aco: only reserve sgprs for vcc if it's used
[mesa.git] / src / amd / compiler / aco_live_var_analysis.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 * Copyright © 2018 Google
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 * Authors:
25 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
26 * Bas Nieuwenhuizen (bas@basnieuwenhuizen.nl)
27 *
28 */
29
30 #include "aco_ir.h"
31 #include "util/u_math.h"
32
33 #include <set>
34 #include <vector>
35
36 #include "vulkan/radv_shader.h"
37
38 namespace aco {
39 namespace {
40
41 void process_live_temps_per_block(Program *program, live& lives, Block* block,
42 std::set<unsigned>& worklist, std::vector<uint16_t>& phi_sgpr_ops)
43 {
44 std::vector<RegisterDemand>& register_demand = lives.register_demand[block->index];
45 RegisterDemand new_demand;
46
47 register_demand.resize(block->instructions.size());
48 block->register_demand = RegisterDemand();
49
50 std::set<Temp> live_sgprs;
51 std::set<Temp> live_vgprs;
52
53 /* add the live_out_exec to live */
54 bool exec_live = false;
55 if (block->live_out_exec != Temp()) {
56 live_sgprs.insert(block->live_out_exec);
57 new_demand.sgpr += program->lane_mask.size();
58 exec_live = true;
59 }
60
61 /* split the live-outs from this block into the temporary sets */
62 std::vector<std::set<Temp>>& live_temps = lives.live_out;
63 for (const Temp temp : live_temps[block->index]) {
64 const bool inserted = temp.is_linear()
65 ? live_sgprs.insert(temp).second
66 : live_vgprs.insert(temp).second;
67 if (inserted) {
68 new_demand += temp;
69 }
70 }
71 new_demand.sgpr -= phi_sgpr_ops[block->index];
72
73 /* traverse the instructions backwards */
74 int idx;
75 for (idx = block->instructions.size() -1; idx >= 0; idx--) {
76 Instruction *insn = block->instructions[idx].get();
77 if (is_phi(insn))
78 break;
79
80 /* substract the 1 or 2 sgprs from exec */
81 if (exec_live)
82 assert(new_demand.sgpr >= (int16_t) program->lane_mask.size());
83 register_demand[idx] = RegisterDemand(new_demand.vgpr, new_demand.sgpr - (exec_live ? program->lane_mask.size() : 0));
84
85 /* KILL */
86 for (Definition& definition : insn->definitions) {
87 if (!definition.isTemp()) {
88 continue;
89 }
90 if ((definition.isFixed() || definition.hasHint()) && definition.physReg() == vcc)
91 program->needs_vcc = true;
92
93 const Temp temp = definition.getTemp();
94 size_t n = 0;
95 if (temp.is_linear())
96 n = live_sgprs.erase(temp);
97 else
98 n = live_vgprs.erase(temp);
99
100 if (n) {
101 new_demand -= temp;
102 definition.setKill(false);
103 } else {
104 register_demand[idx] += temp;
105 definition.setKill(true);
106 }
107
108 if (definition.isFixed() && definition.physReg() == exec)
109 exec_live = false;
110 }
111
112 /* GEN */
113 if (insn->opcode == aco_opcode::p_logical_end) {
114 new_demand.sgpr += phi_sgpr_ops[block->index];
115 } else {
116 /* we need to do this in a separate loop because the next one can
117 * setKill() for several operands at once and we don't want to
118 * overwrite that in a later iteration */
119 for (Operand& op : insn->operands)
120 op.setKill(false);
121
122 for (unsigned i = 0; i < insn->operands.size(); ++i)
123 {
124 Operand& operand = insn->operands[i];
125 if (!operand.isTemp())
126 continue;
127 if (operand.isFixed() && operand.physReg() == vcc)
128 program->needs_vcc = true;
129 const Temp temp = operand.getTemp();
130 const bool inserted = temp.is_linear()
131 ? live_sgprs.insert(temp).second
132 : live_vgprs.insert(temp).second;
133 if (inserted) {
134 operand.setFirstKill(true);
135 for (unsigned j = i + 1; j < insn->operands.size(); ++j) {
136 if (insn->operands[j].isTemp() && insn->operands[j].tempId() == operand.tempId()) {
137 insn->operands[j].setFirstKill(false);
138 insn->operands[j].setKill(true);
139 }
140 }
141 new_demand += temp;
142 }
143
144 if (operand.isFixed() && operand.physReg() == exec)
145 exec_live = true;
146 }
147 }
148
149 block->register_demand.update(register_demand[idx]);
150 }
151
152 /* update block's register demand for a last time */
153 if (exec_live)
154 assert(new_demand.sgpr >= (int16_t) program->lane_mask.size());
155 new_demand.sgpr -= exec_live ? program->lane_mask.size() : 0;
156 block->register_demand.update(new_demand);
157
158 /* handle phi definitions */
159 int phi_idx = idx;
160 while (phi_idx >= 0) {
161 register_demand[phi_idx] = new_demand;
162 Instruction *insn = block->instructions[phi_idx].get();
163
164 assert(is_phi(insn));
165 assert(insn->definitions.size() == 1 && insn->definitions[0].isTemp());
166 Definition& definition = insn->definitions[0];
167 if ((definition.isFixed() || definition.hasHint()) && definition.physReg() == vcc)
168 program->needs_vcc = true;
169 const Temp temp = definition.getTemp();
170 size_t n = 0;
171
172 if (temp.is_linear())
173 n = live_sgprs.erase(temp);
174 else
175 n = live_vgprs.erase(temp);
176
177 if (n)
178 definition.setKill(false);
179 else
180 definition.setKill(true);
181
182 phi_idx--;
183 }
184
185 /* now, we have the live-in sets and need to merge them into the live-out sets */
186 for (unsigned pred_idx : block->logical_preds) {
187 for (Temp vgpr : live_vgprs) {
188 auto it = live_temps[pred_idx].insert(vgpr);
189 if (it.second)
190 worklist.insert(pred_idx);
191 }
192 }
193
194 for (unsigned pred_idx : block->linear_preds) {
195 for (Temp sgpr : live_sgprs) {
196 auto it = live_temps[pred_idx].insert(sgpr);
197 if (it.second)
198 worklist.insert(pred_idx);
199 }
200 }
201
202 /* handle phi operands */
203 phi_idx = idx;
204 while (phi_idx >= 0) {
205 Instruction *insn = block->instructions[phi_idx].get();
206 assert(is_phi(insn));
207 /* directly insert into the predecessors live-out set */
208 std::vector<unsigned>& preds = insn->opcode == aco_opcode::p_phi
209 ? block->logical_preds
210 : block->linear_preds;
211 for (unsigned i = 0; i < preds.size(); ++i) {
212 Operand &operand = insn->operands[i];
213 if (!operand.isTemp())
214 continue;
215 if (operand.isFixed() && operand.physReg() == vcc)
216 program->needs_vcc = true;
217 /* check if we changed an already processed block */
218 const bool inserted = live_temps[preds[i]].insert(operand.getTemp()).second;
219 if (inserted) {
220 operand.setKill(true);
221 worklist.insert(preds[i]);
222 if (insn->opcode == aco_opcode::p_phi && operand.getTemp().type() == RegType::sgpr)
223 phi_sgpr_ops[preds[i]] += operand.size();
224 }
225 }
226 phi_idx--;
227 }
228
229 if ((block->logical_preds.empty() && !live_vgprs.empty()) ||
230 (block->linear_preds.empty() && !live_sgprs.empty())) {
231 aco_print_program(program, stderr);
232 fprintf(stderr, "These temporaries are never defined or are defined after use:\n");
233 for (Temp vgpr : live_vgprs)
234 fprintf(stderr, "%%%d\n", vgpr.id());
235 for (Temp sgpr : live_sgprs)
236 fprintf(stderr, "%%%d\n", sgpr.id());
237 abort();
238 }
239
240 assert(block->index != 0 || new_demand == RegisterDemand());
241 }
242
243 unsigned calc_waves_per_workgroup(Program *program)
244 {
245 unsigned workgroup_size = program->wave_size;
246 if (program->stage == compute_cs) {
247 unsigned* bsize = program->info->cs.block_size;
248 workgroup_size = bsize[0] * bsize[1] * bsize[2];
249 }
250 return align(workgroup_size, program->wave_size) / program->wave_size;
251 }
252 } /* end namespace */
253
254 uint16_t get_extra_sgprs(Program *program)
255 {
256 if (program->chip_class >= GFX10) {
257 assert(!program->needs_flat_scr);
258 assert(!program->needs_xnack_mask);
259 return 2;
260 } else if (program->chip_class >= GFX8) {
261 if (program->needs_flat_scr)
262 return 6;
263 else if (program->needs_xnack_mask)
264 return 4;
265 else if (program->needs_vcc)
266 return 2;
267 else
268 return 0;
269 } else {
270 assert(!program->needs_xnack_mask);
271 if (program->needs_flat_scr)
272 return 4;
273 else if (program->needs_vcc)
274 return 2;
275 else
276 return 0;
277 }
278 }
279
280 uint16_t get_sgpr_alloc(Program *program, uint16_t addressable_sgprs)
281 {
282 assert(addressable_sgprs <= program->sgpr_limit);
283 uint16_t sgprs = addressable_sgprs + get_extra_sgprs(program);
284 uint16_t granule = program->sgpr_alloc_granule + 1;
285 return align(std::max(sgprs, granule), granule);
286 }
287
288 uint16_t get_vgpr_alloc(Program *program, uint16_t addressable_vgprs)
289 {
290 assert(addressable_vgprs <= program->vgpr_limit);
291 uint16_t granule = program->vgpr_alloc_granule + 1;
292 return align(std::max(addressable_vgprs, granule), granule);
293 }
294
295 uint16_t get_addr_sgpr_from_waves(Program *program, uint16_t max_waves)
296 {
297 uint16_t sgprs = program->physical_sgprs / max_waves & ~program->sgpr_alloc_granule;
298 sgprs -= get_extra_sgprs(program);
299 return std::min(sgprs, program->sgpr_limit);
300 }
301
302 uint16_t get_addr_vgpr_from_waves(Program *program, uint16_t max_waves)
303 {
304 uint16_t vgprs = 256 / max_waves & ~program->vgpr_alloc_granule;
305 return std::min(vgprs, program->vgpr_limit);
306 }
307
308 void calc_min_waves(Program* program)
309 {
310 unsigned waves_per_workgroup = calc_waves_per_workgroup(program);
311 /* currently min_waves is in wave64 waves */
312 if (program->wave_size == 32)
313 waves_per_workgroup = DIV_ROUND_UP(waves_per_workgroup, 2);
314
315 unsigned simd_per_cu = 4; /* TODO: different on Navi */
316 bool wgp = program->chip_class >= GFX10; /* assume WGP is used on Navi */
317 unsigned simd_per_cu_wgp = wgp ? simd_per_cu * 2 : simd_per_cu;
318
319 program->min_waves = DIV_ROUND_UP(waves_per_workgroup, simd_per_cu_wgp);
320 }
321
322 void update_vgpr_sgpr_demand(Program* program, const RegisterDemand new_demand)
323 {
324 /* TODO: max_waves_per_simd, simd_per_cu and the number of physical vgprs for Navi */
325 unsigned max_waves_per_simd = 10;
326 unsigned simd_per_cu = 4;
327
328 bool wgp = program->chip_class >= GFX10; /* assume WGP is used on Navi */
329 unsigned simd_per_cu_wgp = wgp ? simd_per_cu * 2 : simd_per_cu;
330 unsigned lds_limit = wgp ? program->lds_limit * 2 : program->lds_limit;
331
332 /* this won't compile, register pressure reduction necessary */
333 if (new_demand.vgpr > program->vgpr_limit || new_demand.sgpr > program->sgpr_limit) {
334 program->num_waves = 0;
335 program->max_reg_demand = new_demand;
336 } else {
337 program->num_waves = program->physical_sgprs / get_sgpr_alloc(program, new_demand.sgpr);
338 program->num_waves = std::min<uint16_t>(program->num_waves, 256 / get_vgpr_alloc(program, new_demand.vgpr));
339 program->max_waves = max_waves_per_simd;
340
341 /* adjust max_waves for workgroup and LDS limits */
342 unsigned waves_per_workgroup = calc_waves_per_workgroup(program);
343 unsigned workgroups_per_cu_wgp = max_waves_per_simd * simd_per_cu_wgp / waves_per_workgroup;
344 if (program->config->lds_size) {
345 unsigned lds = program->config->lds_size * program->lds_alloc_granule;
346 workgroups_per_cu_wgp = std::min(workgroups_per_cu_wgp, lds_limit / lds);
347 }
348 if (waves_per_workgroup > 1 && program->chip_class < GFX10)
349 workgroups_per_cu_wgp = std::min(workgroups_per_cu_wgp, 16u); /* TODO: is this a SI-only limit? what about Navi? */
350
351 /* in cases like waves_per_workgroup=3 or lds=65536 and
352 * waves_per_workgroup=1, we want the maximum possible number of waves per
353 * SIMD and not the minimum. so DIV_ROUND_UP is used */
354 program->max_waves = std::min<uint16_t>(program->max_waves, DIV_ROUND_UP(workgroups_per_cu_wgp * waves_per_workgroup, simd_per_cu_wgp));
355
356 /* incorporate max_waves and calculate max_reg_demand */
357 program->num_waves = std::min<uint16_t>(program->num_waves, program->max_waves);
358 program->max_reg_demand.vgpr = get_addr_vgpr_from_waves(program, program->num_waves);
359 program->max_reg_demand.sgpr = get_addr_sgpr_from_waves(program, program->num_waves);
360 }
361 }
362
363 live live_var_analysis(Program* program,
364 const struct radv_nir_compiler_options *options)
365 {
366 live result;
367 result.live_out.resize(program->blocks.size());
368 result.register_demand.resize(program->blocks.size());
369 std::set<unsigned> worklist;
370 std::vector<uint16_t> phi_sgpr_ops(program->blocks.size());
371 RegisterDemand new_demand;
372
373 program->needs_vcc = false;
374
375 /* this implementation assumes that the block idx corresponds to the block's position in program->blocks vector */
376 for (Block& block : program->blocks)
377 worklist.insert(block.index);
378 while (!worklist.empty()) {
379 std::set<unsigned>::reverse_iterator b_it = worklist.rbegin();
380 unsigned block_idx = *b_it;
381 worklist.erase(block_idx);
382 process_live_temps_per_block(program, result, &program->blocks[block_idx], worklist, phi_sgpr_ops);
383 new_demand.update(program->blocks[block_idx].register_demand);
384 }
385
386 /* calculate the program's register demand and number of waves */
387 update_vgpr_sgpr_demand(program, new_demand);
388
389 return result;
390 }
391
392 }
393