t output_patch0_patch_data_offset = (input_patch_size * ctx->tcs_num_patches + pervertex_output_patch_size);
3720 offs = offset_add(ctx, offs, std::make_pair(patch_off, output_patch0_patch_data_offset));
3721 }
3722
3723 return offs;
3724 }
3725
3726 std::pair<Temp, unsigned> get_tcs_per_vertex_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr)
3727 {
3728 Builder bld(ctx->program, ctx->block);
3729
3730 unsigned vertices_per_patch = ctx->shader->info.tess.tcs_vertices_out;
3731 unsigned attr_stride = vertices_per_patch * ctx->tcs_num_patches;
3732
3733 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u);
3734
3735 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3736 Temp patch_off = bld.v_mul24_imm(bld.def(v1), rel_patch_id, vertices_per_patch * 16u);
3737 offs = offset_add(ctx, offs, std::make_pair(patch_off, 0u));
3738
3739 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3740 offs = offset_add_from_nir(ctx, offs, vertex_index_src, 16u);
3741
3742 return offs;
3743 }
3744
3745 std::pair<Temp, unsigned> get_tcs_per_patch_output_vmem_offset(isel_context *ctx, nir_intrinsic_instr *instr = nullptr, unsigned const_base_offset = 0u)
3746 {
3747 Builder bld(ctx->program, ctx->block);
3748
3749 unsigned num_tcs_outputs = ctx->shader->info.stage == MESA_SHADER_TESS_CTRL
3750 ? util_last_bit64(ctx->args->shader_info->tcs.outputs_written)
3751 : ctx->args->options->key.tes.tcs_num_outputs;
3752
3753 unsigned output_vertex_size = num_tcs_outputs * 16;
3754 unsigned per_vertex_output_patch_size = ctx->shader->info.tess.tcs_vertices_out * output_vertex_size;
3755 unsigned per_patch_data_offset = per_vertex_output_patch_size * ctx->tcs_num_patches;
3756 unsigned attr_stride = ctx->tcs_num_patches;
3757
3758 std::pair<Temp, unsigned> offs = instr
3759 ? get_intrinsic_io_basic_offset(ctx, instr, attr_stride * 4u, 4u)
3760 : std::make_pair(Temp(), 0u);
3761
3762 if (const_base_offset)
3763 offs.second += const_base_offset * attr_stride;
3764
3765 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
3766 Temp patch_off = bld.v_mul_imm(bld.def(v1), rel_patch_id, 16u);
3767 offs = offset_add(ctx, offs, std::make_pair(patch_off, per_patch_data_offset));
3768
3769 return offs;
3770 }
3771
3772 bool tcs_driver_location_matches_api_mask(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex, uint64_t mask, bool *indirect)
3773 {
3774 unsigned off = nir_intrinsic_base(instr) * 4u;
3775 nir_src *off_src = nir_get_io_offset_src(instr);
3776
3777 if (!nir_src_is_const(*off_src)) {
3778 *indirect = true;
3779 return false;
3780 }
3781
3782 *indirect = false;
3783 off += nir_src_as_uint(*off_src) * 16u;
3784
3785 while (mask) {
3786 unsigned slot = u_bit_scan64(&mask) + (per_vertex ? 0 : VARYING_SLOT_PATCH0);
3787 if (off == shader_io_get_unique_index((gl_varying_slot) slot) * 16u)
3788 return true;
3789 }
3790
3791 return false;
3792 }
3793
3794 bool store_output_to_temps(isel_context *ctx, nir_intrinsic_instr *instr)
3795 {
3796 unsigned write_mask = nir_intrinsic_write_mask(instr);
3797 unsigned component = nir_intrinsic_component(instr);
3798 unsigned idx = nir_intrinsic_base(instr) + component;
3799
3800 nir_instr *off_instr = instr->src[1].ssa->parent_instr;
3801 if (off_instr->type != nir_instr_type_load_const)
3802 return false;
3803
3804 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3805 idx += nir_src_as_uint(instr->src[1]) * 4u;
3806
3807 if (instr->src[0].ssa->bit_size == 64)
3808 write_mask = widen_mask(write_mask, 2);
3809
3810 for (unsigned i = 0; i < 8; ++i) {
3811 if (write_mask & (1 << i)) {
3812 ctx->outputs.mask[idx / 4u] |= 1 << (idx % 4u);
3813 ctx->outputs.temps[idx] = emit_extract_vector(ctx, src, i, v1);
3814 }
3815 idx++;
3816 }
3817
3818 return true;
3819 }
3820
3821 bool load_input_from_temps(isel_context *ctx, nir_intrinsic_instr *instr, Temp dst)
3822 {
3823 /* Only TCS per-vertex inputs are supported by this function.
3824 * Per-vertex inputs only match between the VS/TCS invocation id when the number of invocations is the same.
3825 */
3826 if (ctx->shader->info.stage != MESA_SHADER_TESS_CTRL || !ctx->tcs_in_out_eq)
3827 return false;
3828
3829 nir_src *off_src = nir_get_io_offset_src(instr);
3830 nir_src *vertex_index_src = nir_get_io_vertex_index_src(instr);
3831 nir_instr *vertex_index_instr = vertex_index_src->ssa->parent_instr;
3832 bool can_use_temps = nir_src_is_const(*off_src) &&
3833 vertex_index_instr->type == nir_instr_type_intrinsic &&
3834 nir_instr_as_intrinsic(vertex_index_instr)->intrinsic == nir_intrinsic_load_invocation_id;
3835
3836 if (!can_use_temps)
3837 return false;
3838
3839 unsigned idx = nir_intrinsic_base(instr) + nir_intrinsic_component(instr) + 4 * nir_src_as_uint(*off_src);
3840 Temp *src = &ctx->inputs.temps[idx];
3841 Temp vec = create_vec_from_array(ctx, src, dst.size(), dst.regClass().type(), 4u);
3842 assert(vec.size() == dst.size());
3843
3844 Builder bld(ctx->program, ctx->block);
3845 bld.copy(Definition(dst), vec);
3846 return true;
3847 }
3848
3849 void visit_store_ls_or_es_output(isel_context *ctx, nir_intrinsic_instr *instr)
3850 {
3851 Builder bld(ctx->program, ctx->block);
3852
3853 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, 4u);
3854 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
3855 unsigned write_mask = nir_intrinsic_write_mask(instr);
3856 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8u;
3857
3858 if (ctx->tcs_in_out_eq && store_output_to_temps(ctx, instr)) {
3859 /* When the TCS only reads this output directly and for the same vertices as its invocation id, it is unnecessary to store the VS output to LDS. */
3860 bool indirect_write;
3861 bool temp_only_input = tcs_driver_location_matches_api_mask(ctx, instr, true, ctx->tcs_temp_only_inputs, &indirect_write);
3862 if (temp_only_input && !indirect_write)
3863 return;
3864 }
3865
3866 if (ctx->stage == vertex_es || ctx->stage == tess_eval_es) {
3867 /* GFX6-8: ES stage is not merged into GS, data is passed from ES to GS in VMEM. */
3868 Temp esgs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_VS * 16u));
3869 Temp es2gs_offset = get_arg(ctx, ctx->args->es2gs_offset);
3870 store_vmem_mubuf(ctx, src, esgs_ring, offs.first, es2gs_offset, offs.second, elem_size_bytes, write_mask, false, true, true);
3871 } else {
3872 Temp lds_base;
3873
3874 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
3875 /* GFX9+: ES stage is merged into GS, data is passed between them using LDS. */
3876 unsigned itemsize = ctx->stage == vertex_geometry_gs
3877 ? ctx->program->info->vs.es_info.esgs_itemsize
3878 : ctx->program->info->tes.es_info.esgs_itemsize;
3879 Temp thread_id = emit_mbcnt(ctx, bld.def(v1));
3880 Temp wave_idx = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), get_arg(ctx, ctx->args->merged_wave_info), Operand(4u << 16 | 24));
3881 Temp vertex_idx = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), thread_id,
3882 bld.v_mul24_imm(bld.def(v1), as_vgpr(ctx, wave_idx), ctx->program->wave_size));
3883 lds_base = bld.v_mul24_imm(bld.def(v1), vertex_idx, itemsize);
3884 } else if (ctx->stage == vertex_ls || ctx->stage == vertex_tess_control_hs) {
3885 /* GFX6-8: VS runs on LS stage when tessellation is used, but LS shares LDS space with HS.
3886 * GFX9+: LS is merged into HS, but still uses the same LDS layout.
3887 */
3888 unsigned num_tcs_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
3889 Temp vertex_idx = get_arg(ctx, ctx->args->rel_auto_id);
3890 lds_base = bld.v_mul_imm(bld.def(v1), vertex_idx, num_tcs_inputs * 16u);
3891 } else {
3892 unreachable("Invalid LS or ES stage");
3893 }
3894
3895 offs = offset_add(ctx, offs, std::make_pair(lds_base, 0u));
3896 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
3897 store_lds(ctx, elem_size_bytes, src, write_mask, offs.first, offs.second, lds_align);
3898 }
3899 }
3900
3901 bool should_write_tcs_patch_output_to_vmem(isel_context *ctx, nir_intrinsic_instr *instr)
3902 {
3903 unsigned off = nir_intrinsic_base(instr) * 4u;
3904 return off != ctx->tcs_tess_lvl_out_loc &&
3905 off != ctx->tcs_tess_lvl_in_loc;
3906 }
3907
3908 bool should_write_tcs_output_to_lds(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3909 {
3910 /* When none of the appropriate outputs are read, we are OK to never write to LDS */
3911 if (per_vertex ? ctx->shader->info.outputs_read == 0U : ctx->shader->info.patch_outputs_read == 0u)
3912 return false;
3913
3914 uint64_t mask = per_vertex
3915 ? ctx->shader->info.outputs_read
3916 : ctx->shader->info.patch_outputs_read;
3917 bool indirect_write;
3918 bool output_read = tcs_driver_location_matches_api_mask(ctx, instr, per_vertex, mask, &indirect_write);
3919 return indirect_write || output_read;
3920 }
3921
3922 void visit_store_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3923 {
3924 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3925 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3926
3927 Builder bld(ctx->program, ctx->block);
3928
3929 Temp store_val = get_ssa_temp(ctx, instr->src[0].ssa);
3930 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3931 unsigned write_mask = nir_intrinsic_write_mask(instr);
3932
3933 /* Only write to VMEM if the output is per-vertex or it's per-patch non tess factor */
3934 bool write_to_vmem = per_vertex || should_write_tcs_patch_output_to_vmem(ctx, instr);
3935 /* Only write to LDS if the output is read by the shader, or it's per-patch tess factor */
3936 bool write_to_lds = !write_to_vmem || should_write_tcs_output_to_lds(ctx, instr, per_vertex);
3937
3938 if (write_to_vmem) {
3939 std::pair<Temp, unsigned> vmem_offs = per_vertex
3940 ? get_tcs_per_vertex_output_vmem_offset(ctx, instr)
3941 : get_tcs_per_patch_output_vmem_offset(ctx, instr);
3942
3943 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
3944 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
3945 store_vmem_mubuf(ctx, store_val, hs_ring_tess_offchip, vmem_offs.first, oc_lds, vmem_offs.second, elem_size_bytes, write_mask, true, false);
3946 }
3947
3948 if (write_to_lds) {
3949 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3950 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3951 store_lds(ctx, elem_size_bytes, store_val, write_mask, lds_offs.first, lds_offs.second, lds_align);
3952 }
3953 }
3954
3955 void visit_load_tcs_output(isel_context *ctx, nir_intrinsic_instr *instr, bool per_vertex)
3956 {
3957 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
3958 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
3959
3960 Builder bld(ctx->program, ctx->block);
3961
3962 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
3963 std::pair<Temp, unsigned> lds_offs = get_tcs_output_lds_offset(ctx, instr, per_vertex);
3964 unsigned lds_align = calculate_lds_alignment(ctx, lds_offs.second);
3965 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
3966
3967 load_lds(ctx, elem_size_bytes, dst, lds_offs.first, lds_offs.second, lds_align);
3968 }
3969
3970 void visit_store_output(isel_context *ctx, nir_intrinsic_instr *instr)
3971 {
3972 if (ctx->stage == vertex_vs ||
3973 ctx->stage == tess_eval_vs ||
3974 ctx->stage == fragment_fs ||
3975 ctx->stage == ngg_vertex_gs ||
3976 ctx->stage == ngg_tess_eval_gs ||
3977 ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
3978 bool stored_to_temps = store_output_to_temps(ctx, instr);
3979 if (!stored_to_temps) {
3980 fprintf(stderr, "Unimplemented output offset instruction:\n");
3981 nir_print_instr(instr->src[1].ssa->parent_instr, stderr);
3982 fprintf(stderr, "\n");
3983 abort();
3984 }
3985 } else if (ctx->stage == vertex_es ||
3986 ctx->stage == vertex_ls ||
3987 ctx->stage == tess_eval_es ||
3988 (ctx->stage == vertex_tess_control_hs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3989 (ctx->stage == vertex_geometry_gs && ctx->shader->info.stage == MESA_SHADER_VERTEX) ||
3990 (ctx->stage == tess_eval_geometry_gs && ctx->shader->info.stage == MESA_SHADER_TESS_EVAL)) {
3991 visit_store_ls_or_es_output(ctx, instr);
3992 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
3993 visit_store_tcs_output(ctx, instr, false);
3994 } else {
3995 unreachable("Shader stage not implemented");
3996 }
3997 }
3998
3999 void visit_load_output(isel_context *ctx, nir_intrinsic_instr *instr)
4000 {
4001 visit_load_tcs_output(ctx, instr, false);
4002 }
4003
4004 void emit_interp_instr(isel_context *ctx, unsigned idx, unsigned component, Temp src, Temp dst, Temp prim_mask)
4005 {
4006 Temp coord1 = emit_extract_vector(ctx, src, 0, v1);
4007 Temp coord2 = emit_extract_vector(ctx, src, 1, v1);
4008
4009 Builder bld(ctx->program, ctx->block);
4010 Builder::Result interp_p1 = bld.vintrp(aco_opcode::v_interp_p1_f32, bld.def(v1), coord1, bld.m0(prim_mask), idx, component);
4011 if (ctx->program->has_16bank_lds)
4012 interp_p1.instr->operands[0].setLateKill(true);
4013 bld.vintrp(aco_opcode::v_interp_p2_f32, Definition(dst), coord2, bld.m0(prim_mask), interp_p1, idx, component);
4014 }
4015
4016 void emit_load_frag_coord(isel_context *ctx, Temp dst, unsigned num_components)
4017 {
4018 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1));
4019 for (unsigned i = 0; i < num_components; i++)
4020 vec->operands[i] = Operand(get_arg(ctx, ctx->args->ac.frag_pos[i]));
4021 if (G_0286CC_POS_W_FLOAT_ENA(ctx->program->config->spi_ps_input_ena)) {
4022 assert(num_components == 4);
4023 Builder bld(ctx->program, ctx->block);
4024 vec->operands[3] = bld.vop1(aco_opcode::v_rcp_f32, bld.def(v1), get_arg(ctx, ctx->args->ac.frag_pos[3]));
4025 }
4026
4027 for (Operand& op : vec->operands)
4028 op = op.isUndefined() ? Operand(0u) : op;
4029
4030 vec->definitions[0] = Definition(dst);
4031 ctx->block->instructions.emplace_back(std::move(vec));
4032 emit_split_vector(ctx, dst, num_components);
4033 return;
4034 }
4035
4036 void visit_load_interpolated_input(isel_context *ctx, nir_intrinsic_instr *instr)
4037 {
4038 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4039 Temp coords = get_ssa_temp(ctx, instr->src[0].ssa);
4040 unsigned idx = nir_intrinsic_base(instr);
4041 unsigned component = nir_intrinsic_component(instr);
4042 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4043
4044 nir_const_value* offset = nir_src_as_const_value(instr->src[1]);
4045 if (offset) {
4046 assert(offset->u32 == 0);
4047 } else {
4048 /* the lower 15bit of the prim_mask contain the offset into LDS
4049 * while the upper bits contain the number of prims */
4050 Temp offset_src = get_ssa_temp(ctx, instr->src[1].ssa);
4051 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4052 Builder bld(ctx->program, ctx->block);
4053 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4054 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4055 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4056 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4057 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4058 }
4059
4060 if (instr->dest.ssa.num_components == 1) {
4061 emit_interp_instr(ctx, idx, component, coords, dst, prim_mask);
4062 } else {
4063 aco_ptr<Pseudo_instruction> vec(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, instr->dest.ssa.num_components, 1));
4064 for (unsigned i = 0; i < instr->dest.ssa.num_components; i++)
4065 {
4066 Temp tmp = {ctx->program->allocateId(), v1};
4067 emit_interp_instr(ctx, idx, component+i, coords, tmp, prim_mask);
4068 vec->operands[i] = Operand(tmp);
4069 }
4070 vec->definitions[0] = Definition(dst);
4071 ctx->block->instructions.emplace_back(std::move(vec));
4072 }
4073 }
4074
4075 bool check_vertex_fetch_size(isel_context *ctx, const ac_data_format_info *vtx_info,
4076 unsigned offset, unsigned stride, unsigned channels)
4077 {
4078 unsigned vertex_byte_size = vtx_info->chan_byte_size * channels;
4079 if (vtx_info->chan_byte_size != 4 && channels == 3)
4080 return false;
4081 return (ctx->options->chip_class != GFX6 && ctx->options->chip_class != GFX10) ||
4082 (offset % vertex_byte_size == 0 && stride % vertex_byte_size == 0);
4083 }
4084
4085 uint8_t get_fetch_data_format(isel_context *ctx, const ac_data_format_info *vtx_info,
4086 unsigned offset, unsigned stride, unsigned *channels)
4087 {
4088 if (!vtx_info->chan_byte_size) {
4089 *channels = vtx_info->num_channels;
4090 return vtx_info->chan_format;
4091 }
4092
4093 unsigned num_channels = *channels;
4094 if (!check_vertex_fetch_size(ctx, vtx_info, offset, stride, *channels)) {
4095 unsigned new_channels = num_channels + 1;
4096 /* first, assume more loads is worse and try using a larger data format */
4097 while (new_channels <= 4 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels)) {
4098 new_channels++;
4099 /* don't make the attribute potentially out-of-bounds */
4100 if (offset + new_channels * vtx_info->chan_byte_size > stride)
4101 new_channels = 5;
4102 }
4103
4104 if (new_channels == 5) {
4105 /* then try decreasing load size (at the cost of more loads) */
4106 new_channels = *channels;
4107 while (new_channels > 1 && !check_vertex_fetch_size(ctx, vtx_info, offset, stride, new_channels))
4108 new_channels--;
4109 }
4110
4111 if (new_channels < *channels)
4112 *channels = new_channels;
4113 num_channels = new_channels;
4114 }
4115
4116 switch (vtx_info->chan_format) {
4117 case V_008F0C_BUF_DATA_FORMAT_8:
4118 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_8, V_008F0C_BUF_DATA_FORMAT_8_8,
4119 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_8_8_8_8}[num_channels - 1];
4120 case V_008F0C_BUF_DATA_FORMAT_16:
4121 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_16, V_008F0C_BUF_DATA_FORMAT_16_16,
4122 V_008F0C_BUF_DATA_FORMAT_INVALID, V_008F0C_BUF_DATA_FORMAT_16_16_16_16}[num_channels - 1];
4123 case V_008F0C_BUF_DATA_FORMAT_32:
4124 return (uint8_t[]){V_008F0C_BUF_DATA_FORMAT_32, V_008F0C_BUF_DATA_FORMAT_32_32,
4125 V_008F0C_BUF_DATA_FORMAT_32_32_32, V_008F0C_BUF_DATA_FORMAT_32_32_32_32}[num_channels - 1];
4126 }
4127 unreachable("shouldn't reach here");
4128 return V_008F0C_BUF_DATA_FORMAT_INVALID;
4129 }
4130
4131 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
4132 * so we may need to fix it up. */
4133 Temp adjust_vertex_fetch_alpha(isel_context *ctx, unsigned adjustment, Temp alpha)
4134 {
4135 Builder bld(ctx->program, ctx->block);
4136
4137 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
4138 alpha = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), alpha);
4139
4140 /* For the integer-like cases, do a natural sign extension.
4141 *
4142 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
4143 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
4144 * exponent.
4145 */
4146 alpha = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(adjustment == RADV_ALPHA_ADJUST_SNORM ? 7u : 30u), alpha);
4147 alpha = bld.vop2(aco_opcode::v_ashrrev_i32, bld.def(v1), Operand(30u), alpha);
4148
4149 /* Convert back to the right type. */
4150 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
4151 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4152 Temp clamp = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0xbf800000u), alpha);
4153 alpha = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0xbf800000u), alpha, clamp);
4154 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
4155 alpha = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), alpha);
4156 }
4157
4158 return alpha;
4159 }
4160
4161 void visit_load_input(isel_context *ctx, nir_intrinsic_instr *instr)
4162 {
4163 Builder bld(ctx->program, ctx->block);
4164 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4165 if (ctx->shader->info.stage == MESA_SHADER_VERTEX) {
4166
4167 nir_instr *off_instr = instr->src[0].ssa->parent_instr;
4168 if (off_instr->type != nir_instr_type_load_const) {
4169 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4170 nir_print_instr(off_instr, stderr);
4171 fprintf(stderr, "\n");
4172 }
4173 uint32_t offset = nir_instr_as_load_const(off_instr)->value[0].u32;
4174
4175 Temp vertex_buffers = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->vertex_buffers));
4176
4177 unsigned location = nir_intrinsic_base(instr) / 4 - VERT_ATTRIB_GENERIC0 + offset;
4178 unsigned component = nir_intrinsic_component(instr);
4179 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[location];
4180 uint32_t attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[location];
4181 uint32_t attrib_stride = ctx->options->key.vs.vertex_attribute_strides[location];
4182 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[location];
4183
4184 unsigned dfmt = attrib_format & 0xf;
4185 unsigned nfmt = (attrib_format >> 4) & 0x7;
4186 const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt);
4187
4188 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa) << component;
4189 unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels);
4190 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (location * 2)) & 3;
4191 bool post_shuffle = ctx->options->key.vs.post_shuffle & (1 << location);
4192 if (post_shuffle)
4193 num_channels = MAX2(num_channels, 3);
4194
4195 Operand off = bld.copy(bld.def(s1), Operand(attrib_binding * 16u));
4196 Temp list = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), vertex_buffers, off);
4197
4198 Temp index;
4199 if (ctx->options->key.vs.instance_rate_inputs & (1u << location)) {
4200 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[location];
4201 Temp start_instance = get_arg(ctx, ctx->args->ac.start_instance);
4202 if (divisor) {
4203 Temp instance_id = get_arg(ctx, ctx->args->ac.instance_id);
4204 if (divisor != 1) {
4205 Temp divided = bld.tmp(v1);
4206 emit_v_div_u32(ctx, divided, as_vgpr(ctx, instance_id), divisor);
4207 index = bld.vadd32(bld.def(v1), start_instance, divided);
4208 } else {
4209 index = bld.vadd32(bld.def(v1), start_instance, instance_id);
4210 }
4211 } else {
4212 index = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), start_instance);
4213 }
4214 } else {
4215 index = bld.vadd32(bld.def(v1),
4216 get_arg(ctx, ctx->args->ac.base_vertex),
4217 get_arg(ctx, ctx->args->ac.vertex_id));
4218 }
4219
4220 Temp channels[num_channels];
4221 unsigned channel_start = 0;
4222 bool direct_fetch = false;
4223
4224 /* skip unused channels at the start */
4225 if (vtx_info->chan_byte_size && !post_shuffle) {
4226 channel_start = ffs(mask) - 1;
4227 for (unsigned i = 0; i < channel_start; i++)
4228 channels[i] = Temp(0, s1);
4229 } else if (vtx_info->chan_byte_size && post_shuffle && !(mask & 0x8)) {
4230 num_channels = 3 - (ffs(mask) - 1);
4231 }
4232
4233 /* load channels */
4234 while (channel_start < num_channels) {
4235 unsigned fetch_size = num_channels - channel_start;
4236 unsigned fetch_offset = attrib_offset + channel_start * vtx_info->chan_byte_size;
4237 bool expanded = false;
4238
4239 /* use MUBUF when possible to avoid possible alignment issues */
4240 /* TODO: we could use SDWA to unpack 8/16-bit attributes without extra instructions */
4241 bool use_mubuf = (nfmt == V_008F0C_BUF_NUM_FORMAT_FLOAT ||
4242 nfmt == V_008F0C_BUF_NUM_FORMAT_UINT ||
4243 nfmt == V_008F0C_BUF_NUM_FORMAT_SINT) &&
4244 vtx_info->chan_byte_size == 4;
4245 unsigned fetch_dfmt = V_008F0C_BUF_DATA_FORMAT_INVALID;
4246 if (!use_mubuf) {
4247 fetch_dfmt = get_fetch_data_format(ctx, vtx_info, fetch_offset, attrib_stride, &fetch_size);
4248 } else {
4249 if (fetch_size == 3 && ctx->options->chip_class == GFX6) {
4250 /* GFX6 only supports loading vec3 with MTBUF, expand to vec4. */
4251 fetch_size = 4;
4252 expanded = true;
4253 }
4254 }
4255
4256 Temp fetch_index = index;
4257 if (attrib_stride != 0 && fetch_offset > attrib_stride) {
4258 fetch_index = bld.vadd32(bld.def(v1), Operand(fetch_offset / attrib_stride), fetch_index);
4259 fetch_offset = fetch_offset % attrib_stride;
4260 }
4261
4262 Operand soffset(0u);
4263 if (fetch_offset >= 4096) {
4264 soffset = bld.copy(bld.def(s1), Operand(fetch_offset / 4096 * 4096));
4265 fetch_offset %= 4096;
4266 }
4267
4268 aco_opcode opcode;
4269 switch (fetch_size) {
4270 case 1:
4271 opcode = use_mubuf ? aco_opcode::buffer_load_dword : aco_opcode::tbuffer_load_format_x;
4272 break;
4273 case 2:
4274 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx2 : aco_opcode::tbuffer_load_format_xy;
4275 break;
4276 case 3:
4277 assert(ctx->options->chip_class >= GFX7 ||
4278 (!use_mubuf && ctx->options->chip_class == GFX6));
4279 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx3 : aco_opcode::tbuffer_load_format_xyz;
4280 break;
4281 case 4:
4282 opcode = use_mubuf ? aco_opcode::buffer_load_dwordx4 : aco_opcode::tbuffer_load_format_xyzw;
4283 break;
4284 default:
4285 unreachable("Unimplemented load_input vector size");
4286 }
4287
4288 Temp fetch_dst;
4289 if (channel_start == 0 && fetch_size == dst.size() && !post_shuffle &&
4290 !expanded && (alpha_adjust == RADV_ALPHA_ADJUST_NONE ||
4291 num_channels <= 3)) {
4292 direct_fetch = true;
4293 fetch_dst = dst;
4294 } else {
4295 fetch_dst = bld.tmp(RegType::vgpr, fetch_size);
4296 }
4297
4298 if (use_mubuf) {
4299 Instruction *mubuf = bld.mubuf(opcode,
4300 Definition(fetch_dst), list, fetch_index, soffset,
4301 fetch_offset, false, true).instr;
4302 static_cast<MUBUF_instruction*>(mubuf)->can_reorder = true;
4303 } else {
4304 Instruction *mtbuf = bld.mtbuf(opcode,
4305 Definition(fetch_dst), list, fetch_index, soffset,
4306 fetch_dfmt, nfmt, fetch_offset, false, true).instr;
4307 static_cast<MTBUF_instruction*>(mtbuf)->can_reorder = true;
4308 }
4309
4310 emit_split_vector(ctx, fetch_dst, fetch_dst.size());
4311
4312 if (fetch_size == 1) {
4313 channels[channel_start] = fetch_dst;
4314 } else {
4315 for (unsigned i = 0; i < MIN2(fetch_size, num_channels - channel_start); i++)
4316 channels[channel_start + i] = emit_extract_vector(ctx, fetch_dst, i, v1);
4317 }
4318
4319 channel_start += fetch_size;
4320 }
4321
4322 if (!direct_fetch) {
4323 bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT &&
4324 nfmt != V_008F0C_BUF_NUM_FORMAT_SINT;
4325
4326 static const unsigned swizzle_normal[4] = {0, 1, 2, 3};
4327 static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3};
4328 const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal;
4329
4330 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4331 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4332 unsigned num_temp = 0;
4333 for (unsigned i = 0; i < dst.size(); i++) {
4334 unsigned idx = i + component;
4335 if (swizzle[idx] < num_channels && channels[swizzle[idx]].id()) {
4336 Temp channel = channels[swizzle[idx]];
4337 if (idx == 3 && alpha_adjust != RADV_ALPHA_ADJUST_NONE)
4338 channel = adjust_vertex_fetch_alpha(ctx, alpha_adjust, channel);
4339 vec->operands[i] = Operand(channel);
4340
4341 num_temp++;
4342 elems[i] = channel;
4343 } else if (is_float && idx == 3) {
4344 vec->operands[i] = Operand(0x3f800000u);
4345 } else if (!is_float && idx == 3) {
4346 vec->operands[i] = Operand(1u);
4347 } else {
4348 vec->operands[i] = Operand(0u);
4349 }
4350 }
4351 vec->definitions[0] = Definition(dst);
4352 ctx->block->instructions.emplace_back(std::move(vec));
4353 emit_split_vector(ctx, dst, dst.size());
4354
4355 if (num_temp == dst.size())
4356 ctx->allocated_vec.emplace(dst.id(), elems);
4357 }
4358 } else if (ctx->shader->info.stage == MESA_SHADER_FRAGMENT) {
4359 unsigned offset_idx = instr->intrinsic == nir_intrinsic_load_input ? 0 : 1;
4360 nir_instr *off_instr = instr->src[offset_idx].ssa->parent_instr;
4361 if (off_instr->type != nir_instr_type_load_const ||
4362 nir_instr_as_load_const(off_instr)->value[0].u32 != 0) {
4363 fprintf(stderr, "Unimplemented nir_intrinsic_load_input offset\n");
4364 nir_print_instr(off_instr, stderr);
4365 fprintf(stderr, "\n");
4366 }
4367
4368 Temp prim_mask = get_arg(ctx, ctx->args->ac.prim_mask);
4369 nir_const_value* offset = nir_src_as_const_value(instr->src[offset_idx]);
4370 if (offset) {
4371 assert(offset->u32 == 0);
4372 } else {
4373 /* the lower 15bit of the prim_mask contain the offset into LDS
4374 * while the upper bits contain the number of prims */
4375 Temp offset_src = get_ssa_temp(ctx, instr->src[offset_idx].ssa);
4376 assert(offset_src.regClass() == s1 && "TODO: divergent offsets...");
4377 Builder bld(ctx->program, ctx->block);
4378 Temp stride = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc), prim_mask, Operand(16u));
4379 stride = bld.sop1(aco_opcode::s_bcnt1_i32_b32, bld.def(s1), bld.def(s1, scc), stride);
4380 stride = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, Operand(48u));
4381 offset_src = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), stride, offset_src);
4382 prim_mask = bld.sop2(aco_opcode::s_add_i32, bld.def(s1, m0), bld.def(s1, scc), offset_src, prim_mask);
4383 }
4384
4385 unsigned idx = nir_intrinsic_base(instr);
4386 unsigned component = nir_intrinsic_component(instr);
4387 unsigned vertex_id = 2; /* P0 */
4388
4389 if (instr->intrinsic == nir_intrinsic_load_input_vertex) {
4390 nir_const_value* src0 = nir_src_as_const_value(instr->src[0]);
4391 switch (src0->u32) {
4392 case 0:
4393 vertex_id = 2; /* P0 */
4394 break;
4395 case 1:
4396 vertex_id = 0; /* P10 */
4397 break;
4398 case 2:
4399 vertex_id = 1; /* P20 */
4400 break;
4401 default:
4402 unreachable("invalid vertex index");
4403 }
4404 }
4405
4406 if (dst.size() == 1) {
4407 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(dst), Operand(vertex_id), bld.m0(prim_mask), idx, component);
4408 } else {
4409 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
4410 for (unsigned i = 0; i < dst.size(); i++)
4411 vec->operands[i] = bld.vintrp(aco_opcode::v_interp_mov_f32, bld.def(v1), Operand(vertex_id), bld.m0(prim_mask), idx, component + i);
4412 vec->definitions[0] = Definition(dst);
4413 bld.insert(std::move(vec));
4414 }
4415
4416 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4417 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4418 Temp soffset = get_arg(ctx, ctx->args->oc_lds);
4419 std::pair<Temp, unsigned> offs = get_tcs_per_patch_output_vmem_offset(ctx, instr);
4420 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8u;
4421
4422 load_vmem_mubuf(ctx, dst, ring, offs.first, soffset, offs.second, elem_size_bytes, instr->dest.ssa.num_components);
4423 } else {
4424 unreachable("Shader stage not implemented");
4425 }
4426 }
4427
4428 std::pair<Temp, unsigned> get_gs_per_vertex_input_offset(isel_context *ctx, nir_intrinsic_instr *instr, unsigned base_stride = 1u)
4429 {
4430 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4431
4432 Builder bld(ctx->program, ctx->block);
4433 nir_src *vertex_src = nir_get_io_vertex_index_src(instr);
4434 Temp vertex_offset;
4435
4436 if (!nir_src_is_const(*vertex_src)) {
4437 /* better code could be created, but this case probably doesn't happen
4438 * much in practice */
4439 Temp indirect_vertex = as_vgpr(ctx, get_ssa_temp(ctx, vertex_src->ssa));
4440 for (unsigned i = 0; i < ctx->shader->info.gs.vertices_in; i++) {
4441 Temp elem;
4442
4443 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4444 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i / 2u * 2u]);
4445 if (i % 2u)
4446 elem = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(16u), elem);
4447 } else {
4448 elem = get_arg(ctx, ctx->args->gs_vtx_offset[i]);
4449 }
4450
4451 if (vertex_offset.id()) {
4452 Temp cond = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)),
4453 Operand(i), indirect_vertex);
4454 vertex_offset = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), vertex_offset, elem, cond);
4455 } else {
4456 vertex_offset = elem;
4457 }
4458 }
4459
4460 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4461 vertex_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu), vertex_offset);
4462 } else {
4463 unsigned vertex = nir_src_as_uint(*vertex_src);
4464 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs)
4465 vertex_offset = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
4466 get_arg(ctx, ctx->args->gs_vtx_offset[vertex / 2u * 2u]),
4467 Operand((vertex % 2u) * 16u), Operand(16u));
4468 else
4469 vertex_offset = get_arg(ctx, ctx->args->gs_vtx_offset[vertex]);
4470 }
4471
4472 std::pair<Temp, unsigned> offs = get_intrinsic_io_basic_offset(ctx, instr, base_stride);
4473 offs = offset_add(ctx, offs, std::make_pair(vertex_offset, 0u));
4474 return offset_mul(ctx, offs, 4u);
4475 }
4476
4477 void visit_load_gs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4478 {
4479 assert(ctx->shader->info.stage == MESA_SHADER_GEOMETRY);
4480
4481 Builder bld(ctx->program, ctx->block);
4482 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4483 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4484
4485 if (ctx->stage == geometry_gs) {
4486 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr, ctx->program->wave_size);
4487 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_ESGS_GS * 16u));
4488 load_vmem_mubuf(ctx, dst, ring, offs.first, Temp(), offs.second, elem_size_bytes, instr->dest.ssa.num_components, 4u * ctx->program->wave_size, false, true);
4489 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
4490 std::pair<Temp, unsigned> offs = get_gs_per_vertex_input_offset(ctx, instr);
4491 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4492 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4493 } else {
4494 unreachable("Unsupported GS stage.");
4495 }
4496 }
4497
4498 void visit_load_tcs_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4499 {
4500 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4501
4502 Builder bld(ctx->program, ctx->block);
4503 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4504
4505 if (load_input_from_temps(ctx, instr, dst))
4506 return;
4507
4508 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_input_lds_offset(ctx, instr);
4509 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4510 unsigned lds_align = calculate_lds_alignment(ctx, offs.second);
4511
4512 load_lds(ctx, elem_size_bytes, dst, offs.first, offs.second, lds_align);
4513 }
4514
4515 void visit_load_tes_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4516 {
4517 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4518
4519 Builder bld(ctx->program, ctx->block);
4520
4521 Temp ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
4522 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
4523 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4524
4525 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
4526 std::pair<Temp, unsigned> offs = get_tcs_per_vertex_output_vmem_offset(ctx, instr);
4527
4528 load_vmem_mubuf(ctx, dst, ring, offs.first, oc_lds, offs.second, elem_size_bytes, instr->dest.ssa.num_components, 0u, true, true);
4529 }
4530
4531 void visit_load_per_vertex_input(isel_context *ctx, nir_intrinsic_instr *instr)
4532 {
4533 switch (ctx->shader->info.stage) {
4534 case MESA_SHADER_GEOMETRY:
4535 visit_load_gs_per_vertex_input(ctx, instr);
4536 break;
4537 case MESA_SHADER_TESS_CTRL:
4538 visit_load_tcs_per_vertex_input(ctx, instr);
4539 break;
4540 case MESA_SHADER_TESS_EVAL:
4541 visit_load_tes_per_vertex_input(ctx, instr);
4542 break;
4543 default:
4544 unreachable("Unimplemented shader stage");
4545 }
4546 }
4547
4548 void visit_load_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4549 {
4550 visit_load_tcs_output(ctx, instr, true);
4551 }
4552
4553 void visit_store_per_vertex_output(isel_context *ctx, nir_intrinsic_instr *instr)
4554 {
4555 assert(ctx->stage == tess_control_hs || ctx->stage == vertex_tess_control_hs);
4556 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL);
4557
4558 visit_store_tcs_output(ctx, instr, true);
4559 }
4560
4561 void visit_load_tess_coord(isel_context *ctx, nir_intrinsic_instr *instr)
4562 {
4563 assert(ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
4564
4565 Builder bld(ctx->program, ctx->block);
4566 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4567
4568 Operand tes_u(get_arg(ctx, ctx->args->tes_u));
4569 Operand tes_v(get_arg(ctx, ctx->args->tes_v));
4570 Operand tes_w(0u);
4571
4572 if (ctx->shader->info.tess.primitive_mode == GL_TRIANGLES) {
4573 Temp tmp = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), tes_u, tes_v);
4574 tmp = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0x3f800000u /* 1.0f */), tmp);
4575 tes_w = Operand(tmp);
4576 }
4577
4578 Temp tess_coord = bld.pseudo(aco_opcode::p_create_vector, Definition(dst), tes_u, tes_v, tes_w);
4579 emit_split_vector(ctx, tess_coord, 3);
4580 }
4581
4582 Temp load_desc_ptr(isel_context *ctx, unsigned desc_set)
4583 {
4584 if (ctx->program->info->need_indirect_descriptor_sets) {
4585 Builder bld(ctx->program, ctx->block);
4586 Temp ptr64 = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->descriptor_sets[0]));
4587 Operand off = bld.copy(bld.def(s1), Operand(desc_set << 2));
4588 return bld.smem(aco_opcode::s_load_dword, bld.def(s1), ptr64, off);//, false, false, false);
4589 }
4590
4591 return get_arg(ctx, ctx->args->descriptor_sets[desc_set]);
4592 }
4593
4594
4595 void visit_load_resource(isel_context *ctx, nir_intrinsic_instr *instr)
4596 {
4597 Builder bld(ctx->program, ctx->block);
4598 Temp index = get_ssa_temp(ctx, instr->src[0].ssa);
4599 if (!ctx->divergent_vals[instr->dest.ssa.index])
4600 index = bld.as_uniform(index);
4601 unsigned desc_set = nir_intrinsic_desc_set(instr);
4602 unsigned binding = nir_intrinsic_binding(instr);
4603
4604 Temp desc_ptr;
4605 radv_pipeline_layout *pipeline_layout = ctx->options->layout;
4606 radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
4607 unsigned offset = layout->binding[binding].offset;
4608 unsigned stride;
4609 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
4610 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
4611 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset;
4612 desc_ptr = get_arg(ctx, ctx->args->ac.push_constants);
4613 offset = pipeline_layout->push_constant_size + 16 * idx;
4614 stride = 16;
4615 } else {
4616 desc_ptr = load_desc_ptr(ctx, desc_set);
4617 stride = layout->binding[binding].size;
4618 }
4619
4620 nir_const_value* nir_const_index = nir_src_as_const_value(instr->src[0]);
4621 unsigned const_index = nir_const_index ? nir_const_index->u32 : 0;
4622 if (stride != 1) {
4623 if (nir_const_index) {
4624 const_index = const_index * stride;
4625 } else if (index.type() == RegType::vgpr) {
4626 bool index24bit = layout->binding[binding].array_size <= 0x1000000;
4627 index = bld.v_mul_imm(bld.def(v1), index, stride, index24bit);
4628 } else {
4629 index = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), Operand(index));
4630 }
4631 }
4632 if (offset) {
4633 if (nir_const_index) {
4634 const_index = const_index + offset;
4635 } else if (index.type() == RegType::vgpr) {
4636 index = bld.vadd32(bld.def(v1), Operand(offset), index);
4637 } else {
4638 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), Operand(index));
4639 }
4640 }
4641
4642 if (nir_const_index && const_index == 0) {
4643 index = desc_ptr;
4644 } else if (index.type() == RegType::vgpr) {
4645 index = bld.vadd32(bld.def(v1),
4646 nir_const_index ? Operand(const_index) : Operand(index),
4647 Operand(desc_ptr));
4648 } else {
4649 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
4650 nir_const_index ? Operand(const_index) : Operand(index),
4651 Operand(desc_ptr));
4652 }
4653
4654 bld.copy(Definition(get_ssa_temp(ctx, &instr->dest.ssa)), index);
4655 }
4656
4657 void load_buffer(isel_context *ctx, unsigned num_components, unsigned component_size,
4658 Temp dst, Temp rsrc, Temp offset, int byte_align,
4659 bool glc=false, bool readonly=true)
4660 {
4661 Builder bld(ctx->program, ctx->block);
4662 bool dlc = glc && ctx->options->chip_class >= GFX10;
4663 unsigned num_bytes = num_components * component_size;
4664
4665 aco_opcode op;
4666 if (dst.type() == RegType::vgpr || ((ctx->options->chip_class < GFX8 || component_size < 4) && !readonly)) {
4667 Operand vaddr = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
4668 Operand soffset = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
4669 unsigned const_offset = 0;
4670
4671 /* for small bit sizes add buffer for unaligned loads */
4672 if (byte_align) {
4673 if (num_bytes > 2)
4674 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4675 else
4676 byte_align = 0;
4677 }
4678
4679 Temp lower = Temp();
4680 if (num_bytes > 16) {
4681 assert(num_components == 3 || num_components == 4);
4682 op = aco_opcode::buffer_load_dwordx4;
4683 lower = bld.tmp(v4);
4684 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4685 mubuf->definitions[0] = Definition(lower);
4686 mubuf->operands[0] = Operand(rsrc);
4687 mubuf->operands[1] = vaddr;
4688 mubuf->operands[2] = soffset;
4689 mubuf->offen = (offset.type() == RegType::vgpr);
4690 mubuf->glc = glc;
4691 mubuf->dlc = dlc;
4692 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4693 mubuf->can_reorder = readonly;
4694 bld.insert(std::move(mubuf));
4695 emit_split_vector(ctx, lower, 2);
4696 num_bytes -= 16;
4697 const_offset = 16;
4698 } else if (num_bytes == 12 && ctx->options->chip_class == GFX6) {
4699 /* GFX6 doesn't support loading vec3, expand to vec4. */
4700 num_bytes = 16;
4701 }
4702
4703 switch (num_bytes) {
4704 case 1:
4705 op = aco_opcode::buffer_load_ubyte;
4706 break;
4707 case 2:
4708 op = aco_opcode::buffer_load_ushort;
4709 break;
4710 case 3:
4711 case 4:
4712 op = aco_opcode::buffer_load_dword;
4713 break;
4714 case 5:
4715 case 6:
4716 case 7:
4717 case 8:
4718 op = aco_opcode::buffer_load_dwordx2;
4719 break;
4720 case 10:
4721 case 12:
4722 assert(ctx->options->chip_class > GFX6);
4723 op = aco_opcode::buffer_load_dwordx3;
4724 break;
4725 case 16:
4726 op = aco_opcode::buffer_load_dwordx4;
4727 break;
4728 default:
4729 unreachable("Load SSBO not implemented for this size.");
4730 }
4731 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
4732 mubuf->operands[0] = Operand(rsrc);
4733 mubuf->operands[1] = vaddr;
4734 mubuf->operands[2] = soffset;
4735 mubuf->offen = (offset.type() == RegType::vgpr);
4736 mubuf->glc = glc;
4737 mubuf->dlc = dlc;
4738 mubuf->barrier = readonly ? barrier_none : barrier_buffer;
4739 mubuf->can_reorder = readonly;
4740 mubuf->offset = const_offset;
4741 aco_ptr<Instruction> instr = std::move(mubuf);
4742
4743 if (component_size < 4) {
4744 Temp vec = num_bytes <= 4 ? bld.tmp(v1) : num_bytes <= 8 ? bld.tmp(v2) : bld.tmp(v3);
4745 instr->definitions[0] = Definition(vec);
4746 bld.insert(std::move(instr));
4747
4748 if (byte_align == -1 || (byte_align && dst.type() == RegType::sgpr)) {
4749 Operand align = byte_align == -1 ? Operand(offset) : Operand((uint32_t)byte_align);
4750 Temp tmp[3] = {vec, vec, vec};
4751
4752 if (vec.size() == 3) {
4753 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = bld.tmp(v1);
4754 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), Definition(tmp[2]), vec);
4755 } else if (vec.size() == 2) {
4756 tmp[0] = bld.tmp(v1), tmp[1] = bld.tmp(v1), tmp[2] = tmp[1];
4757 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp[0]), Definition(tmp[1]), vec);
4758 }
4759 for (unsigned i = 0; i < dst.size(); i++)
4760 tmp[i] = bld.vop3(aco_opcode::v_alignbyte_b32, bld.def(v1), tmp[i + 1], tmp[i], align);
4761
4762 vec = tmp[0];
4763 if (dst.size() == 2)
4764 vec = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), tmp[0], tmp[1]);
4765
4766 byte_align = 0;
4767 }
4768
4769 if (dst.type() == RegType::vgpr && num_components == 1) {
4770 bld.pseudo(aco_opcode::p_extract_vector, Definition(dst), vec, Operand(byte_align / component_size));
4771 } else {
4772 trim_subdword_vector(ctx, vec, dst, 4 * vec.size() / component_size, ((1 << num_components) - 1) << byte_align / component_size);
4773 }
4774
4775 return;
4776
4777 } else if (dst.size() > 4) {
4778 assert(lower != Temp());
4779 Temp upper = bld.tmp(RegType::vgpr, dst.size() - lower.size());
4780 instr->definitions[0] = Definition(upper);
4781 bld.insert(std::move(instr));
4782 if (dst.size() == 8)
4783 emit_split_vector(ctx, upper, 2);
4784 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size() / 2, 1));
4785 instr->operands[0] = Operand(emit_extract_vector(ctx, lower, 0, v2));
4786 instr->operands[1] = Operand(emit_extract_vector(ctx, lower, 1, v2));
4787 instr->operands[2] = Operand(emit_extract_vector(ctx, upper, 0, v2));
4788 if (dst.size() == 8)
4789 instr->operands[3] = Operand(emit_extract_vector(ctx, upper, 1, v2));
4790 } else if (dst.size() == 3 && ctx->options->chip_class == GFX6) {
4791 Temp vec = bld.tmp(v4);
4792 instr->definitions[0] = Definition(vec);
4793 bld.insert(std::move(instr));
4794 emit_split_vector(ctx, vec, 4);
4795
4796 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
4797 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
4798 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
4799 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
4800 }
4801
4802 if (dst.type() == RegType::sgpr) {
4803 Temp vec = bld.tmp(RegType::vgpr, dst.size());
4804 instr->definitions[0] = Definition(vec);
4805 bld.insert(std::move(instr));
4806 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
4807 } else {
4808 instr->definitions[0] = Definition(dst);
4809 bld.insert(std::move(instr));
4810 emit_split_vector(ctx, dst, num_components);
4811 }
4812 } else {
4813 /* for small bit sizes add buffer for unaligned loads */
4814 if (byte_align)
4815 num_bytes += byte_align == -1 ? 4 - component_size : byte_align;
4816
4817 switch (num_bytes) {
4818 case 1:
4819 case 2:
4820 case 3:
4821 case 4:
4822 op = aco_opcode::s_buffer_load_dword;
4823 break;
4824 case 5:
4825 case 6:
4826 case 7:
4827 case 8:
4828 op = aco_opcode::s_buffer_load_dwordx2;
4829 break;
4830 case 10:
4831 case 12:
4832 case 16:
4833 op = aco_opcode::s_buffer_load_dwordx4;
4834 break;
4835 case 24:
4836 case 32:
4837 op = aco_opcode::s_buffer_load_dwordx8;
4838 break;
4839 default:
4840 unreachable("Load SSBO not implemented for this size.");
4841 }
4842 offset = bld.as_uniform(offset);
4843 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
4844 load->operands[0] = Operand(rsrc);
4845 load->operands[1] = Operand(offset);
4846 assert(load->operands[1].getTemp().type() == RegType::sgpr);
4847 load->definitions[0] = Definition(dst);
4848 load->glc = glc;
4849 load->dlc = dlc;
4850 load->barrier = readonly ? barrier_none : barrier_buffer;
4851 load->can_reorder = false; // FIXME: currently, it doesn't seem beneficial due to how our scheduler works
4852 assert(ctx->options->chip_class >= GFX8 || !glc);
4853
4854 /* adjust misaligned small bit size loads */
4855 if (byte_align) {
4856 Temp vec = num_bytes <= 4 ? bld.tmp(s1) : num_bytes <= 8 ? bld.tmp(s2) : bld.tmp(s4);
4857 load->definitions[0] = Definition(vec);
4858 bld.insert(std::move(load));
4859 Operand byte_offset = byte_align > 0 ? Operand(uint32_t(byte_align)) : Operand(offset);
4860 byte_align_scalar(ctx, vec, byte_offset, dst);
4861
4862 /* trim vector */
4863 } else if (dst.size() == 3) {
4864 Temp vec = bld.tmp(s4);
4865 load->definitions[0] = Definition(vec);
4866 bld.insert(std::move(load));
4867 emit_split_vector(ctx, vec, 4);
4868
4869 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4870 emit_extract_vector(ctx, vec, 0, s1),
4871 emit_extract_vector(ctx, vec, 1, s1),
4872 emit_extract_vector(ctx, vec, 2, s1));
4873 } else if (dst.size() == 6) {
4874 Temp vec = bld.tmp(s8);
4875 load->definitions[0] = Definition(vec);
4876 bld.insert(std::move(load));
4877 emit_split_vector(ctx, vec, 4);
4878
4879 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
4880 emit_extract_vector(ctx, vec, 0, s2),
4881 emit_extract_vector(ctx, vec, 1, s2),
4882 emit_extract_vector(ctx, vec, 2, s2));
4883 } else {
4884 bld.insert(std::move(load));
4885 }
4886 emit_split_vector(ctx, dst, num_components);
4887 }
4888 }
4889
4890 void visit_load_ubo(isel_context *ctx, nir_intrinsic_instr *instr)
4891 {
4892 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4893 Temp rsrc = get_ssa_temp(ctx, instr->src[0].ssa);
4894
4895 Builder bld(ctx->program, ctx->block);
4896
4897 nir_intrinsic_instr* idx_instr = nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
4898 unsigned desc_set = nir_intrinsic_desc_set(idx_instr);
4899 unsigned binding = nir_intrinsic_binding(idx_instr);
4900 radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout;
4901
4902 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
4903 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
4904 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
4905 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
4906 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
4907 if (ctx->options->chip_class >= GFX10) {
4908 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
4909 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
4910 S_008F0C_RESOURCE_LEVEL(1);
4911 } else {
4912 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
4913 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
4914 }
4915 Temp upper_dwords = bld.pseudo(aco_opcode::p_create_vector, bld.def(s3),
4916 Operand(S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi)),
4917 Operand(0xFFFFFFFFu),
4918 Operand(desc_type));
4919 rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
4920 rsrc, upper_dwords);
4921 } else {
4922 rsrc = convert_pointer_to_64_bit(ctx, rsrc);
4923 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
4924 }
4925 unsigned size = instr->dest.ssa.bit_size / 8;
4926 int byte_align = 0;
4927 if (size < 4) {
4928 unsigned align_mul = nir_intrinsic_align_mul(instr);
4929 unsigned align_offset = nir_intrinsic_align_offset(instr);
4930 byte_align = align_mul % 4 == 0 ? align_offset : -1;
4931 }
4932 load_buffer(ctx, instr->num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align);
4933 }
4934
4935 void visit_load_push_constant(isel_context *ctx, nir_intrinsic_instr *instr)
4936 {
4937 Builder bld(ctx->program, ctx->block);
4938 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
4939 unsigned offset = nir_intrinsic_base(instr);
4940 unsigned count = instr->dest.ssa.num_components;
4941 nir_const_value *index_cv = nir_src_as_const_value(instr->src[0]);
4942
4943 if (index_cv && instr->dest.ssa.bit_size == 32) {
4944 unsigned start = (offset + index_cv->u32) / 4u;
4945 start -= ctx->args->ac.base_inline_push_consts;
4946 if (start + count <= ctx->args->ac.num_inline_push_consts) {
4947 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
4948 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
4949 for (unsigned i = 0; i < count; ++i) {
4950 elems[i] = get_arg(ctx, ctx->args->ac.inline_push_consts[start + i]);
4951 vec->operands[i] = Operand{elems[i]};
4952 }
4953 vec->definitions[0] = Definition(dst);
4954 ctx->block->instructions.emplace_back(std::move(vec));
4955 ctx->allocated_vec.emplace(dst.id(), elems);
4956 return;
4957 }
4958 }
4959
4960 Temp index = bld.as_uniform(get_ssa_temp(ctx, instr->src[0].ssa));
4961 if (offset != 0) // TODO check if index != 0 as well
4962 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset), index);
4963 Temp ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->ac.push_constants));
4964 Temp vec = dst;
4965 bool trim = false;
4966 bool aligned = true;
4967
4968 if (instr->dest.ssa.bit_size == 8) {
4969 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4970 bool fits_in_dword = count == 1 || (index_cv && ((offset + index_cv->u32) % 4 + count) <= 4);
4971 if (!aligned)
4972 vec = fits_in_dword ? bld.tmp(s1) : bld.tmp(s2);
4973 } else if (instr->dest.ssa.bit_size == 16) {
4974 aligned = index_cv && (offset + index_cv->u32) % 4 == 0;
4975 if (!aligned)
4976 vec = count == 4 ? bld.tmp(s4) : count > 1 ? bld.tmp(s2) : bld.tmp(s1);
4977 }
4978
4979 aco_opcode op;
4980
4981 switch (vec.size()) {
4982 case 1:
4983 op = aco_opcode::s_load_dword;
4984 break;
4985 case 2:
4986 op = aco_opcode::s_load_dwordx2;
4987 break;
4988 case 3:
4989 vec = bld.tmp(s4);
4990 trim = true;
4991 case 4:
4992 op = aco_opcode::s_load_dwordx4;
4993 break;
4994 case 6:
4995 vec = bld.tmp(s8);
4996 trim = true;
4997 case 8:
4998 op = aco_opcode::s_load_dwordx8;
4999 break;
5000 default:
5001 unreachable("unimplemented or forbidden load_push_constant.");
5002 }
5003
5004 bld.smem(op, Definition(vec), ptr, index);
5005
5006 if (!aligned) {
5007 Operand byte_offset = index_cv ? Operand((offset + index_cv->u32) % 4) : Operand(index);
5008 byte_align_scalar(ctx, vec, byte_offset, dst);
5009 return;
5010 }
5011
5012 if (trim) {
5013 emit_split_vector(ctx, vec, 4);
5014 RegClass rc = dst.size() == 3 ? s1 : s2;
5015 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5016 emit_extract_vector(ctx, vec, 0, rc),
5017 emit_extract_vector(ctx, vec, 1, rc),
5018 emit_extract_vector(ctx, vec, 2, rc));
5019
5020 }
5021 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5022 }
5023
5024 void visit_load_constant(isel_context *ctx, nir_intrinsic_instr *instr)
5025 {
5026 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5027
5028 Builder bld(ctx->program, ctx->block);
5029
5030 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5031 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5032 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5033 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
5034 if (ctx->options->chip_class >= GFX10) {
5035 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
5036 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
5037 S_008F0C_RESOURCE_LEVEL(1);
5038 } else {
5039 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5040 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
5041 }
5042
5043 unsigned base = nir_intrinsic_base(instr);
5044 unsigned range = nir_intrinsic_range(instr);
5045
5046 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
5047 if (base && offset.type() == RegType::sgpr)
5048 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), offset, Operand(base));
5049 else if (base && offset.type() == RegType::vgpr)
5050 offset = bld.vadd32(bld.def(v1), Operand(base), offset);
5051
5052 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5053 bld.sop1(aco_opcode::p_constaddr, bld.def(s2), bld.def(s1, scc), Operand(ctx->constant_data_offset)),
5054 Operand(MIN2(base + range, ctx->shader->constant_data_size)),
5055 Operand(desc_type));
5056 unsigned size = instr->dest.ssa.bit_size / 8;
5057 // TODO: get alignment information for subdword constants
5058 unsigned byte_align = size < 4 ? -1 : 0;
5059 load_buffer(ctx, instr->num_components, size, dst, rsrc, offset, byte_align);
5060 }
5061
5062 void visit_discard_if(isel_context *ctx, nir_intrinsic_instr *instr)
5063 {
5064 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5065 ctx->cf_info.exec_potentially_empty_discard = true;
5066
5067 ctx->program->needs_exact = true;
5068
5069 // TODO: optimize uniform conditions
5070 Builder bld(ctx->program, ctx->block);
5071 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
5072 assert(src.regClass() == bld.lm);
5073 src = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
5074 bld.pseudo(aco_opcode::p_discard_if, src);
5075 ctx->block->kind |= block_kind_uses_discard_if;
5076 return;
5077 }
5078
5079 void visit_discard(isel_context* ctx, nir_intrinsic_instr *instr)
5080 {
5081 Builder bld(ctx->program, ctx->block);
5082
5083 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
5084 ctx->cf_info.exec_potentially_empty_discard = true;
5085
5086 bool divergent = ctx->cf_info.parent_if.is_divergent ||
5087 ctx->cf_info.parent_loop.has_divergent_continue;
5088
5089 if (ctx->block->loop_nest_depth &&
5090 ((nir_instr_is_last(&instr->instr) && !divergent) || divergent)) {
5091 /* we handle discards the same way as jump instructions */
5092 append_logical_end(ctx->block);
5093
5094 /* in loops, discard behaves like break */
5095 Block *linear_target = ctx->cf_info.parent_loop.exit;
5096 ctx->block->kind |= block_kind_discard;
5097
5098 if (!divergent) {
5099 /* uniform discard - loop ends here */
5100 assert(nir_instr_is_last(&instr->instr));
5101 ctx->block->kind |= block_kind_uniform;
5102 ctx->cf_info.has_branch = true;
5103 bld.branch(aco_opcode::p_branch);
5104 add_linear_edge(ctx->block->index, linear_target);
5105 return;
5106 }
5107
5108 /* we add a break right behind the discard() instructions */
5109 ctx->block->kind |= block_kind_break;
5110 unsigned idx = ctx->block->index;
5111
5112 ctx->cf_info.parent_loop.has_divergent_branch = true;
5113 ctx->cf_info.nir_to_aco[instr->instr.block->index] = idx;
5114
5115 /* remove critical edges from linear CFG */
5116 bld.branch(aco_opcode::p_branch);
5117 Block* break_block = ctx->program->create_and_insert_block();
5118 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5119 break_block->kind |= block_kind_uniform;
5120 add_linear_edge(idx, break_block);
5121 add_linear_edge(break_block->index, linear_target);
5122 bld.reset(break_block);
5123 bld.branch(aco_opcode::p_branch);
5124
5125 Block* continue_block = ctx->program->create_and_insert_block();
5126 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
5127 add_linear_edge(idx, continue_block);
5128 append_logical_start(continue_block);
5129 ctx->block = continue_block;
5130
5131 return;
5132 }
5133
5134 /* it can currently happen that NIR doesn't remove the unreachable code */
5135 if (!nir_instr_is_last(&instr->instr)) {
5136 ctx->program->needs_exact = true;
5137 /* save exec somewhere temporarily so that it doesn't get
5138 * overwritten before the discard from outer exec masks */
5139 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), Operand(0xFFFFFFFF), Operand(exec, bld.lm));
5140 bld.pseudo(aco_opcode::p_discard_if, cond);
5141 ctx->block->kind |= block_kind_uses_discard_if;
5142 return;
5143 }
5144
5145 /* This condition is incorrect for uniformly branched discards in a loop
5146 * predicated by a divergent condition, but the above code catches that case
5147 * and the discard would end up turning into a discard_if.
5148 * For example:
5149 * if (divergent) {
5150 * while (...) {
5151 * if (uniform) {
5152 * discard;
5153 * }
5154 * }
5155 * }
5156 */
5157 if (!ctx->cf_info.parent_if.is_divergent) {
5158 /* program just ends here */
5159 ctx->block->kind |= block_kind_uniform;
5160 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
5161 0 /* enabled mask */, 9 /* dest */,
5162 false /* compressed */, true/* done */, true /* valid mask */);
5163 bld.sopp(aco_opcode::s_endpgm);
5164 // TODO: it will potentially be followed by a branch which is dead code to sanitize NIR phis
5165 } else {
5166 ctx->block->kind |= block_kind_discard;
5167 /* branch and linear edge is added by visit_if() */
5168 }
5169 }
5170
5171 enum aco_descriptor_type {
5172 ACO_DESC_IMAGE,
5173 ACO_DESC_FMASK,
5174 ACO_DESC_SAMPLER,
5175 ACO_DESC_BUFFER,
5176 ACO_DESC_PLANE_0,
5177 ACO_DESC_PLANE_1,
5178 ACO_DESC_PLANE_2,
5179 };
5180
5181 static bool
5182 should_declare_array(isel_context *ctx, enum glsl_sampler_dim sampler_dim, bool is_array) {
5183 if (sampler_dim == GLSL_SAMPLER_DIM_BUF)
5184 return false;
5185 ac_image_dim dim = ac_get_sampler_dim(ctx->options->chip_class, sampler_dim, is_array);
5186 return dim == ac_image_cube ||
5187 dim == ac_image_1darray ||
5188 dim == ac_image_2darray ||
5189 dim == ac_image_2darraymsaa;
5190 }
5191
5192 Temp get_sampler_desc(isel_context *ctx, nir_deref_instr *deref_instr,
5193 enum aco_descriptor_type desc_type,
5194 const nir_tex_instr *tex_instr, bool image, bool write)
5195 {
5196 /* FIXME: we should lower the deref with some new nir_intrinsic_load_desc
5197 std::unordered_map<uint64_t, Temp>::iterator it = ctx->tex_desc.find((uint64_t) desc_type << 32 | deref_instr->dest.ssa.index);
5198 if (it != ctx->tex_desc.end())
5199 return it->second;
5200 */
5201 Temp index = Temp();
5202 bool index_set = false;
5203 unsigned constant_index = 0;
5204 unsigned descriptor_set;
5205 unsigned base_index;
5206 Builder bld(ctx->program, ctx->block);
5207
5208 if (!deref_instr) {
5209 assert(tex_instr && !image);
5210 descriptor_set = 0;
5211 base_index = tex_instr->sampler_index;
5212 } else {
5213 while(deref_instr->deref_type != nir_deref_type_var) {
5214 unsigned array_size = glsl_get_aoa_size(deref_instr->type);
5215 if (!array_size)
5216 array_size = 1;
5217
5218 assert(deref_instr->deref_type == nir_deref_type_array);
5219 nir_const_value *const_value = nir_src_as_const_value(deref_instr->arr.index);
5220 if (const_value) {
5221 constant_index += array_size * const_value->u32;
5222 } else {
5223 Temp indirect = get_ssa_temp(ctx, deref_instr->arr.index.ssa);
5224 if (indirect.type() == RegType::vgpr)
5225 indirect = bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), indirect);
5226
5227 if (array_size != 1)
5228 indirect = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(array_size), indirect);
5229
5230 if (!index_set) {
5231 index = indirect;
5232 index_set = true;
5233 } else {
5234 index = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), index, indirect);
5235 }
5236 }
5237
5238 deref_instr = nir_src_as_deref(deref_instr->parent);
5239 }
5240 descriptor_set = deref_instr->var->data.descriptor_set;
5241 base_index = deref_instr->var->data.binding;
5242 }
5243
5244 Temp list = load_desc_ptr(ctx, descriptor_set);
5245 list = convert_pointer_to_64_bit(ctx, list);
5246
5247 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
5248 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
5249 unsigned offset = binding->offset;
5250 unsigned stride = binding->size;
5251 aco_opcode opcode;
5252 RegClass type;
5253
5254 assert(base_index < layout->binding_count);
5255
5256 switch (desc_type) {
5257 case ACO_DESC_IMAGE:
5258 type = s8;
5259 opcode = aco_opcode::s_load_dwordx8;
5260 break;
5261 case ACO_DESC_FMASK:
5262 type = s8;
5263 opcode = aco_opcode::s_load_dwordx8;
5264 offset += 32;
5265 break;
5266 case ACO_DESC_SAMPLER:
5267 type = s4;
5268 opcode = aco_opcode::s_load_dwordx4;
5269 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
5270 offset += radv_combined_image_descriptor_sampler_offset(binding);
5271 break;
5272 case ACO_DESC_BUFFER:
5273 type = s4;
5274 opcode = aco_opcode::s_load_dwordx4;
5275 break;
5276 case ACO_DESC_PLANE_0:
5277 case ACO_DESC_PLANE_1:
5278 type = s8;
5279 opcode = aco_opcode::s_load_dwordx8;
5280 offset += 32 * (desc_type - ACO_DESC_PLANE_0);
5281 break;
5282 case ACO_DESC_PLANE_2:
5283 type = s4;
5284 opcode = aco_opcode::s_load_dwordx4;
5285 offset += 64;
5286 break;
5287 default:
5288 unreachable("invalid desc_type\n");
5289 }
5290
5291 offset += constant_index * stride;
5292
5293 if (desc_type == ACO_DESC_SAMPLER && binding->immutable_samplers_offset &&
5294 (!index_set || binding->immutable_samplers_equal)) {
5295 if (binding->immutable_samplers_equal)
5296 constant_index = 0;
5297
5298 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
5299 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
5300 Operand(samplers[constant_index * 4 + 0]),
5301 Operand(samplers[constant_index * 4 + 1]),
5302 Operand(samplers[constant_index * 4 + 2]),
5303 Operand(samplers[constant_index * 4 + 3]));
5304 }
5305
5306 Operand off;
5307 if (!index_set) {
5308 off = bld.copy(bld.def(s1), Operand(offset));
5309 } else {
5310 off = Operand((Temp)bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc), Operand(offset),
5311 bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(stride), index)));
5312 }
5313
5314 Temp res = bld.smem(opcode, bld.def(type), list, off);
5315
5316 if (desc_type == ACO_DESC_PLANE_2) {
5317 Temp components[8];
5318 for (unsigned i = 0; i < 8; i++)
5319 components[i] = bld.tmp(s1);
5320 bld.pseudo(aco_opcode::p_split_vector,
5321 Definition(components[0]),
5322 Definition(components[1]),
5323 Definition(components[2]),
5324 Definition(components[3]),
5325 res);
5326
5327 Temp desc2 = get_sampler_desc(ctx, deref_instr, ACO_DESC_PLANE_1, tex_instr, image, write);
5328 bld.pseudo(aco_opcode::p_split_vector,
5329 bld.def(s1), bld.def(s1), bld.def(s1), bld.def(s1),
5330 Definition(components[4]),
5331 Definition(components[5]),
5332 Definition(components[6]),
5333 Definition(components[7]),
5334 desc2);
5335
5336 res = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
5337 components[0], components[1], components[2], components[3],
5338 components[4], components[5], components[6], components[7]);
5339 }
5340
5341 return res;
5342 }
5343
5344 static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array)
5345 {
5346 switch (dim) {
5347 case GLSL_SAMPLER_DIM_BUF:
5348 return 1;
5349 case GLSL_SAMPLER_DIM_1D:
5350 return array ? 2 : 1;
5351 case GLSL_SAMPLER_DIM_2D:
5352 return array ? 3 : 2;
5353 case GLSL_SAMPLER_DIM_MS:
5354 return array ? 4 : 3;
5355 case GLSL_SAMPLER_DIM_3D:
5356 case GLSL_SAMPLER_DIM_CUBE:
5357 return 3;
5358 case GLSL_SAMPLER_DIM_RECT:
5359 case GLSL_SAMPLER_DIM_SUBPASS:
5360 return 2;
5361 case GLSL_SAMPLER_DIM_SUBPASS_MS:
5362 return 3;
5363 default:
5364 break;
5365 }
5366 return 0;
5367 }
5368
5369
5370 /* Adjust the sample index according to FMASK.
5371 *
5372 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
5373 * which is the identity mapping. Each nibble says which physical sample
5374 * should be fetched to get that sample.
5375 *
5376 * For example, 0x11111100 means there are only 2 samples stored and
5377 * the second sample covers 3/4 of the pixel. When reading samples 0
5378 * and 1, return physical sample 0 (determined by the first two 0s
5379 * in FMASK), otherwise return physical sample 1.
5380 *
5381 * The sample index should be adjusted as follows:
5382 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
5383 */
5384 static Temp adjust_sample_index_using_fmask(isel_context *ctx, bool da, std::vector<Temp>& coords, Operand sample_index, Temp fmask_desc_ptr)
5385 {
5386 Builder bld(ctx->program, ctx->block);
5387 Temp fmask = bld.tmp(v1);
5388 unsigned dim = ctx->options->chip_class >= GFX10
5389 ? ac_get_sampler_dim(ctx->options->chip_class, GLSL_SAMPLER_DIM_2D, da)
5390 : 0;
5391
5392 Temp coord = da ? bld.pseudo(aco_opcode::p_create_vector, bld.def(v3), coords[0], coords[1], coords[2]) :
5393 bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), coords[0], coords[1]);
5394 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(aco_opcode::image_load, Format::MIMG, 3, 1)};
5395 load->operands[0] = Operand(fmask_desc_ptr);
5396 load->operands[1] = Operand(s4); /* no sampler */
5397 load->operands[2] = Operand(coord);
5398 load->definitions[0] = Definition(fmask);
5399 load->glc = false;
5400 load->dlc = false;
5401 load->dmask = 0x1;
5402 load->unrm = true;
5403 load->da = da;
5404 load->dim = dim;
5405 load->can_reorder = true; /* fmask images shouldn't be modified */
5406 ctx->block->instructions.emplace_back(std::move(load));
5407
5408 Operand sample_index4;
5409 if (sample_index.isConstant() && sample_index.constantValue() < 16) {
5410 sample_index4 = Operand(sample_index.constantValue() << 2);
5411 } else if (sample_index.regClass() == s1) {
5412 sample_index4 = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), sample_index, Operand(2u));
5413 } else {
5414 assert(sample_index.regClass() == v1);
5415 sample_index4 = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), sample_index);
5416 }
5417
5418 Temp final_sample;
5419 if (sample_index4.isConstant() && sample_index4.constantValue() == 0)
5420 final_sample = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(15u), fmask);
5421 else if (sample_index4.isConstant() && sample_index4.constantValue() == 28)
5422 final_sample = bld.vop2(aco_opcode::v_lshrrev_b32, bld.def(v1), Operand(28u), fmask);
5423 else
5424 final_sample = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), fmask, sample_index4, Operand(4u));
5425
5426 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
5427 * resource descriptor is 0 (invalid),
5428 */
5429 Temp compare = bld.tmp(bld.lm);
5430 bld.vopc_e64(aco_opcode::v_cmp_lg_u32, Definition(compare),
5431 Operand(0u), emit_extract_vector(ctx, fmask_desc_ptr, 1, s1)).def(0).setHint(vcc);
5432
5433 Temp sample_index_v = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), sample_index);
5434
5435 /* Replace the MSAA sample index. */
5436 return bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), sample_index_v, final_sample, compare);
5437 }
5438
5439 static Temp get_image_coords(isel_context *ctx, const nir_intrinsic_instr *instr, const struct glsl_type *type)
5440 {
5441
5442 Temp src0 = get_ssa_temp(ctx, instr->src[1].ssa);
5443 enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5444 bool is_array = glsl_sampler_type_is_array(type);
5445 ASSERTED bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5446 assert(!add_frag_pos && "Input attachments should be lowered.");
5447 bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS);
5448 bool gfx9_1d = ctx->options->chip_class == GFX9 && dim == GLSL_SAMPLER_DIM_1D;
5449 int count = image_type_to_components_count(dim, is_array);
5450 std::vector<Temp> coords(count);
5451 Builder bld(ctx->program, ctx->block);
5452
5453 if (is_ms) {
5454 count--;
5455 Temp src2 = get_ssa_temp(ctx, instr->src[2].ssa);
5456 /* get sample index */
5457 if (instr->intrinsic == nir_intrinsic_image_deref_load) {
5458 nir_const_value *sample_cv = nir_src_as_const_value(instr->src[2]);
5459 Operand sample_index = sample_cv ? Operand(sample_cv->u32) : Operand(emit_extract_vector(ctx, src2, 0, v1));
5460 std::vector<Temp> fmask_load_address;
5461 for (unsigned i = 0; i < (is_array ? 3 : 2); i++)
5462 fmask_load_address.emplace_back(emit_extract_vector(ctx, src0, i, v1));
5463
5464 Temp fmask_desc_ptr = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_FMASK, nullptr, false, false);
5465 coords[count] = adjust_sample_index_using_fmask(ctx, is_array, fmask_load_address, sample_index, fmask_desc_ptr);
5466 } else {
5467 coords[count] = emit_extract_vector(ctx, src2, 0, v1);
5468 }
5469 }
5470
5471 if (gfx9_1d) {
5472 coords[0] = emit_extract_vector(ctx, src0, 0, v1);
5473 coords.resize(coords.size() + 1);
5474 coords[1] = bld.copy(bld.def(v1), Operand(0u));
5475 if (is_array)
5476 coords[2] = emit_extract_vector(ctx, src0, 1, v1);
5477 } else {
5478 for (int i = 0; i < count; i++)
5479 coords[i] = emit_extract_vector(ctx, src0, i, v1);
5480 }
5481
5482 if (instr->intrinsic == nir_intrinsic_image_deref_load ||
5483 instr->intrinsic == nir_intrinsic_image_deref_store) {
5484 int lod_index = instr->intrinsic == nir_intrinsic_image_deref_load ? 3 : 4;
5485 bool level_zero = nir_src_is_const(instr->src[lod_index]) && nir_src_as_uint(instr->src[lod_index]) == 0;
5486
5487 if (!level_zero)
5488 coords.emplace_back(get_ssa_temp(ctx, instr->src[lod_index].ssa));
5489 }
5490
5491 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, coords.size(), 1)};
5492 for (unsigned i = 0; i < coords.size(); i++)
5493 vec->operands[i] = Operand(coords[i]);
5494 Temp res = {ctx->program->allocateId(), RegClass(RegType::vgpr, coords.size())};
5495 vec->definitions[0] = Definition(res);
5496 ctx->block->instructions.emplace_back(std::move(vec));
5497 return res;
5498 }
5499
5500
5501 void visit_image_load(isel_context *ctx, nir_intrinsic_instr *instr)
5502 {
5503 Builder bld(ctx->program, ctx->block);
5504 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5505 const struct glsl_type *type = glsl_without_array(var->type);
5506 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5507 bool is_array = glsl_sampler_type_is_array(type);
5508 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5509
5510 if (dim == GLSL_SAMPLER_DIM_BUF) {
5511 unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
5512 unsigned num_channels = util_last_bit(mask);
5513 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5514 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5515
5516 aco_opcode opcode;
5517 switch (num_channels) {
5518 case 1:
5519 opcode = aco_opcode::buffer_load_format_x;
5520 break;
5521 case 2:
5522 opcode = aco_opcode::buffer_load_format_xy;
5523 break;
5524 case 3:
5525 opcode = aco_opcode::buffer_load_format_xyz;
5526 break;
5527 case 4:
5528 opcode = aco_opcode::buffer_load_format_xyzw;
5529 break;
5530 default:
5531 unreachable(">4 channel buffer image load");
5532 }
5533 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 3, 1)};
5534 load->operands[0] = Operand(rsrc);
5535 load->operands[1] = Operand(vindex);
5536 load->operands[2] = Operand((uint32_t) 0);
5537 Temp tmp;
5538 if (num_channels == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5539 tmp = dst;
5540 else
5541 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_channels)};
5542 load->definitions[0] = Definition(tmp);
5543 load->idxen = true;
5544 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT);
5545 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5546 load->barrier = barrier_image;
5547 ctx->block->instructions.emplace_back(std::move(load));
5548
5549 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, (1 << num_channels) - 1);
5550 return;
5551 }
5552
5553 Temp coords = get_image_coords(ctx, instr, type);
5554 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5555
5556 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
5557 unsigned num_components = util_bitcount(dmask);
5558 Temp tmp;
5559 if (num_components == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
5560 tmp = dst;
5561 else
5562 tmp = {ctx->program->allocateId(), RegClass(RegType::vgpr, num_components)};
5563
5564 bool level_zero = nir_src_is_const(instr->src[3]) && nir_src_as_uint(instr->src[3]) == 0;
5565 aco_opcode opcode = level_zero ? aco_opcode::image_load : aco_opcode::image_load_mip;
5566
5567 aco_ptr<MIMG_instruction> load{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1)};
5568 load->operands[0] = Operand(resource);
5569 load->operands[1] = Operand(s4); /* no sampler */
5570 load->operands[2] = Operand(coords);
5571 load->definitions[0] = Definition(tmp);
5572 load->glc = var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT) ? 1 : 0;
5573 load->dlc = load->glc && ctx->options->chip_class >= GFX10;
5574 load->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5575 load->dmask = dmask;
5576 load->unrm = true;
5577 load->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5578 load->barrier = barrier_image;
5579 ctx->block->instructions.emplace_back(std::move(load));
5580
5581 expand_vector(ctx, tmp, dst, instr->dest.ssa.num_components, dmask);
5582 return;
5583 }
5584
5585 void visit_image_store(isel_context *ctx, nir_intrinsic_instr *instr)
5586 {
5587 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5588 const struct glsl_type *type = glsl_without_array(var->type);
5589 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5590 bool is_array = glsl_sampler_type_is_array(type);
5591 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5592
5593 bool glc = ctx->options->chip_class == GFX6 || var->data.access & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE) ? 1 : 0;
5594
5595 if (dim == GLSL_SAMPLER_DIM_BUF) {
5596 Temp rsrc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5597 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5598 aco_opcode opcode;
5599 switch (data.size()) {
5600 case 1:
5601 opcode = aco_opcode::buffer_store_format_x;
5602 break;
5603 case 2:
5604 opcode = aco_opcode::buffer_store_format_xy;
5605 break;
5606 case 3:
5607 opcode = aco_opcode::buffer_store_format_xyz;
5608 break;
5609 case 4:
5610 opcode = aco_opcode::buffer_store_format_xyzw;
5611 break;
5612 default:
5613 unreachable(">4 channel buffer image store");
5614 }
5615 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
5616 store->operands[0] = Operand(rsrc);
5617 store->operands[1] = Operand(vindex);
5618 store->operands[2] = Operand((uint32_t) 0);
5619 store->operands[3] = Operand(data);
5620 store->idxen = true;
5621 store->glc = glc;
5622 store->dlc = false;
5623 store->disable_wqm = true;
5624 store->barrier = barrier_image;
5625 ctx->program->needs_exact = true;
5626 ctx->block->instructions.emplace_back(std::move(store));
5627 return;
5628 }
5629
5630 assert(data.type() == RegType::vgpr);
5631 Temp coords = get_image_coords(ctx, instr, type);
5632 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5633
5634 bool level_zero = nir_src_is_const(instr->src[4]) && nir_src_as_uint(instr->src[4]) == 0;
5635 aco_opcode opcode = level_zero ? aco_opcode::image_store : aco_opcode::image_store_mip;
5636
5637 aco_ptr<MIMG_instruction> store{create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 0)};
5638 store->operands[0] = Operand(resource);
5639 store->operands[1] = Operand(data);
5640 store->operands[2] = Operand(coords);
5641 store->glc = glc;
5642 store->dlc = false;
5643 store->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5644 store->dmask = (1 << data.size()) - 1;
5645 store->unrm = true;
5646 store->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5647 store->disable_wqm = true;
5648 store->barrier = barrier_image;
5649 ctx->program->needs_exact = true;
5650 ctx->block->instructions.emplace_back(std::move(store));
5651 return;
5652 }
5653
5654 void visit_image_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
5655 {
5656 /* return the previous value if dest is ever used */
5657 bool return_previous = false;
5658 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
5659 return_previous = true;
5660 break;
5661 }
5662 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
5663 return_previous = true;
5664 break;
5665 }
5666
5667 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5668 const struct glsl_type *type = glsl_without_array(var->type);
5669 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5670 bool is_array = glsl_sampler_type_is_array(type);
5671 Builder bld(ctx->program, ctx->block);
5672
5673 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[3].ssa));
5674 assert(data.size() == 1 && "64bit ssbo atomics not yet implemented.");
5675
5676 if (instr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap)
5677 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), get_ssa_temp(ctx, instr->src[4].ssa), data);
5678
5679 aco_opcode buf_op, image_op;
5680 switch (instr->intrinsic) {
5681 case nir_intrinsic_image_deref_atomic_add:
5682 buf_op = aco_opcode::buffer_atomic_add;
5683 image_op = aco_opcode::image_atomic_add;
5684 break;
5685 case nir_intrinsic_image_deref_atomic_umin:
5686 buf_op = aco_opcode::buffer_atomic_umin;
5687 image_op = aco_opcode::image_atomic_umin;
5688 break;
5689 case nir_intrinsic_image_deref_atomic_imin:
5690 buf_op = aco_opcode::buffer_atomic_smin;
5691 image_op = aco_opcode::image_atomic_smin;
5692 break;
5693 case nir_intrinsic_image_deref_atomic_umax:
5694 buf_op = aco_opcode::buffer_atomic_umax;
5695 image_op = aco_opcode::image_atomic_umax;
5696 break;
5697 case nir_intrinsic_image_deref_atomic_imax:
5698 buf_op = aco_opcode::buffer_atomic_smax;
5699 image_op = aco_opcode::image_atomic_smax;
5700 break;
5701 case nir_intrinsic_image_deref_atomic_and:
5702 buf_op = aco_opcode::buffer_atomic_and;
5703 image_op = aco_opcode::image_atomic_and;
5704 break;
5705 case nir_intrinsic_image_deref_atomic_or:
5706 buf_op = aco_opcode::buffer_atomic_or;
5707 image_op = aco_opcode::image_atomic_or;
5708 break;
5709 case nir_intrinsic_image_deref_atomic_xor:
5710 buf_op = aco_opcode::buffer_atomic_xor;
5711 image_op = aco_opcode::image_atomic_xor;
5712 break;
5713 case nir_intrinsic_image_deref_atomic_exchange:
5714 buf_op = aco_opcode::buffer_atomic_swap;
5715 image_op = aco_opcode::image_atomic_swap;
5716 break;
5717 case nir_intrinsic_image_deref_atomic_comp_swap:
5718 buf_op = aco_opcode::buffer_atomic_cmpswap;
5719 image_op = aco_opcode::image_atomic_cmpswap;
5720 break;
5721 default:
5722 unreachable("visit_image_atomic should only be called with nir_intrinsic_image_deref_atomic_* instructions.");
5723 }
5724
5725 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5726
5727 if (dim == GLSL_SAMPLER_DIM_BUF) {
5728 Temp vindex = emit_extract_vector(ctx, get_ssa_temp(ctx, instr->src[1].ssa), 0, v1);
5729 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, nullptr, true, true);
5730 //assert(ctx->options->chip_class < GFX9 && "GFX9 stride size workaround not yet implemented.");
5731 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(buf_op, Format::MUBUF, 4, return_previous ? 1 : 0)};
5732 mubuf->operands[0] = Operand(resource);
5733 mubuf->operands[1] = Operand(vindex);
5734 mubuf->operands[2] = Operand((uint32_t)0);
5735 mubuf->operands[3] = Operand(data);
5736 if (return_previous)
5737 mubuf->definitions[0] = Definition(dst);
5738 mubuf->offset = 0;
5739 mubuf->idxen = true;
5740 mubuf->glc = return_previous;
5741 mubuf->dlc = false; /* Not needed for atomics */
5742 mubuf->disable_wqm = true;
5743 mubuf->barrier = barrier_image;
5744 ctx->program->needs_exact = true;
5745 ctx->block->instructions.emplace_back(std::move(mubuf));
5746 return;
5747 }
5748
5749 Temp coords = get_image_coords(ctx, instr, type);
5750 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, nullptr, true, true);
5751 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(image_op, Format::MIMG, 3, return_previous ? 1 : 0)};
5752 mimg->operands[0] = Operand(resource);
5753 mimg->operands[1] = Operand(data);
5754 mimg->operands[2] = Operand(coords);
5755 if (return_previous)
5756 mimg->definitions[0] = Definition(dst);
5757 mimg->glc = return_previous;
5758 mimg->dlc = false; /* Not needed for atomics */
5759 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5760 mimg->dmask = (1 << data.size()) - 1;
5761 mimg->unrm = true;
5762 mimg->da = should_declare_array(ctx, dim, glsl_sampler_type_is_array(type));
5763 mimg->disable_wqm = true;
5764 mimg->barrier = barrier_image;
5765 ctx->program->needs_exact = true;
5766 ctx->block->instructions.emplace_back(std::move(mimg));
5767 return;
5768 }
5769
5770 void get_buffer_size(isel_context *ctx, Temp desc, Temp dst, bool in_elements)
5771 {
5772 if (in_elements && ctx->options->chip_class == GFX8) {
5773 /* we only have to divide by 1, 2, 4, 8, 12 or 16 */
5774 Builder bld(ctx->program, ctx->block);
5775
5776 Temp size = emit_extract_vector(ctx, desc, 2, s1);
5777
5778 Temp size_div3 = bld.vop3(aco_opcode::v_mul_hi_u32, bld.def(v1), bld.copy(bld.def(v1), Operand(0xaaaaaaabu)), size);
5779 size_div3 = bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.as_uniform(size_div3), Operand(1u));
5780
5781 Temp stride = emit_extract_vector(ctx, desc, 1, s1);
5782 stride = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), stride, Operand((5u << 16) | 16u));
5783
5784 Temp is12 = bld.sopc(aco_opcode::s_cmp_eq_i32, bld.def(s1, scc), stride, Operand(12u));
5785 size = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1), size_div3, size, bld.scc(is12));
5786
5787 Temp shr_dst = dst.type() == RegType::vgpr ? bld.tmp(s1) : dst;
5788 bld.sop2(aco_opcode::s_lshr_b32, Definition(shr_dst), bld.def(s1, scc),
5789 size, bld.sop1(aco_opcode::s_ff1_i32_b32, bld.def(s1), stride));
5790 if (dst.type() == RegType::vgpr)
5791 bld.copy(Definition(dst), shr_dst);
5792
5793 /* TODO: we can probably calculate this faster with v_skip when stride != 12 */
5794 } else {
5795 emit_extract_vector(ctx, desc, 2, dst);
5796 }
5797 }
5798
5799 void visit_image_size(isel_context *ctx, nir_intrinsic_instr *instr)
5800 {
5801 const nir_variable *var = nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
5802 const struct glsl_type *type = glsl_without_array(var->type);
5803 const enum glsl_sampler_dim dim = glsl_get_sampler_dim(type);
5804 bool is_array = glsl_sampler_type_is_array(type);
5805 Builder bld(ctx->program, ctx->block);
5806
5807 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
5808 Temp desc = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_BUFFER, NULL, true, false);
5809 return get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), true);
5810 }
5811
5812 /* LOD */
5813 Temp lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
5814
5815 /* Resource */
5816 Temp resource = get_sampler_desc(ctx, nir_instr_as_deref(instr->src[0].ssa->parent_instr), ACO_DESC_IMAGE, NULL, true, false);
5817
5818 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5819
5820 aco_ptr<MIMG_instruction> mimg{create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1)};
5821 mimg->operands[0] = Operand(resource);
5822 mimg->operands[1] = Operand(s4); /* no sampler */
5823 mimg->operands[2] = Operand(lod);
5824 uint8_t& dmask = mimg->dmask;
5825 mimg->dim = ac_get_image_dim(ctx->options->chip_class, dim, is_array);
5826 mimg->dmask = (1 << instr->dest.ssa.num_components) - 1;
5827 mimg->da = glsl_sampler_type_is_array(type);
5828 mimg->can_reorder = true;
5829 Definition& def = mimg->definitions[0];
5830 ctx->block->instructions.emplace_back(std::move(mimg));
5831
5832 if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE &&
5833 glsl_sampler_type_is_array(type)) {
5834
5835 assert(instr->dest.ssa.num_components == 3);
5836 Temp tmp = {ctx->program->allocateId(), v3};
5837 def = Definition(tmp);
5838 emit_split_vector(ctx, tmp, 3);
5839
5840 /* divide 3rd value by 6 by multiplying with magic number */
5841 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
5842 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp, 2, v1), c);
5843
5844 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
5845 emit_extract_vector(ctx, tmp, 0, v1),
5846 emit_extract_vector(ctx, tmp, 1, v1),
5847 by_6);
5848
5849 } else if (ctx->options->chip_class == GFX9 &&
5850 glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_1D &&
5851 glsl_sampler_type_is_array(type)) {
5852 assert(instr->dest.ssa.num_components == 2);
5853 def = Definition(dst);
5854 dmask = 0x5;
5855 } else {
5856 def = Definition(dst);
5857 }
5858
5859 emit_split_vector(ctx, dst, instr->dest.ssa.num_components);
5860 }
5861
5862 void visit_load_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5863 {
5864 Builder bld(ctx->program, ctx->block);
5865 unsigned num_components = instr->num_components;
5866
5867 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
5868 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
5869 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5870
5871 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
5872 unsigned size = instr->dest.ssa.bit_size / 8;
5873 int byte_align = 0;
5874 if (size < 4) {
5875 unsigned align_mul = nir_intrinsic_align_mul(instr);
5876 unsigned align_offset = nir_intrinsic_align_offset(instr);
5877 byte_align = align_mul % 4 == 0 ? align_offset : -1;
5878 }
5879 load_buffer(ctx, num_components, size, dst, rsrc, get_ssa_temp(ctx, instr->src[1].ssa), byte_align, glc, false);
5880 }
5881
5882 void visit_store_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
5883 {
5884 Builder bld(ctx->program, ctx->block);
5885 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
5886 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
5887 unsigned writemask = nir_intrinsic_write_mask(instr);
5888 Temp offset = get_ssa_temp(ctx, instr->src[2].ssa);
5889
5890 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
5891 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
5892
5893 bool smem = !ctx->divergent_vals[instr->src[2].ssa->index] &&
5894 ctx->options->chip_class >= GFX8 &&
5895 elem_size_bytes >= 4;
5896 if (smem)
5897 offset = bld.as_uniform(offset);
5898 bool smem_nonfs = smem && ctx->stage != fragment_fs;
5899
5900 while (writemask) {
5901 int start, count;
5902 u_bit_scan_consecutive_range(&writemask, &start, &count);
5903 if (count == 3 && (smem || ctx->options->chip_class == GFX6)) {
5904 /* GFX6 doesn't support storing vec3, split it. */
5905 writemask |= 1u << (start + 2);
5906 count = 2;
5907 }
5908 int num_bytes = count * elem_size_bytes;
5909
5910 /* dword or larger stores have to be dword-aligned */
5911 if (elem_size_bytes < 4 && num_bytes > 2) {
5912 // TODO: improve alignment check of sub-dword stores
5913 unsigned count_new = 2 / elem_size_bytes;
5914 writemask |= ((1 << (count - count_new)) - 1) << (start + count_new);
5915 count = count_new;
5916 num_bytes = 2;
5917 }
5918
5919 if (num_bytes > 16) {
5920 assert(elem_size_bytes == 8);
5921 writemask |= (((count - 2) << 1) - 1) << (start + 2);
5922 count = 2;
5923 num_bytes = 16;
5924 }
5925
5926 Temp write_data;
5927 if (elem_size_bytes < 4) {
5928 if (data.type() == RegType::sgpr) {
5929 data = as_vgpr(ctx, data);
5930 emit_split_vector(ctx, data, 4 * data.size() / elem_size_bytes);
5931 }
5932 RegClass rc = RegClass(RegType::vgpr, elem_size_bytes).as_subdword();
5933 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5934 for (int i = 0; i < count; i++)
5935 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, rc));
5936 write_data = bld.tmp(RegClass(RegType::vgpr, num_bytes).as_subdword());
5937 vec->definitions[0] = Definition(write_data);
5938 bld.insert(std::move(vec));
5939 } else if (count != instr->num_components) {
5940 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
5941 for (int i = 0; i < count; i++) {
5942 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(data.type(), elem_size_bytes / 4));
5943 vec->operands[i] = Operand(smem_nonfs ? bld.as_uniform(elem) : elem);
5944 }
5945 write_data = bld.tmp(!smem ? RegType::vgpr : smem_nonfs ? RegType::sgpr : data.type(), count * elem_size_bytes / 4);
5946 vec->definitions[0] = Definition(write_data);
5947 ctx->block->instructions.emplace_back(std::move(vec));
5948 } else if (!smem && data.type() != RegType::vgpr) {
5949 assert(num_bytes % 4 == 0);
5950 write_data = bld.copy(bld.def(RegType::vgpr, num_bytes / 4), data);
5951 } else if (smem_nonfs && data.type() == RegType::vgpr) {
5952 assert(num_bytes % 4 == 0);
5953 write_data = bld.as_uniform(data);
5954 } else {
5955 write_data = data;
5956 }
5957
5958 aco_opcode vmem_op, smem_op = aco_opcode::last_opcode;
5959 switch (num_bytes) {
5960 case 1:
5961 vmem_op = aco_opcode::buffer_store_byte;
5962 break;
5963 case 2:
5964 vmem_op = aco_opcode::buffer_store_short;
5965 break;
5966 case 4:
5967 vmem_op = aco_opcode::buffer_store_dword;
5968 smem_op = aco_opcode::s_buffer_store_dword;
5969 break;
5970 case 8:
5971 vmem_op = aco_opcode::buffer_store_dwordx2;
5972 smem_op = aco_opcode::s_buffer_store_dwordx2;
5973 break;
5974 case 12:
5975 vmem_op = aco_opcode::buffer_store_dwordx3;
5976 assert(!smem && ctx->options->chip_class > GFX6);
5977 break;
5978 case 16:
5979 vmem_op = aco_opcode::buffer_store_dwordx4;
5980 smem_op = aco_opcode::s_buffer_store_dwordx4;
5981 break;
5982 default:
5983 unreachable("Store SSBO not implemented for this size.");
5984 }
5985 if (ctx->stage == fragment_fs)
5986 smem_op = aco_opcode::p_fs_buffer_store_smem;
5987
5988 if (smem) {
5989 aco_ptr<SMEM_instruction> store{create_instruction<SMEM_instruction>(smem_op, Format::SMEM, 3, 0)};
5990 store->operands[0] = Operand(rsrc);
5991 if (start) {
5992 Temp off = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
5993 offset, Operand(start * elem_size_bytes));
5994 store->operands[1] = Operand(off);
5995 } else {
5996 store->operands[1] = Operand(offset);
5997 }
5998 if (smem_op != aco_opcode::p_fs_buffer_store_smem)
5999 store->operands[1].setFixed(m0);
6000 store->operands[2] = Operand(write_data);
6001 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6002 store->dlc = false;
6003 store->disable_wqm = true;
6004 store->barrier = barrier_buffer;
6005 ctx->block->instructions.emplace_back(std::move(store));
6006 ctx->program->wb_smem_l1_on_end = true;
6007 if (smem_op == aco_opcode::p_fs_buffer_store_smem) {
6008 ctx->block->kind |= block_kind_needs_lowering;
6009 ctx->program->needs_exact = true;
6010 }
6011 } else {
6012 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(vmem_op, Format::MUBUF, 4, 0)};
6013 store->operands[0] = Operand(rsrc);
6014 store->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6015 store->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6016 store->operands[3] = Operand(write_data);
6017 store->offset = start * elem_size_bytes;
6018 store->offen = (offset.type() == RegType::vgpr);
6019 store->glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6020 store->dlc = false;
6021 store->disable_wqm = true;
6022 store->barrier = barrier_buffer;
6023 ctx->program->needs_exact = true;
6024 ctx->block->instructions.emplace_back(std::move(store));
6025 }
6026 }
6027 }
6028
6029 void visit_atomic_ssbo(isel_context *ctx, nir_intrinsic_instr *instr)
6030 {
6031 /* return the previous value if dest is ever used */
6032 bool return_previous = false;
6033 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6034 return_previous = true;
6035 break;
6036 }
6037 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6038 return_previous = true;
6039 break;
6040 }
6041
6042 Builder bld(ctx->program, ctx->block);
6043 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[2].ssa));
6044
6045 if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap)
6046 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6047 get_ssa_temp(ctx, instr->src[3].ssa), data);
6048
6049 Temp offset = get_ssa_temp(ctx, instr->src[1].ssa);
6050 Temp rsrc = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6051 rsrc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), rsrc, Operand(0u));
6052
6053 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6054
6055 aco_opcode op32, op64;
6056 switch (instr->intrinsic) {
6057 case nir_intrinsic_ssbo_atomic_add:
6058 op32 = aco_opcode::buffer_atomic_add;
6059 op64 = aco_opcode::buffer_atomic_add_x2;
6060 break;
6061 case nir_intrinsic_ssbo_atomic_imin:
6062 op32 = aco_opcode::buffer_atomic_smin;
6063 op64 = aco_opcode::buffer_atomic_smin_x2;
6064 break;
6065 case nir_intrinsic_ssbo_atomic_umin:
6066 op32 = aco_opcode::buffer_atomic_umin;
6067 op64 = aco_opcode::buffer_atomic_umin_x2;
6068 break;
6069 case nir_intrinsic_ssbo_atomic_imax:
6070 op32 = aco_opcode::buffer_atomic_smax;
6071 op64 = aco_opcode::buffer_atomic_smax_x2;
6072 break;
6073 case nir_intrinsic_ssbo_atomic_umax:
6074 op32 = aco_opcode::buffer_atomic_umax;
6075 op64 = aco_opcode::buffer_atomic_umax_x2;
6076 break;
6077 case nir_intrinsic_ssbo_atomic_and:
6078 op32 = aco_opcode::buffer_atomic_and;
6079 op64 = aco_opcode::buffer_atomic_and_x2;
6080 break;
6081 case nir_intrinsic_ssbo_atomic_or:
6082 op32 = aco_opcode::buffer_atomic_or;
6083 op64 = aco_opcode::buffer_atomic_or_x2;
6084 break;
6085 case nir_intrinsic_ssbo_atomic_xor:
6086 op32 = aco_opcode::buffer_atomic_xor;
6087 op64 = aco_opcode::buffer_atomic_xor_x2;
6088 break;
6089 case nir_intrinsic_ssbo_atomic_exchange:
6090 op32 = aco_opcode::buffer_atomic_swap;
6091 op64 = aco_opcode::buffer_atomic_swap_x2;
6092 break;
6093 case nir_intrinsic_ssbo_atomic_comp_swap:
6094 op32 = aco_opcode::buffer_atomic_cmpswap;
6095 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6096 break;
6097 default:
6098 unreachable("visit_atomic_ssbo should only be called with nir_intrinsic_ssbo_atomic_* instructions.");
6099 }
6100 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6101 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6102 mubuf->operands[0] = Operand(rsrc);
6103 mubuf->operands[1] = offset.type() == RegType::vgpr ? Operand(offset) : Operand(v1);
6104 mubuf->operands[2] = offset.type() == RegType::sgpr ? Operand(offset) : Operand((uint32_t) 0);
6105 mubuf->operands[3] = Operand(data);
6106 if (return_previous)
6107 mubuf->definitions[0] = Definition(dst);
6108 mubuf->offset = 0;
6109 mubuf->offen = (offset.type() == RegType::vgpr);
6110 mubuf->glc = return_previous;
6111 mubuf->dlc = false; /* Not needed for atomics */
6112 mubuf->disable_wqm = true;
6113 mubuf->barrier = barrier_buffer;
6114 ctx->program->needs_exact = true;
6115 ctx->block->instructions.emplace_back(std::move(mubuf));
6116 }
6117
6118 void visit_get_buffer_size(isel_context *ctx, nir_intrinsic_instr *instr) {
6119
6120 Temp index = convert_pointer_to_64_bit(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6121 Builder bld(ctx->program, ctx->block);
6122 Temp desc = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), index, Operand(0u));
6123 get_buffer_size(ctx, desc, get_ssa_temp(ctx, &instr->dest.ssa), false);
6124 }
6125
6126 Temp get_gfx6_global_rsrc(Builder& bld, Temp addr)
6127 {
6128 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6129 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6130
6131 if (addr.type() == RegType::vgpr)
6132 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), Operand(0u), Operand(0u), Operand(-1u), Operand(rsrc_conf));
6133 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), addr, Operand(-1u), Operand(rsrc_conf));
6134 }
6135
6136 void visit_load_global(isel_context *ctx, nir_intrinsic_instr *instr)
6137 {
6138 Builder bld(ctx->program, ctx->block);
6139 unsigned num_components = instr->num_components;
6140 unsigned num_bytes = num_components * instr->dest.ssa.bit_size / 8;
6141
6142 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6143 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6144
6145 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT);
6146 bool dlc = glc && ctx->options->chip_class >= GFX10;
6147 aco_opcode op;
6148 if (dst.type() == RegType::vgpr || (glc && ctx->options->chip_class < GFX8)) {
6149 bool global = ctx->options->chip_class >= GFX9;
6150
6151 if (ctx->options->chip_class >= GFX7) {
6152 aco_opcode op;
6153 switch (num_bytes) {
6154 case 4:
6155 op = global ? aco_opcode::global_load_dword : aco_opcode::flat_load_dword;
6156 break;
6157 case 8:
6158 op = global ? aco_opcode::global_load_dwordx2 : aco_opcode::flat_load_dwordx2;
6159 break;
6160 case 12:
6161 op = global ? aco_opcode::global_load_dwordx3 : aco_opcode::flat_load_dwordx3;
6162 break;
6163 case 16:
6164 op = global ? aco_opcode::global_load_dwordx4 : aco_opcode::flat_load_dwordx4;
6165 break;
6166 default:
6167 unreachable("load_global not implemented for this size.");
6168 }
6169
6170 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 2, 1)};
6171 flat->operands[0] = Operand(addr);
6172 flat->operands[1] = Operand(s1);
6173 flat->glc = glc;
6174 flat->dlc = dlc;
6175 flat->barrier = barrier_buffer;
6176
6177 if (dst.type() == RegType::sgpr) {
6178 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6179 flat->definitions[0] = Definition(vec);
6180 ctx->block->instructions.emplace_back(std::move(flat));
6181 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6182 } else {
6183 flat->definitions[0] = Definition(dst);
6184 ctx->block->instructions.emplace_back(std::move(flat));
6185 }
6186 emit_split_vector(ctx, dst, num_components);
6187 } else {
6188 assert(ctx->options->chip_class == GFX6);
6189
6190 /* GFX6 doesn't support loading vec3, expand to vec4. */
6191 num_bytes = num_bytes == 12 ? 16 : num_bytes;
6192
6193 aco_opcode op;
6194 switch (num_bytes) {
6195 case 4:
6196 op = aco_opcode::buffer_load_dword;
6197 break;
6198 case 8:
6199 op = aco_opcode::buffer_load_dwordx2;
6200 break;
6201 case 16:
6202 op = aco_opcode::buffer_load_dwordx4;
6203 break;
6204 default:
6205 unreachable("load_global not implemented for this size.");
6206 }
6207
6208 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6209
6210 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
6211 mubuf->operands[0] = Operand(rsrc);
6212 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6213 mubuf->operands[2] = Operand(0u);
6214 mubuf->glc = glc;
6215 mubuf->dlc = false;
6216 mubuf->offset = 0;
6217 mubuf->addr64 = addr.type() == RegType::vgpr;
6218 mubuf->disable_wqm = false;
6219 mubuf->barrier = barrier_buffer;
6220 aco_ptr<Instruction> instr = std::move(mubuf);
6221
6222 /* expand vector */
6223 if (dst.size() == 3) {
6224 Temp vec = bld.tmp(v4);
6225 instr->definitions[0] = Definition(vec);
6226 bld.insert(std::move(instr));
6227 emit_split_vector(ctx, vec, 4);
6228
6229 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 3, 1));
6230 instr->operands[0] = Operand(emit_extract_vector(ctx, vec, 0, v1));
6231 instr->operands[1] = Operand(emit_extract_vector(ctx, vec, 1, v1));
6232 instr->operands[2] = Operand(emit_extract_vector(ctx, vec, 2, v1));
6233 }
6234
6235 if (dst.type() == RegType::sgpr) {
6236 Temp vec = bld.tmp(RegType::vgpr, dst.size());
6237 instr->definitions[0] = Definition(vec);
6238 bld.insert(std::move(instr));
6239 expand_vector(ctx, vec, dst, num_components, (1 << num_components) - 1);
6240 bld.pseudo(aco_opcode::p_as_uniform, Definition(dst), vec);
6241 } else {
6242 instr->definitions[0] = Definition(dst);
6243 bld.insert(std::move(instr));
6244 emit_split_vector(ctx, dst, num_components);
6245 }
6246 }
6247 } else {
6248 switch (num_bytes) {
6249 case 4:
6250 op = aco_opcode::s_load_dword;
6251 break;
6252 case 8:
6253 op = aco_opcode::s_load_dwordx2;
6254 break;
6255 case 12:
6256 case 16:
6257 op = aco_opcode::s_load_dwordx4;
6258 break;
6259 default:
6260 unreachable("load_global not implemented for this size.");
6261 }
6262 aco_ptr<SMEM_instruction> load{create_instruction<SMEM_instruction>(op, Format::SMEM, 2, 1)};
6263 load->operands[0] = Operand(addr);
6264 load->operands[1] = Operand(0u);
6265 load->definitions[0] = Definition(dst);
6266 load->glc = glc;
6267 load->dlc = dlc;
6268 load->barrier = barrier_buffer;
6269 assert(ctx->options->chip_class >= GFX8 || !glc);
6270
6271 if (dst.size() == 3) {
6272 /* trim vector */
6273 Temp vec = bld.tmp(s4);
6274 load->definitions[0] = Definition(vec);
6275 ctx->block->instructions.emplace_back(std::move(load));
6276 emit_split_vector(ctx, vec, 4);
6277
6278 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
6279 emit_extract_vector(ctx, vec, 0, s1),
6280 emit_extract_vector(ctx, vec, 1, s1),
6281 emit_extract_vector(ctx, vec, 2, s1));
6282 } else {
6283 ctx->block->instructions.emplace_back(std::move(load));
6284 }
6285 }
6286 }
6287
6288 void visit_store_global(isel_context *ctx, nir_intrinsic_instr *instr)
6289 {
6290 Builder bld(ctx->program, ctx->block);
6291 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6292
6293 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6294 Temp addr = get_ssa_temp(ctx, instr->src[1].ssa);
6295
6296 if (ctx->options->chip_class >= GFX7)
6297 addr = as_vgpr(ctx, addr);
6298
6299 unsigned writemask = nir_intrinsic_write_mask(instr);
6300 while (writemask) {
6301 int start, count;
6302 u_bit_scan_consecutive_range(&writemask, &start, &count);
6303 if (count == 3 && ctx->options->chip_class == GFX6) {
6304 /* GFX6 doesn't support storing vec3, split it. */
6305 writemask |= 1u << (start + 2);
6306 count = 2;
6307 }
6308 unsigned num_bytes = count * elem_size_bytes;
6309
6310 Temp write_data = data;
6311 if (count != instr->num_components) {
6312 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6313 for (int i = 0; i < count; i++)
6314 vec->operands[i] = Operand(emit_extract_vector(ctx, data, start + i, v1));
6315 write_data = bld.tmp(RegType::vgpr, count);
6316 vec->definitions[0] = Definition(write_data);
6317 ctx->block->instructions.emplace_back(std::move(vec));
6318 }
6319
6320 bool glc = nir_intrinsic_access(instr) & (ACCESS_VOLATILE | ACCESS_COHERENT | ACCESS_NON_READABLE);
6321 unsigned offset = start * elem_size_bytes;
6322
6323 if (ctx->options->chip_class >= GFX7) {
6324 if (offset > 0 && ctx->options->chip_class < GFX9) {
6325 Temp addr0 = bld.tmp(v1), addr1 = bld.tmp(v1);
6326 Temp new_addr0 = bld.tmp(v1), new_addr1 = bld.tmp(v1);
6327 Temp carry = bld.tmp(bld.lm);
6328 bld.pseudo(aco_opcode::p_split_vector, Definition(addr0), Definition(addr1), addr);
6329
6330 bld.vop2(aco_opcode::v_add_co_u32, Definition(new_addr0), bld.hint_vcc(Definition(carry)),
6331 Operand(offset), addr0);
6332 bld.vop2(aco_opcode::v_addc_co_u32, Definition(new_addr1), bld.def(bld.lm),
6333 Operand(0u), addr1,
6334 carry).def(1).setHint(vcc);
6335
6336 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), new_addr0, new_addr1);
6337
6338 offset = 0;
6339 }
6340
6341 bool global = ctx->options->chip_class >= GFX9;
6342 aco_opcode op;
6343 switch (num_bytes) {
6344 case 4:
6345 op = global ? aco_opcode::global_store_dword : aco_opcode::flat_store_dword;
6346 break;
6347 case 8:
6348 op = global ? aco_opcode::global_store_dwordx2 : aco_opcode::flat_store_dwordx2;
6349 break;
6350 case 12:
6351 op = global ? aco_opcode::global_store_dwordx3 : aco_opcode::flat_store_dwordx3;
6352 break;
6353 case 16:
6354 op = global ? aco_opcode::global_store_dwordx4 : aco_opcode::flat_store_dwordx4;
6355 break;
6356 default:
6357 unreachable("store_global not implemented for this size.");
6358 }
6359
6360 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, 0)};
6361 flat->operands[0] = Operand(addr);
6362 flat->operands[1] = Operand(s1);
6363 flat->operands[2] = Operand(data);
6364 flat->glc = glc;
6365 flat->dlc = false;
6366 flat->offset = offset;
6367 flat->disable_wqm = true;
6368 flat->barrier = barrier_buffer;
6369 ctx->program->needs_exact = true;
6370 ctx->block->instructions.emplace_back(std::move(flat));
6371 } else {
6372 assert(ctx->options->chip_class == GFX6);
6373
6374 aco_opcode op;
6375 switch (num_bytes) {
6376 case 4:
6377 op = aco_opcode::buffer_store_dword;
6378 break;
6379 case 8:
6380 op = aco_opcode::buffer_store_dwordx2;
6381 break;
6382 case 16:
6383 op = aco_opcode::buffer_store_dwordx4;
6384 break;
6385 default:
6386 unreachable("store_global not implemented for this size.");
6387 }
6388
6389 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6390
6391 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, 0)};
6392 mubuf->operands[0] = Operand(rsrc);
6393 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6394 mubuf->operands[2] = Operand(0u);
6395 mubuf->operands[3] = Operand(write_data);
6396 mubuf->glc = glc;
6397 mubuf->dlc = false;
6398 mubuf->offset = offset;
6399 mubuf->addr64 = addr.type() == RegType::vgpr;
6400 mubuf->disable_wqm = true;
6401 mubuf->barrier = barrier_buffer;
6402 ctx->program->needs_exact = true;
6403 ctx->block->instructions.emplace_back(std::move(mubuf));
6404 }
6405 }
6406 }
6407
6408 void visit_global_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6409 {
6410 /* return the previous value if dest is ever used */
6411 bool return_previous = false;
6412 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6413 return_previous = true;
6414 break;
6415 }
6416 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6417 return_previous = true;
6418 break;
6419 }
6420
6421 Builder bld(ctx->program, ctx->block);
6422 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
6423 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6424
6425 if (ctx->options->chip_class >= GFX7)
6426 addr = as_vgpr(ctx, addr);
6427
6428 if (instr->intrinsic == nir_intrinsic_global_atomic_comp_swap)
6429 data = bld.pseudo(aco_opcode::p_create_vector, bld.def(RegType::vgpr, data.size() * 2),
6430 get_ssa_temp(ctx, instr->src[2].ssa), data);
6431
6432 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6433
6434 aco_opcode op32, op64;
6435
6436 if (ctx->options->chip_class >= GFX7) {
6437 bool global = ctx->options->chip_class >= GFX9;
6438 switch (instr->intrinsic) {
6439 case nir_intrinsic_global_atomic_add:
6440 op32 = global ? aco_opcode::global_atomic_add : aco_opcode::flat_atomic_add;
6441 op64 = global ? aco_opcode::global_atomic_add_x2 : aco_opcode::flat_atomic_add_x2;
6442 break;
6443 case nir_intrinsic_global_atomic_imin:
6444 op32 = global ? aco_opcode::global_atomic_smin : aco_opcode::flat_atomic_smin;
6445 op64 = global ? aco_opcode::global_atomic_smin_x2 : aco_opcode::flat_atomic_smin_x2;
6446 break;
6447 case nir_intrinsic_global_atomic_umin:
6448 op32 = global ? aco_opcode::global_atomic_umin : aco_opcode::flat_atomic_umin;
6449 op64 = global ? aco_opcode::global_atomic_umin_x2 : aco_opcode::flat_atomic_umin_x2;
6450 break;
6451 case nir_intrinsic_global_atomic_imax:
6452 op32 = global ? aco_opcode::global_atomic_smax : aco_opcode::flat_atomic_smax;
6453 op64 = global ? aco_opcode::global_atomic_smax_x2 : aco_opcode::flat_atomic_smax_x2;
6454 break;
6455 case nir_intrinsic_global_atomic_umax:
6456 op32 = global ? aco_opcode::global_atomic_umax : aco_opcode::flat_atomic_umax;
6457 op64 = global ? aco_opcode::global_atomic_umax_x2 : aco_opcode::flat_atomic_umax_x2;
6458 break;
6459 case nir_intrinsic_global_atomic_and:
6460 op32 = global ? aco_opcode::global_atomic_and : aco_opcode::flat_atomic_and;
6461 op64 = global ? aco_opcode::global_atomic_and_x2 : aco_opcode::flat_atomic_and_x2;
6462 break;
6463 case nir_intrinsic_global_atomic_or:
6464 op32 = global ? aco_opcode::global_atomic_or : aco_opcode::flat_atomic_or;
6465 op64 = global ? aco_opcode::global_atomic_or_x2 : aco_opcode::flat_atomic_or_x2;
6466 break;
6467 case nir_intrinsic_global_atomic_xor:
6468 op32 = global ? aco_opcode::global_atomic_xor : aco_opcode::flat_atomic_xor;
6469 op64 = global ? aco_opcode::global_atomic_xor_x2 : aco_opcode::flat_atomic_xor_x2;
6470 break;
6471 case nir_intrinsic_global_atomic_exchange:
6472 op32 = global ? aco_opcode::global_atomic_swap : aco_opcode::flat_atomic_swap;
6473 op64 = global ? aco_opcode::global_atomic_swap_x2 : aco_opcode::flat_atomic_swap_x2;
6474 break;
6475 case nir_intrinsic_global_atomic_comp_swap:
6476 op32 = global ? aco_opcode::global_atomic_cmpswap : aco_opcode::flat_atomic_cmpswap;
6477 op64 = global ? aco_opcode::global_atomic_cmpswap_x2 : aco_opcode::flat_atomic_cmpswap_x2;
6478 break;
6479 default:
6480 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6481 }
6482
6483 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6484 aco_ptr<FLAT_instruction> flat{create_instruction<FLAT_instruction>(op, global ? Format::GLOBAL : Format::FLAT, 3, return_previous ? 1 : 0)};
6485 flat->operands[0] = Operand(addr);
6486 flat->operands[1] = Operand(s1);
6487 flat->operands[2] = Operand(data);
6488 if (return_previous)
6489 flat->definitions[0] = Definition(dst);
6490 flat->glc = return_previous;
6491 flat->dlc = false; /* Not needed for atomics */
6492 flat->offset = 0;
6493 flat->disable_wqm = true;
6494 flat->barrier = barrier_buffer;
6495 ctx->program->needs_exact = true;
6496 ctx->block->instructions.emplace_back(std::move(flat));
6497 } else {
6498 assert(ctx->options->chip_class == GFX6);
6499
6500 switch (instr->intrinsic) {
6501 case nir_intrinsic_global_atomic_add:
6502 op32 = aco_opcode::buffer_atomic_add;
6503 op64 = aco_opcode::buffer_atomic_add_x2;
6504 break;
6505 case nir_intrinsic_global_atomic_imin:
6506 op32 = aco_opcode::buffer_atomic_smin;
6507 op64 = aco_opcode::buffer_atomic_smin_x2;
6508 break;
6509 case nir_intrinsic_global_atomic_umin:
6510 op32 = aco_opcode::buffer_atomic_umin;
6511 op64 = aco_opcode::buffer_atomic_umin_x2;
6512 break;
6513 case nir_intrinsic_global_atomic_imax:
6514 op32 = aco_opcode::buffer_atomic_smax;
6515 op64 = aco_opcode::buffer_atomic_smax_x2;
6516 break;
6517 case nir_intrinsic_global_atomic_umax:
6518 op32 = aco_opcode::buffer_atomic_umax;
6519 op64 = aco_opcode::buffer_atomic_umax_x2;
6520 break;
6521 case nir_intrinsic_global_atomic_and:
6522 op32 = aco_opcode::buffer_atomic_and;
6523 op64 = aco_opcode::buffer_atomic_and_x2;
6524 break;
6525 case nir_intrinsic_global_atomic_or:
6526 op32 = aco_opcode::buffer_atomic_or;
6527 op64 = aco_opcode::buffer_atomic_or_x2;
6528 break;
6529 case nir_intrinsic_global_atomic_xor:
6530 op32 = aco_opcode::buffer_atomic_xor;
6531 op64 = aco_opcode::buffer_atomic_xor_x2;
6532 break;
6533 case nir_intrinsic_global_atomic_exchange:
6534 op32 = aco_opcode::buffer_atomic_swap;
6535 op64 = aco_opcode::buffer_atomic_swap_x2;
6536 break;
6537 case nir_intrinsic_global_atomic_comp_swap:
6538 op32 = aco_opcode::buffer_atomic_cmpswap;
6539 op64 = aco_opcode::buffer_atomic_cmpswap_x2;
6540 break;
6541 default:
6542 unreachable("visit_atomic_global should only be called with nir_intrinsic_global_atomic_* instructions.");
6543 }
6544
6545 Temp rsrc = get_gfx6_global_rsrc(bld, addr);
6546
6547 aco_opcode op = instr->dest.ssa.bit_size == 32 ? op32 : op64;
6548
6549 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 4, return_previous ? 1 : 0)};
6550 mubuf->operands[0] = Operand(rsrc);
6551 mubuf->operands[1] = addr.type() == RegType::vgpr ? Operand(addr) : Operand(v1);
6552 mubuf->operands[2] = Operand(0u);
6553 mubuf->operands[3] = Operand(data);
6554 if (return_previous)
6555 mubuf->definitions[0] = Definition(dst);
6556 mubuf->glc = return_previous;
6557 mubuf->dlc = false;
6558 mubuf->offset = 0;
6559 mubuf->addr64 = addr.type() == RegType::vgpr;
6560 mubuf->disable_wqm = true;
6561 mubuf->barrier = barrier_buffer;
6562 ctx->program->needs_exact = true;
6563 ctx->block->instructions.emplace_back(std::move(mubuf));
6564 }
6565 }
6566
6567 void emit_memory_barrier(isel_context *ctx, nir_intrinsic_instr *instr) {
6568 Builder bld(ctx->program, ctx->block);
6569 switch(instr->intrinsic) {
6570 case nir_intrinsic_group_memory_barrier:
6571 case nir_intrinsic_memory_barrier:
6572 bld.barrier(aco_opcode::p_memory_barrier_common);
6573 break;
6574 case nir_intrinsic_memory_barrier_buffer:
6575 bld.barrier(aco_opcode::p_memory_barrier_buffer);
6576 break;
6577 case nir_intrinsic_memory_barrier_image:
6578 bld.barrier(aco_opcode::p_memory_barrier_image);
6579 break;
6580 case nir_intrinsic_memory_barrier_tcs_patch:
6581 case nir_intrinsic_memory_barrier_shared:
6582 bld.barrier(aco_opcode::p_memory_barrier_shared);
6583 break;
6584 default:
6585 unreachable("Unimplemented memory barrier intrinsic");
6586 break;
6587 }
6588 }
6589
6590 void visit_load_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6591 {
6592 // TODO: implement sparse reads using ds_read2_b32 and nir_ssa_def_components_read()
6593 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6594 assert(instr->dest.ssa.bit_size >= 32 && "Bitsize not supported in load_shared.");
6595 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6596 Builder bld(ctx->program, ctx->block);
6597
6598 unsigned elem_size_bytes = instr->dest.ssa.bit_size / 8;
6599 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6600 load_lds(ctx, elem_size_bytes, dst, address, nir_intrinsic_base(instr), align);
6601 }
6602
6603 void visit_store_shared(isel_context *ctx, nir_intrinsic_instr *instr)
6604 {
6605 unsigned writemask = nir_intrinsic_write_mask(instr);
6606 Temp data = get_ssa_temp(ctx, instr->src[0].ssa);
6607 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6608 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6609 assert(elem_size_bytes >= 4 && "Only 32bit & 64bit store_shared currently supported.");
6610
6611 unsigned align = nir_intrinsic_align_mul(instr) ? nir_intrinsic_align(instr) : elem_size_bytes;
6612 store_lds(ctx, elem_size_bytes, data, writemask, address, nir_intrinsic_base(instr), align);
6613 }
6614
6615 void visit_shared_atomic(isel_context *ctx, nir_intrinsic_instr *instr)
6616 {
6617 unsigned offset = nir_intrinsic_base(instr);
6618 Operand m = load_lds_size_m0(ctx);
6619 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6620 Temp address = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6621
6622 unsigned num_operands = 3;
6623 aco_opcode op32, op64, op32_rtn, op64_rtn;
6624 switch(instr->intrinsic) {
6625 case nir_intrinsic_shared_atomic_add:
6626 op32 = aco_opcode::ds_add_u32;
6627 op64 = aco_opcode::ds_add_u64;
6628 op32_rtn = aco_opcode::ds_add_rtn_u32;
6629 op64_rtn = aco_opcode::ds_add_rtn_u64;
6630 break;
6631 case nir_intrinsic_shared_atomic_imin:
6632 op32 = aco_opcode::ds_min_i32;
6633 op64 = aco_opcode::ds_min_i64;
6634 op32_rtn = aco_opcode::ds_min_rtn_i32;
6635 op64_rtn = aco_opcode::ds_min_rtn_i64;
6636 break;
6637 case nir_intrinsic_shared_atomic_umin:
6638 op32 = aco_opcode::ds_min_u32;
6639 op64 = aco_opcode::ds_min_u64;
6640 op32_rtn = aco_opcode::ds_min_rtn_u32;
6641 op64_rtn = aco_opcode::ds_min_rtn_u64;
6642 break;
6643 case nir_intrinsic_shared_atomic_imax:
6644 op32 = aco_opcode::ds_max_i32;
6645 op64 = aco_opcode::ds_max_i64;
6646 op32_rtn = aco_opcode::ds_max_rtn_i32;
6647 op64_rtn = aco_opcode::ds_max_rtn_i64;
6648 break;
6649 case nir_intrinsic_shared_atomic_umax:
6650 op32 = aco_opcode::ds_max_u32;
6651 op64 = aco_opcode::ds_max_u64;
6652 op32_rtn = aco_opcode::ds_max_rtn_u32;
6653 op64_rtn = aco_opcode::ds_max_rtn_u64;
6654 break;
6655 case nir_intrinsic_shared_atomic_and:
6656 op32 = aco_opcode::ds_and_b32;
6657 op64 = aco_opcode::ds_and_b64;
6658 op32_rtn = aco_opcode::ds_and_rtn_b32;
6659 op64_rtn = aco_opcode::ds_and_rtn_b64;
6660 break;
6661 case nir_intrinsic_shared_atomic_or:
6662 op32 = aco_opcode::ds_or_b32;
6663 op64 = aco_opcode::ds_or_b64;
6664 op32_rtn = aco_opcode::ds_or_rtn_b32;
6665 op64_rtn = aco_opcode::ds_or_rtn_b64;
6666 break;
6667 case nir_intrinsic_shared_atomic_xor:
6668 op32 = aco_opcode::ds_xor_b32;
6669 op64 = aco_opcode::ds_xor_b64;
6670 op32_rtn = aco_opcode::ds_xor_rtn_b32;
6671 op64_rtn = aco_opcode::ds_xor_rtn_b64;
6672 break;
6673 case nir_intrinsic_shared_atomic_exchange:
6674 op32 = aco_opcode::ds_write_b32;
6675 op64 = aco_opcode::ds_write_b64;
6676 op32_rtn = aco_opcode::ds_wrxchg_rtn_b32;
6677 op64_rtn = aco_opcode::ds_wrxchg2_rtn_b64;
6678 break;
6679 case nir_intrinsic_shared_atomic_comp_swap:
6680 op32 = aco_opcode::ds_cmpst_b32;
6681 op64 = aco_opcode::ds_cmpst_b64;
6682 op32_rtn = aco_opcode::ds_cmpst_rtn_b32;
6683 op64_rtn = aco_opcode::ds_cmpst_rtn_b64;
6684 num_operands = 4;
6685 break;
6686 default:
6687 unreachable("Unhandled shared atomic intrinsic");
6688 }
6689
6690 /* return the previous value if dest is ever used */
6691 bool return_previous = false;
6692 nir_foreach_use_safe(use_src, &instr->dest.ssa) {
6693 return_previous = true;
6694 break;
6695 }
6696 nir_foreach_if_use_safe(use_src, &instr->dest.ssa) {
6697 return_previous = true;
6698 break;
6699 }
6700
6701 aco_opcode op;
6702 if (data.size() == 1) {
6703 assert(instr->dest.ssa.bit_size == 32);
6704 op = return_previous ? op32_rtn : op32;
6705 } else {
6706 assert(instr->dest.ssa.bit_size == 64);
6707 op = return_previous ? op64_rtn : op64;
6708 }
6709
6710 if (offset > 65535) {
6711 Builder bld(ctx->program, ctx->block);
6712 address = bld.vadd32(bld.def(v1), Operand(offset), address);
6713 offset = 0;
6714 }
6715
6716 aco_ptr<DS_instruction> ds;
6717 ds.reset(create_instruction<DS_instruction>(op, Format::DS, num_operands, return_previous ? 1 : 0));
6718 ds->operands[0] = Operand(address);
6719 ds->operands[1] = Operand(data);
6720 if (num_operands == 4)
6721 ds->operands[2] = Operand(get_ssa_temp(ctx, instr->src[2].ssa));
6722 ds->operands[num_operands - 1] = m;
6723 ds->offset0 = offset;
6724 if (return_previous)
6725 ds->definitions[0] = Definition(get_ssa_temp(ctx, &instr->dest.ssa));
6726 ctx->block->instructions.emplace_back(std::move(ds));
6727 }
6728
6729 Temp get_scratch_resource(isel_context *ctx)
6730 {
6731 Builder bld(ctx->program, ctx->block);
6732 Temp scratch_addr = ctx->program->private_segment_buffer;
6733 if (ctx->stage != compute_cs)
6734 scratch_addr = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), scratch_addr, Operand(0u));
6735
6736 uint32_t rsrc_conf = S_008F0C_ADD_TID_ENABLE(1) |
6737 S_008F0C_INDEX_STRIDE(ctx->program->wave_size == 64 ? 3 : 2);;
6738
6739 if (ctx->program->chip_class >= GFX10) {
6740 rsrc_conf |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
6741 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) |
6742 S_008F0C_RESOURCE_LEVEL(1);
6743 } else if (ctx->program->chip_class <= GFX7) { /* dfmt modifies stride on GFX8/GFX9 when ADD_TID_EN=1 */
6744 rsrc_conf |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
6745 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
6746 }
6747
6748 /* older generations need element size = 16 bytes. element size removed in GFX9 */
6749 if (ctx->program->chip_class <= GFX8)
6750 rsrc_conf |= S_008F0C_ELEMENT_SIZE(3);
6751
6752 return bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), scratch_addr, Operand(-1u), Operand(rsrc_conf));
6753 }
6754
6755 void visit_load_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6756 assert(instr->dest.ssa.bit_size == 32 || instr->dest.ssa.bit_size == 64);
6757 Builder bld(ctx->program, ctx->block);
6758 Temp rsrc = get_scratch_resource(ctx);
6759 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6760 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6761
6762 aco_opcode op;
6763 switch (dst.size()) {
6764 case 1:
6765 op = aco_opcode::buffer_load_dword;
6766 break;
6767 case 2:
6768 op = aco_opcode::buffer_load_dwordx2;
6769 break;
6770 case 3:
6771 op = aco_opcode::buffer_load_dwordx3;
6772 break;
6773 case 4:
6774 op = aco_opcode::buffer_load_dwordx4;
6775 break;
6776 case 6:
6777 case 8: {
6778 std::array<Temp,NIR_MAX_VEC_COMPONENTS> elems;
6779 Temp lower = bld.mubuf(aco_opcode::buffer_load_dwordx4,
6780 bld.def(v4), rsrc, offset,
6781 ctx->program->scratch_offset, 0, true);
6782 Temp upper = bld.mubuf(dst.size() == 6 ? aco_opcode::buffer_load_dwordx2 :
6783 aco_opcode::buffer_load_dwordx4,
6784 dst.size() == 6 ? bld.def(v2) : bld.def(v4),
6785 rsrc, offset, ctx->program->scratch_offset, 16, true);
6786 emit_split_vector(ctx, lower, 2);
6787 elems[0] = emit_extract_vector(ctx, lower, 0, v2);
6788 elems[1] = emit_extract_vector(ctx, lower, 1, v2);
6789 if (dst.size() == 8) {
6790 emit_split_vector(ctx, upper, 2);
6791 elems[2] = emit_extract_vector(ctx, upper, 0, v2);
6792 elems[3] = emit_extract_vector(ctx, upper, 1, v2);
6793 } else {
6794 elems[2] = upper;
6795 }
6796
6797 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
6798 Format::PSEUDO, dst.size() / 2, 1)};
6799 for (unsigned i = 0; i < dst.size() / 2; i++)
6800 vec->operands[i] = Operand(elems[i]);
6801 vec->definitions[0] = Definition(dst);
6802 bld.insert(std::move(vec));
6803 ctx->allocated_vec.emplace(dst.id(), elems);
6804 return;
6805 }
6806 default:
6807 unreachable("Wrong dst size for nir_intrinsic_load_scratch");
6808 }
6809
6810 bld.mubuf(op, Definition(dst), rsrc, offset, ctx->program->scratch_offset, 0, true);
6811 emit_split_vector(ctx, dst, instr->num_components);
6812 }
6813
6814 void visit_store_scratch(isel_context *ctx, nir_intrinsic_instr *instr) {
6815 assert(instr->src[0].ssa->bit_size == 32 || instr->src[0].ssa->bit_size == 64);
6816 Builder bld(ctx->program, ctx->block);
6817 Temp rsrc = get_scratch_resource(ctx);
6818 Temp data = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6819 Temp offset = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[1].ssa));
6820
6821 unsigned elem_size_bytes = instr->src[0].ssa->bit_size / 8;
6822 unsigned writemask = nir_intrinsic_write_mask(instr);
6823
6824 while (writemask) {
6825 int start, count;
6826 u_bit_scan_consecutive_range(&writemask, &start, &count);
6827 int num_bytes = count * elem_size_bytes;
6828
6829 if (num_bytes > 16) {
6830 assert(elem_size_bytes == 8);
6831 writemask |= (((count - 2) << 1) - 1) << (start + 2);
6832 count = 2;
6833 num_bytes = 16;
6834 }
6835
6836 // TODO: check alignment of sub-dword stores
6837 // TODO: split 3 bytes. there is no store instruction for that
6838
6839 Temp write_data;
6840 if (count != instr->num_components) {
6841 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
6842 for (int i = 0; i < count; i++) {
6843 Temp elem = emit_extract_vector(ctx, data, start + i, RegClass(RegType::vgpr, elem_size_bytes / 4));
6844 vec->operands[i] = Operand(elem);
6845 }
6846 write_data = bld.tmp(RegClass(RegType::vgpr, count * elem_size_bytes / 4));
6847 vec->definitions[0] = Definition(write_data);
6848 ctx->block->instructions.emplace_back(std::move(vec));
6849 } else {
6850 write_data = data;
6851 }
6852
6853 aco_opcode op;
6854 switch (num_bytes) {
6855 case 4:
6856 op = aco_opcode::buffer_store_dword;
6857 break;
6858 case 8:
6859 op = aco_opcode::buffer_store_dwordx2;
6860 break;
6861 case 12:
6862 op = aco_opcode::buffer_store_dwordx3;
6863 break;
6864 case 16:
6865 op = aco_opcode::buffer_store_dwordx4;
6866 break;
6867 default:
6868 unreachable("Invalid data size for nir_intrinsic_store_scratch.");
6869 }
6870
6871 bld.mubuf(op, rsrc, offset, ctx->program->scratch_offset, write_data, start * elem_size_bytes, true);
6872 }
6873 }
6874
6875 void visit_load_sample_mask_in(isel_context *ctx, nir_intrinsic_instr *instr) {
6876 uint8_t log2_ps_iter_samples;
6877 if (ctx->program->info->ps.force_persample) {
6878 log2_ps_iter_samples =
6879 util_logbase2(ctx->options->key.fs.num_samples);
6880 } else {
6881 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
6882 }
6883
6884 /* The bit pattern matches that used by fixed function fragment
6885 * processing. */
6886 static const unsigned ps_iter_masks[] = {
6887 0xffff, /* not used */
6888 0x5555,
6889 0x1111,
6890 0x0101,
6891 0x0001,
6892 };
6893 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
6894
6895 Builder bld(ctx->program, ctx->block);
6896
6897 Temp sample_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
6898 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
6899 Temp ps_iter_mask = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(ps_iter_masks[log2_ps_iter_samples]));
6900 Temp mask = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), sample_id, ps_iter_mask);
6901 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
6902 bld.vop2(aco_opcode::v_and_b32, Definition(dst), mask, get_arg(ctx, ctx->args->ac.sample_coverage));
6903 }
6904
6905 void visit_emit_vertex_with_counter(isel_context *ctx, nir_intrinsic_instr *instr) {
6906 Builder bld(ctx->program, ctx->block);
6907
6908 unsigned stream = nir_intrinsic_stream_id(instr);
6909 Temp next_vertex = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
6910 next_vertex = bld.v_mul_imm(bld.def(v1), next_vertex, 4u);
6911 nir_const_value *next_vertex_cv = nir_src_as_const_value(instr->src[0]);
6912
6913 /* get GSVS ring */
6914 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_GSVS_GS * 16u));
6915
6916 unsigned num_components =
6917 ctx->program->info->gs.num_stream_output_components[stream];
6918 assert(num_components);
6919
6920 unsigned stride = 4u * num_components * ctx->shader->info.gs.vertices_out;
6921 unsigned stream_offset = 0;
6922 for (unsigned i = 0; i < stream; i++) {
6923 unsigned prev_stride = 4u * ctx->program->info->gs.num_stream_output_components[i] * ctx->shader->info.gs.vertices_out;
6924 stream_offset += prev_stride * ctx->program->wave_size;
6925 }
6926
6927 /* Limit on the stride field for <= GFX7. */
6928 assert(stride < (1 << 14));
6929
6930 Temp gsvs_dwords[4];
6931 for (unsigned i = 0; i < 4; i++)
6932 gsvs_dwords[i] = bld.tmp(s1);
6933 bld.pseudo(aco_opcode::p_split_vector,
6934 Definition(gsvs_dwords[0]),
6935 Definition(gsvs_dwords[1]),
6936 Definition(gsvs_dwords[2]),
6937 Definition(gsvs_dwords[3]),
6938 gsvs_ring);
6939
6940 if (stream_offset) {
6941 Temp stream_offset_tmp = bld.copy(bld.def(s1), Operand(stream_offset));
6942
6943 Temp carry = bld.tmp(s1);
6944 gsvs_dwords[0] = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.scc(Definition(carry)), gsvs_dwords[0], stream_offset_tmp);
6945 gsvs_dwords[1] = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(0u), bld.scc(carry));
6946 }
6947
6948 gsvs_dwords[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), gsvs_dwords[1], Operand(S_008F04_STRIDE(stride)));
6949 gsvs_dwords[2] = bld.copy(bld.def(s1), Operand((uint32_t)ctx->program->wave_size));
6950
6951 gsvs_ring = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
6952 gsvs_dwords[0], gsvs_dwords[1], gsvs_dwords[2], gsvs_dwords[3]);
6953
6954 unsigned offset = 0;
6955 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; i++) {
6956 if (ctx->program->info->gs.output_streams[i] != stream)
6957 continue;
6958
6959 for (unsigned j = 0; j < 4; j++) {
6960 if (!(ctx->program->info->gs.output_usage_mask[i] & (1 << j)))
6961 continue;
6962
6963 if (ctx->outputs.mask[i] & (1 << j)) {
6964 Operand vaddr_offset = next_vertex_cv ? Operand(v1) : Operand(next_vertex);
6965 unsigned const_offset = (offset + (next_vertex_cv ? next_vertex_cv->u32 : 0u)) * 4u;
6966 if (const_offset >= 4096u) {
6967 if (vaddr_offset.isUndefined())
6968 vaddr_offset = bld.copy(bld.def(v1), Operand(const_offset / 4096u * 4096u));
6969 else
6970 vaddr_offset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), vaddr_offset);
6971 const_offset %= 4096u;
6972 }
6973
6974 aco_ptr<MTBUF_instruction> mtbuf{create_instruction<MTBUF_instruction>(aco_opcode::tbuffer_store_format_x, Format::MTBUF, 4, 0)};
6975 mtbuf->operands[0] = Operand(gsvs_ring);
6976 mtbuf->operands[1] = vaddr_offset;
6977 mtbuf->operands[2] = Operand(get_arg(ctx, ctx->args->gs2vs_offset));
6978 mtbuf->operands[3] = Operand(ctx->outputs.temps[i * 4u + j]);
6979 mtbuf->offen = !vaddr_offset.isUndefined();
6980 mtbuf->dfmt = V_008F0C_BUF_DATA_FORMAT_32;
6981 mtbuf->nfmt = V_008F0C_BUF_NUM_FORMAT_UINT;
6982 mtbuf->offset = const_offset;
6983 mtbuf->glc = true;
6984 mtbuf->slc = true;
6985 mtbuf->barrier = barrier_gs_data;
6986 mtbuf->can_reorder = true;
6987 bld.insert(std::move(mtbuf));
6988 }
6989
6990 offset += ctx->shader->info.gs.vertices_out;
6991 }
6992
6993 /* outputs for the next vertex are undefined and keeping them around can
6994 * create invalid IR with control flow */
6995 ctx->outputs.mask[i] = 0;
6996 }
6997
6998 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(false, true, stream));
6999 }
7000
7001 Temp emit_boolean_reduce(isel_context *ctx, nir_op op, unsigned cluster_size, Temp src)
7002 {
7003 Builder bld(ctx->program, ctx->block);
7004
7005 if (cluster_size == 1) {
7006 return src;
7007 } if (op == nir_op_iand && cluster_size == 4) {
7008 //subgroupClusteredAnd(val, 4) -> ~wqm(exec & ~val)
7009 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7010 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc),
7011 bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc), tmp));
7012 } else if (op == nir_op_ior && cluster_size == 4) {
7013 //subgroupClusteredOr(val, 4) -> wqm(val & exec)
7014 return bld.sop1(Builder::s_wqm, bld.def(bld.lm), bld.def(s1, scc),
7015 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)));
7016 } else if (op == nir_op_iand && cluster_size == ctx->program->wave_size) {
7017 //subgroupAnd(val) -> (exec & ~val) == 0
7018 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7019 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7020 return bld.sop1(Builder::s_not, bld.def(bld.lm), bld.def(s1, scc), cond);
7021 } else if (op == nir_op_ior && cluster_size == ctx->program->wave_size) {
7022 //subgroupOr(val) -> (val & exec) != 0
7023 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm)).def(1).getTemp();
7024 return bool_to_vector_condition(ctx, tmp);
7025 } else if (op == nir_op_ixor && cluster_size == ctx->program->wave_size) {
7026 //subgroupXor(val) -> s_bcnt1_i32_b64(val & exec) & 1
7027 Temp tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7028 tmp = bld.sop1(Builder::s_bcnt1_i32, bld.def(s1), bld.def(s1, scc), tmp);
7029 tmp = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), tmp, Operand(1u)).def(1).getTemp();
7030 return bool_to_vector_condition(ctx, tmp);
7031 } else {
7032 //subgroupClustered{And,Or,Xor}(val, n) ->
7033 //lane_id = v_mbcnt_hi_u32_b32(-1, v_mbcnt_lo_u32_b32(-1, 0)) ; just v_mbcnt_lo_u32_b32 on wave32
7034 //cluster_offset = ~(n - 1) & lane_id
7035 //cluster_mask = ((1 << n) - 1)
7036 //subgroupClusteredAnd():
7037 // return ((val | ~exec) >> cluster_offset) & cluster_mask == cluster_mask
7038 //subgroupClusteredOr():
7039 // return ((val & exec) >> cluster_offset) & cluster_mask != 0
7040 //subgroupClusteredXor():
7041 // return v_bnt_u32_b32(((val & exec) >> cluster_offset) & cluster_mask, 0) & 1 != 0
7042 Temp lane_id = emit_mbcnt(ctx, bld.def(v1));
7043 Temp cluster_offset = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(~uint32_t(cluster_size - 1)), lane_id);
7044
7045 Temp tmp;
7046 if (op == nir_op_iand)
7047 tmp = bld.sop2(Builder::s_orn2, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7048 else
7049 tmp = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7050
7051 uint32_t cluster_mask = cluster_size == 32 ? -1 : (1u << cluster_size) - 1u;
7052
7053 if (ctx->program->chip_class <= GFX7)
7054 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), tmp, cluster_offset);
7055 else if (ctx->program->wave_size == 64)
7056 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), cluster_offset, tmp);
7057 else
7058 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), cluster_offset, tmp);
7059 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7060 if (cluster_mask != 0xffffffff)
7061 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(cluster_mask), tmp);
7062
7063 Definition cmp_def = Definition();
7064 if (op == nir_op_iand) {
7065 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(cluster_mask), tmp).def(0);
7066 } else if (op == nir_op_ior) {
7067 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7068 } else if (op == nir_op_ixor) {
7069 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u),
7070 bld.vop3(aco_opcode::v_bcnt_u32_b32, bld.def(v1), tmp, Operand(0u)));
7071 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp).def(0);
7072 }
7073 cmp_def.setHint(vcc);
7074 return cmp_def.getTemp();
7075 }
7076 }
7077
7078 Temp emit_boolean_exclusive_scan(isel_context *ctx, nir_op op, Temp src)
7079 {
7080 Builder bld(ctx->program, ctx->block);
7081
7082 //subgroupExclusiveAnd(val) -> mbcnt(exec & ~val) == 0
7083 //subgroupExclusiveOr(val) -> mbcnt(val & exec) != 0
7084 //subgroupExclusiveXor(val) -> mbcnt(val & exec) & 1 != 0
7085 Temp tmp;
7086 if (op == nir_op_iand)
7087 tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src);
7088 else
7089 tmp = bld.sop2(Builder::s_and, bld.def(s2), bld.def(s1, scc), src, Operand(exec, bld.lm));
7090
7091 Builder::Result lohi = bld.pseudo(aco_opcode::p_split_vector, bld.def(s1), bld.def(s1), tmp);
7092 Temp lo = lohi.def(0).getTemp();
7093 Temp hi = lohi.def(1).getTemp();
7094 Temp mbcnt = emit_mbcnt(ctx, bld.def(v1), Operand(lo), Operand(hi));
7095
7096 Definition cmp_def = Definition();
7097 if (op == nir_op_iand)
7098 cmp_def = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7099 else if (op == nir_op_ior)
7100 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), mbcnt).def(0);
7101 else if (op == nir_op_ixor)
7102 cmp_def = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u),
7103 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), mbcnt)).def(0);
7104 cmp_def.setHint(vcc);
7105 return cmp_def.getTemp();
7106 }
7107
7108 Temp emit_boolean_inclusive_scan(isel_context *ctx, nir_op op, Temp src)
7109 {
7110 Builder bld(ctx->program, ctx->block);
7111
7112 //subgroupInclusiveAnd(val) -> subgroupExclusiveAnd(val) && val
7113 //subgroupInclusiveOr(val) -> subgroupExclusiveOr(val) || val
7114 //subgroupInclusiveXor(val) -> subgroupExclusiveXor(val) ^^ val
7115 Temp tmp = emit_boolean_exclusive_scan(ctx, op, src);
7116 if (op == nir_op_iand)
7117 return bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7118 else if (op == nir_op_ior)
7119 return bld.sop2(Builder::s_or, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7120 else if (op == nir_op_ixor)
7121 return bld.sop2(Builder::s_xor, bld.def(bld.lm), bld.def(s1, scc), tmp, src);
7122
7123 assert(false);
7124 return Temp();
7125 }
7126
7127 void emit_uniform_subgroup(isel_context *ctx, nir_intrinsic_instr *instr, Temp src)
7128 {
7129 Builder bld(ctx->program, ctx->block);
7130 Definition dst(get_ssa_temp(ctx, &instr->dest.ssa));
7131 if (src.regClass().type() == RegType::vgpr) {
7132 bld.pseudo(aco_opcode::p_as_uniform, dst, src);
7133 } else if (src.regClass() == s1) {
7134 bld.sop1(aco_opcode::s_mov_b32, dst, src);
7135 } else if (src.regClass() == s2) {
7136 bld.sop1(aco_opcode::s_mov_b64, dst, src);
7137 } else {
7138 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7139 nir_print_instr(&instr->instr, stderr);
7140 fprintf(stderr, "\n");
7141 }
7142 }
7143
7144 void emit_interp_center(isel_context *ctx, Temp dst, Temp pos1, Temp pos2)
7145 {
7146 Builder bld(ctx->program, ctx->block);
7147 Temp persp_center = get_arg(ctx, ctx->args->ac.persp_center);
7148 Temp p1 = emit_extract_vector(ctx, persp_center, 0, v1);
7149 Temp p2 = emit_extract_vector(ctx, persp_center, 1, v1);
7150
7151 Temp ddx_1, ddx_2, ddy_1, ddy_2;
7152 uint32_t dpp_ctrl0 = dpp_quad_perm(0, 0, 0, 0);
7153 uint32_t dpp_ctrl1 = dpp_quad_perm(1, 1, 1, 1);
7154 uint32_t dpp_ctrl2 = dpp_quad_perm(2, 2, 2, 2);
7155
7156 /* Build DD X/Y */
7157 if (ctx->program->chip_class >= GFX8) {
7158 Temp tl_1 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p1, dpp_ctrl0);
7159 ddx_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl1);
7160 ddy_1 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p1, tl_1, dpp_ctrl2);
7161 Temp tl_2 = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), p2, dpp_ctrl0);
7162 ddx_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl1);
7163 ddy_2 = bld.vop2_dpp(aco_opcode::v_sub_f32, bld.def(v1), p2, tl_2, dpp_ctrl2);
7164 } else {
7165 Temp tl_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl0);
7166 ddx_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl1);
7167 ddx_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_1, tl_1);
7168 ddx_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p1, (1 << 15) | dpp_ctrl2);
7169 ddx_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddx_2, tl_1);
7170 Temp tl_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl0);
7171 ddy_1 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl1);
7172 ddy_1 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_1, tl_2);
7173 ddy_2 = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), p2, (1 << 15) | dpp_ctrl2);
7174 ddy_2 = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), ddy_2, tl_2);
7175 }
7176
7177 /* res_k = p_k + ddx_k * pos1 + ddy_k * pos2 */
7178 Temp tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_1, pos1, p1);
7179 Temp tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddx_2, pos1, p2);
7180 tmp1 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_1, pos2, tmp1);
7181 tmp2 = bld.vop3(aco_opcode::v_mad_f32, bld.def(v1), ddy_2, pos2, tmp2);
7182 Temp wqm1 = bld.tmp(v1);
7183 emit_wqm(ctx, tmp1, wqm1, true);
7184 Temp wqm2 = bld.tmp(v1);
7185 emit_wqm(ctx, tmp2, wqm2, true);
7186 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), wqm1, wqm2);
7187 return;
7188 }
7189
7190 void visit_intrinsic(isel_context *ctx, nir_intrinsic_instr *instr)
7191 {
7192 Builder bld(ctx->program, ctx->block);
7193 switch(instr->intrinsic) {
7194 case nir_intrinsic_load_barycentric_sample:
7195 case nir_intrinsic_load_barycentric_pixel:
7196 case nir_intrinsic_load_barycentric_centroid: {
7197 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(instr);
7198 Temp bary = Temp(0, s2);
7199 switch (mode) {
7200 case INTERP_MODE_SMOOTH:
7201 case INTERP_MODE_NONE:
7202 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7203 bary = get_arg(ctx, ctx->args->ac.persp_center);
7204 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7205 bary = ctx->persp_centroid;
7206 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7207 bary = get_arg(ctx, ctx->args->ac.persp_sample);
7208 break;
7209 case INTERP_MODE_NOPERSPECTIVE:
7210 if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel)
7211 bary = get_arg(ctx, ctx->args->ac.linear_center);
7212 else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
7213 bary = ctx->linear_centroid;
7214 else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
7215 bary = get_arg(ctx, ctx->args->ac.linear_sample);
7216 break;
7217 default:
7218 break;
7219 }
7220 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7221 Temp p1 = emit_extract_vector(ctx, bary, 0, v1);
7222 Temp p2 = emit_extract_vector(ctx, bary, 1, v1);
7223 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7224 Operand(p1), Operand(p2));
7225 emit_split_vector(ctx, dst, 2);
7226 break;
7227 }
7228 case nir_intrinsic_load_barycentric_model: {
7229 Temp model = get_arg(ctx, ctx->args->ac.pull_model);
7230
7231 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7232 Temp p1 = emit_extract_vector(ctx, model, 0, v1);
7233 Temp p2 = emit_extract_vector(ctx, model, 1, v1);
7234 Temp p3 = emit_extract_vector(ctx, model, 2, v1);
7235 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7236 Operand(p1), Operand(p2), Operand(p3));
7237 emit_split_vector(ctx, dst, 3);
7238 break;
7239 }
7240 case nir_intrinsic_load_barycentric_at_sample: {
7241 uint32_t sample_pos_offset = RING_PS_SAMPLE_POSITIONS * 16;
7242 switch (ctx->options->key.fs.num_samples) {
7243 case 2: sample_pos_offset += 1 << 3; break;
7244 case 4: sample_pos_offset += 3 << 3; break;
7245 case 8: sample_pos_offset += 7 << 3; break;
7246 default: break;
7247 }
7248 Temp sample_pos;
7249 Temp addr = get_ssa_temp(ctx, instr->src[0].ssa);
7250 nir_const_value* const_addr = nir_src_as_const_value(instr->src[0]);
7251 Temp private_segment_buffer = ctx->program->private_segment_buffer;
7252 if (addr.type() == RegType::sgpr) {
7253 Operand offset;
7254 if (const_addr) {
7255 sample_pos_offset += const_addr->u32 << 3;
7256 offset = Operand(sample_pos_offset);
7257 } else if (ctx->options->chip_class >= GFX9) {
7258 offset = bld.sop2(aco_opcode::s_lshl3_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7259 } else {
7260 offset = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), addr, Operand(3u));
7261 offset = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), bld.def(s1, scc), addr, Operand(sample_pos_offset));
7262 }
7263
7264 Operand off = bld.copy(bld.def(s1), Operand(offset));
7265 sample_pos = bld.smem(aco_opcode::s_load_dwordx2, bld.def(s2), private_segment_buffer, off);
7266
7267 } else if (ctx->options->chip_class >= GFX9) {
7268 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7269 sample_pos = bld.global(aco_opcode::global_load_dwordx2, bld.def(v2), addr, private_segment_buffer, sample_pos_offset);
7270 } else if (ctx->options->chip_class >= GFX7) {
7271 /* addr += private_segment_buffer + sample_pos_offset */
7272 Temp tmp0 = bld.tmp(s1);
7273 Temp tmp1 = bld.tmp(s1);
7274 bld.pseudo(aco_opcode::p_split_vector, Definition(tmp0), Definition(tmp1), private_segment_buffer);
7275 Definition scc_tmp = bld.def(s1, scc);
7276 tmp0 = bld.sop2(aco_opcode::s_add_u32, bld.def(s1), scc_tmp, tmp0, Operand(sample_pos_offset));
7277 tmp1 = bld.sop2(aco_opcode::s_addc_u32, bld.def(s1), bld.def(s1, scc), tmp1, Operand(0u), bld.scc(scc_tmp.getTemp()));
7278 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7279 Temp pck0 = bld.tmp(v1);
7280 Temp carry = bld.vadd32(Definition(pck0), tmp0, addr, true).def(1).getTemp();
7281 tmp1 = as_vgpr(ctx, tmp1);
7282 Temp pck1 = bld.vop2_e64(aco_opcode::v_addc_co_u32, bld.def(v1), bld.hint_vcc(bld.def(bld.lm)), tmp1, Operand(0u), carry);
7283 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), pck0, pck1);
7284
7285 /* sample_pos = flat_load_dwordx2 addr */
7286 sample_pos = bld.flat(aco_opcode::flat_load_dwordx2, bld.def(v2), addr, Operand(s1));
7287 } else {
7288 assert(ctx->options->chip_class == GFX6);
7289
7290 uint32_t rsrc_conf = S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
7291 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
7292 Temp rsrc = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4), private_segment_buffer, Operand(0u), Operand(rsrc_conf));
7293
7294 addr = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(3u), addr);
7295 addr = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), addr, Operand(0u));
7296
7297 sample_pos = bld.tmp(v2);
7298
7299 aco_ptr<MUBUF_instruction> load{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dwordx2, Format::MUBUF, 3, 1)};
7300 load->definitions[0] = Definition(sample_pos);
7301 load->operands[0] = Operand(rsrc);
7302 load->operands[1] = Operand(addr);
7303 load->operands[2] = Operand(0u);
7304 load->offset = sample_pos_offset;
7305 load->offen = 0;
7306 load->addr64 = true;
7307 load->glc = false;
7308 load->dlc = false;
7309 load->disable_wqm = false;
7310 load->barrier = barrier_none;
7311 load->can_reorder = true;
7312 ctx->block->instructions.emplace_back(std::move(load));
7313 }
7314
7315 /* sample_pos -= 0.5 */
7316 Temp pos1 = bld.tmp(RegClass(sample_pos.type(), 1));
7317 Temp pos2 = bld.tmp(RegClass(sample_pos.type(), 1));
7318 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), sample_pos);
7319 pos1 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos1, Operand(0x3f000000u));
7320 pos2 = bld.vop2_e64(aco_opcode::v_sub_f32, bld.def(v1), pos2, Operand(0x3f000000u));
7321
7322 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7323 break;
7324 }
7325 case nir_intrinsic_load_barycentric_at_offset: {
7326 Temp offset = get_ssa_temp(ctx, instr->src[0].ssa);
7327 RegClass rc = RegClass(offset.type(), 1);
7328 Temp pos1 = bld.tmp(rc), pos2 = bld.tmp(rc);
7329 bld.pseudo(aco_opcode::p_split_vector, Definition(pos1), Definition(pos2), offset);
7330 emit_interp_center(ctx, get_ssa_temp(ctx, &instr->dest.ssa), pos1, pos2);
7331 break;
7332 }
7333 case nir_intrinsic_load_front_face: {
7334 bld.vopc(aco_opcode::v_cmp_lg_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7335 Operand(0u), get_arg(ctx, ctx->args->ac.front_face)).def(0).setHint(vcc);
7336 break;
7337 }
7338 case nir_intrinsic_load_view_index: {
7339 if (ctx->stage & (sw_vs | sw_gs | sw_tcs | sw_tes)) {
7340 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7341 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.view_index)));
7342 break;
7343 }
7344
7345 /* fallthrough */
7346 }
7347 case nir_intrinsic_load_layer_id: {
7348 unsigned idx = nir_intrinsic_base(instr);
7349 bld.vintrp(aco_opcode::v_interp_mov_f32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7350 Operand(2u), bld.m0(get_arg(ctx, ctx->args->ac.prim_mask)), idx, 0);
7351 break;
7352 }
7353 case nir_intrinsic_load_frag_coord: {
7354 emit_load_frag_coord(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 4);
7355 break;
7356 }
7357 case nir_intrinsic_load_sample_pos: {
7358 Temp posx = get_arg(ctx, ctx->args->ac.frag_pos[0]);
7359 Temp posy = get_arg(ctx, ctx->args->ac.frag_pos[1]);
7360 bld.pseudo(aco_opcode::p_create_vector, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7361 posx.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posx) : Operand(0u),
7362 posy.id() ? bld.vop1(aco_opcode::v_fract_f32, bld.def(v1), posy) : Operand(0u));
7363 break;
7364 }
7365 case nir_intrinsic_load_tess_coord:
7366 visit_load_tess_coord(ctx, instr);
7367 break;
7368 case nir_intrinsic_load_interpolated_input:
7369 visit_load_interpolated_input(ctx, instr);
7370 break;
7371 case nir_intrinsic_store_output:
7372 visit_store_output(ctx, instr);
7373 break;
7374 case nir_intrinsic_load_input:
7375 case nir_intrinsic_load_input_vertex:
7376 visit_load_input(ctx, instr);
7377 break;
7378 case nir_intrinsic_load_output:
7379 visit_load_output(ctx, instr);
7380 break;
7381 case nir_intrinsic_load_per_vertex_input:
7382 visit_load_per_vertex_input(ctx, instr);
7383 break;
7384 case nir_intrinsic_load_per_vertex_output:
7385 visit_load_per_vertex_output(ctx, instr);
7386 break;
7387 case nir_intrinsic_store_per_vertex_output:
7388 visit_store_per_vertex_output(ctx, instr);
7389 break;
7390 case nir_intrinsic_load_ubo:
7391 visit_load_ubo(ctx, instr);
7392 break;
7393 case nir_intrinsic_load_push_constant:
7394 visit_load_push_constant(ctx, instr);
7395 break;
7396 case nir_intrinsic_load_constant:
7397 visit_load_constant(ctx, instr);
7398 break;
7399 case nir_intrinsic_vulkan_resource_index:
7400 visit_load_resource(ctx, instr);
7401 break;
7402 case nir_intrinsic_discard:
7403 visit_discard(ctx, instr);
7404 break;
7405 case nir_intrinsic_discard_if:
7406 visit_discard_if(ctx, instr);
7407 break;
7408 case nir_intrinsic_load_shared:
7409 visit_load_shared(ctx, instr);
7410 break;
7411 case nir_intrinsic_store_shared:
7412 visit_store_shared(ctx, instr);
7413 break;
7414 case nir_intrinsic_shared_atomic_add:
7415 case nir_intrinsic_shared_atomic_imin:
7416 case nir_intrinsic_shared_atomic_umin:
7417 case nir_intrinsic_shared_atomic_imax:
7418 case nir_intrinsic_shared_atomic_umax:
7419 case nir_intrinsic_shared_atomic_and:
7420 case nir_intrinsic_shared_atomic_or:
7421 case nir_intrinsic_shared_atomic_xor:
7422 case nir_intrinsic_shared_atomic_exchange:
7423 case nir_intrinsic_shared_atomic_comp_swap:
7424 visit_shared_atomic(ctx, instr);
7425 break;
7426 case nir_intrinsic_image_deref_load:
7427 visit_image_load(ctx, instr);
7428 break;
7429 case nir_intrinsic_image_deref_store:
7430 visit_image_store(ctx, instr);
7431 break;
7432 case nir_intrinsic_image_deref_atomic_add:
7433 case nir_intrinsic_image_deref_atomic_umin:
7434 case nir_intrinsic_image_deref_atomic_imin:
7435 case nir_intrinsic_image_deref_atomic_umax:
7436 case nir_intrinsic_image_deref_atomic_imax:
7437 case nir_intrinsic_image_deref_atomic_and:
7438 case nir_intrinsic_image_deref_atomic_or:
7439 case nir_intrinsic_image_deref_atomic_xor:
7440 case nir_intrinsic_image_deref_atomic_exchange:
7441 case nir_intrinsic_image_deref_atomic_comp_swap:
7442 visit_image_atomic(ctx, instr);
7443 break;
7444 case nir_intrinsic_image_deref_size:
7445 visit_image_size(ctx, instr);
7446 break;
7447 case nir_intrinsic_load_ssbo:
7448 visit_load_ssbo(ctx, instr);
7449 break;
7450 case nir_intrinsic_store_ssbo:
7451 visit_store_ssbo(ctx, instr);
7452 break;
7453 case nir_intrinsic_load_global:
7454 visit_load_global(ctx, instr);
7455 break;
7456 case nir_intrinsic_store_global:
7457 visit_store_global(ctx, instr);
7458 break;
7459 case nir_intrinsic_global_atomic_add:
7460 case nir_intrinsic_global_atomic_imin:
7461 case nir_intrinsic_global_atomic_umin:
7462 case nir_intrinsic_global_atomic_imax:
7463 case nir_intrinsic_global_atomic_umax:
7464 case nir_intrinsic_global_atomic_and:
7465 case nir_intrinsic_global_atomic_or:
7466 case nir_intrinsic_global_atomic_xor:
7467 case nir_intrinsic_global_atomic_exchange:
7468 case nir_intrinsic_global_atomic_comp_swap:
7469 visit_global_atomic(ctx, instr);
7470 break;
7471 case nir_intrinsic_ssbo_atomic_add:
7472 case nir_intrinsic_ssbo_atomic_imin:
7473 case nir_intrinsic_ssbo_atomic_umin:
7474 case nir_intrinsic_ssbo_atomic_imax:
7475 case nir_intrinsic_ssbo_atomic_umax:
7476 case nir_intrinsic_ssbo_atomic_and:
7477 case nir_intrinsic_ssbo_atomic_or:
7478 case nir_intrinsic_ssbo_atomic_xor:
7479 case nir_intrinsic_ssbo_atomic_exchange:
7480 case nir_intrinsic_ssbo_atomic_comp_swap:
7481 visit_atomic_ssbo(ctx, instr);
7482 break;
7483 case nir_intrinsic_load_scratch:
7484 visit_load_scratch(ctx, instr);
7485 break;
7486 case nir_intrinsic_store_scratch:
7487 visit_store_scratch(ctx, instr);
7488 break;
7489 case nir_intrinsic_get_buffer_size:
7490 visit_get_buffer_size(ctx, instr);
7491 break;
7492 case nir_intrinsic_control_barrier: {
7493 if (ctx->program->chip_class == GFX6 && ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
7494 /* GFX6 only (thanks to a hw bug workaround):
7495 * The real barrier instruction isn’t needed, because an entire patch
7496 * always fits into a single wave.
7497 */
7498 break;
7499 }
7500
7501 if (ctx->program->workgroup_size > ctx->program->wave_size)
7502 bld.sopp(aco_opcode::s_barrier);
7503
7504 break;
7505 }
7506 case nir_intrinsic_memory_barrier_tcs_patch:
7507 case nir_intrinsic_group_memory_barrier:
7508 case nir_intrinsic_memory_barrier:
7509 case nir_intrinsic_memory_barrier_buffer:
7510 case nir_intrinsic_memory_barrier_image:
7511 case nir_intrinsic_memory_barrier_shared:
7512 emit_memory_barrier(ctx, instr);
7513 break;
7514 case nir_intrinsic_load_num_work_groups: {
7515 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7516 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.num_work_groups)));
7517 emit_split_vector(ctx, dst, 3);
7518 break;
7519 }
7520 case nir_intrinsic_load_local_invocation_id: {
7521 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7522 bld.copy(Definition(dst), Operand(get_arg(ctx, ctx->args->ac.local_invocation_ids)));
7523 emit_split_vector(ctx, dst, 3);
7524 break;
7525 }
7526 case nir_intrinsic_load_work_group_id: {
7527 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7528 struct ac_arg *args = ctx->args->ac.workgroup_ids;
7529 bld.pseudo(aco_opcode::p_create_vector, Definition(dst),
7530 args[0].used ? Operand(get_arg(ctx, args[0])) : Operand(0u),
7531 args[1].used ? Operand(get_arg(ctx, args[1])) : Operand(0u),
7532 args[2].used ? Operand(get_arg(ctx, args[2])) : Operand(0u));
7533 emit_split_vector(ctx, dst, 3);
7534 break;
7535 }
7536 case nir_intrinsic_load_local_invocation_index: {
7537 Temp id = emit_mbcnt(ctx, bld.def(v1));
7538
7539 /* The tg_size bits [6:11] contain the subgroup id,
7540 * we need this multiplied by the wave size, and then OR the thread id to it.
7541 */
7542 if (ctx->program->wave_size == 64) {
7543 /* After the s_and the bits are already multiplied by 64 (left shifted by 6) so we can just feed that to v_or */
7544 Temp tg_num = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), Operand(0xfc0u),
7545 get_arg(ctx, ctx->args->ac.tg_size));
7546 bld.vop2(aco_opcode::v_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, id);
7547 } else {
7548 /* Extract the bit field and multiply the result by 32 (left shift by 5), then do the OR */
7549 Temp tg_num = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
7550 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7551 bld.vop3(aco_opcode::v_lshl_or_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), tg_num, Operand(0x5u), id);
7552 }
7553 break;
7554 }
7555 case nir_intrinsic_load_subgroup_id: {
7556 if (ctx->stage == compute_cs) {
7557 bld.sop2(aco_opcode::s_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc),
7558 get_arg(ctx, ctx->args->ac.tg_size), Operand(0x6u | (0x6u << 16)));
7559 } else {
7560 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x0u));
7561 }
7562 break;
7563 }
7564 case nir_intrinsic_load_subgroup_invocation: {
7565 emit_mbcnt(ctx, Definition(get_ssa_temp(ctx, &instr->dest.ssa)));
7566 break;
7567 }
7568 case nir_intrinsic_load_num_subgroups: {
7569 if (ctx->stage == compute_cs)
7570 bld.sop2(aco_opcode::s_and_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), bld.def(s1, scc), Operand(0x3fu),
7571 get_arg(ctx, ctx->args->ac.tg_size));
7572 else
7573 bld.sop1(aco_opcode::s_mov_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), Operand(0x1u));
7574 break;
7575 }
7576 case nir_intrinsic_ballot: {
7577 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7578 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7579 Definition tmp = bld.def(dst.regClass());
7580 Definition lanemask_tmp = dst.size() == bld.lm.size() ? tmp : bld.def(src.regClass());
7581 if (instr->src[0].ssa->bit_size == 1) {
7582 assert(src.regClass() == bld.lm);
7583 bld.sop2(Builder::s_and, lanemask_tmp, bld.def(s1, scc), Operand(exec, bld.lm), src);
7584 } else if (instr->src[0].ssa->bit_size == 32 && src.regClass() == v1) {
7585 bld.vopc(aco_opcode::v_cmp_lg_u32, lanemask_tmp, Operand(0u), src);
7586 } else if (instr->src[0].ssa->bit_size == 64 && src.regClass() == v2) {
7587 bld.vopc(aco_opcode::v_cmp_lg_u64, lanemask_tmp, Operand(0u), src);
7588 } else {
7589 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7590 nir_print_instr(&instr->instr, stderr);
7591 fprintf(stderr, "\n");
7592 }
7593 if (dst.size() != bld.lm.size()) {
7594 /* Wave32 with ballot size set to 64 */
7595 bld.pseudo(aco_opcode::p_create_vector, Definition(tmp), lanemask_tmp.getTemp(), Operand(0u));
7596 }
7597 emit_wqm(ctx, tmp.getTemp(), dst);
7598 break;
7599 }
7600 case nir_intrinsic_shuffle:
7601 case nir_intrinsic_read_invocation: {
7602 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7603 if (!ctx->divergent_vals[instr->src[0].ssa->index]) {
7604 emit_uniform_subgroup(ctx, instr, src);
7605 } else {
7606 Temp tid = get_ssa_temp(ctx, instr->src[1].ssa);
7607 if (instr->intrinsic == nir_intrinsic_read_invocation || !ctx->divergent_vals[instr->src[1].ssa->index])
7608 tid = bld.as_uniform(tid);
7609 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7610 if (src.regClass() == v1) {
7611 emit_wqm(ctx, emit_bpermute(ctx, bld, tid, src), dst);
7612 } else if (src.regClass() == v2) {
7613 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7614 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7615 lo = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, lo));
7616 hi = emit_wqm(ctx, emit_bpermute(ctx, bld, tid, hi));
7617 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7618 emit_split_vector(ctx, dst, 2);
7619 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == s1) {
7620 assert(src.regClass() == bld.lm);
7621 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src, tid);
7622 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7623 } else if (instr->dest.ssa.bit_size == 1 && tid.regClass() == v1) {
7624 assert(src.regClass() == bld.lm);
7625 Temp tmp;
7626 if (ctx->program->chip_class <= GFX7)
7627 tmp = bld.vop3(aco_opcode::v_lshr_b64, bld.def(v2), src, tid);
7628 else if (ctx->program->wave_size == 64)
7629 tmp = bld.vop3(aco_opcode::v_lshrrev_b64, bld.def(v2), tid, src);
7630 else
7631 tmp = bld.vop2_e64(aco_opcode::v_lshrrev_b32, bld.def(v1), tid, src);
7632 tmp = emit_extract_vector(ctx, tmp, 0, v1);
7633 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(1u), tmp);
7634 emit_wqm(ctx, bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), tmp), dst);
7635 } else {
7636 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7637 nir_print_instr(&instr->instr, stderr);
7638 fprintf(stderr, "\n");
7639 }
7640 }
7641 break;
7642 }
7643 case nir_intrinsic_load_sample_id: {
7644 bld.vop3(aco_opcode::v_bfe_u32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
7645 get_arg(ctx, ctx->args->ac.ancillary), Operand(8u), Operand(4u));
7646 break;
7647 }
7648 case nir_intrinsic_load_sample_mask_in: {
7649 visit_load_sample_mask_in(ctx, instr);
7650 break;
7651 }
7652 case nir_intrinsic_read_first_invocation: {
7653 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7654 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7655 if (src.regClass() == v1) {
7656 emit_wqm(ctx,
7657 bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), src),
7658 dst);
7659 } else if (src.regClass() == v2) {
7660 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7661 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7662 lo = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), lo));
7663 hi = emit_wqm(ctx, bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1), hi));
7664 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7665 emit_split_vector(ctx, dst, 2);
7666 } else if (instr->dest.ssa.bit_size == 1) {
7667 assert(src.regClass() == bld.lm);
7668 Temp tmp = bld.sopc(Builder::s_bitcmp1, bld.def(s1, scc), src,
7669 bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)));
7670 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7671 } else if (src.regClass() == s1) {
7672 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), src);
7673 } else if (src.regClass() == s2) {
7674 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), src);
7675 } else {
7676 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7677 nir_print_instr(&instr->instr, stderr);
7678 fprintf(stderr, "\n");
7679 }
7680 break;
7681 }
7682 case nir_intrinsic_vote_all: {
7683 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7684 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7685 assert(src.regClass() == bld.lm);
7686 assert(dst.regClass() == bld.lm);
7687
7688 Temp tmp = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), Operand(exec, bld.lm), src).def(1).getTemp();
7689 Temp cond = bool_to_vector_condition(ctx, emit_wqm(ctx, tmp));
7690 bld.sop1(Builder::s_not, Definition(dst), bld.def(s1, scc), cond);
7691 break;
7692 }
7693 case nir_intrinsic_vote_any: {
7694 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7695 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7696 assert(src.regClass() == bld.lm);
7697 assert(dst.regClass() == bld.lm);
7698
7699 Temp tmp = bool_to_scalar_condition(ctx, src);
7700 bool_to_vector_condition(ctx, emit_wqm(ctx, tmp), dst);
7701 break;
7702 }
7703 case nir_intrinsic_reduce:
7704 case nir_intrinsic_inclusive_scan:
7705 case nir_intrinsic_exclusive_scan: {
7706 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7707 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7708 nir_op op = (nir_op) nir_intrinsic_reduction_op(instr);
7709 unsigned cluster_size = instr->intrinsic == nir_intrinsic_reduce ?
7710 nir_intrinsic_cluster_size(instr) : 0;
7711 cluster_size = util_next_power_of_two(MIN2(cluster_size ? cluster_size : ctx->program->wave_size, ctx->program->wave_size));
7712
7713 if (!ctx->divergent_vals[instr->src[0].ssa->index] && (op == nir_op_ior || op == nir_op_iand)) {
7714 emit_uniform_subgroup(ctx, instr, src);
7715 } else if (instr->dest.ssa.bit_size == 1) {
7716 if (op == nir_op_imul || op == nir_op_umin || op == nir_op_imin)
7717 op = nir_op_iand;
7718 else if (op == nir_op_iadd)
7719 op = nir_op_ixor;
7720 else if (op == nir_op_umax || op == nir_op_imax)
7721 op = nir_op_ior;
7722 assert(op == nir_op_iand || op == nir_op_ior || op == nir_op_ixor);
7723
7724 switch (instr->intrinsic) {
7725 case nir_intrinsic_reduce:
7726 emit_wqm(ctx, emit_boolean_reduce(ctx, op, cluster_size, src), dst);
7727 break;
7728 case nir_intrinsic_exclusive_scan:
7729 emit_wqm(ctx, emit_boolean_exclusive_scan(ctx, op, src), dst);
7730 break;
7731 case nir_intrinsic_inclusive_scan:
7732 emit_wqm(ctx, emit_boolean_inclusive_scan(ctx, op, src), dst);
7733 break;
7734 default:
7735 assert(false);
7736 }
7737 } else if (cluster_size == 1) {
7738 bld.copy(Definition(dst), src);
7739 } else {
7740 src = as_vgpr(ctx, src);
7741
7742 ReduceOp reduce_op;
7743 switch (op) {
7744 #define CASE(name) case nir_op_##name: reduce_op = (src.regClass() == v1) ? name##32 : name##64; break;
7745 CASE(iadd)
7746 CASE(imul)
7747 CASE(fadd)
7748 CASE(fmul)
7749 CASE(imin)
7750 CASE(umin)
7751 CASE(fmin)
7752 CASE(imax)
7753 CASE(umax)
7754 CASE(fmax)
7755 CASE(iand)
7756 CASE(ior)
7757 CASE(ixor)
7758 default:
7759 unreachable("unknown reduction op");
7760 #undef CASE
7761 }
7762
7763 aco_opcode aco_op;
7764 switch (instr->intrinsic) {
7765 case nir_intrinsic_reduce: aco_op = aco_opcode::p_reduce; break;
7766 case nir_intrinsic_inclusive_scan: aco_op = aco_opcode::p_inclusive_scan; break;
7767 case nir_intrinsic_exclusive_scan: aco_op = aco_opcode::p_exclusive_scan; break;
7768 default:
7769 unreachable("unknown reduce intrinsic");
7770 }
7771
7772 aco_ptr<Pseudo_reduction_instruction> reduce{create_instruction<Pseudo_reduction_instruction>(aco_op, Format::PSEUDO_REDUCTION, 3, 5)};
7773 reduce->operands[0] = Operand(src);
7774 // filled in by aco_reduce_assign.cpp, used internally as part of the
7775 // reduce sequence
7776 assert(dst.size() == 1 || dst.size() == 2);
7777 reduce->operands[1] = Operand(RegClass(RegType::vgpr, dst.size()).as_linear());
7778 reduce->operands[2] = Operand(v1.as_linear());
7779
7780 Temp tmp_dst = bld.tmp(dst.regClass());
7781 reduce->definitions[0] = Definition(tmp_dst);
7782 reduce->definitions[1] = bld.def(ctx->program->lane_mask); // used internally
7783 reduce->definitions[2] = Definition();
7784 reduce->definitions[3] = Definition(scc, s1);
7785 reduce->definitions[4] = Definition();
7786 reduce->reduce_op = reduce_op;
7787 reduce->cluster_size = cluster_size;
7788 ctx->block->instructions.emplace_back(std::move(reduce));
7789
7790 emit_wqm(ctx, tmp_dst, dst);
7791 }
7792 break;
7793 }
7794 case nir_intrinsic_quad_broadcast: {
7795 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7796 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7797 emit_uniform_subgroup(ctx, instr, src);
7798 } else {
7799 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7800 unsigned lane = nir_src_as_const_value(instr->src[1])->u32;
7801 uint32_t dpp_ctrl = dpp_quad_perm(lane, lane, lane, lane);
7802
7803 if (instr->dest.ssa.bit_size == 1) {
7804 assert(src.regClass() == bld.lm);
7805 assert(dst.regClass() == bld.lm);
7806 uint32_t half_mask = 0x11111111u << lane;
7807 Temp mask_tmp = bld.pseudo(aco_opcode::p_create_vector, bld.def(s2), Operand(half_mask), Operand(half_mask));
7808 Temp tmp = bld.tmp(bld.lm);
7809 bld.sop1(Builder::s_wqm, Definition(tmp),
7810 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), mask_tmp,
7811 bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm))));
7812 emit_wqm(ctx, tmp, dst);
7813 } else if (instr->dest.ssa.bit_size == 32) {
7814 if (ctx->program->chip_class >= GFX8)
7815 emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl), dst);
7816 else
7817 emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, (1 << 15) | dpp_ctrl), dst);
7818 } else if (instr->dest.ssa.bit_size == 64) {
7819 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7820 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7821 if (ctx->program->chip_class >= GFX8) {
7822 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7823 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7824 } else {
7825 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, (1 << 15) | dpp_ctrl));
7826 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, (1 << 15) | dpp_ctrl));
7827 }
7828 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7829 emit_split_vector(ctx, dst, 2);
7830 } else {
7831 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7832 nir_print_instr(&instr->instr, stderr);
7833 fprintf(stderr, "\n");
7834 }
7835 }
7836 break;
7837 }
7838 case nir_intrinsic_quad_swap_horizontal:
7839 case nir_intrinsic_quad_swap_vertical:
7840 case nir_intrinsic_quad_swap_diagonal:
7841 case nir_intrinsic_quad_swizzle_amd: {
7842 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7843 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7844 emit_uniform_subgroup(ctx, instr, src);
7845 break;
7846 }
7847 uint16_t dpp_ctrl = 0;
7848 switch (instr->intrinsic) {
7849 case nir_intrinsic_quad_swap_horizontal:
7850 dpp_ctrl = dpp_quad_perm(1, 0, 3, 2);
7851 break;
7852 case nir_intrinsic_quad_swap_vertical:
7853 dpp_ctrl = dpp_quad_perm(2, 3, 0, 1);
7854 break;
7855 case nir_intrinsic_quad_swap_diagonal:
7856 dpp_ctrl = dpp_quad_perm(3, 2, 1, 0);
7857 break;
7858 case nir_intrinsic_quad_swizzle_amd:
7859 dpp_ctrl = nir_intrinsic_swizzle_mask(instr);
7860 break;
7861 default:
7862 break;
7863 }
7864 if (ctx->program->chip_class < GFX8)
7865 dpp_ctrl |= (1 << 15);
7866
7867 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7868 if (instr->dest.ssa.bit_size == 1) {
7869 assert(src.regClass() == bld.lm);
7870 src = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), Operand(0u), Operand((uint32_t)-1), src);
7871 if (ctx->program->chip_class >= GFX8)
7872 src = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7873 else
7874 src = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7875 Temp tmp = bld.vopc(aco_opcode::v_cmp_lg_u32, bld.def(bld.lm), Operand(0u), src);
7876 emit_wqm(ctx, tmp, dst);
7877 } else if (instr->dest.ssa.bit_size == 32) {
7878 Temp tmp;
7879 if (ctx->program->chip_class >= GFX8)
7880 tmp = bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), src, dpp_ctrl);
7881 else
7882 tmp = bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, dpp_ctrl);
7883 emit_wqm(ctx, tmp, dst);
7884 } else if (instr->dest.ssa.bit_size == 64) {
7885 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7886 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7887 if (ctx->program->chip_class >= GFX8) {
7888 lo = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), lo, dpp_ctrl));
7889 hi = emit_wqm(ctx, bld.vop1_dpp(aco_opcode::v_mov_b32, bld.def(v1), hi, dpp_ctrl));
7890 } else {
7891 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, dpp_ctrl));
7892 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, dpp_ctrl));
7893 }
7894 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7895 emit_split_vector(ctx, dst, 2);
7896 } else {
7897 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7898 nir_print_instr(&instr->instr, stderr);
7899 fprintf(stderr, "\n");
7900 }
7901 break;
7902 }
7903 case nir_intrinsic_masked_swizzle_amd: {
7904 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7905 if (!ctx->divergent_vals[instr->dest.ssa.index]) {
7906 emit_uniform_subgroup(ctx, instr, src);
7907 break;
7908 }
7909 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7910 uint32_t mask = nir_intrinsic_swizzle_mask(instr);
7911 if (dst.regClass() == v1) {
7912 emit_wqm(ctx,
7913 bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), src, mask, 0, false),
7914 dst);
7915 } else if (dst.regClass() == v2) {
7916 Temp lo = bld.tmp(v1), hi = bld.tmp(v1);
7917 bld.pseudo(aco_opcode::p_split_vector, Definition(lo), Definition(hi), src);
7918 lo = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), lo, mask, 0, false));
7919 hi = emit_wqm(ctx, bld.ds(aco_opcode::ds_swizzle_b32, bld.def(v1), hi, mask, 0, false));
7920 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7921 emit_split_vector(ctx, dst, 2);
7922 } else {
7923 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7924 nir_print_instr(&instr->instr, stderr);
7925 fprintf(stderr, "\n");
7926 }
7927 break;
7928 }
7929 case nir_intrinsic_write_invocation_amd: {
7930 Temp src = as_vgpr(ctx, get_ssa_temp(ctx, instr->src[0].ssa));
7931 Temp val = bld.as_uniform(get_ssa_temp(ctx, instr->src[1].ssa));
7932 Temp lane = bld.as_uniform(get_ssa_temp(ctx, instr->src[2].ssa));
7933 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7934 if (dst.regClass() == v1) {
7935 /* src2 is ignored for writelane. RA assigns the same reg for dst */
7936 emit_wqm(ctx, bld.writelane(bld.def(v1), val, lane, src), dst);
7937 } else if (dst.regClass() == v2) {
7938 Temp src_lo = bld.tmp(v1), src_hi = bld.tmp(v1);
7939 Temp val_lo = bld.tmp(s1), val_hi = bld.tmp(s1);
7940 bld.pseudo(aco_opcode::p_split_vector, Definition(src_lo), Definition(src_hi), src);
7941 bld.pseudo(aco_opcode::p_split_vector, Definition(val_lo), Definition(val_hi), val);
7942 Temp lo = emit_wqm(ctx, bld.writelane(bld.def(v1), val_lo, lane, src_hi));
7943 Temp hi = emit_wqm(ctx, bld.writelane(bld.def(v1), val_hi, lane, src_hi));
7944 bld.pseudo(aco_opcode::p_create_vector, Definition(dst), lo, hi);
7945 emit_split_vector(ctx, dst, 2);
7946 } else {
7947 fprintf(stderr, "Unimplemented NIR instr bit size: ");
7948 nir_print_instr(&instr->instr, stderr);
7949 fprintf(stderr, "\n");
7950 }
7951 break;
7952 }
7953 case nir_intrinsic_mbcnt_amd: {
7954 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7955 RegClass rc = RegClass(src.type(), 1);
7956 Temp mask_lo = bld.tmp(rc), mask_hi = bld.tmp(rc);
7957 bld.pseudo(aco_opcode::p_split_vector, Definition(mask_lo), Definition(mask_hi), src);
7958 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7959 Temp wqm_tmp = emit_mbcnt(ctx, bld.def(v1), Operand(mask_lo), Operand(mask_hi));
7960 emit_wqm(ctx, wqm_tmp, dst);
7961 break;
7962 }
7963 case nir_intrinsic_load_helper_invocation: {
7964 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7965 bld.pseudo(aco_opcode::p_load_helper, Definition(dst));
7966 ctx->block->kind |= block_kind_needs_lowering;
7967 ctx->program->needs_exact = true;
7968 break;
7969 }
7970 case nir_intrinsic_is_helper_invocation: {
7971 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
7972 bld.pseudo(aco_opcode::p_is_helper, Definition(dst));
7973 ctx->block->kind |= block_kind_needs_lowering;
7974 ctx->program->needs_exact = true;
7975 break;
7976 }
7977 case nir_intrinsic_demote:
7978 bld.pseudo(aco_opcode::p_demote_to_helper, Operand(-1u));
7979
7980 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7981 ctx->cf_info.exec_potentially_empty_discard = true;
7982 ctx->block->kind |= block_kind_uses_demote;
7983 ctx->program->needs_exact = true;
7984 break;
7985 case nir_intrinsic_demote_if: {
7986 Temp src = get_ssa_temp(ctx, instr->src[0].ssa);
7987 assert(src.regClass() == bld.lm);
7988 Temp cond = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), src, Operand(exec, bld.lm));
7989 bld.pseudo(aco_opcode::p_demote_to_helper, cond);
7990
7991 if (ctx->cf_info.loop_nest_depth || ctx->cf_info.parent_if.is_divergent)
7992 ctx->cf_info.exec_potentially_empty_discard = true;
7993 ctx->block->kind |= block_kind_uses_demote;
7994 ctx->program->needs_exact = true;
7995 break;
7996 }
7997 case nir_intrinsic_first_invocation: {
7998 emit_wqm(ctx, bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)),
7999 get_ssa_temp(ctx, &instr->dest.ssa));
8000 break;
8001 }
8002 case nir_intrinsic_shader_clock:
8003 bld.smem(aco_opcode::s_memtime, Definition(get_ssa_temp(ctx, &instr->dest.ssa)), false);
8004 emit_split_vector(ctx, get_ssa_temp(ctx, &instr->dest.ssa), 2);
8005 break;
8006 case nir_intrinsic_load_vertex_id_zero_base: {
8007 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8008 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.vertex_id));
8009 break;
8010 }
8011 case nir_intrinsic_load_first_vertex: {
8012 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8013 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.base_vertex));
8014 break;
8015 }
8016 case nir_intrinsic_load_base_instance: {
8017 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8018 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.start_instance));
8019 break;
8020 }
8021 case nir_intrinsic_load_instance_id: {
8022 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8023 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.instance_id));
8024 break;
8025 }
8026 case nir_intrinsic_load_draw_id: {
8027 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8028 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.draw_id));
8029 break;
8030 }
8031 case nir_intrinsic_load_invocation_id: {
8032 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8033
8034 if (ctx->shader->info.stage == MESA_SHADER_GEOMETRY) {
8035 if (ctx->options->chip_class >= GFX10)
8036 bld.vop2_e64(aco_opcode::v_and_b32, Definition(dst), Operand(127u), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8037 else
8038 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_invocation_id));
8039 } else if (ctx->shader->info.stage == MESA_SHADER_TESS_CTRL) {
8040 bld.vop3(aco_opcode::v_bfe_u32, Definition(dst),
8041 get_arg(ctx, ctx->args->ac.tcs_rel_ids), Operand(8u), Operand(5u));
8042 } else {
8043 unreachable("Unsupported stage for load_invocation_id");
8044 }
8045
8046 break;
8047 }
8048 case nir_intrinsic_load_primitive_id: {
8049 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8050
8051 switch (ctx->shader->info.stage) {
8052 case MESA_SHADER_GEOMETRY:
8053 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.gs_prim_id));
8054 break;
8055 case MESA_SHADER_TESS_CTRL:
8056 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tcs_patch_id));
8057 break;
8058 case MESA_SHADER_TESS_EVAL:
8059 bld.copy(Definition(dst), get_arg(ctx, ctx->args->ac.tes_patch_id));
8060 break;
8061 default:
8062 unreachable("Unimplemented shader stage for nir_intrinsic_load_primitive_id");
8063 }
8064
8065 break;
8066 }
8067 case nir_intrinsic_load_patch_vertices_in: {
8068 assert(ctx->shader->info.stage == MESA_SHADER_TESS_CTRL ||
8069 ctx->shader->info.stage == MESA_SHADER_TESS_EVAL);
8070
8071 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8072 bld.copy(Definition(dst), Operand(ctx->args->options->key.tcs.input_vertices));
8073 break;
8074 }
8075 case nir_intrinsic_emit_vertex_with_counter: {
8076 visit_emit_vertex_with_counter(ctx, instr);
8077 break;
8078 }
8079 case nir_intrinsic_end_primitive_with_counter: {
8080 unsigned stream = nir_intrinsic_stream_id(instr);
8081 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx->gs_wave_id), -1, sendmsg_gs(true, false, stream));
8082 break;
8083 }
8084 case nir_intrinsic_set_vertex_count: {
8085 /* unused, the HW keeps track of this for us */
8086 break;
8087 }
8088 default:
8089 fprintf(stderr, "Unimplemented intrinsic instr: ");
8090 nir_print_instr(&instr->instr, stderr);
8091 fprintf(stderr, "\n");
8092 abort();
8093
8094 break;
8095 }
8096 }
8097
8098
8099 void tex_fetch_ptrs(isel_context *ctx, nir_tex_instr *instr,
8100 Temp *res_ptr, Temp *samp_ptr, Temp *fmask_ptr,
8101 enum glsl_base_type *stype)
8102 {
8103 nir_deref_instr *texture_deref_instr = NULL;
8104 nir_deref_instr *sampler_deref_instr = NULL;
8105 int plane = -1;
8106
8107 for (unsigned i = 0; i < instr->num_srcs; i++) {
8108 switch (instr->src[i].src_type) {
8109 case nir_tex_src_texture_deref:
8110 texture_deref_instr = nir_src_as_deref(instr->src[i].src);
8111 break;
8112 case nir_tex_src_sampler_deref:
8113 sampler_deref_instr = nir_src_as_deref(instr->src[i].src);
8114 break;
8115 case nir_tex_src_plane:
8116 plane = nir_src_as_int(instr->src[i].src);
8117 break;
8118 default:
8119 break;
8120 }
8121 }
8122
8123 *stype = glsl_get_sampler_result_type(texture_deref_instr->type);
8124
8125 if (!sampler_deref_instr)
8126 sampler_deref_instr = texture_deref_instr;
8127
8128 if (plane >= 0) {
8129 assert(instr->op != nir_texop_txf_ms &&
8130 instr->op != nir_texop_samples_identical);
8131 assert(instr->sampler_dim != GLSL_SAMPLER_DIM_BUF);
8132 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, (aco_descriptor_type)(ACO_DESC_PLANE_0 + plane), instr, false, false);
8133 } else if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8134 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_BUFFER, instr, false, false);
8135 } else if (instr->op == nir_texop_fragment_mask_fetch) {
8136 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8137 } else {
8138 *res_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_IMAGE, instr, false, false);
8139 }
8140 if (samp_ptr) {
8141 *samp_ptr = get_sampler_desc(ctx, sampler_deref_instr, ACO_DESC_SAMPLER, instr, false, false);
8142
8143 if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT && ctx->options->chip_class < GFX8) {
8144 /* fix sampler aniso on SI/CI: samp[0] = samp[0] & img[7] */
8145 Builder bld(ctx->program, ctx->block);
8146
8147 /* to avoid unnecessary moves, we split and recombine sampler and image */
8148 Temp img[8] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1),
8149 bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8150 Temp samp[4] = {bld.tmp(s1), bld.tmp(s1), bld.tmp(s1), bld.tmp(s1)};
8151 bld.pseudo(aco_opcode::p_split_vector, Definition(img[0]), Definition(img[1]),
8152 Definition(img[2]), Definition(img[3]), Definition(img[4]),
8153 Definition(img[5]), Definition(img[6]), Definition(img[7]), *res_ptr);
8154 bld.pseudo(aco_opcode::p_split_vector, Definition(samp[0]), Definition(samp[1]),
8155 Definition(samp[2]), Definition(samp[3]), *samp_ptr);
8156
8157 samp[0] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), samp[0], img[7]);
8158 *res_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s8),
8159 img[0], img[1], img[2], img[3],
8160 img[4], img[5], img[6], img[7]);
8161 *samp_ptr = bld.pseudo(aco_opcode::p_create_vector, bld.def(s4),
8162 samp[0], samp[1], samp[2], samp[3]);
8163 }
8164 }
8165 if (fmask_ptr && (instr->op == nir_texop_txf_ms ||
8166 instr->op == nir_texop_samples_identical))
8167 *fmask_ptr = get_sampler_desc(ctx, texture_deref_instr, ACO_DESC_FMASK, instr, false, false);
8168 }
8169
8170 void build_cube_select(isel_context *ctx, Temp ma, Temp id, Temp deriv,
8171 Temp *out_ma, Temp *out_sc, Temp *out_tc)
8172 {
8173 Builder bld(ctx->program, ctx->block);
8174
8175 Temp deriv_x = emit_extract_vector(ctx, deriv, 0, v1);
8176 Temp deriv_y = emit_extract_vector(ctx, deriv, 1, v1);
8177 Temp deriv_z = emit_extract_vector(ctx, deriv, 2, v1);
8178
8179 Operand neg_one(0xbf800000u);
8180 Operand one(0x3f800000u);
8181 Operand two(0x40000000u);
8182 Operand four(0x40800000u);
8183
8184 Temp is_ma_positive = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), ma);
8185 Temp sgn_ma = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, one, is_ma_positive);
8186 Temp neg_sgn_ma = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1), Operand(0u), sgn_ma);
8187
8188 Temp is_ma_z = bld.vopc(aco_opcode::v_cmp_le_f32, bld.hint_vcc(bld.def(bld.lm)), four, id);
8189 Temp is_ma_y = bld.vopc(aco_opcode::v_cmp_le_f32, bld.def(bld.lm), two, id);
8190 is_ma_y = bld.sop2(Builder::s_andn2, bld.hint_vcc(bld.def(bld.lm)), is_ma_y, is_ma_z);
8191 Temp is_not_ma_x = bld.sop2(aco_opcode::s_or_b64, bld.hint_vcc(bld.def(bld.lm)), bld.def(s1, scc), is_ma_z, is_ma_y);
8192
8193 // select sc
8194 Temp tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_z, deriv_x, is_not_ma_x);
8195 Temp sgn = bld.vop2_e64(aco_opcode::v_cndmask_b32, bld.def(v1),
8196 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_sgn_ma, sgn_ma, is_ma_z),
8197 one, is_ma_y);
8198 *out_sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8199
8200 // select tc
8201 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_y, deriv_z, is_ma_y);
8202 sgn = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), neg_one, sgn_ma, is_ma_y);
8203 *out_tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tmp, sgn);
8204
8205 // select ma
8206 tmp = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8207 bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), deriv_x, deriv_y, is_ma_y),
8208 deriv_z, is_ma_z);
8209 tmp = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x7fffffffu), tmp);
8210 *out_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), two, tmp);
8211 }
8212
8213 void prepare_cube_coords(isel_context *ctx, std::vector<Temp>& coords, Temp* ddx, Temp* ddy, bool is_deriv, bool is_array)
8214 {
8215 Builder bld(ctx->program, ctx->block);
8216 Temp ma, tc, sc, id;
8217
8218 if (is_array) {
8219 coords[3] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[3]);
8220
8221 // see comment in ac_prepare_cube_coords()
8222 if (ctx->options->chip_class <= GFX8)
8223 coords[3] = bld.vop2(aco_opcode::v_max_f32, bld.def(v1), Operand(0u), coords[3]);
8224 }
8225
8226 ma = bld.vop3(aco_opcode::v_cubema_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8227
8228 aco_ptr<VOP3A_instruction> vop3a{create_instruction<VOP3A_instruction>(aco_opcode::v_rcp_f32, asVOP3(Format::VOP1), 1, 1)};
8229 vop3a->operands[0] = Operand(ma);
8230 vop3a->abs[0] = true;
8231 Temp invma = bld.tmp(v1);
8232 vop3a->definitions[0] = Definition(invma);
8233 ctx->block->instructions.emplace_back(std::move(vop3a));
8234
8235 sc = bld.vop3(aco_opcode::v_cubesc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8236 if (!is_deriv)
8237 sc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), sc, invma, Operand(0x3fc00000u/*1.5*/));
8238
8239 tc = bld.vop3(aco_opcode::v_cubetc_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8240 if (!is_deriv)
8241 tc = bld.vop2(aco_opcode::v_madak_f32, bld.def(v1), tc, invma, Operand(0x3fc00000u/*1.5*/));
8242
8243 id = bld.vop3(aco_opcode::v_cubeid_f32, bld.def(v1), coords[0], coords[1], coords[2]);
8244
8245 if (is_deriv) {
8246 sc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), sc, invma);
8247 tc = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), tc, invma);
8248
8249 for (unsigned i = 0; i < 2; i++) {
8250 // see comment in ac_prepare_cube_coords()
8251 Temp deriv_ma;
8252 Temp deriv_sc, deriv_tc;
8253 build_cube_select(ctx, ma, id, i ? *ddy : *ddx,
8254 &deriv_ma, &deriv_sc, &deriv_tc);
8255
8256 deriv_ma = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, invma);
8257
8258 Temp x = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8259 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_sc, invma),
8260 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, sc));
8261 Temp y = bld.vop2(aco_opcode::v_sub_f32, bld.def(v1),
8262 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_tc, invma),
8263 bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), deriv_ma, tc));
8264 *(i ? ddy : ddx) = bld.pseudo(aco_opcode::p_create_vector, bld.def(v2), x, y);
8265 }
8266
8267 sc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), sc);
8268 tc = bld.vop2(aco_opcode::v_add_f32, bld.def(v1), Operand(0x3fc00000u/*1.5*/), tc);
8269 }
8270
8271 if (is_array)
8272 id = bld.vop2(aco_opcode::v_madmk_f32, bld.def(v1), coords[3], id, Operand(0x41000000u/*8.0*/));
8273 coords.resize(3);
8274 coords[0] = sc;
8275 coords[1] = tc;
8276 coords[2] = id;
8277 }
8278
8279 void get_const_vec(nir_ssa_def *vec, nir_const_value *cv[4])
8280 {
8281 if (vec->parent_instr->type != nir_instr_type_alu)
8282 return;
8283 nir_alu_instr *vec_instr = nir_instr_as_alu(vec->parent_instr);
8284 if (vec_instr->op != nir_op_vec(vec->num_components))
8285 return;
8286
8287 for (unsigned i = 0; i < vec->num_components; i++) {
8288 cv[i] = vec_instr->src[i].swizzle[0] == 0 ?
8289 nir_src_as_const_value(vec_instr->src[i].src) : NULL;
8290 }
8291 }
8292
8293 void visit_tex(isel_context *ctx, nir_tex_instr *instr)
8294 {
8295 Builder bld(ctx->program, ctx->block);
8296 bool has_bias = false, has_lod = false, level_zero = false, has_compare = false,
8297 has_offset = false, has_ddx = false, has_ddy = false, has_derivs = false, has_sample_index = false;
8298 Temp resource, sampler, fmask_ptr, bias = Temp(), compare = Temp(), sample_index = Temp(),
8299 lod = Temp(), offset = Temp(), ddx = Temp(), ddy = Temp();
8300 std::vector<Temp> coords;
8301 std::vector<Temp> derivs;
8302 nir_const_value *sample_index_cv = NULL;
8303 nir_const_value *const_offset[4] = {NULL, NULL, NULL, NULL};
8304 enum glsl_base_type stype;
8305 tex_fetch_ptrs(ctx, instr, &resource, &sampler, &fmask_ptr, &stype);
8306
8307 bool tg4_integer_workarounds = ctx->options->chip_class <= GFX8 && instr->op == nir_texop_tg4 &&
8308 (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT);
8309 bool tg4_integer_cube_workaround = tg4_integer_workarounds &&
8310 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE;
8311
8312 for (unsigned i = 0; i < instr->num_srcs; i++) {
8313 switch (instr->src[i].src_type) {
8314 case nir_tex_src_coord: {
8315 Temp coord = get_ssa_temp(ctx, instr->src[i].src.ssa);
8316 for (unsigned i = 0; i < coord.size(); i++)
8317 coords.emplace_back(emit_extract_vector(ctx, coord, i, v1));
8318 break;
8319 }
8320 case nir_tex_src_bias:
8321 if (instr->op == nir_texop_txb) {
8322 bias = get_ssa_temp(ctx, instr->src[i].src.ssa);
8323 has_bias = true;
8324 }
8325 break;
8326 case nir_tex_src_lod: {
8327 nir_const_value *val = nir_src_as_const_value(instr->src[i].src);
8328
8329 if (val && val->f32 <= 0.0) {
8330 level_zero = true;
8331 } else {
8332 lod = get_ssa_temp(ctx, instr->src[i].src.ssa);
8333 has_lod = true;
8334 }
8335 break;
8336 }
8337 case nir_tex_src_comparator:
8338 if (instr->is_shadow) {
8339 compare = get_ssa_temp(ctx, instr->src[i].src.ssa);
8340 has_compare = true;
8341 }
8342 break;
8343 case nir_tex_src_offset:
8344 offset = get_ssa_temp(ctx, instr->src[i].src.ssa);
8345 get_const_vec(instr->src[i].src.ssa, const_offset);
8346 has_offset = true;
8347 break;
8348 case nir_tex_src_ddx:
8349 ddx = get_ssa_temp(ctx, instr->src[i].src.ssa);
8350 has_ddx = true;
8351 break;
8352 case nir_tex_src_ddy:
8353 ddy = get_ssa_temp(ctx, instr->src[i].src.ssa);
8354 has_ddy = true;
8355 break;
8356 case nir_tex_src_ms_index:
8357 sample_index = get_ssa_temp(ctx, instr->src[i].src.ssa);
8358 sample_index_cv = nir_src_as_const_value(instr->src[i].src);
8359 has_sample_index = true;
8360 break;
8361 case nir_tex_src_texture_offset:
8362 case nir_tex_src_sampler_offset:
8363 default:
8364 break;
8365 }
8366 }
8367
8368 if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
8369 return get_buffer_size(ctx, resource, get_ssa_temp(ctx, &instr->dest.ssa), true);
8370
8371 if (instr->op == nir_texop_texture_samples) {
8372 Temp dword3 = emit_extract_vector(ctx, resource, 3, s1);
8373
8374 Temp samples_log2 = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(16u | 4u<<16));
8375 Temp samples = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), Operand(1u), samples_log2);
8376 Temp type = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), dword3, Operand(28u | 4u<<16 /* offset=28, width=4 */));
8377 Temp is_msaa = bld.sopc(aco_opcode::s_cmp_ge_u32, bld.def(s1, scc), type, Operand(14u));
8378
8379 bld.sop2(aco_opcode::s_cselect_b32, Definition(get_ssa_temp(ctx, &instr->dest.ssa)),
8380 samples, Operand(1u), bld.scc(is_msaa));
8381 return;
8382 }
8383
8384 if (has_offset && instr->op != nir_texop_txf && instr->op != nir_texop_txf_ms) {
8385 aco_ptr<Instruction> tmp_instr;
8386 Temp acc, pack = Temp();
8387
8388 uint32_t pack_const = 0;
8389 for (unsigned i = 0; i < offset.size(); i++) {
8390 if (!const_offset[i])
8391 continue;
8392 pack_const |= (const_offset[i]->u32 & 0x3Fu) << (8u * i);
8393 }
8394
8395 if (offset.type() == RegType::sgpr) {
8396 for (unsigned i = 0; i < offset.size(); i++) {
8397 if (const_offset[i])
8398 continue;
8399
8400 acc = emit_extract_vector(ctx, offset, i, s1);
8401 acc = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(0x3Fu));
8402
8403 if (i) {
8404 acc = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), acc, Operand(8u * i));
8405 }
8406
8407 if (pack == Temp()) {
8408 pack = acc;
8409 } else {
8410 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), pack, acc);
8411 }
8412 }
8413
8414 if (pack_const && pack != Temp())
8415 pack = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), Operand(pack_const), pack);
8416 } else {
8417 for (unsigned i = 0; i < offset.size(); i++) {
8418 if (const_offset[i])
8419 continue;
8420
8421 acc = emit_extract_vector(ctx, offset, i, v1);
8422 acc = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0x3Fu), acc);
8423
8424 if (i) {
8425 acc = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(8u * i), acc);
8426 }
8427
8428 if (pack == Temp()) {
8429 pack = acc;
8430 } else {
8431 pack = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), pack, acc);
8432 }
8433 }
8434
8435 if (pack_const && pack != Temp())
8436 pack = bld.sop2(aco_opcode::v_or_b32, bld.def(v1), Operand(pack_const), pack);
8437 }
8438 if (pack_const && pack == Temp())
8439 offset = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(pack_const));
8440 else if (pack == Temp())
8441 has_offset = false;
8442 else
8443 offset = pack;
8444 }
8445
8446 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->coord_components)
8447 prepare_cube_coords(ctx, coords, &ddx, &ddy, instr->op == nir_texop_txd, instr->is_array && instr->op != nir_texop_lod);
8448
8449 /* pack derivatives */
8450 if (has_ddx || has_ddy) {
8451 if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && ctx->options->chip_class == GFX9) {
8452 assert(has_ddx && has_ddy && ddx.size() == 1 && ddy.size() == 1);
8453 Temp zero = bld.copy(bld.def(v1), Operand(0u));
8454 derivs = {ddy, zero, ddy, zero};
8455 } else {
8456 for (unsigned i = 0; has_ddx && i < ddx.size(); i++)
8457 derivs.emplace_back(emit_extract_vector(ctx, ddx, i, v1));
8458 for (unsigned i = 0; has_ddy && i < ddy.size(); i++)
8459 derivs.emplace_back(emit_extract_vector(ctx, ddy, i, v1));
8460 }
8461 has_derivs = true;
8462 }
8463
8464 if (instr->coord_components > 1 &&
8465 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8466 instr->is_array &&
8467 instr->op != nir_texop_txf)
8468 coords[1] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[1]);
8469
8470 if (instr->coord_components > 2 &&
8471 (instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
8472 instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8473 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS ||
8474 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8475 instr->is_array &&
8476 instr->op != nir_texop_txf &&
8477 instr->op != nir_texop_txf_ms &&
8478 instr->op != nir_texop_fragment_fetch &&
8479 instr->op != nir_texop_fragment_mask_fetch)
8480 coords[2] = bld.vop1(aco_opcode::v_rndne_f32, bld.def(v1), coords[2]);
8481
8482 if (ctx->options->chip_class == GFX9 &&
8483 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8484 instr->op != nir_texop_lod && instr->coord_components) {
8485 assert(coords.size() > 0 && coords.size() < 3);
8486
8487 coords.insert(std::next(coords.begin()), bld.copy(bld.def(v1), instr->op == nir_texop_txf ?
8488 Operand((uint32_t) 0) :
8489 Operand((uint32_t) 0x3f000000)));
8490 }
8491
8492 bool da = should_declare_array(ctx, instr->sampler_dim, instr->is_array);
8493
8494 if (instr->op == nir_texop_samples_identical)
8495 resource = fmask_ptr;
8496
8497 else if ((instr->sampler_dim == GLSL_SAMPLER_DIM_MS ||
8498 instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS) &&
8499 instr->op != nir_texop_txs &&
8500 instr->op != nir_texop_fragment_fetch &&
8501 instr->op != nir_texop_fragment_mask_fetch) {
8502 assert(has_sample_index);
8503 Operand op(sample_index);
8504 if (sample_index_cv)
8505 op = Operand(sample_index_cv->u32);
8506 sample_index = adjust_sample_index_using_fmask(ctx, da, coords, op, fmask_ptr);
8507 }
8508
8509 if (has_offset && (instr->op == nir_texop_txf || instr->op == nir_texop_txf_ms)) {
8510 for (unsigned i = 0; i < std::min(offset.size(), instr->coord_components); i++) {
8511 Temp off = emit_extract_vector(ctx, offset, i, v1);
8512 coords[i] = bld.vadd32(bld.def(v1), coords[i], off);
8513 }
8514 has_offset = false;
8515 }
8516
8517 /* Build tex instruction */
8518 unsigned dmask = nir_ssa_def_components_read(&instr->dest.ssa);
8519 unsigned dim = ctx->options->chip_class >= GFX10 && instr->sampler_dim != GLSL_SAMPLER_DIM_BUF
8520 ? ac_get_sampler_dim(ctx->options->chip_class, instr->sampler_dim, instr->is_array)
8521 : 0;
8522 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8523 Temp tmp_dst = dst;
8524
8525 /* gather4 selects the component by dmask and always returns vec4 */
8526 if (instr->op == nir_texop_tg4) {
8527 assert(instr->dest.ssa.num_components == 4);
8528 if (instr->is_shadow)
8529 dmask = 1;
8530 else
8531 dmask = 1 << instr->component;
8532 if (tg4_integer_cube_workaround || dst.type() == RegType::sgpr)
8533 tmp_dst = bld.tmp(v4);
8534 } else if (instr->op == nir_texop_samples_identical) {
8535 tmp_dst = bld.tmp(v1);
8536 } else if (util_bitcount(dmask) != instr->dest.ssa.num_components || dst.type() == RegType::sgpr) {
8537 tmp_dst = bld.tmp(RegClass(RegType::vgpr, util_bitcount(dmask)));
8538 }
8539
8540 aco_ptr<MIMG_instruction> tex;
8541 if (instr->op == nir_texop_txs || instr->op == nir_texop_query_levels) {
8542 if (!has_lod)
8543 lod = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8544
8545 bool div_by_6 = instr->op == nir_texop_txs &&
8546 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
8547 instr->is_array &&
8548 (dmask & (1 << 2));
8549 if (tmp_dst.id() == dst.id() && div_by_6)
8550 tmp_dst = bld.tmp(tmp_dst.regClass());
8551
8552 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8553 tex->operands[0] = Operand(resource);
8554 tex->operands[1] = Operand(s4); /* no sampler */
8555 tex->operands[2] = Operand(as_vgpr(ctx,lod));
8556 if (ctx->options->chip_class == GFX9 &&
8557 instr->op == nir_texop_txs &&
8558 instr->sampler_dim == GLSL_SAMPLER_DIM_1D &&
8559 instr->is_array) {
8560 tex->dmask = (dmask & 0x1) | ((dmask & 0x2) << 1);
8561 } else if (instr->op == nir_texop_query_levels) {
8562 tex->dmask = 1 << 3;
8563 } else {
8564 tex->dmask = dmask;
8565 }
8566 tex->da = da;
8567 tex->definitions[0] = Definition(tmp_dst);
8568 tex->dim = dim;
8569 tex->can_reorder = true;
8570 ctx->block->instructions.emplace_back(std::move(tex));
8571
8572 if (div_by_6) {
8573 /* divide 3rd value by 6 by multiplying with magic number */
8574 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8575 Temp c = bld.copy(bld.def(s1), Operand((uint32_t) 0x2AAAAAAB));
8576 Temp by_6 = bld.vop3(aco_opcode::v_mul_hi_i32, bld.def(v1), emit_extract_vector(ctx, tmp_dst, 2, v1), c);
8577 assert(instr->dest.ssa.num_components == 3);
8578 Temp tmp = dst.type() == RegType::vgpr ? dst : bld.tmp(v3);
8579 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8580 emit_extract_vector(ctx, tmp_dst, 0, v1),
8581 emit_extract_vector(ctx, tmp_dst, 1, v1),
8582 by_6);
8583
8584 }
8585
8586 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8587 return;
8588 }
8589
8590 Temp tg4_compare_cube_wa64 = Temp();
8591
8592 if (tg4_integer_workarounds) {
8593 tex.reset(create_instruction<MIMG_instruction>(aco_opcode::image_get_resinfo, Format::MIMG, 3, 1));
8594 tex->operands[0] = Operand(resource);
8595 tex->operands[1] = Operand(s4); /* no sampler */
8596 tex->operands[2] = bld.vop1(aco_opcode::v_mov_b32, bld.def(v1), Operand(0u));
8597 tex->dim = dim;
8598 tex->dmask = 0x3;
8599 tex->da = da;
8600 Temp size = bld.tmp(v2);
8601 tex->definitions[0] = Definition(size);
8602 tex->can_reorder = true;
8603 ctx->block->instructions.emplace_back(std::move(tex));
8604 emit_split_vector(ctx, size, size.size());
8605
8606 Temp half_texel[2];
8607 for (unsigned i = 0; i < 2; i++) {
8608 half_texel[i] = emit_extract_vector(ctx, size, i, v1);
8609 half_texel[i] = bld.vop1(aco_opcode::v_cvt_f32_i32, bld.def(v1), half_texel[i]);
8610 half_texel[i] = bld.vop1(aco_opcode::v_rcp_iflag_f32, bld.def(v1), half_texel[i]);
8611 half_texel[i] = bld.vop2(aco_opcode::v_mul_f32, bld.def(v1), Operand(0xbf000000/*-0.5*/), half_texel[i]);
8612 }
8613
8614 Temp new_coords[2] = {
8615 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[0], half_texel[0]),
8616 bld.vop2(aco_opcode::v_add_f32, bld.def(v1), coords[1], half_texel[1])
8617 };
8618
8619 if (tg4_integer_cube_workaround) {
8620 // see comment in ac_nir_to_llvm.c's lower_gather4_integer()
8621 Temp desc[resource.size()];
8622 aco_ptr<Instruction> split{create_instruction<Pseudo_instruction>(aco_opcode::p_split_vector,
8623 Format::PSEUDO, 1, resource.size())};
8624 split->operands[0] = Operand(resource);
8625 for (unsigned i = 0; i < resource.size(); i++) {
8626 desc[i] = bld.tmp(s1);
8627 split->definitions[i] = Definition(desc[i]);
8628 }
8629 ctx->block->instructions.emplace_back(std::move(split));
8630
8631 Temp dfmt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc), desc[1], Operand(20u | (6u << 16)));
8632 Temp compare_cube_wa = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), dfmt,
8633 Operand((uint32_t)V_008F14_IMG_DATA_FORMAT_8_8_8_8));
8634
8635 Temp nfmt;
8636 if (stype == GLSL_TYPE_UINT) {
8637 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8638 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_USCALED),
8639 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_UINT),
8640 bld.scc(compare_cube_wa));
8641 } else {
8642 nfmt = bld.sop2(aco_opcode::s_cselect_b32, bld.def(s1),
8643 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SSCALED),
8644 Operand((uint32_t)V_008F14_IMG_NUM_FORMAT_SINT),
8645 bld.scc(compare_cube_wa));
8646 }
8647 tg4_compare_cube_wa64 = bld.tmp(bld.lm);
8648 bool_to_vector_condition(ctx, compare_cube_wa, tg4_compare_cube_wa64);
8649
8650 nfmt = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), nfmt, Operand(26u));
8651
8652 desc[1] = bld.sop2(aco_opcode::s_and_b32, bld.def(s1), bld.def(s1, scc), desc[1],
8653 Operand((uint32_t)C_008F14_NUM_FORMAT));
8654 desc[1] = bld.sop2(aco_opcode::s_or_b32, bld.def(s1), bld.def(s1, scc), desc[1], nfmt);
8655
8656 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector,
8657 Format::PSEUDO, resource.size(), 1)};
8658 for (unsigned i = 0; i < resource.size(); i++)
8659 vec->operands[i] = Operand(desc[i]);
8660 resource = bld.tmp(resource.regClass());
8661 vec->definitions[0] = Definition(resource);
8662 ctx->block->instructions.emplace_back(std::move(vec));
8663
8664 new_coords[0] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8665 new_coords[0], coords[0], tg4_compare_cube_wa64);
8666 new_coords[1] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
8667 new_coords[1], coords[1], tg4_compare_cube_wa64);
8668 }
8669 coords[0] = new_coords[0];
8670 coords[1] = new_coords[1];
8671 }
8672
8673 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) {
8674 //FIXME: if (ctx->abi->gfx9_stride_size_workaround) return ac_build_buffer_load_format_gfx9_safe()
8675
8676 assert(coords.size() == 1);
8677 unsigned last_bit = util_last_bit(nir_ssa_def_components_read(&instr->dest.ssa));
8678 aco_opcode op;
8679 switch (last_bit) {
8680 case 1:
8681 op = aco_opcode::buffer_load_format_x; break;
8682 case 2:
8683 op = aco_opcode::buffer_load_format_xy; break;
8684 case 3:
8685 op = aco_opcode::buffer_load_format_xyz; break;
8686 case 4:
8687 op = aco_opcode::buffer_load_format_xyzw; break;
8688 default:
8689 unreachable("Tex instruction loads more than 4 components.");
8690 }
8691
8692 /* if the instruction return value matches exactly the nir dest ssa, we can use it directly */
8693 if (last_bit == instr->dest.ssa.num_components && dst.type() == RegType::vgpr)
8694 tmp_dst = dst;
8695 else
8696 tmp_dst = bld.tmp(RegType::vgpr, last_bit);
8697
8698 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(op, Format::MUBUF, 3, 1)};
8699 mubuf->operands[0] = Operand(resource);
8700 mubuf->operands[1] = Operand(coords[0]);
8701 mubuf->operands[2] = Operand((uint32_t) 0);
8702 mubuf->definitions[0] = Definition(tmp_dst);
8703 mubuf->idxen = true;
8704 mubuf->can_reorder = true;
8705 ctx->block->instructions.emplace_back(std::move(mubuf));
8706
8707 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, (1 << last_bit) - 1);
8708 return;
8709 }
8710
8711 /* gather MIMG address components */
8712 std::vector<Temp> args;
8713 if (has_offset)
8714 args.emplace_back(offset);
8715 if (has_bias)
8716 args.emplace_back(bias);
8717 if (has_compare)
8718 args.emplace_back(compare);
8719 if (has_derivs)
8720 args.insert(args.end(), derivs.begin(), derivs.end());
8721
8722 args.insert(args.end(), coords.begin(), coords.end());
8723 if (has_sample_index)
8724 args.emplace_back(sample_index);
8725 if (has_lod)
8726 args.emplace_back(lod);
8727
8728 Temp arg = bld.tmp(RegClass(RegType::vgpr, args.size()));
8729 aco_ptr<Instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, args.size(), 1)};
8730 vec->definitions[0] = Definition(arg);
8731 for (unsigned i = 0; i < args.size(); i++)
8732 vec->operands[i] = Operand(args[i]);
8733 ctx->block->instructions.emplace_back(std::move(vec));
8734
8735
8736 if (instr->op == nir_texop_txf ||
8737 instr->op == nir_texop_txf_ms ||
8738 instr->op == nir_texop_samples_identical ||
8739 instr->op == nir_texop_fragment_fetch ||
8740 instr->op == nir_texop_fragment_mask_fetch) {
8741 aco_opcode op = level_zero || instr->sampler_dim == GLSL_SAMPLER_DIM_MS || instr->sampler_dim == GLSL_SAMPLER_DIM_SUBPASS_MS ? aco_opcode::image_load : aco_opcode::image_load_mip;
8742 tex.reset(create_instruction<MIMG_instruction>(op, Format::MIMG, 3, 1));
8743 tex->operands[0] = Operand(resource);
8744 tex->operands[1] = Operand(s4); /* no sampler */
8745 tex->operands[2] = Operand(arg);
8746 tex->dim = dim;
8747 tex->dmask = dmask;
8748 tex->unrm = true;
8749 tex->da = da;
8750 tex->definitions[0] = Definition(tmp_dst);
8751 tex->can_reorder = true;
8752 ctx->block->instructions.emplace_back(std::move(tex));
8753
8754 if (instr->op == nir_texop_samples_identical) {
8755 assert(dmask == 1 && dst.regClass() == v1);
8756 assert(dst.id() != tmp_dst.id());
8757
8758 Temp tmp = bld.tmp(bld.lm);
8759 bld.vopc(aco_opcode::v_cmp_eq_u32, Definition(tmp), Operand(0u), tmp_dst).def(0).setHint(vcc);
8760 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(dst), Operand(0u), Operand((uint32_t)-1), tmp);
8761
8762 } else {
8763 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, dmask);
8764 }
8765 return;
8766 }
8767
8768 // TODO: would be better to do this by adding offsets, but needs the opcodes ordered.
8769 aco_opcode opcode = aco_opcode::image_sample;
8770 if (has_offset) { /* image_sample_*_o */
8771 if (has_compare) {
8772 opcode = aco_opcode::image_sample_c_o;
8773 if (has_derivs)
8774 opcode = aco_opcode::image_sample_c_d_o;
8775 if (has_bias)
8776 opcode = aco_opcode::image_sample_c_b_o;
8777 if (level_zero)
8778 opcode = aco_opcode::image_sample_c_lz_o;
8779 if (has_lod)
8780 opcode = aco_opcode::image_sample_c_l_o;
8781 } else {
8782 opcode = aco_opcode::image_sample_o;
8783 if (has_derivs)
8784 opcode = aco_opcode::image_sample_d_o;
8785 if (has_bias)
8786 opcode = aco_opcode::image_sample_b_o;
8787 if (level_zero)
8788 opcode = aco_opcode::image_sample_lz_o;
8789 if (has_lod)
8790 opcode = aco_opcode::image_sample_l_o;
8791 }
8792 } else { /* no offset */
8793 if (has_compare) {
8794 opcode = aco_opcode::image_sample_c;
8795 if (has_derivs)
8796 opcode = aco_opcode::image_sample_c_d;
8797 if (has_bias)
8798 opcode = aco_opcode::image_sample_c_b;
8799 if (level_zero)
8800 opcode = aco_opcode::image_sample_c_lz;
8801 if (has_lod)
8802 opcode = aco_opcode::image_sample_c_l;
8803 } else {
8804 opcode = aco_opcode::image_sample;
8805 if (has_derivs)
8806 opcode = aco_opcode::image_sample_d;
8807 if (has_bias)
8808 opcode = aco_opcode::image_sample_b;
8809 if (level_zero)
8810 opcode = aco_opcode::image_sample_lz;
8811 if (has_lod)
8812 opcode = aco_opcode::image_sample_l;
8813 }
8814 }
8815
8816 if (instr->op == nir_texop_tg4) {
8817 if (has_offset) {
8818 opcode = aco_opcode::image_gather4_lz_o;
8819 if (has_compare)
8820 opcode = aco_opcode::image_gather4_c_lz_o;
8821 } else {
8822 opcode = aco_opcode::image_gather4_lz;
8823 if (has_compare)
8824 opcode = aco_opcode::image_gather4_c_lz;
8825 }
8826 } else if (instr->op == nir_texop_lod) {
8827 opcode = aco_opcode::image_get_lod;
8828 }
8829
8830 /* we don't need the bias, sample index, compare value or offset to be
8831 * computed in WQM but if the p_create_vector copies the coordinates, then it
8832 * needs to be in WQM */
8833 if (ctx->stage == fragment_fs &&
8834 !has_derivs && !has_lod && !level_zero &&
8835 instr->sampler_dim != GLSL_SAMPLER_DIM_MS &&
8836 instr->sampler_dim != GLSL_SAMPLER_DIM_SUBPASS_MS)
8837 arg = emit_wqm(ctx, arg, bld.tmp(arg.regClass()), true);
8838
8839 tex.reset(create_instruction<MIMG_instruction>(opcode, Format::MIMG, 3, 1));
8840 tex->operands[0] = Operand(resource);
8841 tex->operands[1] = Operand(sampler);
8842 tex->operands[2] = Operand(arg);
8843 tex->dim = dim;
8844 tex->dmask = dmask;
8845 tex->da = da;
8846 tex->definitions[0] = Definition(tmp_dst);
8847 tex->can_reorder = true;
8848 ctx->block->instructions.emplace_back(std::move(tex));
8849
8850 if (tg4_integer_cube_workaround) {
8851 assert(tmp_dst.id() != dst.id());
8852 assert(tmp_dst.size() == dst.size() && dst.size() == 4);
8853
8854 emit_split_vector(ctx, tmp_dst, tmp_dst.size());
8855 Temp val[4];
8856 for (unsigned i = 0; i < dst.size(); i++) {
8857 val[i] = emit_extract_vector(ctx, tmp_dst, i, v1);
8858 Temp cvt_val;
8859 if (stype == GLSL_TYPE_UINT)
8860 cvt_val = bld.vop1(aco_opcode::v_cvt_u32_f32, bld.def(v1), val[i]);
8861 else
8862 cvt_val = bld.vop1(aco_opcode::v_cvt_i32_f32, bld.def(v1), val[i]);
8863 val[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1), val[i], cvt_val, tg4_compare_cube_wa64);
8864 }
8865 Temp tmp = dst.regClass() == v4 ? dst : bld.tmp(v4);
8866 tmp_dst = bld.pseudo(aco_opcode::p_create_vector, Definition(tmp),
8867 val[0], val[1], val[2], val[3]);
8868 }
8869 unsigned mask = instr->op == nir_texop_tg4 ? 0xF : dmask;
8870 expand_vector(ctx, tmp_dst, dst, instr->dest.ssa.num_components, mask);
8871
8872 }
8873
8874
8875 Operand get_phi_operand(isel_context *ctx, nir_ssa_def *ssa)
8876 {
8877 Temp tmp = get_ssa_temp(ctx, ssa);
8878 if (ssa->parent_instr->type == nir_instr_type_ssa_undef)
8879 return Operand(tmp.regClass());
8880 else
8881 return Operand(tmp);
8882 }
8883
8884 void visit_phi(isel_context *ctx, nir_phi_instr *instr)
8885 {
8886 aco_ptr<Pseudo_instruction> phi;
8887 Temp dst = get_ssa_temp(ctx, &instr->dest.ssa);
8888 assert(instr->dest.ssa.bit_size != 1 || dst.regClass() == ctx->program->lane_mask);
8889
8890 bool logical = !dst.is_linear() || ctx->divergent_vals[instr->dest.ssa.index];
8891 logical |= ctx->block->kind & block_kind_merge;
8892 aco_opcode opcode = logical ? aco_opcode::p_phi : aco_opcode::p_linear_phi;
8893
8894 /* we want a sorted list of sources, since the predecessor list is also sorted */
8895 std::map<unsigned, nir_ssa_def*> phi_src;
8896 nir_foreach_phi_src(src, instr)
8897 phi_src[src->pred->index] = src->src.ssa;
8898
8899 std::vector<unsigned>& preds = logical ? ctx->block->logical_preds : ctx->block->linear_preds;
8900 unsigned num_operands = 0;
8901 Operand operands[std::max(exec_list_length(&instr->srcs), (unsigned)preds.size()) + 1];
8902 unsigned num_defined = 0;
8903 unsigned cur_pred_idx = 0;
8904 for (std::pair<unsigned, nir_ssa_def *> src : phi_src) {
8905 if (cur_pred_idx < preds.size()) {
8906 /* handle missing preds (IF merges with discard/break) and extra preds (loop exit with discard) */
8907 unsigned block = ctx->cf_info.nir_to_aco[src.first];
8908 unsigned skipped = 0;
8909 while (cur_pred_idx + skipped < preds.size() && preds[cur_pred_idx + skipped] != block)
8910 skipped++;
8911 if (cur_pred_idx + skipped < preds.size()) {
8912 for (unsigned i = 0; i < skipped; i++)
8913 operands[num_operands++] = Operand(dst.regClass());
8914 cur_pred_idx += skipped;
8915 } else {
8916 continue;
8917 }
8918 }
8919 /* Handle missing predecessors at the end. This shouldn't happen with loop
8920 * headers and we can't ignore these sources for loop header phis. */
8921 if (!(ctx->block->kind & block_kind_loop_header) && cur_pred_idx >= preds.size())
8922 continue;
8923 cur_pred_idx++;
8924 Operand op = get_phi_operand(ctx, src.second);
8925 operands[num_operands++] = op;
8926 num_defined += !op.isUndefined();
8927 }
8928 /* handle block_kind_continue_or_break at loop exit blocks */
8929 while (cur_pred_idx++ < preds.size())
8930 operands[num_operands++] = Operand(dst.regClass());
8931
8932 /* If the loop ends with a break, still add a linear continue edge in case
8933 * that break is divergent or continue_or_break is used. We'll either remove
8934 * this operand later in visit_loop() if it's not necessary or replace the
8935 * undef with something correct. */
8936 if (!logical && ctx->block->kind & block_kind_loop_header) {
8937 nir_loop *loop = nir_cf_node_as_loop(instr->instr.block->cf_node.parent);
8938 nir_block *last = nir_loop_last_block(loop);
8939 if (last->successors[0] != instr->instr.block)
8940 operands[num_operands++] = Operand(RegClass());
8941 }
8942
8943 if (num_defined == 0) {
8944 Builder bld(ctx->program, ctx->block);
8945 if (dst.regClass() == s1) {
8946 bld.sop1(aco_opcode::s_mov_b32, Definition(dst), Operand(0u));
8947 } else if (dst.regClass() == v1) {
8948 bld.vop1(aco_opcode::v_mov_b32, Definition(dst), Operand(0u));
8949 } else {
8950 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
8951 for (unsigned i = 0; i < dst.size(); i++)
8952 vec->operands[i] = Operand(0u);
8953 vec->definitions[0] = Definition(dst);
8954 ctx->block->instructions.emplace_back(std::move(vec));
8955 }
8956 return;
8957 }
8958
8959 /* we can use a linear phi in some cases if one src is undef */
8960 if (dst.is_linear() && ctx->block->kind & block_kind_merge && num_defined == 1) {
8961 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_operands, 1));
8962
8963 Block *linear_else = &ctx->program->blocks[ctx->block->linear_preds[1]];
8964 Block *invert = &ctx->program->blocks[linear_else->linear_preds[0]];
8965 assert(invert->kind & block_kind_invert);
8966
8967 unsigned then_block = invert->linear_preds[0];
8968
8969 Block* insert_block = NULL;
8970 for (unsigned i = 0; i < num_operands; i++) {
8971 Operand op = operands[i];
8972 if (op.isUndefined())
8973 continue;
8974 insert_block = ctx->block->logical_preds[i] == then_block ? invert : ctx->block;
8975 phi->operands[0] = op;
8976 break;
8977 }
8978 assert(insert_block); /* should be handled by the "num_defined == 0" case above */
8979 phi->operands[1] = Operand(dst.regClass());
8980 phi->definitions[0] = Definition(dst);
8981 insert_block->instructions.emplace(insert_block->instructions.begin(), std::move(phi));
8982 return;
8983 }
8984
8985 /* try to scalarize vector phis */
8986 if (instr->dest.ssa.bit_size != 1 && dst.size() > 1) {
8987 // TODO: scalarize linear phis on divergent ifs
8988 bool can_scalarize = (opcode == aco_opcode::p_phi || !(ctx->block->kind & block_kind_merge));
8989 std::array<Temp, NIR_MAX_VEC_COMPONENTS> new_vec;
8990 for (unsigned i = 0; can_scalarize && (i < num_operands); i++) {
8991 Operand src = operands[i];
8992 if (src.isTemp() && ctx->allocated_vec.find(src.tempId()) == ctx->allocated_vec.end())
8993 can_scalarize = false;
8994 }
8995 if (can_scalarize) {
8996 unsigned num_components = instr->dest.ssa.num_components;
8997 assert(dst.size() % num_components == 0);
8998 RegClass rc = RegClass(dst.type(), dst.size() / num_components);
8999
9000 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_components, 1)};
9001 for (unsigned k = 0; k < num_components; k++) {
9002 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9003 for (unsigned i = 0; i < num_operands; i++) {
9004 Operand src = operands[i];
9005 phi->operands[i] = src.isTemp() ? Operand(ctx->allocated_vec[src.tempId()][k]) : Operand(rc);
9006 }
9007 Temp phi_dst = {ctx->program->allocateId(), rc};
9008 phi->definitions[0] = Definition(phi_dst);
9009 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9010 new_vec[k] = phi_dst;
9011 vec->operands[k] = Operand(phi_dst);
9012 }
9013 vec->definitions[0] = Definition(dst);
9014 ctx->block->instructions.emplace_back(std::move(vec));
9015 ctx->allocated_vec.emplace(dst.id(), new_vec);
9016 return;
9017 }
9018 }
9019
9020 phi.reset(create_instruction<Pseudo_instruction>(opcode, Format::PSEUDO, num_operands, 1));
9021 for (unsigned i = 0; i < num_operands; i++)
9022 phi->operands[i] = operands[i];
9023 phi->definitions[0] = Definition(dst);
9024 ctx->block->instructions.emplace(ctx->block->instructions.begin(), std::move(phi));
9025 }
9026
9027
9028 void visit_undef(isel_context *ctx, nir_ssa_undef_instr *instr)
9029 {
9030 Temp dst = get_ssa_temp(ctx, &instr->def);
9031
9032 assert(dst.type() == RegType::sgpr);
9033
9034 if (dst.size() == 1) {
9035 Builder(ctx->program, ctx->block).copy(Definition(dst), Operand(0u));
9036 } else {
9037 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, dst.size(), 1)};
9038 for (unsigned i = 0; i < dst.size(); i++)
9039 vec->operands[i] = Operand(0u);
9040 vec->definitions[0] = Definition(dst);
9041 ctx->block->instructions.emplace_back(std::move(vec));
9042 }
9043 }
9044
9045 void visit_jump(isel_context *ctx, nir_jump_instr *instr)
9046 {
9047 Builder bld(ctx->program, ctx->block);
9048 Block *logical_target;
9049 append_logical_end(ctx->block);
9050 unsigned idx = ctx->block->index;
9051
9052 switch (instr->type) {
9053 case nir_jump_break:
9054 logical_target = ctx->cf_info.parent_loop.exit;
9055 add_logical_edge(idx, logical_target);
9056 ctx->block->kind |= block_kind_break;
9057
9058 if (!ctx->cf_info.parent_if.is_divergent &&
9059 !ctx->cf_info.parent_loop.has_divergent_continue) {
9060 /* uniform break - directly jump out of the loop */
9061 ctx->block->kind |= block_kind_uniform;
9062 ctx->cf_info.has_branch = true;
9063 bld.branch(aco_opcode::p_branch);
9064 add_linear_edge(idx, logical_target);
9065 return;
9066 }
9067 ctx->cf_info.parent_loop.has_divergent_branch = true;
9068 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9069 break;
9070 case nir_jump_continue:
9071 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9072 add_logical_edge(idx, logical_target);
9073 ctx->block->kind |= block_kind_continue;
9074
9075 if (ctx->cf_info.parent_if.is_divergent) {
9076 /* for potential uniform breaks after this continue,
9077 we must ensure that they are handled correctly */
9078 ctx->cf_info.parent_loop.has_divergent_continue = true;
9079 ctx->cf_info.parent_loop.has_divergent_branch = true;
9080 ctx->cf_info.nir_to_aco[instr->instr.block->index] = ctx->block->index;
9081 } else {
9082 /* uniform continue - directly jump to the loop header */
9083 ctx->block->kind |= block_kind_uniform;
9084 ctx->cf_info.has_branch = true;
9085 bld.branch(aco_opcode::p_branch);
9086 add_linear_edge(idx, logical_target);
9087 return;
9088 }
9089 break;
9090 default:
9091 fprintf(stderr, "Unknown NIR jump instr: ");
9092 nir_print_instr(&instr->instr, stderr);
9093 fprintf(stderr, "\n");
9094 abort();
9095 }
9096
9097 if (ctx->cf_info.parent_if.is_divergent && !ctx->cf_info.exec_potentially_empty_break) {
9098 ctx->cf_info.exec_potentially_empty_break = true;
9099 ctx->cf_info.exec_potentially_empty_break_depth = ctx->cf_info.loop_nest_depth;
9100 }
9101
9102 /* remove critical edges from linear CFG */
9103 bld.branch(aco_opcode::p_branch);
9104 Block* break_block = ctx->program->create_and_insert_block();
9105 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9106 break_block->kind |= block_kind_uniform;
9107 add_linear_edge(idx, break_block);
9108 /* the loop_header pointer might be invalidated by this point */
9109 if (instr->type == nir_jump_continue)
9110 logical_target = &ctx->program->blocks[ctx->cf_info.parent_loop.header_idx];
9111 add_linear_edge(break_block->index, logical_target);
9112 bld.reset(break_block);
9113 bld.branch(aco_opcode::p_branch);
9114
9115 Block* continue_block = ctx->program->create_and_insert_block();
9116 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9117 add_linear_edge(idx, continue_block);
9118 append_logical_start(continue_block);
9119 ctx->block = continue_block;
9120 return;
9121 }
9122
9123 void visit_block(isel_context *ctx, nir_block *block)
9124 {
9125 nir_foreach_instr(instr, block) {
9126 switch (instr->type) {
9127 case nir_instr_type_alu:
9128 visit_alu_instr(ctx, nir_instr_as_alu(instr));
9129 break;
9130 case nir_instr_type_load_const:
9131 visit_load_const(ctx, nir_instr_as_load_const(instr));
9132 break;
9133 case nir_instr_type_intrinsic:
9134 visit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
9135 break;
9136 case nir_instr_type_tex:
9137 visit_tex(ctx, nir_instr_as_tex(instr));
9138 break;
9139 case nir_instr_type_phi:
9140 visit_phi(ctx, nir_instr_as_phi(instr));
9141 break;
9142 case nir_instr_type_ssa_undef:
9143 visit_undef(ctx, nir_instr_as_ssa_undef(instr));
9144 break;
9145 case nir_instr_type_deref:
9146 break;
9147 case nir_instr_type_jump:
9148 visit_jump(ctx, nir_instr_as_jump(instr));
9149 break;
9150 default:
9151 fprintf(stderr, "Unknown NIR instr type: ");
9152 nir_print_instr(instr, stderr);
9153 fprintf(stderr, "\n");
9154 //abort();
9155 }
9156 }
9157
9158 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9159 ctx->cf_info.nir_to_aco[block->index] = ctx->block->index;
9160 }
9161
9162
9163
9164 static Operand create_continue_phis(isel_context *ctx, unsigned first, unsigned last,
9165 aco_ptr<Instruction>& header_phi, Operand *vals)
9166 {
9167 vals[0] = Operand(header_phi->definitions[0].getTemp());
9168 RegClass rc = vals[0].regClass();
9169
9170 unsigned loop_nest_depth = ctx->program->blocks[first].loop_nest_depth;
9171
9172 unsigned next_pred = 1;
9173
9174 for (unsigned idx = first + 1; idx <= last; idx++) {
9175 Block& block = ctx->program->blocks[idx];
9176 if (block.loop_nest_depth != loop_nest_depth) {
9177 vals[idx - first] = vals[idx - 1 - first];
9178 continue;
9179 }
9180
9181 if (block.kind & block_kind_continue) {
9182 vals[idx - first] = header_phi->operands[next_pred];
9183 next_pred++;
9184 continue;
9185 }
9186
9187 bool all_same = true;
9188 for (unsigned i = 1; all_same && (i < block.linear_preds.size()); i++)
9189 all_same = vals[block.linear_preds[i] - first] == vals[block.linear_preds[0] - first];
9190
9191 Operand val;
9192 if (all_same) {
9193 val = vals[block.linear_preds[0] - first];
9194 } else {
9195 aco_ptr<Instruction> phi(create_instruction<Pseudo_instruction>(
9196 aco_opcode::p_linear_phi, Format::PSEUDO, block.linear_preds.size(), 1));
9197 for (unsigned i = 0; i < block.linear_preds.size(); i++)
9198 phi->operands[i] = vals[block.linear_preds[i] - first];
9199 val = Operand(Temp(ctx->program->allocateId(), rc));
9200 phi->definitions[0] = Definition(val.getTemp());
9201 block.instructions.emplace(block.instructions.begin(), std::move(phi));
9202 }
9203 vals[idx - first] = val;
9204 }
9205
9206 return vals[last - first];
9207 }
9208
9209 static void visit_loop(isel_context *ctx, nir_loop *loop)
9210 {
9211 //TODO: we might want to wrap the loop around a branch if exec_potentially_empty=true
9212 append_logical_end(ctx->block);
9213 ctx->block->kind |= block_kind_loop_preheader | block_kind_uniform;
9214 Builder bld(ctx->program, ctx->block);
9215 bld.branch(aco_opcode::p_branch);
9216 unsigned loop_preheader_idx = ctx->block->index;
9217
9218 Block loop_exit = Block();
9219 loop_exit.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9220 loop_exit.kind |= (block_kind_loop_exit | (ctx->block->kind & block_kind_top_level));
9221
9222 Block* loop_header = ctx->program->create_and_insert_block();
9223 loop_header->loop_nest_depth = ctx->cf_info.loop_nest_depth + 1;
9224 loop_header->kind |= block_kind_loop_header;
9225 add_edge(loop_preheader_idx, loop_header);
9226 ctx->block = loop_header;
9227
9228 /* emit loop body */
9229 unsigned loop_header_idx = loop_header->index;
9230 loop_info_RAII loop_raii(ctx, loop_header_idx, &loop_exit);
9231 append_logical_start(ctx->block);
9232 bool unreachable = visit_cf_list(ctx, &loop->body);
9233
9234 //TODO: what if a loop ends with a unconditional or uniformly branched continue and this branch is never taken?
9235 if (!ctx->cf_info.has_branch) {
9236 append_logical_end(ctx->block);
9237 if (ctx->cf_info.exec_potentially_empty_discard || ctx->cf_info.exec_potentially_empty_break) {
9238 /* Discards can result in code running with an empty exec mask.
9239 * This would result in divergent breaks not ever being taken. As a
9240 * workaround, break the loop when the loop mask is empty instead of
9241 * always continuing. */
9242 ctx->block->kind |= (block_kind_continue_or_break | block_kind_uniform);
9243 unsigned block_idx = ctx->block->index;
9244
9245 /* create helper blocks to avoid critical edges */
9246 Block *break_block = ctx->program->create_and_insert_block();
9247 break_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9248 break_block->kind = block_kind_uniform;
9249 bld.reset(break_block);
9250 bld.branch(aco_opcode::p_branch);
9251 add_linear_edge(block_idx, break_block);
9252 add_linear_edge(break_block->index, &loop_exit);
9253
9254 Block *continue_block = ctx->program->create_and_insert_block();
9255 continue_block->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9256 continue_block->kind = block_kind_uniform;
9257 bld.reset(continue_block);
9258 bld.branch(aco_opcode::p_branch);
9259 add_linear_edge(block_idx, continue_block);
9260 add_linear_edge(continue_block->index, &ctx->program->blocks[loop_header_idx]);
9261
9262 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9263 add_logical_edge(block_idx, &ctx->program->blocks[loop_header_idx]);
9264 ctx->block = &ctx->program->blocks[block_idx];
9265 } else {
9266 ctx->block->kind |= (block_kind_continue | block_kind_uniform);
9267 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9268 add_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9269 else
9270 add_linear_edge(ctx->block->index, &ctx->program->blocks[loop_header_idx]);
9271 }
9272
9273 bld.reset(ctx->block);
9274 bld.branch(aco_opcode::p_branch);
9275 }
9276
9277 /* Fixup phis in loop header from unreachable blocks.
9278 * has_branch/has_divergent_branch also indicates if the loop ends with a
9279 * break/continue instruction, but we don't emit those if unreachable=true */
9280 if (unreachable) {
9281 assert(ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch);
9282 bool linear = ctx->cf_info.has_branch;
9283 bool logical = ctx->cf_info.has_branch || ctx->cf_info.parent_loop.has_divergent_branch;
9284 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9285 if ((logical && instr->opcode == aco_opcode::p_phi) ||
9286 (linear && instr->opcode == aco_opcode::p_linear_phi)) {
9287 /* the last operand should be the one that needs to be removed */
9288 instr->operands.pop_back();
9289 } else if (!is_phi(instr)) {
9290 break;
9291 }
9292 }
9293 }
9294
9295 /* Fixup linear phis in loop header from expecting a continue. Both this fixup
9296 * and the previous one shouldn't both happen at once because a break in the
9297 * merge block would get CSE'd */
9298 if (nir_loop_last_block(loop)->successors[0] != nir_loop_first_block(loop)) {
9299 unsigned num_vals = ctx->cf_info.has_branch ? 1 : (ctx->block->index - loop_header_idx + 1);
9300 Operand vals[num_vals];
9301 for (aco_ptr<Instruction>& instr : ctx->program->blocks[loop_header_idx].instructions) {
9302 if (instr->opcode == aco_opcode::p_linear_phi) {
9303 if (ctx->cf_info.has_branch)
9304 instr->operands.pop_back();
9305 else
9306 instr->operands.back() = create_continue_phis(ctx, loop_header_idx, ctx->block->index, instr, vals);
9307 } else if (!is_phi(instr)) {
9308 break;
9309 }
9310 }
9311 }
9312
9313 ctx->cf_info.has_branch = false;
9314
9315 // TODO: if the loop has not a single exit, we must add one °°
9316 /* emit loop successor block */
9317 ctx->block = ctx->program->insert_block(std::move(loop_exit));
9318 append_logical_start(ctx->block);
9319
9320 #if 0
9321 // TODO: check if it is beneficial to not branch on continues
9322 /* trim linear phis in loop header */
9323 for (auto&& instr : loop_entry->instructions) {
9324 if (instr->opcode == aco_opcode::p_linear_phi) {
9325 aco_ptr<Pseudo_instruction> new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, loop_entry->linear_predecessors.size(), 1)};
9326 new_phi->definitions[0] = instr->definitions[0];
9327 for (unsigned i = 0; i < new_phi->operands.size(); i++)
9328 new_phi->operands[i] = instr->operands[i];
9329 /* check that the remaining operands are all the same */
9330 for (unsigned i = new_phi->operands.size(); i < instr->operands.size(); i++)
9331 assert(instr->operands[i].tempId() == instr->operands.back().tempId());
9332 instr.swap(new_phi);
9333 } else if (instr->opcode == aco_opcode::p_phi) {
9334 continue;
9335 } else {
9336 break;
9337 }
9338 }
9339 #endif
9340 }
9341
9342 static void begin_divergent_if_then(isel_context *ctx, if_context *ic, Temp cond)
9343 {
9344 ic->cond = cond;
9345
9346 append_logical_end(ctx->block);
9347 ctx->block->kind |= block_kind_branch;
9348
9349 /* branch to linear then block */
9350 assert(cond.regClass() == ctx->program->lane_mask);
9351 aco_ptr<Pseudo_branch_instruction> branch;
9352 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_z, Format::PSEUDO_BRANCH, 1, 0));
9353 branch->operands[0] = Operand(cond);
9354 ctx->block->instructions.push_back(std::move(branch));
9355
9356 ic->BB_if_idx = ctx->block->index;
9357 ic->BB_invert = Block();
9358 ic->BB_invert.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9359 /* Invert blocks are intentionally not marked as top level because they
9360 * are not part of the logical cfg. */
9361 ic->BB_invert.kind |= block_kind_invert;
9362 ic->BB_endif = Block();
9363 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9364 ic->BB_endif.kind |= (block_kind_merge | (ctx->block->kind & block_kind_top_level));
9365
9366 ic->exec_potentially_empty_discard_old = ctx->cf_info.exec_potentially_empty_discard;
9367 ic->exec_potentially_empty_break_old = ctx->cf_info.exec_potentially_empty_break;
9368 ic->exec_potentially_empty_break_depth_old = ctx->cf_info.exec_potentially_empty_break_depth;
9369 ic->divergent_old = ctx->cf_info.parent_if.is_divergent;
9370 ctx->cf_info.parent_if.is_divergent = true;
9371
9372 /* divergent branches use cbranch_execz */
9373 ctx->cf_info.exec_potentially_empty_discard = false;
9374 ctx->cf_info.exec_potentially_empty_break = false;
9375 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9376
9377 /** emit logical then block */
9378 Block* BB_then_logical = ctx->program->create_and_insert_block();
9379 BB_then_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9380 add_edge(ic->BB_if_idx, BB_then_logical);
9381 ctx->block = BB_then_logical;
9382 append_logical_start(BB_then_logical);
9383 }
9384
9385 static void begin_divergent_if_else(isel_context *ctx, if_context *ic)
9386 {
9387 Block *BB_then_logical = ctx->block;
9388 append_logical_end(BB_then_logical);
9389 /* branch from logical then block to invert block */
9390 aco_ptr<Pseudo_branch_instruction> branch;
9391 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9392 BB_then_logical->instructions.emplace_back(std::move(branch));
9393 add_linear_edge(BB_then_logical->index, &ic->BB_invert);
9394 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9395 add_logical_edge(BB_then_logical->index, &ic->BB_endif);
9396 BB_then_logical->kind |= block_kind_uniform;
9397 assert(!ctx->cf_info.has_branch);
9398 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9399 ctx->cf_info.parent_loop.has_divergent_branch = false;
9400
9401 /** emit linear then block */
9402 Block* BB_then_linear = ctx->program->create_and_insert_block();
9403 BB_then_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9404 BB_then_linear->kind |= block_kind_uniform;
9405 add_linear_edge(ic->BB_if_idx, BB_then_linear);
9406 /* branch from linear then block to invert block */
9407 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9408 BB_then_linear->instructions.emplace_back(std::move(branch));
9409 add_linear_edge(BB_then_linear->index, &ic->BB_invert);
9410
9411 /** emit invert merge block */
9412 ctx->block = ctx->program->insert_block(std::move(ic->BB_invert));
9413 ic->invert_idx = ctx->block->index;
9414
9415 /* branch to linear else block (skip else) */
9416 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_cbranch_nz, Format::PSEUDO_BRANCH, 1, 0));
9417 branch->operands[0] = Operand(ic->cond);
9418 ctx->block->instructions.push_back(std::move(branch));
9419
9420 ic->exec_potentially_empty_discard_old |= ctx->cf_info.exec_potentially_empty_discard;
9421 ic->exec_potentially_empty_break_old |= ctx->cf_info.exec_potentially_empty_break;
9422 ic->exec_potentially_empty_break_depth_old =
9423 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9424 /* divergent branches use cbranch_execz */
9425 ctx->cf_info.exec_potentially_empty_discard = false;
9426 ctx->cf_info.exec_potentially_empty_break = false;
9427 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9428
9429 /** emit logical else block */
9430 Block* BB_else_logical = ctx->program->create_and_insert_block();
9431 BB_else_logical->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9432 add_logical_edge(ic->BB_if_idx, BB_else_logical);
9433 add_linear_edge(ic->invert_idx, BB_else_logical);
9434 ctx->block = BB_else_logical;
9435 append_logical_start(BB_else_logical);
9436 }
9437
9438 static void end_divergent_if(isel_context *ctx, if_context *ic)
9439 {
9440 Block *BB_else_logical = ctx->block;
9441 append_logical_end(BB_else_logical);
9442
9443 /* branch from logical else block to endif block */
9444 aco_ptr<Pseudo_branch_instruction> branch;
9445 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9446 BB_else_logical->instructions.emplace_back(std::move(branch));
9447 add_linear_edge(BB_else_logical->index, &ic->BB_endif);
9448 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9449 add_logical_edge(BB_else_logical->index, &ic->BB_endif);
9450 BB_else_logical->kind |= block_kind_uniform;
9451
9452 assert(!ctx->cf_info.has_branch);
9453 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9454
9455
9456 /** emit linear else block */
9457 Block* BB_else_linear = ctx->program->create_and_insert_block();
9458 BB_else_linear->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9459 BB_else_linear->kind |= block_kind_uniform;
9460 add_linear_edge(ic->invert_idx, BB_else_linear);
9461
9462 /* branch from linear else block to endif block */
9463 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9464 BB_else_linear->instructions.emplace_back(std::move(branch));
9465 add_linear_edge(BB_else_linear->index, &ic->BB_endif);
9466
9467
9468 /** emit endif merge block */
9469 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9470 append_logical_start(ctx->block);
9471
9472
9473 ctx->cf_info.parent_if.is_divergent = ic->divergent_old;
9474 ctx->cf_info.exec_potentially_empty_discard |= ic->exec_potentially_empty_discard_old;
9475 ctx->cf_info.exec_potentially_empty_break |= ic->exec_potentially_empty_break_old;
9476 ctx->cf_info.exec_potentially_empty_break_depth =
9477 std::min(ic->exec_potentially_empty_break_depth_old, ctx->cf_info.exec_potentially_empty_break_depth);
9478 if (ctx->cf_info.loop_nest_depth == ctx->cf_info.exec_potentially_empty_break_depth &&
9479 !ctx->cf_info.parent_if.is_divergent) {
9480 ctx->cf_info.exec_potentially_empty_break = false;
9481 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9482 }
9483 /* uniform control flow never has an empty exec-mask */
9484 if (!ctx->cf_info.loop_nest_depth && !ctx->cf_info.parent_if.is_divergent) {
9485 ctx->cf_info.exec_potentially_empty_discard = false;
9486 ctx->cf_info.exec_potentially_empty_break = false;
9487 ctx->cf_info.exec_potentially_empty_break_depth = UINT16_MAX;
9488 }
9489 }
9490
9491 static void begin_uniform_if_then(isel_context *ctx, if_context *ic, Temp cond)
9492 {
9493 assert(cond.regClass() == s1);
9494
9495 append_logical_end(ctx->block);
9496 ctx->block->kind |= block_kind_uniform;
9497
9498 aco_ptr<Pseudo_branch_instruction> branch;
9499 aco_opcode branch_opcode = aco_opcode::p_cbranch_z;
9500 branch.reset(create_instruction<Pseudo_branch_instruction>(branch_opcode, Format::PSEUDO_BRANCH, 1, 0));
9501 branch->operands[0] = Operand(cond);
9502 branch->operands[0].setFixed(scc);
9503 ctx->block->instructions.emplace_back(std::move(branch));
9504
9505 ic->BB_if_idx = ctx->block->index;
9506 ic->BB_endif = Block();
9507 ic->BB_endif.loop_nest_depth = ctx->cf_info.loop_nest_depth;
9508 ic->BB_endif.kind |= ctx->block->kind & block_kind_top_level;
9509
9510 ctx->cf_info.has_branch = false;
9511 ctx->cf_info.parent_loop.has_divergent_branch = false;
9512
9513 /** emit then block */
9514 Block* BB_then = ctx->program->create_and_insert_block();
9515 BB_then->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9516 add_edge(ic->BB_if_idx, BB_then);
9517 append_logical_start(BB_then);
9518 ctx->block = BB_then;
9519 }
9520
9521 static void begin_uniform_if_else(isel_context *ctx, if_context *ic)
9522 {
9523 Block *BB_then = ctx->block;
9524
9525 ic->uniform_has_then_branch = ctx->cf_info.has_branch;
9526 ic->then_branch_divergent = ctx->cf_info.parent_loop.has_divergent_branch;
9527
9528 if (!ic->uniform_has_then_branch) {
9529 append_logical_end(BB_then);
9530 /* branch from then block to endif block */
9531 aco_ptr<Pseudo_branch_instruction> branch;
9532 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9533 BB_then->instructions.emplace_back(std::move(branch));
9534 add_linear_edge(BB_then->index, &ic->BB_endif);
9535 if (!ic->then_branch_divergent)
9536 add_logical_edge(BB_then->index, &ic->BB_endif);
9537 BB_then->kind |= block_kind_uniform;
9538 }
9539
9540 ctx->cf_info.has_branch = false;
9541 ctx->cf_info.parent_loop.has_divergent_branch = false;
9542
9543 /** emit else block */
9544 Block* BB_else = ctx->program->create_and_insert_block();
9545 BB_else->loop_nest_depth = ctx->cf_info.loop_nest_depth;
9546 add_edge(ic->BB_if_idx, BB_else);
9547 append_logical_start(BB_else);
9548 ctx->block = BB_else;
9549 }
9550
9551 static void end_uniform_if(isel_context *ctx, if_context *ic)
9552 {
9553 Block *BB_else = ctx->block;
9554
9555 if (!ctx->cf_info.has_branch) {
9556 append_logical_end(BB_else);
9557 /* branch from then block to endif block */
9558 aco_ptr<Pseudo_branch_instruction> branch;
9559 branch.reset(create_instruction<Pseudo_branch_instruction>(aco_opcode::p_branch, Format::PSEUDO_BRANCH, 0, 0));
9560 BB_else->instructions.emplace_back(std::move(branch));
9561 add_linear_edge(BB_else->index, &ic->BB_endif);
9562 if (!ctx->cf_info.parent_loop.has_divergent_branch)
9563 add_logical_edge(BB_else->index, &ic->BB_endif);
9564 BB_else->kind |= block_kind_uniform;
9565 }
9566
9567 ctx->cf_info.has_branch &= ic->uniform_has_then_branch;
9568 ctx->cf_info.parent_loop.has_divergent_branch &= ic->then_branch_divergent;
9569
9570 /** emit endif merge block */
9571 if (!ctx->cf_info.has_branch) {
9572 ctx->block = ctx->program->insert_block(std::move(ic->BB_endif));
9573 append_logical_start(ctx->block);
9574 }
9575 }
9576
9577 static bool visit_if(isel_context *ctx, nir_if *if_stmt)
9578 {
9579 Temp cond = get_ssa_temp(ctx, if_stmt->condition.ssa);
9580 Builder bld(ctx->program, ctx->block);
9581 aco_ptr<Pseudo_branch_instruction> branch;
9582 if_context ic;
9583
9584 if (!ctx->divergent_vals[if_stmt->condition.ssa->index]) { /* uniform condition */
9585 /**
9586 * Uniform conditionals are represented in the following way*) :
9587 *
9588 * The linear and logical CFG:
9589 * BB_IF
9590 * / \
9591 * BB_THEN (logical) BB_ELSE (logical)
9592 * \ /
9593 * BB_ENDIF
9594 *
9595 * *) Exceptions may be due to break and continue statements within loops
9596 * If a break/continue happens within uniform control flow, it branches
9597 * to the loop exit/entry block. Otherwise, it branches to the next
9598 * merge block.
9599 **/
9600
9601 // TODO: in a post-RA optimizer, we could check if the condition is in VCC and omit this instruction
9602 assert(cond.regClass() == ctx->program->lane_mask);
9603 cond = bool_to_scalar_condition(ctx, cond);
9604
9605 begin_uniform_if_then(ctx, &ic, cond);
9606 visit_cf_list(ctx, &if_stmt->then_list);
9607
9608 begin_uniform_if_else(ctx, &ic);
9609 visit_cf_list(ctx, &if_stmt->else_list);
9610
9611 end_uniform_if(ctx, &ic);
9612
9613 return !ctx->cf_info.has_branch;
9614 } else { /* non-uniform condition */
9615 /**
9616 * To maintain a logical and linear CFG without critical edges,
9617 * non-uniform conditionals are represented in the following way*) :
9618 *
9619 * The linear CFG:
9620 * BB_IF
9621 * / \
9622 * BB_THEN (logical) BB_THEN (linear)
9623 * \ /
9624 * BB_INVERT (linear)
9625 * / \
9626 * BB_ELSE (logical) BB_ELSE (linear)
9627 * \ /
9628 * BB_ENDIF
9629 *
9630 * The logical CFG:
9631 * BB_IF
9632 * / \
9633 * BB_THEN (logical) BB_ELSE (logical)
9634 * \ /
9635 * BB_ENDIF
9636 *
9637 * *) Exceptions may be due to break and continue statements within loops
9638 **/
9639
9640 begin_divergent_if_then(ctx, &ic, cond);
9641 visit_cf_list(ctx, &if_stmt->then_list);
9642
9643 begin_divergent_if_else(ctx, &ic);
9644 visit_cf_list(ctx, &if_stmt->else_list);
9645
9646 end_divergent_if(ctx, &ic);
9647
9648 return true;
9649 }
9650 }
9651
9652 static bool visit_cf_list(isel_context *ctx,
9653 struct exec_list *list)
9654 {
9655 foreach_list_typed(nir_cf_node, node, node, list) {
9656 switch (node->type) {
9657 case nir_cf_node_block:
9658 visit_block(ctx, nir_cf_node_as_block(node));
9659 break;
9660 case nir_cf_node_if:
9661 if (!visit_if(ctx, nir_cf_node_as_if(node)))
9662 return true;
9663 break;
9664 case nir_cf_node_loop:
9665 visit_loop(ctx, nir_cf_node_as_loop(node));
9666 break;
9667 default:
9668 unreachable("unimplemented cf list type");
9669 }
9670 }
9671 return false;
9672 }
9673
9674 static void create_null_export(isel_context *ctx)
9675 {
9676 /* Some shader stages always need to have exports.
9677 * So when there is none, we need to add a null export.
9678 */
9679
9680 unsigned dest = (ctx->program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
9681 bool vm = (ctx->program->stage & hw_fs) || ctx->program->chip_class >= GFX10;
9682 Builder bld(ctx->program, ctx->block);
9683 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
9684 /* enabled_mask */ 0, dest, /* compr */ false, /* done */ true, vm);
9685 }
9686
9687 static bool export_vs_varying(isel_context *ctx, int slot, bool is_pos, int *next_pos)
9688 {
9689 assert(ctx->stage == vertex_vs ||
9690 ctx->stage == tess_eval_vs ||
9691 ctx->stage == gs_copy_vs ||
9692 ctx->stage == ngg_vertex_gs ||
9693 ctx->stage == ngg_tess_eval_gs);
9694
9695 int offset = (ctx->stage & sw_tes)
9696 ? ctx->program->info->tes.outinfo.vs_output_param_offset[slot]
9697 : ctx->program->info->vs.outinfo.vs_output_param_offset[slot];
9698 uint64_t mask = ctx->outputs.mask[slot];
9699 if (!is_pos && !mask)
9700 return false;
9701 if (!is_pos && offset == AC_EXP_PARAM_UNDEFINED)
9702 return false;
9703 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9704 exp->enabled_mask = mask;
9705 for (unsigned i = 0; i < 4; ++i) {
9706 if (mask & (1 << i))
9707 exp->operands[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9708 else
9709 exp->operands[i] = Operand(v1);
9710 }
9711 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
9712 * Setting valid_mask=1 prevents it and has no other effect.
9713 */
9714 exp->valid_mask = ctx->options->chip_class >= GFX10 && is_pos && *next_pos == 0;
9715 exp->done = false;
9716 exp->compressed = false;
9717 if (is_pos)
9718 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9719 else
9720 exp->dest = V_008DFC_SQ_EXP_PARAM + offset;
9721 ctx->block->instructions.emplace_back(std::move(exp));
9722
9723 return true;
9724 }
9725
9726 static void export_vs_psiz_layer_viewport(isel_context *ctx, int *next_pos)
9727 {
9728 aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
9729 exp->enabled_mask = 0;
9730 for (unsigned i = 0; i < 4; ++i)
9731 exp->operands[i] = Operand(v1);
9732 if (ctx->outputs.mask[VARYING_SLOT_PSIZ]) {
9733 exp->operands[0] = Operand(ctx->outputs.temps[VARYING_SLOT_PSIZ * 4u]);
9734 exp->enabled_mask |= 0x1;
9735 }
9736 if (ctx->outputs.mask[VARYING_SLOT_LAYER]) {
9737 exp->operands[2] = Operand(ctx->outputs.temps[VARYING_SLOT_LAYER * 4u]);
9738 exp->enabled_mask |= 0x4;
9739 }
9740 if (ctx->outputs.mask[VARYING_SLOT_VIEWPORT]) {
9741 if (ctx->options->chip_class < GFX9) {
9742 exp->operands[3] = Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]);
9743 exp->enabled_mask |= 0x8;
9744 } else {
9745 Builder bld(ctx->program, ctx->block);
9746
9747 Temp out = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u),
9748 Operand(ctx->outputs.temps[VARYING_SLOT_VIEWPORT * 4u]));
9749 if (exp->operands[2].isTemp())
9750 out = bld.vop2(aco_opcode::v_or_b32, bld.def(v1), Operand(out), exp->operands[2]);
9751
9752 exp->operands[2] = Operand(out);
9753 exp->enabled_mask |= 0x4;
9754 }
9755 }
9756 exp->valid_mask = ctx->options->chip_class >= GFX10 && *next_pos == 0;
9757 exp->done = false;
9758 exp->compressed = false;
9759 exp->dest = V_008DFC_SQ_EXP_POS + (*next_pos)++;
9760 ctx->block->instructions.emplace_back(std::move(exp));
9761 }
9762
9763 static void create_export_phis(isel_context *ctx)
9764 {
9765 /* Used when exports are needed, but the output temps are defined in a preceding block.
9766 * This function will set up phis in order to access the outputs in the next block.
9767 */
9768
9769 assert(ctx->block->instructions.back()->opcode == aco_opcode::p_logical_start);
9770 aco_ptr<Instruction> logical_start = aco_ptr<Instruction>(ctx->block->instructions.back().release());
9771 ctx->block->instructions.pop_back();
9772
9773 Builder bld(ctx->program, ctx->block);
9774
9775 for (unsigned slot = 0; slot <= VARYING_SLOT_VAR31; ++slot) {
9776 uint64_t mask = ctx->outputs.mask[slot];
9777 for (unsigned i = 0; i < 4; ++i) {
9778 if (!(mask & (1 << i)))
9779 continue;
9780
9781 Temp old = ctx->outputs.temps[slot * 4 + i];
9782 Temp phi = bld.pseudo(aco_opcode::p_phi, bld.def(v1), old, Operand(v1));
9783 ctx->outputs.temps[slot * 4 + i] = phi;
9784 }
9785 }
9786
9787 bld.insert(std::move(logical_start));
9788 }
9789
9790 static void create_vs_exports(isel_context *ctx)
9791 {
9792 assert(ctx->stage == vertex_vs ||
9793 ctx->stage == tess_eval_vs ||
9794 ctx->stage == gs_copy_vs ||
9795 ctx->stage == ngg_vertex_gs ||
9796 ctx->stage == ngg_tess_eval_gs);
9797
9798 radv_vs_output_info *outinfo = (ctx->stage & sw_tes)
9799 ? &ctx->program->info->tes.outinfo
9800 : &ctx->program->info->vs.outinfo;
9801
9802 if (outinfo->export_prim_id && !(ctx->stage & hw_ngg_gs)) {
9803 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
9804 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = get_arg(ctx, ctx->args->vs_prim_id);
9805 }
9806
9807 if (ctx->options->key.has_multiview_view_index) {
9808 ctx->outputs.mask[VARYING_SLOT_LAYER] |= 0x1;
9809 ctx->outputs.temps[VARYING_SLOT_LAYER * 4u] = as_vgpr(ctx, get_arg(ctx, ctx->args->ac.view_index));
9810 }
9811
9812 /* the order these position exports are created is important */
9813 int next_pos = 0;
9814 bool exported_pos = export_vs_varying(ctx, VARYING_SLOT_POS, true, &next_pos);
9815 if (outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index) {
9816 export_vs_psiz_layer_viewport(ctx, &next_pos);
9817 exported_pos = true;
9818 }
9819 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9820 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, true, &next_pos);
9821 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9822 exported_pos |= export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, true, &next_pos);
9823
9824 if (ctx->export_clip_dists) {
9825 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
9826 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST0, false, &next_pos);
9827 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
9828 export_vs_varying(ctx, VARYING_SLOT_CLIP_DIST1, false, &next_pos);
9829 }
9830
9831 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
9832 if (i < VARYING_SLOT_VAR0 &&
9833 i != VARYING_SLOT_LAYER &&
9834 i != VARYING_SLOT_PRIMITIVE_ID)
9835 continue;
9836
9837 export_vs_varying(ctx, i, false, NULL);
9838 }
9839
9840 if (!exported_pos)
9841 create_null_export(ctx);
9842 }
9843
9844 static bool export_fs_mrt_z(isel_context *ctx)
9845 {
9846 Builder bld(ctx->program, ctx->block);
9847 unsigned enabled_channels = 0;
9848 bool compr = false;
9849 Operand values[4];
9850
9851 for (unsigned i = 0; i < 4; ++i) {
9852 values[i] = Operand(v1);
9853 }
9854
9855 /* Both stencil and sample mask only need 16-bits. */
9856 if (!ctx->program->info->ps.writes_z &&
9857 (ctx->program->info->ps.writes_stencil ||
9858 ctx->program->info->ps.writes_sample_mask)) {
9859 compr = true; /* COMPR flag */
9860
9861 if (ctx->program->info->ps.writes_stencil) {
9862 /* Stencil should be in X[23:16]. */
9863 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9864 values[0] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(16u), values[0]);
9865 enabled_channels |= 0x3;
9866 }
9867
9868 if (ctx->program->info->ps.writes_sample_mask) {
9869 /* SampleMask should be in Y[15:0]. */
9870 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9871 enabled_channels |= 0xc;
9872 }
9873 } else {
9874 if (ctx->program->info->ps.writes_z) {
9875 values[0] = Operand(ctx->outputs.temps[FRAG_RESULT_DEPTH * 4u]);
9876 enabled_channels |= 0x1;
9877 }
9878
9879 if (ctx->program->info->ps.writes_stencil) {
9880 values[1] = Operand(ctx->outputs.temps[FRAG_RESULT_STENCIL * 4u]);
9881 enabled_channels |= 0x2;
9882 }
9883
9884 if (ctx->program->info->ps.writes_sample_mask) {
9885 values[2] = Operand(ctx->outputs.temps[FRAG_RESULT_SAMPLE_MASK * 4u]);
9886 enabled_channels |= 0x4;
9887 }
9888 }
9889
9890 /* GFX6 (except OLAND and HAINAN) has a bug that it only looks at the X
9891 * writemask component.
9892 */
9893 if (ctx->options->chip_class == GFX6 &&
9894 ctx->options->family != CHIP_OLAND &&
9895 ctx->options->family != CHIP_HAINAN) {
9896 enabled_channels |= 0x1;
9897 }
9898
9899 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
9900 enabled_channels, V_008DFC_SQ_EXP_MRTZ, compr);
9901
9902 return true;
9903 }
9904
9905 static bool export_fs_mrt_color(isel_context *ctx, int slot)
9906 {
9907 Builder bld(ctx->program, ctx->block);
9908 unsigned write_mask = ctx->outputs.mask[slot];
9909 Operand values[4];
9910
9911 for (unsigned i = 0; i < 4; ++i) {
9912 if (write_mask & (1 << i)) {
9913 values[i] = Operand(ctx->outputs.temps[slot * 4u + i]);
9914 } else {
9915 values[i] = Operand(v1);
9916 }
9917 }
9918
9919 unsigned target, col_format;
9920 unsigned enabled_channels = 0;
9921 aco_opcode compr_op = (aco_opcode)0;
9922
9923 slot -= FRAG_RESULT_DATA0;
9924 target = V_008DFC_SQ_EXP_MRT + slot;
9925 col_format = (ctx->options->key.fs.col_format >> (4 * slot)) & 0xf;
9926
9927 bool is_int8 = (ctx->options->key.fs.is_int8 >> slot) & 1;
9928 bool is_int10 = (ctx->options->key.fs.is_int10 >> slot) & 1;
9929
9930 switch (col_format)
9931 {
9932 case V_028714_SPI_SHADER_ZERO:
9933 enabled_channels = 0; /* writemask */
9934 target = V_008DFC_SQ_EXP_NULL;
9935 break;
9936
9937 case V_028714_SPI_SHADER_32_R:
9938 enabled_channels = 1;
9939 break;
9940
9941 case V_028714_SPI_SHADER_32_GR:
9942 enabled_channels = 0x3;
9943 break;
9944
9945 case V_028714_SPI_SHADER_32_AR:
9946 if (ctx->options->chip_class >= GFX10) {
9947 /* Special case: on GFX10, the outputs are different for 32_AR */
9948 enabled_channels = 0x3;
9949 values[1] = values[3];
9950 values[3] = Operand(v1);
9951 } else {
9952 enabled_channels = 0x9;
9953 }
9954 break;
9955
9956 case V_028714_SPI_SHADER_FP16_ABGR:
9957 enabled_channels = 0x5;
9958 compr_op = aco_opcode::v_cvt_pkrtz_f16_f32;
9959 break;
9960
9961 case V_028714_SPI_SHADER_UNORM16_ABGR:
9962 enabled_channels = 0x5;
9963 compr_op = aco_opcode::v_cvt_pknorm_u16_f32;
9964 break;
9965
9966 case V_028714_SPI_SHADER_SNORM16_ABGR:
9967 enabled_channels = 0x5;
9968 compr_op = aco_opcode::v_cvt_pknorm_i16_f32;
9969 break;
9970
9971 case V_028714_SPI_SHADER_UINT16_ABGR: {
9972 enabled_channels = 0x5;
9973 compr_op = aco_opcode::v_cvt_pk_u16_u32;
9974 if (is_int8 || is_int10) {
9975 /* clamp */
9976 uint32_t max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0;
9977 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9978
9979 for (unsigned i = 0; i < 4; i++) {
9980 if ((write_mask >> i) & 1) {
9981 values[i] = bld.vop2(aco_opcode::v_min_u32, bld.def(v1),
9982 i == 3 && is_int10 ? Operand(3u) : Operand(max_rgb_val),
9983 values[i]);
9984 }
9985 }
9986 }
9987 break;
9988 }
9989
9990 case V_028714_SPI_SHADER_SINT16_ABGR:
9991 enabled_channels = 0x5;
9992 compr_op = aco_opcode::v_cvt_pk_i16_i32;
9993 if (is_int8 || is_int10) {
9994 /* clamp */
9995 uint32_t max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0;
9996 uint32_t min_rgb = is_int8 ? -128 :is_int10 ? -512 : 0;
9997 Temp max_rgb_val = bld.copy(bld.def(s1), Operand(max_rgb));
9998 Temp min_rgb_val = bld.copy(bld.def(s1), Operand(min_rgb));
9999
10000 for (unsigned i = 0; i < 4; i++) {
10001 if ((write_mask >> i) & 1) {
10002 values[i] = bld.vop2(aco_opcode::v_min_i32, bld.def(v1),
10003 i == 3 && is_int10 ? Operand(1u) : Operand(max_rgb_val),
10004 values[i]);
10005 values[i] = bld.vop2(aco_opcode::v_max_i32, bld.def(v1),
10006 i == 3 && is_int10 ? Operand(-2u) : Operand(min_rgb_val),
10007 values[i]);
10008 }
10009 }
10010 }
10011 break;
10012
10013 case V_028714_SPI_SHADER_32_ABGR:
10014 enabled_channels = 0xF;
10015 break;
10016
10017 default:
10018 break;
10019 }
10020
10021 if (target == V_008DFC_SQ_EXP_NULL)
10022 return false;
10023
10024 if ((bool) compr_op) {
10025 for (int i = 0; i < 2; i++) {
10026 /* check if at least one of the values to be compressed is enabled */
10027 unsigned enabled = (write_mask >> (i*2) | write_mask >> (i*2+1)) & 0x1;
10028 if (enabled) {
10029 enabled_channels |= enabled << (i*2);
10030 values[i] = bld.vop3(compr_op, bld.def(v1),
10031 values[i*2].isUndefined() ? Operand(0u) : values[i*2],
10032 values[i*2+1].isUndefined() ? Operand(0u): values[i*2+1]);
10033 } else {
10034 values[i] = Operand(v1);
10035 }
10036 }
10037 values[2] = Operand(v1);
10038 values[3] = Operand(v1);
10039 } else {
10040 for (int i = 0; i < 4; i++)
10041 values[i] = enabled_channels & (1 << i) ? values[i] : Operand(v1);
10042 }
10043
10044 bld.exp(aco_opcode::exp, values[0], values[1], values[2], values[3],
10045 enabled_channels, target, (bool) compr_op);
10046 return true;
10047 }
10048
10049 static void create_fs_exports(isel_context *ctx)
10050 {
10051 bool exported = false;
10052
10053 /* Export depth, stencil and sample mask. */
10054 if (ctx->outputs.mask[FRAG_RESULT_DEPTH] ||
10055 ctx->outputs.mask[FRAG_RESULT_STENCIL] ||
10056 ctx->outputs.mask[FRAG_RESULT_SAMPLE_MASK])
10057 exported |= export_fs_mrt_z(ctx);
10058
10059 /* Export all color render targets. */
10060 for (unsigned i = FRAG_RESULT_DATA0; i < FRAG_RESULT_DATA7 + 1; ++i)
10061 if (ctx->outputs.mask[i])
10062 exported |= export_fs_mrt_color(ctx, i);
10063
10064 if (!exported)
10065 create_null_export(ctx);
10066 }
10067
10068 static void write_tcs_tess_factors(isel_context *ctx)
10069 {
10070 unsigned outer_comps;
10071 unsigned inner_comps;
10072
10073 switch (ctx->args->options->key.tcs.primitive_mode) {
10074 case GL_ISOLINES:
10075 outer_comps = 2;
10076 inner_comps = 0;
10077 break;
10078 case GL_TRIANGLES:
10079 outer_comps = 3;
10080 inner_comps = 1;
10081 break;
10082 case GL_QUADS:
10083 outer_comps = 4;
10084 inner_comps = 2;
10085 break;
10086 default:
10087 return;
10088 }
10089
10090 Builder bld(ctx->program, ctx->block);
10091
10092 bld.barrier(aco_opcode::p_memory_barrier_shared);
10093 if (unlikely(ctx->program->chip_class != GFX6 && ctx->program->workgroup_size > ctx->program->wave_size))
10094 bld.sopp(aco_opcode::s_barrier);
10095
10096 Temp tcs_rel_ids = get_arg(ctx, ctx->args->ac.tcs_rel_ids);
10097 Temp invocation_id = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), tcs_rel_ids, Operand(8u), Operand(5u));
10098
10099 Temp invocation_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), invocation_id);
10100 if_context ic_invocation_id_is_zero;
10101 begin_divergent_if_then(ctx, &ic_invocation_id_is_zero, invocation_id_is_zero);
10102 bld.reset(ctx->block);
10103
10104 Temp hs_ring_tess_factor = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_FACTOR * 16u));
10105
10106 std::pair<Temp, unsigned> lds_base = get_tcs_output_lds_offset(ctx);
10107 unsigned stride = inner_comps + outer_comps;
10108 unsigned lds_align = calculate_lds_alignment(ctx, lds_base.second);
10109 Temp tf_inner_vec;
10110 Temp tf_outer_vec;
10111 Temp out[6];
10112 assert(stride <= (sizeof(out) / sizeof(Temp)));
10113
10114 if (ctx->args->options->key.tcs.primitive_mode == GL_ISOLINES) {
10115 // LINES reversal
10116 tf_outer_vec = load_lds(ctx, 4, bld.tmp(v2), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10117 out[1] = emit_extract_vector(ctx, tf_outer_vec, 0, v1);
10118 out[0] = emit_extract_vector(ctx, tf_outer_vec, 1, v1);
10119 } else {
10120 tf_outer_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, outer_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_out_loc, lds_align);
10121 tf_inner_vec = load_lds(ctx, 4, bld.tmp(RegClass(RegType::vgpr, inner_comps)), lds_base.first, lds_base.second + ctx->tcs_tess_lvl_in_loc, lds_align);
10122
10123 for (unsigned i = 0; i < outer_comps; ++i)
10124 out[i] = emit_extract_vector(ctx, tf_outer_vec, i, v1);
10125 for (unsigned i = 0; i < inner_comps; ++i)
10126 out[outer_comps + i] = emit_extract_vector(ctx, tf_inner_vec, i, v1);
10127 }
10128
10129 Temp rel_patch_id = get_tess_rel_patch_id(ctx);
10130 Temp tf_base = get_arg(ctx, ctx->args->tess_factor_offset);
10131 Temp byte_offset = bld.v_mul_imm(bld.def(v1), rel_patch_id, stride * 4u);
10132 unsigned tf_const_offset = 0;
10133
10134 if (ctx->program->chip_class <= GFX8) {
10135 Temp rel_patch_id_is_zero = bld.vopc(aco_opcode::v_cmp_eq_u32, bld.hint_vcc(bld.def(bld.lm)), Operand(0u), rel_patch_id);
10136 if_context ic_rel_patch_id_is_zero;
10137 begin_divergent_if_then(ctx, &ic_rel_patch_id_is_zero, rel_patch_id_is_zero);
10138 bld.reset(ctx->block);
10139
10140 /* Store the dynamic HS control word. */
10141 Temp control_word = bld.copy(bld.def(v1), Operand(0x80000000u));
10142 bld.mubuf(aco_opcode::buffer_store_dword,
10143 /* SRSRC */ hs_ring_tess_factor, /* VADDR */ Operand(v1), /* SOFFSET */ tf_base, /* VDATA */ control_word,
10144 /* immediate OFFSET */ 0, /* OFFEN */ false, /* idxen*/ false, /* addr64 */ false,
10145 /* disable_wqm */ false, /* glc */ true);
10146 tf_const_offset += 4;
10147
10148 begin_divergent_if_else(ctx, &ic_rel_patch_id_is_zero);
10149 end_divergent_if(ctx, &ic_rel_patch_id_is_zero);
10150 bld.reset(ctx->block);
10151 }
10152
10153 assert(stride == 2 || stride == 4 || stride == 6);
10154 Temp tf_vec = create_vec_from_array(ctx, out, stride, RegType::vgpr, 4u);
10155 store_vmem_mubuf(ctx, tf_vec, hs_ring_tess_factor, byte_offset, tf_base, tf_const_offset, 4, (1 << stride) - 1, true, false);
10156
10157 /* Store to offchip for TES to read - only if TES reads them */
10158 if (ctx->args->options->key.tcs.tes_reads_tess_factors) {
10159 Temp hs_ring_tess_offchip = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), ctx->program->private_segment_buffer, Operand(RING_HS_TESS_OFFCHIP * 16u));
10160 Temp oc_lds = get_arg(ctx, ctx->args->oc_lds);
10161
10162 std::pair<Temp, unsigned> vmem_offs_outer = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_out_loc);
10163 store_vmem_mubuf(ctx, tf_outer_vec, hs_ring_tess_offchip, vmem_offs_outer.first, oc_lds, vmem_offs_outer.second, 4, (1 << outer_comps) - 1, true, false);
10164
10165 if (likely(inner_comps)) {
10166 std::pair<Temp, unsigned> vmem_offs_inner = get_tcs_per_patch_output_vmem_offset(ctx, nullptr, ctx->tcs_tess_lvl_in_loc);
10167 store_vmem_mubuf(ctx, tf_inner_vec, hs_ring_tess_offchip, vmem_offs_inner.first, oc_lds, vmem_offs_inner.second, 4, (1 << inner_comps) - 1, true, false);
10168 }
10169 }
10170
10171 begin_divergent_if_else(ctx, &ic_invocation_id_is_zero);
10172 end_divergent_if(ctx, &ic_invocation_id_is_zero);
10173 }
10174
10175 static void emit_stream_output(isel_context *ctx,
10176 Temp const *so_buffers,
10177 Temp const *so_write_offset,
10178 const struct radv_stream_output *output)
10179 {
10180 unsigned num_comps = util_bitcount(output->component_mask);
10181 unsigned writemask = (1 << num_comps) - 1;
10182 unsigned loc = output->location;
10183 unsigned buf = output->buffer;
10184
10185 assert(num_comps && num_comps <= 4);
10186 if (!num_comps || num_comps > 4)
10187 return;
10188
10189 unsigned start = ffs(output->component_mask) - 1;
10190
10191 Temp out[4];
10192 bool all_undef = true;
10193 assert(ctx->stage == vertex_vs || ctx->stage == gs_copy_vs);
10194 for (unsigned i = 0; i < num_comps; i++) {
10195 out[i] = ctx->outputs.temps[loc * 4 + start + i];
10196 all_undef = all_undef && !out[i].id();
10197 }
10198 if (all_undef)
10199 return;
10200
10201 while (writemask) {
10202 int start, count;
10203 u_bit_scan_consecutive_range(&writemask, &start, &count);
10204 if (count == 3 && ctx->options->chip_class == GFX6) {
10205 /* GFX6 doesn't support storing vec3, split it. */
10206 writemask |= 1u << (start + 2);
10207 count = 2;
10208 }
10209
10210 unsigned offset = output->offset + start * 4;
10211
10212 Temp write_data = {ctx->program->allocateId(), RegClass(RegType::vgpr, count)};
10213 aco_ptr<Pseudo_instruction> vec{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, count, 1)};
10214 for (int i = 0; i < count; ++i)
10215 vec->operands[i] = (ctx->outputs.mask[loc] & 1 << (start + i)) ? Operand(out[start + i]) : Operand(0u);
10216 vec->definitions[0] = Definition(write_data);
10217 ctx->block->instructions.emplace_back(std::move(vec));
10218
10219 aco_opcode opcode;
10220 switch (count) {
10221 case 1:
10222 opcode = aco_opcode::buffer_store_dword;
10223 break;
10224 case 2:
10225 opcode = aco_opcode::buffer_store_dwordx2;
10226 break;
10227 case 3:
10228 opcode = aco_opcode::buffer_store_dwordx3;
10229 break;
10230 case 4:
10231 opcode = aco_opcode::buffer_store_dwordx4;
10232 break;
10233 default:
10234 unreachable("Unsupported dword count.");
10235 }
10236
10237 aco_ptr<MUBUF_instruction> store{create_instruction<MUBUF_instruction>(opcode, Format::MUBUF, 4, 0)};
10238 store->operands[0] = Operand(so_buffers[buf]);
10239 store->operands[1] = Operand(so_write_offset[buf]);
10240 store->operands[2] = Operand((uint32_t) 0);
10241 store->operands[3] = Operand(write_data);
10242 if (offset > 4095) {
10243 /* Don't think this can happen in RADV, but maybe GL? It's easy to do this anyway. */
10244 Builder bld(ctx->program, ctx->block);
10245 store->operands[0] = bld.vadd32(bld.def(v1), Operand(offset), Operand(so_write_offset[buf]));
10246 } else {
10247 store->offset = offset;
10248 }
10249 store->offen = true;
10250 store->glc = true;
10251 store->dlc = false;
10252 store->slc = true;
10253 store->can_reorder = true;
10254 ctx->block->instructions.emplace_back(std::move(store));
10255 }
10256 }
10257
10258 static void emit_streamout(isel_context *ctx, unsigned stream)
10259 {
10260 Builder bld(ctx->program, ctx->block);
10261
10262 Temp so_buffers[4];
10263 Temp buf_ptr = convert_pointer_to_64_bit(ctx, get_arg(ctx, ctx->args->streamout_buffers));
10264 for (unsigned i = 0; i < 4; i++) {
10265 unsigned stride = ctx->program->info->so.strides[i];
10266 if (!stride)
10267 continue;
10268
10269 Operand off = bld.copy(bld.def(s1), Operand(i * 16u));
10270 so_buffers[i] = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), buf_ptr, off);
10271 }
10272
10273 Temp so_vtx_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10274 get_arg(ctx, ctx->args->streamout_config), Operand(0x70010u));
10275
10276 Temp tid = emit_mbcnt(ctx, bld.def(v1));
10277
10278 Temp can_emit = bld.vopc(aco_opcode::v_cmp_gt_i32, bld.def(bld.lm), so_vtx_count, tid);
10279
10280 if_context ic;
10281 begin_divergent_if_then(ctx, &ic, can_emit);
10282
10283 bld.reset(ctx->block);
10284
10285 Temp so_write_index = bld.vadd32(bld.def(v1), get_arg(ctx, ctx->args->streamout_write_idx), tid);
10286
10287 Temp so_write_offset[4];
10288
10289 for (unsigned i = 0; i < 4; i++) {
10290 unsigned stride = ctx->program->info->so.strides[i];
10291 if (!stride)
10292 continue;
10293
10294 if (stride == 1) {
10295 Temp offset = bld.sop2(aco_opcode::s_add_i32, bld.def(s1), bld.def(s1, scc),
10296 get_arg(ctx, ctx->args->streamout_write_idx),
10297 get_arg(ctx, ctx->args->streamout_offset[i]));
10298 Temp new_offset = bld.vadd32(bld.def(v1), offset, tid);
10299
10300 so_write_offset[i] = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), new_offset);
10301 } else {
10302 Temp offset = bld.v_mul_imm(bld.def(v1), so_write_index, stride * 4u);
10303 Temp offset2 = bld.sop2(aco_opcode::s_mul_i32, bld.def(s1), Operand(4u),
10304 get_arg(ctx, ctx->args->streamout_offset[i]));
10305 so_write_offset[i] = bld.vadd32(bld.def(v1), offset, offset2);
10306 }
10307 }
10308
10309 for (unsigned i = 0; i < ctx->program->info->so.num_outputs; i++) {
10310 struct radv_stream_output *output =
10311 &ctx->program->info->so.outputs[i];
10312 if (stream != output->stream)
10313 continue;
10314
10315 emit_stream_output(ctx, so_buffers, so_write_offset, output);
10316 }
10317
10318 begin_divergent_if_else(ctx, &ic);
10319 end_divergent_if(ctx, &ic);
10320 }
10321
10322 } /* end namespace */
10323
10324 void fix_ls_vgpr_init_bug(isel_context *ctx, Pseudo_instruction *startpgm)
10325 {
10326 assert(ctx->shader->info.stage == MESA_SHADER_VERTEX);
10327 Builder bld(ctx->program, ctx->block);
10328 constexpr unsigned hs_idx = 1u;
10329 Builder::Result hs_thread_count = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10330 get_arg(ctx, ctx->args->merged_wave_info),
10331 Operand((8u << 16) | (hs_idx * 8u)));
10332 Temp ls_has_nonzero_hs_threads = bool_to_vector_condition(ctx, hs_thread_count.def(1).getTemp());
10333
10334 /* If there are no HS threads, SPI mistakenly loads the LS VGPRs starting at VGPR 0. */
10335
10336 Temp instance_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10337 get_arg(ctx, ctx->args->rel_auto_id),
10338 get_arg(ctx, ctx->args->ac.instance_id),
10339 ls_has_nonzero_hs_threads);
10340 Temp rel_auto_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10341 get_arg(ctx, ctx->args->ac.tcs_rel_ids),
10342 get_arg(ctx, ctx->args->rel_auto_id),
10343 ls_has_nonzero_hs_threads);
10344 Temp vertex_id = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10345 get_arg(ctx, ctx->args->ac.tcs_patch_id),
10346 get_arg(ctx, ctx->args->ac.vertex_id),
10347 ls_has_nonzero_hs_threads);
10348
10349 ctx->arg_temps[ctx->args->ac.instance_id.arg_index] = instance_id;
10350 ctx->arg_temps[ctx->args->rel_auto_id.arg_index] = rel_auto_id;
10351 ctx->arg_temps[ctx->args->ac.vertex_id.arg_index] = vertex_id;
10352 }
10353
10354 void split_arguments(isel_context *ctx, Pseudo_instruction *startpgm)
10355 {
10356 /* Split all arguments except for the first (ring_offsets) and the last
10357 * (exec) so that the dead channels don't stay live throughout the program.
10358 */
10359 for (int i = 1; i < startpgm->definitions.size() - 1; i++) {
10360 if (startpgm->definitions[i].regClass().size() > 1) {
10361 emit_split_vector(ctx, startpgm->definitions[i].getTemp(),
10362 startpgm->definitions[i].regClass().size());
10363 }
10364 }
10365 }
10366
10367 void handle_bc_optimize(isel_context *ctx)
10368 {
10369 /* needed when SPI_PS_IN_CONTROL.BC_OPTIMIZE_DISABLE is set to 0 */
10370 Builder bld(ctx->program, ctx->block);
10371 uint32_t spi_ps_input_ena = ctx->program->config->spi_ps_input_ena;
10372 bool uses_center = G_0286CC_PERSP_CENTER_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTER_ENA(spi_ps_input_ena);
10373 bool uses_centroid = G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena) || G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena);
10374 ctx->persp_centroid = get_arg(ctx, ctx->args->ac.persp_centroid);
10375 ctx->linear_centroid = get_arg(ctx, ctx->args->ac.linear_centroid);
10376 if (uses_center && uses_centroid) {
10377 Temp sel = bld.vopc_e64(aco_opcode::v_cmp_lt_i32, bld.hint_vcc(bld.def(bld.lm)),
10378 get_arg(ctx, ctx->args->ac.prim_mask), Operand(0u));
10379
10380 if (G_0286CC_PERSP_CENTROID_ENA(spi_ps_input_ena)) {
10381 Temp new_coord[2];
10382 for (unsigned i = 0; i < 2; i++) {
10383 Temp persp_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_centroid), i, v1);
10384 Temp persp_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.persp_center), i, v1);
10385 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10386 persp_centroid, persp_center, sel);
10387 }
10388 ctx->persp_centroid = bld.tmp(v2);
10389 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->persp_centroid),
10390 Operand(new_coord[0]), Operand(new_coord[1]));
10391 emit_split_vector(ctx, ctx->persp_centroid, 2);
10392 }
10393
10394 if (G_0286CC_LINEAR_CENTROID_ENA(spi_ps_input_ena)) {
10395 Temp new_coord[2];
10396 for (unsigned i = 0; i < 2; i++) {
10397 Temp linear_centroid = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_centroid), i, v1);
10398 Temp linear_center = emit_extract_vector(ctx, get_arg(ctx, ctx->args->ac.linear_center), i, v1);
10399 new_coord[i] = bld.vop2(aco_opcode::v_cndmask_b32, bld.def(v1),
10400 linear_centroid, linear_center, sel);
10401 }
10402 ctx->linear_centroid = bld.tmp(v2);
10403 bld.pseudo(aco_opcode::p_create_vector, Definition(ctx->linear_centroid),
10404 Operand(new_coord[0]), Operand(new_coord[1]));
10405 emit_split_vector(ctx, ctx->linear_centroid, 2);
10406 }
10407 }
10408 }
10409
10410 void setup_fp_mode(isel_context *ctx, nir_shader *shader)
10411 {
10412 Program *program = ctx->program;
10413
10414 unsigned float_controls = shader->info.float_controls_execution_mode;
10415
10416 program->next_fp_mode.preserve_signed_zero_inf_nan32 =
10417 float_controls & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32;
10418 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 =
10419 float_controls & (FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16 |
10420 FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
10421
10422 program->next_fp_mode.must_flush_denorms32 =
10423 float_controls & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32;
10424 program->next_fp_mode.must_flush_denorms16_64 =
10425 float_controls & (FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 |
10426 FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
10427
10428 program->next_fp_mode.care_about_round32 =
10429 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32);
10430
10431 program->next_fp_mode.care_about_round16_64 =
10432 float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64 |
10433 FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
10434
10435 /* default to preserving fp16 and fp64 denorms, since it's free */
10436 if (program->next_fp_mode.must_flush_denorms16_64)
10437 program->next_fp_mode.denorm16_64 = 0;
10438 else
10439 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10440
10441 /* preserving fp32 denorms is expensive, so only do it if asked */
10442 if (float_controls & FLOAT_CONTROLS_DENORM_PRESERVE_FP32)
10443 program->next_fp_mode.denorm32 = fp_denorm_keep;
10444 else
10445 program->next_fp_mode.denorm32 = 0;
10446
10447 if (float_controls & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32)
10448 program->next_fp_mode.round32 = fp_round_tz;
10449 else
10450 program->next_fp_mode.round32 = fp_round_ne;
10451
10452 if (float_controls & (FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 | FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64))
10453 program->next_fp_mode.round16_64 = fp_round_tz;
10454 else
10455 program->next_fp_mode.round16_64 = fp_round_ne;
10456
10457 ctx->block->fp_mode = program->next_fp_mode;
10458 }
10459
10460 void cleanup_cfg(Program *program)
10461 {
10462 /* create linear_succs/logical_succs */
10463 for (Block& BB : program->blocks) {
10464 for (unsigned idx : BB.linear_preds)
10465 program->blocks[idx].linear_succs.emplace_back(BB.index);
10466 for (unsigned idx : BB.logical_preds)
10467 program->blocks[idx].logical_succs.emplace_back(BB.index);
10468 }
10469 }
10470
10471 Temp merged_wave_info_to_mask(isel_context *ctx, unsigned i)
10472 {
10473 Builder bld(ctx->program, ctx->block);
10474
10475 /* The s_bfm only cares about s0.u[5:0] so we don't need either s_bfe nor s_and here */
10476 Temp count = i == 0
10477 ? get_arg(ctx, ctx->args->merged_wave_info)
10478 : bld.sop2(aco_opcode::s_lshr_b32, bld.def(s1), bld.def(s1, scc),
10479 get_arg(ctx, ctx->args->merged_wave_info), Operand(i * 8u));
10480
10481 Temp mask = bld.sop2(aco_opcode::s_bfm_b64, bld.def(s2), count, Operand(0u));
10482 Temp cond;
10483
10484 if (ctx->program->wave_size == 64) {
10485 /* Special case for 64 active invocations, because 64 doesn't work with s_bfm */
10486 Temp active_64 = bld.sopc(aco_opcode::s_bitcmp1_b32, bld.def(s1, scc), count, Operand(6u /* log2(64) */));
10487 cond = bld.sop2(Builder::s_cselect, bld.def(bld.lm), Operand(-1u), mask, bld.scc(active_64));
10488 } else {
10489 /* We use s_bfm_b64 (not _b32) which works with 32, but we need to extract the lower half of the register */
10490 cond = emit_extract_vector(ctx, mask, 0, bld.lm);
10491 }
10492
10493 return cond;
10494 }
10495
10496 bool ngg_early_prim_export(isel_context *ctx)
10497 {
10498 /* TODO: Check edge flags, and if they are written, return false. (Needed for OpenGL, not for Vulkan.) */
10499 return true;
10500 }
10501
10502 void ngg_emit_sendmsg_gs_alloc_req(isel_context *ctx)
10503 {
10504 Builder bld(ctx->program, ctx->block);
10505
10506 /* It is recommended to do the GS_ALLOC_REQ as soon and as quickly as possible, so we set the maximum priority (3). */
10507 bld.sopp(aco_opcode::s_setprio, -1u, 0x3u);
10508
10509 /* Get the id of the current wave within the threadgroup (workgroup) */
10510 Builder::Result wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10511 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10512
10513 /* Execute the following code only on the first wave (wave id 0),
10514 * use the SCC def to tell if the wave id is zero or not.
10515 */
10516 Temp cond = wave_id_in_tg.def(1).getTemp();
10517 if_context ic;
10518 begin_uniform_if_then(ctx, &ic, cond);
10519 begin_uniform_if_else(ctx, &ic);
10520 bld.reset(ctx->block);
10521
10522 /* Number of vertices output by VS/TES */
10523 Temp vtx_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10524 get_arg(ctx, ctx->args->gs_tg_info), Operand(12u | (9u << 16u)));
10525 /* Number of primitives output by VS/TES */
10526 Temp prm_cnt = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10527 get_arg(ctx, ctx->args->gs_tg_info), Operand(22u | (9u << 16u)));
10528
10529 /* Put the number of vertices and primitives into m0 for the GS_ALLOC_REQ */
10530 Temp tmp = bld.sop2(aco_opcode::s_lshl_b32, bld.def(s1), bld.def(s1, scc), prm_cnt, Operand(12u));
10531 tmp = bld.sop2(aco_opcode::s_or_b32, bld.m0(bld.def(s1)), bld.def(s1, scc), tmp, vtx_cnt);
10532
10533 /* Request the SPI to allocate space for the primitives and vertices that will be exported by the threadgroup. */
10534 bld.sopp(aco_opcode::s_sendmsg, bld.m0(tmp), -1, sendmsg_gs_alloc_req);
10535
10536 /* After the GS_ALLOC_REQ is done, reset priority to default (0). */
10537 bld.sopp(aco_opcode::s_setprio, -1u, 0x0u);
10538
10539 end_uniform_if(ctx, &ic);
10540 }
10541
10542 Temp ngg_get_prim_exp_arg(isel_context *ctx, unsigned num_vertices, const Temp vtxindex[])
10543 {
10544 Builder bld(ctx->program, ctx->block);
10545
10546 if (ctx->args->options->key.vs_common_out.as_ngg_passthrough) {
10547 return get_arg(ctx, ctx->args->gs_vtx_offset[0]);
10548 }
10549
10550 Temp gs_invocation_id = get_arg(ctx, ctx->args->ac.gs_invocation_id);
10551 Temp tmp;
10552
10553 for (unsigned i = 0; i < num_vertices; ++i) {
10554 assert(vtxindex[i].id());
10555
10556 if (i)
10557 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), vtxindex[i], Operand(10u * i), tmp);
10558 else
10559 tmp = vtxindex[i];
10560
10561 /* The initial edge flag is always false in tess eval shaders. */
10562 if (ctx->stage == ngg_vertex_gs) {
10563 Temp edgeflag = bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1), gs_invocation_id, Operand(8 + i), Operand(1u));
10564 tmp = bld.vop3(aco_opcode::v_lshl_add_u32, bld.def(v1), edgeflag, Operand(10u * i + 9u), tmp);
10565 }
10566 }
10567
10568 /* TODO: Set isnull field in case of merged NGG VS+GS. */
10569
10570 return tmp;
10571 }
10572
10573 void ngg_emit_prim_export(isel_context *ctx, unsigned num_vertices_per_primitive, const Temp vtxindex[])
10574 {
10575 Builder bld(ctx->program, ctx->block);
10576 Temp prim_exp_arg = ngg_get_prim_exp_arg(ctx, num_vertices_per_primitive, vtxindex);
10577
10578 bld.exp(aco_opcode::exp, prim_exp_arg, Operand(v1), Operand(v1), Operand(v1),
10579 1 /* enabled mask */, V_008DFC_SQ_EXP_PRIM /* dest */,
10580 false /* compressed */, true/* done */, false /* valid mask */);
10581 }
10582
10583 void ngg_emit_nogs_gsthreads(isel_context *ctx)
10584 {
10585 /* Emit the things that NGG GS threads need to do, for shaders that don't have SW GS.
10586 * These must always come before VS exports.
10587 *
10588 * It is recommended to do these as early as possible. They can be at the beginning when
10589 * there is no SW GS and the shader doesn't write edge flags.
10590 */
10591
10592 if_context ic;
10593 Temp is_gs_thread = merged_wave_info_to_mask(ctx, 1);
10594 begin_divergent_if_then(ctx, &ic, is_gs_thread);
10595
10596 Builder bld(ctx->program, ctx->block);
10597 constexpr unsigned max_vertices_per_primitive = 3;
10598 unsigned num_vertices_per_primitive = max_vertices_per_primitive;
10599
10600 if (ctx->stage == ngg_vertex_gs) {
10601 /* TODO: optimize for points & lines */
10602 } else if (ctx->stage == ngg_tess_eval_gs) {
10603 if (ctx->shader->info.tess.point_mode)
10604 num_vertices_per_primitive = 1;
10605 else if (ctx->shader->info.tess.primitive_mode == GL_ISOLINES)
10606 num_vertices_per_primitive = 2;
10607 } else {
10608 unreachable("Unsupported NGG shader stage");
10609 }
10610
10611 Temp vtxindex[max_vertices_per_primitive];
10612 vtxindex[0] = bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10613 get_arg(ctx, ctx->args->gs_vtx_offset[0]));
10614 vtxindex[1] = num_vertices_per_primitive < 2 ? Temp(0, v1) :
10615 bld.vop3(aco_opcode::v_bfe_u32, bld.def(v1),
10616 get_arg(ctx, ctx->args->gs_vtx_offset[0]), Operand(16u), Operand(16u));
10617 vtxindex[2] = num_vertices_per_primitive < 3 ? Temp(0, v1) :
10618 bld.vop2(aco_opcode::v_and_b32, bld.def(v1), Operand(0xffffu),
10619 get_arg(ctx, ctx->args->gs_vtx_offset[2]));
10620
10621 /* Export primitive data to the index buffer. */
10622 ngg_emit_prim_export(ctx, num_vertices_per_primitive, vtxindex);
10623
10624 /* Export primitive ID. */
10625 if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) {
10626 /* Copy Primitive IDs from GS threads to the LDS address corresponding to the ES thread of the provoking vertex. */
10627 Temp prim_id = get_arg(ctx, ctx->args->ac.gs_prim_id);
10628 Temp provoking_vtx_index = vtxindex[0];
10629 Temp addr = bld.v_mul_imm(bld.def(v1), provoking_vtx_index, 4u);
10630
10631 store_lds(ctx, 4, prim_id, 0x1u, addr, 0u, 4u);
10632 }
10633
10634 begin_divergent_if_else(ctx, &ic);
10635 end_divergent_if(ctx, &ic);
10636 }
10637
10638 void ngg_emit_nogs_output(isel_context *ctx)
10639 {
10640 /* Emits NGG GS output, for stages that don't have SW GS. */
10641
10642 if_context ic;
10643 Builder bld(ctx->program, ctx->block);
10644 bool late_prim_export = !ngg_early_prim_export(ctx);
10645
10646 /* NGG streamout is currently disabled by default. */
10647 assert(!ctx->args->shader_info->so.num_outputs);
10648
10649 if (late_prim_export) {
10650 /* VS exports are output to registers in a predecessor block. Emit phis to get them into this block. */
10651 create_export_phis(ctx);
10652 /* Do what we need to do in the GS threads. */
10653 ngg_emit_nogs_gsthreads(ctx);
10654
10655 /* What comes next should be executed on ES threads. */
10656 Temp is_es_thread = merged_wave_info_to_mask(ctx, 0);
10657 begin_divergent_if_then(ctx, &ic, is_es_thread);
10658 bld.reset(ctx->block);
10659 }
10660
10661 /* Export VS outputs */
10662 ctx->block->kind |= block_kind_export_end;
10663 create_vs_exports(ctx);
10664
10665 /* Export primitive ID */
10666 if (ctx->args->options->key.vs_common_out.export_prim_id) {
10667 Temp prim_id;
10668
10669 if (ctx->stage == ngg_vertex_gs) {
10670 /* Wait for GS threads to store primitive ID in LDS. */
10671 bld.barrier(aco_opcode::p_memory_barrier_shared);
10672 bld.sopp(aco_opcode::s_barrier);
10673
10674 /* Calculate LDS address where the GS threads stored the primitive ID. */
10675 Temp wave_id_in_tg = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10676 get_arg(ctx, ctx->args->merged_wave_info), Operand(24u | (4u << 16)));
10677 Temp thread_id_in_wave = emit_mbcnt(ctx, bld.def(v1));
10678 Temp wave_id_mul = bld.v_mul_imm(bld.def(v1), as_vgpr(ctx, wave_id_in_tg), ctx->program->wave_size);
10679 Temp thread_id_in_tg = bld.vadd32(bld.def(v1), Operand(wave_id_mul), Operand(thread_id_in_wave));
10680 Temp addr = bld.v_mul_imm(bld.def(v1), thread_id_in_tg, 4u);
10681
10682 /* Load primitive ID from LDS. */
10683 prim_id = load_lds(ctx, 4, bld.tmp(v1), addr, 0u, 4u);
10684 } else if (ctx->stage == ngg_tess_eval_gs) {
10685 /* TES: Just use the patch ID as the primitive ID. */
10686 prim_id = get_arg(ctx, ctx->args->ac.tes_patch_id);
10687 } else {
10688 unreachable("unsupported NGG shader stage.");
10689 }
10690
10691 ctx->outputs.mask[VARYING_SLOT_PRIMITIVE_ID] |= 0x1;
10692 ctx->outputs.temps[VARYING_SLOT_PRIMITIVE_ID * 4u] = prim_id;
10693
10694 export_vs_varying(ctx, VARYING_SLOT_PRIMITIVE_ID, false, nullptr);
10695 }
10696
10697 if (late_prim_export) {
10698 begin_divergent_if_else(ctx, &ic);
10699 end_divergent_if(ctx, &ic);
10700 bld.reset(ctx->block);
10701 }
10702 }
10703
10704 void select_program(Program *program,
10705 unsigned shader_count,
10706 struct nir_shader *const *shaders,
10707 ac_shader_config* config,
10708 struct radv_shader_args *args)
10709 {
10710 isel_context ctx = setup_isel_context(program, shader_count, shaders, config, args, false);
10711 if_context ic_merged_wave_info;
10712 bool ngg_no_gs = ctx.stage == ngg_vertex_gs || ctx.stage == ngg_tess_eval_gs;
10713
10714 for (unsigned i = 0; i < shader_count; i++) {
10715 nir_shader *nir = shaders[i];
10716 init_context(&ctx, nir);
10717
10718 setup_fp_mode(&ctx, nir);
10719
10720 if (!i) {
10721 /* needs to be after init_context() for FS */
10722 Pseudo_instruction *startpgm = add_startpgm(&ctx);
10723 append_logical_start(ctx.block);
10724
10725 if (unlikely(args->options->has_ls_vgpr_init_bug && ctx.stage == vertex_tess_control_hs))
10726 fix_ls_vgpr_init_bug(&ctx, startpgm);
10727
10728 split_arguments(&ctx, startpgm);
10729 }
10730
10731 if (ngg_no_gs) {
10732 ngg_emit_sendmsg_gs_alloc_req(&ctx);
10733
10734 if (ngg_early_prim_export(&ctx))
10735 ngg_emit_nogs_gsthreads(&ctx);
10736 }
10737
10738 /* In a merged VS+TCS HS, the VS implementation can be completely empty. */
10739 nir_function_impl *func = nir_shader_get_entrypoint(nir);
10740 bool empty_shader = nir_cf_list_is_empty_block(&func->body) &&
10741 ((nir->info.stage == MESA_SHADER_VERTEX &&
10742 (ctx.stage == vertex_tess_control_hs || ctx.stage == vertex_geometry_gs)) ||
10743 (nir->info.stage == MESA_SHADER_TESS_EVAL &&
10744 ctx.stage == tess_eval_geometry_gs));
10745
10746 bool check_merged_wave_info = ctx.tcs_in_out_eq ? i == 0 : ((shader_count >= 2 && !empty_shader) || ngg_no_gs);
10747 bool endif_merged_wave_info = ctx.tcs_in_out_eq ? i == 1 : check_merged_wave_info;
10748 if (check_merged_wave_info) {
10749 Temp cond = merged_wave_info_to_mask(&ctx, i);
10750 begin_divergent_if_then(&ctx, &ic_merged_wave_info, cond);
10751 }
10752
10753 if (i) {
10754 Builder bld(ctx.program, ctx.block);
10755
10756 bld.barrier(aco_opcode::p_memory_barrier_shared);
10757 bld.sopp(aco_opcode::s_barrier);
10758
10759 if (ctx.stage == vertex_geometry_gs || ctx.stage == tess_eval_geometry_gs) {
10760 ctx.gs_wave_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1, m0), bld.def(s1, scc), get_arg(&ctx, args->merged_wave_info), Operand((8u << 16) | 16u));
10761 }
10762 } else if (ctx.stage == geometry_gs)
10763 ctx.gs_wave_id = get_arg(&ctx, args->gs_wave_id);
10764
10765 if (ctx.stage == fragment_fs)
10766 handle_bc_optimize(&ctx);
10767
10768 visit_cf_list(&ctx, &func->body);
10769
10770 if (ctx.program->info->so.num_outputs && (ctx.stage & hw_vs))
10771 emit_streamout(&ctx, 0);
10772
10773 if (ctx.stage & hw_vs) {
10774 create_vs_exports(&ctx);
10775 ctx.block->kind |= block_kind_export_end;
10776 } else if (ngg_no_gs && ngg_early_prim_export(&ctx)) {
10777 ngg_emit_nogs_output(&ctx);
10778 } else if (nir->info.stage == MESA_SHADER_GEOMETRY) {
10779 Builder bld(ctx.program, ctx.block);
10780 bld.barrier(aco_opcode::p_memory_barrier_gs_data);
10781 bld.sopp(aco_opcode::s_sendmsg, bld.m0(ctx.gs_wave_id), -1, sendmsg_gs_done(false, false, 0));
10782 } else if (nir->info.stage == MESA_SHADER_TESS_CTRL) {
10783 write_tcs_tess_factors(&ctx);
10784 }
10785
10786 if (ctx.stage == fragment_fs) {
10787 create_fs_exports(&ctx);
10788 ctx.block->kind |= block_kind_export_end;
10789 }
10790
10791 if (endif_merged_wave_info) {
10792 begin_divergent_if_else(&ctx, &ic_merged_wave_info);
10793 end_divergent_if(&ctx, &ic_merged_wave_info);
10794 }
10795
10796 if (ngg_no_gs && !ngg_early_prim_export(&ctx))
10797 ngg_emit_nogs_output(&ctx);
10798
10799 ralloc_free(ctx.divergent_vals);
10800
10801 if (i == 0 && ctx.stage == vertex_tess_control_hs && ctx.tcs_in_out_eq) {
10802 /* Outputs of the previous stage are inputs to the next stage */
10803 ctx.inputs = ctx.outputs;
10804 ctx.outputs = shader_io_state();
10805 }
10806 }
10807
10808 program->config->float_mode = program->blocks[0].fp_mode.val;
10809
10810 append_logical_end(ctx.block);
10811 ctx.block->kind |= block_kind_uniform;
10812 Builder bld(ctx.program, ctx.block);
10813 if (ctx.program->wb_smem_l1_on_end)
10814 bld.smem(aco_opcode::s_dcache_wb, false);
10815 bld.sopp(aco_opcode::s_endpgm);
10816
10817 cleanup_cfg(program);
10818 }
10819
10820 void select_gs_copy_shader(Program *program, struct nir_shader *gs_shader,
10821 ac_shader_config* config,
10822 struct radv_shader_args *args)
10823 {
10824 isel_context ctx = setup_isel_context(program, 1, &gs_shader, config, args, true);
10825
10826 program->next_fp_mode.preserve_signed_zero_inf_nan32 = false;
10827 program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false;
10828 program->next_fp_mode.must_flush_denorms32 = false;
10829 program->next_fp_mode.must_flush_denorms16_64 = false;
10830 program->next_fp_mode.care_about_round32 = false;
10831 program->next_fp_mode.care_about_round16_64 = false;
10832 program->next_fp_mode.denorm16_64 = fp_denorm_keep;
10833 program->next_fp_mode.denorm32 = 0;
10834 program->next_fp_mode.round32 = fp_round_ne;
10835 program->next_fp_mode.round16_64 = fp_round_ne;
10836 ctx.block->fp_mode = program->next_fp_mode;
10837
10838 add_startpgm(&ctx);
10839 append_logical_start(ctx.block);
10840
10841 Builder bld(ctx.program, ctx.block);
10842
10843 Temp gsvs_ring = bld.smem(aco_opcode::s_load_dwordx4, bld.def(s4), program->private_segment_buffer, Operand(RING_GSVS_VS * 16u));
10844
10845 Operand stream_id(0u);
10846 if (args->shader_info->so.num_outputs)
10847 stream_id = bld.sop2(aco_opcode::s_bfe_u32, bld.def(s1), bld.def(s1, scc),
10848 get_arg(&ctx, ctx.args->streamout_config), Operand(0x20018u));
10849
10850 Temp vtx_offset = bld.vop2(aco_opcode::v_lshlrev_b32, bld.def(v1), Operand(2u), get_arg(&ctx, ctx.args->ac.vertex_id));
10851
10852 std::stack<Block> endif_blocks;
10853
10854 for (unsigned stream = 0; stream < 4; stream++) {
10855 if (stream_id.isConstant() && stream != stream_id.constantValue())
10856 continue;
10857
10858 unsigned num_components = args->shader_info->gs.num_stream_output_components[stream];
10859 if (stream > 0 && (!num_components || !args->shader_info->so.num_outputs))
10860 continue;
10861
10862 memset(ctx.outputs.mask, 0, sizeof(ctx.outputs.mask));
10863
10864 unsigned BB_if_idx = ctx.block->index;
10865 Block BB_endif = Block();
10866 if (!stream_id.isConstant()) {
10867 /* begin IF */
10868 Temp cond = bld.sopc(aco_opcode::s_cmp_eq_u32, bld.def(s1, scc), stream_id, Operand(stream));
10869 append_logical_end(ctx.block);
10870 ctx.block->kind |= block_kind_uniform;
10871 bld.branch(aco_opcode::p_cbranch_z, cond);
10872
10873 BB_endif.kind |= ctx.block->kind & block_kind_top_level;
10874
10875 ctx.block = ctx.program->create_and_insert_block();
10876 add_edge(BB_if_idx, ctx.block);
10877 bld.reset(ctx.block);
10878 append_logical_start(ctx.block);
10879 }
10880
10881 unsigned offset = 0;
10882 for (unsigned i = 0; i <= VARYING_SLOT_VAR31; ++i) {
10883 if (args->shader_info->gs.output_streams[i] != stream)
10884 continue;
10885
10886 unsigned output_usage_mask = args->shader_info->gs.output_usage_mask[i];
10887 unsigned length = util_last_bit(output_usage_mask);
10888 for (unsigned j = 0; j < length; ++j) {
10889 if (!(output_usage_mask & (1 << j)))
10890 continue;
10891
10892 unsigned const_offset = offset * args->shader_info->gs.vertices_out * 16 * 4;
10893 Temp voffset = vtx_offset;
10894 if (const_offset >= 4096u) {
10895 voffset = bld.vadd32(bld.def(v1), Operand(const_offset / 4096u * 4096u), voffset);
10896 const_offset %= 4096u;
10897 }
10898
10899 aco_ptr<MUBUF_instruction> mubuf{create_instruction<MUBUF_instruction>(aco_opcode::buffer_load_dword, Format::MUBUF, 3, 1)};
10900 mubuf->definitions[0] = bld.def(v1);
10901 mubuf->operands[0] = Operand(gsvs_ring);
10902 mubuf->operands[1] = Operand(voffset);
10903 mubuf->operands[2] = Operand(0u);
10904 mubuf->offen = true;
10905 mubuf->offset = const_offset;
10906 mubuf->glc = true;
10907 mubuf->slc = true;
10908 mubuf->dlc = args->options->chip_class >= GFX10;
10909 mubuf->barrier = barrier_none;
10910 mubuf->can_reorder = true;
10911
10912 ctx.outputs.mask[i] |= 1 << j;
10913 ctx.outputs.temps[i * 4u + j] = mubuf->definitions[0].getTemp();
10914
10915 bld.insert(std::move(mubuf));
10916
10917 offset++;
10918 }
10919 }
10920
10921 if (args->shader_info->so.num_outputs) {
10922 emit_streamout(&ctx, stream);
10923 bld.reset(ctx.block);
10924 }
10925
10926 if (stream == 0) {
10927 create_vs_exports(&ctx);
10928 ctx.block->kind |= block_kind_export_end;
10929 }
10930
10931 if (!stream_id.isConstant()) {
10932 append_logical_end(ctx.block);
10933
10934 /* branch from then block to endif block */
10935 bld.branch(aco_opcode::p_branch);
10936 add_edge(ctx.block->index, &BB_endif);
10937 ctx.block->kind |= block_kind_uniform;
10938
10939 /* emit else block */
10940 ctx.block = ctx.program->create_and_insert_block();
10941 add_edge(BB_if_idx, ctx.block);
10942 bld.reset(ctx.block);
10943 append_logical_start(ctx.block);
10944
10945 endif_blocks.push(std::move(BB_endif));
10946 }
10947 }
10948
10949 while (!endif_blocks.empty()) {
10950 Block BB_endif = std::move(endif_blocks.top());
10951 endif_blocks.pop();
10952
10953 Block *BB_else = ctx.block;
10954
10955 append_logical_end(BB_else);
10956 /* branch from else block to endif block */
10957 bld.branch(aco_opcode::p_branch);
10958 add_edge(BB_else->index, &BB_endif);
10959 BB_else->kind |= block_kind_uniform;
10960
10961 /** emit endif merge block */
10962 ctx.block = program->insert_block(std::move(BB_endif));
10963 bld.reset(ctx.block);
10964 append_logical_start(ctx.block);
10965 }
10966
10967 program->config->float_mode = program->blocks[0].fp_mode.val;
10968
10969 append_logical_end(ctx.block);
10970 ctx.block->kind |= block_kind_uniform;
10971 bld.sopp(aco_opcode::s_endpgm);
10972
10973 cleanup_cfg(program);
10974 }
10975 }