aco: compact various Instruction classes
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint32_t literal_idx;
56 bool needs_vop3;
57 bool check_literal;
58
59 mad_info(aco_ptr<Instruction> instr, uint32_t id, bool vop3)
60 : add_instr(std::move(instr)), mul_temp_id(id), needs_vop3(vop3), check_literal(false) {}
61 };
62
63 enum Label {
64 label_vec = 1 << 0,
65 label_constant = 1 << 1,
66 label_abs = 1 << 2,
67 label_neg = 1 << 3,
68 label_mul = 1 << 4,
69 label_temp = 1 << 5,
70 label_literal = 1 << 6,
71 label_mad = 1 << 7,
72 label_omod2 = 1 << 8,
73 label_omod4 = 1 << 9,
74 label_omod5 = 1 << 10,
75 label_omod_success = 1 << 11,
76 label_clamp = 1 << 12,
77 label_clamp_success = 1 << 13,
78 label_undefined = 1 << 14,
79 label_vcc = 1 << 15,
80 label_b2f = 1 << 16,
81 label_add_sub = 1 << 17,
82 label_bitwise = 1 << 18,
83 label_minmax = 1 << 19,
84 label_fcmp = 1 << 20,
85 label_uniform_bool = 1 << 21,
86 };
87
88 static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success | label_add_sub | label_bitwise | label_minmax | label_fcmp;
89 static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool;
90 static constexpr uint32_t val_labels = label_constant | label_literal | label_mad;
91
92 struct ssa_info {
93 uint32_t val;
94 union {
95 Temp temp;
96 Instruction* instr;
97 };
98 uint32_t label;
99
100 void add_label(Label new_label)
101 {
102 /* Since all labels which use "instr" use it for the same thing
103 * (indicating the defining instruction), there is no need to clear
104 * any other instr labels. */
105 if (new_label & instr_labels)
106 label &= ~temp_labels; /* instr and temp alias */
107
108 if (new_label & temp_labels) {
109 label &= ~temp_labels;
110 label &= ~instr_labels; /* instr and temp alias */
111 }
112
113 if (new_label & val_labels)
114 label &= ~val_labels;
115
116 label |= new_label;
117 }
118
119 void set_vec(Instruction* vec)
120 {
121 add_label(label_vec);
122 instr = vec;
123 }
124
125 bool is_vec()
126 {
127 return label & label_vec;
128 }
129
130 void set_constant(uint32_t constant)
131 {
132 add_label(label_constant);
133 val = constant;
134 }
135
136 bool is_constant()
137 {
138 return label & label_constant;
139 }
140
141 void set_abs(Temp abs_temp)
142 {
143 add_label(label_abs);
144 temp = abs_temp;
145 }
146
147 bool is_abs()
148 {
149 return label & label_abs;
150 }
151
152 void set_neg(Temp neg_temp)
153 {
154 add_label(label_neg);
155 temp = neg_temp;
156 }
157
158 bool is_neg()
159 {
160 return label & label_neg;
161 }
162
163 void set_neg_abs(Temp neg_abs_temp)
164 {
165 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
166 temp = neg_abs_temp;
167 }
168
169 void set_mul(Instruction* mul)
170 {
171 add_label(label_mul);
172 instr = mul;
173 }
174
175 bool is_mul()
176 {
177 return label & label_mul;
178 }
179
180 void set_temp(Temp tmp)
181 {
182 add_label(label_temp);
183 temp = tmp;
184 }
185
186 bool is_temp()
187 {
188 return label & label_temp;
189 }
190
191 void set_literal(uint32_t lit)
192 {
193 add_label(label_literal);
194 val = lit;
195 }
196
197 bool is_literal()
198 {
199 return label & label_literal;
200 }
201
202 void set_mad(Instruction* mad, uint32_t mad_info_idx)
203 {
204 add_label(label_mad);
205 val = mad_info_idx;
206 instr = mad;
207 }
208
209 bool is_mad()
210 {
211 return label & label_mad;
212 }
213
214 void set_omod2()
215 {
216 add_label(label_omod2);
217 }
218
219 bool is_omod2()
220 {
221 return label & label_omod2;
222 }
223
224 void set_omod4()
225 {
226 add_label(label_omod4);
227 }
228
229 bool is_omod4()
230 {
231 return label & label_omod4;
232 }
233
234 void set_omod5()
235 {
236 add_label(label_omod5);
237 }
238
239 bool is_omod5()
240 {
241 return label & label_omod5;
242 }
243
244 void set_omod_success(Instruction* omod_instr)
245 {
246 add_label(label_omod_success);
247 instr = omod_instr;
248 }
249
250 bool is_omod_success()
251 {
252 return label & label_omod_success;
253 }
254
255 void set_clamp()
256 {
257 add_label(label_clamp);
258 }
259
260 bool is_clamp()
261 {
262 return label & label_clamp;
263 }
264
265 void set_clamp_success(Instruction* clamp_instr)
266 {
267 add_label(label_clamp_success);
268 instr = clamp_instr;
269 }
270
271 bool is_clamp_success()
272 {
273 return label & label_clamp_success;
274 }
275
276 void set_undefined()
277 {
278 add_label(label_undefined);
279 }
280
281 bool is_undefined()
282 {
283 return label & label_undefined;
284 }
285
286 void set_vcc(Temp vcc)
287 {
288 add_label(label_vcc);
289 temp = vcc;
290 }
291
292 bool is_vcc()
293 {
294 return label & label_vcc;
295 }
296
297 bool is_constant_or_literal()
298 {
299 return is_constant() || is_literal();
300 }
301
302 void set_b2f(Temp val)
303 {
304 add_label(label_b2f);
305 temp = val;
306 }
307
308 bool is_b2f()
309 {
310 return label & label_b2f;
311 }
312
313 void set_add_sub(Instruction *add_sub_instr)
314 {
315 add_label(label_add_sub);
316 instr = add_sub_instr;
317 }
318
319 bool is_add_sub()
320 {
321 return label & label_add_sub;
322 }
323
324 void set_bitwise(Instruction *bitwise_instr)
325 {
326 add_label(label_bitwise);
327 instr = bitwise_instr;
328 }
329
330 bool is_bitwise()
331 {
332 return label & label_bitwise;
333 }
334
335 void set_minmax(Instruction *minmax_instr)
336 {
337 add_label(label_minmax);
338 instr = minmax_instr;
339 }
340
341 bool is_minmax()
342 {
343 return label & label_minmax;
344 }
345
346 void set_fcmp(Instruction *fcmp_instr)
347 {
348 add_label(label_fcmp);
349 instr = fcmp_instr;
350 }
351
352 bool is_fcmp()
353 {
354 return label & label_fcmp;
355 }
356
357 void set_uniform_bool(Temp uniform_bool)
358 {
359 add_label(label_uniform_bool);
360 temp = uniform_bool;
361 }
362
363 bool is_uniform_bool()
364 {
365 return label & label_uniform_bool;
366 }
367
368 };
369
370 struct opt_ctx {
371 Program* program;
372 std::vector<aco_ptr<Instruction>> instructions;
373 ssa_info* info;
374 std::pair<uint32_t,Temp> last_literal;
375 std::vector<mad_info> mad_infos;
376 std::vector<uint16_t> uses;
377 };
378
379 bool can_swap_operands(aco_ptr<Instruction>& instr)
380 {
381 if (instr->operands[0].isConstant() ||
382 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
383 return false;
384
385 switch (instr->opcode) {
386 case aco_opcode::v_add_f32:
387 case aco_opcode::v_mul_f32:
388 case aco_opcode::v_or_b32:
389 case aco_opcode::v_and_b32:
390 case aco_opcode::v_xor_b32:
391 case aco_opcode::v_max_f32:
392 case aco_opcode::v_min_f32:
393 case aco_opcode::v_cmp_eq_f32:
394 case aco_opcode::v_cmp_lg_f32:
395 return true;
396 case aco_opcode::v_sub_f32:
397 instr->opcode = aco_opcode::v_subrev_f32;
398 return true;
399 case aco_opcode::v_cmp_lt_f32:
400 instr->opcode = aco_opcode::v_cmp_gt_f32;
401 return true;
402 case aco_opcode::v_cmp_ge_f32:
403 instr->opcode = aco_opcode::v_cmp_le_f32;
404 return true;
405 case aco_opcode::v_cmp_lt_i32:
406 instr->opcode = aco_opcode::v_cmp_gt_i32;
407 return true;
408 default:
409 return false;
410 }
411 }
412
413 bool can_use_VOP3(aco_ptr<Instruction>& instr)
414 {
415 if (instr->operands.size() && instr->operands[0].isLiteral())
416 return false;
417
418 if (instr->isDPP() || instr->isSDWA())
419 return false;
420
421 return instr->opcode != aco_opcode::v_madmk_f32 &&
422 instr->opcode != aco_opcode::v_madak_f32 &&
423 instr->opcode != aco_opcode::v_madmk_f16 &&
424 instr->opcode != aco_opcode::v_madak_f16 &&
425 instr->opcode != aco_opcode::v_readlane_b32 &&
426 instr->opcode != aco_opcode::v_writelane_b32 &&
427 instr->opcode != aco_opcode::v_readfirstlane_b32;
428 }
429
430 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
431 {
432 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
433 instr->opcode != aco_opcode::v_readlane_b32 &&
434 instr->opcode != aco_opcode::v_readlane_b32_e64 &&
435 instr->opcode != aco_opcode::v_writelane_b32 &&
436 instr->opcode != aco_opcode::v_writelane_b32_e64;
437 }
438
439 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
440 {
441 if (instr->isVOP3())
442 return;
443
444 assert(!instr->operands[0].isLiteral());
445 aco_ptr<Instruction> tmp = std::move(instr);
446 Format format = asVOP3(tmp->format);
447 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
448 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
449 for (unsigned i = 0; i < instr->definitions.size(); i++) {
450 instr->definitions[i] = tmp->definitions[i];
451 if (instr->definitions[i].isTemp()) {
452 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
453 if (info.label & instr_labels && info.instr == tmp.get())
454 info.instr = instr.get();
455 }
456 }
457 }
458
459 /* only covers special cases */
460 bool can_accept_constant(aco_ptr<Instruction>& instr, unsigned operand)
461 {
462 switch (instr->opcode) {
463 case aco_opcode::v_interp_p2_f32:
464 case aco_opcode::v_mac_f32:
465 case aco_opcode::v_writelane_b32:
466 case aco_opcode::v_writelane_b32_e64:
467 case aco_opcode::v_cndmask_b32:
468 return operand != 2;
469 case aco_opcode::s_addk_i32:
470 case aco_opcode::s_mulk_i32:
471 case aco_opcode::p_wqm:
472 case aco_opcode::p_extract_vector:
473 case aco_opcode::p_split_vector:
474 case aco_opcode::v_readlane_b32:
475 case aco_opcode::v_readlane_b32_e64:
476 case aco_opcode::v_readfirstlane_b32:
477 return operand != 0;
478 default:
479 if ((instr->format == Format::MUBUF ||
480 instr->format == Format::MIMG) &&
481 instr->definitions.size() == 1 &&
482 instr->operands.size() == 4) {
483 return operand != 3;
484 }
485 return true;
486 }
487 }
488
489 bool valu_can_accept_literal(opt_ctx& ctx, aco_ptr<Instruction>& instr, unsigned operand)
490 {
491 /* instructions like v_cndmask_b32 can't take a literal because they always
492 * read SGPRs */
493 if (instr->operands.size() >= 3 &&
494 instr->operands[2].isTemp() && instr->operands[2].regClass().type() == RegType::sgpr)
495 return false;
496
497 // TODO: VOP3 can take a literal on GFX10
498 return !instr->isSDWA() && !instr->isDPP() && !instr->isVOP3() &&
499 operand == 0 && can_accept_constant(instr, operand);
500 }
501
502 bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
503 {
504 if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
505 instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64)
506 return operand != 1;
507 return true;
508 }
509
510 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
511 {
512 Operand op = instr->operands[op_index];
513
514 if (!op.isTemp())
515 return false;
516 Temp tmp = op.getTemp();
517 if (!ctx.info[tmp.id()].is_add_sub())
518 return false;
519
520 Instruction *add_instr = ctx.info[tmp.id()].instr;
521
522 switch (add_instr->opcode) {
523 case aco_opcode::v_add_u32:
524 case aco_opcode::v_add_co_u32:
525 case aco_opcode::s_add_i32:
526 case aco_opcode::s_add_u32:
527 break;
528 default:
529 return false;
530 }
531
532 if (add_instr->usesModifiers())
533 return false;
534
535 for (unsigned i = 0; i < 2; i++) {
536 if (add_instr->operands[i].isConstant()) {
537 *offset = add_instr->operands[i].constantValue();
538 } else if (add_instr->operands[i].isTemp() &&
539 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) {
540 *offset = ctx.info[add_instr->operands[i].tempId()].val;
541 } else {
542 continue;
543 }
544 if (!add_instr->operands[!i].isTemp())
545 continue;
546
547 uint32_t offset2 = 0;
548 if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
549 *offset += offset2;
550 } else {
551 *base = add_instr->operands[!i].getTemp();
552 }
553 return true;
554 }
555
556 return false;
557 }
558
559 Operand get_constant_op(opt_ctx &ctx, uint32_t val)
560 {
561 // TODO: this functions shouldn't be needed if we store Operand instead of value.
562 Operand op(val);
563 if (val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
564 op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
565 return op;
566 }
567
568 void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
569 {
570 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
571 ASSERTED bool all_const = false;
572 for (Operand& op : instr->operands)
573 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal());
574 perfwarn(all_const, "All instruction operands are constant", instr.get());
575 }
576
577 for (unsigned i = 0; i < instr->operands.size(); i++)
578 {
579 if (!instr->operands[i].isTemp())
580 continue;
581
582 ssa_info info = ctx.info[instr->operands[i].tempId()];
583 /* propagate undef */
584 if (info.is_undefined() && is_phi(instr))
585 instr->operands[i] = Operand(instr->operands[i].regClass());
586 /* propagate reg->reg of same type */
587 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
588 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
589 info = ctx.info[info.temp.id()];
590 }
591
592 /* SALU / PSEUDO: propagate inline constants */
593 if (instr->isSALU() || instr->format == Format::PSEUDO) {
594 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
595 instr->operands[i].setTemp(info.temp);
596 info = ctx.info[info.temp.id()];
597 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
598 /* propagate vgpr if it can take it */
599 switch (instr->opcode) {
600 case aco_opcode::p_create_vector:
601 case aco_opcode::p_split_vector:
602 case aco_opcode::p_extract_vector:
603 case aco_opcode::p_phi: {
604 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
605 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
606 if (all_vgpr) {
607 instr->operands[i] = Operand(info.temp);
608 info = ctx.info[info.temp.id()];
609 }
610 break;
611 }
612 default:
613 break;
614 }
615 }
616 if ((info.is_constant() || (info.is_literal() && instr->format == Format::PSEUDO)) && !instr->operands[i].isFixed() && can_accept_constant(instr, i)) {
617 instr->operands[i] = get_constant_op(ctx, info.val);
618 continue;
619 }
620 }
621
622 /* VALU: propagate neg, abs & inline constants */
623 else if (instr->isVALU()) {
624 if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
625 instr->operands[i].setTemp(info.temp);
626 info = ctx.info[info.temp.id()];
627 }
628 if (info.is_abs() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
629 if (!instr->isDPP())
630 to_VOP3(ctx, instr);
631 instr->operands[i] = Operand(info.temp);
632 if (instr->isDPP())
633 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
634 else
635 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
636 }
637 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
638 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
639 instr->operands[i].setTemp(info.temp);
640 continue;
641 } else if (info.is_neg() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
642 if (!instr->isDPP())
643 to_VOP3(ctx, instr);
644 instr->operands[i].setTemp(info.temp);
645 if (instr->isDPP())
646 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
647 else
648 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
649 continue;
650 }
651 if (info.is_constant() && can_accept_constant(instr, i)) {
652 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
653 if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) {
654 instr->operands[i] = get_constant_op(ctx, info.val);
655 continue;
656 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
657 instr->operands[i] = instr->operands[0];
658 instr->operands[0] = get_constant_op(ctx, info.val);
659 continue;
660 } else if (can_use_VOP3(instr)) {
661 to_VOP3(ctx, instr);
662 instr->operands[i] = get_constant_op(ctx, info.val);
663 continue;
664 }
665 }
666 }
667
668 /* MUBUF: propagate constants and combine additions */
669 else if (instr->format == Format::MUBUF) {
670 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
671 Temp base;
672 uint32_t offset;
673 while (info.is_temp())
674 info = ctx.info[info.temp.id()];
675
676 if (mubuf->offen && i == 0 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
677 assert(!mubuf->idxen);
678 instr->operands[i] = Operand(v1);
679 mubuf->offset += info.val;
680 mubuf->offen = false;
681 continue;
682 } else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
683 instr->operands[2] = Operand((uint32_t) 0);
684 mubuf->offset += info.val;
685 continue;
686 } else if (mubuf->offen && i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
687 assert(!mubuf->idxen);
688 instr->operands[i].setTemp(base);
689 mubuf->offset += offset;
690 continue;
691 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
692 instr->operands[i].setTemp(base);
693 mubuf->offset += offset;
694 continue;
695 }
696 }
697
698 /* DS: combine additions */
699 else if (instr->format == Format::DS) {
700
701 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
702 Temp base;
703 uint32_t offset;
704 if (i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == instr->operands[i].regClass()) {
705 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
706 instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
707 if (offset % 4 == 0 &&
708 ds->offset0 + (offset >> 2) <= 255 &&
709 ds->offset1 + (offset >> 2) <= 255) {
710 instr->operands[i].setTemp(base);
711 ds->offset0 += offset >> 2;
712 ds->offset1 += offset >> 2;
713 }
714 } else {
715 if (ds->offset0 + offset <= 65535) {
716 instr->operands[i].setTemp(base);
717 ds->offset0 += offset;
718 }
719 }
720 }
721 }
722
723 /* SMEM: propagate constants and combine additions */
724 else if (instr->format == Format::SMEM) {
725
726 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
727 Temp base;
728 uint32_t offset;
729 if (i == 1 && info.is_constant_or_literal() &&
730 (ctx.program->chip_class < GFX8 || info.val <= 0xFFFFF)) {
731 instr->operands[i] = Operand(info.val);
732 continue;
733 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
734 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
735 if (soe &&
736 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() ||
737 ctx.info[smem->operands.back().tempId()].val != 0)) {
738 continue;
739 }
740 if (soe) {
741 smem->operands[1] = Operand(offset);
742 smem->operands.back() = Operand(base);
743 } else {
744 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
745 new_instr->operands[0] = smem->operands[0];
746 new_instr->operands[1] = Operand(offset);
747 if (smem->definitions.empty())
748 new_instr->operands[2] = smem->operands[2];
749 new_instr->operands.back() = Operand(base);
750 if (!smem->definitions.empty())
751 new_instr->definitions[0] = smem->definitions[0];
752 new_instr->can_reorder = smem->can_reorder;
753 new_instr->barrier = smem->barrier;
754 instr.reset(new_instr);
755 smem = static_cast<SMEM_instruction *>(instr.get());
756 }
757 continue;
758 }
759 }
760 }
761
762 /* if this instruction doesn't define anything, return */
763 if (instr->definitions.empty())
764 return;
765
766 switch (instr->opcode) {
767 case aco_opcode::p_create_vector: {
768 unsigned num_ops = instr->operands.size();
769 for (const Operand& op : instr->operands) {
770 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
771 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
772 }
773 if (num_ops != instr->operands.size()) {
774 aco_ptr<Instruction> old_vec = std::move(instr);
775 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
776 instr->definitions[0] = old_vec->definitions[0];
777 unsigned k = 0;
778 for (Operand& old_op : old_vec->operands) {
779 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
780 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++) {
781 Operand op = ctx.info[old_op.tempId()].instr->operands[j];
782 if (op.isTemp() && ctx.info[op.tempId()].is_temp() &&
783 ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type())
784 op.setTemp(ctx.info[op.tempId()].temp);
785 instr->operands[k++] = op;
786 }
787 } else {
788 instr->operands[k++] = old_op;
789 }
790 }
791 assert(k == num_ops);
792 }
793 if (instr->operands.size() == 1 && instr->operands[0].isTemp())
794 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
795 else if (instr->definitions[0].getTemp().size() == instr->operands.size())
796 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
797 break;
798 }
799 case aco_opcode::p_split_vector: {
800 if (!ctx.info[instr->operands[0].tempId()].is_vec())
801 break;
802 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
803 assert(instr->definitions.size() == vec->operands.size());
804 for (unsigned i = 0; i < instr->definitions.size(); i++) {
805 Operand vec_op = vec->operands[i];
806 if (vec_op.isConstant()) {
807 if (vec_op.isLiteral())
808 ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue());
809 else if (vec_op.size() == 1)
810 ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue());
811 } else {
812 assert(vec_op.isTemp());
813 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
814 }
815 }
816 break;
817 }
818 case aco_opcode::p_extract_vector: { /* mov */
819 if (!ctx.info[instr->operands[0].tempId()].is_vec())
820 break;
821 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
822 if (vec->definitions[0].getTemp().size() == vec->operands.size() && /* TODO: what about 64bit or other combinations? */
823 vec->operands[0].size() == instr->definitions[0].size()) {
824
825 /* convert this extract into a mov instruction */
826 Operand vec_op = vec->operands[instr->operands[1].constantValue()];
827 bool is_vgpr = instr->definitions[0].getTemp().type() == RegType::vgpr;
828 aco_opcode opcode = is_vgpr ? aco_opcode::v_mov_b32 : aco_opcode::s_mov_b32;
829 Format format = is_vgpr ? Format::VOP1 : Format::SOP1;
830 instr->opcode = opcode;
831 instr->format = format;
832 instr->operands = {instr->operands.begin(), 1 };
833 instr->operands[0] = vec_op;
834
835 if (vec_op.isConstant()) {
836 if (vec_op.isLiteral())
837 ctx.info[instr->definitions[0].tempId()].set_literal(vec_op.constantValue());
838 else if (vec_op.size() == 1)
839 ctx.info[instr->definitions[0].tempId()].set_constant(vec_op.constantValue());
840 } else {
841 assert(vec_op.isTemp());
842 ctx.info[instr->definitions[0].tempId()].set_temp(vec_op.getTemp());
843 }
844 }
845 break;
846 }
847 case aco_opcode::s_mov_b32: /* propagate */
848 case aco_opcode::s_mov_b64:
849 case aco_opcode::v_mov_b32:
850 case aco_opcode::p_as_uniform:
851 if (instr->definitions[0].isFixed()) {
852 /* don't copy-propagate copies into fixed registers */
853 } else if (instr->usesModifiers()) {
854 // TODO
855 } else if (instr->operands[0].isConstant()) {
856 if (instr->operands[0].isLiteral())
857 ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue());
858 else if (instr->operands[0].size() == 1)
859 ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue());
860 } else if (instr->operands[0].isTemp()) {
861 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
862 } else {
863 assert(instr->operands[0].isFixed());
864 }
865 break;
866 case aco_opcode::p_is_helper:
867 if (!ctx.program->needs_wqm)
868 ctx.info[instr->definitions[0].tempId()].set_constant(0u);
869 break;
870 case aco_opcode::s_movk_i32: {
871 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
872 v = v & 0x8000 ? (v | 0xffff0000) : v;
873 if (v <= 64 || v >= 0xfffffff0)
874 ctx.info[instr->definitions[0].tempId()].set_constant(v);
875 else
876 ctx.info[instr->definitions[0].tempId()].set_literal(v);
877 break;
878 }
879 case aco_opcode::v_bfrev_b32:
880 case aco_opcode::s_brev_b32: {
881 if (instr->operands[0].isConstant()) {
882 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
883 if (v <= 64 || v >= 0xfffffff0)
884 ctx.info[instr->definitions[0].tempId()].set_constant(v);
885 else
886 ctx.info[instr->definitions[0].tempId()].set_literal(v);
887 }
888 break;
889 }
890 case aco_opcode::s_bfm_b32: {
891 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
892 unsigned size = instr->operands[0].constantValue() & 0x1f;
893 unsigned start = instr->operands[1].constantValue() & 0x1f;
894 uint32_t v = ((1u << size) - 1u) << start;
895 if (v <= 64 || v >= 0xfffffff0)
896 ctx.info[instr->definitions[0].tempId()].set_constant(v);
897 else
898 ctx.info[instr->definitions[0].tempId()].set_literal(v);
899 }
900 }
901 case aco_opcode::v_mul_f32: { /* omod */
902 /* TODO: try to move the negate/abs modifier to the consumer instead */
903 if (instr->usesModifiers())
904 break;
905
906 for (unsigned i = 0; i < 2; i++) {
907 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
908 if (instr->operands[!i].constantValue() == 0x40000000) { /* 2.0 */
909 ctx.info[instr->operands[i].tempId()].set_omod2();
910 } else if (instr->operands[!i].constantValue() == 0x40800000) { /* 4.0 */
911 ctx.info[instr->operands[i].tempId()].set_omod4();
912 } else if (instr->operands[!i].constantValue() == 0x3f000000) { /* 0.5 */
913 ctx.info[instr->operands[i].tempId()].set_omod5();
914 } else if (instr->operands[!i].constantValue() == 0x3f800000 &&
915 !block.fp_mode.must_flush_denorms32) { /* 1.0 */
916 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
917 } else {
918 continue;
919 }
920 break;
921 }
922 }
923 break;
924 }
925 case aco_opcode::v_and_b32: /* abs */
926 if (instr->operands[0].constantEquals(0x7FFFFFFF) && instr->operands[1].isTemp())
927 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
928 else
929 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
930 break;
931 case aco_opcode::v_xor_b32: { /* neg */
932 if (instr->operands[0].constantEquals(0x80000000u) && instr->operands[1].isTemp()) {
933 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
934 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
935 } else {
936 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
937 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
938 instr->opcode = aco_opcode::v_or_b32;
939 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
940 } else {
941 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
942 }
943 }
944 } else {
945 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
946 }
947 break;
948 }
949 case aco_opcode::v_med3_f32: { /* clamp */
950 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
951 if (vop3->abs[0] || vop3->abs[1] || vop3->abs[2] ||
952 vop3->neg[0] || vop3->neg[1] || vop3->neg[2] ||
953 vop3->omod != 0 || vop3->opsel != 0)
954 break;
955
956 unsigned idx = 0;
957 bool found_zero = false, found_one = false;
958 for (unsigned i = 0; i < 3; i++)
959 {
960 if (instr->operands[i].constantEquals(0))
961 found_zero = true;
962 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
963 found_one = true;
964 else
965 idx = i;
966 }
967 if (found_zero && found_one && instr->operands[idx].isTemp()) {
968 ctx.info[instr->operands[idx].tempId()].set_clamp();
969 }
970 break;
971 }
972 case aco_opcode::v_cndmask_b32:
973 if (instr->operands[0].constantEquals(0) &&
974 instr->operands[1].constantEquals(0xFFFFFFFF) &&
975 instr->operands[2].isTemp())
976 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
977 else if (instr->operands[0].constantEquals(0) &&
978 instr->operands[1].constantEquals(0x3f800000u) &&
979 instr->operands[2].isTemp())
980 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
981 break;
982 case aco_opcode::v_cmp_lg_u32:
983 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
984 instr->operands[0].constantEquals(0) &&
985 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
986 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
987 break;
988 case aco_opcode::p_phi:
989 case aco_opcode::p_linear_phi: {
990 /* lower_bool_phis() can create phis like this */
991 bool all_same_temp = instr->operands[0].isTemp();
992 /* this check is needed when moving uniform loop counters out of a divergent loop */
993 if (all_same_temp)
994 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
995 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
996 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
997 all_same_temp = false;
998 }
999 if (all_same_temp) {
1000 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1001 } else {
1002 bool all_undef = instr->operands[0].isUndefined();
1003 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
1004 if (!instr->operands[i].isUndefined())
1005 all_undef = false;
1006 }
1007 if (all_undef)
1008 ctx.info[instr->definitions[0].tempId()].set_undefined();
1009 }
1010 break;
1011 }
1012 case aco_opcode::v_add_u32:
1013 case aco_opcode::v_add_co_u32:
1014 case aco_opcode::s_add_i32:
1015 case aco_opcode::s_add_u32:
1016 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
1017 break;
1018 case aco_opcode::s_and_b32:
1019 case aco_opcode::s_and_b64:
1020 if (instr->operands[1].isFixed() && instr->operands[1].physReg() == exec &&
1021 instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1022 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
1023 }
1024 /* fallthrough */
1025 case aco_opcode::s_not_b32:
1026 case aco_opcode::s_not_b64:
1027 case aco_opcode::s_or_b32:
1028 case aco_opcode::s_or_b64:
1029 case aco_opcode::s_xor_b32:
1030 case aco_opcode::s_xor_b64:
1031 case aco_opcode::s_lshl_b32:
1032 case aco_opcode::v_or_b32:
1033 case aco_opcode::v_lshlrev_b32:
1034 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1035 break;
1036 case aco_opcode::v_min_f32:
1037 case aco_opcode::v_min_f16:
1038 case aco_opcode::v_min_u32:
1039 case aco_opcode::v_min_i32:
1040 case aco_opcode::v_min_u16:
1041 case aco_opcode::v_min_i16:
1042 case aco_opcode::v_max_f32:
1043 case aco_opcode::v_max_f16:
1044 case aco_opcode::v_max_u32:
1045 case aco_opcode::v_max_i32:
1046 case aco_opcode::v_max_u16:
1047 case aco_opcode::v_max_i16:
1048 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
1049 break;
1050 case aco_opcode::v_cmp_lt_f32:
1051 case aco_opcode::v_cmp_eq_f32:
1052 case aco_opcode::v_cmp_le_f32:
1053 case aco_opcode::v_cmp_gt_f32:
1054 case aco_opcode::v_cmp_lg_f32:
1055 case aco_opcode::v_cmp_ge_f32:
1056 case aco_opcode::v_cmp_o_f32:
1057 case aco_opcode::v_cmp_u_f32:
1058 case aco_opcode::v_cmp_nge_f32:
1059 case aco_opcode::v_cmp_nlg_f32:
1060 case aco_opcode::v_cmp_ngt_f32:
1061 case aco_opcode::v_cmp_nle_f32:
1062 case aco_opcode::v_cmp_neq_f32:
1063 case aco_opcode::v_cmp_nlt_f32:
1064 ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
1065 break;
1066 case aco_opcode::s_cselect_b64:
1067 case aco_opcode::s_cselect_b32:
1068 if (instr->operands[0].constantEquals((unsigned) -1) &&
1069 instr->operands[1].constantEquals(0)) {
1070 /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
1071 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
1072 }
1073 break;
1074 default:
1075 break;
1076 }
1077 }
1078
1079 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse)
1080 {
1081 *ordered = *unordered = op;
1082 switch (op) {
1083 #define CMP(ord, unord) \
1084 case aco_opcode::v_cmp_##ord##_f32:\
1085 case aco_opcode::v_cmp_n##unord##_f32:\
1086 *ordered = aco_opcode::v_cmp_##ord##_f32;\
1087 *unordered = aco_opcode::v_cmp_n##unord##_f32;\
1088 *inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\
1089 return true;
1090 CMP(lt, /*n*/ge)
1091 CMP(eq, /*n*/lg)
1092 CMP(le, /*n*/gt)
1093 CMP(gt, /*n*/le)
1094 CMP(lg, /*n*/eq)
1095 CMP(ge, /*n*/lt)
1096 #undef CMP
1097 default:
1098 return false;
1099 }
1100 }
1101
1102 aco_opcode get_ordered(aco_opcode op)
1103 {
1104 aco_opcode ordered, unordered, inverse;
1105 return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::last_opcode;
1106 }
1107
1108 aco_opcode get_unordered(aco_opcode op)
1109 {
1110 aco_opcode ordered, unordered, inverse;
1111 return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::last_opcode;
1112 }
1113
1114 aco_opcode get_inverse(aco_opcode op)
1115 {
1116 aco_opcode ordered, unordered, inverse;
1117 return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::last_opcode;
1118 }
1119
1120 bool is_cmp(aco_opcode op)
1121 {
1122 aco_opcode ordered, unordered, inverse;
1123 return get_cmp_info(op, &ordered, &unordered, &inverse);
1124 }
1125
1126 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1127 {
1128 if (ctx.info[tmp.id()].is_temp())
1129 return ctx.info[tmp.id()].temp.id();
1130 else
1131 return tmp.id();
1132 }
1133
1134 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1135 {
1136 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1137 for (const Operand& op : instr->operands) {
1138 if (op.isTemp())
1139 ctx.uses[op.tempId()]--;
1140 }
1141 }
1142 }
1143
1144 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1145 {
1146 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1147 return nullptr;
1148 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1149 return nullptr;
1150
1151 Instruction *instr = ctx.info[op.tempId()].instr;
1152
1153 if (instr->definitions.size() == 2) {
1154 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1155 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1156 return nullptr;
1157 }
1158
1159 return instr;
1160 }
1161
1162 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1163 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1164 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1165 {
1166 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1167 return false;
1168 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1169 return false;
1170
1171 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1172
1173 bool neg[2] = {false, false};
1174 bool abs[2] = {false, false};
1175 uint8_t opsel = 0;
1176 Instruction *op_instr[2];
1177 Temp op[2];
1178
1179 for (unsigned i = 0; i < 2; i++) {
1180 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1181 if (!op_instr[i])
1182 return false;
1183
1184 aco_opcode expected_cmp = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1185
1186 if (op_instr[i]->opcode != expected_cmp)
1187 return false;
1188 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1189 return false;
1190
1191 if (op_instr[i]->isVOP3()) {
1192 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1193 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1194 return false;
1195 neg[i] = vop3->neg[0];
1196 abs[i] = vop3->abs[0];
1197 opsel |= (vop3->opsel & 1) << i;
1198 }
1199
1200 Temp op0 = op_instr[i]->operands[0].getTemp();
1201 Temp op1 = op_instr[i]->operands[1].getTemp();
1202 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1203 return false;
1204 /* shouldn't happen yet, but best to be safe */
1205 if (op1.type() != RegType::vgpr)
1206 return false;
1207
1208 op[i] = op1;
1209 }
1210
1211 ctx.uses[op[0].id()]++;
1212 ctx.uses[op[1].id()]++;
1213 decrease_uses(ctx, op_instr[0]);
1214 decrease_uses(ctx, op_instr[1]);
1215
1216 aco_opcode new_op = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1217 Instruction *new_instr;
1218 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel) {
1219 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1220 for (unsigned i = 0; i < 2; i++) {
1221 vop3->neg[i] = neg[i];
1222 vop3->abs[i] = abs[i];
1223 }
1224 vop3->opsel = opsel;
1225 new_instr = static_cast<Instruction *>(vop3);
1226 } else {
1227 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1228 }
1229 new_instr->operands[0] = Operand(op[0]);
1230 new_instr->operands[1] = Operand(op[1]);
1231 new_instr->definitions[0] = instr->definitions[0];
1232
1233 ctx.info[instr->definitions[0].tempId()].label = 0;
1234 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1235
1236 instr.reset(new_instr);
1237
1238 return true;
1239 }
1240
1241 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1242 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1243 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1244 {
1245 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1246 return false;
1247 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1248 return false;
1249
1250 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1251 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1252
1253 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1254 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1255 if (!nan_test || !cmp)
1256 return false;
1257
1258 if (cmp->opcode == expected_nan_test)
1259 std::swap(nan_test, cmp);
1260 else if (nan_test->opcode != expected_nan_test)
1261 return false;
1262
1263 if (!is_cmp(cmp->opcode))
1264 return false;
1265
1266 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1267 return false;
1268 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1269 return false;
1270
1271 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1272 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1273 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1274 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1275 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1276 return false;
1277 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1278 return false;
1279
1280 ctx.uses[cmp->operands[0].tempId()]++;
1281 ctx.uses[cmp->operands[1].tempId()]++;
1282 decrease_uses(ctx, nan_test);
1283 decrease_uses(ctx, cmp);
1284
1285 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1286 Instruction *new_instr;
1287 if (cmp->isVOP3()) {
1288 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1289 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1290 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1291 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1292 new_vop3->clamp = cmp_vop3->clamp;
1293 new_vop3->omod = cmp_vop3->omod;
1294 new_vop3->opsel = cmp_vop3->opsel;
1295 new_instr = new_vop3;
1296 } else {
1297 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1298 }
1299 new_instr->operands[0] = cmp->operands[0];
1300 new_instr->operands[1] = cmp->operands[1];
1301 new_instr->definitions[0] = instr->definitions[0];
1302
1303 ctx.info[instr->definitions[0].tempId()].label = 0;
1304 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1305
1306 instr.reset(new_instr);
1307
1308 return true;
1309 }
1310
1311 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1312 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1313 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1314 {
1315 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1316 return false;
1317 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1318 return false;
1319
1320 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1321
1322 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1323 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1324
1325 if (!nan_test || !cmp)
1326 return false;
1327
1328 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1329 if (cmp->opcode == expected_nan_test)
1330 std::swap(nan_test, cmp);
1331 else if (nan_test->opcode != expected_nan_test)
1332 return false;
1333
1334 if (!is_cmp(cmp->opcode))
1335 return false;
1336
1337 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1338 return false;
1339 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1340 return false;
1341
1342 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1343 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1344 if (prop_nan0 != prop_nan1)
1345 return false;
1346
1347 int constant_operand = -1;
1348 for (unsigned i = 0; i < 2; i++) {
1349 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1350 constant_operand = !i;
1351 break;
1352 }
1353 }
1354 if (constant_operand == -1)
1355 return false;
1356
1357 uint32_t constant;
1358 if (cmp->operands[constant_operand].isConstant()) {
1359 constant = cmp->operands[constant_operand].constantValue();
1360 } else if (cmp->operands[constant_operand].isTemp()) {
1361 unsigned id = cmp->operands[constant_operand].tempId();
1362 if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal())
1363 return false;
1364 constant = ctx.info[id].val;
1365 } else {
1366 return false;
1367 }
1368
1369 float constantf;
1370 memcpy(&constantf, &constant, 4);
1371 if (isnan(constantf))
1372 return false;
1373
1374 if (cmp->operands[0].isTemp())
1375 ctx.uses[cmp->operands[0].tempId()]++;
1376 if (cmp->operands[1].isTemp())
1377 ctx.uses[cmp->operands[1].tempId()]++;
1378 decrease_uses(ctx, nan_test);
1379 decrease_uses(ctx, cmp);
1380
1381 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1382 Instruction *new_instr;
1383 if (cmp->isVOP3()) {
1384 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1385 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1386 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1387 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1388 new_vop3->clamp = cmp_vop3->clamp;
1389 new_vop3->omod = cmp_vop3->omod;
1390 new_vop3->opsel = cmp_vop3->opsel;
1391 new_instr = new_vop3;
1392 } else {
1393 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1394 }
1395 new_instr->operands[0] = cmp->operands[0];
1396 new_instr->operands[1] = cmp->operands[1];
1397 new_instr->definitions[0] = instr->definitions[0];
1398
1399 ctx.info[instr->definitions[0].tempId()].label = 0;
1400 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1401
1402 instr.reset(new_instr);
1403
1404 return true;
1405 }
1406
1407 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1408 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1409 {
1410 if (instr->opcode != aco_opcode::s_not_b64)
1411 return false;
1412 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1413 return false;
1414 if (!instr->operands[0].isTemp())
1415 return false;
1416
1417 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1418 if (!cmp)
1419 return false;
1420
1421 aco_opcode new_opcode = get_inverse(cmp->opcode);
1422 if (new_opcode == aco_opcode::last_opcode)
1423 return false;
1424
1425 if (cmp->operands[0].isTemp())
1426 ctx.uses[cmp->operands[0].tempId()]++;
1427 if (cmp->operands[1].isTemp())
1428 ctx.uses[cmp->operands[1].tempId()]++;
1429 decrease_uses(ctx, cmp);
1430
1431 Instruction *new_instr;
1432 if (cmp->isVOP3()) {
1433 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1434 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1435 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1436 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1437 new_vop3->clamp = cmp_vop3->clamp;
1438 new_vop3->omod = cmp_vop3->omod;
1439 new_vop3->opsel = cmp_vop3->opsel;
1440 new_instr = new_vop3;
1441 } else {
1442 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1443 }
1444 new_instr->operands[0] = cmp->operands[0];
1445 new_instr->operands[1] = cmp->operands[1];
1446 new_instr->definitions[0] = instr->definitions[0];
1447
1448 ctx.info[instr->definitions[0].tempId()].label = 0;
1449 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1450
1451 instr.reset(new_instr);
1452
1453 return true;
1454 }
1455
1456 /* op1(op2(1, 2), 0) if swap = false
1457 * op1(0, op2(1, 2)) if swap = true */
1458 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1459 Instruction* op1_instr, bool swap, const char *shuffle_str,
1460 Operand operands[3], bool neg[3], bool abs[3], uint8_t *opsel,
1461 bool *op1_clamp, uint8_t *op1_omod,
1462 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1463 {
1464 /* checks */
1465 if (op1_instr->opcode != op1)
1466 return false;
1467
1468 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1469 if (!op2_instr || op2_instr->opcode != op2)
1470 return false;
1471
1472 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1473 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1474
1475 /* don't support inbetween clamp/omod */
1476 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1477 return false;
1478
1479 /* get operands and modifiers and check inbetween modifiers */
1480 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1481 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1482
1483 if (inbetween_neg)
1484 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1485 else if (op1_vop3 && op1_vop3->neg[swap])
1486 return false;
1487
1488 if (inbetween_abs)
1489 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1490 else if (op1_vop3 && op1_vop3->abs[swap])
1491 return false;
1492
1493 if (inbetween_opsel)
1494 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel & (1 << swap) : false;
1495 else if (op1_vop3 && op1_vop3->opsel & (1 << swap))
1496 return false;
1497
1498 int shuffle[3];
1499 shuffle[shuffle_str[0] - '0'] = 0;
1500 shuffle[shuffle_str[1] - '0'] = 1;
1501 shuffle[shuffle_str[2] - '0'] = 2;
1502
1503 operands[shuffle[0]] = op1_instr->operands[!swap];
1504 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1505 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1506 if (op1_vop3 && op1_vop3->opsel & (1 << !swap))
1507 *opsel |= 1 << shuffle[0];
1508
1509 for (unsigned i = 0; i < 2; i++) {
1510 operands[shuffle[i + 1]] = op2_instr->operands[i];
1511 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1512 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1513 if (op2_vop3 && op2_vop3->opsel & (1 << i))
1514 *opsel |= 1 << shuffle[i + 1];
1515 }
1516
1517 /* check operands */
1518 unsigned sgpr_id = 0;
1519 for (unsigned i = 0; i < 3; i++) {
1520 Operand op = operands[i];
1521 if (op.isLiteral()) {
1522 return false;
1523 } else if (op.isTemp() && op.getTemp().type() == RegType::sgpr) {
1524 if (sgpr_id && sgpr_id != op.tempId())
1525 return false;
1526 sgpr_id = op.tempId();
1527 }
1528 }
1529
1530 return true;
1531 }
1532
1533 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1534 Operand operands[3], bool neg[3], bool abs[3], uint8_t opsel,
1535 bool clamp, unsigned omod)
1536 {
1537 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1538 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1539 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1540 new_instr->clamp = clamp;
1541 new_instr->omod = omod;
1542 new_instr->opsel = opsel;
1543 new_instr->operands[0] = operands[0];
1544 new_instr->operands[1] = operands[1];
1545 new_instr->operands[2] = operands[2];
1546 new_instr->definitions[0] = instr->definitions[0];
1547 ctx.info[instr->definitions[0].tempId()].label = 0;
1548
1549 instr.reset(new_instr);
1550 }
1551
1552 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1553 {
1554 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1555 (label_omod_success | label_clamp_success);
1556
1557 for (unsigned swap = 0; swap < 2; swap++) {
1558 if (!((1 << swap) & ops))
1559 continue;
1560
1561 Operand operands[3];
1562 bool neg[3], abs[3], clamp;
1563 uint8_t opsel = 0, omod = 0;
1564 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1565 instr.get(), swap, shuffle,
1566 operands, neg, abs, &opsel,
1567 &clamp, &omod, NULL, NULL, NULL)) {
1568 ctx.uses[instr->operands[swap].tempId()]--;
1569 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1570 if (omod_clamp & label_omod_success)
1571 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1572 if (omod_clamp & label_clamp_success)
1573 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1574 return true;
1575 }
1576 }
1577 return false;
1578 }
1579
1580 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
1581 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
1582 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
1583 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
1584 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
1585 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
1586 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1587 {
1588 /* checks */
1589 if (!instr->operands[0].isTemp())
1590 return false;
1591 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1592 return false;
1593
1594 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
1595 if (!op2_instr)
1596 return false;
1597 switch (op2_instr->opcode) {
1598 case aco_opcode::s_and_b32:
1599 case aco_opcode::s_or_b32:
1600 case aco_opcode::s_xor_b32:
1601 case aco_opcode::s_and_b64:
1602 case aco_opcode::s_or_b64:
1603 case aco_opcode::s_xor_b64:
1604 break;
1605 default:
1606 return false;
1607 }
1608
1609 /* create instruction */
1610 std::swap(instr->definitions[0], op2_instr->definitions[0]);
1611 ctx.uses[instr->operands[0].tempId()]--;
1612 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
1613
1614 switch (op2_instr->opcode) {
1615 case aco_opcode::s_and_b32:
1616 op2_instr->opcode = aco_opcode::s_nand_b32;
1617 break;
1618 case aco_opcode::s_or_b32:
1619 op2_instr->opcode = aco_opcode::s_nor_b32;
1620 break;
1621 case aco_opcode::s_xor_b32:
1622 op2_instr->opcode = aco_opcode::s_xnor_b32;
1623 break;
1624 case aco_opcode::s_and_b64:
1625 op2_instr->opcode = aco_opcode::s_nand_b64;
1626 break;
1627 case aco_opcode::s_or_b64:
1628 op2_instr->opcode = aco_opcode::s_nor_b64;
1629 break;
1630 case aco_opcode::s_xor_b64:
1631 op2_instr->opcode = aco_opcode::s_xnor_b64;
1632 break;
1633 default:
1634 break;
1635 }
1636
1637 return true;
1638 }
1639
1640 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
1641 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
1642 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
1643 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
1644 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1645 {
1646 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1647 return false;
1648
1649 for (unsigned i = 0; i < 2; i++) {
1650 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1651 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
1652 continue;
1653
1654 ctx.uses[instr->operands[i].tempId()]--;
1655 instr->operands[0] = instr->operands[!i];
1656 instr->operands[1] = op2_instr->operands[0];
1657 ctx.info[instr->definitions[0].tempId()].label = 0;
1658
1659 switch (instr->opcode) {
1660 case aco_opcode::s_and_b32:
1661 instr->opcode = aco_opcode::s_andn2_b32;
1662 break;
1663 case aco_opcode::s_or_b32:
1664 instr->opcode = aco_opcode::s_orn2_b32;
1665 break;
1666 case aco_opcode::s_and_b64:
1667 instr->opcode = aco_opcode::s_andn2_b64;
1668 break;
1669 case aco_opcode::s_or_b64:
1670 instr->opcode = aco_opcode::s_orn2_b64;
1671 break;
1672 default:
1673 break;
1674 }
1675
1676 return true;
1677 }
1678 return false;
1679 }
1680
1681 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
1682 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1683 {
1684 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1685 return false;
1686
1687 for (unsigned i = 0; i < 2; i++) {
1688 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1689 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 || !op2_instr->operands[1].isConstant())
1690 continue;
1691
1692 uint32_t shift = op2_instr->operands[1].constantValue();
1693 if (shift < 1 || shift > 4)
1694 continue;
1695
1696 ctx.uses[instr->operands[i].tempId()]--;
1697 instr->operands[1] = instr->operands[!i];
1698 instr->operands[0] = op2_instr->operands[0];
1699 ctx.info[instr->definitions[0].tempId()].label = 0;
1700
1701 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
1702 aco_opcode::s_lshl2_add_u32,
1703 aco_opcode::s_lshl3_add_u32,
1704 aco_opcode::s_lshl4_add_u32})[shift - 1];
1705
1706 return true;
1707 }
1708 return false;
1709 }
1710
1711 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
1712 {
1713 switch (op) {
1714 #define MINMAX(type, gfx9) \
1715 case aco_opcode::v_min_##type:\
1716 case aco_opcode::v_max_##type:\
1717 case aco_opcode::v_med3_##type:\
1718 *min = aco_opcode::v_min_##type;\
1719 *max = aco_opcode::v_max_##type;\
1720 *med3 = aco_opcode::v_med3_##type;\
1721 *min3 = aco_opcode::v_min3_##type;\
1722 *max3 = aco_opcode::v_max3_##type;\
1723 *some_gfx9_only = gfx9;\
1724 return true;
1725 MINMAX(f32, false)
1726 MINMAX(u32, false)
1727 MINMAX(i32, false)
1728 MINMAX(f16, true)
1729 MINMAX(u16, true)
1730 MINMAX(i16, true)
1731 #undef MINMAX
1732 default:
1733 return false;
1734 }
1735 }
1736
1737 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
1738 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
1739 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
1740 aco_opcode min, aco_opcode max, aco_opcode med)
1741 {
1742 aco_opcode other_op;
1743 if (instr->opcode == min)
1744 other_op = max;
1745 else if (instr->opcode == max)
1746 other_op = min;
1747 else
1748 return false;
1749
1750 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1751 (label_omod_success | label_clamp_success);
1752
1753 for (unsigned swap = 0; swap < 2; swap++) {
1754 Operand operands[3];
1755 bool neg[3], abs[3], clamp, inbetween_neg, inbetween_abs;
1756 uint8_t opsel = 0, omod = 0;
1757 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
1758 "012", operands, neg, abs, &opsel,
1759 &clamp, &omod, &inbetween_neg, &inbetween_abs, NULL)) {
1760 int const0_idx = -1, const1_idx = -1;
1761 uint32_t const0 = 0, const1 = 0;
1762 for (int i = 0; i < 3; i++) {
1763 uint32_t val;
1764 if (operands[i].isConstant()) {
1765 val = operands[i].constantValue();
1766 } else if (operands[i].isTemp() && ctx.uses[operands[i].tempId()] == 1 &&
1767 ctx.info[operands[i].tempId()].is_constant_or_literal()) {
1768 val = ctx.info[operands[i].tempId()].val;
1769 } else {
1770 continue;
1771 }
1772 if (const0_idx >= 0) {
1773 const1_idx = i;
1774 const1 = val;
1775 } else {
1776 const0_idx = i;
1777 const0 = val;
1778 }
1779 }
1780 if (const0_idx < 0 || const1_idx < 0)
1781 continue;
1782
1783 if (opsel & (1 << const0_idx))
1784 const0 >>= 16;
1785 if (opsel & (1 << const1_idx))
1786 const1 >>= 16;
1787
1788 int lower_idx = const0_idx;
1789 switch (min) {
1790 case aco_opcode::v_min_f32:
1791 case aco_opcode::v_min_f16: {
1792 float const0_f, const1_f;
1793 if (min == aco_opcode::v_min_f32) {
1794 memcpy(&const0_f, &const0, 4);
1795 memcpy(&const1_f, &const1, 4);
1796 } else {
1797 const0_f = _mesa_half_to_float(const0);
1798 const1_f = _mesa_half_to_float(const1);
1799 }
1800 if (abs[const0_idx]) const0_f = fabsf(const0_f);
1801 if (abs[const1_idx]) const1_f = fabsf(const1_f);
1802 if (neg[const0_idx]) const0_f = -const0_f;
1803 if (neg[const1_idx]) const1_f = -const1_f;
1804 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
1805 break;
1806 }
1807 case aco_opcode::v_min_u32: {
1808 lower_idx = const0 < const1 ? const0_idx : const1_idx;
1809 break;
1810 }
1811 case aco_opcode::v_min_u16: {
1812 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
1813 break;
1814 }
1815 case aco_opcode::v_min_i32: {
1816 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
1817 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
1818 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1819 break;
1820 }
1821 case aco_opcode::v_min_i16: {
1822 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
1823 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
1824 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1825 break;
1826 }
1827 default:
1828 break;
1829 }
1830 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
1831
1832 if (instr->opcode == min) {
1833 if (upper_idx != 0 || lower_idx == 0)
1834 return false;
1835 } else {
1836 if (upper_idx == 0 || lower_idx != 0)
1837 return false;
1838 }
1839
1840 neg[1] ^= inbetween_neg;
1841 neg[2] ^= inbetween_neg;
1842 abs[1] |= inbetween_abs;
1843 abs[2] |= inbetween_abs;
1844
1845 ctx.uses[instr->operands[swap].tempId()]--;
1846 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
1847 if (omod_clamp & label_omod_success)
1848 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1849 if (omod_clamp & label_clamp_success)
1850 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1851
1852 return true;
1853 }
1854 }
1855
1856 return false;
1857 }
1858
1859
1860 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1861 {
1862 /* apply sgprs */
1863 uint32_t sgpr_idx = 0;
1864 uint32_t sgpr_info_id = 0;
1865 bool has_sgpr = false;
1866 uint32_t sgpr_ssa_id = 0;
1867 /* find 'best' possible sgpr */
1868 for (unsigned i = 0; i < instr->operands.size(); i++)
1869 {
1870 if (instr->operands[i].isLiteral()) {
1871 has_sgpr = true;
1872 break;
1873 }
1874 if (!instr->operands[i].isTemp())
1875 continue;
1876 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
1877 has_sgpr = true;
1878 sgpr_ssa_id = instr->operands[i].tempId();
1879 continue;
1880 }
1881 ssa_info& info = ctx.info[instr->operands[i].tempId()];
1882 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
1883 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
1884 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
1885 sgpr_idx = i;
1886 sgpr_info_id = instr->operands[i].tempId();
1887 }
1888 }
1889 }
1890 if (!has_sgpr && sgpr_info_id != 0) {
1891 ssa_info& info = ctx.info[sgpr_info_id];
1892 if (sgpr_idx == 0 || instr->isVOP3()) {
1893 instr->operands[sgpr_idx] = Operand(info.temp);
1894 ctx.uses[sgpr_info_id]--;
1895 ctx.uses[info.temp.id()]++;
1896 } else if (can_swap_operands(instr)) {
1897 instr->operands[sgpr_idx] = instr->operands[0];
1898 instr->operands[0] = Operand(info.temp);
1899 ctx.uses[sgpr_info_id]--;
1900 ctx.uses[info.temp.id()]++;
1901 } else if (can_use_VOP3(instr)) {
1902 to_VOP3(ctx, instr);
1903 instr->operands[sgpr_idx] = Operand(info.temp);
1904 ctx.uses[sgpr_info_id]--;
1905 ctx.uses[info.temp.id()]++;
1906 }
1907
1908 /* we can have two sgprs on one instruction if it is the same sgpr! */
1909 } else if (sgpr_info_id != 0 &&
1910 sgpr_ssa_id == sgpr_info_id &&
1911 ctx.uses[sgpr_info_id] == 1 &&
1912 can_use_VOP3(instr)) {
1913 to_VOP3(ctx, instr);
1914 instr->operands[sgpr_idx] = Operand(ctx.info[sgpr_info_id].temp);
1915 ctx.uses[sgpr_info_id]--;
1916 ctx.uses[ctx.info[sgpr_info_id].temp.id()]++;
1917 }
1918 }
1919
1920 bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
1921 {
1922 /* check if we could apply omod on predecessor */
1923 if (instr->opcode == aco_opcode::v_mul_f32) {
1924 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success()) {
1925
1926 /* omod was successfully applied */
1927 /* if the omod instruction is v_mad, we also have to change the original add */
1928 if (ctx.info[instr->operands[1].tempId()].is_mad()) {
1929 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[1].tempId()].val].add_instr.get();
1930 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
1931 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
1932 add_instr->definitions[0] = instr->definitions[0];
1933 }
1934
1935 Instruction* omod_instr = ctx.info[instr->operands[1].tempId()].instr;
1936 /* check if we have an additional clamp modifier */
1937 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1) {
1938 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
1939 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
1940 }
1941 /* change definition ssa-id of modified instruction */
1942 omod_instr->definitions[0] = instr->definitions[0];
1943
1944 /* change the definition of instr to something unused, e.g. the original omod def */
1945 instr->definitions[0] = Definition(instr->operands[1].getTemp());
1946 ctx.uses[instr->definitions[0].tempId()] = 0;
1947 return true;
1948 }
1949 if (!ctx.info[instr->definitions[0].tempId()].label) {
1950 /* in all other cases, label this instruction as option for multiply-add */
1951 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
1952 }
1953 }
1954
1955 /* check if we could apply clamp on predecessor */
1956 if (instr->opcode == aco_opcode::v_med3_f32) {
1957 unsigned idx = 0;
1958 bool found_zero = false, found_one = false;
1959 for (unsigned i = 0; i < 3; i++)
1960 {
1961 if (instr->operands[i].constantEquals(0))
1962 found_zero = true;
1963 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
1964 found_one = true;
1965 else
1966 idx = i;
1967 }
1968 if (found_zero && found_one && instr->operands[idx].isTemp() &&
1969 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
1970 /* clamp was successfully applied */
1971 /* if the clamp instruction is v_mad, we also have to change the original add */
1972 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
1973 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
1974 add_instr->definitions[0] = instr->definitions[0];
1975 }
1976 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
1977 /* change definition ssa-id of modified instruction */
1978 clamp_instr->definitions[0] = instr->definitions[0];
1979
1980 /* change the definition of instr to something unused, e.g. the original omod def */
1981 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
1982 ctx.uses[instr->definitions[0].tempId()] = 0;
1983 return true;
1984 }
1985 }
1986
1987 /* omod has no effect if denormals are enabled */
1988 bool can_use_omod = block.fp_mode.denorm32 == 0;
1989
1990 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
1991 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
1992 can_use_VOP3(instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
1993 if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod2()) {
1994 to_VOP3(ctx, instr);
1995 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
1996 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1997 } else if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod4()) {
1998 to_VOP3(ctx, instr);
1999 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
2000 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2001 } else if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod5()) {
2002 to_VOP3(ctx, instr);
2003 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
2004 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2005 } else if (ctx.info[instr->definitions[0].tempId()].is_clamp()) {
2006 to_VOP3(ctx, instr);
2007 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
2008 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
2009 }
2010 }
2011
2012 return false;
2013 }
2014
2015 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
2016 // this would mean that we'd have to fix the instruction uses while value propagation
2017
2018 void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2019 {
2020 if (instr->definitions.empty() || !ctx.uses[instr->definitions[0].tempId()])
2021 return;
2022
2023 if (instr->isVALU()) {
2024 if (can_apply_sgprs(instr))
2025 apply_sgprs(ctx, instr);
2026 if (apply_omod_clamp(ctx, block, instr))
2027 return;
2028 }
2029
2030 /* TODO: There are still some peephole optimizations that could be done:
2031 * - abs(a - b) -> s_absdiff_i32
2032 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
2033 * - patterns for v_alignbit_b32 and v_alignbyte_b32
2034 * These aren't probably too interesting though.
2035 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
2036 * probably more useful than the previously mentioned optimizations.
2037 * The various comparison optimizations also currently only work with 32-bit
2038 * floats. */
2039
2040 /* neg(mul(a, b)) -> mul(neg(a), b) */
2041 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
2042 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
2043
2044 if (!ctx.info[val.id()].is_mul())
2045 return;
2046
2047 Instruction* mul_instr = ctx.info[val.id()].instr;
2048
2049 if (mul_instr->operands[0].isLiteral())
2050 return;
2051 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
2052 return;
2053
2054 /* convert to mul(neg(a), b) */
2055 ctx.uses[mul_instr->definitions[0].tempId()]--;
2056 Definition def = instr->definitions[0];
2057 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
2058 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
2059 instr.reset(create_instruction<VOP3A_instruction>(aco_opcode::v_mul_f32, asVOP3(Format::VOP2), 2, 1));
2060 instr->operands[0] = mul_instr->operands[0];
2061 instr->operands[1] = mul_instr->operands[1];
2062 instr->definitions[0] = def;
2063 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
2064 if (mul_instr->isVOP3()) {
2065 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
2066 new_mul->neg[0] = mul->neg[0] && !is_abs;
2067 new_mul->neg[1] = mul->neg[1] && !is_abs;
2068 new_mul->abs[0] = mul->abs[0] || is_abs;
2069 new_mul->abs[1] = mul->abs[1] || is_abs;
2070 new_mul->omod = mul->omod;
2071 }
2072 new_mul->neg[0] ^= true;
2073 new_mul->clamp = false;
2074
2075 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2076 return;
2077 }
2078 /* combine mul+add -> mad */
2079 else if ((instr->opcode == aco_opcode::v_add_f32 ||
2080 instr->opcode == aco_opcode::v_sub_f32 ||
2081 instr->opcode == aco_opcode::v_subrev_f32) &&
2082 block.fp_mode.denorm32 == 0 && !block.fp_mode.preserve_signed_zero_inf_nan32) {
2083 //TODO: we could use fma instead when denormals are enabled if the NIR isn't marked as precise
2084
2085 uint32_t uses_src0 = UINT32_MAX;
2086 uint32_t uses_src1 = UINT32_MAX;
2087 Instruction* mul_instr = nullptr;
2088 unsigned add_op_idx;
2089 /* check if any of the operands is a multiplication */
2090 if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_mul())
2091 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2092 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_mul())
2093 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2094
2095 /* find the 'best' mul instruction to combine with the add */
2096 if (uses_src0 < uses_src1) {
2097 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2098 add_op_idx = 1;
2099 } else if (uses_src1 < uses_src0) {
2100 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2101 add_op_idx = 0;
2102 } else if (uses_src0 != UINT32_MAX) {
2103 /* tiebreaker: quite random what to pick */
2104 if (ctx.info[instr->operands[0].tempId()].instr->operands[0].isLiteral()) {
2105 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2106 add_op_idx = 0;
2107 } else {
2108 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2109 add_op_idx = 1;
2110 }
2111 }
2112 if (mul_instr) {
2113 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2114 bool neg[3] = {false, false, false};
2115 bool abs[3] = {false, false, false};
2116 unsigned omod = 0;
2117 bool clamp = false;
2118 bool need_vop3 = false;
2119 int num_sgpr = 0;
2120 op[0] = mul_instr->operands[0];
2121 op[1] = mul_instr->operands[1];
2122 op[2] = instr->operands[add_op_idx];
2123 for (unsigned i = 0; i < 3; i++)
2124 {
2125 if (op[i].isLiteral())
2126 return;
2127 if (op[i].isTemp() && op[i].getTemp().type() == RegType::sgpr)
2128 num_sgpr++;
2129 if (!(i == 0 || (op[i].isTemp() && op[i].getTemp().type() == RegType::vgpr)))
2130 need_vop3 = true;
2131 }
2132 // TODO: would be better to check this before selecting a mul instr?
2133 if (num_sgpr > 1)
2134 return;
2135
2136 if (mul_instr->isVOP3()) {
2137 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2138 neg[0] = vop3->neg[0];
2139 neg[1] = vop3->neg[1];
2140 abs[0] = vop3->abs[0];
2141 abs[1] = vop3->abs[1];
2142 need_vop3 = true;
2143 /* we cannot use these modifiers between mul and add */
2144 if (vop3->clamp || vop3->omod)
2145 return;
2146 }
2147
2148 /* convert to mad */
2149 ctx.uses[mul_instr->definitions[0].tempId()]--;
2150 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2151 if (op[0].isTemp())
2152 ctx.uses[op[0].tempId()]++;
2153 if (op[1].isTemp())
2154 ctx.uses[op[1].tempId()]++;
2155 }
2156
2157 if (instr->isVOP3()) {
2158 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2159 neg[2] = vop3->neg[add_op_idx];
2160 abs[2] = vop3->abs[add_op_idx];
2161 omod = vop3->omod;
2162 clamp = vop3->clamp;
2163 /* abs of the multiplication result */
2164 if (vop3->abs[1 - add_op_idx]) {
2165 neg[0] = false;
2166 neg[1] = false;
2167 abs[0] = true;
2168 abs[1] = true;
2169 }
2170 /* neg of the multiplication result */
2171 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2172 need_vop3 = true;
2173 }
2174 if (instr->opcode == aco_opcode::v_sub_f32) {
2175 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2176 need_vop3 = true;
2177 } else if (instr->opcode == aco_opcode::v_subrev_f32) {
2178 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2179 need_vop3 = true;
2180 }
2181
2182 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)};
2183 for (unsigned i = 0; i < 3; i++)
2184 {
2185 mad->operands[i] = op[i];
2186 mad->neg[i] = neg[i];
2187 mad->abs[i] = abs[i];
2188 }
2189 mad->omod = omod;
2190 mad->clamp = clamp;
2191 mad->definitions[0] = instr->definitions[0];
2192
2193 /* mark this ssa_def to be re-checked for profitability and literals */
2194 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId(), need_vop3);
2195 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2196 instr.reset(mad.release());
2197 return;
2198 }
2199 }
2200 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2201 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2202 for (unsigned i = 0; i < 2; i++) {
2203 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2204 ctx.uses[instr->operands[i].tempId()] == 1 &&
2205 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2206 ctx.uses[instr->operands[i].tempId()]--;
2207 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2208
2209 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2210 new_instr->operands[0] = Operand(0u);
2211 new_instr->operands[1] = instr->operands[!i];
2212 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2213 new_instr->definitions[0] = instr->definitions[0];
2214 instr.reset(new_instr.release());
2215 ctx.info[instr->definitions[0].tempId()].label = 0;
2216 return;
2217 }
2218 }
2219 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2220 if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2221 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2222 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2223 } else if (instr->opcode == aco_opcode::v_add_u32 && ctx.program->chip_class >= GFX9) {
2224 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2225 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2226 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2227 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2228 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2229 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2230 combine_salu_lshl_add(ctx, instr);
2231 } else if (instr->opcode == aco_opcode::s_not_b32) {
2232 combine_salu_not_bitwise(ctx, instr);
2233 } else if (instr->opcode == aco_opcode::s_not_b64) {
2234 if (combine_inverse_comparison(ctx, instr)) ;
2235 else combine_salu_not_bitwise(ctx, instr);
2236 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 ||
2237 instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2238 if (combine_ordering_test(ctx, instr)) ;
2239 else if (combine_comparison_ordering(ctx, instr)) ;
2240 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2241 else combine_salu_n2(ctx, instr);
2242 } else {
2243 aco_opcode min, max, min3, max3, med3;
2244 bool some_gfx9_only;
2245 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2246 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2247 if (combine_three_valu_op(ctx, instr, instr->opcode, instr->opcode == min ? min3 : max3, "012", 1 | 2));
2248 else combine_clamp(ctx, instr, min, max, med3);
2249 }
2250 }
2251 }
2252
2253
2254 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2255 {
2256 const uint32_t threshold = 4;
2257
2258 /* Dead Code Elimination:
2259 * We remove instructions if they define temporaries which all are unused */
2260 const bool is_used = instr->definitions.empty() ||
2261 std::any_of(instr->definitions.begin(), instr->definitions.end(),
2262 [&ctx](const Definition& def) { return ctx.uses[def.tempId()]; });
2263 if (!is_used) {
2264 instr.reset();
2265 return;
2266 }
2267
2268 /* convert split_vector into extract_vector if only one definition is ever used */
2269 if (instr->opcode == aco_opcode::p_split_vector) {
2270 unsigned num_used = 0;
2271 unsigned idx = 0;
2272 for (unsigned i = 0; i < instr->definitions.size(); i++) {
2273 if (ctx.uses[instr->definitions[i].tempId()]) {
2274 num_used++;
2275 idx = i;
2276 }
2277 }
2278 if (num_used == 1) {
2279 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2280 extract->operands[0] = instr->operands[0];
2281 extract->operands[1] = Operand((uint32_t) idx);
2282 extract->definitions[0] = instr->definitions[idx];
2283 instr.reset(extract.release());
2284 }
2285 }
2286
2287 /* re-check mad instructions */
2288 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2289 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2290 /* first, check profitability */
2291 if (ctx.uses[info->mul_temp_id]) {
2292 ctx.uses[info->mul_temp_id]++;
2293 instr.swap(info->add_instr);
2294
2295 /* second, check possible literals */
2296 } else if (!info->needs_vop3) {
2297 uint32_t literal_idx = 0;
2298 uint32_t literal_uses = UINT32_MAX;
2299 for (unsigned i = 0; i < instr->operands.size(); i++)
2300 {
2301 if (!instr->operands[i].isTemp())
2302 continue;
2303 /* if one of the operands is sgpr, we cannot add a literal somewhere else */
2304 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2305 if (ctx.info[instr->operands[i].tempId()].is_literal()) {
2306 literal_uses = ctx.uses[instr->operands[i].tempId()];
2307 literal_idx = i;
2308 } else {
2309 literal_uses = UINT32_MAX;
2310 }
2311 break;
2312 }
2313 else if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2314 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2315 literal_uses = ctx.uses[instr->operands[i].tempId()];
2316 literal_idx = i;
2317 }
2318 }
2319 if (literal_uses < threshold) {
2320 ctx.uses[instr->operands[literal_idx].tempId()]--;
2321 info->check_literal = true;
2322 info->literal_idx = literal_idx;
2323 }
2324 }
2325 return;
2326 }
2327
2328 /* check for literals */
2329 /* we do not apply the literals yet as we don't know if it is profitable */
2330 if (instr->isSALU()) {
2331 uint32_t literal_idx = 0;
2332 uint32_t literal_uses = UINT32_MAX;
2333 bool has_literal = false;
2334 for (unsigned i = 0; i < instr->operands.size(); i++)
2335 {
2336 if (instr->operands[i].isLiteral()) {
2337 has_literal = true;
2338 break;
2339 }
2340 if (!instr->operands[i].isTemp())
2341 continue;
2342 if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2343 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2344 literal_uses = ctx.uses[instr->operands[i].tempId()];
2345 literal_idx = i;
2346 }
2347 }
2348 if (!has_literal && literal_uses < threshold) {
2349 ctx.uses[instr->operands[literal_idx].tempId()]--;
2350 if (ctx.uses[instr->operands[literal_idx].tempId()] == 0)
2351 instr->operands[literal_idx] = Operand(ctx.info[instr->operands[literal_idx].tempId()].val);
2352 }
2353 } else if (instr->isVALU() && valu_can_accept_literal(ctx, instr, 0) &&
2354 instr->operands[0].isTemp() &&
2355 ctx.info[instr->operands[0].tempId()].is_literal() &&
2356 ctx.uses[instr->operands[0].tempId()] < threshold) {
2357 ctx.uses[instr->operands[0].tempId()]--;
2358 if (ctx.uses[instr->operands[0].tempId()] == 0)
2359 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2360 }
2361
2362 }
2363
2364
2365 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2366 {
2367 /* Cleanup Dead Instructions */
2368 if (!instr)
2369 return;
2370
2371 /* apply literals on SALU */
2372 if (instr->isSALU()) {
2373 for (Operand& op : instr->operands) {
2374 if (!op.isTemp())
2375 continue;
2376 if (op.isLiteral())
2377 break;
2378 if (ctx.info[op.tempId()].is_literal() &&
2379 ctx.uses[op.tempId()] == 0)
2380 op = Operand(ctx.info[op.tempId()].val);
2381 }
2382 }
2383
2384 /* apply literals on VALU */
2385 else if (instr->isVALU() && !instr->isVOP3() &&
2386 instr->operands[0].isTemp() &&
2387 ctx.info[instr->operands[0].tempId()].is_literal() &&
2388 ctx.uses[instr->operands[0].tempId()] == 0) {
2389 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2390 }
2391
2392 /* apply literals on MAD */
2393 else if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2394 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2395 aco_ptr<Instruction> new_mad;
2396 if (info->check_literal && ctx.uses[instr->operands[info->literal_idx].tempId()] == 0) {
2397 if (info->literal_idx == 2) { /* add literal -> madak */
2398 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
2399 new_mad->operands[0] = instr->operands[0];
2400 new_mad->operands[1] = instr->operands[1];
2401 } else { /* mul literal -> madmk */
2402 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
2403 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
2404 new_mad->operands[1] = instr->operands[2];
2405 }
2406 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
2407 new_mad->definitions[0] = instr->definitions[0];
2408 instr.swap(new_mad);
2409 }
2410 }
2411
2412 ctx.instructions.emplace_back(std::move(instr));
2413 }
2414
2415
2416 void optimize(Program* program)
2417 {
2418 opt_ctx ctx;
2419 ctx.program = program;
2420 std::vector<ssa_info> info(program->peekAllocationId());
2421 ctx.info = info.data();
2422
2423 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
2424 for (Block& block : program->blocks) {
2425 for (aco_ptr<Instruction>& instr : block.instructions)
2426 label_instruction(ctx, block, instr);
2427 }
2428
2429 ctx.uses = std::move(dead_code_analysis(program));
2430
2431 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
2432 for (Block& block : program->blocks) {
2433 for (aco_ptr<Instruction>& instr : block.instructions)
2434 combine_instruction(ctx, block, instr);
2435 }
2436
2437 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
2438 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
2439 Block* block = &(*it);
2440 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
2441 select_instruction(ctx, *it);
2442 }
2443
2444 /* 4. Add literals to instructions */
2445 for (Block& block : program->blocks) {
2446 ctx.instructions.clear();
2447 for (aco_ptr<Instruction>& instr : block.instructions)
2448 apply_literals(ctx, instr);
2449 block.instructions.swap(ctx.instructions);
2450 }
2451
2452 }
2453
2454 }