6caedc4347f2793699d4a21a7564b0e00b6abdd3
[mesa.git] / src / amd / compiler / aco_instruction_selection_setup.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <array>
26 #include <unordered_map>
27 #include "aco_ir.h"
28 #include "nir.h"
29 #include "nir_control_flow.h"
30 #include "vulkan/radv_shader.h"
31 #include "vulkan/radv_descriptor_set.h"
32 #include "vulkan/radv_shader_args.h"
33 #include "sid.h"
34 #include "ac_exp_param.h"
35 #include "ac_shader_util.h"
36
37 #include "util/u_math.h"
38
39 #define MAX_INLINE_PUSH_CONSTS 8
40
41 namespace aco {
42
43 struct shader_io_state {
44 uint8_t mask[VARYING_SLOT_MAX];
45 Temp temps[VARYING_SLOT_MAX * 4u];
46
47 shader_io_state() {
48 memset(mask, 0, sizeof(mask));
49 std::fill_n(temps, VARYING_SLOT_MAX * 4u, Temp(0, RegClass::v1));
50 }
51 };
52
53 struct isel_context {
54 const struct radv_nir_compiler_options *options;
55 struct radv_shader_args *args;
56 Program *program;
57 nir_shader *shader;
58 uint32_t constant_data_offset;
59 Block *block;
60 bool *divergent_vals;
61 std::unique_ptr<Temp[]> allocated;
62 std::unordered_map<unsigned, std::array<Temp,NIR_MAX_VEC_COMPONENTS>> allocated_vec;
63 Stage stage; /* Stage */
64 bool has_gfx10_wave64_bpermute = false;
65 struct {
66 bool has_branch;
67 uint16_t loop_nest_depth = 0;
68 struct {
69 unsigned header_idx;
70 Block* exit;
71 bool has_divergent_continue = false;
72 bool has_divergent_branch = false;
73 } parent_loop;
74 struct {
75 bool is_divergent = false;
76 } parent_if;
77 bool exec_potentially_empty_discard = false; /* set to false when loop_nest_depth==0 && parent_if.is_divergent==false */
78 uint16_t exec_potentially_empty_break_depth = UINT16_MAX;
79 /* Set to false when loop_nest_depth==exec_potentially_empty_break_depth
80 * and parent_if.is_divergent==false. Called _break but it's also used for
81 * loop continues. */
82 bool exec_potentially_empty_break = false;
83 std::unique_ptr<unsigned[]> nir_to_aco; /* NIR block index to ACO block index */
84 } cf_info;
85
86 Temp arg_temps[AC_MAX_ARGS];
87
88 /* FS inputs */
89 Temp persp_centroid, linear_centroid;
90
91 /* GS inputs */
92 Temp gs_wave_id;
93
94 /* gathered information */
95 uint64_t input_masks[MESA_SHADER_COMPUTE];
96 uint64_t output_masks[MESA_SHADER_COMPUTE];
97
98 /* VS output information */
99 bool export_clip_dists;
100 unsigned num_clip_distances;
101 unsigned num_cull_distances;
102
103 /* tessellation information */
104 unsigned tcs_tess_lvl_out_loc;
105 unsigned tcs_tess_lvl_in_loc;
106 uint64_t tcs_temp_only_inputs;
107 uint32_t tcs_num_inputs;
108 uint32_t tcs_num_patches;
109 bool tcs_in_out_eq = false;
110
111 /* I/O information */
112 shader_io_state inputs;
113 shader_io_state outputs;
114 };
115
116 Temp get_arg(isel_context *ctx, struct ac_arg arg)
117 {
118 assert(arg.used);
119 return ctx->arg_temps[arg.arg_index];
120 }
121
122 unsigned get_interp_input(nir_intrinsic_op intrin, enum glsl_interp_mode interp)
123 {
124 switch (interp) {
125 case INTERP_MODE_SMOOTH:
126 case INTERP_MODE_NONE:
127 if (intrin == nir_intrinsic_load_barycentric_pixel ||
128 intrin == nir_intrinsic_load_barycentric_at_sample ||
129 intrin == nir_intrinsic_load_barycentric_at_offset)
130 return S_0286CC_PERSP_CENTER_ENA(1);
131 else if (intrin == nir_intrinsic_load_barycentric_centroid)
132 return S_0286CC_PERSP_CENTROID_ENA(1);
133 else if (intrin == nir_intrinsic_load_barycentric_sample)
134 return S_0286CC_PERSP_SAMPLE_ENA(1);
135 break;
136 case INTERP_MODE_NOPERSPECTIVE:
137 if (intrin == nir_intrinsic_load_barycentric_pixel)
138 return S_0286CC_LINEAR_CENTER_ENA(1);
139 else if (intrin == nir_intrinsic_load_barycentric_centroid)
140 return S_0286CC_LINEAR_CENTROID_ENA(1);
141 else if (intrin == nir_intrinsic_load_barycentric_sample)
142 return S_0286CC_LINEAR_SAMPLE_ENA(1);
143 break;
144 default:
145 break;
146 }
147 return 0;
148 }
149
150 /* If one side of a divergent IF ends in a branch and the other doesn't, we
151 * might have to emit the contents of the side without the branch at the merge
152 * block instead. This is so that we can use any SGPR live-out of the side
153 * without the branch without creating a linear phi in the invert or merge block. */
154 bool
155 sanitize_if(nir_function_impl *impl, bool *divergent, nir_if *nif)
156 {
157 if (!divergent[nif->condition.ssa->index])
158 return false;
159
160 nir_block *then_block = nir_if_last_then_block(nif);
161 nir_block *else_block = nir_if_last_else_block(nif);
162 bool then_jump = nir_block_ends_in_jump(then_block) || nir_block_is_unreachable(then_block);
163 bool else_jump = nir_block_ends_in_jump(else_block) || nir_block_is_unreachable(else_block);
164 if (then_jump == else_jump)
165 return false;
166
167 /* If the continue from block is empty then return as there is nothing to
168 * move.
169 */
170 if (nir_cf_list_is_empty_block(else_jump ? &nif->then_list : &nif->else_list))
171 return false;
172
173 /* Even though this if statement has a jump on one side, we may still have
174 * phis afterwards. Single-source phis can be produced by loop unrolling
175 * or dead control-flow passes and are perfectly legal. Run a quick phi
176 * removal on the block after the if to clean up any such phis.
177 */
178 nir_opt_remove_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node)));
179
180 /* Finally, move the continue from branch after the if-statement. */
181 nir_block *last_continue_from_blk = else_jump ? then_block : else_block;
182 nir_block *first_continue_from_blk = else_jump ?
183 nir_if_first_then_block(nif) : nir_if_first_else_block(nif);
184
185 nir_cf_list tmp;
186 nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk),
187 nir_after_block(last_continue_from_blk));
188 nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node));
189
190 /* nir_cf_extract() invalidates dominance metadata, but it should still be
191 * correct because of the specific type of transformation we did. Block
192 * indices are not valid except for block_0's, which is all we care about for
193 * nir_block_is_unreachable(). */
194 impl->valid_metadata =
195 (nir_metadata)(impl->valid_metadata | nir_metadata_dominance | nir_metadata_block_index);
196
197 return true;
198 }
199
200 bool
201 sanitize_cf_list(nir_function_impl *impl, bool *divergent, struct exec_list *cf_list)
202 {
203 bool progress = false;
204 foreach_list_typed(nir_cf_node, cf_node, node, cf_list) {
205 switch (cf_node->type) {
206 case nir_cf_node_block:
207 break;
208 case nir_cf_node_if: {
209 nir_if *nif = nir_cf_node_as_if(cf_node);
210 progress |= sanitize_cf_list(impl, divergent, &nif->then_list);
211 progress |= sanitize_cf_list(impl, divergent, &nif->else_list);
212 progress |= sanitize_if(impl, divergent, nif);
213 break;
214 }
215 case nir_cf_node_loop: {
216 nir_loop *loop = nir_cf_node_as_loop(cf_node);
217 progress |= sanitize_cf_list(impl, divergent, &loop->body);
218 break;
219 }
220 case nir_cf_node_function:
221 unreachable("Invalid cf type");
222 }
223 }
224
225 return progress;
226 }
227
228 RegClass get_reg_class(isel_context *ctx, RegType type, unsigned components, unsigned bitsize)
229 {
230 switch (bitsize) {
231 case 1:
232 return RegClass(RegType::sgpr, ctx->program->lane_mask.size() * components);
233 case 8:
234 return type == RegType::sgpr ? s1 : RegClass(type, components).as_subdword();
235 case 16:
236 return type == RegType::sgpr ? RegClass(type, DIV_ROUND_UP(components, 2)) :
237 RegClass(type, 2 * components).as_subdword();
238 case 32:
239 return RegClass(type, components);
240 case 64:
241 return RegClass(type, components * 2);
242 default:
243 unreachable("Unsupported bit size");
244 }
245 }
246
247 void init_context(isel_context *ctx, nir_shader *shader)
248 {
249 nir_function_impl *impl = nir_shader_get_entrypoint(shader);
250 unsigned lane_mask_size = ctx->program->lane_mask.size();
251
252 ctx->shader = shader;
253 ctx->divergent_vals = nir_divergence_analysis(shader, nir_divergence_view_index_uniform);
254
255 /* sanitize control flow */
256 nir_metadata_require(impl, nir_metadata_dominance);
257 sanitize_cf_list(impl, ctx->divergent_vals, &impl->body);
258 nir_metadata_preserve(impl, (nir_metadata)~nir_metadata_block_index);
259
260 /* we'll need this for isel */
261 nir_metadata_require(impl, nir_metadata_block_index);
262
263 if (!(ctx->stage & sw_gs_copy) && ctx->options->dump_preoptir) {
264 fprintf(stderr, "NIR shader before instruction selection:\n");
265 nir_print_shader(shader, stderr);
266 }
267
268 std::unique_ptr<Temp[]> allocated{new Temp[impl->ssa_alloc]()};
269
270 unsigned spi_ps_inputs = 0;
271
272 std::unique_ptr<unsigned[]> nir_to_aco{new unsigned[impl->num_blocks]()};
273
274 bool done = false;
275 while (!done) {
276 done = true;
277 nir_foreach_block(block, impl) {
278 nir_foreach_instr(instr, block) {
279 switch(instr->type) {
280 case nir_instr_type_alu: {
281 nir_alu_instr *alu_instr = nir_instr_as_alu(instr);
282 RegType type = RegType::sgpr;
283 switch(alu_instr->op) {
284 case nir_op_fmul:
285 case nir_op_fadd:
286 case nir_op_fsub:
287 case nir_op_fmax:
288 case nir_op_fmin:
289 case nir_op_fmax3:
290 case nir_op_fmin3:
291 case nir_op_fmed3:
292 case nir_op_fneg:
293 case nir_op_fabs:
294 case nir_op_fsat:
295 case nir_op_fsign:
296 case nir_op_frcp:
297 case nir_op_frsq:
298 case nir_op_fsqrt:
299 case nir_op_fexp2:
300 case nir_op_flog2:
301 case nir_op_ffract:
302 case nir_op_ffloor:
303 case nir_op_fceil:
304 case nir_op_ftrunc:
305 case nir_op_fround_even:
306 case nir_op_fsin:
307 case nir_op_fcos:
308 case nir_op_f2f32:
309 case nir_op_f2f64:
310 case nir_op_u2f32:
311 case nir_op_u2f64:
312 case nir_op_i2f32:
313 case nir_op_i2f64:
314 case nir_op_pack_half_2x16:
315 case nir_op_unpack_half_2x16_split_x:
316 case nir_op_unpack_half_2x16_split_y:
317 case nir_op_fddx:
318 case nir_op_fddy:
319 case nir_op_fddx_fine:
320 case nir_op_fddy_fine:
321 case nir_op_fddx_coarse:
322 case nir_op_fddy_coarse:
323 case nir_op_fquantize2f16:
324 case nir_op_ldexp:
325 case nir_op_frexp_sig:
326 case nir_op_frexp_exp:
327 case nir_op_cube_face_index:
328 case nir_op_cube_face_coord:
329 type = RegType::vgpr;
330 break;
331 case nir_op_f2i64:
332 case nir_op_f2u64:
333 case nir_op_b2i32:
334 case nir_op_b2b32:
335 case nir_op_b2f32:
336 case nir_op_f2i32:
337 case nir_op_f2u32:
338 case nir_op_mov:
339 type = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
340 break;
341 case nir_op_bcsel:
342 type = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
343 /* fallthrough */
344 default:
345 for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) {
346 if (allocated[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr)
347 type = RegType::vgpr;
348 }
349 break;
350 }
351
352 RegClass rc = get_reg_class(ctx, type, alu_instr->dest.dest.ssa.num_components, alu_instr->dest.dest.ssa.bit_size);
353 allocated[alu_instr->dest.dest.ssa.index] = Temp(0, rc);
354 break;
355 }
356 case nir_instr_type_load_const: {
357 unsigned size = nir_instr_as_load_const(instr)->def.num_components;
358 if (nir_instr_as_load_const(instr)->def.bit_size == 64)
359 size *= 2;
360 else if (nir_instr_as_load_const(instr)->def.bit_size == 1)
361 size *= lane_mask_size;
362 allocated[nir_instr_as_load_const(instr)->def.index] = Temp(0, RegClass(RegType::sgpr, size));
363 break;
364 }
365 case nir_instr_type_intrinsic: {
366 nir_intrinsic_instr *intrinsic = nir_instr_as_intrinsic(instr);
367 if (!nir_intrinsic_infos[intrinsic->intrinsic].has_dest)
368 break;
369 RegType type = RegType::sgpr;
370 switch(intrinsic->intrinsic) {
371 case nir_intrinsic_load_push_constant:
372 case nir_intrinsic_load_work_group_id:
373 case nir_intrinsic_load_num_work_groups:
374 case nir_intrinsic_load_subgroup_id:
375 case nir_intrinsic_load_num_subgroups:
376 case nir_intrinsic_load_first_vertex:
377 case nir_intrinsic_load_base_instance:
378 case nir_intrinsic_get_buffer_size:
379 case nir_intrinsic_vote_all:
380 case nir_intrinsic_vote_any:
381 case nir_intrinsic_read_first_invocation:
382 case nir_intrinsic_read_invocation:
383 case nir_intrinsic_first_invocation:
384 case nir_intrinsic_ballot:
385 type = RegType::sgpr;
386 break;
387 case nir_intrinsic_load_sample_id:
388 case nir_intrinsic_load_sample_mask_in:
389 case nir_intrinsic_load_input:
390 case nir_intrinsic_load_output:
391 case nir_intrinsic_load_input_vertex:
392 case nir_intrinsic_load_per_vertex_input:
393 case nir_intrinsic_load_per_vertex_output:
394 case nir_intrinsic_load_vertex_id:
395 case nir_intrinsic_load_vertex_id_zero_base:
396 case nir_intrinsic_load_barycentric_sample:
397 case nir_intrinsic_load_barycentric_pixel:
398 case nir_intrinsic_load_barycentric_model:
399 case nir_intrinsic_load_barycentric_centroid:
400 case nir_intrinsic_load_barycentric_at_sample:
401 case nir_intrinsic_load_barycentric_at_offset:
402 case nir_intrinsic_load_interpolated_input:
403 case nir_intrinsic_load_frag_coord:
404 case nir_intrinsic_load_sample_pos:
405 case nir_intrinsic_load_layer_id:
406 case nir_intrinsic_load_local_invocation_id:
407 case nir_intrinsic_load_local_invocation_index:
408 case nir_intrinsic_load_subgroup_invocation:
409 case nir_intrinsic_load_tess_coord:
410 case nir_intrinsic_write_invocation_amd:
411 case nir_intrinsic_mbcnt_amd:
412 case nir_intrinsic_load_instance_id:
413 case nir_intrinsic_ssbo_atomic_add:
414 case nir_intrinsic_ssbo_atomic_imin:
415 case nir_intrinsic_ssbo_atomic_umin:
416 case nir_intrinsic_ssbo_atomic_imax:
417 case nir_intrinsic_ssbo_atomic_umax:
418 case nir_intrinsic_ssbo_atomic_and:
419 case nir_intrinsic_ssbo_atomic_or:
420 case nir_intrinsic_ssbo_atomic_xor:
421 case nir_intrinsic_ssbo_atomic_exchange:
422 case nir_intrinsic_ssbo_atomic_comp_swap:
423 case nir_intrinsic_global_atomic_add:
424 case nir_intrinsic_global_atomic_imin:
425 case nir_intrinsic_global_atomic_umin:
426 case nir_intrinsic_global_atomic_imax:
427 case nir_intrinsic_global_atomic_umax:
428 case nir_intrinsic_global_atomic_and:
429 case nir_intrinsic_global_atomic_or:
430 case nir_intrinsic_global_atomic_xor:
431 case nir_intrinsic_global_atomic_exchange:
432 case nir_intrinsic_global_atomic_comp_swap:
433 case nir_intrinsic_image_deref_atomic_add:
434 case nir_intrinsic_image_deref_atomic_umin:
435 case nir_intrinsic_image_deref_atomic_imin:
436 case nir_intrinsic_image_deref_atomic_umax:
437 case nir_intrinsic_image_deref_atomic_imax:
438 case nir_intrinsic_image_deref_atomic_and:
439 case nir_intrinsic_image_deref_atomic_or:
440 case nir_intrinsic_image_deref_atomic_xor:
441 case nir_intrinsic_image_deref_atomic_exchange:
442 case nir_intrinsic_image_deref_atomic_comp_swap:
443 case nir_intrinsic_image_deref_size:
444 case nir_intrinsic_shared_atomic_add:
445 case nir_intrinsic_shared_atomic_imin:
446 case nir_intrinsic_shared_atomic_umin:
447 case nir_intrinsic_shared_atomic_imax:
448 case nir_intrinsic_shared_atomic_umax:
449 case nir_intrinsic_shared_atomic_and:
450 case nir_intrinsic_shared_atomic_or:
451 case nir_intrinsic_shared_atomic_xor:
452 case nir_intrinsic_shared_atomic_exchange:
453 case nir_intrinsic_shared_atomic_comp_swap:
454 case nir_intrinsic_load_scratch:
455 case nir_intrinsic_load_invocation_id:
456 case nir_intrinsic_load_primitive_id:
457 type = RegType::vgpr;
458 break;
459 case nir_intrinsic_shuffle:
460 case nir_intrinsic_quad_broadcast:
461 case nir_intrinsic_quad_swap_horizontal:
462 case nir_intrinsic_quad_swap_vertical:
463 case nir_intrinsic_quad_swap_diagonal:
464 case nir_intrinsic_quad_swizzle_amd:
465 case nir_intrinsic_masked_swizzle_amd:
466 case nir_intrinsic_inclusive_scan:
467 case nir_intrinsic_exclusive_scan:
468 case nir_intrinsic_reduce:
469 case nir_intrinsic_load_ubo:
470 case nir_intrinsic_load_ssbo:
471 case nir_intrinsic_load_global:
472 case nir_intrinsic_vulkan_resource_index:
473 case nir_intrinsic_load_shared:
474 type = ctx->divergent_vals[intrinsic->dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
475 break;
476 case nir_intrinsic_load_view_index:
477 type = ctx->stage == fragment_fs ? RegType::vgpr : RegType::sgpr;
478 break;
479 default:
480 for (unsigned i = 0; i < nir_intrinsic_infos[intrinsic->intrinsic].num_srcs; i++) {
481 if (allocated[intrinsic->src[i].ssa->index].type() == RegType::vgpr)
482 type = RegType::vgpr;
483 }
484 break;
485 }
486 RegClass rc = get_reg_class(ctx, type, intrinsic->dest.ssa.num_components, intrinsic->dest.ssa.bit_size);
487 allocated[intrinsic->dest.ssa.index] = Temp(0, rc);
488
489 switch(intrinsic->intrinsic) {
490 case nir_intrinsic_load_barycentric_sample:
491 case nir_intrinsic_load_barycentric_pixel:
492 case nir_intrinsic_load_barycentric_centroid:
493 case nir_intrinsic_load_barycentric_at_sample:
494 case nir_intrinsic_load_barycentric_at_offset: {
495 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(intrinsic);
496 spi_ps_inputs |= get_interp_input(intrinsic->intrinsic, mode);
497 break;
498 }
499 case nir_intrinsic_load_barycentric_model:
500 spi_ps_inputs |= S_0286CC_PERSP_PULL_MODEL_ENA(1);
501 break;
502 case nir_intrinsic_load_front_face:
503 spi_ps_inputs |= S_0286CC_FRONT_FACE_ENA(1);
504 break;
505 case nir_intrinsic_load_frag_coord:
506 case nir_intrinsic_load_sample_pos: {
507 uint8_t mask = nir_ssa_def_components_read(&intrinsic->dest.ssa);
508 for (unsigned i = 0; i < 4; i++) {
509 if (mask & (1 << i))
510 spi_ps_inputs |= S_0286CC_POS_X_FLOAT_ENA(1) << i;
511
512 }
513 break;
514 }
515 case nir_intrinsic_load_sample_id:
516 spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
517 break;
518 case nir_intrinsic_load_sample_mask_in:
519 spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
520 spi_ps_inputs |= S_0286CC_SAMPLE_COVERAGE_ENA(1);
521 break;
522 default:
523 break;
524 }
525 break;
526 }
527 case nir_instr_type_tex: {
528 nir_tex_instr* tex = nir_instr_as_tex(instr);
529 unsigned size = tex->dest.ssa.num_components;
530
531 if (tex->dest.ssa.bit_size == 64)
532 size *= 2;
533 if (tex->op == nir_texop_texture_samples)
534 assert(!ctx->divergent_vals[tex->dest.ssa.index]);
535 if (ctx->divergent_vals[tex->dest.ssa.index])
536 allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::vgpr, size));
537 else
538 allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::sgpr, size));
539 break;
540 }
541 case nir_instr_type_parallel_copy: {
542 nir_foreach_parallel_copy_entry(entry, nir_instr_as_parallel_copy(instr)) {
543 allocated[entry->dest.ssa.index] = allocated[entry->src.ssa->index];
544 }
545 break;
546 }
547 case nir_instr_type_ssa_undef: {
548 unsigned size = nir_instr_as_ssa_undef(instr)->def.num_components;
549 if (nir_instr_as_ssa_undef(instr)->def.bit_size == 64)
550 size *= 2;
551 else if (nir_instr_as_ssa_undef(instr)->def.bit_size == 1)
552 size *= lane_mask_size;
553 allocated[nir_instr_as_ssa_undef(instr)->def.index] = Temp(0, RegClass(RegType::sgpr, size));
554 break;
555 }
556 case nir_instr_type_phi: {
557 nir_phi_instr* phi = nir_instr_as_phi(instr);
558 RegType type;
559 unsigned size = phi->dest.ssa.num_components;
560
561 if (phi->dest.ssa.bit_size == 1) {
562 assert(size == 1 && "multiple components not yet supported on boolean phis.");
563 type = RegType::sgpr;
564 size *= lane_mask_size;
565 allocated[phi->dest.ssa.index] = Temp(0, RegClass(type, size));
566 break;
567 }
568
569 if (ctx->divergent_vals[phi->dest.ssa.index]) {
570 type = RegType::vgpr;
571 } else {
572 type = RegType::sgpr;
573 nir_foreach_phi_src (src, phi) {
574 if (allocated[src->src.ssa->index].type() == RegType::vgpr)
575 type = RegType::vgpr;
576 if (allocated[src->src.ssa->index].type() == RegType::none)
577 done = false;
578 }
579 }
580
581 RegClass rc = get_reg_class(ctx, type, phi->dest.ssa.num_components, phi->dest.ssa.bit_size);
582 if (rc != allocated[phi->dest.ssa.index].regClass()) {
583 done = false;
584 } else {
585 nir_foreach_phi_src(src, phi)
586 assert(allocated[src->src.ssa->index].size() == rc.size());
587 }
588 allocated[phi->dest.ssa.index] = Temp(0, rc);
589 break;
590 }
591 default:
592 break;
593 }
594 }
595 }
596 }
597
598 if (G_0286CC_POS_W_FLOAT_ENA(spi_ps_inputs)) {
599 /* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */
600 spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
601 }
602
603 if (!(spi_ps_inputs & 0x7F)) {
604 /* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */
605 spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
606 }
607
608 ctx->program->config->spi_ps_input_ena = spi_ps_inputs;
609 ctx->program->config->spi_ps_input_addr = spi_ps_inputs;
610
611 for (unsigned i = 0; i < impl->ssa_alloc; i++)
612 allocated[i] = Temp(ctx->program->allocateId(), allocated[i].regClass());
613
614 ctx->allocated.reset(allocated.release());
615 ctx->cf_info.nir_to_aco.reset(nir_to_aco.release());
616 }
617
618 Pseudo_instruction *add_startpgm(struct isel_context *ctx)
619 {
620 unsigned arg_count = ctx->args->ac.arg_count;
621 if (ctx->stage == fragment_fs) {
622 /* LLVM optimizes away unused FS inputs and computes spi_ps_input_addr
623 * itself and then communicates the results back via the ELF binary.
624 * Mirror what LLVM does by re-mapping the VGPR arguments here.
625 *
626 * TODO: If we made the FS input scanning code into a separate pass that
627 * could run before argument setup, then this wouldn't be necessary
628 * anymore.
629 */
630 struct ac_shader_args *args = &ctx->args->ac;
631 arg_count = 0;
632 for (unsigned i = 0, vgpr_arg = 0, vgpr_reg = 0; i < args->arg_count; i++) {
633 if (args->args[i].file != AC_ARG_VGPR) {
634 arg_count++;
635 continue;
636 }
637
638 if (!(ctx->program->config->spi_ps_input_addr & (1 << vgpr_arg))) {
639 args->args[i].skip = true;
640 } else {
641 args->args[i].offset = vgpr_reg;
642 vgpr_reg += args->args[i].size;
643 arg_count++;
644 }
645 vgpr_arg++;
646 }
647 }
648
649 aco_ptr<Pseudo_instruction> startpgm{create_instruction<Pseudo_instruction>(aco_opcode::p_startpgm, Format::PSEUDO, 0, arg_count + 1)};
650 for (unsigned i = 0, arg = 0; i < ctx->args->ac.arg_count; i++) {
651 if (ctx->args->ac.args[i].skip)
652 continue;
653
654 enum ac_arg_regfile file = ctx->args->ac.args[i].file;
655 unsigned size = ctx->args->ac.args[i].size;
656 unsigned reg = ctx->args->ac.args[i].offset;
657 RegClass type = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size);
658 Temp dst = Temp{ctx->program->allocateId(), type};
659 ctx->arg_temps[i] = dst;
660 startpgm->definitions[arg] = Definition(dst);
661 startpgm->definitions[arg].setFixed(PhysReg{file == AC_ARG_SGPR ? reg : reg + 256});
662 arg++;
663 }
664 startpgm->definitions[arg_count] = Definition{ctx->program->allocateId(), exec, ctx->program->lane_mask};
665 Pseudo_instruction *instr = startpgm.get();
666 ctx->block->instructions.push_back(std::move(startpgm));
667
668 /* Stash these in the program so that they can be accessed later when
669 * handling spilling.
670 */
671 ctx->program->private_segment_buffer = get_arg(ctx, ctx->args->ring_offsets);
672 ctx->program->scratch_offset = get_arg(ctx, ctx->args->scratch_offset);
673
674 return instr;
675 }
676
677 int
678 type_size(const struct glsl_type *type, bool bindless)
679 {
680 // TODO: don't we need type->std430_base_alignment() here?
681 return glsl_count_attribute_slots(type, false);
682 }
683
684 void
685 shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
686 {
687 assert(glsl_type_is_vector_or_scalar(type));
688
689 uint32_t comp_size = glsl_type_is_boolean(type)
690 ? 4 : glsl_get_bit_size(type) / 8;
691 unsigned length = glsl_get_vector_elements(type);
692 *size = comp_size * length,
693 *align = comp_size;
694 }
695
696 static bool
697 mem_vectorize_callback(unsigned align, unsigned bit_size,
698 unsigned num_components, unsigned high_offset,
699 nir_intrinsic_instr *low, nir_intrinsic_instr *high)
700 {
701 if ((bit_size != 32 && bit_size != 64) || num_components > 4)
702 return false;
703
704 /* >128 bit loads are split except with SMEM */
705 if (bit_size * num_components > 128)
706 return false;
707
708 switch (low->intrinsic) {
709 case nir_intrinsic_load_ubo:
710 case nir_intrinsic_load_ssbo:
711 case nir_intrinsic_store_ssbo:
712 case nir_intrinsic_load_push_constant:
713 return align % 4 == 0;
714 case nir_intrinsic_load_deref:
715 case nir_intrinsic_store_deref:
716 assert(nir_src_as_deref(low->src[0])->mode == nir_var_mem_shared);
717 /* fallthrough */
718 case nir_intrinsic_load_shared:
719 case nir_intrinsic_store_shared:
720 if (bit_size * num_components > 64) /* 96 and 128 bit loads require 128 bit alignment and are split otherwise */
721 return align % 16 == 0;
722 else
723 return align % 4 == 0;
724 default:
725 return false;
726 }
727 return false;
728 }
729
730 void
731 setup_vs_output_info(isel_context *ctx, nir_shader *nir,
732 bool export_prim_id, bool export_clip_dists,
733 radv_vs_output_info *outinfo)
734 {
735 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
736 sizeof(outinfo->vs_output_param_offset));
737
738 outinfo->param_exports = 0;
739 int pos_written = 0x1;
740 if (outinfo->writes_pointsize || outinfo->writes_viewport_index || outinfo->writes_layer)
741 pos_written |= 1 << 1;
742
743 uint64_t mask = ctx->output_masks[nir->info.stage];
744 while (mask) {
745 int idx = u_bit_scan64(&mask);
746 if (idx >= VARYING_SLOT_VAR0 || idx == VARYING_SLOT_LAYER || idx == VARYING_SLOT_PRIMITIVE_ID ||
747 ((idx == VARYING_SLOT_CLIP_DIST0 || idx == VARYING_SLOT_CLIP_DIST1) && export_clip_dists)) {
748 if (outinfo->vs_output_param_offset[idx] == AC_EXP_PARAM_UNDEFINED)
749 outinfo->vs_output_param_offset[idx] = outinfo->param_exports++;
750 }
751 }
752 if (outinfo->writes_layer &&
753 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] == AC_EXP_PARAM_UNDEFINED) {
754 /* when ctx->options->key.has_multiview_view_index = true, the layer
755 * variable isn't declared in NIR and it's isel's job to get the layer */
756 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = outinfo->param_exports++;
757 }
758
759 if (export_prim_id) {
760 assert(outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED);
761 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = outinfo->param_exports++;
762 }
763
764 ctx->export_clip_dists = export_clip_dists;
765 ctx->num_clip_distances = util_bitcount(outinfo->clip_dist_mask);
766 ctx->num_cull_distances = util_bitcount(outinfo->cull_dist_mask);
767
768 assert(ctx->num_clip_distances + ctx->num_cull_distances <= 8);
769
770 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
771 pos_written |= 1 << 2;
772 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
773 pos_written |= 1 << 3;
774
775 outinfo->pos_exports = util_bitcount(pos_written);
776 }
777
778 void
779 setup_vs_variables(isel_context *ctx, nir_shader *nir)
780 {
781 nir_foreach_variable(variable, &nir->inputs)
782 {
783 variable->data.driver_location = variable->data.location * 4;
784 }
785 nir_foreach_variable(variable, &nir->outputs)
786 {
787 if (ctx->stage == vertex_geometry_gs)
788 variable->data.driver_location = util_bitcount64(ctx->output_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
789 else if (ctx->stage == vertex_es ||
790 ctx->stage == vertex_ls ||
791 ctx->stage == vertex_tess_control_hs)
792 // TODO: make this more compact
793 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
794 else if (ctx->stage == vertex_vs)
795 variable->data.driver_location = variable->data.location * 4;
796 else
797 unreachable("Unsupported VS stage");
798 }
799
800 if (ctx->stage == vertex_vs) {
801 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
802 setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
803 ctx->options->key.vs_common_out.export_clip_dists, outinfo);
804 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == vertex_es) {
805 /* TODO: radv_nir_shader_info_pass() already sets this but it's larger
806 * than it needs to be in order to set it better, we have to improve
807 * radv_nir_shader_info_pass() because gfx9_get_gs_info() uses
808 * esgs_itemsize and has to be done before compilation
809 */
810 /* radv_es_output_info *outinfo = &ctx->program->info->vs.es_info;
811 outinfo->esgs_itemsize = util_bitcount64(ctx->output_masks[nir->info.stage]) * 16u; */
812 }
813 }
814
815 void setup_gs_variables(isel_context *ctx, nir_shader *nir)
816 {
817 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
818 nir_foreach_variable(variable, &nir->inputs) {
819 variable->data.driver_location = util_bitcount64(ctx->input_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
820 }
821 } else if (ctx->stage == geometry_gs) {
822 //TODO: make this more compact
823 nir_foreach_variable(variable, &nir->inputs) {
824 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot)variable->data.location) * 4;
825 }
826 } else {
827 unreachable("Unsupported GS stage.");
828 }
829
830 nir_foreach_variable(variable, &nir->outputs) {
831 variable->data.driver_location = variable->data.location * 4;
832 }
833
834 if (ctx->stage == vertex_geometry_gs)
835 ctx->program->info->gs.es_type = MESA_SHADER_VERTEX;
836 else if (ctx->stage == tess_eval_geometry_gs)
837 ctx->program->info->gs.es_type = MESA_SHADER_TESS_EVAL;
838 }
839
840 void
841 setup_tcs_info(isel_context *ctx, nir_shader *nir)
842 {
843 /* When the number of TCS input and output vertices are the same (typically 3):
844 * - There is an equal amount of LS and HS invocations
845 * - In case of merged LSHS shaders, the LS and HS halves of the shader
846 * always process the exact same vertex. We can use this knowledge to optimize them.
847 */
848 ctx->tcs_in_out_eq =
849 ctx->stage == vertex_tess_control_hs &&
850 ctx->args->options->key.tcs.input_vertices == nir->info.tess.tcs_vertices_out;
851
852 if (ctx->stage == tess_control_hs) {
853 ctx->tcs_num_inputs = ctx->args->options->key.tcs.num_inputs;
854 } else if (ctx->stage == vertex_tess_control_hs) {
855 ctx->tcs_num_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
856
857 if (ctx->tcs_in_out_eq) {
858 ctx->tcs_temp_only_inputs = ~nir->info.tess.tcs_cross_invocation_inputs_read &
859 ~nir->info.inputs_read_indirectly &
860 nir->info.inputs_read;
861 }
862 } else {
863 unreachable("Unsupported TCS shader stage");
864 }
865
866 ctx->tcs_num_patches = get_tcs_num_patches(
867 ctx->args->options->key.tcs.input_vertices,
868 nir->info.tess.tcs_vertices_out,
869 ctx->tcs_num_inputs,
870 ctx->args->shader_info->tcs.outputs_written,
871 ctx->args->shader_info->tcs.patch_outputs_written,
872 ctx->args->options->tess_offchip_block_dw_size,
873 ctx->args->options->chip_class,
874 ctx->args->options->family);
875 unsigned lds_size = calculate_tess_lds_size(
876 ctx->args->options->key.tcs.input_vertices,
877 nir->info.tess.tcs_vertices_out,
878 ctx->tcs_num_inputs,
879 ctx->tcs_num_patches,
880 ctx->args->shader_info->tcs.outputs_written,
881 ctx->args->shader_info->tcs.patch_outputs_written);
882
883 ctx->args->shader_info->tcs.num_patches = ctx->tcs_num_patches;
884 ctx->args->shader_info->tcs.lds_size = lds_size;
885 ctx->program->config->lds_size = (lds_size + ctx->program->lds_alloc_granule - 1) /
886 ctx->program->lds_alloc_granule;
887 }
888
889 void
890 setup_tcs_variables(isel_context *ctx, nir_shader *nir)
891 {
892 nir_foreach_variable(variable, &nir->inputs) {
893 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
894 }
895
896 nir_foreach_variable(variable, &nir->outputs) {
897 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
898 }
899
900 ctx->tcs_tess_lvl_out_loc = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER) * 16u;
901 ctx->tcs_tess_lvl_in_loc = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER) * 16u;
902 }
903
904 void
905 setup_tes_variables(isel_context *ctx, nir_shader *nir)
906 {
907 ctx->tcs_num_patches = ctx->args->options->key.tes.num_patches;
908
909 nir_foreach_variable(variable, &nir->inputs) {
910 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
911 }
912
913 nir_foreach_variable(variable, &nir->outputs) {
914 if (ctx->stage == tess_eval_vs)
915 variable->data.driver_location = variable->data.location * 4;
916 else if (ctx->stage == tess_eval_es)
917 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
918 else if (ctx->stage == tess_eval_geometry_gs)
919 variable->data.driver_location = util_bitcount64(ctx->output_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
920 else
921 unreachable("Unsupported TES shader stage");
922 }
923
924 if (ctx->stage == tess_eval_vs) {
925 radv_vs_output_info *outinfo = &ctx->program->info->tes.outinfo;
926 setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
927 ctx->options->key.vs_common_out.export_clip_dists, outinfo);
928 }
929 }
930
931 void
932 setup_variables(isel_context *ctx, nir_shader *nir)
933 {
934 switch (nir->info.stage) {
935 case MESA_SHADER_FRAGMENT: {
936 nir_foreach_variable(variable, &nir->outputs)
937 {
938 int idx = variable->data.location + variable->data.index;
939 variable->data.driver_location = idx * 4;
940 }
941 break;
942 }
943 case MESA_SHADER_COMPUTE: {
944 ctx->program->config->lds_size = (nir->info.cs.shared_size + ctx->program->lds_alloc_granule - 1) /
945 ctx->program->lds_alloc_granule;
946 break;
947 }
948 case MESA_SHADER_VERTEX: {
949 setup_vs_variables(ctx, nir);
950 break;
951 }
952 case MESA_SHADER_GEOMETRY: {
953 setup_gs_variables(ctx, nir);
954 break;
955 }
956 case MESA_SHADER_TESS_CTRL: {
957 setup_tcs_variables(ctx, nir);
958 break;
959 }
960 case MESA_SHADER_TESS_EVAL: {
961 setup_tes_variables(ctx, nir);
962 break;
963 }
964 default:
965 unreachable("Unhandled shader stage.");
966 }
967 }
968
969 void
970 get_io_masks(isel_context *ctx, unsigned shader_count, struct nir_shader *const *shaders)
971 {
972 for (unsigned i = 0; i < shader_count; i++) {
973 nir_shader *nir = shaders[i];
974 if (nir->info.stage == MESA_SHADER_COMPUTE)
975 continue;
976
977 uint64_t output_mask = 0;
978 nir_foreach_variable(variable, &nir->outputs) {
979 const glsl_type *type = variable->type;
980 if (nir_is_per_vertex_io(variable, nir->info.stage))
981 type = type->fields.array;
982 unsigned slots = type->count_attribute_slots(false);
983 if (variable->data.compact) {
984 unsigned component_count = variable->data.location_frac + type->length;
985 slots = (component_count + 3) / 4;
986 }
987 output_mask |= ((1ull << slots) - 1) << variable->data.location;
988 }
989
990 uint64_t input_mask = 0;
991 nir_foreach_variable(variable, &nir->inputs) {
992 const glsl_type *type = variable->type;
993 if (nir_is_per_vertex_io(variable, nir->info.stage))
994 type = type->fields.array;
995 unsigned slots = type->count_attribute_slots(false);
996 if (variable->data.compact) {
997 unsigned component_count = variable->data.location_frac + type->length;
998 slots = (component_count + 3) / 4;
999 }
1000 input_mask |= ((1ull << slots) - 1) << variable->data.location;
1001 }
1002
1003 ctx->output_masks[nir->info.stage] |= output_mask;
1004 if (i + 1 < shader_count)
1005 ctx->input_masks[shaders[i + 1]->info.stage] |= output_mask;
1006
1007 ctx->input_masks[nir->info.stage] |= input_mask;
1008 if (i)
1009 ctx->output_masks[shaders[i - 1]->info.stage] |= input_mask;
1010 }
1011 }
1012
1013 void
1014 setup_nir(isel_context *ctx, nir_shader *nir)
1015 {
1016 Program *program = ctx->program;
1017
1018 /* align and copy constant data */
1019 while (program->constant_data.size() % 4u)
1020 program->constant_data.push_back(0);
1021 ctx->constant_data_offset = program->constant_data.size();
1022 program->constant_data.insert(program->constant_data.end(),
1023 (uint8_t*)nir->constant_data,
1024 (uint8_t*)nir->constant_data + nir->constant_data_size);
1025
1026 /* the variable setup has to be done before lower_io / CSE */
1027 setup_variables(ctx, nir);
1028
1029 /* optimize and lower memory operations */
1030 bool lower_to_scalar = false;
1031 bool lower_pack = false;
1032 if (nir_opt_load_store_vectorize(nir,
1033 (nir_variable_mode)(nir_var_mem_ssbo | nir_var_mem_ubo |
1034 nir_var_mem_push_const | nir_var_mem_shared),
1035 mem_vectorize_callback)) {
1036 lower_to_scalar = true;
1037 lower_pack = true;
1038 }
1039 if (nir->info.stage != MESA_SHADER_COMPUTE)
1040 nir_lower_io(nir, (nir_variable_mode)(nir_var_shader_in | nir_var_shader_out), type_size, (nir_lower_io_options)0);
1041 nir_lower_explicit_io(nir, nir_var_mem_global, nir_address_format_64bit_global);
1042
1043 if (lower_to_scalar)
1044 nir_lower_alu_to_scalar(nir, NULL, NULL);
1045 if (lower_pack)
1046 nir_lower_pack(nir);
1047
1048 /* lower ALU operations */
1049 // TODO: implement logic64 in aco, it's more effective for sgprs
1050 nir_lower_int64(nir, nir->options->lower_int64_options);
1051
1052 nir_opt_idiv_const(nir, 32);
1053 nir_lower_idiv(nir, nir_lower_idiv_precise);
1054
1055 /* optimize the lowered ALU operations */
1056 bool more_algebraic = true;
1057 while (more_algebraic) {
1058 more_algebraic = false;
1059 NIR_PASS_V(nir, nir_copy_prop);
1060 NIR_PASS_V(nir, nir_opt_dce);
1061 NIR_PASS_V(nir, nir_opt_constant_folding);
1062 NIR_PASS(more_algebraic, nir, nir_opt_algebraic);
1063 }
1064
1065 /* Do late algebraic optimization to turn add(a, neg(b)) back into
1066 * subs, then the mandatory cleanup after algebraic. Note that it may
1067 * produce fnegs, and if so then we need to keep running to squash
1068 * fneg(fneg(a)).
1069 */
1070 bool more_late_algebraic = true;
1071 while (more_late_algebraic) {
1072 more_late_algebraic = false;
1073 NIR_PASS(more_late_algebraic, nir, nir_opt_algebraic_late);
1074 NIR_PASS_V(nir, nir_opt_constant_folding);
1075 NIR_PASS_V(nir, nir_copy_prop);
1076 NIR_PASS_V(nir, nir_opt_dce);
1077 NIR_PASS_V(nir, nir_opt_cse);
1078 }
1079
1080 /* cleanup passes */
1081 nir_lower_load_const_to_scalar(nir);
1082 nir_opt_shrink_load(nir);
1083 nir_move_options move_opts = (nir_move_options)(
1084 nir_move_const_undef | nir_move_load_ubo | nir_move_load_input |
1085 nir_move_comparisons | nir_move_copies);
1086 nir_opt_sink(nir, move_opts);
1087 nir_opt_move(nir, move_opts);
1088 nir_convert_to_lcssa(nir, true, false);
1089 nir_lower_phis_to_scalar(nir);
1090
1091 nir_function_impl *func = nir_shader_get_entrypoint(nir);
1092 nir_index_ssa_defs(func);
1093 }
1094
1095 void
1096 setup_xnack(Program *program)
1097 {
1098 switch (program->family) {
1099 /* GFX8 APUs */
1100 case CHIP_CARRIZO:
1101 case CHIP_STONEY:
1102 /* GFX9 APUS */
1103 case CHIP_RAVEN:
1104 case CHIP_RAVEN2:
1105 case CHIP_RENOIR:
1106 program->xnack_enabled = true;
1107 break;
1108 default:
1109 break;
1110 }
1111 }
1112
1113 isel_context
1114 setup_isel_context(Program* program,
1115 unsigned shader_count,
1116 struct nir_shader *const *shaders,
1117 ac_shader_config* config,
1118 struct radv_shader_args *args,
1119 bool is_gs_copy_shader)
1120 {
1121 program->stage = 0;
1122 for (unsigned i = 0; i < shader_count; i++) {
1123 switch (shaders[i]->info.stage) {
1124 case MESA_SHADER_VERTEX:
1125 program->stage |= sw_vs;
1126 break;
1127 case MESA_SHADER_TESS_CTRL:
1128 program->stage |= sw_tcs;
1129 break;
1130 case MESA_SHADER_TESS_EVAL:
1131 program->stage |= sw_tes;
1132 break;
1133 case MESA_SHADER_GEOMETRY:
1134 program->stage |= is_gs_copy_shader ? sw_gs_copy : sw_gs;
1135 break;
1136 case MESA_SHADER_FRAGMENT:
1137 program->stage |= sw_fs;
1138 break;
1139 case MESA_SHADER_COMPUTE:
1140 program->stage |= sw_cs;
1141 break;
1142 default:
1143 unreachable("Shader stage not implemented");
1144 }
1145 }
1146 bool gfx9_plus = args->options->chip_class >= GFX9;
1147 bool ngg = args->shader_info->is_ngg && args->options->chip_class >= GFX10;
1148 if (program->stage == sw_vs && args->shader_info->vs.as_es)
1149 program->stage |= hw_es;
1150 else if (program->stage == sw_vs && !args->shader_info->vs.as_ls)
1151 program->stage |= hw_vs;
1152 else if (program->stage == sw_gs)
1153 program->stage |= hw_gs;
1154 else if (program->stage == sw_fs)
1155 program->stage |= hw_fs;
1156 else if (program->stage == sw_cs)
1157 program->stage |= hw_cs;
1158 else if (program->stage == sw_gs_copy)
1159 program->stage |= hw_vs;
1160 else if (program->stage == (sw_vs | sw_gs) && gfx9_plus && !ngg)
1161 program->stage |= hw_gs;
1162 else if (program->stage == sw_vs && args->shader_info->vs.as_ls)
1163 program->stage |= hw_ls; /* GFX6-8: VS is a Local Shader, when tessellation is used */
1164 else if (program->stage == sw_tcs)
1165 program->stage |= hw_hs; /* GFX6-8: TCS is a Hull Shader */
1166 else if (program->stage == (sw_vs | sw_tcs))
1167 program->stage |= hw_hs; /* GFX9-10: VS+TCS merged into a Hull Shader */
1168 else if (program->stage == sw_tes && !args->shader_info->tes.as_es && !ngg)
1169 program->stage |= hw_vs; /* GFX6-9: TES without GS uses the HW VS stage (and GFX10/legacy) */
1170 else if (program->stage == sw_tes && args->shader_info->tes.as_es && !ngg)
1171 program->stage |= hw_es; /* GFX6-8: TES is an Export Shader */
1172 else if (program->stage == (sw_tes | sw_gs) && gfx9_plus && !ngg)
1173 program->stage |= hw_gs; /* GFX9: TES+GS merged into a GS (and GFX10/legacy) */
1174 else
1175 unreachable("Shader stage not implemented");
1176
1177 program->config = config;
1178 program->info = args->shader_info;
1179 program->chip_class = args->options->chip_class;
1180 program->family = args->options->family;
1181 program->wave_size = args->shader_info->wave_size;
1182 program->lane_mask = program->wave_size == 32 ? s1 : s2;
1183
1184 program->lds_alloc_granule = args->options->chip_class >= GFX7 ? 512 : 256;
1185 program->lds_limit = args->options->chip_class >= GFX7 ? 65536 : 32768;
1186 /* apparently gfx702 also has 16-bank LDS but I can't find a family for that */
1187 program->has_16bank_lds = args->options->family == CHIP_KABINI || args->options->family == CHIP_STONEY;
1188
1189 program->vgpr_limit = 256;
1190 program->vgpr_alloc_granule = 3;
1191
1192 if (args->options->chip_class >= GFX10) {
1193 program->physical_sgprs = 2560; /* doesn't matter as long as it's at least 128 * 20 */
1194 program->sgpr_alloc_granule = 127;
1195 program->sgpr_limit = 106;
1196 program->vgpr_alloc_granule = program->wave_size == 32 ? 7 : 3;
1197 } else if (program->chip_class >= GFX8) {
1198 program->physical_sgprs = 800;
1199 program->sgpr_alloc_granule = 15;
1200 if (args->options->family == CHIP_TONGA || args->options->family == CHIP_ICELAND)
1201 program->sgpr_limit = 94; /* workaround hardware bug */
1202 else
1203 program->sgpr_limit = 102;
1204 } else {
1205 program->physical_sgprs = 512;
1206 program->sgpr_alloc_granule = 7;
1207 program->sgpr_limit = 104;
1208 }
1209
1210 isel_context ctx = {};
1211 ctx.program = program;
1212 ctx.args = args;
1213 ctx.options = args->options;
1214 ctx.stage = program->stage;
1215
1216 /* TODO: Check if we need to adjust min_waves for unknown workgroup sizes. */
1217 if (program->stage & (hw_vs | hw_fs)) {
1218 /* PS and legacy VS have separate waves, no workgroups */
1219 program->workgroup_size = program->wave_size;
1220 } else if (program->stage == compute_cs) {
1221 /* CS sets the workgroup size explicitly */
1222 unsigned* bsize = program->info->cs.block_size;
1223 program->workgroup_size = bsize[0] * bsize[1] * bsize[2];
1224 } else if ((program->stage & hw_es) || program->stage == geometry_gs) {
1225 /* Unmerged ESGS operate in workgroups if on-chip GS (LDS rings) are enabled on GFX7-8 (not implemented in Mesa) */
1226 program->workgroup_size = program->wave_size;
1227 } else if (program->stage & hw_gs) {
1228 /* If on-chip GS (LDS rings) are enabled on GFX9 or later, merged GS operates in workgroups */
1229 program->workgroup_size = UINT_MAX; /* TODO: set by VGT_GS_ONCHIP_CNTL, which is not plumbed to ACO */
1230 } else if (program->stage == vertex_ls) {
1231 /* Unmerged LS operates in workgroups */
1232 program->workgroup_size = UINT_MAX; /* TODO: probably tcs_num_patches * tcs_vertices_in, but those are not plumbed to ACO for LS */
1233 } else if (program->stage == tess_control_hs) {
1234 /* Unmerged HS operates in workgroups, size is determined by the output vertices */
1235 setup_tcs_info(&ctx, shaders[0]);
1236 program->workgroup_size = ctx.tcs_num_patches * shaders[0]->info.tess.tcs_vertices_out;
1237 } else if (program->stage == vertex_tess_control_hs) {
1238 /* Merged LSHS operates in workgroups, but can still have a different number of LS and HS invocations */
1239 setup_tcs_info(&ctx, shaders[1]);
1240 program->workgroup_size = ctx.tcs_num_patches * MAX2(shaders[1]->info.tess.tcs_vertices_out, ctx.args->options->key.tcs.input_vertices);
1241 } else {
1242 unreachable("Unsupported shader stage.");
1243 }
1244
1245 calc_min_waves(program);
1246 program->vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves);
1247 program->sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves);
1248
1249 get_io_masks(&ctx, shader_count, shaders);
1250
1251 unsigned scratch_size = 0;
1252 if (program->stage == gs_copy_vs) {
1253 assert(shader_count == 1);
1254 setup_vs_output_info(&ctx, shaders[0], false, true, &args->shader_info->vs.outinfo);
1255 } else {
1256 for (unsigned i = 0; i < shader_count; i++) {
1257 nir_shader *nir = shaders[i];
1258 setup_nir(&ctx, nir);
1259 }
1260
1261 for (unsigned i = 0; i < shader_count; i++)
1262 scratch_size = std::max(scratch_size, shaders[i]->scratch_size);
1263 }
1264
1265 ctx.program->config->scratch_bytes_per_wave = align(scratch_size * ctx.program->wave_size, 1024);
1266
1267 ctx.block = ctx.program->create_and_insert_block();
1268 ctx.block->loop_nest_depth = 0;
1269 ctx.block->kind = block_kind_top_level;
1270
1271 setup_xnack(program);
1272
1273 return ctx;
1274 }
1275
1276 }