aco/wave32: Change uniform bool optimization to work with wave32.
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint32_t literal_idx;
56 bool needs_vop3;
57 bool check_literal;
58
59 mad_info(aco_ptr<Instruction> instr, uint32_t id, bool vop3)
60 : add_instr(std::move(instr)), mul_temp_id(id), needs_vop3(vop3), check_literal(false) {}
61 };
62
63 enum Label {
64 label_vec = 1 << 0,
65 label_constant = 1 << 1,
66 label_abs = 1 << 2,
67 label_neg = 1 << 3,
68 label_mul = 1 << 4,
69 label_temp = 1 << 5,
70 label_literal = 1 << 6,
71 label_mad = 1 << 7,
72 label_omod2 = 1 << 8,
73 label_omod4 = 1 << 9,
74 label_omod5 = 1 << 10,
75 label_omod_success = 1 << 11,
76 label_clamp = 1 << 12,
77 label_clamp_success = 1 << 13,
78 label_undefined = 1 << 14,
79 label_vcc = 1 << 15,
80 label_b2f = 1 << 16,
81 label_add_sub = 1 << 17,
82 label_bitwise = 1 << 18,
83 label_minmax = 1 << 19,
84 label_fcmp = 1 << 20,
85 label_uniform_bool = 1 << 21,
86 };
87
88 static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success | label_add_sub | label_bitwise | label_minmax | label_fcmp;
89 static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool;
90 static constexpr uint32_t val_labels = label_constant | label_literal | label_mad;
91
92 struct ssa_info {
93 uint32_t val;
94 union {
95 Temp temp;
96 Instruction* instr;
97 };
98 uint32_t label;
99
100 void add_label(Label new_label)
101 {
102 /* Since all labels which use "instr" use it for the same thing
103 * (indicating the defining instruction), there is no need to clear
104 * any other instr labels. */
105 if (new_label & instr_labels)
106 label &= ~temp_labels; /* instr and temp alias */
107
108 if (new_label & temp_labels) {
109 label &= ~temp_labels;
110 label &= ~instr_labels; /* instr and temp alias */
111 }
112
113 if (new_label & val_labels)
114 label &= ~val_labels;
115
116 label |= new_label;
117 }
118
119 void set_vec(Instruction* vec)
120 {
121 add_label(label_vec);
122 instr = vec;
123 }
124
125 bool is_vec()
126 {
127 return label & label_vec;
128 }
129
130 void set_constant(uint32_t constant)
131 {
132 add_label(label_constant);
133 val = constant;
134 }
135
136 bool is_constant()
137 {
138 return label & label_constant;
139 }
140
141 void set_abs(Temp abs_temp)
142 {
143 add_label(label_abs);
144 temp = abs_temp;
145 }
146
147 bool is_abs()
148 {
149 return label & label_abs;
150 }
151
152 void set_neg(Temp neg_temp)
153 {
154 add_label(label_neg);
155 temp = neg_temp;
156 }
157
158 bool is_neg()
159 {
160 return label & label_neg;
161 }
162
163 void set_neg_abs(Temp neg_abs_temp)
164 {
165 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
166 temp = neg_abs_temp;
167 }
168
169 void set_mul(Instruction* mul)
170 {
171 add_label(label_mul);
172 instr = mul;
173 }
174
175 bool is_mul()
176 {
177 return label & label_mul;
178 }
179
180 void set_temp(Temp tmp)
181 {
182 add_label(label_temp);
183 temp = tmp;
184 }
185
186 bool is_temp()
187 {
188 return label & label_temp;
189 }
190
191 void set_literal(uint32_t lit)
192 {
193 add_label(label_literal);
194 val = lit;
195 }
196
197 bool is_literal()
198 {
199 return label & label_literal;
200 }
201
202 void set_mad(Instruction* mad, uint32_t mad_info_idx)
203 {
204 add_label(label_mad);
205 val = mad_info_idx;
206 instr = mad;
207 }
208
209 bool is_mad()
210 {
211 return label & label_mad;
212 }
213
214 void set_omod2()
215 {
216 add_label(label_omod2);
217 }
218
219 bool is_omod2()
220 {
221 return label & label_omod2;
222 }
223
224 void set_omod4()
225 {
226 add_label(label_omod4);
227 }
228
229 bool is_omod4()
230 {
231 return label & label_omod4;
232 }
233
234 void set_omod5()
235 {
236 add_label(label_omod5);
237 }
238
239 bool is_omod5()
240 {
241 return label & label_omod5;
242 }
243
244 void set_omod_success(Instruction* omod_instr)
245 {
246 add_label(label_omod_success);
247 instr = omod_instr;
248 }
249
250 bool is_omod_success()
251 {
252 return label & label_omod_success;
253 }
254
255 void set_clamp()
256 {
257 add_label(label_clamp);
258 }
259
260 bool is_clamp()
261 {
262 return label & label_clamp;
263 }
264
265 void set_clamp_success(Instruction* clamp_instr)
266 {
267 add_label(label_clamp_success);
268 instr = clamp_instr;
269 }
270
271 bool is_clamp_success()
272 {
273 return label & label_clamp_success;
274 }
275
276 void set_undefined()
277 {
278 add_label(label_undefined);
279 }
280
281 bool is_undefined()
282 {
283 return label & label_undefined;
284 }
285
286 void set_vcc(Temp vcc)
287 {
288 add_label(label_vcc);
289 temp = vcc;
290 }
291
292 bool is_vcc()
293 {
294 return label & label_vcc;
295 }
296
297 bool is_constant_or_literal()
298 {
299 return is_constant() || is_literal();
300 }
301
302 void set_b2f(Temp val)
303 {
304 add_label(label_b2f);
305 temp = val;
306 }
307
308 bool is_b2f()
309 {
310 return label & label_b2f;
311 }
312
313 void set_add_sub(Instruction *add_sub_instr)
314 {
315 add_label(label_add_sub);
316 instr = add_sub_instr;
317 }
318
319 bool is_add_sub()
320 {
321 return label & label_add_sub;
322 }
323
324 void set_bitwise(Instruction *bitwise_instr)
325 {
326 add_label(label_bitwise);
327 instr = bitwise_instr;
328 }
329
330 bool is_bitwise()
331 {
332 return label & label_bitwise;
333 }
334
335 void set_minmax(Instruction *minmax_instr)
336 {
337 add_label(label_minmax);
338 instr = minmax_instr;
339 }
340
341 bool is_minmax()
342 {
343 return label & label_minmax;
344 }
345
346 void set_fcmp(Instruction *fcmp_instr)
347 {
348 add_label(label_fcmp);
349 instr = fcmp_instr;
350 }
351
352 bool is_fcmp()
353 {
354 return label & label_fcmp;
355 }
356
357 void set_uniform_bool(Temp uniform_bool)
358 {
359 add_label(label_uniform_bool);
360 temp = uniform_bool;
361 }
362
363 bool is_uniform_bool()
364 {
365 return label & label_uniform_bool;
366 }
367
368 };
369
370 struct opt_ctx {
371 Program* program;
372 std::vector<aco_ptr<Instruction>> instructions;
373 ssa_info* info;
374 std::pair<uint32_t,Temp> last_literal;
375 std::vector<mad_info> mad_infos;
376 std::vector<uint16_t> uses;
377 };
378
379 bool can_swap_operands(aco_ptr<Instruction>& instr)
380 {
381 if (instr->operands[0].isConstant() ||
382 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
383 return false;
384
385 switch (instr->opcode) {
386 case aco_opcode::v_add_f32:
387 case aco_opcode::v_mul_f32:
388 case aco_opcode::v_or_b32:
389 case aco_opcode::v_and_b32:
390 case aco_opcode::v_xor_b32:
391 case aco_opcode::v_max_f32:
392 case aco_opcode::v_min_f32:
393 case aco_opcode::v_cmp_eq_f32:
394 case aco_opcode::v_cmp_lg_f32:
395 return true;
396 case aco_opcode::v_sub_f32:
397 instr->opcode = aco_opcode::v_subrev_f32;
398 return true;
399 case aco_opcode::v_cmp_lt_f32:
400 instr->opcode = aco_opcode::v_cmp_gt_f32;
401 return true;
402 case aco_opcode::v_cmp_ge_f32:
403 instr->opcode = aco_opcode::v_cmp_le_f32;
404 return true;
405 case aco_opcode::v_cmp_lt_i32:
406 instr->opcode = aco_opcode::v_cmp_gt_i32;
407 return true;
408 default:
409 return false;
410 }
411 }
412
413 bool can_use_VOP3(aco_ptr<Instruction>& instr)
414 {
415 if (instr->operands.size() && instr->operands[0].isLiteral())
416 return false;
417
418 if (instr->isDPP() || instr->isSDWA())
419 return false;
420
421 return instr->opcode != aco_opcode::v_madmk_f32 &&
422 instr->opcode != aco_opcode::v_madak_f32 &&
423 instr->opcode != aco_opcode::v_madmk_f16 &&
424 instr->opcode != aco_opcode::v_madak_f16;
425 }
426
427 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
428 {
429 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
430 instr->opcode != aco_opcode::v_readlane_b32 &&
431 instr->opcode != aco_opcode::v_writelane_b32;
432 }
433
434 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
435 {
436 if (instr->isVOP3())
437 return;
438
439 assert(!instr->operands[0].isLiteral());
440 aco_ptr<Instruction> tmp = std::move(instr);
441 Format format = asVOP3(tmp->format);
442 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
443 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
444 for (unsigned i = 0; i < instr->definitions.size(); i++) {
445 instr->definitions[i] = tmp->definitions[i];
446 if (instr->definitions[i].isTemp()) {
447 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
448 if (info.label & instr_labels && info.instr == tmp.get())
449 info.instr = instr.get();
450 }
451 }
452 }
453
454 /* only covers special cases */
455 bool can_accept_constant(aco_ptr<Instruction>& instr, unsigned operand)
456 {
457 switch (instr->opcode) {
458 case aco_opcode::v_interp_p2_f32:
459 case aco_opcode::v_mac_f32:
460 case aco_opcode::v_writelane_b32:
461 case aco_opcode::v_cndmask_b32:
462 return operand != 2;
463 case aco_opcode::s_addk_i32:
464 case aco_opcode::s_mulk_i32:
465 case aco_opcode::p_wqm:
466 case aco_opcode::p_extract_vector:
467 case aco_opcode::p_split_vector:
468 case aco_opcode::v_readlane_b32:
469 case aco_opcode::v_readfirstlane_b32:
470 return operand != 0;
471 default:
472 if ((instr->format == Format::MUBUF ||
473 instr->format == Format::MIMG) &&
474 instr->definitions.size() == 1 &&
475 instr->operands.size() == 4) {
476 return operand != 3;
477 }
478 return true;
479 }
480 }
481
482 bool valu_can_accept_literal(opt_ctx& ctx, aco_ptr<Instruction>& instr, unsigned operand)
483 {
484 /* instructions like v_cndmask_b32 can't take a literal because they always
485 * read SGPRs */
486 if (instr->operands.size() >= 3 &&
487 instr->operands[2].isTemp() && instr->operands[2].regClass().type() == RegType::sgpr)
488 return false;
489
490 // TODO: VOP3 can take a literal on GFX10
491 return !instr->isSDWA() && !instr->isDPP() && !instr->isVOP3() &&
492 operand == 0 && can_accept_constant(instr, operand);
493 }
494
495 bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
496 {
497 if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32)
498 return operand != 1;
499 return true;
500 }
501
502 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
503 {
504 Operand op = instr->operands[op_index];
505
506 if (!op.isTemp())
507 return false;
508 Temp tmp = op.getTemp();
509 if (!ctx.info[tmp.id()].is_add_sub())
510 return false;
511
512 Instruction *add_instr = ctx.info[tmp.id()].instr;
513
514 switch (add_instr->opcode) {
515 case aco_opcode::v_add_u32:
516 case aco_opcode::v_add_co_u32:
517 case aco_opcode::s_add_i32:
518 case aco_opcode::s_add_u32:
519 break;
520 default:
521 return false;
522 }
523
524 if (add_instr->usesModifiers())
525 return false;
526
527 for (unsigned i = 0; i < 2; i++) {
528 if (add_instr->operands[i].isConstant()) {
529 *offset = add_instr->operands[i].constantValue();
530 } else if (add_instr->operands[i].isTemp() &&
531 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) {
532 *offset = ctx.info[add_instr->operands[i].tempId()].val;
533 } else {
534 continue;
535 }
536 if (!add_instr->operands[!i].isTemp())
537 continue;
538
539 uint32_t offset2 = 0;
540 if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
541 *offset += offset2;
542 } else {
543 *base = add_instr->operands[!i].getTemp();
544 }
545 return true;
546 }
547
548 return false;
549 }
550
551 void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
552 {
553 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
554 ASSERTED bool all_const = false;
555 for (Operand& op : instr->operands)
556 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal());
557 perfwarn(all_const, "All instruction operands are constant", instr.get());
558 }
559
560 for (unsigned i = 0; i < instr->operands.size(); i++)
561 {
562 if (!instr->operands[i].isTemp())
563 continue;
564
565 ssa_info info = ctx.info[instr->operands[i].tempId()];
566 /* propagate undef */
567 if (info.is_undefined() && is_phi(instr))
568 instr->operands[i] = Operand(instr->operands[i].regClass());
569 /* propagate reg->reg of same type */
570 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
571 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
572 info = ctx.info[info.temp.id()];
573 }
574
575 /* SALU / PSEUDO: propagate inline constants */
576 if (instr->isSALU() || instr->format == Format::PSEUDO) {
577 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
578 instr->operands[i].setTemp(info.temp);
579 info = ctx.info[info.temp.id()];
580 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
581 /* propagate vgpr if it can take it */
582 switch (instr->opcode) {
583 case aco_opcode::p_create_vector:
584 case aco_opcode::p_split_vector:
585 case aco_opcode::p_extract_vector:
586 case aco_opcode::p_phi: {
587 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
588 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
589 if (all_vgpr) {
590 instr->operands[i] = Operand(info.temp);
591 info = ctx.info[info.temp.id()];
592 }
593 break;
594 }
595 default:
596 break;
597 }
598 }
599 if ((info.is_constant() || (info.is_literal() && instr->format == Format::PSEUDO)) && !instr->operands[i].isFixed() && can_accept_constant(instr, i)) {
600 instr->operands[i] = Operand(info.val);
601 continue;
602 }
603 }
604
605 /* VALU: propagate neg, abs & inline constants */
606 else if (instr->isVALU()) {
607 if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
608 instr->operands[i].setTemp(info.temp);
609 info = ctx.info[info.temp.id()];
610 }
611 if (info.is_abs() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
612 if (!instr->isDPP())
613 to_VOP3(ctx, instr);
614 instr->operands[i] = Operand(info.temp);
615 if (instr->isDPP())
616 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
617 else
618 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
619 }
620 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
621 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
622 instr->operands[i].setTemp(info.temp);
623 continue;
624 } else if (info.is_neg() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
625 if (!instr->isDPP())
626 to_VOP3(ctx, instr);
627 instr->operands[i].setTemp(info.temp);
628 if (instr->isDPP())
629 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
630 else
631 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
632 continue;
633 }
634 if (info.is_constant() && can_accept_constant(instr, i)) {
635 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
636 if (i == 0) {
637 instr->operands[i] = Operand(info.val);
638 continue;
639 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
640 instr->operands[i] = instr->operands[0];
641 instr->operands[0] = Operand(info.val);
642 continue;
643 } else if (can_use_VOP3(instr)) {
644 to_VOP3(ctx, instr);
645 instr->operands[i] = Operand(info.val);
646 continue;
647 }
648 }
649 }
650
651 /* MUBUF: propagate constants and combine additions */
652 else if (instr->format == Format::MUBUF) {
653 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
654 Temp base;
655 uint32_t offset;
656 while (info.is_temp())
657 info = ctx.info[info.temp.id()];
658
659 if (mubuf->offen && i == 0 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
660 assert(!mubuf->idxen);
661 instr->operands[i] = Operand(v1);
662 mubuf->offset += info.val;
663 mubuf->offen = false;
664 continue;
665 } else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
666 instr->operands[2] = Operand((uint32_t) 0);
667 mubuf->offset += info.val;
668 continue;
669 } else if (mubuf->offen && i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
670 assert(!mubuf->idxen);
671 instr->operands[i].setTemp(base);
672 mubuf->offset += offset;
673 continue;
674 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
675 instr->operands[i].setTemp(base);
676 mubuf->offset += offset;
677 continue;
678 }
679 }
680
681 /* DS: combine additions */
682 else if (instr->format == Format::DS) {
683
684 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
685 Temp base;
686 uint32_t offset;
687 if (i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == instr->operands[i].regClass()) {
688 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
689 instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
690 if (offset % 4 == 0 &&
691 ds->offset0 + (offset >> 2) <= 255 &&
692 ds->offset1 + (offset >> 2) <= 255) {
693 instr->operands[i].setTemp(base);
694 ds->offset0 += offset >> 2;
695 ds->offset1 += offset >> 2;
696 }
697 } else {
698 if (ds->offset0 + offset <= 65535) {
699 instr->operands[i].setTemp(base);
700 ds->offset0 += offset;
701 }
702 }
703 }
704 }
705
706 /* SMEM: propagate constants and combine additions */
707 else if (instr->format == Format::SMEM) {
708
709 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
710 Temp base;
711 uint32_t offset;
712 if (i == 1 && info.is_constant_or_literal() && info.val <= 0xFFFFF) {
713 instr->operands[i] = Operand(info.val);
714 continue;
715 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
716 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
717 if (soe &&
718 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() ||
719 ctx.info[smem->operands.back().tempId()].val != 0)) {
720 continue;
721 }
722 if (soe) {
723 smem->operands[1] = Operand(offset);
724 smem->operands.back() = Operand(base);
725 } else {
726 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
727 new_instr->operands[0] = smem->operands[0];
728 new_instr->operands[1] = Operand(offset);
729 if (smem->definitions.empty())
730 new_instr->operands[2] = smem->operands[2];
731 new_instr->operands.back() = Operand(base);
732 if (!smem->definitions.empty())
733 new_instr->definitions[0] = smem->definitions[0];
734 new_instr->can_reorder = smem->can_reorder;
735 new_instr->barrier = smem->barrier;
736 instr.reset(new_instr);
737 smem = static_cast<SMEM_instruction *>(instr.get());
738 }
739 continue;
740 }
741 }
742 }
743
744 /* if this instruction doesn't define anything, return */
745 if (instr->definitions.empty())
746 return;
747
748 switch (instr->opcode) {
749 case aco_opcode::p_create_vector: {
750 unsigned num_ops = instr->operands.size();
751 for (const Operand& op : instr->operands) {
752 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
753 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
754 }
755 if (num_ops != instr->operands.size()) {
756 aco_ptr<Instruction> old_vec = std::move(instr);
757 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
758 instr->definitions[0] = old_vec->definitions[0];
759 unsigned k = 0;
760 for (Operand& old_op : old_vec->operands) {
761 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
762 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++)
763 instr->operands[k++] = ctx.info[old_op.tempId()].instr->operands[j];
764 } else {
765 instr->operands[k++] = old_op;
766 }
767 }
768 assert(k == num_ops);
769 }
770 if (instr->operands.size() == 1 && instr->operands[0].isTemp())
771 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
772 else if (instr->definitions[0].getTemp().size() == instr->operands.size())
773 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
774 break;
775 }
776 case aco_opcode::p_split_vector: {
777 if (!ctx.info[instr->operands[0].tempId()].is_vec())
778 break;
779 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
780 assert(instr->definitions.size() == vec->operands.size());
781 for (unsigned i = 0; i < instr->definitions.size(); i++) {
782 Operand vec_op = vec->operands[i];
783 if (vec_op.isConstant()) {
784 if (vec_op.isLiteral())
785 ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue());
786 else if (vec_op.size() == 1)
787 ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue());
788 } else {
789 assert(vec_op.isTemp());
790 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
791 }
792 }
793 break;
794 }
795 case aco_opcode::p_extract_vector: { /* mov */
796 if (!ctx.info[instr->operands[0].tempId()].is_vec())
797 break;
798 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
799 if (vec->definitions[0].getTemp().size() == vec->operands.size() && /* TODO: what about 64bit or other combinations? */
800 vec->operands[0].size() == instr->definitions[0].size()) {
801
802 /* convert this extract into a mov instruction */
803 Operand vec_op = vec->operands[instr->operands[1].constantValue()];
804 bool is_vgpr = instr->definitions[0].getTemp().type() == RegType::vgpr;
805 aco_opcode opcode = is_vgpr ? aco_opcode::v_mov_b32 : aco_opcode::s_mov_b32;
806 Format format = is_vgpr ? Format::VOP1 : Format::SOP1;
807 instr->opcode = opcode;
808 instr->format = format;
809 instr->operands = {instr->operands.begin(), 1 };
810 instr->operands[0] = vec_op;
811
812 if (vec_op.isConstant()) {
813 if (vec_op.isLiteral())
814 ctx.info[instr->definitions[0].tempId()].set_literal(vec_op.constantValue());
815 else if (vec_op.size() == 1)
816 ctx.info[instr->definitions[0].tempId()].set_constant(vec_op.constantValue());
817 } else {
818 assert(vec_op.isTemp());
819 ctx.info[instr->definitions[0].tempId()].set_temp(vec_op.getTemp());
820 }
821 }
822 break;
823 }
824 case aco_opcode::s_mov_b32: /* propagate */
825 case aco_opcode::s_mov_b64:
826 case aco_opcode::v_mov_b32:
827 case aco_opcode::p_as_uniform:
828 if (instr->definitions[0].isFixed()) {
829 /* don't copy-propagate copies into fixed registers */
830 } else if (instr->usesModifiers()) {
831 // TODO
832 } else if (instr->operands[0].isConstant()) {
833 if (instr->operands[0].isLiteral())
834 ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue());
835 else if (instr->operands[0].size() == 1)
836 ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue());
837 } else if (instr->operands[0].isTemp()) {
838 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
839 } else {
840 assert(instr->operands[0].isFixed());
841 }
842 break;
843 case aco_opcode::p_is_helper:
844 if (!ctx.program->needs_wqm)
845 ctx.info[instr->definitions[0].tempId()].set_constant(0u);
846 break;
847 case aco_opcode::s_movk_i32: {
848 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
849 v = v & 0x8000 ? (v | 0xffff0000) : v;
850 if (v <= 64 || v >= 0xfffffff0)
851 ctx.info[instr->definitions[0].tempId()].set_constant(v);
852 else
853 ctx.info[instr->definitions[0].tempId()].set_literal(v);
854 break;
855 }
856 case aco_opcode::v_bfrev_b32:
857 case aco_opcode::s_brev_b32: {
858 if (instr->operands[0].isConstant()) {
859 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
860 if (v <= 64 || v >= 0xfffffff0)
861 ctx.info[instr->definitions[0].tempId()].set_constant(v);
862 else
863 ctx.info[instr->definitions[0].tempId()].set_literal(v);
864 }
865 break;
866 }
867 case aco_opcode::s_bfm_b32: {
868 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
869 unsigned size = instr->operands[0].constantValue() & 0x1f;
870 unsigned start = instr->operands[1].constantValue() & 0x1f;
871 uint32_t v = ((1u << size) - 1u) << start;
872 if (v <= 64 || v >= 0xfffffff0)
873 ctx.info[instr->definitions[0].tempId()].set_constant(v);
874 else
875 ctx.info[instr->definitions[0].tempId()].set_literal(v);
876 }
877 }
878 case aco_opcode::v_mul_f32: { /* omod */
879 /* TODO: try to move the negate/abs modifier to the consumer instead */
880 if (instr->usesModifiers())
881 break;
882
883 for (unsigned i = 0; i < 2; i++) {
884 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
885 if (instr->operands[!i].constantValue() == 0x40000000) { /* 2.0 */
886 ctx.info[instr->operands[i].tempId()].set_omod2();
887 } else if (instr->operands[!i].constantValue() == 0x40800000) { /* 4.0 */
888 ctx.info[instr->operands[i].tempId()].set_omod4();
889 } else if (instr->operands[!i].constantValue() == 0x3f000000) { /* 0.5 */
890 ctx.info[instr->operands[i].tempId()].set_omod5();
891 } else if (instr->operands[!i].constantValue() == 0x3f800000 &&
892 !block.fp_mode.must_flush_denorms32) { /* 1.0 */
893 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
894 } else {
895 continue;
896 }
897 break;
898 }
899 }
900 break;
901 }
902 case aco_opcode::v_and_b32: /* abs */
903 if (instr->operands[0].constantEquals(0x7FFFFFFF) && instr->operands[1].isTemp())
904 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
905 else
906 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
907 break;
908 case aco_opcode::v_xor_b32: { /* neg */
909 if (instr->operands[0].constantEquals(0x80000000u) && instr->operands[1].isTemp()) {
910 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
911 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
912 } else {
913 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
914 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
915 instr->opcode = aco_opcode::v_or_b32;
916 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
917 } else {
918 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
919 }
920 }
921 } else {
922 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
923 }
924 break;
925 }
926 case aco_opcode::v_med3_f32: { /* clamp */
927 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
928 if (vop3->abs[0] || vop3->neg[0] || vop3->opsel[0] ||
929 vop3->abs[1] || vop3->neg[1] || vop3->opsel[1] ||
930 vop3->abs[2] || vop3->neg[2] || vop3->opsel[2] ||
931 vop3->omod != 0)
932 break;
933
934 unsigned idx = 0;
935 bool found_zero = false, found_one = false;
936 for (unsigned i = 0; i < 3; i++)
937 {
938 if (instr->operands[i].constantEquals(0))
939 found_zero = true;
940 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
941 found_one = true;
942 else
943 idx = i;
944 }
945 if (found_zero && found_one && instr->operands[idx].isTemp()) {
946 ctx.info[instr->operands[idx].tempId()].set_clamp();
947 }
948 break;
949 }
950 case aco_opcode::v_cndmask_b32:
951 if (instr->operands[0].constantEquals(0) &&
952 instr->operands[1].constantEquals(0xFFFFFFFF) &&
953 instr->operands[2].isTemp())
954 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
955 else if (instr->operands[0].constantEquals(0) &&
956 instr->operands[1].constantEquals(0x3f800000u) &&
957 instr->operands[2].isTemp())
958 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
959 break;
960 case aco_opcode::v_cmp_lg_u32:
961 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
962 instr->operands[0].constantEquals(0) &&
963 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
964 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
965 break;
966 case aco_opcode::p_phi:
967 case aco_opcode::p_linear_phi: {
968 /* lower_bool_phis() can create phis like this */
969 bool all_same_temp = instr->operands[0].isTemp();
970 /* this check is needed when moving uniform loop counters out of a divergent loop */
971 if (all_same_temp)
972 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
973 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
974 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
975 all_same_temp = false;
976 }
977 if (all_same_temp) {
978 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
979 } else {
980 bool all_undef = instr->operands[0].isUndefined();
981 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
982 if (!instr->operands[i].isUndefined())
983 all_undef = false;
984 }
985 if (all_undef)
986 ctx.info[instr->definitions[0].tempId()].set_undefined();
987 }
988 break;
989 }
990 case aco_opcode::v_add_u32:
991 case aco_opcode::v_add_co_u32:
992 case aco_opcode::s_add_i32:
993 case aco_opcode::s_add_u32:
994 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
995 break;
996 case aco_opcode::s_and_b32:
997 case aco_opcode::s_and_b64:
998 if (instr->operands[1].isFixed() && instr->operands[1].physReg() == exec &&
999 instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1000 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
1001 }
1002 /* fallthrough */
1003 case aco_opcode::s_not_b32:
1004 case aco_opcode::s_not_b64:
1005 case aco_opcode::s_or_b32:
1006 case aco_opcode::s_or_b64:
1007 case aco_opcode::s_xor_b32:
1008 case aco_opcode::s_xor_b64:
1009 case aco_opcode::s_lshl_b32:
1010 case aco_opcode::v_or_b32:
1011 case aco_opcode::v_lshlrev_b32:
1012 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1013 break;
1014 case aco_opcode::v_min_f32:
1015 case aco_opcode::v_min_f16:
1016 case aco_opcode::v_min_u32:
1017 case aco_opcode::v_min_i32:
1018 case aco_opcode::v_min_u16:
1019 case aco_opcode::v_min_i16:
1020 case aco_opcode::v_max_f32:
1021 case aco_opcode::v_max_f16:
1022 case aco_opcode::v_max_u32:
1023 case aco_opcode::v_max_i32:
1024 case aco_opcode::v_max_u16:
1025 case aco_opcode::v_max_i16:
1026 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
1027 break;
1028 case aco_opcode::v_cmp_lt_f32:
1029 case aco_opcode::v_cmp_eq_f32:
1030 case aco_opcode::v_cmp_le_f32:
1031 case aco_opcode::v_cmp_gt_f32:
1032 case aco_opcode::v_cmp_lg_f32:
1033 case aco_opcode::v_cmp_ge_f32:
1034 case aco_opcode::v_cmp_o_f32:
1035 case aco_opcode::v_cmp_u_f32:
1036 case aco_opcode::v_cmp_nge_f32:
1037 case aco_opcode::v_cmp_nlg_f32:
1038 case aco_opcode::v_cmp_ngt_f32:
1039 case aco_opcode::v_cmp_nle_f32:
1040 case aco_opcode::v_cmp_neq_f32:
1041 case aco_opcode::v_cmp_nlt_f32:
1042 ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
1043 break;
1044 case aco_opcode::s_cselect_b64:
1045 case aco_opcode::s_cselect_b32:
1046 if (instr->operands[0].constantEquals((unsigned) -1) &&
1047 instr->operands[1].constantEquals(0)) {
1048 /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
1049 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
1050 }
1051 break;
1052 default:
1053 break;
1054 }
1055 }
1056
1057 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse)
1058 {
1059 *ordered = *unordered = op;
1060 switch (op) {
1061 #define CMP(ord, unord) \
1062 case aco_opcode::v_cmp_##ord##_f32:\
1063 case aco_opcode::v_cmp_n##unord##_f32:\
1064 *ordered = aco_opcode::v_cmp_##ord##_f32;\
1065 *unordered = aco_opcode::v_cmp_n##unord##_f32;\
1066 *inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\
1067 return true;
1068 CMP(lt, /*n*/ge)
1069 CMP(eq, /*n*/lg)
1070 CMP(le, /*n*/gt)
1071 CMP(gt, /*n*/le)
1072 CMP(lg, /*n*/eq)
1073 CMP(ge, /*n*/lt)
1074 #undef CMP
1075 default:
1076 return false;
1077 }
1078 }
1079
1080 aco_opcode get_ordered(aco_opcode op)
1081 {
1082 aco_opcode ordered, unordered, inverse;
1083 return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::last_opcode;
1084 }
1085
1086 aco_opcode get_unordered(aco_opcode op)
1087 {
1088 aco_opcode ordered, unordered, inverse;
1089 return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::last_opcode;
1090 }
1091
1092 aco_opcode get_inverse(aco_opcode op)
1093 {
1094 aco_opcode ordered, unordered, inverse;
1095 return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::last_opcode;
1096 }
1097
1098 bool is_cmp(aco_opcode op)
1099 {
1100 aco_opcode ordered, unordered, inverse;
1101 return get_cmp_info(op, &ordered, &unordered, &inverse);
1102 }
1103
1104 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1105 {
1106 if (ctx.info[tmp.id()].is_temp())
1107 return ctx.info[tmp.id()].temp.id();
1108 else
1109 return tmp.id();
1110 }
1111
1112 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1113 {
1114 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1115 for (const Operand& op : instr->operands) {
1116 if (op.isTemp())
1117 ctx.uses[op.tempId()]--;
1118 }
1119 }
1120 }
1121
1122 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1123 {
1124 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1125 return nullptr;
1126 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1127 return nullptr;
1128
1129 Instruction *instr = ctx.info[op.tempId()].instr;
1130
1131 if (instr->definitions.size() == 2) {
1132 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1133 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1134 return nullptr;
1135 }
1136
1137 return instr;
1138 }
1139
1140 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1141 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1142 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1143 {
1144 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1145 return false;
1146 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1147 return false;
1148
1149 bool neg[2] = {false, false};
1150 bool abs[2] = {false, false};
1151 bool opsel[2] = {false, false};
1152 Instruction *op_instr[2];
1153 Temp op[2];
1154
1155 for (unsigned i = 0; i < 2; i++) {
1156 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1157 if (!op_instr[i])
1158 return false;
1159
1160 aco_opcode expected_cmp = instr->opcode == aco_opcode::s_or_b64 ?
1161 aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1162
1163 if (op_instr[i]->opcode != expected_cmp)
1164 return false;
1165 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1166 return false;
1167
1168 if (op_instr[i]->isVOP3()) {
1169 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1170 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel[0] != vop3->opsel[1])
1171 return false;
1172 neg[i] = vop3->neg[0];
1173 abs[i] = vop3->abs[0];
1174 opsel[i] = vop3->opsel[0];
1175 }
1176
1177 Temp op0 = op_instr[i]->operands[0].getTemp();
1178 Temp op1 = op_instr[i]->operands[1].getTemp();
1179 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1180 return false;
1181 /* shouldn't happen yet, but best to be safe */
1182 if (op1.type() != RegType::vgpr)
1183 return false;
1184
1185 op[i] = op1;
1186 }
1187
1188 ctx.uses[op[0].id()]++;
1189 ctx.uses[op[1].id()]++;
1190 decrease_uses(ctx, op_instr[0]);
1191 decrease_uses(ctx, op_instr[1]);
1192
1193 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1194 aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1195 Instruction *new_instr;
1196 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel[0] || opsel[1]) {
1197 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1198 for (unsigned i = 0; i < 2; i++) {
1199 vop3->neg[i] = neg[i];
1200 vop3->abs[i] = abs[i];
1201 vop3->opsel[i] = opsel[i];
1202 }
1203 new_instr = static_cast<Instruction *>(vop3);
1204 } else {
1205 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1206 }
1207 new_instr->operands[0] = Operand(op[0]);
1208 new_instr->operands[1] = Operand(op[1]);
1209 new_instr->definitions[0] = instr->definitions[0];
1210
1211 ctx.info[instr->definitions[0].tempId()].label = 0;
1212 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1213
1214 instr.reset(new_instr);
1215
1216 return true;
1217 }
1218
1219 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1220 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1221 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1222 {
1223 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1224 return false;
1225 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1226 return false;
1227
1228 aco_opcode expected_nan_test = instr->opcode == aco_opcode::s_or_b64 ?
1229 aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1230
1231 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1232 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1233 if (!nan_test || !cmp)
1234 return false;
1235
1236 if (cmp->opcode == expected_nan_test)
1237 std::swap(nan_test, cmp);
1238 else if (nan_test->opcode != expected_nan_test)
1239 return false;
1240
1241 if (!is_cmp(cmp->opcode))
1242 return false;
1243
1244 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1245 return false;
1246 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1247 return false;
1248
1249 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1250 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1251 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1252 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1253 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1254 return false;
1255 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1256 return false;
1257
1258 ctx.uses[cmp->operands[0].tempId()]++;
1259 ctx.uses[cmp->operands[1].tempId()]++;
1260 decrease_uses(ctx, nan_test);
1261 decrease_uses(ctx, cmp);
1262
1263 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1264 get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1265 Instruction *new_instr;
1266 if (cmp->isVOP3()) {
1267 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1268 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1269 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1270 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1271 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1272 new_vop3->clamp = cmp_vop3->clamp;
1273 new_vop3->omod = cmp_vop3->omod;
1274 new_instr = new_vop3;
1275 } else {
1276 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1277 }
1278 new_instr->operands[0] = cmp->operands[0];
1279 new_instr->operands[1] = cmp->operands[1];
1280 new_instr->definitions[0] = instr->definitions[0];
1281
1282 ctx.info[instr->definitions[0].tempId()].label = 0;
1283 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1284
1285 instr.reset(new_instr);
1286
1287 return true;
1288 }
1289
1290 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1291 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1292 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1293 {
1294 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1295 return false;
1296 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1297 return false;
1298
1299 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1300 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1301
1302 if (!nan_test || !cmp)
1303 return false;
1304
1305 aco_opcode expected_nan_test = instr->opcode == aco_opcode::s_or_b64 ?
1306 aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1307 if (cmp->opcode == expected_nan_test)
1308 std::swap(nan_test, cmp);
1309 else if (nan_test->opcode != expected_nan_test)
1310 return false;
1311
1312 if (!is_cmp(cmp->opcode))
1313 return false;
1314
1315 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1316 return false;
1317 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1318 return false;
1319
1320 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1321 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1322 if (prop_nan0 != prop_nan1)
1323 return false;
1324
1325 int constant_operand = -1;
1326 for (unsigned i = 0; i < 2; i++) {
1327 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1328 constant_operand = !i;
1329 break;
1330 }
1331 }
1332 if (constant_operand == -1)
1333 return false;
1334
1335 uint32_t constant;
1336 if (cmp->operands[constant_operand].isConstant()) {
1337 constant = cmp->operands[constant_operand].constantValue();
1338 } else if (cmp->operands[constant_operand].isTemp()) {
1339 unsigned id = cmp->operands[constant_operand].tempId();
1340 if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal())
1341 return false;
1342 constant = ctx.info[id].val;
1343 } else {
1344 return false;
1345 }
1346
1347 float constantf;
1348 memcpy(&constantf, &constant, 4);
1349 if (isnan(constantf))
1350 return false;
1351
1352 if (cmp->operands[0].isTemp())
1353 ctx.uses[cmp->operands[0].tempId()]++;
1354 if (cmp->operands[1].isTemp())
1355 ctx.uses[cmp->operands[1].tempId()]++;
1356 decrease_uses(ctx, nan_test);
1357 decrease_uses(ctx, cmp);
1358
1359 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1360 get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1361 Instruction *new_instr;
1362 if (cmp->isVOP3()) {
1363 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1364 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1365 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1366 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1367 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1368 new_vop3->clamp = cmp_vop3->clamp;
1369 new_vop3->omod = cmp_vop3->omod;
1370 new_instr = new_vop3;
1371 } else {
1372 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1373 }
1374 new_instr->operands[0] = cmp->operands[0];
1375 new_instr->operands[1] = cmp->operands[1];
1376 new_instr->definitions[0] = instr->definitions[0];
1377
1378 ctx.info[instr->definitions[0].tempId()].label = 0;
1379 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1380
1381 instr.reset(new_instr);
1382
1383 return true;
1384 }
1385
1386 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1387 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1388 {
1389 if (instr->opcode != aco_opcode::s_not_b64)
1390 return false;
1391 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1392 return false;
1393 if (!instr->operands[0].isTemp())
1394 return false;
1395
1396 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1397 if (!cmp)
1398 return false;
1399
1400 aco_opcode new_opcode = get_inverse(cmp->opcode);
1401 if (new_opcode == aco_opcode::last_opcode)
1402 return false;
1403
1404 if (cmp->operands[0].isTemp())
1405 ctx.uses[cmp->operands[0].tempId()]++;
1406 if (cmp->operands[1].isTemp())
1407 ctx.uses[cmp->operands[1].tempId()]++;
1408 decrease_uses(ctx, cmp);
1409
1410 Instruction *new_instr;
1411 if (cmp->isVOP3()) {
1412 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1413 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1414 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1415 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1416 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1417 new_vop3->clamp = cmp_vop3->clamp;
1418 new_vop3->omod = cmp_vop3->omod;
1419 new_instr = new_vop3;
1420 } else {
1421 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1422 }
1423 new_instr->operands[0] = cmp->operands[0];
1424 new_instr->operands[1] = cmp->operands[1];
1425 new_instr->definitions[0] = instr->definitions[0];
1426
1427 ctx.info[instr->definitions[0].tempId()].label = 0;
1428 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1429
1430 instr.reset(new_instr);
1431
1432 return true;
1433 }
1434
1435 /* op1(op2(1, 2), 0) if swap = false
1436 * op1(0, op2(1, 2)) if swap = true */
1437 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1438 Instruction* op1_instr, bool swap, const char *shuffle_str,
1439 Operand operands[3], bool neg[3], bool abs[3], bool opsel[3],
1440 bool *op1_clamp, unsigned *op1_omod,
1441 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1442 {
1443 /* checks */
1444 if (op1_instr->opcode != op1)
1445 return false;
1446
1447 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1448 if (!op2_instr || op2_instr->opcode != op2)
1449 return false;
1450
1451 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1452 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1453
1454 /* don't support inbetween clamp/omod */
1455 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1456 return false;
1457
1458 /* get operands and modifiers and check inbetween modifiers */
1459 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1460 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1461
1462 if (inbetween_neg)
1463 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1464 else if (op1_vop3 && op1_vop3->neg[swap])
1465 return false;
1466
1467 if (inbetween_abs)
1468 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1469 else if (op1_vop3 && op1_vop3->abs[swap])
1470 return false;
1471
1472 if (inbetween_opsel)
1473 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel[swap] : false;
1474 else if (op1_vop3 && op1_vop3->opsel[swap])
1475 return false;
1476
1477 int shuffle[3];
1478 shuffle[shuffle_str[0] - '0'] = 0;
1479 shuffle[shuffle_str[1] - '0'] = 1;
1480 shuffle[shuffle_str[2] - '0'] = 2;
1481
1482 operands[shuffle[0]] = op1_instr->operands[!swap];
1483 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1484 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1485 opsel[shuffle[0]] = op1_vop3 ? op1_vop3->opsel[!swap] : false;
1486
1487 for (unsigned i = 0; i < 2; i++) {
1488 operands[shuffle[i + 1]] = op2_instr->operands[i];
1489 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1490 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1491 opsel[shuffle[i + 1]] = op2_vop3 ? op2_vop3->opsel[i] : false;
1492 }
1493
1494 /* check operands */
1495 unsigned sgpr_id = 0;
1496 for (unsigned i = 0; i < 3; i++) {
1497 Operand op = operands[i];
1498 if (op.isLiteral()) {
1499 return false;
1500 } else if (op.isTemp() && op.getTemp().type() == RegType::sgpr) {
1501 if (sgpr_id && sgpr_id != op.tempId())
1502 return false;
1503 sgpr_id = op.tempId();
1504 }
1505 }
1506
1507 return true;
1508 }
1509
1510 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1511 Operand operands[3], bool neg[3], bool abs[3], bool opsel[3],
1512 bool clamp, unsigned omod)
1513 {
1514 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1515 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1516 memcpy(new_instr->opsel, opsel, sizeof(bool[3]));
1517 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1518 new_instr->clamp = clamp;
1519 new_instr->omod = omod;
1520 new_instr->operands[0] = operands[0];
1521 new_instr->operands[1] = operands[1];
1522 new_instr->operands[2] = operands[2];
1523 new_instr->definitions[0] = instr->definitions[0];
1524 ctx.info[instr->definitions[0].tempId()].label = 0;
1525
1526 instr.reset(new_instr);
1527 }
1528
1529 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1530 {
1531 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1532 (label_omod_success | label_clamp_success);
1533
1534 for (unsigned swap = 0; swap < 2; swap++) {
1535 if (!((1 << swap) & ops))
1536 continue;
1537
1538 Operand operands[3];
1539 bool neg[3], abs[3], opsel[3], clamp;
1540 unsigned omod;
1541 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1542 instr.get(), swap, shuffle,
1543 operands, neg, abs, opsel,
1544 &clamp, &omod, NULL, NULL, NULL)) {
1545 ctx.uses[instr->operands[swap].tempId()]--;
1546 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1547 if (omod_clamp & label_omod_success)
1548 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1549 if (omod_clamp & label_clamp_success)
1550 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1551 return true;
1552 }
1553 }
1554 return false;
1555 }
1556
1557 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
1558 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
1559 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
1560 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
1561 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
1562 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
1563 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1564 {
1565 /* checks */
1566 if (!instr->operands[0].isTemp())
1567 return false;
1568 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1569 return false;
1570
1571 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
1572 if (!op2_instr)
1573 return false;
1574 switch (op2_instr->opcode) {
1575 case aco_opcode::s_and_b32:
1576 case aco_opcode::s_or_b32:
1577 case aco_opcode::s_xor_b32:
1578 case aco_opcode::s_and_b64:
1579 case aco_opcode::s_or_b64:
1580 case aco_opcode::s_xor_b64:
1581 break;
1582 default:
1583 return false;
1584 }
1585
1586 /* create instruction */
1587 std::swap(instr->definitions[0], op2_instr->definitions[0]);
1588 ctx.uses[instr->operands[0].tempId()]--;
1589 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
1590
1591 switch (op2_instr->opcode) {
1592 case aco_opcode::s_and_b32:
1593 op2_instr->opcode = aco_opcode::s_nand_b32;
1594 break;
1595 case aco_opcode::s_or_b32:
1596 op2_instr->opcode = aco_opcode::s_nor_b32;
1597 break;
1598 case aco_opcode::s_xor_b32:
1599 op2_instr->opcode = aco_opcode::s_xnor_b32;
1600 break;
1601 case aco_opcode::s_and_b64:
1602 op2_instr->opcode = aco_opcode::s_nand_b64;
1603 break;
1604 case aco_opcode::s_or_b64:
1605 op2_instr->opcode = aco_opcode::s_nor_b64;
1606 break;
1607 case aco_opcode::s_xor_b64:
1608 op2_instr->opcode = aco_opcode::s_xnor_b64;
1609 break;
1610 default:
1611 break;
1612 }
1613
1614 return true;
1615 }
1616
1617 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
1618 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
1619 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
1620 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
1621 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1622 {
1623 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1624 return false;
1625
1626 for (unsigned i = 0; i < 2; i++) {
1627 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1628 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
1629 continue;
1630
1631 ctx.uses[instr->operands[i].tempId()]--;
1632 instr->operands[0] = instr->operands[!i];
1633 instr->operands[1] = op2_instr->operands[0];
1634 ctx.info[instr->definitions[0].tempId()].label = 0;
1635
1636 switch (instr->opcode) {
1637 case aco_opcode::s_and_b32:
1638 instr->opcode = aco_opcode::s_andn2_b32;
1639 break;
1640 case aco_opcode::s_or_b32:
1641 instr->opcode = aco_opcode::s_orn2_b32;
1642 break;
1643 case aco_opcode::s_and_b64:
1644 instr->opcode = aco_opcode::s_andn2_b64;
1645 break;
1646 case aco_opcode::s_or_b64:
1647 instr->opcode = aco_opcode::s_orn2_b64;
1648 break;
1649 default:
1650 break;
1651 }
1652
1653 return true;
1654 }
1655 return false;
1656 }
1657
1658 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
1659 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1660 {
1661 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1662 return false;
1663
1664 for (unsigned i = 0; i < 2; i++) {
1665 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1666 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 || !op2_instr->operands[1].isConstant())
1667 continue;
1668
1669 uint32_t shift = op2_instr->operands[1].constantValue();
1670 if (shift < 1 || shift > 4)
1671 continue;
1672
1673 ctx.uses[instr->operands[i].tempId()]--;
1674 instr->operands[1] = instr->operands[!i];
1675 instr->operands[0] = op2_instr->operands[0];
1676 ctx.info[instr->definitions[0].tempId()].label = 0;
1677
1678 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
1679 aco_opcode::s_lshl2_add_u32,
1680 aco_opcode::s_lshl3_add_u32,
1681 aco_opcode::s_lshl4_add_u32})[shift - 1];
1682
1683 return true;
1684 }
1685 return false;
1686 }
1687
1688 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
1689 {
1690 switch (op) {
1691 #define MINMAX(type, gfx9) \
1692 case aco_opcode::v_min_##type:\
1693 case aco_opcode::v_max_##type:\
1694 case aco_opcode::v_med3_##type:\
1695 *min = aco_opcode::v_min_##type;\
1696 *max = aco_opcode::v_max_##type;\
1697 *med3 = aco_opcode::v_med3_##type;\
1698 *min3 = aco_opcode::v_min3_##type;\
1699 *max3 = aco_opcode::v_max3_##type;\
1700 *some_gfx9_only = gfx9;\
1701 return true;
1702 MINMAX(f32, false)
1703 MINMAX(u32, false)
1704 MINMAX(i32, false)
1705 MINMAX(f16, true)
1706 MINMAX(u16, true)
1707 MINMAX(i16, true)
1708 #undef MINMAX
1709 default:
1710 return false;
1711 }
1712 }
1713
1714 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
1715 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
1716 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
1717 aco_opcode min, aco_opcode max, aco_opcode med)
1718 {
1719 aco_opcode other_op;
1720 if (instr->opcode == min)
1721 other_op = max;
1722 else if (instr->opcode == max)
1723 other_op = min;
1724 else
1725 return false;
1726
1727 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1728 (label_omod_success | label_clamp_success);
1729
1730 for (unsigned swap = 0; swap < 2; swap++) {
1731 Operand operands[3];
1732 bool neg[3], abs[3], opsel[3], clamp, inbetween_neg, inbetween_abs;
1733 unsigned omod;
1734 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
1735 "012", operands, neg, abs, opsel,
1736 &clamp, &omod, &inbetween_neg, &inbetween_abs, NULL)) {
1737 int const0_idx = -1, const1_idx = -1;
1738 uint32_t const0 = 0, const1 = 0;
1739 for (int i = 0; i < 3; i++) {
1740 uint32_t val;
1741 if (operands[i].isConstant()) {
1742 val = operands[i].constantValue();
1743 } else if (operands[i].isTemp() && ctx.uses[operands[i].tempId()] == 1 &&
1744 ctx.info[operands[i].tempId()].is_constant_or_literal()) {
1745 val = ctx.info[operands[i].tempId()].val;
1746 } else {
1747 continue;
1748 }
1749 if (const0_idx >= 0) {
1750 const1_idx = i;
1751 const1 = val;
1752 } else {
1753 const0_idx = i;
1754 const0 = val;
1755 }
1756 }
1757 if (const0_idx < 0 || const1_idx < 0)
1758 continue;
1759
1760 if (opsel[const0_idx])
1761 const0 >>= 16;
1762 if (opsel[const1_idx])
1763 const1 >>= 16;
1764
1765 int lower_idx = const0_idx;
1766 switch (min) {
1767 case aco_opcode::v_min_f32:
1768 case aco_opcode::v_min_f16: {
1769 float const0_f, const1_f;
1770 if (min == aco_opcode::v_min_f32) {
1771 memcpy(&const0_f, &const0, 4);
1772 memcpy(&const1_f, &const1, 4);
1773 } else {
1774 const0_f = _mesa_half_to_float(const0);
1775 const1_f = _mesa_half_to_float(const1);
1776 }
1777 if (abs[const0_idx]) const0_f = fabsf(const0_f);
1778 if (abs[const1_idx]) const1_f = fabsf(const1_f);
1779 if (neg[const0_idx]) const0_f = -const0_f;
1780 if (neg[const1_idx]) const1_f = -const1_f;
1781 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
1782 break;
1783 }
1784 case aco_opcode::v_min_u32: {
1785 lower_idx = const0 < const1 ? const0_idx : const1_idx;
1786 break;
1787 }
1788 case aco_opcode::v_min_u16: {
1789 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
1790 break;
1791 }
1792 case aco_opcode::v_min_i32: {
1793 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
1794 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
1795 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1796 break;
1797 }
1798 case aco_opcode::v_min_i16: {
1799 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
1800 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
1801 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1802 break;
1803 }
1804 default:
1805 break;
1806 }
1807 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
1808
1809 if (instr->opcode == min) {
1810 if (upper_idx != 0 || lower_idx == 0)
1811 return false;
1812 } else {
1813 if (upper_idx == 0 || lower_idx != 0)
1814 return false;
1815 }
1816
1817 neg[1] ^= inbetween_neg;
1818 neg[2] ^= inbetween_neg;
1819 abs[1] |= inbetween_abs;
1820 abs[2] |= inbetween_abs;
1821
1822 ctx.uses[instr->operands[swap].tempId()]--;
1823 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
1824 if (omod_clamp & label_omod_success)
1825 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1826 if (omod_clamp & label_clamp_success)
1827 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1828
1829 return true;
1830 }
1831 }
1832
1833 return false;
1834 }
1835
1836
1837 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1838 {
1839 /* apply sgprs */
1840 uint32_t sgpr_idx = 0;
1841 uint32_t sgpr_info_id = 0;
1842 bool has_sgpr = false;
1843 uint32_t sgpr_ssa_id = 0;
1844 /* find 'best' possible sgpr */
1845 for (unsigned i = 0; i < instr->operands.size(); i++)
1846 {
1847 if (instr->operands[i].isLiteral()) {
1848 has_sgpr = true;
1849 break;
1850 }
1851 if (!instr->operands[i].isTemp())
1852 continue;
1853 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
1854 has_sgpr = true;
1855 sgpr_ssa_id = instr->operands[i].tempId();
1856 continue;
1857 }
1858 ssa_info& info = ctx.info[instr->operands[i].tempId()];
1859 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
1860 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
1861 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
1862 sgpr_idx = i;
1863 sgpr_info_id = instr->operands[i].tempId();
1864 }
1865 }
1866 }
1867 if (!has_sgpr && sgpr_info_id != 0) {
1868 ssa_info& info = ctx.info[sgpr_info_id];
1869 if (sgpr_idx == 0 || instr->isVOP3()) {
1870 instr->operands[sgpr_idx] = Operand(info.temp);
1871 ctx.uses[sgpr_info_id]--;
1872 ctx.uses[info.temp.id()]++;
1873 } else if (can_swap_operands(instr)) {
1874 instr->operands[sgpr_idx] = instr->operands[0];
1875 instr->operands[0] = Operand(info.temp);
1876 ctx.uses[sgpr_info_id]--;
1877 ctx.uses[info.temp.id()]++;
1878 } else if (can_use_VOP3(instr)) {
1879 to_VOP3(ctx, instr);
1880 instr->operands[sgpr_idx] = Operand(info.temp);
1881 ctx.uses[sgpr_info_id]--;
1882 ctx.uses[info.temp.id()]++;
1883 }
1884
1885 /* we can have two sgprs on one instruction if it is the same sgpr! */
1886 } else if (sgpr_info_id != 0 &&
1887 sgpr_ssa_id == sgpr_info_id &&
1888 ctx.uses[sgpr_info_id] == 1 &&
1889 can_use_VOP3(instr)) {
1890 to_VOP3(ctx, instr);
1891 instr->operands[sgpr_idx] = Operand(ctx.info[sgpr_info_id].temp);
1892 ctx.uses[sgpr_info_id]--;
1893 ctx.uses[ctx.info[sgpr_info_id].temp.id()]++;
1894 }
1895 }
1896
1897 bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
1898 {
1899 /* check if we could apply omod on predecessor */
1900 if (instr->opcode == aco_opcode::v_mul_f32) {
1901 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success()) {
1902
1903 /* omod was successfully applied */
1904 /* if the omod instruction is v_mad, we also have to change the original add */
1905 if (ctx.info[instr->operands[1].tempId()].is_mad()) {
1906 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[1].tempId()].val].add_instr.get();
1907 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
1908 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
1909 add_instr->definitions[0] = instr->definitions[0];
1910 }
1911
1912 Instruction* omod_instr = ctx.info[instr->operands[1].tempId()].instr;
1913 /* check if we have an additional clamp modifier */
1914 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1) {
1915 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
1916 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
1917 }
1918 /* change definition ssa-id of modified instruction */
1919 omod_instr->definitions[0] = instr->definitions[0];
1920
1921 /* change the definition of instr to something unused, e.g. the original omod def */
1922 instr->definitions[0] = Definition(instr->operands[1].getTemp());
1923 ctx.uses[instr->definitions[0].tempId()] = 0;
1924 return true;
1925 }
1926 if (!ctx.info[instr->definitions[0].tempId()].label) {
1927 /* in all other cases, label this instruction as option for multiply-add */
1928 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
1929 }
1930 }
1931
1932 /* check if we could apply clamp on predecessor */
1933 if (instr->opcode == aco_opcode::v_med3_f32) {
1934 unsigned idx = 0;
1935 bool found_zero = false, found_one = false;
1936 for (unsigned i = 0; i < 3; i++)
1937 {
1938 if (instr->operands[i].constantEquals(0))
1939 found_zero = true;
1940 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
1941 found_one = true;
1942 else
1943 idx = i;
1944 }
1945 if (found_zero && found_one && instr->operands[idx].isTemp() &&
1946 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
1947 /* clamp was successfully applied */
1948 /* if the clamp instruction is v_mad, we also have to change the original add */
1949 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
1950 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
1951 add_instr->definitions[0] = instr->definitions[0];
1952 }
1953 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
1954 /* change definition ssa-id of modified instruction */
1955 clamp_instr->definitions[0] = instr->definitions[0];
1956
1957 /* change the definition of instr to something unused, e.g. the original omod def */
1958 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
1959 ctx.uses[instr->definitions[0].tempId()] = 0;
1960 return true;
1961 }
1962 }
1963
1964 /* omod has no effect if denormals are enabled */
1965 bool can_use_omod = block.fp_mode.denorm32 == 0;
1966
1967 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
1968 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
1969 can_use_VOP3(instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
1970 if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod2()) {
1971 to_VOP3(ctx, instr);
1972 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
1973 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1974 } else if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod4()) {
1975 to_VOP3(ctx, instr);
1976 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
1977 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1978 } else if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod5()) {
1979 to_VOP3(ctx, instr);
1980 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
1981 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1982 } else if (ctx.info[instr->definitions[0].tempId()].is_clamp()) {
1983 to_VOP3(ctx, instr);
1984 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
1985 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1986 }
1987 }
1988
1989 return false;
1990 }
1991
1992 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
1993 // this would mean that we'd have to fix the instruction uses while value propagation
1994
1995 void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
1996 {
1997 if (instr->definitions.empty() || !ctx.uses[instr->definitions[0].tempId()])
1998 return;
1999
2000 if (instr->isVALU()) {
2001 if (can_apply_sgprs(instr))
2002 apply_sgprs(ctx, instr);
2003 if (apply_omod_clamp(ctx, block, instr))
2004 return;
2005 }
2006
2007 /* TODO: There are still some peephole optimizations that could be done:
2008 * - abs(a - b) -> s_absdiff_i32
2009 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
2010 * - patterns for v_alignbit_b32 and v_alignbyte_b32
2011 * These aren't probably too interesting though.
2012 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
2013 * probably more useful than the previously mentioned optimizations.
2014 * The various comparison optimizations also currently only work with 32-bit
2015 * floats. */
2016
2017 /* neg(mul(a, b)) -> mul(neg(a), b) */
2018 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
2019 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
2020
2021 if (!ctx.info[val.id()].is_mul())
2022 return;
2023
2024 Instruction* mul_instr = ctx.info[val.id()].instr;
2025
2026 if (mul_instr->operands[0].isLiteral())
2027 return;
2028 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
2029 return;
2030
2031 /* convert to mul(neg(a), b) */
2032 ctx.uses[mul_instr->definitions[0].tempId()]--;
2033 Definition def = instr->definitions[0];
2034 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
2035 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
2036 instr.reset(create_instruction<VOP3A_instruction>(aco_opcode::v_mul_f32, asVOP3(Format::VOP2), 2, 1));
2037 instr->operands[0] = mul_instr->operands[0];
2038 instr->operands[1] = mul_instr->operands[1];
2039 instr->definitions[0] = def;
2040 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
2041 if (mul_instr->isVOP3()) {
2042 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
2043 new_mul->neg[0] = mul->neg[0] && !is_abs;
2044 new_mul->neg[1] = mul->neg[1] && !is_abs;
2045 new_mul->abs[0] = mul->abs[0] || is_abs;
2046 new_mul->abs[1] = mul->abs[1] || is_abs;
2047 new_mul->omod = mul->omod;
2048 }
2049 new_mul->neg[0] ^= true;
2050 new_mul->clamp = false;
2051
2052 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2053 return;
2054 }
2055 /* combine mul+add -> mad */
2056 else if ((instr->opcode == aco_opcode::v_add_f32 ||
2057 instr->opcode == aco_opcode::v_sub_f32 ||
2058 instr->opcode == aco_opcode::v_subrev_f32) &&
2059 block.fp_mode.denorm32 == 0 && !block.fp_mode.preserve_signed_zero_inf_nan32) {
2060 //TODO: we could use fma instead when denormals are enabled if the NIR isn't marked as precise
2061
2062 uint32_t uses_src0 = UINT32_MAX;
2063 uint32_t uses_src1 = UINT32_MAX;
2064 Instruction* mul_instr = nullptr;
2065 unsigned add_op_idx;
2066 /* check if any of the operands is a multiplication */
2067 if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_mul())
2068 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2069 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_mul())
2070 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2071
2072 /* find the 'best' mul instruction to combine with the add */
2073 if (uses_src0 < uses_src1) {
2074 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2075 add_op_idx = 1;
2076 } else if (uses_src1 < uses_src0) {
2077 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2078 add_op_idx = 0;
2079 } else if (uses_src0 != UINT32_MAX) {
2080 /* tiebreaker: quite random what to pick */
2081 if (ctx.info[instr->operands[0].tempId()].instr->operands[0].isLiteral()) {
2082 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2083 add_op_idx = 0;
2084 } else {
2085 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2086 add_op_idx = 1;
2087 }
2088 }
2089 if (mul_instr) {
2090 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2091 bool neg[3] = {false, false, false};
2092 bool abs[3] = {false, false, false};
2093 unsigned omod = 0;
2094 bool clamp = false;
2095 bool need_vop3 = false;
2096 int num_sgpr = 0;
2097 op[0] = mul_instr->operands[0];
2098 op[1] = mul_instr->operands[1];
2099 op[2] = instr->operands[add_op_idx];
2100 for (unsigned i = 0; i < 3; i++)
2101 {
2102 if (op[i].isLiteral())
2103 return;
2104 if (op[i].isTemp() && op[i].getTemp().type() == RegType::sgpr)
2105 num_sgpr++;
2106 if (!(i == 0 || (op[i].isTemp() && op[i].getTemp().type() == RegType::vgpr)))
2107 need_vop3 = true;
2108 }
2109 // TODO: would be better to check this before selecting a mul instr?
2110 if (num_sgpr > 1)
2111 return;
2112
2113 if (mul_instr->isVOP3()) {
2114 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2115 neg[0] = vop3->neg[0];
2116 neg[1] = vop3->neg[1];
2117 abs[0] = vop3->abs[0];
2118 abs[1] = vop3->abs[1];
2119 need_vop3 = true;
2120 /* we cannot use these modifiers between mul and add */
2121 if (vop3->clamp || vop3->omod)
2122 return;
2123 }
2124
2125 /* convert to mad */
2126 ctx.uses[mul_instr->definitions[0].tempId()]--;
2127 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2128 if (op[0].isTemp())
2129 ctx.uses[op[0].tempId()]++;
2130 if (op[1].isTemp())
2131 ctx.uses[op[1].tempId()]++;
2132 }
2133
2134 if (instr->isVOP3()) {
2135 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2136 neg[2] = vop3->neg[add_op_idx];
2137 abs[2] = vop3->abs[add_op_idx];
2138 omod = vop3->omod;
2139 clamp = vop3->clamp;
2140 /* abs of the multiplication result */
2141 if (vop3->abs[1 - add_op_idx]) {
2142 neg[0] = false;
2143 neg[1] = false;
2144 abs[0] = true;
2145 abs[1] = true;
2146 }
2147 /* neg of the multiplication result */
2148 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2149 need_vop3 = true;
2150 }
2151 if (instr->opcode == aco_opcode::v_sub_f32) {
2152 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2153 need_vop3 = true;
2154 } else if (instr->opcode == aco_opcode::v_subrev_f32) {
2155 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2156 need_vop3 = true;
2157 }
2158
2159 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)};
2160 for (unsigned i = 0; i < 3; i++)
2161 {
2162 mad->operands[i] = op[i];
2163 mad->neg[i] = neg[i];
2164 mad->abs[i] = abs[i];
2165 }
2166 mad->omod = omod;
2167 mad->clamp = clamp;
2168 mad->definitions[0] = instr->definitions[0];
2169
2170 /* mark this ssa_def to be re-checked for profitability and literals */
2171 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId(), need_vop3);
2172 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2173 instr.reset(mad.release());
2174 return;
2175 }
2176 }
2177 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2178 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2179 for (unsigned i = 0; i < 2; i++) {
2180 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2181 ctx.uses[instr->operands[i].tempId()] == 1 &&
2182 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2183 ctx.uses[instr->operands[i].tempId()]--;
2184 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2185
2186 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2187 new_instr->operands[0] = Operand(0u);
2188 new_instr->operands[1] = instr->operands[!i];
2189 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2190 new_instr->definitions[0] = instr->definitions[0];
2191 instr.reset(new_instr.release());
2192 ctx.info[instr->definitions[0].tempId()].label = 0;
2193 return;
2194 }
2195 }
2196 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2197 if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2198 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2199 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2200 } else if (instr->opcode == aco_opcode::v_add_u32 && ctx.program->chip_class >= GFX9) {
2201 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2202 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2203 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2204 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2205 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2206 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2207 combine_salu_lshl_add(ctx, instr);
2208 } else if (instr->opcode == aco_opcode::s_not_b32) {
2209 combine_salu_not_bitwise(ctx, instr);
2210 } else if (instr->opcode == aco_opcode::s_not_b64) {
2211 if (combine_inverse_comparison(ctx, instr)) ;
2212 else combine_salu_not_bitwise(ctx, instr);
2213 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32) {
2214 combine_salu_n2(ctx, instr);
2215 } else if (instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2216 if (combine_ordering_test(ctx, instr)) ;
2217 else if (combine_comparison_ordering(ctx, instr)) ;
2218 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2219 else combine_salu_n2(ctx, instr);
2220 } else {
2221 aco_opcode min, max, min3, max3, med3;
2222 bool some_gfx9_only;
2223 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2224 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2225 if (combine_three_valu_op(ctx, instr, instr->opcode, instr->opcode == min ? min3 : max3, "012", 1 | 2));
2226 else combine_clamp(ctx, instr, min, max, med3);
2227 }
2228 }
2229 }
2230
2231
2232 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2233 {
2234 const uint32_t threshold = 4;
2235
2236 /* Dead Code Elimination:
2237 * We remove instructions if they define temporaries which all are unused */
2238 const bool is_used = instr->definitions.empty() ||
2239 std::any_of(instr->definitions.begin(), instr->definitions.end(),
2240 [&ctx](const Definition& def) { return ctx.uses[def.tempId()]; });
2241 if (!is_used) {
2242 instr.reset();
2243 return;
2244 }
2245
2246 /* convert split_vector into extract_vector if only one definition is ever used */
2247 if (instr->opcode == aco_opcode::p_split_vector) {
2248 unsigned num_used = 0;
2249 unsigned idx = 0;
2250 for (unsigned i = 0; i < instr->definitions.size(); i++) {
2251 if (ctx.uses[instr->definitions[i].tempId()]) {
2252 num_used++;
2253 idx = i;
2254 }
2255 }
2256 if (num_used == 1) {
2257 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2258 extract->operands[0] = instr->operands[0];
2259 extract->operands[1] = Operand((uint32_t) idx);
2260 extract->definitions[0] = instr->definitions[idx];
2261 instr.reset(extract.release());
2262 }
2263 }
2264
2265 /* re-check mad instructions */
2266 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2267 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2268 /* first, check profitability */
2269 if (ctx.uses[info->mul_temp_id]) {
2270 ctx.uses[info->mul_temp_id]++;
2271 instr.swap(info->add_instr);
2272
2273 /* second, check possible literals */
2274 } else if (!info->needs_vop3) {
2275 uint32_t literal_idx = 0;
2276 uint32_t literal_uses = UINT32_MAX;
2277 for (unsigned i = 0; i < instr->operands.size(); i++)
2278 {
2279 if (!instr->operands[i].isTemp())
2280 continue;
2281 /* if one of the operands is sgpr, we cannot add a literal somewhere else */
2282 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2283 if (ctx.info[instr->operands[i].tempId()].is_literal()) {
2284 literal_uses = ctx.uses[instr->operands[i].tempId()];
2285 literal_idx = i;
2286 } else {
2287 literal_uses = UINT32_MAX;
2288 }
2289 break;
2290 }
2291 else if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2292 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2293 literal_uses = ctx.uses[instr->operands[i].tempId()];
2294 literal_idx = i;
2295 }
2296 }
2297 if (literal_uses < threshold) {
2298 ctx.uses[instr->operands[literal_idx].tempId()]--;
2299 info->check_literal = true;
2300 info->literal_idx = literal_idx;
2301 }
2302 }
2303 return;
2304 }
2305
2306 /* check for literals */
2307 /* we do not apply the literals yet as we don't know if it is profitable */
2308 if (instr->isSALU()) {
2309 uint32_t literal_idx = 0;
2310 uint32_t literal_uses = UINT32_MAX;
2311 bool has_literal = false;
2312 for (unsigned i = 0; i < instr->operands.size(); i++)
2313 {
2314 if (instr->operands[i].isLiteral()) {
2315 has_literal = true;
2316 break;
2317 }
2318 if (!instr->operands[i].isTemp())
2319 continue;
2320 if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2321 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2322 literal_uses = ctx.uses[instr->operands[i].tempId()];
2323 literal_idx = i;
2324 }
2325 }
2326 if (!has_literal && literal_uses < threshold) {
2327 ctx.uses[instr->operands[literal_idx].tempId()]--;
2328 if (ctx.uses[instr->operands[literal_idx].tempId()] == 0)
2329 instr->operands[literal_idx] = Operand(ctx.info[instr->operands[literal_idx].tempId()].val);
2330 }
2331 } else if (instr->isVALU() && valu_can_accept_literal(ctx, instr, 0) &&
2332 instr->operands[0].isTemp() &&
2333 ctx.info[instr->operands[0].tempId()].is_literal() &&
2334 ctx.uses[instr->operands[0].tempId()] < threshold) {
2335 ctx.uses[instr->operands[0].tempId()]--;
2336 if (ctx.uses[instr->operands[0].tempId()] == 0)
2337 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2338 }
2339
2340 }
2341
2342
2343 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2344 {
2345 /* Cleanup Dead Instructions */
2346 if (!instr)
2347 return;
2348
2349 /* apply literals on SALU */
2350 if (instr->isSALU()) {
2351 for (Operand& op : instr->operands) {
2352 if (!op.isTemp())
2353 continue;
2354 if (op.isLiteral())
2355 break;
2356 if (ctx.info[op.tempId()].is_literal() &&
2357 ctx.uses[op.tempId()] == 0)
2358 op = Operand(ctx.info[op.tempId()].val);
2359 }
2360 }
2361
2362 /* apply literals on VALU */
2363 else if (instr->isVALU() && !instr->isVOP3() &&
2364 instr->operands[0].isTemp() &&
2365 ctx.info[instr->operands[0].tempId()].is_literal() &&
2366 ctx.uses[instr->operands[0].tempId()] == 0) {
2367 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2368 }
2369
2370 /* apply literals on MAD */
2371 else if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2372 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2373 aco_ptr<Instruction> new_mad;
2374 if (info->check_literal && ctx.uses[instr->operands[info->literal_idx].tempId()] == 0) {
2375 if (info->literal_idx == 2) { /* add literal -> madak */
2376 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
2377 new_mad->operands[0] = instr->operands[0];
2378 new_mad->operands[1] = instr->operands[1];
2379 } else { /* mul literal -> madmk */
2380 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
2381 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
2382 new_mad->operands[1] = instr->operands[2];
2383 }
2384 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
2385 new_mad->definitions[0] = instr->definitions[0];
2386 instr.swap(new_mad);
2387 }
2388 }
2389
2390 ctx.instructions.emplace_back(std::move(instr));
2391 }
2392
2393
2394 void optimize(Program* program)
2395 {
2396 opt_ctx ctx;
2397 ctx.program = program;
2398 std::vector<ssa_info> info(program->peekAllocationId());
2399 ctx.info = info.data();
2400
2401 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
2402 for (Block& block : program->blocks) {
2403 for (aco_ptr<Instruction>& instr : block.instructions)
2404 label_instruction(ctx, block, instr);
2405 }
2406
2407 ctx.uses = std::move(dead_code_analysis(program));
2408
2409 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
2410 for (Block& block : program->blocks) {
2411 for (aco_ptr<Instruction>& instr : block.instructions)
2412 combine_instruction(ctx, block, instr);
2413 }
2414
2415 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
2416 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
2417 Block* block = &(*it);
2418 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
2419 select_instruction(ctx, *it);
2420 }
2421
2422 /* 4. Add literals to instructions */
2423 for (Block& block : program->blocks) {
2424 ctx.instructions.clear();
2425 for (aco_ptr<Instruction>& instr : block.instructions)
2426 apply_literals(ctx, instr);
2427 block.instructions.swap(ctx.instructions);
2428 }
2429
2430 }
2431
2432 }