EGL: Add eglSetDamageRegionKHR to GLVND dispatch list
[mesa.git] / src / amd / compiler / aco_lower_to_hw_instr.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <map>
29
30 #include "aco_ir.h"
31 #include "aco_builder.h"
32 #include "util/u_math.h"
33 #include "sid.h"
34 #include "vulkan/radv_shader.h"
35
36
37 namespace aco {
38
39 struct lower_context {
40 Program *program;
41 std::vector<aco_ptr<Instruction>> instructions;
42 };
43
44 aco_opcode get_reduce_opcode(chip_class chip, ReduceOp op) {
45 switch (op) {
46 case iadd32: return chip >= GFX9 ? aco_opcode::v_add_u32 : aco_opcode::v_add_co_u32;
47 case imul32: return aco_opcode::v_mul_lo_u32;
48 case fadd32: return aco_opcode::v_add_f32;
49 case fmul32: return aco_opcode::v_mul_f32;
50 case imax32: return aco_opcode::v_max_i32;
51 case imin32: return aco_opcode::v_min_i32;
52 case umin32: return aco_opcode::v_min_u32;
53 case umax32: return aco_opcode::v_max_u32;
54 case fmin32: return aco_opcode::v_min_f32;
55 case fmax32: return aco_opcode::v_max_f32;
56 case iand32: return aco_opcode::v_and_b32;
57 case ixor32: return aco_opcode::v_xor_b32;
58 case ior32: return aco_opcode::v_or_b32;
59 case iadd64: return aco_opcode::num_opcodes;
60 case imul64: return aco_opcode::num_opcodes;
61 case fadd64: return aco_opcode::v_add_f64;
62 case fmul64: return aco_opcode::v_mul_f64;
63 case imin64: return aco_opcode::num_opcodes;
64 case imax64: return aco_opcode::num_opcodes;
65 case umin64: return aco_opcode::num_opcodes;
66 case umax64: return aco_opcode::num_opcodes;
67 case fmin64: return aco_opcode::v_min_f64;
68 case fmax64: return aco_opcode::v_max_f64;
69 case iand64: return aco_opcode::num_opcodes;
70 case ior64: return aco_opcode::num_opcodes;
71 case ixor64: return aco_opcode::num_opcodes;
72 default: return aco_opcode::num_opcodes;
73 }
74 }
75
76 void emit_vadd32(Builder& bld, Definition def, Operand src0, Operand src1)
77 {
78 Instruction *instr = bld.vadd32(def, src0, src1, false, Operand(s2), true);
79 if (instr->definitions.size() >= 2) {
80 assert(instr->definitions[1].regClass() == bld.lm);
81 instr->definitions[1].setFixed(vcc);
82 }
83 }
84
85 void emit_int64_dpp_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
86 PhysReg vtmp_reg, ReduceOp op,
87 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl,
88 Operand *identity=NULL)
89 {
90 Builder bld(ctx->program, &ctx->instructions);
91 Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg+1}, v1)};
92 Definition vtmp_def[] = {Definition(vtmp_reg, v1), Definition(PhysReg{vtmp_reg+1}, v1)};
93 Operand src0[] = {Operand(src0_reg, v1), Operand(PhysReg{src0_reg+1}, v1)};
94 Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg+1}, v1)};
95 Operand src1_64 = Operand(src1_reg, v2);
96 Operand vtmp_op[] = {Operand(vtmp_reg, v1), Operand(PhysReg{vtmp_reg+1}, v1)};
97 Operand vtmp_op64 = Operand(vtmp_reg, v2);
98 if (op == iadd64) {
99 if (ctx->program->chip_class >= GFX10) {
100 if (identity)
101 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
102 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
103 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
104 bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), vtmp_op[0], src1[0]);
105 } else {
106 bld.vop2_dpp(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0],
107 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
108 }
109 bld.vop2_dpp(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], Operand(vcc, bld.lm),
110 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
111 } else if (op == iand64) {
112 bld.vop2_dpp(aco_opcode::v_and_b32, dst[0], src0[0], src1[0],
113 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
114 bld.vop2_dpp(aco_opcode::v_and_b32, dst[1], src0[1], src1[1],
115 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
116 } else if (op == ior64) {
117 bld.vop2_dpp(aco_opcode::v_or_b32, dst[0], src0[0], src1[0],
118 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
119 bld.vop2_dpp(aco_opcode::v_or_b32, dst[1], src0[1], src1[1],
120 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
121 } else if (op == ixor64) {
122 bld.vop2_dpp(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0],
123 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
124 bld.vop2_dpp(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1],
125 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
126 } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) {
127 aco_opcode cmp = aco_opcode::num_opcodes;
128 switch (op) {
129 case umin64:
130 cmp = aco_opcode::v_cmp_gt_u64;
131 break;
132 case umax64:
133 cmp = aco_opcode::v_cmp_lt_u64;
134 break;
135 case imin64:
136 cmp = aco_opcode::v_cmp_gt_i64;
137 break;
138 case imax64:
139 cmp = aco_opcode::v_cmp_lt_i64;
140 break;
141 default:
142 break;
143 }
144
145 if (identity) {
146 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
147 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[1], identity[1]);
148 }
149 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
150 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
151 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[1], src0[1],
152 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
153
154 bld.vopc(cmp, bld.def(bld.lm, vcc), vtmp_op64, src1_64);
155 bld.vop2(aco_opcode::v_cndmask_b32, dst[0], vtmp_op[0], src1[0], Operand(vcc, bld.lm));
156 bld.vop2(aco_opcode::v_cndmask_b32, dst[1], vtmp_op[1], src1[1], Operand(vcc, bld.lm));
157 } else if (op == imul64) {
158 /* t4 = dpp(x_hi)
159 * t1 = umul_lo(t4, y_lo)
160 * t3 = dpp(x_lo)
161 * t0 = umul_lo(t3, y_hi)
162 * t2 = iadd(t0, t1)
163 * t5 = umul_hi(t3, y_lo)
164 * res_hi = iadd(t2, t5)
165 * res_lo = umul_lo(t3, y_lo)
166 * Requires that res_hi != src0[0] and res_hi != src1[0]
167 * and that vtmp[0] != res_hi.
168 */
169 if (identity)
170 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[1]);
171 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[1],
172 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
173 bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[1], vtmp_op[0], src1[0]);
174 if (identity)
175 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
176 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
177 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
178 bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[0], vtmp_op[0], src1[1]);
179 emit_vadd32(bld, vtmp_def[1], vtmp_op[0], vtmp_op[1]);
180 if (identity)
181 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
182 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
183 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
184 bld.vop3(aco_opcode::v_mul_hi_u32, vtmp_def[0], vtmp_op[0], src1[0]);
185 emit_vadd32(bld, dst[1], vtmp_op[1], vtmp_op[0]);
186 if (identity)
187 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
188 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
189 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
190 bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], vtmp_op[0], src1[0]);
191 }
192 }
193
194 void emit_int64_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp, ReduceOp op)
195 {
196 Builder bld(ctx->program, &ctx->instructions);
197 Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg+1}, v1)};
198 RegClass src0_rc = src0_reg.reg >= 256 ? v1 : s1;
199 Operand src0[] = {Operand(src0_reg, src0_rc), Operand(PhysReg{src0_reg+1}, src0_rc)};
200 Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg+1}, v1)};
201 Operand src0_64 = Operand(src0_reg, src0_reg.reg >= 256 ? v2 : s2);
202 Operand src1_64 = Operand(src1_reg, v2);
203
204 if (src0_rc == s1 &&
205 (op == imul64 || op == umin64 || op == umax64 || op == imin64 || op == imax64)) {
206 assert(vtmp.reg != 0);
207 bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), src0[0]);
208 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), src0[1]);
209 src0_reg = vtmp;
210 src0[0] = Operand(vtmp, v1);
211 src0[1] = Operand(PhysReg{vtmp+1}, v1);
212 src0_64 = Operand(vtmp, v2);
213 } else if (src0_rc == s1 && op == iadd64) {
214 assert(vtmp.reg != 0);
215 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), src0[1]);
216 src0[1] = Operand(PhysReg{vtmp+1}, v1);
217 }
218
219 if (op == iadd64) {
220 if (ctx->program->chip_class >= GFX10) {
221 bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]);
222 } else {
223 bld.vop2(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]);
224 }
225 bld.vop2(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], Operand(vcc, bld.lm));
226 } else if (op == iand64) {
227 bld.vop2(aco_opcode::v_and_b32, dst[0], src0[0], src1[0]);
228 bld.vop2(aco_opcode::v_and_b32, dst[1], src0[1], src1[1]);
229 } else if (op == ior64) {
230 bld.vop2(aco_opcode::v_or_b32, dst[0], src0[0], src1[0]);
231 bld.vop2(aco_opcode::v_or_b32, dst[1], src0[1], src1[1]);
232 } else if (op == ixor64) {
233 bld.vop2(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0]);
234 bld.vop2(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1]);
235 } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) {
236 aco_opcode cmp = aco_opcode::num_opcodes;
237 switch (op) {
238 case umin64:
239 cmp = aco_opcode::v_cmp_gt_u64;
240 break;
241 case umax64:
242 cmp = aco_opcode::v_cmp_lt_u64;
243 break;
244 case imin64:
245 cmp = aco_opcode::v_cmp_gt_i64;
246 break;
247 case imax64:
248 cmp = aco_opcode::v_cmp_lt_i64;
249 break;
250 default:
251 break;
252 }
253
254 bld.vopc(cmp, bld.def(bld.lm, vcc), src0_64, src1_64);
255 bld.vop2(aco_opcode::v_cndmask_b32, dst[0], src0[0], src1[0], Operand(vcc, bld.lm));
256 bld.vop2(aco_opcode::v_cndmask_b32, dst[1], src0[1], src1[1], Operand(vcc, bld.lm));
257 } else if (op == imul64) {
258 if (src1_reg == dst_reg) {
259 /* it's fine if src0==dst but not if src1==dst */
260 std::swap(src0_reg, src1_reg);
261 std::swap(src0[0], src1[0]);
262 std::swap(src0[1], src1[1]);
263 std::swap(src0_64, src1_64);
264 }
265 assert(!(src0_reg == src1_reg));
266 /* t1 = umul_lo(x_hi, y_lo)
267 * t0 = umul_lo(x_lo, y_hi)
268 * t2 = iadd(t0, t1)
269 * t5 = umul_hi(x_lo, y_lo)
270 * res_hi = iadd(t2, t5)
271 * res_lo = umul_lo(x_lo, y_lo)
272 * assumes that it's ok to modify x_hi/y_hi, since we might not have vtmp
273 */
274 Definition tmp0_def(PhysReg{src0_reg+1}, v1);
275 Definition tmp1_def(PhysReg{src1_reg+1}, v1);
276 Operand tmp0_op = src0[1];
277 Operand tmp1_op = src1[1];
278 bld.vop3(aco_opcode::v_mul_lo_u32, tmp0_def, src0[1], src1[0]);
279 bld.vop3(aco_opcode::v_mul_lo_u32, tmp1_def, src0[0], src1[1]);
280 emit_vadd32(bld, tmp0_def, tmp1_op, tmp0_op);
281 bld.vop3(aco_opcode::v_mul_hi_u32, tmp1_def, src0[0], src1[0]);
282 emit_vadd32(bld, dst[1], tmp0_op, tmp1_op);
283 bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], src0[0], src1[0]);
284 }
285 }
286
287 void emit_dpp_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
288 PhysReg vtmp, ReduceOp op, unsigned size,
289 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl,
290 Operand *identity=NULL) /* for VOP3 with sparse writes */
291 {
292 Builder bld(ctx->program, &ctx->instructions);
293 RegClass rc = RegClass(RegType::vgpr, size);
294 Definition dst(dst_reg, rc);
295 Operand src0(src0_reg, rc);
296 Operand src1(src1_reg, rc);
297
298 aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op);
299 bool vop3 = op == imul32 || size == 2;
300
301 if (!vop3) {
302 if (opcode == aco_opcode::v_add_co_u32)
303 bld.vop2_dpp(opcode, dst, bld.def(bld.lm, vcc), src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
304 else
305 bld.vop2_dpp(opcode, dst, src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
306 return;
307 }
308
309 if (opcode == aco_opcode::num_opcodes) {
310 emit_int64_dpp_op(ctx, dst_reg ,src0_reg, src1_reg, vtmp, op,
311 dpp_ctrl, row_mask, bank_mask, bound_ctrl, identity);
312 return;
313 }
314
315 if (identity)
316 bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), identity[0]);
317 if (identity && size >= 2)
318 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), identity[1]);
319
320 for (unsigned i = 0; i < size; i++)
321 bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{src0_reg+i}, v1),
322 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
323
324 bld.vop3(opcode, dst, Operand(vtmp, rc), src1);
325 }
326
327 void emit_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
328 PhysReg vtmp, ReduceOp op, unsigned size)
329 {
330 Builder bld(ctx->program, &ctx->instructions);
331 RegClass rc = RegClass(RegType::vgpr, size);
332 Definition dst(dst_reg, rc);
333 Operand src0(src0_reg, RegClass(src0_reg.reg >= 256 ? RegType::vgpr : RegType::sgpr, size));
334 Operand src1(src1_reg, rc);
335
336 aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op);
337 bool vop3 = op == imul32 || size == 2;
338
339 if (opcode == aco_opcode::num_opcodes) {
340 emit_int64_op(ctx, dst_reg, src0_reg, src1_reg, vtmp, op);
341 return;
342 }
343
344 if (vop3) {
345 bld.vop3(opcode, dst, src0, src1);
346 } else if (opcode == aco_opcode::v_add_co_u32) {
347 bld.vop2(opcode, dst, bld.def(bld.lm, vcc), src0, src1);
348 } else {
349 bld.vop2(opcode, dst, src0, src1);
350 }
351 }
352
353 void emit_dpp_mov(lower_context *ctx, PhysReg dst, PhysReg src0, unsigned size,
354 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl)
355 {
356 Builder bld(ctx->program, &ctx->instructions);
357 for (unsigned i = 0; i < size; i++) {
358 bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{dst+i}, v1), Operand(PhysReg{src0+i}, v1),
359 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
360 }
361 }
362
363 uint32_t get_reduction_identity(ReduceOp op, unsigned idx)
364 {
365 switch (op) {
366 case iadd32:
367 case iadd64:
368 case fadd32:
369 case fadd64:
370 case ior32:
371 case ior64:
372 case ixor32:
373 case ixor64:
374 case umax32:
375 case umax64:
376 return 0;
377 case imul32:
378 case imul64:
379 return idx ? 0 : 1;
380 case fmul32:
381 return 0x3f800000u; /* 1.0 */
382 case fmul64:
383 return idx ? 0x3ff00000u : 0u; /* 1.0 */
384 case imin32:
385 return INT32_MAX;
386 case imin64:
387 return idx ? 0x7fffffffu : 0xffffffffu;
388 case imax32:
389 return INT32_MIN;
390 case imax64:
391 return idx ? 0x80000000u : 0;
392 case umin32:
393 case umin64:
394 case iand32:
395 case iand64:
396 return 0xffffffffu;
397 case fmin32:
398 return 0x7f800000u; /* infinity */
399 case fmin64:
400 return idx ? 0x7ff00000u : 0u; /* infinity */
401 case fmax32:
402 return 0xff800000u; /* negative infinity */
403 case fmax64:
404 return idx ? 0xfff00000u : 0u; /* negative infinity */
405 default:
406 unreachable("Invalid reduction operation");
407 break;
408 }
409 return 0;
410 }
411
412 void emit_ds_swizzle(Builder bld, PhysReg dst, PhysReg src, unsigned size, unsigned ds_pattern)
413 {
414 for (unsigned i = 0; i < size; i++) {
415 bld.ds(aco_opcode::ds_swizzle_b32, Definition(PhysReg{dst+i}, v1),
416 Operand(PhysReg{src+i}, v1), ds_pattern);
417 }
418 }
419
420 void emit_reduction(lower_context *ctx, aco_opcode op, ReduceOp reduce_op, unsigned cluster_size, PhysReg tmp,
421 PhysReg stmp, PhysReg vtmp, PhysReg sitmp, Operand src, Definition dst)
422 {
423 assert(cluster_size == ctx->program->wave_size || op == aco_opcode::p_reduce);
424 assert(cluster_size <= ctx->program->wave_size);
425
426 Builder bld(ctx->program, &ctx->instructions);
427
428 Operand identity[2];
429 identity[0] = Operand(get_reduction_identity(reduce_op, 0));
430 identity[1] = Operand(get_reduction_identity(reduce_op, 1));
431 Operand vcndmask_identity[2] = {identity[0], identity[1]};
432
433 /* First, copy the source to tmp and set inactive lanes to the identity */
434 bld.sop1(Builder::s_or_saveexec, Definition(stmp, bld.lm), Definition(scc, s1), Definition(exec, bld.lm), Operand(UINT64_MAX), Operand(exec, bld.lm));
435
436 for (unsigned i = 0; i < src.size(); i++) {
437 /* p_exclusive_scan needs it to be a sgpr or inline constant for the v_writelane_b32
438 * except on GFX10, where v_writelane_b32 can take a literal. */
439 if (identity[i].isLiteral() && op == aco_opcode::p_exclusive_scan && ctx->program->chip_class < GFX10) {
440 bld.sop1(aco_opcode::s_mov_b32, Definition(PhysReg{sitmp+i}, s1), identity[i]);
441 identity[i] = Operand(PhysReg{sitmp+i}, s1);
442
443 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]);
444 vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1);
445 } else if (identity[i].isLiteral()) {
446 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]);
447 vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1);
448 }
449 }
450
451 for (unsigned i = 0; i < src.size(); i++) {
452 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(PhysReg{tmp + i}, v1),
453 vcndmask_identity[i], Operand(PhysReg{src.physReg() + i}, v1),
454 Operand(stmp, bld.lm));
455 }
456
457 bool reduction_needs_last_op = false;
458 switch (op) {
459 case aco_opcode::p_reduce:
460 if (cluster_size == 1) break;
461
462 if (ctx->program->chip_class <= GFX7) {
463 reduction_needs_last_op = true;
464 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(1, 0, 3, 2));
465 if (cluster_size == 2) break;
466 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
467 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(2, 3, 0, 1));
468 if (cluster_size == 4) break;
469 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
470 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x04));
471 if (cluster_size == 8) break;
472 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
473 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x08));
474 if (cluster_size == 16) break;
475 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
476 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10));
477 if (cluster_size == 32) break;
478 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
479 for (unsigned i = 0; i < src.size(); i++)
480 bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp + i}, v1), Operand(0u));
481 // TODO: it would be more effective to do the last reduction step on SALU
482 emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size());
483 reduction_needs_last_op = false;
484 break;
485 }
486
487 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(1, 0, 3, 2), 0xf, 0xf, false);
488 if (cluster_size == 2) break;
489 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(2, 3, 0, 1), 0xf, 0xf, false);
490 if (cluster_size == 4) break;
491 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_half_mirror, 0xf, 0xf, false);
492 if (cluster_size == 8) break;
493 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_mirror, 0xf, 0xf, false);
494 if (cluster_size == 16) break;
495
496 if (ctx->program->chip_class >= GFX10) {
497 /* GFX10+ doesn't support row_bcast15 and row_bcast31 */
498 for (unsigned i = 0; i < src.size(); i++)
499 bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1), Operand(0u), Operand(0u));
500
501 if (cluster_size == 32) {
502 reduction_needs_last_op = true;
503 break;
504 }
505
506 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
507 for (unsigned i = 0; i < src.size(); i++)
508 bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(0u));
509 // TODO: it would be more effective to do the last reduction step on SALU
510 emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size());
511 break;
512 }
513
514 if (cluster_size == 32) {
515 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10));
516 reduction_needs_last_op = true;
517 break;
518 }
519 assert(cluster_size == 64);
520 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast15, 0xa, 0xf, false);
521 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast31, 0xc, 0xf, false);
522 break;
523 case aco_opcode::p_exclusive_scan:
524 if (ctx->program->chip_class >= GFX10) { /* gfx10 doesn't support wf_sr1, so emulate it */
525 /* shift rows right */
526 emit_dpp_mov(ctx, vtmp, tmp, src.size(), dpp_row_sr(1), 0xf, 0xf, true);
527
528 /* fill in the gaps in rows 1 and 3 */
529 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x10000u));
530 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(0x10000u));
531 for (unsigned i = 0; i < src.size(); i++) {
532 Instruction *perm = bld.vop3(aco_opcode::v_permlanex16_b32,
533 Definition(PhysReg{vtmp+i}, v1),
534 Operand(PhysReg{tmp+i}, v1),
535 Operand(0xffffffffu), Operand(0xffffffffu)).instr;
536 static_cast<VOP3A_instruction*>(perm)->opsel = 1; /* FI (Fetch Inactive) */
537 }
538 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(UINT64_MAX));
539
540 if (ctx->program->wave_size == 64) {
541 /* fill in the gap in row 2 */
542 for (unsigned i = 0; i < src.size(); i++) {
543 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
544 bld.writelane(Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{sitmp+i}, s1), Operand(32u), Operand(PhysReg{vtmp+i}, v1));
545 }
546 }
547 std::swap(tmp, vtmp);
548 } else if (ctx->program->chip_class >= GFX8) {
549 emit_dpp_mov(ctx, tmp, tmp, src.size(), dpp_wf_sr1, 0xf, 0xf, true);
550 } else {
551 // TODO: use LDS on CS with a single write and shifted read
552 /* wavefront shift_right by 1 on SI/CI */
553 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(0, 0, 1, 2));
554 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x07)); /* mirror(8) */
555 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x10101010u));
556 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
557 for (unsigned i = 0; i < src.size(); i++)
558 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
559
560 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
561 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x08)); /* swap(8) */
562 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x01000100u));
563 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
564 for (unsigned i = 0; i < src.size(); i++)
565 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
566
567 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
568 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x10)); /* swap(16) */
569 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(1u), Operand(16u));
570 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(1u), Operand(16u));
571 for (unsigned i = 0; i < src.size(); i++)
572 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
573
574 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
575 for (unsigned i = 0; i < src.size(); i++) {
576 bld.writelane(Definition(PhysReg{vtmp+i}, v1), identity[i], Operand(0u), Operand(PhysReg{vtmp+i}, v1));
577 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(0u));
578 bld.writelane(Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{sitmp+i}, s1), Operand(32u), Operand(PhysReg{vtmp+i}, v1));
579 identity[i] = Operand(0u); /* prevent further uses of identity */
580 }
581 std::swap(tmp, vtmp);
582 }
583
584 for (unsigned i = 0; i < src.size(); i++) {
585 if (!identity[i].isConstant() || identity[i].constantValue()) { /* bound_ctrl should take care of this overwise */
586 if (ctx->program->chip_class < GFX10)
587 assert((identity[i].isConstant() && !identity[i].isLiteral()) || identity[i].physReg() == PhysReg{sitmp+i});
588 bld.writelane(Definition(PhysReg{tmp+i}, v1), identity[i], Operand(0u), Operand(PhysReg{tmp+i}, v1));
589 }
590 }
591 /* fall through */
592 case aco_opcode::p_inclusive_scan:
593 assert(cluster_size == ctx->program->wave_size);
594 if (ctx->program->chip_class <= GFX7) {
595 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1e, 0x00, 0x00));
596 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xAAAAAAAAu));
597 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
598 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
599
600 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
601 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1c, 0x01, 0x00));
602 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xCCCCCCCCu));
603 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
604 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
605
606 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
607 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x18, 0x03, 0x00));
608 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xF0F0F0F0u));
609 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
610 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
611
612 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
613 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x10, 0x07, 0x00));
614 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xFF00FF00u));
615 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
616 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
617
618 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
619 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x00, 0x0f, 0x00));
620 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(16u), Operand(16u));
621 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(16u), Operand(16u));
622 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
623
624 for (unsigned i = 0; i < src.size(); i++)
625 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
626 bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
627 emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size());
628 break;
629 }
630
631 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
632 dpp_row_sr(1), 0xf, 0xf, false, identity);
633 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
634 dpp_row_sr(2), 0xf, 0xf, false, identity);
635 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
636 dpp_row_sr(4), 0xf, 0xf, false, identity);
637 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
638 dpp_row_sr(8), 0xf, 0xf, false, identity);
639 if (ctx->program->chip_class >= GFX10) {
640 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(16u), Operand(16u));
641 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(16u), Operand(16u));
642 for (unsigned i = 0; i < src.size(); i++) {
643 Instruction *perm = bld.vop3(aco_opcode::v_permlanex16_b32,
644 Definition(PhysReg{vtmp+i}, v1),
645 Operand(PhysReg{tmp+i}, v1),
646 Operand(0xffffffffu), Operand(0xffffffffu)).instr;
647 static_cast<VOP3A_instruction*>(perm)->opsel = 1; /* FI (Fetch Inactive) */
648 }
649 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
650
651 if (ctx->program->wave_size == 64) {
652 bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
653 for (unsigned i = 0; i < src.size(); i++)
654 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
655 emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size());
656 }
657 } else {
658 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
659 dpp_row_bcast15, 0xa, 0xf, false, identity);
660 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
661 dpp_row_bcast31, 0xc, 0xf, false, identity);
662 }
663 break;
664 default:
665 unreachable("Invalid reduction mode");
666 }
667
668
669 if (op == aco_opcode::p_reduce) {
670 if (reduction_needs_last_op && dst.regClass().type() == RegType::vgpr) {
671 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm));
672 emit_op(ctx, dst.physReg(), tmp, vtmp, PhysReg{0}, reduce_op, src.size());
673 return;
674 }
675
676 if (reduction_needs_last_op)
677 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
678 }
679
680 /* restore exec */
681 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm));
682
683 if (dst.regClass().type() == RegType::sgpr) {
684 for (unsigned k = 0; k < src.size(); k++) {
685 bld.readlane(Definition(PhysReg{dst.physReg() + k}, s1),
686 Operand(PhysReg{tmp + k}, v1), Operand(ctx->program->wave_size - 1));
687 }
688 } else if (dst.physReg() != tmp) {
689 for (unsigned k = 0; k < src.size(); k++) {
690 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{dst.physReg() + k}, v1),
691 Operand(PhysReg{tmp + k}, v1));
692 }
693 }
694 }
695
696 struct copy_operation {
697 Operand op;
698 Definition def;
699 unsigned uses;
700 unsigned size;
701 };
702
703 void handle_operands(std::map<PhysReg, copy_operation>& copy_map, lower_context* ctx, chip_class chip_class, Pseudo_instruction *pi)
704 {
705 Builder bld(ctx->program, &ctx->instructions);
706 aco_ptr<Instruction> mov;
707 std::map<PhysReg, copy_operation>::iterator it = copy_map.begin();
708 std::map<PhysReg, copy_operation>::iterator target;
709 bool writes_scc = false;
710
711 /* count the number of uses for each dst reg */
712 while (it != copy_map.end()) {
713 if (it->second.op.isConstant()) {
714 ++it;
715 continue;
716 }
717
718 if (it->second.def.physReg() == scc)
719 writes_scc = true;
720
721 assert(!pi->tmp_in_scc || !(it->second.def.physReg() == pi->scratch_sgpr));
722
723 /* if src and dst reg are the same, remove operation */
724 if (it->first == it->second.op.physReg()) {
725 it = copy_map.erase(it);
726 continue;
727 }
728 /* check if the operand reg may be overwritten by another copy operation */
729 target = copy_map.find(it->second.op.physReg());
730 if (target != copy_map.end()) {
731 target->second.uses++;
732 }
733
734 ++it;
735 }
736
737 /* first, handle paths in the location transfer graph */
738 bool preserve_scc = pi->tmp_in_scc && !writes_scc;
739 it = copy_map.begin();
740 while (it != copy_map.end()) {
741
742 /* the target reg is not used as operand for any other copy */
743 if (it->second.uses == 0) {
744
745 /* try to coalesce 32-bit sgpr copies to 64-bit copies */
746 if (it->second.def.getTemp().type() == RegType::sgpr && it->second.size == 1 &&
747 !it->second.op.isConstant() && it->first % 2 == it->second.op.physReg() % 2) {
748
749 PhysReg other_def_reg = PhysReg{it->first % 2 ? it->first - 1 : it->first + 1};
750 PhysReg other_op_reg = PhysReg{it->first % 2 ? it->second.op.physReg() - 1 : it->second.op.physReg() + 1};
751 std::map<PhysReg, copy_operation>::iterator other = copy_map.find(other_def_reg);
752
753 if (other != copy_map.end() && !other->second.uses && other->second.size == 1 &&
754 other->second.op.physReg() == other_op_reg && !other->second.op.isConstant()) {
755 std::map<PhysReg, copy_operation>::iterator to_erase = it->first % 2 ? it : other;
756 it = it->first % 2 ? other : it;
757 copy_map.erase(to_erase);
758 it->second.size = 2;
759 }
760 }
761
762 if (it->second.def.physReg() == scc) {
763 bld.sopc(aco_opcode::s_cmp_lg_i32, it->second.def, it->second.op, Operand(0u));
764 preserve_scc = true;
765 } else if (it->second.size == 2 && it->second.def.getTemp().type() == RegType::sgpr) {
766 bld.sop1(aco_opcode::s_mov_b64, it->second.def, Operand(it->second.op.physReg(), s2));
767 } else if (it->second.size == 2 && it->second.op.isConstant()) {
768 uint64_t val = it->second.op.constantValue64();
769 bld.vop1(aco_opcode::v_mov_b32, it->second.def, Operand((uint32_t)val));
770 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{it->second.def.physReg() + 1}, v1),
771 Operand((uint32_t)(val >> 32)));
772 } else {
773 bld.copy(it->second.def, it->second.op);
774 }
775
776 /* reduce the number of uses of the operand reg by one */
777 if (!it->second.op.isConstant()) {
778 for (unsigned i = 0; i < it->second.size; i++) {
779 target = copy_map.find(PhysReg{it->second.op.physReg() + i});
780 if (target != copy_map.end())
781 target->second.uses--;
782 }
783 }
784
785 copy_map.erase(it);
786 it = copy_map.begin();
787 continue;
788 } else {
789 /* the target reg is used as operand, check the next entry */
790 ++it;
791 }
792 }
793
794 if (copy_map.empty())
795 return;
796
797 /* all target regs are needed as operand somewhere which means, all entries are part of a cycle */
798 for (it = copy_map.begin(); it != copy_map.end(); ++it) {
799 assert(it->second.op.isFixed());
800 if (it->first == it->second.op.physReg())
801 continue;
802
803 /* should already be done */
804 assert(!it->second.op.isConstant());
805
806 if (preserve_scc && it->second.def.getTemp().type() == RegType::sgpr)
807 assert(!(it->second.def.physReg() == pi->scratch_sgpr));
808
809 /* to resolve the cycle, we have to swap the src reg with the dst reg */
810 copy_operation swap = it->second;
811 assert(swap.op.regClass() == swap.def.regClass());
812 Operand def_as_op = Operand(swap.def.physReg(), swap.def.regClass());
813 Definition op_as_def = Definition(swap.op.physReg(), swap.op.regClass());
814 if (chip_class >= GFX9 && swap.def.getTemp().type() == RegType::vgpr) {
815 bld.vop1(aco_opcode::v_swap_b32, swap.def, op_as_def, swap.op, def_as_op);
816 } else if (swap.op.physReg() == scc || swap.def.physReg() == scc) {
817 /* we need to swap scc and another sgpr */
818 assert(!preserve_scc);
819
820 PhysReg other = swap.op.physReg() == scc ? swap.def.physReg() : swap.op.physReg();
821
822 bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
823 bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(other, s1), Operand(0u));
824 bld.sop1(aco_opcode::s_mov_b32, Definition(other, s1), Operand(pi->scratch_sgpr, s1));
825 } else if (swap.def.getTemp().type() == RegType::sgpr) {
826 if (preserve_scc) {
827 bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), swap.op);
828 bld.sop1(aco_opcode::s_mov_b32, op_as_def, def_as_op);
829 bld.sop1(aco_opcode::s_mov_b32, swap.def, Operand(pi->scratch_sgpr, s1));
830 } else {
831 bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), swap.op, def_as_op);
832 bld.sop2(aco_opcode::s_xor_b32, swap.def, Definition(scc, s1), swap.op, def_as_op);
833 bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), swap.op, def_as_op);
834 }
835 } else {
836 bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op);
837 bld.vop2(aco_opcode::v_xor_b32, swap.def, swap.op, def_as_op);
838 bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op);
839 }
840
841 /* change the operand reg of the target's use */
842 assert(swap.uses == 1);
843 target = it;
844 for (++target; target != copy_map.end(); ++target) {
845 if (target->second.op.physReg() == it->first) {
846 target->second.op.setFixed(swap.op.physReg());
847 break;
848 }
849 }
850 }
851 }
852
853 void lower_to_hw_instr(Program* program)
854 {
855 Block *discard_block = NULL;
856
857 for (size_t i = 0; i < program->blocks.size(); i++)
858 {
859 Block *block = &program->blocks[i];
860 lower_context ctx;
861 ctx.program = program;
862 Builder bld(program, &ctx.instructions);
863
864 bool set_mode = i == 0 && block->fp_mode.val != program->config->float_mode;
865 for (unsigned pred : block->linear_preds) {
866 if (program->blocks[pred].fp_mode.val != block->fp_mode.val) {
867 set_mode = true;
868 break;
869 }
870 }
871 if (set_mode) {
872 /* only allow changing modes at top-level blocks so this doesn't break
873 * the "jump over empty blocks" optimization */
874 assert(block->kind & block_kind_top_level);
875 uint32_t mode = block->fp_mode.val;
876 /* "((size - 1) << 11) | register" (MODE is encoded as register 1) */
877 bld.sopk(aco_opcode::s_setreg_imm32_b32, Operand(mode), (7 << 11) | 1);
878 }
879
880 for (size_t j = 0; j < block->instructions.size(); j++) {
881 aco_ptr<Instruction>& instr = block->instructions[j];
882 aco_ptr<Instruction> mov;
883 if (instr->format == Format::PSEUDO) {
884 Pseudo_instruction *pi = (Pseudo_instruction*)instr.get();
885
886 switch (instr->opcode)
887 {
888 case aco_opcode::p_extract_vector:
889 {
890 unsigned reg = instr->operands[0].physReg() + instr->operands[1].constantValue() * instr->definitions[0].size();
891 RegClass rc = RegClass(instr->operands[0].getTemp().type(), 1);
892 RegClass rc_def = RegClass(instr->definitions[0].getTemp().type(), 1);
893 if (reg == instr->definitions[0].physReg())
894 break;
895
896 std::map<PhysReg, copy_operation> copy_operations;
897 for (unsigned i = 0; i < instr->definitions[0].size(); i++) {
898 Definition def = Definition(PhysReg{instr->definitions[0].physReg() + i}, rc_def);
899 copy_operations[def.physReg()] = {Operand(PhysReg{reg + i}, rc), def, 0, 1};
900 }
901 handle_operands(copy_operations, &ctx, program->chip_class, pi);
902 break;
903 }
904 case aco_opcode::p_create_vector:
905 {
906 std::map<PhysReg, copy_operation> copy_operations;
907 RegClass rc_def = RegClass(instr->definitions[0].getTemp().type(), 1);
908 unsigned reg_idx = 0;
909 for (const Operand& op : instr->operands) {
910 if (op.isConstant()) {
911 const PhysReg reg = PhysReg{instr->definitions[0].physReg() + reg_idx};
912 const Definition def = Definition(reg, rc_def);
913 copy_operations[reg] = {op, def, 0, op.size()};
914 reg_idx++;
915 continue;
916 }
917
918 RegClass rc_op = RegClass(op.getTemp().type(), 1);
919 for (unsigned j = 0; j < op.size(); j++)
920 {
921 const Operand copy_op = Operand(PhysReg{op.physReg() + j}, rc_op);
922 const Definition def = Definition(PhysReg{instr->definitions[0].physReg() + reg_idx}, rc_def);
923 copy_operations[def.physReg()] = {copy_op, def, 0, 1};
924 reg_idx++;
925 }
926 }
927 handle_operands(copy_operations, &ctx, program->chip_class, pi);
928 break;
929 }
930 case aco_opcode::p_split_vector:
931 {
932 std::map<PhysReg, copy_operation> copy_operations;
933 RegClass rc_op = instr->operands[0].isConstant() ? s1 : RegClass(instr->operands[0].regClass().type(), 1);
934 for (unsigned i = 0; i < instr->definitions.size(); i++) {
935 unsigned k = instr->definitions[i].size();
936 RegClass rc_def = RegClass(instr->definitions[i].getTemp().type(), 1);
937 for (unsigned j = 0; j < k; j++) {
938 Operand op = Operand(PhysReg{instr->operands[0].physReg() + (i*k+j)}, rc_op);
939 Definition def = Definition(PhysReg{instr->definitions[i].physReg() + j}, rc_def);
940 copy_operations[def.physReg()] = {op, def, 0, op.size()};
941 }
942 }
943 handle_operands(copy_operations, &ctx, program->chip_class, pi);
944 break;
945 }
946 case aco_opcode::p_parallelcopy:
947 case aco_opcode::p_wqm:
948 {
949 std::map<PhysReg, copy_operation> copy_operations;
950 for (unsigned i = 0; i < instr->operands.size(); i++)
951 {
952 Operand operand = instr->operands[i];
953 if (operand.isConstant() || operand.size() == 1) {
954 assert(instr->definitions[i].size() == operand.size());
955 copy_operations[instr->definitions[i].physReg()] = {operand, instr->definitions[i], 0, operand.size()};
956 } else {
957 RegClass def_rc = RegClass(instr->definitions[i].regClass().type(), 1);
958 RegClass op_rc = RegClass(operand.getTemp().type(), 1);
959 for (unsigned j = 0; j < operand.size(); j++)
960 {
961 Operand op = Operand(PhysReg{instr->operands[i].physReg() + j}, op_rc);
962 Definition def = Definition(PhysReg{instr->definitions[i].physReg() + j}, def_rc);
963 copy_operations[def.physReg()] = {op, def, 0, 1};
964 }
965 }
966 }
967 handle_operands(copy_operations, &ctx, program->chip_class, pi);
968 break;
969 }
970 case aco_opcode::p_exit_early_if:
971 {
972 /* don't bother with an early exit near the end of the program */
973 if ((block->instructions.size() - 1 - j) <= 4 &&
974 block->instructions.back()->opcode == aco_opcode::s_endpgm) {
975 unsigned null_exp_dest = (ctx.program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
976 bool ignore_early_exit = true;
977
978 for (unsigned k = j + 1; k < block->instructions.size(); ++k) {
979 const aco_ptr<Instruction> &instr = block->instructions[k];
980 if (instr->opcode == aco_opcode::s_endpgm ||
981 instr->opcode == aco_opcode::p_logical_end)
982 continue;
983 else if (instr->opcode == aco_opcode::exp &&
984 static_cast<Export_instruction *>(instr.get())->dest == null_exp_dest)
985 continue;
986 else if (instr->opcode == aco_opcode::p_parallelcopy &&
987 instr->definitions[0].isFixed() &&
988 instr->definitions[0].physReg() == exec)
989 continue;
990
991 ignore_early_exit = false;
992 }
993
994 if (ignore_early_exit)
995 break;
996 }
997
998 if (!discard_block) {
999 discard_block = program->create_and_insert_block();
1000 block = &program->blocks[i];
1001
1002 bld.reset(discard_block);
1003 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
1004 0, V_008DFC_SQ_EXP_NULL, false, true, true);
1005 if (program->wb_smem_l1_on_end)
1006 bld.smem(aco_opcode::s_dcache_wb);
1007 bld.sopp(aco_opcode::s_endpgm);
1008
1009 bld.reset(&ctx.instructions);
1010 }
1011
1012 //TODO: exec can be zero here with block_kind_discard
1013
1014 assert(instr->operands[0].physReg() == scc);
1015 bld.sopp(aco_opcode::s_cbranch_scc0, instr->operands[0], discard_block->index);
1016
1017 discard_block->linear_preds.push_back(block->index);
1018 block->linear_succs.push_back(discard_block->index);
1019 break;
1020 }
1021 case aco_opcode::p_spill:
1022 {
1023 assert(instr->operands[0].regClass() == v1.as_linear());
1024 for (unsigned i = 0; i < instr->operands[2].size(); i++)
1025 bld.writelane(bld.def(v1, instr->operands[0].physReg()),
1026 Operand(PhysReg{instr->operands[2].physReg() + i}, s1),
1027 Operand(instr->operands[1].constantValue() + i),
1028 instr->operands[0]);
1029 break;
1030 }
1031 case aco_opcode::p_reload:
1032 {
1033 assert(instr->operands[0].regClass() == v1.as_linear());
1034 for (unsigned i = 0; i < instr->definitions[0].size(); i++)
1035 bld.readlane(bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
1036 instr->operands[0],
1037 Operand(instr->operands[1].constantValue() + i));
1038 break;
1039 }
1040 case aco_opcode::p_as_uniform:
1041 {
1042 if (instr->operands[0].isConstant() || instr->operands[0].regClass().type() == RegType::sgpr) {
1043 std::map<PhysReg, copy_operation> copy_operations;
1044 Operand operand = instr->operands[0];
1045 if (operand.isConstant() || operand.size() == 1) {
1046 assert(instr->definitions[0].size() == 1);
1047 copy_operations[instr->definitions[0].physReg()] = {operand, instr->definitions[0], 0, operand.size()};
1048 } else {
1049 for (unsigned i = 0; i < operand.size(); i++)
1050 {
1051 Operand op = Operand(PhysReg{operand.physReg() + i}, s1);
1052 Definition def = Definition(PhysReg{instr->definitions[0].physReg() + i}, s1);
1053 copy_operations[def.physReg()] = {op, def, 0, 1};
1054 }
1055 }
1056
1057 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1058 } else {
1059 assert(instr->operands[0].regClass().type() == RegType::vgpr);
1060 assert(instr->definitions[0].regClass().type() == RegType::sgpr);
1061 assert(instr->operands[0].size() == instr->definitions[0].size());
1062 for (unsigned i = 0; i < instr->definitions[0].size(); i++) {
1063 bld.vop1(aco_opcode::v_readfirstlane_b32,
1064 bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
1065 Operand(PhysReg{instr->operands[0].physReg() + i}, v1));
1066 }
1067 }
1068 break;
1069 }
1070 default:
1071 break;
1072 }
1073 } else if (instr->format == Format::PSEUDO_BRANCH) {
1074 Pseudo_branch_instruction* branch = static_cast<Pseudo_branch_instruction*>(instr.get());
1075 /* check if all blocks from current to target are empty */
1076 bool can_remove = block->index < branch->target[0];
1077 for (unsigned i = block->index + 1; can_remove && i < branch->target[0]; i++) {
1078 if (program->blocks[i].instructions.size())
1079 can_remove = false;
1080 }
1081 if (can_remove)
1082 continue;
1083
1084 switch (instr->opcode) {
1085 case aco_opcode::p_branch:
1086 assert(block->linear_succs[0] == branch->target[0]);
1087 bld.sopp(aco_opcode::s_branch, branch->target[0]);
1088 break;
1089 case aco_opcode::p_cbranch_nz:
1090 assert(block->linear_succs[1] == branch->target[0]);
1091 if (branch->operands[0].physReg() == exec)
1092 bld.sopp(aco_opcode::s_cbranch_execnz, branch->target[0]);
1093 else if (branch->operands[0].physReg() == vcc)
1094 bld.sopp(aco_opcode::s_cbranch_vccnz, branch->target[0]);
1095 else {
1096 assert(branch->operands[0].physReg() == scc);
1097 bld.sopp(aco_opcode::s_cbranch_scc1, branch->target[0]);
1098 }
1099 break;
1100 case aco_opcode::p_cbranch_z:
1101 assert(block->linear_succs[1] == branch->target[0]);
1102 if (branch->operands[0].physReg() == exec)
1103 bld.sopp(aco_opcode::s_cbranch_execz, branch->target[0]);
1104 else if (branch->operands[0].physReg() == vcc)
1105 bld.sopp(aco_opcode::s_cbranch_vccz, branch->target[0]);
1106 else {
1107 assert(branch->operands[0].physReg() == scc);
1108 bld.sopp(aco_opcode::s_cbranch_scc0, branch->target[0]);
1109 }
1110 break;
1111 default:
1112 unreachable("Unknown Pseudo branch instruction!");
1113 }
1114
1115 } else if (instr->format == Format::PSEUDO_REDUCTION) {
1116 Pseudo_reduction_instruction* reduce = static_cast<Pseudo_reduction_instruction*>(instr.get());
1117 if (reduce->reduce_op == gfx10_wave64_bpermute) {
1118 /* Only makes sense on GFX10 wave64 */
1119 assert(program->chip_class >= GFX10);
1120 assert(program->info->wave_size == 64);
1121 assert(instr->definitions[0].regClass() == v1); /* Destination */
1122 assert(instr->definitions[1].regClass() == s2); /* Temp EXEC */
1123 assert(instr->definitions[1].physReg() != vcc);
1124 assert(instr->definitions[2].physReg() == scc); /* SCC clobber */
1125 assert(instr->operands[0].physReg() == vcc); /* Compare */
1126 assert(instr->operands[1].regClass() == v2.as_linear()); /* Temp VGPR pair */
1127 assert(instr->operands[2].regClass() == v1); /* Indices x4 */
1128 assert(instr->operands[3].regClass() == v1); /* Input data */
1129
1130 PhysReg shared_vgpr_reg_lo = PhysReg(align(program->config->num_vgprs, 4) + 256);
1131 PhysReg shared_vgpr_reg_hi = PhysReg(shared_vgpr_reg_lo + 1);
1132 Operand compare = instr->operands[0];
1133 Operand tmp1(instr->operands[1].physReg(), v1);
1134 Operand tmp2(PhysReg(instr->operands[1].physReg() + 1), v1);
1135 Operand index_x4 = instr->operands[2];
1136 Operand input_data = instr->operands[3];
1137 Definition shared_vgpr_lo(shared_vgpr_reg_lo, v1);
1138 Definition shared_vgpr_hi(shared_vgpr_reg_hi, v1);
1139 Definition def_temp1(tmp1.physReg(), v1);
1140 Definition def_temp2(tmp2.physReg(), v1);
1141
1142 /* Save EXEC and set it for all lanes */
1143 bld.sop1(aco_opcode::s_or_saveexec_b64, instr->definitions[1], instr->definitions[2],
1144 Definition(exec, s2), Operand((uint64_t)-1), Operand(exec, s2));
1145
1146 /* HI: Copy data from high lanes 32-63 to shared vgpr */
1147 bld.vop1_dpp(aco_opcode::v_mov_b32, shared_vgpr_hi, input_data, dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false);
1148
1149 /* LO: Copy data from low lanes 0-31 to shared vgpr */
1150 bld.vop1_dpp(aco_opcode::v_mov_b32, shared_vgpr_lo, input_data, dpp_quad_perm(0, 1, 2, 3), 0x3, 0xf, false);
1151 /* LO: Copy shared vgpr (high lanes' data) to output vgpr */
1152 bld.vop1_dpp(aco_opcode::v_mov_b32, def_temp1, Operand(shared_vgpr_reg_hi, v1), dpp_quad_perm(0, 1, 2, 3), 0x3, 0xf, false);
1153
1154 /* HI: Copy shared vgpr (low lanes' data) to output vgpr */
1155 bld.vop1_dpp(aco_opcode::v_mov_b32, def_temp1, Operand(shared_vgpr_reg_lo, v1), dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false);
1156
1157 /* Permute the original input */
1158 bld.ds(aco_opcode::ds_bpermute_b32, def_temp2, index_x4, input_data);
1159 /* Permute the swapped input */
1160 bld.ds(aco_opcode::ds_bpermute_b32, def_temp1, index_x4, tmp1);
1161
1162 /* Restore saved EXEC */
1163 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(instr->definitions[1].physReg(), s2));
1164 /* Choose whether to use the original or swapped */
1165 bld.vop2(aco_opcode::v_cndmask_b32, instr->definitions[0], tmp1, tmp2, compare);
1166 } else {
1167 emit_reduction(&ctx, reduce->opcode, reduce->reduce_op, reduce->cluster_size,
1168 reduce->operands[1].physReg(), // tmp
1169 reduce->definitions[1].physReg(), // stmp
1170 reduce->operands[2].physReg(), // vtmp
1171 reduce->definitions[2].physReg(), // sitmp
1172 reduce->operands[0], reduce->definitions[0]);
1173 }
1174 } else {
1175 ctx.instructions.emplace_back(std::move(instr));
1176 }
1177
1178 }
1179 block->instructions.swap(ctx.instructions);
1180 }
1181 }
1182
1183 }