aco: emit IR in IF's merge block instead if the other side ends in a jump
[mesa.git] / src / amd / compiler / aco_instruction_selection_setup.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <array>
26 #include <unordered_map>
27 #include "aco_ir.h"
28 #include "nir.h"
29 #include "nir_control_flow.h"
30 #include "vulkan/radv_shader.h"
31 #include "vulkan/radv_descriptor_set.h"
32 #include "vulkan/radv_shader_args.h"
33 #include "sid.h"
34 #include "ac_exp_param.h"
35 #include "ac_shader_util.h"
36
37 #include "util/u_math.h"
38
39 #define MAX_INLINE_PUSH_CONSTS 8
40
41 namespace aco {
42
43 struct output_state {
44 uint8_t mask[VARYING_SLOT_VAR31 + 1];
45 Temp outputs[VARYING_SLOT_VAR31 + 1][4];
46 };
47
48 struct isel_context {
49 const struct radv_nir_compiler_options *options;
50 struct radv_shader_args *args;
51 Program *program;
52 nir_shader *shader;
53 uint32_t constant_data_offset;
54 Block *block;
55 bool *divergent_vals;
56 std::unique_ptr<Temp[]> allocated;
57 std::unordered_map<unsigned, std::array<Temp,NIR_MAX_VEC_COMPONENTS>> allocated_vec;
58 Stage stage; /* Stage */
59 bool has_gfx10_wave64_bpermute = false;
60 struct {
61 bool has_branch;
62 uint16_t loop_nest_depth = 0;
63 struct {
64 unsigned header_idx;
65 Block* exit;
66 bool has_divergent_continue = false;
67 bool has_divergent_branch = false;
68 } parent_loop;
69 struct {
70 bool is_divergent = false;
71 } parent_if;
72 bool exec_potentially_empty_discard = false; /* set to false when loop_nest_depth==0 && parent_if.is_divergent==false */
73 uint16_t exec_potentially_empty_break_depth = UINT16_MAX;
74 /* Set to false when loop_nest_depth==exec_potentially_empty_break_depth
75 * and parent_if.is_divergent==false. Called _break but it's also used for
76 * loop continues. */
77 bool exec_potentially_empty_break = false;
78 std::unique_ptr<unsigned[]> nir_to_aco; /* NIR block index to ACO block index */
79 } cf_info;
80
81 Temp arg_temps[AC_MAX_ARGS];
82
83 /* FS inputs */
84 Temp persp_centroid, linear_centroid;
85
86 /* GS inputs */
87 Temp gs_wave_id;
88
89 /* gathered information */
90 uint64_t input_masks[MESA_SHADER_COMPUTE];
91 uint64_t output_masks[MESA_SHADER_COMPUTE];
92
93 /* VS output information */
94 bool export_clip_dists;
95 unsigned num_clip_distances;
96 unsigned num_cull_distances;
97
98 /* tessellation information */
99 uint32_t tcs_num_inputs;
100 uint32_t tcs_num_patches;
101
102 /* VS, FS or GS output information */
103 output_state outputs;
104 };
105
106 Temp get_arg(isel_context *ctx, struct ac_arg arg)
107 {
108 assert(arg.used);
109 return ctx->arg_temps[arg.arg_index];
110 }
111
112 unsigned get_interp_input(nir_intrinsic_op intrin, enum glsl_interp_mode interp)
113 {
114 switch (interp) {
115 case INTERP_MODE_SMOOTH:
116 case INTERP_MODE_NONE:
117 if (intrin == nir_intrinsic_load_barycentric_pixel ||
118 intrin == nir_intrinsic_load_barycentric_at_sample ||
119 intrin == nir_intrinsic_load_barycentric_at_offset)
120 return S_0286CC_PERSP_CENTER_ENA(1);
121 else if (intrin == nir_intrinsic_load_barycentric_centroid)
122 return S_0286CC_PERSP_CENTROID_ENA(1);
123 else if (intrin == nir_intrinsic_load_barycentric_sample)
124 return S_0286CC_PERSP_SAMPLE_ENA(1);
125 break;
126 case INTERP_MODE_NOPERSPECTIVE:
127 if (intrin == nir_intrinsic_load_barycentric_pixel)
128 return S_0286CC_LINEAR_CENTER_ENA(1);
129 else if (intrin == nir_intrinsic_load_barycentric_centroid)
130 return S_0286CC_LINEAR_CENTROID_ENA(1);
131 else if (intrin == nir_intrinsic_load_barycentric_sample)
132 return S_0286CC_LINEAR_SAMPLE_ENA(1);
133 break;
134 default:
135 break;
136 }
137 return 0;
138 }
139
140 /* If one side of a divergent IF ends in a branch and the other doesn't, we
141 * might have to emit the contents of the side without the branch at the merge
142 * block instead. This is so that we can use any SGPR live-out of the side
143 * without the branch without creating a linear phi in the invert or merge block. */
144 bool
145 sanitize_if(nir_function_impl *impl, bool *divergent, nir_if *nif)
146 {
147 if (!divergent[nif->condition.ssa->index])
148 return false;
149
150 nir_block *then_block = nir_if_last_then_block(nif);
151 nir_block *else_block = nir_if_last_else_block(nif);
152 bool then_jump = nir_block_ends_in_jump(then_block) || nir_block_is_unreachable(then_block);
153 bool else_jump = nir_block_ends_in_jump(else_block) || nir_block_is_unreachable(else_block);
154 if (then_jump == else_jump)
155 return false;
156
157 /* If the continue from block is empty then return as there is nothing to
158 * move.
159 */
160 if (nir_cf_list_is_empty_block(else_jump ? &nif->then_list : &nif->else_list))
161 return false;
162
163 /* Even though this if statement has a jump on one side, we may still have
164 * phis afterwards. Single-source phis can be produced by loop unrolling
165 * or dead control-flow passes and are perfectly legal. Run a quick phi
166 * removal on the block after the if to clean up any such phis.
167 */
168 nir_opt_remove_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node)));
169
170 /* Finally, move the continue from branch after the if-statement. */
171 nir_block *last_continue_from_blk = else_jump ? then_block : else_block;
172 nir_block *first_continue_from_blk = else_jump ?
173 nir_if_first_then_block(nif) : nir_if_first_else_block(nif);
174
175 nir_cf_list tmp;
176 nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk),
177 nir_after_block(last_continue_from_blk));
178 nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node));
179
180 /* nir_cf_extract() invalidates dominance metadata, but it should still be
181 * correct because of the specific type of transformation we did. Block
182 * indices are not valid except for block_0's, which is all we care about for
183 * nir_block_is_unreachable(). */
184 impl->valid_metadata =
185 (nir_metadata)(impl->valid_metadata | nir_metadata_dominance | nir_metadata_block_index);
186
187 return true;
188 }
189
190 bool
191 sanitize_cf_list(nir_function_impl *impl, bool *divergent, struct exec_list *cf_list)
192 {
193 bool progress = false;
194 foreach_list_typed(nir_cf_node, cf_node, node, cf_list) {
195 switch (cf_node->type) {
196 case nir_cf_node_block:
197 break;
198 case nir_cf_node_if: {
199 nir_if *nif = nir_cf_node_as_if(cf_node);
200 progress |= sanitize_cf_list(impl, divergent, &nif->then_list);
201 progress |= sanitize_cf_list(impl, divergent, &nif->else_list);
202 progress |= sanitize_if(impl, divergent, nif);
203 break;
204 }
205 case nir_cf_node_loop: {
206 nir_loop *loop = nir_cf_node_as_loop(cf_node);
207 progress |= sanitize_cf_list(impl, divergent, &loop->body);
208 break;
209 }
210 case nir_cf_node_function:
211 unreachable("Invalid cf type");
212 }
213 }
214
215 return progress;
216 }
217
218 void init_context(isel_context *ctx, nir_shader *shader)
219 {
220 nir_function_impl *impl = nir_shader_get_entrypoint(shader);
221 unsigned lane_mask_size = ctx->program->lane_mask.size();
222
223 ctx->shader = shader;
224 ctx->divergent_vals = nir_divergence_analysis(shader, nir_divergence_view_index_uniform);
225
226 /* sanitize control flow */
227 nir_metadata_require(impl, nir_metadata_dominance);
228 sanitize_cf_list(impl, ctx->divergent_vals, &impl->body);
229 nir_metadata_preserve(impl, (nir_metadata)~nir_metadata_block_index);
230
231 /* we'll need this for isel */
232 nir_metadata_require(impl, nir_metadata_block_index);
233
234 if (!(ctx->stage & sw_gs_copy) && ctx->options->dump_preoptir) {
235 fprintf(stderr, "NIR shader before instruction selection:\n");
236 nir_print_shader(shader, stderr);
237 }
238
239 std::unique_ptr<Temp[]> allocated{new Temp[impl->ssa_alloc]()};
240
241 unsigned spi_ps_inputs = 0;
242
243 std::unique_ptr<unsigned[]> nir_to_aco{new unsigned[impl->num_blocks]()};
244
245 bool done = false;
246 while (!done) {
247 done = true;
248 nir_foreach_block(block, impl) {
249 nir_foreach_instr(instr, block) {
250 switch(instr->type) {
251 case nir_instr_type_alu: {
252 nir_alu_instr *alu_instr = nir_instr_as_alu(instr);
253 unsigned size = alu_instr->dest.dest.ssa.num_components;
254 if (alu_instr->dest.dest.ssa.bit_size == 64)
255 size *= 2;
256 RegType type = RegType::sgpr;
257 switch(alu_instr->op) {
258 case nir_op_fmul:
259 case nir_op_fadd:
260 case nir_op_fsub:
261 case nir_op_fmax:
262 case nir_op_fmin:
263 case nir_op_fmax3:
264 case nir_op_fmin3:
265 case nir_op_fmed3:
266 case nir_op_fneg:
267 case nir_op_fabs:
268 case nir_op_fsat:
269 case nir_op_fsign:
270 case nir_op_frcp:
271 case nir_op_frsq:
272 case nir_op_fsqrt:
273 case nir_op_fexp2:
274 case nir_op_flog2:
275 case nir_op_ffract:
276 case nir_op_ffloor:
277 case nir_op_fceil:
278 case nir_op_ftrunc:
279 case nir_op_fround_even:
280 case nir_op_fsin:
281 case nir_op_fcos:
282 case nir_op_f2f32:
283 case nir_op_f2f64:
284 case nir_op_u2f32:
285 case nir_op_u2f64:
286 case nir_op_i2f32:
287 case nir_op_i2f64:
288 case nir_op_pack_half_2x16:
289 case nir_op_unpack_half_2x16_split_x:
290 case nir_op_unpack_half_2x16_split_y:
291 case nir_op_fddx:
292 case nir_op_fddy:
293 case nir_op_fddx_fine:
294 case nir_op_fddy_fine:
295 case nir_op_fddx_coarse:
296 case nir_op_fddy_coarse:
297 case nir_op_fquantize2f16:
298 case nir_op_ldexp:
299 case nir_op_frexp_sig:
300 case nir_op_frexp_exp:
301 case nir_op_cube_face_index:
302 case nir_op_cube_face_coord:
303 type = RegType::vgpr;
304 break;
305 case nir_op_flt:
306 case nir_op_fge:
307 case nir_op_feq:
308 case nir_op_fne:
309 case nir_op_ilt:
310 case nir_op_ige:
311 case nir_op_ult:
312 case nir_op_uge:
313 case nir_op_ieq:
314 case nir_op_ine:
315 case nir_op_i2b1:
316 size = lane_mask_size;
317 break;
318 case nir_op_f2i64:
319 case nir_op_f2u64:
320 case nir_op_b2i32:
321 case nir_op_b2f32:
322 case nir_op_f2i32:
323 case nir_op_f2u32:
324 type = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
325 break;
326 case nir_op_bcsel:
327 if (alu_instr->dest.dest.ssa.bit_size == 1) {
328 size = lane_mask_size;
329 } else {
330 if (ctx->divergent_vals[alu_instr->dest.dest.ssa.index]) {
331 type = RegType::vgpr;
332 } else {
333 if (allocated[alu_instr->src[1].src.ssa->index].type() == RegType::vgpr ||
334 allocated[alu_instr->src[2].src.ssa->index].type() == RegType::vgpr) {
335 type = RegType::vgpr;
336 }
337 }
338 if (alu_instr->src[1].src.ssa->num_components == 1 && alu_instr->src[2].src.ssa->num_components == 1) {
339 assert(allocated[alu_instr->src[1].src.ssa->index].size() == allocated[alu_instr->src[2].src.ssa->index].size());
340 size = allocated[alu_instr->src[1].src.ssa->index].size();
341 }
342 }
343 break;
344 case nir_op_mov:
345 if (alu_instr->dest.dest.ssa.bit_size == 1) {
346 size = lane_mask_size;
347 } else {
348 type = ctx->divergent_vals[alu_instr->dest.dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
349 }
350 break;
351 default:
352 if (alu_instr->dest.dest.ssa.bit_size == 1) {
353 size = lane_mask_size;
354 } else {
355 for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) {
356 if (allocated[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr)
357 type = RegType::vgpr;
358 }
359 }
360 break;
361 }
362 allocated[alu_instr->dest.dest.ssa.index] = Temp(0, RegClass(type, size));
363 break;
364 }
365 case nir_instr_type_load_const: {
366 unsigned size = nir_instr_as_load_const(instr)->def.num_components;
367 if (nir_instr_as_load_const(instr)->def.bit_size == 64)
368 size *= 2;
369 else if (nir_instr_as_load_const(instr)->def.bit_size == 1)
370 size *= lane_mask_size;
371 allocated[nir_instr_as_load_const(instr)->def.index] = Temp(0, RegClass(RegType::sgpr, size));
372 break;
373 }
374 case nir_instr_type_intrinsic: {
375 nir_intrinsic_instr *intrinsic = nir_instr_as_intrinsic(instr);
376 if (!nir_intrinsic_infos[intrinsic->intrinsic].has_dest)
377 break;
378 unsigned size = intrinsic->dest.ssa.num_components;
379 if (intrinsic->dest.ssa.bit_size == 64)
380 size *= 2;
381 RegType type = RegType::sgpr;
382 switch(intrinsic->intrinsic) {
383 case nir_intrinsic_load_push_constant:
384 case nir_intrinsic_load_work_group_id:
385 case nir_intrinsic_load_num_work_groups:
386 case nir_intrinsic_load_subgroup_id:
387 case nir_intrinsic_load_num_subgroups:
388 case nir_intrinsic_load_first_vertex:
389 case nir_intrinsic_load_base_instance:
390 case nir_intrinsic_get_buffer_size:
391 case nir_intrinsic_vote_all:
392 case nir_intrinsic_vote_any:
393 case nir_intrinsic_read_first_invocation:
394 case nir_intrinsic_read_invocation:
395 case nir_intrinsic_first_invocation:
396 type = RegType::sgpr;
397 if (intrinsic->dest.ssa.bit_size == 1)
398 size = lane_mask_size;
399 break;
400 case nir_intrinsic_ballot:
401 type = RegType::sgpr;
402 break;
403 case nir_intrinsic_load_sample_id:
404 case nir_intrinsic_load_sample_mask_in:
405 case nir_intrinsic_load_input:
406 case nir_intrinsic_load_output:
407 case nir_intrinsic_load_input_vertex:
408 case nir_intrinsic_load_per_vertex_input:
409 case nir_intrinsic_load_per_vertex_output:
410 case nir_intrinsic_load_vertex_id:
411 case nir_intrinsic_load_vertex_id_zero_base:
412 case nir_intrinsic_load_barycentric_sample:
413 case nir_intrinsic_load_barycentric_pixel:
414 case nir_intrinsic_load_barycentric_model:
415 case nir_intrinsic_load_barycentric_centroid:
416 case nir_intrinsic_load_barycentric_at_sample:
417 case nir_intrinsic_load_barycentric_at_offset:
418 case nir_intrinsic_load_interpolated_input:
419 case nir_intrinsic_load_frag_coord:
420 case nir_intrinsic_load_sample_pos:
421 case nir_intrinsic_load_layer_id:
422 case nir_intrinsic_load_local_invocation_id:
423 case nir_intrinsic_load_local_invocation_index:
424 case nir_intrinsic_load_subgroup_invocation:
425 case nir_intrinsic_load_tess_coord:
426 case nir_intrinsic_write_invocation_amd:
427 case nir_intrinsic_mbcnt_amd:
428 case nir_intrinsic_load_instance_id:
429 case nir_intrinsic_ssbo_atomic_add:
430 case nir_intrinsic_ssbo_atomic_imin:
431 case nir_intrinsic_ssbo_atomic_umin:
432 case nir_intrinsic_ssbo_atomic_imax:
433 case nir_intrinsic_ssbo_atomic_umax:
434 case nir_intrinsic_ssbo_atomic_and:
435 case nir_intrinsic_ssbo_atomic_or:
436 case nir_intrinsic_ssbo_atomic_xor:
437 case nir_intrinsic_ssbo_atomic_exchange:
438 case nir_intrinsic_ssbo_atomic_comp_swap:
439 case nir_intrinsic_global_atomic_add:
440 case nir_intrinsic_global_atomic_imin:
441 case nir_intrinsic_global_atomic_umin:
442 case nir_intrinsic_global_atomic_imax:
443 case nir_intrinsic_global_atomic_umax:
444 case nir_intrinsic_global_atomic_and:
445 case nir_intrinsic_global_atomic_or:
446 case nir_intrinsic_global_atomic_xor:
447 case nir_intrinsic_global_atomic_exchange:
448 case nir_intrinsic_global_atomic_comp_swap:
449 case nir_intrinsic_image_deref_atomic_add:
450 case nir_intrinsic_image_deref_atomic_umin:
451 case nir_intrinsic_image_deref_atomic_imin:
452 case nir_intrinsic_image_deref_atomic_umax:
453 case nir_intrinsic_image_deref_atomic_imax:
454 case nir_intrinsic_image_deref_atomic_and:
455 case nir_intrinsic_image_deref_atomic_or:
456 case nir_intrinsic_image_deref_atomic_xor:
457 case nir_intrinsic_image_deref_atomic_exchange:
458 case nir_intrinsic_image_deref_atomic_comp_swap:
459 case nir_intrinsic_image_deref_size:
460 case nir_intrinsic_shared_atomic_add:
461 case nir_intrinsic_shared_atomic_imin:
462 case nir_intrinsic_shared_atomic_umin:
463 case nir_intrinsic_shared_atomic_imax:
464 case nir_intrinsic_shared_atomic_umax:
465 case nir_intrinsic_shared_atomic_and:
466 case nir_intrinsic_shared_atomic_or:
467 case nir_intrinsic_shared_atomic_xor:
468 case nir_intrinsic_shared_atomic_exchange:
469 case nir_intrinsic_shared_atomic_comp_swap:
470 case nir_intrinsic_load_scratch:
471 case nir_intrinsic_load_invocation_id:
472 case nir_intrinsic_load_primitive_id:
473 type = RegType::vgpr;
474 break;
475 case nir_intrinsic_shuffle:
476 case nir_intrinsic_quad_broadcast:
477 case nir_intrinsic_quad_swap_horizontal:
478 case nir_intrinsic_quad_swap_vertical:
479 case nir_intrinsic_quad_swap_diagonal:
480 case nir_intrinsic_quad_swizzle_amd:
481 case nir_intrinsic_masked_swizzle_amd:
482 case nir_intrinsic_inclusive_scan:
483 case nir_intrinsic_exclusive_scan:
484 if (intrinsic->dest.ssa.bit_size == 1) {
485 size = lane_mask_size;
486 type = RegType::sgpr;
487 } else if (!ctx->divergent_vals[intrinsic->dest.ssa.index]) {
488 type = RegType::sgpr;
489 } else {
490 type = RegType::vgpr;
491 }
492 break;
493 case nir_intrinsic_load_view_index:
494 type = ctx->stage == fragment_fs ? RegType::vgpr : RegType::sgpr;
495 break;
496 case nir_intrinsic_load_front_face:
497 case nir_intrinsic_load_helper_invocation:
498 case nir_intrinsic_is_helper_invocation:
499 type = RegType::sgpr;
500 size = lane_mask_size;
501 break;
502 case nir_intrinsic_reduce:
503 if (intrinsic->dest.ssa.bit_size == 1) {
504 size = lane_mask_size;
505 type = RegType::sgpr;
506 } else if (!ctx->divergent_vals[intrinsic->dest.ssa.index]) {
507 type = RegType::sgpr;
508 } else {
509 type = RegType::vgpr;
510 }
511 break;
512 case nir_intrinsic_load_ubo:
513 case nir_intrinsic_load_ssbo:
514 case nir_intrinsic_load_global:
515 case nir_intrinsic_vulkan_resource_index:
516 type = ctx->divergent_vals[intrinsic->dest.ssa.index] ? RegType::vgpr : RegType::sgpr;
517 break;
518 /* due to copy propagation, the swizzled imov is removed if num dest components == 1 */
519 case nir_intrinsic_load_shared:
520 if (ctx->divergent_vals[intrinsic->dest.ssa.index])
521 type = RegType::vgpr;
522 else
523 type = RegType::sgpr;
524 break;
525 default:
526 for (unsigned i = 0; i < nir_intrinsic_infos[intrinsic->intrinsic].num_srcs; i++) {
527 if (allocated[intrinsic->src[i].ssa->index].type() == RegType::vgpr)
528 type = RegType::vgpr;
529 }
530 break;
531 }
532 allocated[intrinsic->dest.ssa.index] = Temp(0, RegClass(type, size));
533
534 switch(intrinsic->intrinsic) {
535 case nir_intrinsic_load_barycentric_sample:
536 case nir_intrinsic_load_barycentric_pixel:
537 case nir_intrinsic_load_barycentric_centroid:
538 case nir_intrinsic_load_barycentric_at_sample:
539 case nir_intrinsic_load_barycentric_at_offset: {
540 glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(intrinsic);
541 spi_ps_inputs |= get_interp_input(intrinsic->intrinsic, mode);
542 break;
543 }
544 case nir_intrinsic_load_barycentric_model:
545 spi_ps_inputs |= S_0286CC_PERSP_PULL_MODEL_ENA(1);
546 break;
547 case nir_intrinsic_load_front_face:
548 spi_ps_inputs |= S_0286CC_FRONT_FACE_ENA(1);
549 break;
550 case nir_intrinsic_load_frag_coord:
551 case nir_intrinsic_load_sample_pos: {
552 uint8_t mask = nir_ssa_def_components_read(&intrinsic->dest.ssa);
553 for (unsigned i = 0; i < 4; i++) {
554 if (mask & (1 << i))
555 spi_ps_inputs |= S_0286CC_POS_X_FLOAT_ENA(1) << i;
556
557 }
558 break;
559 }
560 case nir_intrinsic_load_sample_id:
561 spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
562 break;
563 case nir_intrinsic_load_sample_mask_in:
564 spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1);
565 spi_ps_inputs |= S_0286CC_SAMPLE_COVERAGE_ENA(1);
566 break;
567 default:
568 break;
569 }
570 break;
571 }
572 case nir_instr_type_tex: {
573 nir_tex_instr* tex = nir_instr_as_tex(instr);
574 unsigned size = tex->dest.ssa.num_components;
575
576 if (tex->dest.ssa.bit_size == 64)
577 size *= 2;
578 if (tex->op == nir_texop_texture_samples)
579 assert(!ctx->divergent_vals[tex->dest.ssa.index]);
580 if (ctx->divergent_vals[tex->dest.ssa.index])
581 allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::vgpr, size));
582 else
583 allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::sgpr, size));
584 break;
585 }
586 case nir_instr_type_parallel_copy: {
587 nir_foreach_parallel_copy_entry(entry, nir_instr_as_parallel_copy(instr)) {
588 allocated[entry->dest.ssa.index] = allocated[entry->src.ssa->index];
589 }
590 break;
591 }
592 case nir_instr_type_ssa_undef: {
593 unsigned size = nir_instr_as_ssa_undef(instr)->def.num_components;
594 if (nir_instr_as_ssa_undef(instr)->def.bit_size == 64)
595 size *= 2;
596 allocated[nir_instr_as_ssa_undef(instr)->def.index] = Temp(0, RegClass(RegType::sgpr, size));
597 break;
598 }
599 case nir_instr_type_phi: {
600 nir_phi_instr* phi = nir_instr_as_phi(instr);
601 RegType type;
602 unsigned size = phi->dest.ssa.num_components;
603
604 if (phi->dest.ssa.bit_size == 1) {
605 assert(size == 1 && "multiple components not yet supported on boolean phis.");
606 type = RegType::sgpr;
607 size *= lane_mask_size;
608 allocated[phi->dest.ssa.index] = Temp(0, RegClass(type, size));
609 break;
610 }
611
612 if (ctx->divergent_vals[phi->dest.ssa.index]) {
613 type = RegType::vgpr;
614 } else {
615 type = RegType::sgpr;
616 nir_foreach_phi_src (src, phi) {
617 if (allocated[src->src.ssa->index].type() == RegType::vgpr)
618 type = RegType::vgpr;
619 if (allocated[src->src.ssa->index].type() == RegType::none)
620 done = false;
621 }
622 }
623
624 size *= phi->dest.ssa.bit_size == 64 ? 2 : 1;
625 RegClass rc = RegClass(type, size);
626 if (rc != allocated[phi->dest.ssa.index].regClass()) {
627 done = false;
628 } else {
629 nir_foreach_phi_src(src, phi)
630 assert(allocated[src->src.ssa->index].size() == rc.size());
631 }
632 allocated[phi->dest.ssa.index] = Temp(0, rc);
633 break;
634 }
635 default:
636 break;
637 }
638 }
639 }
640 }
641
642 if (G_0286CC_POS_W_FLOAT_ENA(spi_ps_inputs)) {
643 /* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */
644 spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
645 }
646
647 if (!(spi_ps_inputs & 0x7F)) {
648 /* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */
649 spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1);
650 }
651
652 ctx->program->config->spi_ps_input_ena = spi_ps_inputs;
653 ctx->program->config->spi_ps_input_addr = spi_ps_inputs;
654
655 for (unsigned i = 0; i < impl->ssa_alloc; i++)
656 allocated[i] = Temp(ctx->program->allocateId(), allocated[i].regClass());
657
658 ctx->allocated.reset(allocated.release());
659 ctx->cf_info.nir_to_aco.reset(nir_to_aco.release());
660 }
661
662 Pseudo_instruction *add_startpgm(struct isel_context *ctx)
663 {
664 unsigned arg_count = ctx->args->ac.arg_count;
665 if (ctx->stage == fragment_fs) {
666 /* LLVM optimizes away unused FS inputs and computes spi_ps_input_addr
667 * itself and then communicates the results back via the ELF binary.
668 * Mirror what LLVM does by re-mapping the VGPR arguments here.
669 *
670 * TODO: If we made the FS input scanning code into a separate pass that
671 * could run before argument setup, then this wouldn't be necessary
672 * anymore.
673 */
674 struct ac_shader_args *args = &ctx->args->ac;
675 arg_count = 0;
676 for (unsigned i = 0, vgpr_arg = 0, vgpr_reg = 0; i < args->arg_count; i++) {
677 if (args->args[i].file != AC_ARG_VGPR) {
678 arg_count++;
679 continue;
680 }
681
682 if (!(ctx->program->config->spi_ps_input_addr & (1 << vgpr_arg))) {
683 args->args[i].skip = true;
684 } else {
685 args->args[i].offset = vgpr_reg;
686 vgpr_reg += args->args[i].size;
687 arg_count++;
688 }
689 vgpr_arg++;
690 }
691 }
692
693 aco_ptr<Pseudo_instruction> startpgm{create_instruction<Pseudo_instruction>(aco_opcode::p_startpgm, Format::PSEUDO, 0, arg_count + 1)};
694 for (unsigned i = 0, arg = 0; i < ctx->args->ac.arg_count; i++) {
695 if (ctx->args->ac.args[i].skip)
696 continue;
697
698 enum ac_arg_regfile file = ctx->args->ac.args[i].file;
699 unsigned size = ctx->args->ac.args[i].size;
700 unsigned reg = ctx->args->ac.args[i].offset;
701 RegClass type = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size);
702 Temp dst = Temp{ctx->program->allocateId(), type};
703 ctx->arg_temps[i] = dst;
704 startpgm->definitions[arg] = Definition(dst);
705 startpgm->definitions[arg].setFixed(PhysReg{file == AC_ARG_SGPR ? reg : reg + 256});
706 arg++;
707 }
708 startpgm->definitions[arg_count] = Definition{ctx->program->allocateId(), exec, ctx->program->lane_mask};
709 Pseudo_instruction *instr = startpgm.get();
710 ctx->block->instructions.push_back(std::move(startpgm));
711
712 /* Stash these in the program so that they can be accessed later when
713 * handling spilling.
714 */
715 ctx->program->private_segment_buffer = get_arg(ctx, ctx->args->ring_offsets);
716 ctx->program->scratch_offset = get_arg(ctx, ctx->args->scratch_offset);
717
718 return instr;
719 }
720
721 int
722 type_size(const struct glsl_type *type, bool bindless)
723 {
724 // TODO: don't we need type->std430_base_alignment() here?
725 return glsl_count_attribute_slots(type, false);
726 }
727
728 void
729 shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
730 {
731 assert(glsl_type_is_vector_or_scalar(type));
732
733 uint32_t comp_size = glsl_type_is_boolean(type)
734 ? 4 : glsl_get_bit_size(type) / 8;
735 unsigned length = glsl_get_vector_elements(type);
736 *size = comp_size * length,
737 *align = comp_size;
738 }
739
740 static bool
741 mem_vectorize_callback(unsigned align, unsigned bit_size,
742 unsigned num_components, unsigned high_offset,
743 nir_intrinsic_instr *low, nir_intrinsic_instr *high)
744 {
745 if ((bit_size != 32 && bit_size != 64) || num_components > 4)
746 return false;
747
748 /* >128 bit loads are split except with SMEM */
749 if (bit_size * num_components > 128)
750 return false;
751
752 switch (low->intrinsic) {
753 case nir_intrinsic_load_ubo:
754 case nir_intrinsic_load_ssbo:
755 case nir_intrinsic_store_ssbo:
756 case nir_intrinsic_load_push_constant:
757 return align % 4 == 0;
758 case nir_intrinsic_load_deref:
759 case nir_intrinsic_store_deref:
760 assert(nir_src_as_deref(low->src[0])->mode == nir_var_mem_shared);
761 /* fallthrough */
762 case nir_intrinsic_load_shared:
763 case nir_intrinsic_store_shared:
764 if (bit_size * num_components > 64) /* 96 and 128 bit loads require 128 bit alignment and are split otherwise */
765 return align % 16 == 0;
766 else
767 return align % 4 == 0;
768 default:
769 return false;
770 }
771 return false;
772 }
773
774 void
775 setup_vs_output_info(isel_context *ctx, nir_shader *nir,
776 bool export_prim_id, bool export_clip_dists,
777 radv_vs_output_info *outinfo)
778 {
779 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
780 sizeof(outinfo->vs_output_param_offset));
781
782 outinfo->param_exports = 0;
783 int pos_written = 0x1;
784 if (outinfo->writes_pointsize || outinfo->writes_viewport_index || outinfo->writes_layer)
785 pos_written |= 1 << 1;
786
787 uint64_t mask = ctx->output_masks[nir->info.stage];
788 while (mask) {
789 int idx = u_bit_scan64(&mask);
790 if (idx >= VARYING_SLOT_VAR0 || idx == VARYING_SLOT_LAYER || idx == VARYING_SLOT_PRIMITIVE_ID ||
791 ((idx == VARYING_SLOT_CLIP_DIST0 || idx == VARYING_SLOT_CLIP_DIST1) && export_clip_dists)) {
792 if (outinfo->vs_output_param_offset[idx] == AC_EXP_PARAM_UNDEFINED)
793 outinfo->vs_output_param_offset[idx] = outinfo->param_exports++;
794 }
795 }
796 if (outinfo->writes_layer &&
797 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] == AC_EXP_PARAM_UNDEFINED) {
798 /* when ctx->options->key.has_multiview_view_index = true, the layer
799 * variable isn't declared in NIR and it's isel's job to get the layer */
800 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = outinfo->param_exports++;
801 }
802
803 if (export_prim_id) {
804 assert(outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED);
805 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = outinfo->param_exports++;
806 }
807
808 ctx->export_clip_dists = export_clip_dists;
809 ctx->num_clip_distances = util_bitcount(outinfo->clip_dist_mask);
810 ctx->num_cull_distances = util_bitcount(outinfo->cull_dist_mask);
811
812 assert(ctx->num_clip_distances + ctx->num_cull_distances <= 8);
813
814 if (ctx->num_clip_distances + ctx->num_cull_distances > 0)
815 pos_written |= 1 << 2;
816 if (ctx->num_clip_distances + ctx->num_cull_distances > 4)
817 pos_written |= 1 << 3;
818
819 outinfo->pos_exports = util_bitcount(pos_written);
820 }
821
822 void
823 setup_vs_variables(isel_context *ctx, nir_shader *nir)
824 {
825 nir_foreach_variable(variable, &nir->inputs)
826 {
827 variable->data.driver_location = variable->data.location * 4;
828 }
829 nir_foreach_variable(variable, &nir->outputs)
830 {
831 if (ctx->stage == vertex_geometry_gs)
832 variable->data.driver_location = util_bitcount64(ctx->output_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
833 else if (ctx->stage == vertex_es ||
834 ctx->stage == vertex_ls ||
835 ctx->stage == vertex_tess_control_hs)
836 // TODO: make this more compact
837 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
838 else if (ctx->stage == vertex_vs)
839 variable->data.driver_location = variable->data.location * 4;
840 else
841 unreachable("Unsupported VS stage");
842 }
843
844 if (ctx->stage == vertex_vs) {
845 radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo;
846 setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
847 ctx->options->key.vs_common_out.export_clip_dists, outinfo);
848 } else if (ctx->stage == vertex_geometry_gs || ctx->stage == vertex_es) {
849 /* TODO: radv_nir_shader_info_pass() already sets this but it's larger
850 * than it needs to be in order to set it better, we have to improve
851 * radv_nir_shader_info_pass() because gfx9_get_gs_info() uses
852 * esgs_itemsize and has to be done before compilation
853 */
854 /* radv_es_output_info *outinfo = &ctx->program->info->vs.es_info;
855 outinfo->esgs_itemsize = util_bitcount64(ctx->output_masks[nir->info.stage]) * 16u; */
856 }
857 }
858
859 void setup_gs_variables(isel_context *ctx, nir_shader *nir)
860 {
861 if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) {
862 nir_foreach_variable(variable, &nir->inputs) {
863 variable->data.driver_location = util_bitcount64(ctx->input_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
864 }
865 } else if (ctx->stage == geometry_gs) {
866 //TODO: make this more compact
867 nir_foreach_variable(variable, &nir->inputs) {
868 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot)variable->data.location) * 4;
869 }
870 } else {
871 unreachable("Unsupported GS stage.");
872 }
873
874 nir_foreach_variable(variable, &nir->outputs) {
875 variable->data.driver_location = variable->data.location * 4;
876 }
877
878 if (ctx->stage == vertex_geometry_gs)
879 ctx->program->info->gs.es_type = MESA_SHADER_VERTEX;
880 else if (ctx->stage == tess_eval_geometry_gs)
881 ctx->program->info->gs.es_type = MESA_SHADER_TESS_EVAL;
882 }
883
884 void
885 setup_tcs_variables(isel_context *ctx, nir_shader *nir)
886 {
887 switch (ctx->stage) {
888 case tess_control_hs:
889 ctx->tcs_num_inputs = ctx->args->options->key.tcs.num_inputs;
890 break;
891 case vertex_tess_control_hs:
892 ctx->tcs_num_inputs = util_last_bit64(ctx->args->shader_info->vs.ls_outputs_written);
893 break;
894 default:
895 unreachable("Unsupported TCS shader stage");
896 }
897
898 ctx->tcs_num_patches = get_tcs_num_patches(
899 ctx->args->options->key.tcs.input_vertices,
900 nir->info.tess.tcs_vertices_out,
901 ctx->tcs_num_inputs,
902 ctx->args->shader_info->tcs.outputs_written,
903 ctx->args->shader_info->tcs.patch_outputs_written,
904 ctx->args->options->tess_offchip_block_dw_size,
905 ctx->args->options->chip_class,
906 ctx->args->options->family);
907 unsigned lds_size = calculate_tess_lds_size(
908 ctx->args->options->key.tcs.input_vertices,
909 nir->info.tess.tcs_vertices_out,
910 ctx->tcs_num_inputs,
911 ctx->tcs_num_patches,
912 ctx->args->shader_info->tcs.outputs_written,
913 ctx->args->shader_info->tcs.patch_outputs_written);
914
915 ctx->args->shader_info->tcs.num_patches = ctx->tcs_num_patches;
916 ctx->args->shader_info->tcs.lds_size = lds_size;
917 ctx->program->config->lds_size = (lds_size + ctx->program->lds_alloc_granule - 1) /
918 ctx->program->lds_alloc_granule;
919
920 nir_foreach_variable(variable, &nir->inputs) {
921 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
922 }
923
924 nir_foreach_variable(variable, &nir->outputs) {
925 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
926 }
927 }
928
929 void
930 setup_tes_variables(isel_context *ctx, nir_shader *nir)
931 {
932 ctx->tcs_num_patches = ctx->args->options->key.tes.num_patches;
933
934 nir_foreach_variable(variable, &nir->inputs) {
935 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
936 }
937
938 nir_foreach_variable(variable, &nir->outputs) {
939 if (ctx->stage == tess_eval_vs)
940 variable->data.driver_location = variable->data.location * 4;
941 else if (ctx->stage == tess_eval_es)
942 variable->data.driver_location = shader_io_get_unique_index((gl_varying_slot) variable->data.location) * 4;
943 else if (ctx->stage == tess_eval_geometry_gs)
944 variable->data.driver_location = util_bitcount64(ctx->output_masks[nir->info.stage] & ((1ull << variable->data.location) - 1ull)) * 4;
945 else
946 unreachable("Unsupported TES shader stage");
947 }
948
949 if (ctx->stage == tess_eval_vs) {
950 radv_vs_output_info *outinfo = &ctx->program->info->tes.outinfo;
951 setup_vs_output_info(ctx, nir, outinfo->export_prim_id,
952 ctx->options->key.vs_common_out.export_clip_dists, outinfo);
953 }
954 }
955
956 void
957 setup_variables(isel_context *ctx, nir_shader *nir)
958 {
959 switch (nir->info.stage) {
960 case MESA_SHADER_FRAGMENT: {
961 nir_foreach_variable(variable, &nir->outputs)
962 {
963 int idx = variable->data.location + variable->data.index;
964 variable->data.driver_location = idx * 4;
965 }
966 break;
967 }
968 case MESA_SHADER_COMPUTE: {
969 ctx->program->config->lds_size = (nir->info.cs.shared_size + ctx->program->lds_alloc_granule - 1) /
970 ctx->program->lds_alloc_granule;
971 break;
972 }
973 case MESA_SHADER_VERTEX: {
974 setup_vs_variables(ctx, nir);
975 break;
976 }
977 case MESA_SHADER_GEOMETRY: {
978 setup_gs_variables(ctx, nir);
979 break;
980 }
981 case MESA_SHADER_TESS_CTRL: {
982 setup_tcs_variables(ctx, nir);
983 break;
984 }
985 case MESA_SHADER_TESS_EVAL: {
986 setup_tes_variables(ctx, nir);
987 break;
988 }
989 default:
990 unreachable("Unhandled shader stage.");
991 }
992 }
993
994 void
995 get_io_masks(isel_context *ctx, unsigned shader_count, struct nir_shader *const *shaders)
996 {
997 for (unsigned i = 0; i < shader_count; i++) {
998 nir_shader *nir = shaders[i];
999 if (nir->info.stage == MESA_SHADER_COMPUTE)
1000 continue;
1001
1002 uint64_t output_mask = 0;
1003 nir_foreach_variable(variable, &nir->outputs) {
1004 const glsl_type *type = variable->type;
1005 if (nir_is_per_vertex_io(variable, nir->info.stage))
1006 type = type->fields.array;
1007 unsigned slots = type->count_attribute_slots(false);
1008 if (variable->data.compact) {
1009 unsigned component_count = variable->data.location_frac + type->length;
1010 slots = (component_count + 3) / 4;
1011 }
1012 output_mask |= ((1ull << slots) - 1) << variable->data.location;
1013 }
1014
1015 uint64_t input_mask = 0;
1016 nir_foreach_variable(variable, &nir->inputs) {
1017 const glsl_type *type = variable->type;
1018 if (nir_is_per_vertex_io(variable, nir->info.stage))
1019 type = type->fields.array;
1020 unsigned slots = type->count_attribute_slots(false);
1021 if (variable->data.compact) {
1022 unsigned component_count = variable->data.location_frac + type->length;
1023 slots = (component_count + 3) / 4;
1024 }
1025 input_mask |= ((1ull << slots) - 1) << variable->data.location;
1026 }
1027
1028 ctx->output_masks[nir->info.stage] |= output_mask;
1029 if (i + 1 < shader_count)
1030 ctx->input_masks[shaders[i + 1]->info.stage] |= output_mask;
1031
1032 ctx->input_masks[nir->info.stage] |= input_mask;
1033 if (i)
1034 ctx->output_masks[shaders[i - 1]->info.stage] |= input_mask;
1035 }
1036 }
1037
1038 void
1039 setup_nir(isel_context *ctx, nir_shader *nir)
1040 {
1041 Program *program = ctx->program;
1042
1043 /* align and copy constant data */
1044 while (program->constant_data.size() % 4u)
1045 program->constant_data.push_back(0);
1046 ctx->constant_data_offset = program->constant_data.size();
1047 program->constant_data.insert(program->constant_data.end(),
1048 (uint8_t*)nir->constant_data,
1049 (uint8_t*)nir->constant_data + nir->constant_data_size);
1050
1051 /* the variable setup has to be done before lower_io / CSE */
1052 setup_variables(ctx, nir);
1053
1054 /* optimize and lower memory operations */
1055 bool lower_to_scalar = false;
1056 bool lower_pack = false;
1057 if (nir_opt_load_store_vectorize(nir,
1058 (nir_variable_mode)(nir_var_mem_ssbo | nir_var_mem_ubo |
1059 nir_var_mem_push_const | nir_var_mem_shared),
1060 mem_vectorize_callback)) {
1061 lower_to_scalar = true;
1062 lower_pack = true;
1063 }
1064 if (nir->info.stage != MESA_SHADER_COMPUTE)
1065 nir_lower_io(nir, (nir_variable_mode)(nir_var_shader_in | nir_var_shader_out), type_size, (nir_lower_io_options)0);
1066 nir_lower_explicit_io(nir, nir_var_mem_global, nir_address_format_64bit_global);
1067
1068 if (lower_to_scalar)
1069 nir_lower_alu_to_scalar(nir, NULL, NULL);
1070 if (lower_pack)
1071 nir_lower_pack(nir);
1072
1073 /* lower ALU operations */
1074 // TODO: implement logic64 in aco, it's more effective for sgprs
1075 nir_lower_int64(nir, nir->options->lower_int64_options);
1076
1077 nir_opt_idiv_const(nir, 32);
1078 nir_lower_idiv(nir, nir_lower_idiv_precise);
1079
1080 /* optimize the lowered ALU operations */
1081 bool more_algebraic = true;
1082 while (more_algebraic) {
1083 more_algebraic = false;
1084 NIR_PASS_V(nir, nir_copy_prop);
1085 NIR_PASS_V(nir, nir_opt_dce);
1086 NIR_PASS_V(nir, nir_opt_constant_folding);
1087 NIR_PASS(more_algebraic, nir, nir_opt_algebraic);
1088 }
1089
1090 /* Do late algebraic optimization to turn add(a, neg(b)) back into
1091 * subs, then the mandatory cleanup after algebraic. Note that it may
1092 * produce fnegs, and if so then we need to keep running to squash
1093 * fneg(fneg(a)).
1094 */
1095 bool more_late_algebraic = true;
1096 while (more_late_algebraic) {
1097 more_late_algebraic = false;
1098 NIR_PASS(more_late_algebraic, nir, nir_opt_algebraic_late);
1099 NIR_PASS_V(nir, nir_opt_constant_folding);
1100 NIR_PASS_V(nir, nir_copy_prop);
1101 NIR_PASS_V(nir, nir_opt_dce);
1102 NIR_PASS_V(nir, nir_opt_cse);
1103 }
1104
1105 /* cleanup passes */
1106 nir_lower_load_const_to_scalar(nir);
1107 nir_opt_shrink_load(nir);
1108 nir_move_options move_opts = (nir_move_options)(
1109 nir_move_const_undef | nir_move_load_ubo | nir_move_load_input |
1110 nir_move_comparisons | nir_move_copies);
1111 nir_opt_sink(nir, move_opts);
1112 nir_opt_move(nir, move_opts);
1113 nir_convert_to_lcssa(nir, true, false);
1114 nir_lower_phis_to_scalar(nir);
1115
1116 nir_function_impl *func = nir_shader_get_entrypoint(nir);
1117 nir_index_ssa_defs(func);
1118 }
1119
1120 isel_context
1121 setup_isel_context(Program* program,
1122 unsigned shader_count,
1123 struct nir_shader *const *shaders,
1124 ac_shader_config* config,
1125 struct radv_shader_args *args,
1126 bool is_gs_copy_shader)
1127 {
1128 program->stage = 0;
1129 for (unsigned i = 0; i < shader_count; i++) {
1130 switch (shaders[i]->info.stage) {
1131 case MESA_SHADER_VERTEX:
1132 program->stage |= sw_vs;
1133 break;
1134 case MESA_SHADER_TESS_CTRL:
1135 program->stage |= sw_tcs;
1136 break;
1137 case MESA_SHADER_TESS_EVAL:
1138 program->stage |= sw_tes;
1139 break;
1140 case MESA_SHADER_GEOMETRY:
1141 program->stage |= is_gs_copy_shader ? sw_gs_copy : sw_gs;
1142 break;
1143 case MESA_SHADER_FRAGMENT:
1144 program->stage |= sw_fs;
1145 break;
1146 case MESA_SHADER_COMPUTE:
1147 program->stage |= sw_cs;
1148 break;
1149 default:
1150 unreachable("Shader stage not implemented");
1151 }
1152 }
1153 bool gfx9_plus = args->options->chip_class >= GFX9;
1154 bool ngg = args->shader_info->is_ngg && args->options->chip_class >= GFX10;
1155 if (program->stage == sw_vs && args->shader_info->vs.as_es)
1156 program->stage |= hw_es;
1157 else if (program->stage == sw_vs && !args->shader_info->vs.as_ls)
1158 program->stage |= hw_vs;
1159 else if (program->stage == sw_gs)
1160 program->stage |= hw_gs;
1161 else if (program->stage == sw_fs)
1162 program->stage |= hw_fs;
1163 else if (program->stage == sw_cs)
1164 program->stage |= hw_cs;
1165 else if (program->stage == sw_gs_copy)
1166 program->stage |= hw_vs;
1167 else if (program->stage == (sw_vs | sw_gs) && gfx9_plus && !ngg)
1168 program->stage |= hw_gs;
1169 else if (program->stage == sw_vs && args->shader_info->vs.as_ls)
1170 program->stage |= hw_ls; /* GFX6-8: VS is a Local Shader, when tessellation is used */
1171 else if (program->stage == sw_tcs)
1172 program->stage |= hw_hs; /* GFX6-8: TCS is a Hull Shader */
1173 else if (program->stage == (sw_vs | sw_tcs))
1174 program->stage |= hw_hs; /* GFX9-10: VS+TCS merged into a Hull Shader */
1175 else if (program->stage == sw_tes && !args->shader_info->tes.as_es && !ngg)
1176 program->stage |= hw_vs; /* GFX6-9: TES without GS uses the HW VS stage (and GFX10/legacy) */
1177 else if (program->stage == sw_tes && args->shader_info->tes.as_es && !ngg)
1178 program->stage |= hw_es; /* GFX6-8: TES is an Export Shader */
1179 else if (program->stage == (sw_tes | sw_gs) && gfx9_plus && !ngg)
1180 program->stage |= hw_gs; /* GFX9: TES+GS merged into a GS (and GFX10/legacy) */
1181 else
1182 unreachable("Shader stage not implemented");
1183
1184 program->config = config;
1185 program->info = args->shader_info;
1186 program->chip_class = args->options->chip_class;
1187 program->family = args->options->family;
1188 program->wave_size = args->shader_info->wave_size;
1189 program->lane_mask = program->wave_size == 32 ? s1 : s2;
1190
1191 program->lds_alloc_granule = args->options->chip_class >= GFX7 ? 512 : 256;
1192 program->lds_limit = args->options->chip_class >= GFX7 ? 65536 : 32768;
1193 /* apparently gfx702 also has 16-bank LDS but I can't find a family for that */
1194 program->has_16bank_lds = args->options->family == CHIP_KABINI || args->options->family == CHIP_STONEY;
1195
1196 program->vgpr_limit = 256;
1197 program->vgpr_alloc_granule = 3;
1198
1199 if (args->options->chip_class >= GFX10) {
1200 program->physical_sgprs = 2560; /* doesn't matter as long as it's at least 128 * 20 */
1201 program->sgpr_alloc_granule = 127;
1202 program->sgpr_limit = 106;
1203 program->vgpr_alloc_granule = program->wave_size == 32 ? 7 : 3;
1204 } else if (program->chip_class >= GFX8) {
1205 program->physical_sgprs = 800;
1206 program->sgpr_alloc_granule = 15;
1207 if (args->options->family == CHIP_TONGA || args->options->family == CHIP_ICELAND)
1208 program->sgpr_limit = 94; /* workaround hardware bug */
1209 else
1210 program->sgpr_limit = 102;
1211 } else {
1212 program->physical_sgprs = 512;
1213 program->sgpr_alloc_granule = 7;
1214 program->sgpr_limit = 104;
1215 }
1216
1217 calc_min_waves(program);
1218 program->vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves);
1219 program->sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves);
1220
1221 isel_context ctx = {};
1222 ctx.program = program;
1223 ctx.args = args;
1224 ctx.options = args->options;
1225 ctx.stage = program->stage;
1226
1227 get_io_masks(&ctx, shader_count, shaders);
1228
1229 unsigned scratch_size = 0;
1230 if (program->stage == gs_copy_vs) {
1231 assert(shader_count == 1);
1232 setup_vs_output_info(&ctx, shaders[0], false, true, &args->shader_info->vs.outinfo);
1233 } else {
1234 for (unsigned i = 0; i < shader_count; i++) {
1235 nir_shader *nir = shaders[i];
1236 setup_nir(&ctx, nir);
1237 }
1238
1239 for (unsigned i = 0; i < shader_count; i++)
1240 scratch_size = std::max(scratch_size, shaders[i]->scratch_size);
1241 }
1242
1243 ctx.program->config->scratch_bytes_per_wave = align(scratch_size * ctx.program->wave_size, 1024);
1244
1245 ctx.block = ctx.program->create_and_insert_block();
1246 ctx.block->loop_nest_depth = 0;
1247 ctx.block->kind = block_kind_top_level;
1248
1249 return ctx;
1250 }
1251
1252 }