aco: allow gfx10_wave64_bpermute with 8-bit/16-bit input
[mesa.git] / src / amd / compiler / aco_lower_to_hw_instr.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <map>
29
30 #include "aco_ir.h"
31 #include "aco_builder.h"
32 #include "util/u_math.h"
33 #include "sid.h"
34 #include "vulkan/radv_shader.h"
35
36
37 namespace aco {
38
39 struct lower_context {
40 Program *program;
41 std::vector<aco_ptr<Instruction>> instructions;
42 };
43
44 aco_opcode get_reduce_opcode(chip_class chip, ReduceOp op) {
45 /* Because some 16-bit instructions are already VOP3 on GFX10, we use the
46 * 32-bit opcodes (VOP2) which allows to remove the tempory VGPR and to use
47 * DPP with the arithmetic instructions. This requires to sign-extend.
48 */
49 switch (op) {
50 case iadd8:
51 case iadd16: return chip >= GFX10 ? aco_opcode::v_add_u32 : aco_opcode::v_add_u16;
52 case imul8:
53 case imul16: return chip >= GFX10 ? aco_opcode::v_mul_lo_u16_e64 : aco_opcode::v_mul_lo_u16;
54 case fadd16: return aco_opcode::v_add_f16;
55 case fmul16: return aco_opcode::v_mul_f16;
56 case imax8:
57 case imax16: return chip >= GFX10 ? aco_opcode::v_max_i32 : aco_opcode::v_max_i16;
58 case imin8:
59 case imin16: return chip >= GFX10 ? aco_opcode::v_min_i32 : aco_opcode::v_min_i16;
60 case umin8:
61 case umin16: return chip >= GFX10 ? aco_opcode::v_min_u32 : aco_opcode::v_min_u16;
62 case umax8:
63 case umax16: return chip >= GFX10 ? aco_opcode::v_max_u32 : aco_opcode::v_max_u16;
64 case fmin16: return aco_opcode::v_min_f16;
65 case fmax16: return aco_opcode::v_max_f16;
66 case iadd32: return chip >= GFX9 ? aco_opcode::v_add_u32 : aco_opcode::v_add_co_u32;
67 case imul32: return aco_opcode::v_mul_lo_u32;
68 case fadd32: return aco_opcode::v_add_f32;
69 case fmul32: return aco_opcode::v_mul_f32;
70 case imax32: return aco_opcode::v_max_i32;
71 case imin32: return aco_opcode::v_min_i32;
72 case umin32: return aco_opcode::v_min_u32;
73 case umax32: return aco_opcode::v_max_u32;
74 case fmin32: return aco_opcode::v_min_f32;
75 case fmax32: return aco_opcode::v_max_f32;
76 case iand8:
77 case iand16:
78 case iand32: return aco_opcode::v_and_b32;
79 case ixor8:
80 case ixor16:
81 case ixor32: return aco_opcode::v_xor_b32;
82 case ior8:
83 case ior16:
84 case ior32: return aco_opcode::v_or_b32;
85 case iadd64: return aco_opcode::num_opcodes;
86 case imul64: return aco_opcode::num_opcodes;
87 case fadd64: return aco_opcode::v_add_f64;
88 case fmul64: return aco_opcode::v_mul_f64;
89 case imin64: return aco_opcode::num_opcodes;
90 case imax64: return aco_opcode::num_opcodes;
91 case umin64: return aco_opcode::num_opcodes;
92 case umax64: return aco_opcode::num_opcodes;
93 case fmin64: return aco_opcode::v_min_f64;
94 case fmax64: return aco_opcode::v_max_f64;
95 case iand64: return aco_opcode::num_opcodes;
96 case ior64: return aco_opcode::num_opcodes;
97 case ixor64: return aco_opcode::num_opcodes;
98 default: return aco_opcode::num_opcodes;
99 }
100 }
101
102 bool is_vop3_reduce_opcode(aco_opcode opcode)
103 {
104 /* 64-bit reductions are VOP3. */
105 if (opcode == aco_opcode::num_opcodes)
106 return true;
107
108 return instr_info.format[(int)opcode] == Format::VOP3;
109 }
110
111 void emit_vadd32(Builder& bld, Definition def, Operand src0, Operand src1)
112 {
113 Instruction *instr = bld.vadd32(def, src0, src1, false, Operand(s2), true);
114 if (instr->definitions.size() >= 2) {
115 assert(instr->definitions[1].regClass() == bld.lm);
116 instr->definitions[1].setFixed(vcc);
117 }
118 }
119
120 void emit_int64_dpp_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
121 PhysReg vtmp_reg, ReduceOp op,
122 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl,
123 Operand *identity=NULL)
124 {
125 Builder bld(ctx->program, &ctx->instructions);
126 Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg+1}, v1)};
127 Definition vtmp_def[] = {Definition(vtmp_reg, v1), Definition(PhysReg{vtmp_reg+1}, v1)};
128 Operand src0[] = {Operand(src0_reg, v1), Operand(PhysReg{src0_reg+1}, v1)};
129 Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg+1}, v1)};
130 Operand src1_64 = Operand(src1_reg, v2);
131 Operand vtmp_op[] = {Operand(vtmp_reg, v1), Operand(PhysReg{vtmp_reg+1}, v1)};
132 Operand vtmp_op64 = Operand(vtmp_reg, v2);
133 if (op == iadd64) {
134 if (ctx->program->chip_class >= GFX10) {
135 if (identity)
136 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
137 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
138 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
139 bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), vtmp_op[0], src1[0]);
140 } else {
141 bld.vop2_dpp(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0],
142 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
143 }
144 bld.vop2_dpp(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], Operand(vcc, bld.lm),
145 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
146 } else if (op == iand64) {
147 bld.vop2_dpp(aco_opcode::v_and_b32, dst[0], src0[0], src1[0],
148 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
149 bld.vop2_dpp(aco_opcode::v_and_b32, dst[1], src0[1], src1[1],
150 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
151 } else if (op == ior64) {
152 bld.vop2_dpp(aco_opcode::v_or_b32, dst[0], src0[0], src1[0],
153 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
154 bld.vop2_dpp(aco_opcode::v_or_b32, dst[1], src0[1], src1[1],
155 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
156 } else if (op == ixor64) {
157 bld.vop2_dpp(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0],
158 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
159 bld.vop2_dpp(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1],
160 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
161 } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) {
162 aco_opcode cmp = aco_opcode::num_opcodes;
163 switch (op) {
164 case umin64:
165 cmp = aco_opcode::v_cmp_gt_u64;
166 break;
167 case umax64:
168 cmp = aco_opcode::v_cmp_lt_u64;
169 break;
170 case imin64:
171 cmp = aco_opcode::v_cmp_gt_i64;
172 break;
173 case imax64:
174 cmp = aco_opcode::v_cmp_lt_i64;
175 break;
176 default:
177 break;
178 }
179
180 if (identity) {
181 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
182 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[1], identity[1]);
183 }
184 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
185 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
186 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[1], src0[1],
187 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
188
189 bld.vopc(cmp, bld.def(bld.lm, vcc), vtmp_op64, src1_64);
190 bld.vop2(aco_opcode::v_cndmask_b32, dst[0], vtmp_op[0], src1[0], Operand(vcc, bld.lm));
191 bld.vop2(aco_opcode::v_cndmask_b32, dst[1], vtmp_op[1], src1[1], Operand(vcc, bld.lm));
192 } else if (op == imul64) {
193 /* t4 = dpp(x_hi)
194 * t1 = umul_lo(t4, y_lo)
195 * t3 = dpp(x_lo)
196 * t0 = umul_lo(t3, y_hi)
197 * t2 = iadd(t0, t1)
198 * t5 = umul_hi(t3, y_lo)
199 * res_hi = iadd(t2, t5)
200 * res_lo = umul_lo(t3, y_lo)
201 * Requires that res_hi != src0[0] and res_hi != src1[0]
202 * and that vtmp[0] != res_hi.
203 */
204 if (identity)
205 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[1]);
206 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[1],
207 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
208 bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[1], vtmp_op[0], src1[0]);
209 if (identity)
210 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
211 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
212 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
213 bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[0], vtmp_op[0], src1[1]);
214 emit_vadd32(bld, vtmp_def[1], vtmp_op[0], vtmp_op[1]);
215 if (identity)
216 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
217 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
218 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
219 bld.vop3(aco_opcode::v_mul_hi_u32, vtmp_def[0], vtmp_op[0], src1[0]);
220 emit_vadd32(bld, dst[1], vtmp_op[1], vtmp_op[0]);
221 if (identity)
222 bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
223 bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0],
224 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
225 bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], vtmp_op[0], src1[0]);
226 }
227 }
228
229 void emit_int64_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp, ReduceOp op)
230 {
231 Builder bld(ctx->program, &ctx->instructions);
232 Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg+1}, v1)};
233 RegClass src0_rc = src0_reg.reg() >= 256 ? v1 : s1;
234 Operand src0[] = {Operand(src0_reg, src0_rc), Operand(PhysReg{src0_reg+1}, src0_rc)};
235 Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg+1}, v1)};
236 Operand src0_64 = Operand(src0_reg, src0_reg.reg() >= 256 ? v2 : s2);
237 Operand src1_64 = Operand(src1_reg, v2);
238
239 if (src0_rc == s1 &&
240 (op == imul64 || op == umin64 || op == umax64 || op == imin64 || op == imax64)) {
241 assert(vtmp.reg() != 0);
242 bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), src0[0]);
243 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), src0[1]);
244 src0_reg = vtmp;
245 src0[0] = Operand(vtmp, v1);
246 src0[1] = Operand(PhysReg{vtmp+1}, v1);
247 src0_64 = Operand(vtmp, v2);
248 } else if (src0_rc == s1 && op == iadd64) {
249 assert(vtmp.reg() != 0);
250 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), src0[1]);
251 src0[1] = Operand(PhysReg{vtmp+1}, v1);
252 }
253
254 if (op == iadd64) {
255 if (ctx->program->chip_class >= GFX10) {
256 bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]);
257 } else {
258 bld.vop2(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]);
259 }
260 bld.vop2(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], Operand(vcc, bld.lm));
261 } else if (op == iand64) {
262 bld.vop2(aco_opcode::v_and_b32, dst[0], src0[0], src1[0]);
263 bld.vop2(aco_opcode::v_and_b32, dst[1], src0[1], src1[1]);
264 } else if (op == ior64) {
265 bld.vop2(aco_opcode::v_or_b32, dst[0], src0[0], src1[0]);
266 bld.vop2(aco_opcode::v_or_b32, dst[1], src0[1], src1[1]);
267 } else if (op == ixor64) {
268 bld.vop2(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0]);
269 bld.vop2(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1]);
270 } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) {
271 aco_opcode cmp = aco_opcode::num_opcodes;
272 switch (op) {
273 case umin64:
274 cmp = aco_opcode::v_cmp_gt_u64;
275 break;
276 case umax64:
277 cmp = aco_opcode::v_cmp_lt_u64;
278 break;
279 case imin64:
280 cmp = aco_opcode::v_cmp_gt_i64;
281 break;
282 case imax64:
283 cmp = aco_opcode::v_cmp_lt_i64;
284 break;
285 default:
286 break;
287 }
288
289 bld.vopc(cmp, bld.def(bld.lm, vcc), src0_64, src1_64);
290 bld.vop2(aco_opcode::v_cndmask_b32, dst[0], src0[0], src1[0], Operand(vcc, bld.lm));
291 bld.vop2(aco_opcode::v_cndmask_b32, dst[1], src0[1], src1[1], Operand(vcc, bld.lm));
292 } else if (op == imul64) {
293 if (src1_reg == dst_reg) {
294 /* it's fine if src0==dst but not if src1==dst */
295 std::swap(src0_reg, src1_reg);
296 std::swap(src0[0], src1[0]);
297 std::swap(src0[1], src1[1]);
298 std::swap(src0_64, src1_64);
299 }
300 assert(!(src0_reg == src1_reg));
301 /* t1 = umul_lo(x_hi, y_lo)
302 * t0 = umul_lo(x_lo, y_hi)
303 * t2 = iadd(t0, t1)
304 * t5 = umul_hi(x_lo, y_lo)
305 * res_hi = iadd(t2, t5)
306 * res_lo = umul_lo(x_lo, y_lo)
307 * assumes that it's ok to modify x_hi/y_hi, since we might not have vtmp
308 */
309 Definition tmp0_def(PhysReg{src0_reg+1}, v1);
310 Definition tmp1_def(PhysReg{src1_reg+1}, v1);
311 Operand tmp0_op = src0[1];
312 Operand tmp1_op = src1[1];
313 bld.vop3(aco_opcode::v_mul_lo_u32, tmp0_def, src0[1], src1[0]);
314 bld.vop3(aco_opcode::v_mul_lo_u32, tmp1_def, src0[0], src1[1]);
315 emit_vadd32(bld, tmp0_def, tmp1_op, tmp0_op);
316 bld.vop3(aco_opcode::v_mul_hi_u32, tmp1_def, src0[0], src1[0]);
317 emit_vadd32(bld, dst[1], tmp0_op, tmp1_op);
318 bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], src0[0], src1[0]);
319 }
320 }
321
322 void emit_dpp_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
323 PhysReg vtmp, ReduceOp op, unsigned size,
324 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl,
325 Operand *identity=NULL) /* for VOP3 with sparse writes */
326 {
327 Builder bld(ctx->program, &ctx->instructions);
328 RegClass rc = RegClass(RegType::vgpr, size);
329 Definition dst(dst_reg, rc);
330 Operand src0(src0_reg, rc);
331 Operand src1(src1_reg, rc);
332
333 aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op);
334 bool vop3 = is_vop3_reduce_opcode(opcode);
335
336 if (!vop3) {
337 if (opcode == aco_opcode::v_add_co_u32)
338 bld.vop2_dpp(opcode, dst, bld.def(bld.lm, vcc), src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
339 else
340 bld.vop2_dpp(opcode, dst, src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
341 return;
342 }
343
344 if (opcode == aco_opcode::num_opcodes) {
345 emit_int64_dpp_op(ctx, dst_reg ,src0_reg, src1_reg, vtmp, op,
346 dpp_ctrl, row_mask, bank_mask, bound_ctrl, identity);
347 return;
348 }
349
350 if (identity)
351 bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), identity[0]);
352 if (identity && size >= 2)
353 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), identity[1]);
354
355 for (unsigned i = 0; i < size; i++)
356 bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{src0_reg+i}, v1),
357 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
358
359 bld.vop3(opcode, dst, Operand(vtmp, rc), src1);
360 }
361
362 void emit_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
363 PhysReg vtmp, ReduceOp op, unsigned size)
364 {
365 Builder bld(ctx->program, &ctx->instructions);
366 RegClass rc = RegClass(RegType::vgpr, size);
367 Definition dst(dst_reg, rc);
368 Operand src0(src0_reg, RegClass(src0_reg.reg() >= 256 ? RegType::vgpr : RegType::sgpr, size));
369 Operand src1(src1_reg, rc);
370
371 aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op);
372 bool vop3 = is_vop3_reduce_opcode(opcode);
373
374 if (opcode == aco_opcode::num_opcodes) {
375 emit_int64_op(ctx, dst_reg, src0_reg, src1_reg, vtmp, op);
376 return;
377 }
378
379 if (vop3) {
380 bld.vop3(opcode, dst, src0, src1);
381 } else if (opcode == aco_opcode::v_add_co_u32) {
382 bld.vop2(opcode, dst, bld.def(bld.lm, vcc), src0, src1);
383 } else {
384 bld.vop2(opcode, dst, src0, src1);
385 }
386 }
387
388 void emit_dpp_mov(lower_context *ctx, PhysReg dst, PhysReg src0, unsigned size,
389 unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl)
390 {
391 Builder bld(ctx->program, &ctx->instructions);
392 for (unsigned i = 0; i < size; i++) {
393 bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{dst+i}, v1), Operand(PhysReg{src0+i}, v1),
394 dpp_ctrl, row_mask, bank_mask, bound_ctrl);
395 }
396 }
397
398 uint32_t get_reduction_identity(ReduceOp op, unsigned idx)
399 {
400 switch (op) {
401 case iadd8:
402 case iadd16:
403 case iadd32:
404 case iadd64:
405 case fadd16:
406 case fadd32:
407 case fadd64:
408 case ior8:
409 case ior16:
410 case ior32:
411 case ior64:
412 case ixor8:
413 case ixor16:
414 case ixor32:
415 case ixor64:
416 case umax8:
417 case umax16:
418 case umax32:
419 case umax64:
420 return 0;
421 case imul8:
422 case imul16:
423 case imul32:
424 case imul64:
425 return idx ? 0 : 1;
426 case fmul16:
427 return 0x3c00u; /* 1.0 */
428 case fmul32:
429 return 0x3f800000u; /* 1.0 */
430 case fmul64:
431 return idx ? 0x3ff00000u : 0u; /* 1.0 */
432 case imin8:
433 return INT8_MAX;
434 case imin16:
435 return INT16_MAX;
436 case imin32:
437 return INT32_MAX;
438 case imin64:
439 return idx ? 0x7fffffffu : 0xffffffffu;
440 case imax8:
441 return INT8_MIN;
442 case imax16:
443 return INT16_MIN;
444 case imax32:
445 return INT32_MIN;
446 case imax64:
447 return idx ? 0x80000000u : 0;
448 case umin8:
449 case umin16:
450 case iand8:
451 case iand16:
452 return 0xffffffffu;
453 case umin32:
454 case umin64:
455 case iand32:
456 case iand64:
457 return 0xffffffffu;
458 case fmin16:
459 return 0x7c00u; /* infinity */
460 case fmin32:
461 return 0x7f800000u; /* infinity */
462 case fmin64:
463 return idx ? 0x7ff00000u : 0u; /* infinity */
464 case fmax16:
465 return 0xfc00u; /* negative infinity */
466 case fmax32:
467 return 0xff800000u; /* negative infinity */
468 case fmax64:
469 return idx ? 0xfff00000u : 0u; /* negative infinity */
470 default:
471 unreachable("Invalid reduction operation");
472 break;
473 }
474 return 0;
475 }
476
477 void emit_ds_swizzle(Builder bld, PhysReg dst, PhysReg src, unsigned size, unsigned ds_pattern)
478 {
479 for (unsigned i = 0; i < size; i++) {
480 bld.ds(aco_opcode::ds_swizzle_b32, Definition(PhysReg{dst+i}, v1),
481 Operand(PhysReg{src+i}, v1), ds_pattern);
482 }
483 }
484
485 void emit_reduction(lower_context *ctx, aco_opcode op, ReduceOp reduce_op, unsigned cluster_size, PhysReg tmp,
486 PhysReg stmp, PhysReg vtmp, PhysReg sitmp, Operand src, Definition dst)
487 {
488 assert(cluster_size == ctx->program->wave_size || op == aco_opcode::p_reduce);
489 assert(cluster_size <= ctx->program->wave_size);
490
491 Builder bld(ctx->program, &ctx->instructions);
492
493 Operand identity[2];
494 identity[0] = Operand(get_reduction_identity(reduce_op, 0));
495 identity[1] = Operand(get_reduction_identity(reduce_op, 1));
496 Operand vcndmask_identity[2] = {identity[0], identity[1]};
497
498 /* First, copy the source to tmp and set inactive lanes to the identity */
499 bld.sop1(Builder::s_or_saveexec, Definition(stmp, bld.lm), Definition(scc, s1), Definition(exec, bld.lm), Operand(UINT64_MAX), Operand(exec, bld.lm));
500
501 for (unsigned i = 0; i < src.size(); i++) {
502 /* p_exclusive_scan needs it to be a sgpr or inline constant for the v_writelane_b32
503 * except on GFX10, where v_writelane_b32 can take a literal. */
504 if (identity[i].isLiteral() && op == aco_opcode::p_exclusive_scan && ctx->program->chip_class < GFX10) {
505 bld.sop1(aco_opcode::s_mov_b32, Definition(PhysReg{sitmp+i}, s1), identity[i]);
506 identity[i] = Operand(PhysReg{sitmp+i}, s1);
507
508 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]);
509 vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1);
510 } else if (identity[i].isLiteral()) {
511 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]);
512 vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1);
513 }
514 }
515
516 for (unsigned i = 0; i < src.size(); i++) {
517 bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(PhysReg{tmp + i}, v1),
518 vcndmask_identity[i], Operand(PhysReg{src.physReg() + i}, v1),
519 Operand(stmp, bld.lm));
520 }
521
522 if (src.regClass() == v1b) {
523 aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
524 sdwa->operands[0] = Operand(PhysReg{tmp}, v1);
525 sdwa->definitions[0] = Definition(PhysReg{tmp}, v1);
526 if (reduce_op == imin8 || reduce_op == imax8)
527 sdwa->sel[0] = sdwa_sbyte;
528 else
529 sdwa->sel[0] = sdwa_ubyte;
530 sdwa->dst_sel = sdwa_udword;
531 bld.insert(std::move(sdwa));
532 }
533
534 bool reduction_needs_last_op = false;
535 switch (op) {
536 case aco_opcode::p_reduce:
537 if (cluster_size == 1) break;
538
539 if (ctx->program->chip_class <= GFX7) {
540 reduction_needs_last_op = true;
541 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(1, 0, 3, 2));
542 if (cluster_size == 2) break;
543 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
544 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(2, 3, 0, 1));
545 if (cluster_size == 4) break;
546 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
547 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x04));
548 if (cluster_size == 8) break;
549 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
550 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x08));
551 if (cluster_size == 16) break;
552 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
553 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10));
554 if (cluster_size == 32) break;
555 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
556 for (unsigned i = 0; i < src.size(); i++)
557 bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp + i}, v1), Operand(0u));
558 // TODO: it would be more effective to do the last reduction step on SALU
559 emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size());
560 reduction_needs_last_op = false;
561 break;
562 }
563
564 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(1, 0, 3, 2), 0xf, 0xf, false);
565 if (cluster_size == 2) break;
566 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(2, 3, 0, 1), 0xf, 0xf, false);
567 if (cluster_size == 4) break;
568 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_half_mirror, 0xf, 0xf, false);
569 if (cluster_size == 8) break;
570 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_mirror, 0xf, 0xf, false);
571 if (cluster_size == 16) break;
572
573 if (ctx->program->chip_class >= GFX10) {
574 /* GFX10+ doesn't support row_bcast15 and row_bcast31 */
575 for (unsigned i = 0; i < src.size(); i++)
576 bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1), Operand(0u), Operand(0u));
577
578 if (cluster_size == 32) {
579 reduction_needs_last_op = true;
580 break;
581 }
582
583 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
584 for (unsigned i = 0; i < src.size(); i++)
585 bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(0u));
586 // TODO: it would be more effective to do the last reduction step on SALU
587 emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size());
588 break;
589 }
590
591 if (cluster_size == 32) {
592 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10));
593 reduction_needs_last_op = true;
594 break;
595 }
596 assert(cluster_size == 64);
597 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast15, 0xa, 0xf, false);
598 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast31, 0xc, 0xf, false);
599 break;
600 case aco_opcode::p_exclusive_scan:
601 if (ctx->program->chip_class >= GFX10) { /* gfx10 doesn't support wf_sr1, so emulate it */
602 /* shift rows right */
603 emit_dpp_mov(ctx, vtmp, tmp, src.size(), dpp_row_sr(1), 0xf, 0xf, true);
604
605 /* fill in the gaps in rows 1 and 3 */
606 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x10000u));
607 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(0x10000u));
608 for (unsigned i = 0; i < src.size(); i++) {
609 Instruction *perm = bld.vop3(aco_opcode::v_permlanex16_b32,
610 Definition(PhysReg{vtmp+i}, v1),
611 Operand(PhysReg{tmp+i}, v1),
612 Operand(0xffffffffu), Operand(0xffffffffu)).instr;
613 static_cast<VOP3A_instruction*>(perm)->opsel = 1; /* FI (Fetch Inactive) */
614 }
615 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(UINT64_MAX));
616
617 if (ctx->program->wave_size == 64) {
618 /* fill in the gap in row 2 */
619 for (unsigned i = 0; i < src.size(); i++) {
620 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
621 bld.writelane(Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{sitmp+i}, s1), Operand(32u), Operand(PhysReg{vtmp+i}, v1));
622 }
623 }
624 std::swap(tmp, vtmp);
625 } else if (ctx->program->chip_class >= GFX8) {
626 emit_dpp_mov(ctx, tmp, tmp, src.size(), dpp_wf_sr1, 0xf, 0xf, true);
627 } else {
628 // TODO: use LDS on CS with a single write and shifted read
629 /* wavefront shift_right by 1 on SI/CI */
630 emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(0, 0, 1, 2));
631 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x07)); /* mirror(8) */
632 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x10101010u));
633 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
634 for (unsigned i = 0; i < src.size(); i++)
635 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
636
637 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
638 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x08)); /* swap(8) */
639 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x01000100u));
640 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
641 for (unsigned i = 0; i < src.size(); i++)
642 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
643
644 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
645 emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x10)); /* swap(16) */
646 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(1u), Operand(16u));
647 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(1u), Operand(16u));
648 for (unsigned i = 0; i < src.size(); i++)
649 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1));
650
651 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
652 for (unsigned i = 0; i < src.size(); i++) {
653 bld.writelane(Definition(PhysReg{vtmp+i}, v1), identity[i], Operand(0u), Operand(PhysReg{vtmp+i}, v1));
654 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(0u));
655 bld.writelane(Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{sitmp+i}, s1), Operand(32u), Operand(PhysReg{vtmp+i}, v1));
656 identity[i] = Operand(0u); /* prevent further uses of identity */
657 }
658 std::swap(tmp, vtmp);
659 }
660
661 for (unsigned i = 0; i < src.size(); i++) {
662 if (!identity[i].isConstant() || identity[i].constantValue()) { /* bound_ctrl should take care of this overwise */
663 if (ctx->program->chip_class < GFX10)
664 assert((identity[i].isConstant() && !identity[i].isLiteral()) || identity[i].physReg() == PhysReg{sitmp+i});
665 bld.writelane(Definition(PhysReg{tmp+i}, v1), identity[i], Operand(0u), Operand(PhysReg{tmp+i}, v1));
666 }
667 }
668 /* fall through */
669 case aco_opcode::p_inclusive_scan:
670 assert(cluster_size == ctx->program->wave_size);
671 if (ctx->program->chip_class <= GFX7) {
672 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1e, 0x00, 0x00));
673 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xAAAAAAAAu));
674 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
675 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
676
677 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
678 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1c, 0x01, 0x00));
679 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xCCCCCCCCu));
680 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
681 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
682
683 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
684 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x18, 0x03, 0x00));
685 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xF0F0F0F0u));
686 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
687 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
688
689 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
690 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x10, 0x07, 0x00));
691 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xFF00FF00u));
692 bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
693 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
694
695 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX));
696 emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x00, 0x0f, 0x00));
697 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(16u), Operand(16u));
698 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(16u), Operand(16u));
699 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
700
701 for (unsigned i = 0; i < src.size(); i++)
702 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
703 bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
704 emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size());
705 break;
706 }
707
708 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
709 dpp_row_sr(1), 0xf, 0xf, false, identity);
710 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
711 dpp_row_sr(2), 0xf, 0xf, false, identity);
712 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
713 dpp_row_sr(4), 0xf, 0xf, false, identity);
714 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
715 dpp_row_sr(8), 0xf, 0xf, false, identity);
716 if (ctx->program->chip_class >= GFX10) {
717 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(16u), Operand(16u));
718 bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(16u), Operand(16u));
719 for (unsigned i = 0; i < src.size(); i++) {
720 Instruction *perm = bld.vop3(aco_opcode::v_permlanex16_b32,
721 Definition(PhysReg{vtmp+i}, v1),
722 Operand(PhysReg{tmp+i}, v1),
723 Operand(0xffffffffu), Operand(0xffffffffu)).instr;
724 static_cast<VOP3A_instruction*>(perm)->opsel = 1; /* FI (Fetch Inactive) */
725 }
726 emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
727
728 if (ctx->program->wave_size == 64) {
729 bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u));
730 for (unsigned i = 0; i < src.size(); i++)
731 bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u));
732 emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size());
733 }
734 } else {
735 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
736 dpp_row_bcast15, 0xa, 0xf, false, identity);
737 emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(),
738 dpp_row_bcast31, 0xc, 0xf, false, identity);
739 }
740 break;
741 default:
742 unreachable("Invalid reduction mode");
743 }
744
745
746 if (op == aco_opcode::p_reduce) {
747 if (reduction_needs_last_op && dst.regClass().type() == RegType::vgpr) {
748 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm));
749 emit_op(ctx, dst.physReg(), tmp, vtmp, PhysReg{0}, reduce_op, src.size());
750 return;
751 }
752
753 if (reduction_needs_last_op)
754 emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
755 }
756
757 /* restore exec */
758 bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm));
759
760 if (dst.regClass().type() == RegType::sgpr) {
761 for (unsigned k = 0; k < src.size(); k++) {
762 bld.readlane(Definition(PhysReg{dst.physReg() + k}, s1),
763 Operand(PhysReg{tmp + k}, v1), Operand(ctx->program->wave_size - 1));
764 }
765 } else if (dst.physReg() != tmp) {
766 for (unsigned k = 0; k < src.size(); k++) {
767 bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{dst.physReg() + k}, v1),
768 Operand(PhysReg{tmp + k}, v1));
769 }
770 }
771 }
772
773 struct copy_operation {
774 Operand op;
775 Definition def;
776 unsigned bytes;
777 union {
778 uint8_t uses[8];
779 uint64_t is_used = 0;
780 };
781 };
782
783 void split_copy(unsigned offset, Definition *def, Operand *op, const copy_operation& src, bool ignore_uses, unsigned max_size)
784 {
785 PhysReg def_reg = src.def.physReg();
786 PhysReg op_reg = src.op.physReg();
787 def_reg.reg_b += offset;
788 op_reg.reg_b += offset;
789
790 max_size = MIN2(max_size, src.def.regClass().type() == RegType::vgpr ? 4 : 8);
791
792 /* make sure the size is a power of two and reg % bytes == 0 */
793 unsigned bytes = 1;
794 for (; bytes <= max_size; bytes *= 2) {
795 unsigned next = bytes * 2u;
796 bool can_increase = def_reg.reg_b % next == 0 &&
797 offset + next <= src.bytes && next <= max_size;
798 if (!src.op.isConstant() && can_increase)
799 can_increase = op_reg.reg_b % next == 0;
800 for (unsigned i = 0; !ignore_uses && can_increase && (i < bytes); i++)
801 can_increase = (src.uses[offset + bytes + i] == 0) == (src.uses[offset] == 0);
802 if (!can_increase)
803 break;
804 }
805
806 RegClass def_cls = bytes % 4 == 0 ? RegClass(src.def.regClass().type(), bytes / 4u) :
807 RegClass(src.def.regClass().type(), bytes).as_subdword();
808 *def = Definition(src.def.tempId(), def_reg, def_cls);
809 if (src.op.isConstant()) {
810 assert(offset == 0 || (offset == 4 && src.op.bytes() == 8));
811 if (src.op.bytes() == 8 && bytes == 4)
812 *op = Operand(uint32_t(src.op.constantValue64() >> (offset * 8u)));
813 else
814 *op = src.op;
815 } else {
816 RegClass op_cls = bytes % 4 == 0 ? RegClass(src.op.regClass().type(), bytes / 4u) :
817 RegClass(src.op.regClass().type(), bytes).as_subdword();
818 *op = Operand(op_reg, op_cls);
819 op->setTemp(Temp(src.op.tempId(), op_cls));
820 }
821 }
822
823 uint32_t get_intersection_mask(int a_start, int a_size,
824 int b_start, int b_size)
825 {
826 int intersection_start = MAX2(b_start - a_start, 0);
827 int intersection_end = MAX2(b_start + b_size - a_start, 0);
828 if (intersection_start >= a_size || intersection_end == 0)
829 return 0;
830
831 uint32_t mask = u_bit_consecutive(0, a_size);
832 return u_bit_consecutive(intersection_start, intersection_end - intersection_start) & mask;
833 }
834
835 bool do_copy(lower_context* ctx, Builder& bld, const copy_operation& copy, bool *preserve_scc)
836 {
837 bool did_copy = false;
838 for (unsigned offset = 0; offset < copy.bytes;) {
839 if (copy.uses[offset]) {
840 offset++;
841 continue;
842 }
843
844 Definition def;
845 Operand op;
846 split_copy(offset, &def, &op, copy, false, 8);
847
848 if (def.physReg() == scc) {
849 bld.sopc(aco_opcode::s_cmp_lg_i32, def, op, Operand(0u));
850 *preserve_scc = true;
851 } else if (def.bytes() == 8 && def.getTemp().type() == RegType::sgpr) {
852 bld.sop1(aco_opcode::s_mov_b64, def, Operand(op.physReg(), s2));
853 } else {
854 bld.copy(def, op);
855 }
856
857 ctx->program->statistics[statistic_copies]++;
858
859 did_copy = true;
860 offset += def.bytes();
861 }
862 return did_copy;
863 }
864
865 void do_swap(lower_context *ctx, Builder& bld, const copy_operation& copy, bool preserve_scc, Pseudo_instruction *pi)
866 {
867 unsigned offset = 0;
868
869 if (copy.bytes == 3 && (copy.def.physReg().reg_b % 4 <= 1) &&
870 (copy.def.physReg().reg_b % 4) == (copy.op.physReg().reg_b % 4)) {
871 /* instead of doing a 2-byte and 1-byte swap, do a 4-byte swap and then fixup with a 1-byte swap */
872 PhysReg op = copy.op.physReg();
873 PhysReg def = copy.def.physReg();
874 op.reg_b &= ~0x3;
875 def.reg_b &= ~0x3;
876
877 copy_operation tmp;
878 tmp.op = Operand(op, v1);
879 tmp.def = Definition(def, v1);
880 tmp.bytes = 4;
881 memset(tmp.uses, 1, 4);
882 do_swap(ctx, bld, tmp, preserve_scc, pi);
883
884 op.reg_b += copy.def.physReg().reg_b % 4 == 0 ? 3 : 0;
885 def.reg_b += copy.def.physReg().reg_b % 4 == 0 ? 3 : 0;
886 tmp.op = Operand(op, v1b);
887 tmp.def = Definition(def, v1b);
888 tmp.bytes = 1;
889 tmp.uses[0] = 1;
890 do_swap(ctx, bld, tmp, preserve_scc, pi);
891
892 offset = copy.bytes;
893 }
894
895 for (; offset < copy.bytes;) {
896 Definition def;
897 Operand op;
898 split_copy(offset, &def, &op, copy, true, 8);
899
900 assert(op.regClass() == def.regClass());
901 Operand def_as_op = Operand(def.physReg(), def.regClass());
902 Definition op_as_def = Definition(op.physReg(), op.regClass());
903 if (ctx->program->chip_class >= GFX9 && def.regClass() == v1) {
904 bld.vop1(aco_opcode::v_swap_b32, def, op_as_def, op, def_as_op);
905 ctx->program->statistics[statistic_copies]++;
906 } else if (def.regClass() == v1) {
907 bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
908 bld.vop2(aco_opcode::v_xor_b32, def, op, def_as_op);
909 bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
910 ctx->program->statistics[statistic_copies] += 3;
911 } else if (op.physReg() == scc || def.physReg() == scc) {
912 /* we need to swap scc and another sgpr */
913 assert(!preserve_scc);
914
915 PhysReg other = op.physReg() == scc ? def.physReg() : op.physReg();
916
917 bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
918 bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(other, s1), Operand(0u));
919 bld.sop1(aco_opcode::s_mov_b32, Definition(other, s1), Operand(pi->scratch_sgpr, s1));
920 ctx->program->statistics[statistic_copies] += 3;
921 } else if (def.regClass() == s1) {
922 if (preserve_scc) {
923 bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), op);
924 bld.sop1(aco_opcode::s_mov_b32, op_as_def, def_as_op);
925 bld.sop1(aco_opcode::s_mov_b32, def, Operand(pi->scratch_sgpr, s1));
926 } else {
927 bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), op, def_as_op);
928 bld.sop2(aco_opcode::s_xor_b32, def, Definition(scc, s1), op, def_as_op);
929 bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), op, def_as_op);
930 }
931 ctx->program->statistics[statistic_copies] += 3;
932 } else if (def.regClass() == s2) {
933 if (preserve_scc)
934 bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
935 bld.sop2(aco_opcode::s_xor_b64, op_as_def, Definition(scc, s1), op, def_as_op);
936 bld.sop2(aco_opcode::s_xor_b64, def, Definition(scc, s1), op, def_as_op);
937 bld.sop2(aco_opcode::s_xor_b64, op_as_def, Definition(scc, s1), op, def_as_op);
938 if (preserve_scc)
939 bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(pi->scratch_sgpr, s1), Operand(0u));
940 ctx->program->statistics[statistic_copies] += 3;
941 } else if (ctx->program->chip_class >= GFX9 && def.bytes() == 2 && def.physReg().reg() == op.physReg().reg()) {
942 aco_ptr<VOP3P_instruction> vop3p{create_instruction<VOP3P_instruction>(aco_opcode::v_pk_add_u16, Format::VOP3P, 2, 1)};
943 vop3p->operands[0] = Operand(PhysReg{op.physReg().reg()}, v1);
944 vop3p->operands[1] = Operand(0u);
945 vop3p->definitions[0] = Definition(PhysReg{op.physReg().reg()}, v1);
946 vop3p->opsel_lo = 0x1;
947 vop3p->opsel_hi = 0x2;
948 bld.insert(std::move(vop3p));
949 } else {
950 assert(def.regClass().is_subdword());
951 bld.vop2_sdwa(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
952 bld.vop2_sdwa(aco_opcode::v_xor_b32, def, op, def_as_op);
953 bld.vop2_sdwa(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
954 ctx->program->statistics[statistic_copies] += 3;
955 }
956
957 offset += def.bytes();
958 }
959
960 /* fixup in case we swapped bytes we shouldn't have */
961 copy_operation tmp_copy = copy;
962 tmp_copy.op.setFixed(copy.def.physReg());
963 tmp_copy.def.setFixed(copy.op.physReg());
964 do_copy(ctx, bld, tmp_copy, &preserve_scc);
965 }
966
967 void handle_operands(std::map<PhysReg, copy_operation>& copy_map, lower_context* ctx, chip_class chip_class, Pseudo_instruction *pi)
968 {
969 Builder bld(ctx->program, &ctx->instructions);
970 aco_ptr<Instruction> mov;
971 std::map<PhysReg, copy_operation>::iterator it = copy_map.begin();
972 std::map<PhysReg, copy_operation>::iterator target;
973 bool writes_scc = false;
974
975 /* count the number of uses for each dst reg */
976 while (it != copy_map.end()) {
977
978 if (it->second.def.physReg() == scc)
979 writes_scc = true;
980
981 assert(!pi->tmp_in_scc || !(it->second.def.physReg() == pi->scratch_sgpr));
982
983 /* if src and dst reg are the same, remove operation */
984 if (it->first == it->second.op.physReg()) {
985 it = copy_map.erase(it);
986 continue;
987 }
988
989 /* split large copies */
990 if (it->second.bytes > 8) {
991 assert(!it->second.op.isConstant());
992 assert(!it->second.def.regClass().is_subdword());
993 RegClass rc = RegClass(it->second.def.regClass().type(), it->second.def.size() - 2);
994 Definition hi_def = Definition(PhysReg{it->first + 2}, rc);
995 rc = RegClass(it->second.op.regClass().type(), it->second.op.size() - 2);
996 Operand hi_op = Operand(PhysReg{it->second.op.physReg() + 2}, rc);
997 copy_operation copy = {hi_op, hi_def, it->second.bytes - 8};
998 copy_map[hi_def.physReg()] = copy;
999 assert(it->second.op.physReg().byte() == 0 && it->second.def.physReg().byte() == 0);
1000 it->second.op = Operand(it->second.op.physReg(), it->second.op.regClass().type() == RegType::sgpr ? s2 : v2);
1001 it->second.def = Definition(it->second.def.physReg(), it->second.def.regClass().type() == RegType::sgpr ? s2 : v2);
1002 it->second.bytes = 8;
1003 }
1004
1005 /* check if the definition reg is used by another copy operation */
1006 for (std::pair<const PhysReg, copy_operation>& copy : copy_map) {
1007 if (copy.second.op.isConstant())
1008 continue;
1009 for (uint16_t i = 0; i < it->second.bytes; i++) {
1010 /* distance might underflow */
1011 unsigned distance = it->first.reg_b + i - copy.second.op.physReg().reg_b;
1012 if (distance < copy.second.bytes)
1013 it->second.uses[i] += 1;
1014 }
1015 }
1016
1017 ++it;
1018 }
1019
1020 /* first, handle paths in the location transfer graph */
1021 bool preserve_scc = pi->tmp_in_scc && !writes_scc;
1022 it = copy_map.begin();
1023 while (it != copy_map.end()) {
1024
1025 /* try to coalesce 32-bit sgpr copies to 64-bit copies */
1026 if (it->second.is_used == 0 &&
1027 it->second.def.getTemp().type() == RegType::sgpr && it->second.bytes == 4 &&
1028 !it->second.op.isConstant() && it->first % 2 == it->second.op.physReg() % 2) {
1029
1030 PhysReg other_def_reg = PhysReg{it->first % 2 ? it->first - 1 : it->first + 1};
1031 PhysReg other_op_reg = PhysReg{it->first % 2 ? it->second.op.physReg() - 1 : it->second.op.physReg() + 1};
1032 std::map<PhysReg, copy_operation>::iterator other = copy_map.find(other_def_reg);
1033
1034 if (other != copy_map.end() && !other->second.is_used && other->second.bytes == 4 &&
1035 other->second.op.physReg() == other_op_reg && !other->second.op.isConstant()) {
1036 std::map<PhysReg, copy_operation>::iterator to_erase = it->first % 2 ? it : other;
1037 it = it->first % 2 ? other : it;
1038 copy_map.erase(to_erase);
1039 it->second.bytes = 8;
1040 }
1041 }
1042 // TODO: try to coalesce subdword copies
1043
1044 /* find portions where the target reg is not used as operand for any other copy */
1045 if (it->second.is_used) {
1046 if (it->second.op.isConstant()) {
1047 /* we have to skip constants until is_used=0 */
1048 ++it;
1049 continue;
1050 }
1051
1052 unsigned has_zero_use_bytes = 0;
1053 for (unsigned i = 0; i < it->second.bytes; i++)
1054 has_zero_use_bytes |= (it->second.uses[i] == 0) << i;
1055
1056 if (has_zero_use_bytes) {
1057 /* Skipping partial copying and doing a v_swap_b32 and then fixup
1058 * copies is usually beneficial for sub-dword copies, but if doing
1059 * a partial copy allows further copies, it should be done instead. */
1060 bool partial_copy = (has_zero_use_bytes == 0xf) || (has_zero_use_bytes == 0xf0);
1061 for (std::pair<const PhysReg, copy_operation>& copy : copy_map) {
1062 if (partial_copy)
1063 break;
1064 for (uint16_t i = 0; i < copy.second.bytes; i++) {
1065 /* distance might underflow */
1066 unsigned distance = copy.first.reg_b + i - it->second.op.physReg().reg_b;
1067 if (distance < it->second.bytes && copy.second.uses[i] == 1 &&
1068 !it->second.uses[distance])
1069 partial_copy = true;
1070 }
1071 }
1072
1073 if (!partial_copy) {
1074 ++it;
1075 continue;
1076 }
1077 } else {
1078 /* full target reg is used: register swapping needed */
1079 ++it;
1080 continue;
1081 }
1082 }
1083
1084 bool did_copy = do_copy(ctx, bld, it->second, &preserve_scc);
1085
1086 std::pair<PhysReg, copy_operation> copy = *it;
1087
1088 if (it->second.is_used == 0) {
1089 /* the target reg is not used as operand for any other copy, so we
1090 * copied to all of it */
1091 copy_map.erase(it);
1092 it = copy_map.begin();
1093 } else {
1094 /* we only performed some portions of this copy, so split it to only
1095 * leave the portions that still need to be done */
1096 copy_operation original = it->second; /* the map insertion below can overwrite this */
1097 copy_map.erase(it);
1098 for (unsigned offset = 0; offset < original.bytes;) {
1099 if (original.uses[offset] == 0) {
1100 offset++;
1101 continue;
1102 }
1103 Definition def;
1104 Operand op;
1105 split_copy(offset, &def, &op, original, false, 8);
1106
1107 copy_operation copy = {op, def, def.bytes()};
1108 for (unsigned i = 0; i < copy.bytes; i++)
1109 copy.uses[i] = original.uses[i + offset];
1110 copy_map[def.physReg()] = copy;
1111
1112 offset += def.bytes();
1113 }
1114
1115 it = copy_map.begin();
1116 }
1117
1118 /* Reduce the number of uses of the operand reg by one. Do this after
1119 * splitting the copy or removing it in case the copy writes to it's own
1120 * operand (for example, v[7:8] = v[8:9]) */
1121 if (did_copy && !copy.second.op.isConstant()) {
1122 for (std::pair<const PhysReg, copy_operation>& other : copy_map) {
1123 for (uint16_t i = 0; i < other.second.bytes; i++) {
1124 /* distance might underflow */
1125 unsigned distance = other.first.reg_b + i - copy.second.op.physReg().reg_b;
1126 if (distance < copy.second.bytes && !copy.second.uses[distance])
1127 other.second.uses[i] -= 1;
1128 }
1129 }
1130 }
1131 }
1132
1133 if (copy_map.empty())
1134 return;
1135
1136 /* all target regs are needed as operand somewhere which means, all entries are part of a cycle */
1137 unsigned largest = 0;
1138 for (const std::pair<PhysReg, copy_operation>& op : copy_map)
1139 largest = MAX2(largest, op.second.bytes);
1140
1141 while (!copy_map.empty()) {
1142
1143 /* Perform larger swaps first, because larger swaps swaps can make other
1144 * swaps unnecessary. */
1145 auto it = copy_map.begin();
1146 for (auto it2 = copy_map.begin(); it2 != copy_map.end(); ++it2) {
1147 if (it2->second.bytes > it->second.bytes) {
1148 it = it2;
1149 if (it->second.bytes == largest)
1150 break;
1151 }
1152 }
1153
1154 /* should already be done */
1155 assert(!it->second.op.isConstant());
1156
1157 assert(it->second.op.isFixed());
1158 assert(it->second.def.regClass() == it->second.op.regClass());
1159
1160 if (it->first == it->second.op.physReg()) {
1161 copy_map.erase(it);
1162 continue;
1163 }
1164
1165 if (preserve_scc && it->second.def.getTemp().type() == RegType::sgpr)
1166 assert(!(it->second.def.physReg() == pi->scratch_sgpr));
1167
1168 /* to resolve the cycle, we have to swap the src reg with the dst reg */
1169 copy_operation swap = it->second;
1170
1171 /* if this is self-intersecting, we have to split it because
1172 * self-intersecting swaps don't make sense */
1173 PhysReg lower = swap.def.physReg();
1174 PhysReg higher = swap.op.physReg();
1175 if (lower.reg_b > higher.reg_b)
1176 std::swap(lower, higher);
1177 if (higher.reg_b - lower.reg_b < (int)swap.bytes) {
1178 unsigned offset = higher.reg_b - lower.reg_b;
1179 RegType type = swap.def.regClass().type();
1180
1181 copy_operation middle;
1182 lower.reg_b += offset;
1183 higher.reg_b += offset;
1184 middle.bytes = swap.bytes - offset * 2;
1185 memcpy(middle.uses, swap.uses + offset, middle.bytes);
1186 middle.op = Operand(lower, RegClass::get(type, middle.bytes));
1187 middle.def = Definition(higher, RegClass::get(type, middle.bytes));
1188 copy_map[higher] = middle;
1189
1190 copy_operation end;
1191 lower.reg_b += middle.bytes;
1192 higher.reg_b += middle.bytes;
1193 end.bytes = swap.bytes - (offset + middle.bytes);
1194 memcpy(end.uses, swap.uses + offset + middle.bytes, end.bytes);
1195 end.op = Operand(lower, RegClass::get(type, end.bytes));
1196 end.def = Definition(higher, RegClass::get(type, end.bytes));
1197 copy_map[higher] = end;
1198
1199 memset(swap.uses + offset, 0, swap.bytes - offset);
1200 swap.bytes = offset;
1201 }
1202
1203 do_swap(ctx, bld, swap, preserve_scc, pi);
1204
1205 /* remove from map */
1206 copy_map.erase(it);
1207
1208 /* change the operand reg of the target's uses and split uses if needed */
1209 target = copy_map.begin();
1210 uint32_t bytes_left = u_bit_consecutive(0, swap.bytes);
1211 for (; target != copy_map.end(); ++target) {
1212 if (target->second.op.physReg() == swap.def.physReg() && swap.bytes == target->second.bytes) {
1213 target->second.op.setFixed(swap.op.physReg());
1214 break;
1215 }
1216
1217 uint32_t imask = get_intersection_mask(swap.def.physReg().reg_b, swap.bytes,
1218 target->second.op.physReg().reg_b, target->second.bytes);
1219
1220 if (!imask)
1221 continue;
1222
1223 assert(target->second.bytes < swap.bytes);
1224
1225 int offset = (int)target->second.op.physReg().reg_b - (int)swap.def.physReg().reg_b;
1226
1227 /* split and update the middle (the portion that reads the swap's
1228 * definition) to read the swap's operand instead */
1229 int target_op_end = target->second.op.physReg().reg_b + target->second.bytes;
1230 int swap_def_end = swap.def.physReg().reg_b + swap.bytes;
1231 int before_bytes = MAX2(-offset, 0);
1232 int after_bytes = MAX2(target_op_end - swap_def_end, 0);
1233 int middle_bytes = target->second.bytes - before_bytes - after_bytes;
1234
1235 if (after_bytes) {
1236 unsigned after_offset = before_bytes + middle_bytes;
1237 assert(after_offset > 0);
1238 copy_operation copy;
1239 copy.bytes = after_bytes;
1240 memcpy(copy.uses, target->second.uses + after_offset, copy.bytes);
1241 RegClass rc = RegClass::get(target->second.op.regClass().type(), after_bytes);
1242 copy.op = Operand(target->second.op.physReg().advance(after_offset), rc);
1243 copy.def = Definition(target->second.def.physReg().advance(after_offset), rc);
1244 copy_map[copy.def.physReg()] = copy;
1245 }
1246
1247 if (middle_bytes) {
1248 copy_operation copy;
1249 copy.bytes = middle_bytes;
1250 memcpy(copy.uses, target->second.uses + before_bytes, copy.bytes);
1251 RegClass rc = RegClass::get(target->second.op.regClass().type(), middle_bytes);
1252 copy.op = Operand(swap.op.physReg().advance(MAX2(offset, 0)), rc);
1253 copy.def = Definition(target->second.def.physReg().advance(before_bytes), rc);
1254 copy_map[copy.def.physReg()] = copy;
1255 }
1256
1257 if (before_bytes) {
1258 copy_operation copy;
1259 target->second.bytes = before_bytes;
1260 RegClass rc = RegClass::get(target->second.op.regClass().type(), before_bytes);
1261 target->second.op = Operand(target->second.op.physReg(), rc);
1262 target->second.def = Definition(target->second.def.physReg(), rc);
1263 memset(target->second.uses + target->second.bytes, 0, 8 - target->second.bytes);
1264 }
1265
1266 /* break early since we know each byte of the swap's definition is used
1267 * at most once */
1268 bytes_left &= ~imask;
1269 if (!bytes_left)
1270 break;
1271 }
1272 }
1273 }
1274
1275 void lower_to_hw_instr(Program* program)
1276 {
1277 Block *discard_block = NULL;
1278
1279 for (size_t i = 0; i < program->blocks.size(); i++)
1280 {
1281 Block *block = &program->blocks[i];
1282 lower_context ctx;
1283 ctx.program = program;
1284 Builder bld(program, &ctx.instructions);
1285
1286 bool set_mode = i == 0 && block->fp_mode.val != program->config->float_mode;
1287 for (unsigned pred : block->linear_preds) {
1288 if (program->blocks[pred].fp_mode.val != block->fp_mode.val) {
1289 set_mode = true;
1290 break;
1291 }
1292 }
1293 if (set_mode) {
1294 /* only allow changing modes at top-level blocks so this doesn't break
1295 * the "jump over empty blocks" optimization */
1296 assert(block->kind & block_kind_top_level);
1297 uint32_t mode = block->fp_mode.val;
1298 /* "((size - 1) << 11) | register" (MODE is encoded as register 1) */
1299 bld.sopk(aco_opcode::s_setreg_imm32_b32, Operand(mode), (7 << 11) | 1);
1300 }
1301
1302 for (size_t j = 0; j < block->instructions.size(); j++) {
1303 aco_ptr<Instruction>& instr = block->instructions[j];
1304 aco_ptr<Instruction> mov;
1305 if (instr->format == Format::PSEUDO) {
1306 Pseudo_instruction *pi = (Pseudo_instruction*)instr.get();
1307
1308 switch (instr->opcode)
1309 {
1310 case aco_opcode::p_extract_vector:
1311 {
1312 PhysReg reg = instr->operands[0].physReg();
1313 Definition& def = instr->definitions[0];
1314 reg.reg_b += instr->operands[1].constantValue() * def.bytes();
1315
1316 if (reg == def.physReg())
1317 break;
1318
1319 RegClass op_rc = def.regClass().is_subdword() ? def.regClass() :
1320 RegClass(instr->operands[0].getTemp().type(), def.size());
1321 std::map<PhysReg, copy_operation> copy_operations;
1322 copy_operations[def.physReg()] = {Operand(reg, op_rc), def, def.bytes()};
1323 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1324 break;
1325 }
1326 case aco_opcode::p_create_vector:
1327 {
1328 std::map<PhysReg, copy_operation> copy_operations;
1329 PhysReg reg = instr->definitions[0].physReg();
1330
1331 for (const Operand& op : instr->operands) {
1332 if (op.isConstant()) {
1333 const Definition def = Definition(reg, RegClass(instr->definitions[0].getTemp().type(), op.size()));
1334 copy_operations[reg] = {op, def, op.bytes()};
1335 reg.reg_b += op.bytes();
1336 continue;
1337 }
1338 if (op.isUndefined()) {
1339 // TODO: coalesce subdword copies if dst byte is 0
1340 reg.reg_b += op.bytes();
1341 continue;
1342 }
1343
1344 RegClass rc_def = op.regClass().is_subdword() ? op.regClass() :
1345 RegClass(instr->definitions[0].getTemp().type(), op.size());
1346 const Definition def = Definition(reg, rc_def);
1347 copy_operations[def.physReg()] = {op, def, op.bytes()};
1348 reg.reg_b += op.bytes();
1349 }
1350 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1351 break;
1352 }
1353 case aco_opcode::p_split_vector:
1354 {
1355 std::map<PhysReg, copy_operation> copy_operations;
1356 PhysReg reg = instr->operands[0].physReg();
1357
1358 for (const Definition& def : instr->definitions) {
1359 RegClass rc_op = def.regClass().is_subdword() ? def.regClass() :
1360 RegClass(instr->operands[0].getTemp().type(), def.size());
1361 const Operand op = Operand(reg, rc_op);
1362 copy_operations[def.physReg()] = {op, def, def.bytes()};
1363 reg.reg_b += def.bytes();
1364 }
1365 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1366 break;
1367 }
1368 case aco_opcode::p_parallelcopy:
1369 case aco_opcode::p_wqm:
1370 {
1371 std::map<PhysReg, copy_operation> copy_operations;
1372 for (unsigned i = 0; i < instr->operands.size(); i++) {
1373 assert(instr->definitions[i].bytes() == instr->operands[i].bytes());
1374 copy_operations[instr->definitions[i].physReg()] = {instr->operands[i], instr->definitions[i], instr->operands[i].bytes()};
1375 }
1376 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1377 break;
1378 }
1379 case aco_opcode::p_exit_early_if:
1380 {
1381 /* don't bother with an early exit near the end of the program */
1382 if ((block->instructions.size() - 1 - j) <= 4 &&
1383 block->instructions.back()->opcode == aco_opcode::s_endpgm) {
1384 unsigned null_exp_dest = (ctx.program->stage & hw_fs) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
1385 bool ignore_early_exit = true;
1386
1387 for (unsigned k = j + 1; k < block->instructions.size(); ++k) {
1388 const aco_ptr<Instruction> &instr = block->instructions[k];
1389 if (instr->opcode == aco_opcode::s_endpgm ||
1390 instr->opcode == aco_opcode::p_logical_end)
1391 continue;
1392 else if (instr->opcode == aco_opcode::exp &&
1393 static_cast<Export_instruction *>(instr.get())->dest == null_exp_dest)
1394 continue;
1395 else if (instr->opcode == aco_opcode::p_parallelcopy &&
1396 instr->definitions[0].isFixed() &&
1397 instr->definitions[0].physReg() == exec)
1398 continue;
1399
1400 ignore_early_exit = false;
1401 }
1402
1403 if (ignore_early_exit)
1404 break;
1405 }
1406
1407 if (!discard_block) {
1408 discard_block = program->create_and_insert_block();
1409 block = &program->blocks[i];
1410
1411 bld.reset(discard_block);
1412 bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1),
1413 0, V_008DFC_SQ_EXP_NULL, false, true, true);
1414 if (program->wb_smem_l1_on_end)
1415 bld.smem(aco_opcode::s_dcache_wb);
1416 bld.sopp(aco_opcode::s_endpgm);
1417
1418 bld.reset(&ctx.instructions);
1419 }
1420
1421 //TODO: exec can be zero here with block_kind_discard
1422
1423 assert(instr->operands[0].physReg() == scc);
1424 bld.sopp(aco_opcode::s_cbranch_scc0, instr->operands[0], discard_block->index);
1425
1426 discard_block->linear_preds.push_back(block->index);
1427 block->linear_succs.push_back(discard_block->index);
1428 break;
1429 }
1430 case aco_opcode::p_spill:
1431 {
1432 assert(instr->operands[0].regClass() == v1.as_linear());
1433 for (unsigned i = 0; i < instr->operands[2].size(); i++)
1434 bld.writelane(bld.def(v1, instr->operands[0].physReg()),
1435 Operand(PhysReg{instr->operands[2].physReg() + i}, s1),
1436 Operand(instr->operands[1].constantValue() + i),
1437 instr->operands[0]);
1438 break;
1439 }
1440 case aco_opcode::p_reload:
1441 {
1442 assert(instr->operands[0].regClass() == v1.as_linear());
1443 for (unsigned i = 0; i < instr->definitions[0].size(); i++)
1444 bld.readlane(bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
1445 instr->operands[0],
1446 Operand(instr->operands[1].constantValue() + i));
1447 break;
1448 }
1449 case aco_opcode::p_as_uniform:
1450 {
1451 if (instr->operands[0].isConstant() || instr->operands[0].regClass().type() == RegType::sgpr) {
1452 std::map<PhysReg, copy_operation> copy_operations;
1453 copy_operations[instr->definitions[0].physReg()] = {instr->operands[0], instr->definitions[0], instr->definitions[0].bytes()};
1454 handle_operands(copy_operations, &ctx, program->chip_class, pi);
1455 } else {
1456 assert(instr->operands[0].regClass().type() == RegType::vgpr);
1457 assert(instr->definitions[0].regClass().type() == RegType::sgpr);
1458 assert(instr->operands[0].size() == instr->definitions[0].size());
1459 for (unsigned i = 0; i < instr->definitions[0].size(); i++) {
1460 bld.vop1(aco_opcode::v_readfirstlane_b32,
1461 bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
1462 Operand(PhysReg{instr->operands[0].physReg() + i}, v1));
1463 }
1464 }
1465 break;
1466 }
1467 default:
1468 break;
1469 }
1470 } else if (instr->format == Format::PSEUDO_BRANCH) {
1471 Pseudo_branch_instruction* branch = static_cast<Pseudo_branch_instruction*>(instr.get());
1472 /* check if all blocks from current to target are empty */
1473 bool can_remove = block->index < branch->target[0];
1474 for (unsigned i = block->index + 1; can_remove && i < branch->target[0]; i++) {
1475 if (program->blocks[i].instructions.size())
1476 can_remove = false;
1477 }
1478 if (can_remove)
1479 continue;
1480
1481 switch (instr->opcode) {
1482 case aco_opcode::p_branch:
1483 assert(block->linear_succs[0] == branch->target[0]);
1484 bld.sopp(aco_opcode::s_branch, branch->target[0]);
1485 break;
1486 case aco_opcode::p_cbranch_nz:
1487 assert(block->linear_succs[1] == branch->target[0]);
1488 if (branch->operands[0].physReg() == exec)
1489 bld.sopp(aco_opcode::s_cbranch_execnz, branch->target[0]);
1490 else if (branch->operands[0].physReg() == vcc)
1491 bld.sopp(aco_opcode::s_cbranch_vccnz, branch->target[0]);
1492 else {
1493 assert(branch->operands[0].physReg() == scc);
1494 bld.sopp(aco_opcode::s_cbranch_scc1, branch->target[0]);
1495 }
1496 break;
1497 case aco_opcode::p_cbranch_z:
1498 assert(block->linear_succs[1] == branch->target[0]);
1499 if (branch->operands[0].physReg() == exec)
1500 bld.sopp(aco_opcode::s_cbranch_execz, branch->target[0]);
1501 else if (branch->operands[0].physReg() == vcc)
1502 bld.sopp(aco_opcode::s_cbranch_vccz, branch->target[0]);
1503 else {
1504 assert(branch->operands[0].physReg() == scc);
1505 bld.sopp(aco_opcode::s_cbranch_scc0, branch->target[0]);
1506 }
1507 break;
1508 default:
1509 unreachable("Unknown Pseudo branch instruction!");
1510 }
1511
1512 } else if (instr->format == Format::PSEUDO_REDUCTION) {
1513 Pseudo_reduction_instruction* reduce = static_cast<Pseudo_reduction_instruction*>(instr.get());
1514 if (reduce->reduce_op == gfx10_wave64_bpermute) {
1515 /* Only makes sense on GFX10 wave64 */
1516 assert(program->chip_class >= GFX10);
1517 assert(program->info->wave_size == 64);
1518 assert(instr->definitions[0].regClass() == v1); /* Destination */
1519 assert(instr->definitions[1].regClass() == s2); /* Temp EXEC */
1520 assert(instr->definitions[1].physReg() != vcc);
1521 assert(instr->definitions[2].physReg() == scc); /* SCC clobber */
1522 assert(instr->operands[0].physReg() == vcc); /* Compare */
1523 assert(instr->operands[1].regClass() == v2.as_linear()); /* Temp VGPR pair */
1524 assert(instr->operands[2].regClass() == v1); /* Indices x4 */
1525 assert(instr->operands[3].bytes() <= 4); /* Indices x4 */
1526
1527 PhysReg shared_vgpr_reg_lo = PhysReg(align(program->config->num_vgprs, 4) + 256);
1528 PhysReg shared_vgpr_reg_hi = PhysReg(shared_vgpr_reg_lo + 1);
1529 Operand compare = instr->operands[0];
1530 Operand tmp1(instr->operands[1].physReg(), v1);
1531 Operand tmp2(PhysReg(instr->operands[1].physReg() + 1), v1);
1532 Operand index_x4 = instr->operands[2];
1533 Operand input_data = instr->operands[3];
1534 Definition shared_vgpr_lo(shared_vgpr_reg_lo, v1);
1535 Definition shared_vgpr_hi(shared_vgpr_reg_hi, v1);
1536 Definition def_temp1(tmp1.physReg(), v1);
1537 Definition def_temp2(tmp2.physReg(), v1);
1538
1539 /* Save EXEC and set it for all lanes */
1540 bld.sop1(aco_opcode::s_or_saveexec_b64, instr->definitions[1], instr->definitions[2],
1541 Definition(exec, s2), Operand((uint64_t)-1), Operand(exec, s2));
1542
1543 /* HI: Copy data from high lanes 32-63 to shared vgpr */
1544 bld.vop1_dpp(aco_opcode::v_mov_b32, shared_vgpr_hi, input_data, dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false);
1545
1546 /* LO: Copy data from low lanes 0-31 to shared vgpr */
1547 bld.vop1_dpp(aco_opcode::v_mov_b32, shared_vgpr_lo, input_data, dpp_quad_perm(0, 1, 2, 3), 0x3, 0xf, false);
1548 /* LO: Copy shared vgpr (high lanes' data) to output vgpr */
1549 bld.vop1_dpp(aco_opcode::v_mov_b32, def_temp1, Operand(shared_vgpr_reg_hi, v1), dpp_quad_perm(0, 1, 2, 3), 0x3, 0xf, false);
1550
1551 /* HI: Copy shared vgpr (low lanes' data) to output vgpr */
1552 bld.vop1_dpp(aco_opcode::v_mov_b32, def_temp1, Operand(shared_vgpr_reg_lo, v1), dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false);
1553
1554 /* Permute the original input */
1555 bld.ds(aco_opcode::ds_bpermute_b32, def_temp2, index_x4, input_data);
1556 /* Permute the swapped input */
1557 bld.ds(aco_opcode::ds_bpermute_b32, def_temp1, index_x4, tmp1);
1558
1559 /* Restore saved EXEC */
1560 bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(instr->definitions[1].physReg(), s2));
1561 /* Choose whether to use the original or swapped */
1562 bld.vop2(aco_opcode::v_cndmask_b32, instr->definitions[0], tmp1, tmp2, compare);
1563 } else {
1564 emit_reduction(&ctx, reduce->opcode, reduce->reduce_op, reduce->cluster_size,
1565 reduce->operands[1].physReg(), // tmp
1566 reduce->definitions[1].physReg(), // stmp
1567 reduce->operands[2].physReg(), // vtmp
1568 reduce->definitions[2].physReg(), // sitmp
1569 reduce->operands[0], reduce->definitions[0]);
1570 }
1571 } else {
1572 ctx.instructions.emplace_back(std::move(instr));
1573 }
1574
1575 }
1576 block->instructions.swap(ctx.instructions);
1577 }
1578 }
1579
1580 }