491df9404bacf7dd92d520f278d40e29be633326
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint32_t literal_idx;
56 bool check_literal;
57
58 mad_info(aco_ptr<Instruction> instr, uint32_t id)
59 : add_instr(std::move(instr)), mul_temp_id(id), check_literal(false) {}
60 };
61
62 enum Label {
63 label_vec = 1 << 0,
64 label_constant = 1 << 1,
65 label_abs = 1 << 2,
66 label_neg = 1 << 3,
67 label_mul = 1 << 4,
68 label_temp = 1 << 5,
69 label_literal = 1 << 6,
70 label_mad = 1 << 7,
71 label_omod2 = 1 << 8,
72 label_omod4 = 1 << 9,
73 label_omod5 = 1 << 10,
74 label_omod_success = 1 << 11,
75 label_clamp = 1 << 12,
76 label_clamp_success = 1 << 13,
77 label_undefined = 1 << 14,
78 label_vcc = 1 << 15,
79 label_b2f = 1 << 16,
80 label_add_sub = 1 << 17,
81 label_bitwise = 1 << 18,
82 label_minmax = 1 << 19,
83 label_fcmp = 1 << 20,
84 label_uniform_bool = 1 << 21,
85 label_constant_64bit = 1 << 22,
86 label_uniform_bitwise = 1 << 23,
87 label_scc_invert = 1 << 24,
88 label_vcc_hint = 1 << 25,
89 label_scc_needed = 1 << 26,
90 };
91
92 static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success |
93 label_add_sub | label_bitwise | label_uniform_bitwise | label_minmax | label_fcmp;
94 static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool |
95 label_omod2 | label_omod4 | label_omod5 | label_clamp | label_scc_invert;
96 static constexpr uint32_t val_labels = label_constant | label_constant_64bit | label_literal | label_mad;
97
98 struct ssa_info {
99 uint32_t val;
100 union {
101 Temp temp;
102 Instruction* instr;
103 };
104 uint32_t label;
105
106 ssa_info() : label(0) {}
107
108 void add_label(Label new_label)
109 {
110 /* Since all labels which use "instr" use it for the same thing
111 * (indicating the defining instruction), there is no need to clear
112 * any other instr labels. */
113 if (new_label & instr_labels)
114 label &= ~temp_labels; /* instr and temp alias */
115
116 if (new_label & temp_labels) {
117 label &= ~temp_labels;
118 label &= ~instr_labels; /* instr and temp alias */
119 }
120
121 if (new_label & val_labels)
122 label &= ~val_labels;
123
124 label |= new_label;
125 }
126
127 void set_vec(Instruction* vec)
128 {
129 add_label(label_vec);
130 instr = vec;
131 }
132
133 bool is_vec()
134 {
135 return label & label_vec;
136 }
137
138 void set_constant(uint32_t constant)
139 {
140 add_label(label_constant);
141 val = constant;
142 }
143
144 bool is_constant()
145 {
146 return label & label_constant;
147 }
148
149 void set_constant_64bit(uint32_t constant)
150 {
151 add_label(label_constant_64bit);
152 val = constant;
153 }
154
155 bool is_constant_64bit()
156 {
157 return label & label_constant_64bit;
158 }
159
160 void set_abs(Temp abs_temp)
161 {
162 add_label(label_abs);
163 temp = abs_temp;
164 }
165
166 bool is_abs()
167 {
168 return label & label_abs;
169 }
170
171 void set_neg(Temp neg_temp)
172 {
173 add_label(label_neg);
174 temp = neg_temp;
175 }
176
177 bool is_neg()
178 {
179 return label & label_neg;
180 }
181
182 void set_neg_abs(Temp neg_abs_temp)
183 {
184 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
185 temp = neg_abs_temp;
186 }
187
188 void set_mul(Instruction* mul)
189 {
190 add_label(label_mul);
191 instr = mul;
192 }
193
194 bool is_mul()
195 {
196 return label & label_mul;
197 }
198
199 void set_temp(Temp tmp)
200 {
201 add_label(label_temp);
202 temp = tmp;
203 }
204
205 bool is_temp()
206 {
207 return label & label_temp;
208 }
209
210 void set_literal(uint32_t lit)
211 {
212 add_label(label_literal);
213 val = lit;
214 }
215
216 bool is_literal()
217 {
218 return label & label_literal;
219 }
220
221 void set_mad(Instruction* mad, uint32_t mad_info_idx)
222 {
223 add_label(label_mad);
224 val = mad_info_idx;
225 instr = mad;
226 }
227
228 bool is_mad()
229 {
230 return label & label_mad;
231 }
232
233 void set_omod2(Temp def)
234 {
235 add_label(label_omod2);
236 temp = def;
237 }
238
239 bool is_omod2()
240 {
241 return label & label_omod2;
242 }
243
244 void set_omod4(Temp def)
245 {
246 add_label(label_omod4);
247 temp = def;
248 }
249
250 bool is_omod4()
251 {
252 return label & label_omod4;
253 }
254
255 void set_omod5(Temp def)
256 {
257 add_label(label_omod5);
258 temp = def;
259 }
260
261 bool is_omod5()
262 {
263 return label & label_omod5;
264 }
265
266 void set_omod_success(Instruction* omod_instr)
267 {
268 add_label(label_omod_success);
269 instr = omod_instr;
270 }
271
272 bool is_omod_success()
273 {
274 return label & label_omod_success;
275 }
276
277 void set_clamp(Temp def)
278 {
279 add_label(label_clamp);
280 temp = def;
281 }
282
283 bool is_clamp()
284 {
285 return label & label_clamp;
286 }
287
288 void set_clamp_success(Instruction* clamp_instr)
289 {
290 add_label(label_clamp_success);
291 instr = clamp_instr;
292 }
293
294 bool is_clamp_success()
295 {
296 return label & label_clamp_success;
297 }
298
299 void set_undefined()
300 {
301 add_label(label_undefined);
302 }
303
304 bool is_undefined()
305 {
306 return label & label_undefined;
307 }
308
309 void set_vcc(Temp vcc)
310 {
311 add_label(label_vcc);
312 temp = vcc;
313 }
314
315 bool is_vcc()
316 {
317 return label & label_vcc;
318 }
319
320 bool is_constant_or_literal()
321 {
322 return is_constant() || is_literal();
323 }
324
325 void set_b2f(Temp val)
326 {
327 add_label(label_b2f);
328 temp = val;
329 }
330
331 bool is_b2f()
332 {
333 return label & label_b2f;
334 }
335
336 void set_add_sub(Instruction *add_sub_instr)
337 {
338 add_label(label_add_sub);
339 instr = add_sub_instr;
340 }
341
342 bool is_add_sub()
343 {
344 return label & label_add_sub;
345 }
346
347 void set_bitwise(Instruction *bitwise_instr)
348 {
349 add_label(label_bitwise);
350 instr = bitwise_instr;
351 }
352
353 bool is_bitwise()
354 {
355 return label & label_bitwise;
356 }
357
358 void set_uniform_bitwise()
359 {
360 add_label(label_uniform_bitwise);
361 }
362
363 bool is_uniform_bitwise()
364 {
365 return label & label_uniform_bitwise;
366 }
367
368 void set_minmax(Instruction *minmax_instr)
369 {
370 add_label(label_minmax);
371 instr = minmax_instr;
372 }
373
374 bool is_minmax()
375 {
376 return label & label_minmax;
377 }
378
379 void set_fcmp(Instruction *fcmp_instr)
380 {
381 add_label(label_fcmp);
382 instr = fcmp_instr;
383 }
384
385 bool is_fcmp()
386 {
387 return label & label_fcmp;
388 }
389
390 void set_scc_needed()
391 {
392 add_label(label_scc_needed);
393 }
394
395 bool is_scc_needed()
396 {
397 return label & label_scc_needed;
398 }
399
400 void set_scc_invert(Temp scc_inv)
401 {
402 add_label(label_scc_invert);
403 temp = scc_inv;
404 }
405
406 bool is_scc_invert()
407 {
408 return label & label_scc_invert;
409 }
410
411 void set_uniform_bool(Temp uniform_bool)
412 {
413 add_label(label_uniform_bool);
414 temp = uniform_bool;
415 }
416
417 bool is_uniform_bool()
418 {
419 return label & label_uniform_bool;
420 }
421
422 void set_vcc_hint()
423 {
424 add_label(label_vcc_hint);
425 }
426
427 bool is_vcc_hint()
428 {
429 return label & label_vcc_hint;
430 }
431 };
432
433 struct opt_ctx {
434 Program* program;
435 std::vector<aco_ptr<Instruction>> instructions;
436 ssa_info* info;
437 std::pair<uint32_t,Temp> last_literal;
438 std::vector<mad_info> mad_infos;
439 std::vector<uint16_t> uses;
440 };
441
442 bool can_swap_operands(aco_ptr<Instruction>& instr)
443 {
444 if (instr->operands[0].isConstant() ||
445 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
446 return false;
447
448 switch (instr->opcode) {
449 case aco_opcode::v_add_f32:
450 case aco_opcode::v_mul_f32:
451 case aco_opcode::v_or_b32:
452 case aco_opcode::v_and_b32:
453 case aco_opcode::v_xor_b32:
454 case aco_opcode::v_max_f32:
455 case aco_opcode::v_min_f32:
456 case aco_opcode::v_max_i32:
457 case aco_opcode::v_min_i32:
458 case aco_opcode::v_max_u32:
459 case aco_opcode::v_min_u32:
460 case aco_opcode::v_cmp_eq_f32:
461 case aco_opcode::v_cmp_lg_f32:
462 return true;
463 case aco_opcode::v_sub_f32:
464 instr->opcode = aco_opcode::v_subrev_f32;
465 return true;
466 case aco_opcode::v_cmp_lt_f32:
467 instr->opcode = aco_opcode::v_cmp_gt_f32;
468 return true;
469 case aco_opcode::v_cmp_ge_f32:
470 instr->opcode = aco_opcode::v_cmp_le_f32;
471 return true;
472 case aco_opcode::v_cmp_lt_i32:
473 instr->opcode = aco_opcode::v_cmp_gt_i32;
474 return true;
475 default:
476 return false;
477 }
478 }
479
480 bool can_use_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
481 {
482 if (instr->isVOP3())
483 return true;
484
485 if (instr->operands.size() && instr->operands[0].isLiteral() && ctx.program->chip_class < GFX10)
486 return false;
487
488 if (instr->isDPP() || instr->isSDWA())
489 return false;
490
491 return instr->opcode != aco_opcode::v_madmk_f32 &&
492 instr->opcode != aco_opcode::v_madak_f32 &&
493 instr->opcode != aco_opcode::v_madmk_f16 &&
494 instr->opcode != aco_opcode::v_madak_f16 &&
495 instr->opcode != aco_opcode::v_fmamk_f32 &&
496 instr->opcode != aco_opcode::v_fmaak_f32 &&
497 instr->opcode != aco_opcode::v_fmamk_f16 &&
498 instr->opcode != aco_opcode::v_fmaak_f16 &&
499 instr->opcode != aco_opcode::v_readlane_b32 &&
500 instr->opcode != aco_opcode::v_writelane_b32 &&
501 instr->opcode != aco_opcode::v_readfirstlane_b32;
502 }
503
504 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
505 {
506 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
507 instr->opcode != aco_opcode::v_readlane_b32 &&
508 instr->opcode != aco_opcode::v_readlane_b32_e64 &&
509 instr->opcode != aco_opcode::v_writelane_b32 &&
510 instr->opcode != aco_opcode::v_writelane_b32_e64;
511 }
512
513 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
514 {
515 if (instr->isVOP3())
516 return;
517
518 aco_ptr<Instruction> tmp = std::move(instr);
519 Format format = asVOP3(tmp->format);
520 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
521 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
522 for (unsigned i = 0; i < instr->definitions.size(); i++) {
523 instr->definitions[i] = tmp->definitions[i];
524 if (instr->definitions[i].isTemp()) {
525 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
526 if (info.label & instr_labels && info.instr == tmp.get())
527 info.instr = instr.get();
528 }
529 }
530 }
531
532 /* only covers special cases */
533 bool alu_can_accept_constant(aco_opcode opcode, unsigned operand)
534 {
535 switch (opcode) {
536 case aco_opcode::v_interp_p2_f32:
537 case aco_opcode::v_mac_f32:
538 case aco_opcode::v_writelane_b32:
539 case aco_opcode::v_writelane_b32_e64:
540 case aco_opcode::v_cndmask_b32:
541 return operand != 2;
542 case aco_opcode::s_addk_i32:
543 case aco_opcode::s_mulk_i32:
544 case aco_opcode::p_wqm:
545 case aco_opcode::p_extract_vector:
546 case aco_opcode::p_split_vector:
547 case aco_opcode::v_readlane_b32:
548 case aco_opcode::v_readlane_b32_e64:
549 case aco_opcode::v_readfirstlane_b32:
550 return operand != 0;
551 default:
552 return true;
553 }
554 }
555
556 bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
557 {
558 if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
559 instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64)
560 return operand != 1;
561 return true;
562 }
563
564 /* check constant bus and literal limitations */
565 bool check_vop3_operands(opt_ctx& ctx, unsigned num_operands, Operand *operands)
566 {
567 int limit = ctx.program->chip_class >= GFX10 ? 2 : 1;
568 Operand literal32(s1);
569 Operand literal64(s2);
570 unsigned num_sgprs = 0;
571 unsigned sgpr[] = {0, 0};
572
573 for (unsigned i = 0; i < num_operands; i++) {
574 Operand op = operands[i];
575
576 if (op.hasRegClass() && op.regClass().type() == RegType::sgpr) {
577 /* two reads of the same SGPR count as 1 to the limit */
578 if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
579 if (num_sgprs < 2)
580 sgpr[num_sgprs++] = op.tempId();
581 limit--;
582 if (limit < 0)
583 return false;
584 }
585 } else if (op.isLiteral()) {
586 if (ctx.program->chip_class < GFX10)
587 return false;
588
589 if (!literal32.isUndefined() && literal32.constantValue() != op.constantValue())
590 return false;
591 if (!literal64.isUndefined() && literal64.constantValue() != op.constantValue())
592 return false;
593
594 /* Any number of 32-bit literals counts as only 1 to the limit. Same
595 * (but separately) for 64-bit literals. */
596 if (op.size() == 1 && literal32.isUndefined()) {
597 limit--;
598 literal32 = op;
599 } else if (op.size() == 2 && literal64.isUndefined()) {
600 limit--;
601 literal64 = op;
602 }
603
604 if (limit < 0)
605 return false;
606 }
607 }
608
609 return true;
610 }
611
612 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
613 {
614 Operand op = instr->operands[op_index];
615
616 if (!op.isTemp())
617 return false;
618 Temp tmp = op.getTemp();
619 if (!ctx.info[tmp.id()].is_add_sub())
620 return false;
621
622 Instruction *add_instr = ctx.info[tmp.id()].instr;
623
624 switch (add_instr->opcode) {
625 case aco_opcode::v_add_u32:
626 case aco_opcode::v_add_co_u32:
627 case aco_opcode::v_add_co_u32_e64:
628 case aco_opcode::s_add_i32:
629 case aco_opcode::s_add_u32:
630 break;
631 default:
632 return false;
633 }
634
635 if (add_instr->usesModifiers())
636 return false;
637
638 for (unsigned i = 0; i < 2; i++) {
639 if (add_instr->operands[i].isConstant()) {
640 *offset = add_instr->operands[i].constantValue();
641 } else if (add_instr->operands[i].isTemp() &&
642 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) {
643 *offset = ctx.info[add_instr->operands[i].tempId()].val;
644 } else {
645 continue;
646 }
647 if (!add_instr->operands[!i].isTemp())
648 continue;
649
650 uint32_t offset2 = 0;
651 if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
652 *offset += offset2;
653 } else {
654 *base = add_instr->operands[!i].getTemp();
655 }
656 return true;
657 }
658
659 return false;
660 }
661
662 Operand get_constant_op(opt_ctx &ctx, uint32_t val, bool is64bit = false)
663 {
664 // TODO: this functions shouldn't be needed if we store Operand instead of value.
665 Operand op(val, is64bit);
666 if (val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
667 op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
668 return op;
669 }
670
671 bool fixed_to_exec(Operand op)
672 {
673 return op.isFixed() && op.physReg() == exec;
674 }
675
676 void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
677 {
678 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
679 ASSERTED bool all_const = false;
680 for (Operand& op : instr->operands)
681 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal());
682 perfwarn(all_const, "All instruction operands are constant", instr.get());
683 }
684
685 for (unsigned i = 0; i < instr->operands.size(); i++)
686 {
687 if (!instr->operands[i].isTemp())
688 continue;
689
690 ssa_info info = ctx.info[instr->operands[i].tempId()];
691 /* propagate undef */
692 if (info.is_undefined() && is_phi(instr))
693 instr->operands[i] = Operand(instr->operands[i].regClass());
694 /* propagate reg->reg of same type */
695 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
696 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
697 info = ctx.info[info.temp.id()];
698 }
699
700 /* SALU / PSEUDO: propagate inline constants */
701 if (instr->isSALU() || instr->format == Format::PSEUDO) {
702 const bool is_subdword = std::any_of(instr->definitions.begin(), instr->definitions.end(),
703 [] (const Definition& def) { return def.regClass().is_subdword();});
704 // TODO: optimize SGPR and constant propagation for subdword pseudo instructions on gfx9+
705 if (is_subdword)
706 continue;
707
708 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
709 instr->operands[i].setTemp(info.temp);
710 info = ctx.info[info.temp.id()];
711 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
712 /* propagate vgpr if it can take it */
713 switch (instr->opcode) {
714 case aco_opcode::p_create_vector:
715 case aco_opcode::p_split_vector:
716 case aco_opcode::p_extract_vector:
717 case aco_opcode::p_phi: {
718 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
719 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
720 if (all_vgpr) {
721 instr->operands[i] = Operand(info.temp);
722 info = ctx.info[info.temp.id()];
723 }
724 break;
725 }
726 default:
727 break;
728 }
729 }
730 if ((info.is_constant() || info.is_constant_64bit() || (info.is_literal() && instr->format == Format::PSEUDO)) &&
731 !instr->operands[i].isFixed() && alu_can_accept_constant(instr->opcode, i)) {
732 instr->operands[i] = get_constant_op(ctx, info.val, info.is_constant_64bit());
733 continue;
734 }
735 }
736
737 /* VALU: propagate neg, abs & inline constants */
738 else if (instr->isVALU()) {
739 if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
740 instr->operands[i].setTemp(info.temp);
741 info = ctx.info[info.temp.id()];
742 }
743 if (info.is_abs() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
744 if (!instr->isDPP())
745 to_VOP3(ctx, instr);
746 instr->operands[i] = Operand(info.temp);
747 if (instr->isDPP())
748 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
749 else
750 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
751 }
752 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
753 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
754 instr->operands[i].setTemp(info.temp);
755 continue;
756 } else if (info.is_neg() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
757 if (!instr->isDPP())
758 to_VOP3(ctx, instr);
759 instr->operands[i].setTemp(info.temp);
760 if (instr->isDPP())
761 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
762 else
763 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
764 continue;
765 }
766 if ((info.is_constant() || info.is_constant_64bit()) && alu_can_accept_constant(instr->opcode, i)) {
767 Operand op = get_constant_op(ctx, info.val, info.is_constant_64bit());
768 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
769 if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) {
770 instr->operands[i] = op;
771 continue;
772 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
773 instr->operands[i] = instr->operands[0];
774 instr->operands[0] = op;
775 continue;
776 } else if (can_use_VOP3(ctx, instr)) {
777 to_VOP3(ctx, instr);
778 instr->operands[i] = op;
779 continue;
780 }
781 }
782 }
783
784 /* MUBUF: propagate constants and combine additions */
785 else if (instr->format == Format::MUBUF) {
786 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
787 Temp base;
788 uint32_t offset;
789 while (info.is_temp())
790 info = ctx.info[info.temp.id()];
791
792 if (mubuf->offen && i == 1 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
793 assert(!mubuf->idxen);
794 instr->operands[1] = Operand(v1);
795 mubuf->offset += info.val;
796 mubuf->offen = false;
797 continue;
798 } else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
799 instr->operands[2] = Operand((uint32_t) 0);
800 mubuf->offset += info.val;
801 continue;
802 } else if (mubuf->offen && i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
803 assert(!mubuf->idxen);
804 instr->operands[1].setTemp(base);
805 mubuf->offset += offset;
806 continue;
807 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
808 instr->operands[i].setTemp(base);
809 mubuf->offset += offset;
810 continue;
811 }
812 }
813
814 /* DS: combine additions */
815 else if (instr->format == Format::DS) {
816
817 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
818 Temp base;
819 uint32_t offset;
820 bool has_usable_ds_offset = ctx.program->chip_class >= GFX7;
821 if (has_usable_ds_offset &&
822 i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) &&
823 base.regClass() == instr->operands[i].regClass() &&
824 instr->opcode != aco_opcode::ds_swizzle_b32) {
825 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
826 instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
827 unsigned mask = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 0x7 : 0x3;
828 unsigned shifts = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 3 : 2;
829
830 if ((offset & mask) == 0 &&
831 ds->offset0 + (offset >> shifts) <= 255 &&
832 ds->offset1 + (offset >> shifts) <= 255) {
833 instr->operands[i].setTemp(base);
834 ds->offset0 += offset >> shifts;
835 ds->offset1 += offset >> shifts;
836 }
837 } else {
838 if (ds->offset0 + offset <= 65535) {
839 instr->operands[i].setTemp(base);
840 ds->offset0 += offset;
841 }
842 }
843 }
844 }
845
846 /* SMEM: propagate constants and combine additions */
847 else if (instr->format == Format::SMEM) {
848
849 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
850 Temp base;
851 uint32_t offset;
852 if (i == 1 && info.is_constant_or_literal() &&
853 ((ctx.program->chip_class == GFX6 && info.val <= 0x3FF) ||
854 (ctx.program->chip_class == GFX7 && info.val <= 0xFFFFFFFF) ||
855 (ctx.program->chip_class >= GFX8 && info.val <= 0xFFFFF))) {
856 instr->operands[i] = Operand(info.val);
857 continue;
858 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
859 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
860 if (soe &&
861 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() ||
862 ctx.info[smem->operands.back().tempId()].val != 0)) {
863 continue;
864 }
865 if (soe) {
866 smem->operands[1] = Operand(offset);
867 smem->operands.back() = Operand(base);
868 } else {
869 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
870 new_instr->operands[0] = smem->operands[0];
871 new_instr->operands[1] = Operand(offset);
872 if (smem->definitions.empty())
873 new_instr->operands[2] = smem->operands[2];
874 new_instr->operands.back() = Operand(base);
875 if (!smem->definitions.empty())
876 new_instr->definitions[0] = smem->definitions[0];
877 new_instr->can_reorder = smem->can_reorder;
878 new_instr->barrier = smem->barrier;
879 instr.reset(new_instr);
880 smem = static_cast<SMEM_instruction *>(instr.get());
881 }
882 continue;
883 }
884 }
885
886 else if (instr->format == Format::PSEUDO_BRANCH) {
887 if (ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
888 /* Flip the branch instruction to get rid of the scc_invert instruction */
889 instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz : aco_opcode::p_cbranch_z;
890 instr->operands[0].setTemp(ctx.info[instr->operands[0].tempId()].temp);
891 }
892 }
893 }
894
895 /* if this instruction doesn't define anything, return */
896 if (instr->definitions.empty())
897 return;
898
899 switch (instr->opcode) {
900 case aco_opcode::p_create_vector: {
901 unsigned num_ops = instr->operands.size();
902 for (const Operand& op : instr->operands) {
903 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
904 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
905 }
906 if (num_ops != instr->operands.size()) {
907 aco_ptr<Instruction> old_vec = std::move(instr);
908 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
909 instr->definitions[0] = old_vec->definitions[0];
910 unsigned k = 0;
911 for (Operand& old_op : old_vec->operands) {
912 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
913 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++) {
914 Operand op = ctx.info[old_op.tempId()].instr->operands[j];
915 if (op.isTemp() && ctx.info[op.tempId()].is_temp() &&
916 ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type())
917 op.setTemp(ctx.info[op.tempId()].temp);
918 instr->operands[k++] = op;
919 }
920 } else {
921 instr->operands[k++] = old_op;
922 }
923 }
924 assert(k == num_ops);
925 }
926 if (instr->operands.size() == 1 && instr->operands[0].isTemp())
927 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
928 else
929 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
930 break;
931 }
932 case aco_opcode::p_split_vector: {
933 if (!ctx.info[instr->operands[0].tempId()].is_vec())
934 break;
935 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
936 unsigned split_offset = 0;
937 unsigned vec_offset = 0;
938 unsigned vec_index = 0;
939 for (unsigned i = 0; i < instr->definitions.size(); split_offset += instr->definitions[i++].bytes()) {
940 while (vec_offset < split_offset && vec_index < vec->operands.size())
941 vec_offset += vec->operands[vec_index++].bytes();
942
943 if (vec_offset != split_offset || vec->operands[vec_index].bytes() != instr->definitions[i].bytes())
944 continue;
945
946 Operand vec_op = vec->operands[vec_index];
947 if (vec_op.isConstant()) {
948 if (vec_op.isLiteral())
949 ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue());
950 else if (vec_op.size() == 1)
951 ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue());
952 else if (vec_op.size() == 2)
953 ctx.info[instr->definitions[i].tempId()].set_constant_64bit(vec_op.constantValue());
954 } else {
955 assert(vec_op.isTemp());
956 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
957 }
958 }
959 break;
960 }
961 case aco_opcode::p_extract_vector: { /* mov */
962 if (!ctx.info[instr->operands[0].tempId()].is_vec())
963 break;
964
965 /* check if we index directly into a vector element */
966 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
967 const unsigned index = instr->operands[1].constantValue();
968 const unsigned dst_offset = index * instr->definitions[0].bytes();
969 unsigned offset = 0;
970
971 for (const Operand& op : vec->operands) {
972 if (offset < dst_offset) {
973 offset += op.bytes();
974 continue;
975 } else if (offset != dst_offset || op.bytes() != instr->definitions[0].bytes()) {
976 break;
977 }
978
979 /* convert this extract into a copy instruction */
980 instr->opcode = aco_opcode::p_parallelcopy;
981 instr->operands.pop_back();
982 instr->operands[0] = op;
983
984 if (op.isConstant()) {
985 if (op.isLiteral())
986 ctx.info[instr->definitions[0].tempId()].set_literal(op.constantValue());
987 else if (op.size() == 1)
988 ctx.info[instr->definitions[0].tempId()].set_constant(op.constantValue());
989 else if (op.size() == 2)
990 ctx.info[instr->definitions[0].tempId()].set_constant_64bit(op.constantValue());
991 } else {
992 assert(op.isTemp());
993 ctx.info[instr->definitions[0].tempId()].set_temp(op.getTemp());
994 }
995 break;
996 }
997 break;
998 }
999 case aco_opcode::s_mov_b32: /* propagate */
1000 case aco_opcode::s_mov_b64:
1001 case aco_opcode::v_mov_b32:
1002 case aco_opcode::p_as_uniform:
1003 if (instr->definitions[0].isFixed()) {
1004 /* don't copy-propagate copies into fixed registers */
1005 } else if (instr->usesModifiers()) {
1006 // TODO
1007 } else if (instr->operands[0].isConstant()) {
1008 if (instr->operands[0].isLiteral())
1009 ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue());
1010 else if (instr->operands[0].size() == 1)
1011 ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue());
1012 else if (instr->operands[0].size() == 2)
1013 ctx.info[instr->definitions[0].tempId()].set_constant_64bit(instr->operands[0].constantValue());
1014 } else if (instr->operands[0].isTemp()) {
1015 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1016 } else {
1017 assert(instr->operands[0].isFixed());
1018 }
1019 break;
1020 case aco_opcode::p_is_helper:
1021 if (!ctx.program->needs_wqm)
1022 ctx.info[instr->definitions[0].tempId()].set_constant(0u);
1023 break;
1024 case aco_opcode::s_movk_i32: {
1025 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
1026 v = v & 0x8000 ? (v | 0xffff0000) : v;
1027 if (v <= 64 || v >= 0xfffffff0)
1028 ctx.info[instr->definitions[0].tempId()].set_constant(v);
1029 else
1030 ctx.info[instr->definitions[0].tempId()].set_literal(v);
1031 break;
1032 }
1033 case aco_opcode::v_bfrev_b32:
1034 case aco_opcode::s_brev_b32: {
1035 if (instr->operands[0].isConstant()) {
1036 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
1037 if (v <= 64 || v >= 0xfffffff0)
1038 ctx.info[instr->definitions[0].tempId()].set_constant(v);
1039 else
1040 ctx.info[instr->definitions[0].tempId()].set_literal(v);
1041 }
1042 break;
1043 }
1044 case aco_opcode::s_bfm_b32: {
1045 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
1046 unsigned size = instr->operands[0].constantValue() & 0x1f;
1047 unsigned start = instr->operands[1].constantValue() & 0x1f;
1048 uint32_t v = ((1u << size) - 1u) << start;
1049 if (v <= 64 || v >= 0xfffffff0)
1050 ctx.info[instr->definitions[0].tempId()].set_constant(v);
1051 else
1052 ctx.info[instr->definitions[0].tempId()].set_literal(v);
1053 }
1054 }
1055 case aco_opcode::v_mul_f32: { /* omod */
1056 /* TODO: try to move the negate/abs modifier to the consumer instead */
1057 if (instr->usesModifiers())
1058 break;
1059
1060 for (unsigned i = 0; i < 2; i++) {
1061 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
1062 if (instr->operands[!i].constantValue() == 0x40000000) { /* 2.0 */
1063 ctx.info[instr->operands[i].tempId()].set_omod2(instr->definitions[0].getTemp());
1064 } else if (instr->operands[!i].constantValue() == 0x40800000) { /* 4.0 */
1065 ctx.info[instr->operands[i].tempId()].set_omod4(instr->definitions[0].getTemp());
1066 } else if (instr->operands[!i].constantValue() == 0x3f000000) { /* 0.5 */
1067 ctx.info[instr->operands[i].tempId()].set_omod5(instr->definitions[0].getTemp());
1068 } else if (instr->operands[!i].constantValue() == 0x3f800000 &&
1069 !block.fp_mode.must_flush_denorms32) { /* 1.0 */
1070 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
1071 } else {
1072 continue;
1073 }
1074 break;
1075 }
1076 }
1077 break;
1078 }
1079 case aco_opcode::v_and_b32: /* abs */
1080 if (!instr->usesModifiers() && instr->operands[0].constantEquals(0x7FFFFFFF) &&
1081 instr->operands[1].isTemp() && instr->operands[1].getTemp().type() == RegType::vgpr)
1082 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
1083 else
1084 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1085 break;
1086 case aco_opcode::v_xor_b32: { /* neg */
1087 if (!instr->usesModifiers() && instr->operands[0].constantEquals(0x80000000u) && instr->operands[1].isTemp()) {
1088 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
1089 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1090 } else if (instr->operands[1].getTemp().type() == RegType::vgpr) {
1091 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
1092 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
1093 instr->opcode = aco_opcode::v_or_b32;
1094 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
1095 } else {
1096 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
1097 }
1098 }
1099 } else {
1100 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1101 }
1102 break;
1103 }
1104 case aco_opcode::v_med3_f32: { /* clamp */
1105 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
1106 if (vop3->abs[0] || vop3->abs[1] || vop3->abs[2] ||
1107 vop3->neg[0] || vop3->neg[1] || vop3->neg[2] ||
1108 vop3->omod != 0 || vop3->opsel != 0)
1109 break;
1110
1111 unsigned idx = 0;
1112 bool found_zero = false, found_one = false;
1113 for (unsigned i = 0; i < 3; i++)
1114 {
1115 if (instr->operands[i].constantEquals(0))
1116 found_zero = true;
1117 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
1118 found_one = true;
1119 else
1120 idx = i;
1121 }
1122 if (found_zero && found_one && instr->operands[idx].isTemp()) {
1123 ctx.info[instr->operands[idx].tempId()].set_clamp(instr->definitions[0].getTemp());
1124 }
1125 break;
1126 }
1127 case aco_opcode::v_cndmask_b32:
1128 if (instr->operands[0].constantEquals(0) &&
1129 instr->operands[1].constantEquals(0xFFFFFFFF) &&
1130 instr->operands[2].isTemp())
1131 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
1132 else if (instr->operands[0].constantEquals(0) &&
1133 instr->operands[1].constantEquals(0x3f800000u) &&
1134 instr->operands[2].isTemp())
1135 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
1136
1137 ctx.info[instr->operands[2].tempId()].set_vcc_hint();
1138 break;
1139 case aco_opcode::v_cmp_lg_u32:
1140 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
1141 instr->operands[0].constantEquals(0) &&
1142 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
1143 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1144 break;
1145 case aco_opcode::p_phi:
1146 case aco_opcode::p_linear_phi: {
1147 /* lower_bool_phis() can create phis like this */
1148 bool all_same_temp = instr->operands[0].isTemp();
1149 /* this check is needed when moving uniform loop counters out of a divergent loop */
1150 if (all_same_temp)
1151 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
1152 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
1153 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
1154 all_same_temp = false;
1155 }
1156 if (all_same_temp) {
1157 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1158 } else {
1159 bool all_undef = instr->operands[0].isUndefined();
1160 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
1161 if (!instr->operands[i].isUndefined())
1162 all_undef = false;
1163 }
1164 if (all_undef)
1165 ctx.info[instr->definitions[0].tempId()].set_undefined();
1166 }
1167 break;
1168 }
1169 case aco_opcode::v_add_u32:
1170 case aco_opcode::v_add_co_u32:
1171 case aco_opcode::v_add_co_u32_e64:
1172 case aco_opcode::s_add_i32:
1173 case aco_opcode::s_add_u32:
1174 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
1175 break;
1176 case aco_opcode::s_not_b32:
1177 case aco_opcode::s_not_b64:
1178 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1179 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1180 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].temp);
1181 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1182 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1183 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1184 }
1185 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1186 break;
1187 case aco_opcode::s_and_b32:
1188 case aco_opcode::s_and_b64:
1189 if (fixed_to_exec(instr->operands[1]) && instr->operands[0].isTemp()) {
1190 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1191 /* Try to get rid of the superfluous s_cselect + s_and_b64 that comes from turning a uniform bool into divergent */
1192 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
1193 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].temp);
1194 break;
1195 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1196 /* Try to get rid of the superfluous s_and_b64, since the uniform bitwise instruction already produces the same SCC */
1197 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1198 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1199 break;
1200 }
1201 }
1202 /* fallthrough */
1203 case aco_opcode::s_or_b32:
1204 case aco_opcode::s_or_b64:
1205 case aco_opcode::s_xor_b32:
1206 case aco_opcode::s_xor_b64:
1207 if (std::all_of(instr->operands.begin(), instr->operands.end(), [&ctx](const Operand& op) {
1208 return op.isTemp() && (ctx.info[op.tempId()].is_uniform_bool() || ctx.info[op.tempId()].is_uniform_bitwise());
1209 })) {
1210 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1211 }
1212 /* fallthrough */
1213 case aco_opcode::s_lshl_b32:
1214 case aco_opcode::v_or_b32:
1215 case aco_opcode::v_lshlrev_b32:
1216 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1217 break;
1218 case aco_opcode::v_min_f32:
1219 case aco_opcode::v_min_f16:
1220 case aco_opcode::v_min_u32:
1221 case aco_opcode::v_min_i32:
1222 case aco_opcode::v_min_u16:
1223 case aco_opcode::v_min_i16:
1224 case aco_opcode::v_max_f32:
1225 case aco_opcode::v_max_f16:
1226 case aco_opcode::v_max_u32:
1227 case aco_opcode::v_max_i32:
1228 case aco_opcode::v_max_u16:
1229 case aco_opcode::v_max_i16:
1230 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
1231 break;
1232 case aco_opcode::v_cmp_lt_f32:
1233 case aco_opcode::v_cmp_eq_f32:
1234 case aco_opcode::v_cmp_le_f32:
1235 case aco_opcode::v_cmp_gt_f32:
1236 case aco_opcode::v_cmp_lg_f32:
1237 case aco_opcode::v_cmp_ge_f32:
1238 case aco_opcode::v_cmp_o_f32:
1239 case aco_opcode::v_cmp_u_f32:
1240 case aco_opcode::v_cmp_nge_f32:
1241 case aco_opcode::v_cmp_nlg_f32:
1242 case aco_opcode::v_cmp_ngt_f32:
1243 case aco_opcode::v_cmp_nle_f32:
1244 case aco_opcode::v_cmp_neq_f32:
1245 case aco_opcode::v_cmp_nlt_f32:
1246 ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
1247 break;
1248 case aco_opcode::s_cselect_b64:
1249 case aco_opcode::s_cselect_b32:
1250 if (instr->operands[0].constantEquals((unsigned) -1) &&
1251 instr->operands[1].constantEquals(0)) {
1252 /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
1253 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
1254 }
1255 if (instr->operands[2].isTemp() && ctx.info[instr->operands[2].tempId()].is_scc_invert()) {
1256 /* Flip the operands to get rid of the scc_invert instruction */
1257 std::swap(instr->operands[0], instr->operands[1]);
1258 instr->operands[2].setTemp(ctx.info[instr->operands[2].tempId()].temp);
1259 }
1260 break;
1261 case aco_opcode::p_wqm:
1262 if (instr->operands[0].isTemp() &&
1263 ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
1264 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1265 }
1266 break;
1267 default:
1268 break;
1269 }
1270 }
1271
1272 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse)
1273 {
1274 *ordered = *unordered = op;
1275 switch (op) {
1276 #define CMP(ord, unord) \
1277 case aco_opcode::v_cmp_##ord##_f32:\
1278 case aco_opcode::v_cmp_n##unord##_f32:\
1279 *ordered = aco_opcode::v_cmp_##ord##_f32;\
1280 *unordered = aco_opcode::v_cmp_n##unord##_f32;\
1281 *inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\
1282 return true;
1283 CMP(lt, /*n*/ge)
1284 CMP(eq, /*n*/lg)
1285 CMP(le, /*n*/gt)
1286 CMP(gt, /*n*/le)
1287 CMP(lg, /*n*/eq)
1288 CMP(ge, /*n*/lt)
1289 #undef CMP
1290 default:
1291 return false;
1292 }
1293 }
1294
1295 aco_opcode get_ordered(aco_opcode op)
1296 {
1297 aco_opcode ordered, unordered, inverse;
1298 return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::last_opcode;
1299 }
1300
1301 aco_opcode get_unordered(aco_opcode op)
1302 {
1303 aco_opcode ordered, unordered, inverse;
1304 return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::last_opcode;
1305 }
1306
1307 aco_opcode get_inverse(aco_opcode op)
1308 {
1309 aco_opcode ordered, unordered, inverse;
1310 return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::last_opcode;
1311 }
1312
1313 bool is_cmp(aco_opcode op)
1314 {
1315 aco_opcode ordered, unordered, inverse;
1316 return get_cmp_info(op, &ordered, &unordered, &inverse);
1317 }
1318
1319 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1320 {
1321 if (ctx.info[tmp.id()].is_temp())
1322 return ctx.info[tmp.id()].temp.id();
1323 else
1324 return tmp.id();
1325 }
1326
1327 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1328 {
1329 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1330 for (const Operand& op : instr->operands) {
1331 if (op.isTemp())
1332 ctx.uses[op.tempId()]--;
1333 }
1334 }
1335 }
1336
1337 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1338 {
1339 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1340 return nullptr;
1341 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1342 return nullptr;
1343
1344 Instruction *instr = ctx.info[op.tempId()].instr;
1345
1346 if (instr->definitions.size() == 2) {
1347 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1348 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1349 return nullptr;
1350 }
1351
1352 return instr;
1353 }
1354
1355 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1356 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1357 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1358 {
1359 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1360 return false;
1361 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1362 return false;
1363
1364 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1365
1366 bool neg[2] = {false, false};
1367 bool abs[2] = {false, false};
1368 uint8_t opsel = 0;
1369 Instruction *op_instr[2];
1370 Temp op[2];
1371
1372 for (unsigned i = 0; i < 2; i++) {
1373 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1374 if (!op_instr[i])
1375 return false;
1376
1377 aco_opcode expected_cmp = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1378
1379 if (op_instr[i]->opcode != expected_cmp)
1380 return false;
1381 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1382 return false;
1383
1384 if (op_instr[i]->isVOP3()) {
1385 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1386 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1387 return false;
1388 neg[i] = vop3->neg[0];
1389 abs[i] = vop3->abs[0];
1390 opsel |= (vop3->opsel & 1) << i;
1391 }
1392
1393 Temp op0 = op_instr[i]->operands[0].getTemp();
1394 Temp op1 = op_instr[i]->operands[1].getTemp();
1395 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1396 return false;
1397
1398 op[i] = op1;
1399 }
1400
1401 if (op[1].type() == RegType::sgpr)
1402 std::swap(op[0], op[1]);
1403 unsigned num_sgprs = (op[0].type() == RegType::sgpr) + (op[1].type() == RegType::sgpr);
1404 if (num_sgprs > (ctx.program->chip_class >= GFX10 ? 2 : 1))
1405 return false;
1406
1407 ctx.uses[op[0].id()]++;
1408 ctx.uses[op[1].id()]++;
1409 decrease_uses(ctx, op_instr[0]);
1410 decrease_uses(ctx, op_instr[1]);
1411
1412 aco_opcode new_op = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1413 Instruction *new_instr;
1414 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel || num_sgprs > 1) {
1415 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1416 for (unsigned i = 0; i < 2; i++) {
1417 vop3->neg[i] = neg[i];
1418 vop3->abs[i] = abs[i];
1419 }
1420 vop3->opsel = opsel;
1421 new_instr = static_cast<Instruction *>(vop3);
1422 } else {
1423 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1424 }
1425 new_instr->operands[0] = Operand(op[0]);
1426 new_instr->operands[1] = Operand(op[1]);
1427 new_instr->definitions[0] = instr->definitions[0];
1428
1429 ctx.info[instr->definitions[0].tempId()].label = 0;
1430 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1431
1432 instr.reset(new_instr);
1433
1434 return true;
1435 }
1436
1437 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1438 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1439 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1440 {
1441 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1442 return false;
1443 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1444 return false;
1445
1446 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1447 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1448
1449 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1450 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1451 if (!nan_test || !cmp)
1452 return false;
1453
1454 if (cmp->opcode == expected_nan_test)
1455 std::swap(nan_test, cmp);
1456 else if (nan_test->opcode != expected_nan_test)
1457 return false;
1458
1459 if (!is_cmp(cmp->opcode))
1460 return false;
1461
1462 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1463 return false;
1464 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1465 return false;
1466
1467 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1468 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1469 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1470 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1471 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1472 return false;
1473 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1474 return false;
1475
1476 ctx.uses[cmp->operands[0].tempId()]++;
1477 ctx.uses[cmp->operands[1].tempId()]++;
1478 decrease_uses(ctx, nan_test);
1479 decrease_uses(ctx, cmp);
1480
1481 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1482 Instruction *new_instr;
1483 if (cmp->isVOP3()) {
1484 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1485 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1486 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1487 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1488 new_vop3->clamp = cmp_vop3->clamp;
1489 new_vop3->omod = cmp_vop3->omod;
1490 new_vop3->opsel = cmp_vop3->opsel;
1491 new_instr = new_vop3;
1492 } else {
1493 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1494 }
1495 new_instr->operands[0] = cmp->operands[0];
1496 new_instr->operands[1] = cmp->operands[1];
1497 new_instr->definitions[0] = instr->definitions[0];
1498
1499 ctx.info[instr->definitions[0].tempId()].label = 0;
1500 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1501
1502 instr.reset(new_instr);
1503
1504 return true;
1505 }
1506
1507 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1508 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1509 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1510 {
1511 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1512 return false;
1513 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1514 return false;
1515
1516 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1517
1518 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1519 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1520
1521 if (!nan_test || !cmp)
1522 return false;
1523
1524 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1525 if (cmp->opcode == expected_nan_test)
1526 std::swap(nan_test, cmp);
1527 else if (nan_test->opcode != expected_nan_test)
1528 return false;
1529
1530 if (!is_cmp(cmp->opcode))
1531 return false;
1532
1533 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1534 return false;
1535 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1536 return false;
1537
1538 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1539 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1540 if (prop_nan0 != prop_nan1)
1541 return false;
1542
1543 if (nan_test->isVOP3()) {
1544 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(nan_test);
1545 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1546 return false;
1547 }
1548
1549 int constant_operand = -1;
1550 for (unsigned i = 0; i < 2; i++) {
1551 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1552 constant_operand = !i;
1553 break;
1554 }
1555 }
1556 if (constant_operand == -1)
1557 return false;
1558
1559 uint32_t constant;
1560 if (cmp->operands[constant_operand].isConstant()) {
1561 constant = cmp->operands[constant_operand].constantValue();
1562 } else if (cmp->operands[constant_operand].isTemp()) {
1563 Temp tmp = cmp->operands[constant_operand].getTemp();
1564 unsigned id = original_temp_id(ctx, tmp);
1565 if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal())
1566 return false;
1567 constant = ctx.info[id].val;
1568 } else {
1569 return false;
1570 }
1571
1572 float constantf;
1573 memcpy(&constantf, &constant, 4);
1574 if (isnan(constantf))
1575 return false;
1576
1577 if (cmp->operands[0].isTemp())
1578 ctx.uses[cmp->operands[0].tempId()]++;
1579 if (cmp->operands[1].isTemp())
1580 ctx.uses[cmp->operands[1].tempId()]++;
1581 decrease_uses(ctx, nan_test);
1582 decrease_uses(ctx, cmp);
1583
1584 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1585 Instruction *new_instr;
1586 if (cmp->isVOP3()) {
1587 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1588 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1589 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1590 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1591 new_vop3->clamp = cmp_vop3->clamp;
1592 new_vop3->omod = cmp_vop3->omod;
1593 new_vop3->opsel = cmp_vop3->opsel;
1594 new_instr = new_vop3;
1595 } else {
1596 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1597 }
1598 new_instr->operands[0] = cmp->operands[0];
1599 new_instr->operands[1] = cmp->operands[1];
1600 new_instr->definitions[0] = instr->definitions[0];
1601
1602 ctx.info[instr->definitions[0].tempId()].label = 0;
1603 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1604
1605 instr.reset(new_instr);
1606
1607 return true;
1608 }
1609
1610 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1611 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1612 {
1613 if (instr->opcode != aco_opcode::s_not_b64)
1614 return false;
1615 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1616 return false;
1617 if (!instr->operands[0].isTemp())
1618 return false;
1619
1620 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1621 if (!cmp)
1622 return false;
1623
1624 aco_opcode new_opcode = get_inverse(cmp->opcode);
1625 if (new_opcode == aco_opcode::last_opcode)
1626 return false;
1627
1628 if (cmp->operands[0].isTemp())
1629 ctx.uses[cmp->operands[0].tempId()]++;
1630 if (cmp->operands[1].isTemp())
1631 ctx.uses[cmp->operands[1].tempId()]++;
1632 decrease_uses(ctx, cmp);
1633
1634 Instruction *new_instr;
1635 if (cmp->isVOP3()) {
1636 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1637 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1638 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1639 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1640 new_vop3->clamp = cmp_vop3->clamp;
1641 new_vop3->omod = cmp_vop3->omod;
1642 new_vop3->opsel = cmp_vop3->opsel;
1643 new_instr = new_vop3;
1644 } else {
1645 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1646 }
1647 new_instr->operands[0] = cmp->operands[0];
1648 new_instr->operands[1] = cmp->operands[1];
1649 new_instr->definitions[0] = instr->definitions[0];
1650
1651 ctx.info[instr->definitions[0].tempId()].label = 0;
1652 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1653
1654 instr.reset(new_instr);
1655
1656 return true;
1657 }
1658
1659 /* op1(op2(1, 2), 0) if swap = false
1660 * op1(0, op2(1, 2)) if swap = true */
1661 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1662 Instruction* op1_instr, bool swap, const char *shuffle_str,
1663 Operand operands[3], bool neg[3], bool abs[3], uint8_t *opsel,
1664 bool *op1_clamp, uint8_t *op1_omod,
1665 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1666 {
1667 /* checks */
1668 if (op1_instr->opcode != op1)
1669 return false;
1670
1671 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1672 if (!op2_instr || op2_instr->opcode != op2)
1673 return false;
1674 if (fixed_to_exec(op2_instr->operands[0]) || fixed_to_exec(op2_instr->operands[1]))
1675 return false;
1676
1677 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1678 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1679
1680 /* don't support inbetween clamp/omod */
1681 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1682 return false;
1683
1684 /* get operands and modifiers and check inbetween modifiers */
1685 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1686 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1687
1688 if (inbetween_neg)
1689 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1690 else if (op1_vop3 && op1_vop3->neg[swap])
1691 return false;
1692
1693 if (inbetween_abs)
1694 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1695 else if (op1_vop3 && op1_vop3->abs[swap])
1696 return false;
1697
1698 if (inbetween_opsel)
1699 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel & (1 << swap) : false;
1700 else if (op1_vop3 && op1_vop3->opsel & (1 << swap))
1701 return false;
1702
1703 int shuffle[3];
1704 shuffle[shuffle_str[0] - '0'] = 0;
1705 shuffle[shuffle_str[1] - '0'] = 1;
1706 shuffle[shuffle_str[2] - '0'] = 2;
1707
1708 operands[shuffle[0]] = op1_instr->operands[!swap];
1709 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1710 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1711 if (op1_vop3 && op1_vop3->opsel & (1 << !swap))
1712 *opsel |= 1 << shuffle[0];
1713
1714 for (unsigned i = 0; i < 2; i++) {
1715 operands[shuffle[i + 1]] = op2_instr->operands[i];
1716 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1717 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1718 if (op2_vop3 && op2_vop3->opsel & (1 << i))
1719 *opsel |= 1 << shuffle[i + 1];
1720 }
1721
1722 /* check operands */
1723 if (!check_vop3_operands(ctx, 3, operands))
1724 return false;
1725
1726 return true;
1727 }
1728
1729 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1730 Operand operands[3], bool neg[3], bool abs[3], uint8_t opsel,
1731 bool clamp, unsigned omod)
1732 {
1733 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1734 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1735 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1736 new_instr->clamp = clamp;
1737 new_instr->omod = omod;
1738 new_instr->opsel = opsel;
1739 new_instr->operands[0] = operands[0];
1740 new_instr->operands[1] = operands[1];
1741 new_instr->operands[2] = operands[2];
1742 new_instr->definitions[0] = instr->definitions[0];
1743 ctx.info[instr->definitions[0].tempId()].label = 0;
1744
1745 instr.reset(new_instr);
1746 }
1747
1748 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1749 {
1750 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1751 (label_omod_success | label_clamp_success);
1752
1753 for (unsigned swap = 0; swap < 2; swap++) {
1754 if (!((1 << swap) & ops))
1755 continue;
1756
1757 Operand operands[3];
1758 bool neg[3], abs[3], clamp;
1759 uint8_t opsel = 0, omod = 0;
1760 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1761 instr.get(), swap, shuffle,
1762 operands, neg, abs, &opsel,
1763 &clamp, &omod, NULL, NULL, NULL)) {
1764 ctx.uses[instr->operands[swap].tempId()]--;
1765 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1766 if (omod_clamp & label_omod_success)
1767 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1768 if (omod_clamp & label_clamp_success)
1769 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1770 return true;
1771 }
1772 }
1773 return false;
1774 }
1775
1776 bool combine_minmax(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode opposite, aco_opcode minmax3)
1777 {
1778 if (combine_three_valu_op(ctx, instr, instr->opcode, minmax3, "012", 1 | 2))
1779 return true;
1780
1781 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1782 (label_omod_success | label_clamp_success);
1783
1784 /* min(-max(a, b), c) -> min3(-a, -b, c) *
1785 * max(-min(a, b), c) -> max3(-a, -b, c) */
1786 for (unsigned swap = 0; swap < 2; swap++) {
1787 Operand operands[3];
1788 bool neg[3], abs[3], clamp;
1789 uint8_t opsel = 0, omod = 0;
1790 bool inbetween_neg;
1791 if (match_op3_for_vop3(ctx, instr->opcode, opposite,
1792 instr.get(), swap, "012",
1793 operands, neg, abs, &opsel,
1794 &clamp, &omod, &inbetween_neg, NULL, NULL) &&
1795 inbetween_neg) {
1796 ctx.uses[instr->operands[swap].tempId()]--;
1797 neg[1] = true;
1798 neg[2] = true;
1799 create_vop3_for_op3(ctx, minmax3, instr, operands, neg, abs, opsel, clamp, omod);
1800 if (omod_clamp & label_omod_success)
1801 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1802 if (omod_clamp & label_clamp_success)
1803 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1804 return true;
1805 }
1806 }
1807 return false;
1808 }
1809
1810 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
1811 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
1812 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
1813 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
1814 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
1815 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
1816 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1817 {
1818 /* checks */
1819 if (!instr->operands[0].isTemp())
1820 return false;
1821 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1822 return false;
1823
1824 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
1825 if (!op2_instr)
1826 return false;
1827 switch (op2_instr->opcode) {
1828 case aco_opcode::s_and_b32:
1829 case aco_opcode::s_or_b32:
1830 case aco_opcode::s_xor_b32:
1831 case aco_opcode::s_and_b64:
1832 case aco_opcode::s_or_b64:
1833 case aco_opcode::s_xor_b64:
1834 break;
1835 default:
1836 return false;
1837 }
1838
1839 /* create instruction */
1840 std::swap(instr->definitions[0], op2_instr->definitions[0]);
1841 std::swap(instr->definitions[1], op2_instr->definitions[1]);
1842 ctx.uses[instr->operands[0].tempId()]--;
1843 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
1844
1845 switch (op2_instr->opcode) {
1846 case aco_opcode::s_and_b32:
1847 op2_instr->opcode = aco_opcode::s_nand_b32;
1848 break;
1849 case aco_opcode::s_or_b32:
1850 op2_instr->opcode = aco_opcode::s_nor_b32;
1851 break;
1852 case aco_opcode::s_xor_b32:
1853 op2_instr->opcode = aco_opcode::s_xnor_b32;
1854 break;
1855 case aco_opcode::s_and_b64:
1856 op2_instr->opcode = aco_opcode::s_nand_b64;
1857 break;
1858 case aco_opcode::s_or_b64:
1859 op2_instr->opcode = aco_opcode::s_nor_b64;
1860 break;
1861 case aco_opcode::s_xor_b64:
1862 op2_instr->opcode = aco_opcode::s_xnor_b64;
1863 break;
1864 default:
1865 break;
1866 }
1867
1868 return true;
1869 }
1870
1871 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
1872 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
1873 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
1874 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
1875 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1876 {
1877 if (instr->definitions[0].isTemp() && ctx.info[instr->definitions[0].tempId()].is_uniform_bool())
1878 return false;
1879
1880 for (unsigned i = 0; i < 2; i++) {
1881 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1882 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
1883 continue;
1884 if (ctx.uses[op2_instr->definitions[1].tempId()] || fixed_to_exec(op2_instr->operands[0]))
1885 continue;
1886
1887 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
1888 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
1889 continue;
1890
1891 ctx.uses[instr->operands[i].tempId()]--;
1892 instr->operands[0] = instr->operands[!i];
1893 instr->operands[1] = op2_instr->operands[0];
1894 ctx.info[instr->definitions[0].tempId()].label = 0;
1895
1896 switch (instr->opcode) {
1897 case aco_opcode::s_and_b32:
1898 instr->opcode = aco_opcode::s_andn2_b32;
1899 break;
1900 case aco_opcode::s_or_b32:
1901 instr->opcode = aco_opcode::s_orn2_b32;
1902 break;
1903 case aco_opcode::s_and_b64:
1904 instr->opcode = aco_opcode::s_andn2_b64;
1905 break;
1906 case aco_opcode::s_or_b64:
1907 instr->opcode = aco_opcode::s_orn2_b64;
1908 break;
1909 default:
1910 break;
1911 }
1912
1913 return true;
1914 }
1915 return false;
1916 }
1917
1918 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
1919 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1920 {
1921 if (instr->opcode == aco_opcode::s_add_i32 && ctx.uses[instr->definitions[1].tempId()])
1922 return false;
1923
1924 for (unsigned i = 0; i < 2; i++) {
1925 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1926 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 ||
1927 ctx.uses[op2_instr->definitions[1].tempId()])
1928 continue;
1929 if (!op2_instr->operands[1].isConstant() || fixed_to_exec(op2_instr->operands[0]))
1930 continue;
1931
1932 uint32_t shift = op2_instr->operands[1].constantValue();
1933 if (shift < 1 || shift > 4)
1934 continue;
1935
1936 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
1937 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
1938 continue;
1939
1940 ctx.uses[instr->operands[i].tempId()]--;
1941 instr->operands[1] = instr->operands[!i];
1942 instr->operands[0] = op2_instr->operands[0];
1943 ctx.info[instr->definitions[0].tempId()].label = 0;
1944
1945 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
1946 aco_opcode::s_lshl2_add_u32,
1947 aco_opcode::s_lshl3_add_u32,
1948 aco_opcode::s_lshl4_add_u32})[shift - 1];
1949
1950 return true;
1951 }
1952 return false;
1953 }
1954
1955 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
1956 {
1957 switch (op) {
1958 #define MINMAX(type, gfx9) \
1959 case aco_opcode::v_min_##type:\
1960 case aco_opcode::v_max_##type:\
1961 case aco_opcode::v_med3_##type:\
1962 *min = aco_opcode::v_min_##type;\
1963 *max = aco_opcode::v_max_##type;\
1964 *med3 = aco_opcode::v_med3_##type;\
1965 *min3 = aco_opcode::v_min3_##type;\
1966 *max3 = aco_opcode::v_max3_##type;\
1967 *some_gfx9_only = gfx9;\
1968 return true;
1969 MINMAX(f32, false)
1970 MINMAX(u32, false)
1971 MINMAX(i32, false)
1972 MINMAX(f16, true)
1973 MINMAX(u16, true)
1974 MINMAX(i16, true)
1975 #undef MINMAX
1976 default:
1977 return false;
1978 }
1979 }
1980
1981 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
1982 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
1983 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
1984 aco_opcode min, aco_opcode max, aco_opcode med)
1985 {
1986 /* TODO: GLSL's clamp(x, minVal, maxVal) and SPIR-V's
1987 * FClamp(x, minVal, maxVal)/NClamp(x, minVal, maxVal) are undefined if
1988 * minVal > maxVal, which means we can always select it to a v_med3_f32 */
1989 aco_opcode other_op;
1990 if (instr->opcode == min)
1991 other_op = max;
1992 else if (instr->opcode == max)
1993 other_op = min;
1994 else
1995 return false;
1996
1997 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1998 (label_omod_success | label_clamp_success);
1999
2000 for (unsigned swap = 0; swap < 2; swap++) {
2001 Operand operands[3];
2002 bool neg[3], abs[3], clamp;
2003 uint8_t opsel = 0, omod = 0;
2004 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
2005 "012", operands, neg, abs, &opsel,
2006 &clamp, &omod, NULL, NULL, NULL)) {
2007 int const0_idx = -1, const1_idx = -1;
2008 uint32_t const0 = 0, const1 = 0;
2009 for (int i = 0; i < 3; i++) {
2010 uint32_t val;
2011 if (operands[i].isConstant()) {
2012 val = operands[i].constantValue();
2013 } else if (operands[i].isTemp() && ctx.info[operands[i].tempId()].is_constant_or_literal()) {
2014 val = ctx.info[operands[i].tempId()].val;
2015 } else {
2016 continue;
2017 }
2018 if (const0_idx >= 0) {
2019 const1_idx = i;
2020 const1 = val;
2021 } else {
2022 const0_idx = i;
2023 const0 = val;
2024 }
2025 }
2026 if (const0_idx < 0 || const1_idx < 0)
2027 continue;
2028
2029 if (opsel & (1 << const0_idx))
2030 const0 >>= 16;
2031 if (opsel & (1 << const1_idx))
2032 const1 >>= 16;
2033
2034 int lower_idx = const0_idx;
2035 switch (min) {
2036 case aco_opcode::v_min_f32:
2037 case aco_opcode::v_min_f16: {
2038 float const0_f, const1_f;
2039 if (min == aco_opcode::v_min_f32) {
2040 memcpy(&const0_f, &const0, 4);
2041 memcpy(&const1_f, &const1, 4);
2042 } else {
2043 const0_f = _mesa_half_to_float(const0);
2044 const1_f = _mesa_half_to_float(const1);
2045 }
2046 if (abs[const0_idx]) const0_f = fabsf(const0_f);
2047 if (abs[const1_idx]) const1_f = fabsf(const1_f);
2048 if (neg[const0_idx]) const0_f = -const0_f;
2049 if (neg[const1_idx]) const1_f = -const1_f;
2050 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
2051 break;
2052 }
2053 case aco_opcode::v_min_u32: {
2054 lower_idx = const0 < const1 ? const0_idx : const1_idx;
2055 break;
2056 }
2057 case aco_opcode::v_min_u16: {
2058 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
2059 break;
2060 }
2061 case aco_opcode::v_min_i32: {
2062 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
2063 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
2064 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2065 break;
2066 }
2067 case aco_opcode::v_min_i16: {
2068 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
2069 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
2070 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2071 break;
2072 }
2073 default:
2074 break;
2075 }
2076 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
2077
2078 if (instr->opcode == min) {
2079 if (upper_idx != 0 || lower_idx == 0)
2080 return false;
2081 } else {
2082 if (upper_idx == 0 || lower_idx != 0)
2083 return false;
2084 }
2085
2086 ctx.uses[instr->operands[swap].tempId()]--;
2087 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
2088 if (omod_clamp & label_omod_success)
2089 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2090 if (omod_clamp & label_clamp_success)
2091 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
2092
2093 return true;
2094 }
2095 }
2096
2097 return false;
2098 }
2099
2100
2101 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2102 {
2103 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
2104 instr->opcode == aco_opcode::v_lshrrev_b64 ||
2105 instr->opcode == aco_opcode::v_ashrrev_i64;
2106
2107 /* find candidates and create the set of sgprs already read */
2108 unsigned sgpr_ids[2] = {0, 0};
2109 uint32_t operand_mask = 0;
2110 bool has_literal = false;
2111 for (unsigned i = 0; i < instr->operands.size(); i++) {
2112 if (instr->operands[i].isLiteral())
2113 has_literal = true;
2114 if (!instr->operands[i].isTemp())
2115 continue;
2116 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2117 if (instr->operands[i].tempId() != sgpr_ids[0])
2118 sgpr_ids[!!sgpr_ids[0]] = instr->operands[i].tempId();
2119 }
2120 ssa_info& info = ctx.info[instr->operands[i].tempId()];
2121 if (info.is_temp() && info.temp.type() == RegType::sgpr)
2122 operand_mask |= 1u << i;
2123 }
2124 unsigned max_sgprs = 1;
2125 if (ctx.program->chip_class >= GFX10 && !is_shift64)
2126 max_sgprs = 2;
2127 if (has_literal)
2128 max_sgprs--;
2129
2130 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
2131
2132 /* keep on applying sgprs until there is nothing left to be done */
2133 while (operand_mask) {
2134 uint32_t sgpr_idx = 0;
2135 uint32_t sgpr_info_id = 0;
2136 uint32_t mask = operand_mask;
2137 /* choose a sgpr */
2138 while (mask) {
2139 unsigned i = u_bit_scan(&mask);
2140 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
2141 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
2142 sgpr_idx = i;
2143 sgpr_info_id = instr->operands[i].tempId();
2144 }
2145 }
2146 operand_mask &= ~(1u << sgpr_idx);
2147
2148 /* Applying two sgprs require making it VOP3, so don't do it unless it's
2149 * definitively beneficial.
2150 * TODO: this is too conservative because later the use count could be reduced to 1 */
2151 if (num_sgprs && ctx.uses[sgpr_info_id] > 1 && !instr->isVOP3())
2152 break;
2153
2154 Temp sgpr = ctx.info[sgpr_info_id].temp;
2155 bool new_sgpr = sgpr.id() != sgpr_ids[0] && sgpr.id() != sgpr_ids[1];
2156 if (new_sgpr && num_sgprs >= max_sgprs)
2157 continue;
2158
2159 if (sgpr_idx == 0 || instr->isVOP3()) {
2160 instr->operands[sgpr_idx] = Operand(sgpr);
2161 } else if (can_swap_operands(instr)) {
2162 instr->operands[sgpr_idx] = instr->operands[0];
2163 instr->operands[0] = Operand(sgpr);
2164 /* swap bits using a 4-entry LUT */
2165 uint32_t swapped = (0x3120 >> (operand_mask & 0x3)) & 0xf;
2166 operand_mask = (operand_mask & ~0x3) | swapped;
2167 } else if (can_use_VOP3(ctx, instr)) {
2168 to_VOP3(ctx, instr);
2169 instr->operands[sgpr_idx] = Operand(sgpr);
2170 } else {
2171 continue;
2172 }
2173
2174 if (new_sgpr)
2175 sgpr_ids[num_sgprs++] = sgpr.id();
2176 ctx.uses[sgpr_info_id]--;
2177 ctx.uses[sgpr.id()]++;
2178 }
2179 }
2180
2181 bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2182 {
2183 /* check if we could apply omod on predecessor */
2184 if (instr->opcode == aco_opcode::v_mul_f32) {
2185 bool op0 = instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_omod_success();
2186 bool op1 = instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success();
2187 if (op0 || op1) {
2188 unsigned idx = op0 ? 0 : 1;
2189 /* omod was successfully applied */
2190 /* if the omod instruction is v_mad, we also have to change the original add */
2191 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
2192 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
2193 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
2194 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
2195 add_instr->definitions[0] = instr->definitions[0];
2196 }
2197
2198 Instruction* omod_instr = ctx.info[instr->operands[idx].tempId()].instr;
2199 /* check if we have an additional clamp modifier */
2200 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2201 ctx.uses[ctx.info[instr->definitions[0].tempId()].temp.id()]) {
2202 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
2203 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
2204 }
2205 /* change definition ssa-id of modified instruction */
2206 omod_instr->definitions[0] = instr->definitions[0];
2207
2208 /* change the definition of instr to something unused, e.g. the original omod def */
2209 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
2210 ctx.uses[instr->definitions[0].tempId()] = 0;
2211 return true;
2212 }
2213 if (!ctx.info[instr->definitions[0].tempId()].label) {
2214 /* in all other cases, label this instruction as option for multiply-add */
2215 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2216 }
2217 }
2218
2219 /* check if we could apply clamp on predecessor */
2220 if (instr->opcode == aco_opcode::v_med3_f32) {
2221 unsigned idx = 0;
2222 bool found_zero = false, found_one = false;
2223 for (unsigned i = 0; i < 3; i++)
2224 {
2225 if (instr->operands[i].constantEquals(0))
2226 found_zero = true;
2227 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
2228 found_one = true;
2229 else
2230 idx = i;
2231 }
2232 if (found_zero && found_one && instr->operands[idx].isTemp() &&
2233 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
2234 /* clamp was successfully applied */
2235 /* if the clamp instruction is v_mad, we also have to change the original add */
2236 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
2237 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
2238 add_instr->definitions[0] = instr->definitions[0];
2239 }
2240 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
2241 /* change definition ssa-id of modified instruction */
2242 clamp_instr->definitions[0] = instr->definitions[0];
2243
2244 /* change the definition of instr to something unused, e.g. the original omod def */
2245 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
2246 ctx.uses[instr->definitions[0].tempId()] = 0;
2247 return true;
2248 }
2249 }
2250
2251 /* omod has no effect if denormals are enabled */
2252 bool can_use_omod = block.fp_mode.denorm32 == 0;
2253
2254 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
2255 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2256 can_use_VOP3(ctx, instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
2257 ssa_info& def_info = ctx.info[instr->definitions[0].tempId()];
2258 if (can_use_omod && def_info.is_omod2() && ctx.uses[def_info.temp.id()]) {
2259 to_VOP3(ctx, instr);
2260 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
2261 def_info.set_omod_success(instr.get());
2262 } else if (can_use_omod && def_info.is_omod4() && ctx.uses[def_info.temp.id()]) {
2263 to_VOP3(ctx, instr);
2264 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
2265 def_info.set_omod_success(instr.get());
2266 } else if (can_use_omod && def_info.is_omod5() && ctx.uses[def_info.temp.id()]) {
2267 to_VOP3(ctx, instr);
2268 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
2269 def_info.set_omod_success(instr.get());
2270 } else if (def_info.is_clamp() && ctx.uses[def_info.temp.id()]) {
2271 to_VOP3(ctx, instr);
2272 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
2273 def_info.set_clamp_success(instr.get());
2274 }
2275 }
2276
2277 return false;
2278 }
2279
2280 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
2281 // this would mean that we'd have to fix the instruction uses while value propagation
2282
2283 void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2284 {
2285 if (instr->definitions.empty() || is_dead(ctx.uses, instr.get()))
2286 return;
2287
2288 if (instr->isVALU()) {
2289 if (can_apply_sgprs(instr))
2290 apply_sgprs(ctx, instr);
2291 if (apply_omod_clamp(ctx, block, instr))
2292 return;
2293 }
2294
2295 if (ctx.info[instr->definitions[0].tempId()].is_vcc_hint()) {
2296 instr->definitions[0].setHint(vcc);
2297 }
2298
2299 /* TODO: There are still some peephole optimizations that could be done:
2300 * - abs(a - b) -> s_absdiff_i32
2301 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
2302 * - patterns for v_alignbit_b32 and v_alignbyte_b32
2303 * These aren't probably too interesting though.
2304 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
2305 * probably more useful than the previously mentioned optimizations.
2306 * The various comparison optimizations also currently only work with 32-bit
2307 * floats. */
2308
2309 /* neg(mul(a, b)) -> mul(neg(a), b) */
2310 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
2311 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
2312
2313 if (!ctx.info[val.id()].is_mul())
2314 return;
2315
2316 Instruction* mul_instr = ctx.info[val.id()].instr;
2317
2318 if (mul_instr->operands[0].isLiteral())
2319 return;
2320 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
2321 return;
2322
2323 /* convert to mul(neg(a), b) */
2324 ctx.uses[mul_instr->definitions[0].tempId()]--;
2325 Definition def = instr->definitions[0];
2326 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
2327 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
2328 instr.reset(create_instruction<VOP3A_instruction>(aco_opcode::v_mul_f32, asVOP3(Format::VOP2), 2, 1));
2329 instr->operands[0] = mul_instr->operands[0];
2330 instr->operands[1] = mul_instr->operands[1];
2331 instr->definitions[0] = def;
2332 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
2333 if (mul_instr->isVOP3()) {
2334 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
2335 new_mul->neg[0] = mul->neg[0] && !is_abs;
2336 new_mul->neg[1] = mul->neg[1] && !is_abs;
2337 new_mul->abs[0] = mul->abs[0] || is_abs;
2338 new_mul->abs[1] = mul->abs[1] || is_abs;
2339 new_mul->omod = mul->omod;
2340 }
2341 new_mul->neg[0] ^= true;
2342 new_mul->clamp = false;
2343
2344 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2345 return;
2346 }
2347 /* combine mul+add -> mad */
2348 else if ((instr->opcode == aco_opcode::v_add_f32 ||
2349 instr->opcode == aco_opcode::v_sub_f32 ||
2350 instr->opcode == aco_opcode::v_subrev_f32) &&
2351 block.fp_mode.denorm32 == 0 && !block.fp_mode.preserve_signed_zero_inf_nan32) {
2352 //TODO: we could use fma instead when denormals are enabled if the NIR isn't marked as precise
2353
2354 uint32_t uses_src0 = UINT32_MAX;
2355 uint32_t uses_src1 = UINT32_MAX;
2356 Instruction* mul_instr = nullptr;
2357 unsigned add_op_idx;
2358 /* check if any of the operands is a multiplication */
2359 if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_mul())
2360 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2361 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_mul())
2362 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2363
2364 /* find the 'best' mul instruction to combine with the add */
2365 if (uses_src0 < uses_src1) {
2366 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2367 add_op_idx = 1;
2368 } else if (uses_src1 < uses_src0) {
2369 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2370 add_op_idx = 0;
2371 } else if (uses_src0 != UINT32_MAX) {
2372 /* tiebreaker: quite random what to pick */
2373 if (ctx.info[instr->operands[0].tempId()].instr->operands[0].isLiteral()) {
2374 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2375 add_op_idx = 0;
2376 } else {
2377 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2378 add_op_idx = 1;
2379 }
2380 }
2381 if (mul_instr) {
2382 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2383 bool neg[3] = {false, false, false};
2384 bool abs[3] = {false, false, false};
2385 unsigned omod = 0;
2386 bool clamp = false;
2387 op[0] = mul_instr->operands[0];
2388 op[1] = mul_instr->operands[1];
2389 op[2] = instr->operands[add_op_idx];
2390 // TODO: would be better to check this before selecting a mul instr?
2391 if (!check_vop3_operands(ctx, 3, op))
2392 return;
2393
2394 if (mul_instr->isVOP3()) {
2395 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2396 neg[0] = vop3->neg[0];
2397 neg[1] = vop3->neg[1];
2398 abs[0] = vop3->abs[0];
2399 abs[1] = vop3->abs[1];
2400 /* we cannot use these modifiers between mul and add */
2401 if (vop3->clamp || vop3->omod)
2402 return;
2403 }
2404
2405 /* convert to mad */
2406 ctx.uses[mul_instr->definitions[0].tempId()]--;
2407 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2408 if (op[0].isTemp())
2409 ctx.uses[op[0].tempId()]++;
2410 if (op[1].isTemp())
2411 ctx.uses[op[1].tempId()]++;
2412 }
2413
2414 if (instr->isVOP3()) {
2415 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2416 neg[2] = vop3->neg[add_op_idx];
2417 abs[2] = vop3->abs[add_op_idx];
2418 omod = vop3->omod;
2419 clamp = vop3->clamp;
2420 /* abs of the multiplication result */
2421 if (vop3->abs[1 - add_op_idx]) {
2422 neg[0] = false;
2423 neg[1] = false;
2424 abs[0] = true;
2425 abs[1] = true;
2426 }
2427 /* neg of the multiplication result */
2428 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2429 }
2430 if (instr->opcode == aco_opcode::v_sub_f32)
2431 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2432 else if (instr->opcode == aco_opcode::v_subrev_f32)
2433 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2434
2435 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)};
2436 for (unsigned i = 0; i < 3; i++)
2437 {
2438 mad->operands[i] = op[i];
2439 mad->neg[i] = neg[i];
2440 mad->abs[i] = abs[i];
2441 }
2442 mad->omod = omod;
2443 mad->clamp = clamp;
2444 mad->definitions[0] = instr->definitions[0];
2445
2446 /* mark this ssa_def to be re-checked for profitability and literals */
2447 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId());
2448 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2449 instr.reset(mad.release());
2450 return;
2451 }
2452 }
2453 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2454 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2455 for (unsigned i = 0; i < 2; i++) {
2456 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2457 ctx.uses[instr->operands[i].tempId()] == 1 &&
2458 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2459 ctx.uses[instr->operands[i].tempId()]--;
2460 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2461
2462 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2463 new_instr->operands[0] = Operand(0u);
2464 new_instr->operands[1] = instr->operands[!i];
2465 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2466 new_instr->definitions[0] = instr->definitions[0];
2467 instr.reset(new_instr.release());
2468 ctx.info[instr->definitions[0].tempId()].label = 0;
2469 return;
2470 }
2471 }
2472 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2473 if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2474 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2475 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2476 } else if (instr->opcode == aco_opcode::v_add_u32 && ctx.program->chip_class >= GFX9) {
2477 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2478 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2479 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2480 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2481 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2482 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2483 combine_salu_lshl_add(ctx, instr);
2484 } else if (instr->opcode == aco_opcode::s_not_b32) {
2485 combine_salu_not_bitwise(ctx, instr);
2486 } else if (instr->opcode == aco_opcode::s_not_b64) {
2487 if (combine_inverse_comparison(ctx, instr)) ;
2488 else combine_salu_not_bitwise(ctx, instr);
2489 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 ||
2490 instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2491 if (combine_ordering_test(ctx, instr)) ;
2492 else if (combine_comparison_ordering(ctx, instr)) ;
2493 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2494 else combine_salu_n2(ctx, instr);
2495 } else {
2496 aco_opcode min, max, min3, max3, med3;
2497 bool some_gfx9_only;
2498 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2499 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2500 if (combine_minmax(ctx, instr, instr->opcode == min ? max : min, instr->opcode == min ? min3 : max3)) ;
2501 else combine_clamp(ctx, instr, min, max, med3);
2502 }
2503 }
2504 }
2505
2506 bool to_uniform_bool_instr(opt_ctx &ctx, aco_ptr<Instruction> &instr)
2507 {
2508 switch (instr->opcode) {
2509 case aco_opcode::s_and_b32:
2510 case aco_opcode::s_and_b64:
2511 instr->opcode = aco_opcode::s_and_b32;
2512 break;
2513 case aco_opcode::s_or_b32:
2514 case aco_opcode::s_or_b64:
2515 instr->opcode = aco_opcode::s_or_b32;
2516 break;
2517 case aco_opcode::s_xor_b32:
2518 case aco_opcode::s_xor_b64:
2519 instr->opcode = aco_opcode::s_absdiff_i32;
2520 break;
2521 default:
2522 /* Don't transform other instructions. They are very unlikely to appear here. */
2523 return false;
2524 }
2525
2526 for (Operand &op : instr->operands) {
2527 ctx.uses[op.tempId()]--;
2528
2529 if (ctx.info[op.tempId()].is_uniform_bool()) {
2530 /* Just use the uniform boolean temp. */
2531 op.setTemp(ctx.info[op.tempId()].temp);
2532 } else if (ctx.info[op.tempId()].is_uniform_bitwise()) {
2533 /* Use the SCC definition of the predecessor instruction.
2534 * This allows the predecessor to get picked up by the same optimization (if it has no divergent users),
2535 * and it also makes sure that the current instruction will keep working even if the predecessor won't be transformed.
2536 */
2537 Instruction *pred_instr = ctx.info[op.tempId()].instr;
2538 assert(pred_instr->definitions.size() >= 2);
2539 assert(pred_instr->definitions[1].isFixed() && pred_instr->definitions[1].physReg() == scc);
2540 op.setTemp(pred_instr->definitions[1].getTemp());
2541 } else {
2542 unreachable("Invalid operand on uniform bitwise instruction.");
2543 }
2544
2545 ctx.uses[op.tempId()]++;
2546 }
2547
2548 instr->definitions[0].setTemp(Temp(instr->definitions[0].tempId(), s1));
2549 assert(instr->operands[0].regClass() == s1);
2550 assert(instr->operands[1].regClass() == s1);
2551 return true;
2552 }
2553
2554 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2555 {
2556 const uint32_t threshold = 4;
2557
2558 if (is_dead(ctx.uses, instr.get())) {
2559 instr.reset();
2560 return;
2561 }
2562
2563 /* convert split_vector into a copy or extract_vector if only one definition is ever used */
2564 if (instr->opcode == aco_opcode::p_split_vector) {
2565 unsigned num_used = 0;
2566 unsigned idx = 0;
2567 unsigned split_offset = 0;
2568 for (unsigned i = 0, offset = 0; i < instr->definitions.size(); offset += instr->definitions[i++].bytes()) {
2569 if (ctx.uses[instr->definitions[i].tempId()]) {
2570 num_used++;
2571 idx = i;
2572 split_offset = offset;
2573 }
2574 }
2575 bool done = false;
2576 if (num_used == 1 && ctx.info[instr->operands[0].tempId()].is_vec() &&
2577 ctx.uses[instr->operands[0].tempId()] == 1) {
2578 Instruction *vec = ctx.info[instr->operands[0].tempId()].instr;
2579
2580 unsigned off = 0;
2581 Operand op;
2582 for (Operand& vec_op : vec->operands) {
2583 if (off == split_offset) {
2584 op = vec_op;
2585 break;
2586 }
2587 off += vec_op.bytes();
2588 }
2589 if (off != instr->operands[0].bytes() && op.bytes() == instr->definitions[idx].bytes()) {
2590 ctx.uses[instr->operands[0].tempId()]--;
2591 for (Operand& vec_op : vec->operands) {
2592 if (vec_op.isTemp())
2593 ctx.uses[vec_op.tempId()]--;
2594 }
2595 if (op.isTemp())
2596 ctx.uses[op.tempId()]++;
2597
2598 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 1, 1)};
2599 extract->operands[0] = op;
2600 extract->definitions[0] = instr->definitions[idx];
2601 instr.reset(extract.release());
2602
2603 done = true;
2604 }
2605 }
2606
2607 if (!done && num_used == 1 &&
2608 instr->operands[0].bytes() % instr->definitions[idx].bytes() == 0 &&
2609 split_offset % instr->definitions[idx].bytes() == 0) {
2610 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2611 extract->operands[0] = instr->operands[0];
2612 extract->operands[1] = Operand((uint32_t) split_offset / instr->definitions[idx].bytes());
2613 extract->definitions[0] = instr->definitions[idx];
2614 instr.reset(extract.release());
2615 }
2616 }
2617
2618 mad_info* mad_info = NULL;
2619 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2620 mad_info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2621 /* re-check mad instructions */
2622 if (ctx.uses[mad_info->mul_temp_id]) {
2623 ctx.uses[mad_info->mul_temp_id]++;
2624 if (instr->operands[0].isTemp())
2625 ctx.uses[instr->operands[0].tempId()]--;
2626 if (instr->operands[1].isTemp())
2627 ctx.uses[instr->operands[1].tempId()]--;
2628 instr.swap(mad_info->add_instr);
2629 mad_info = NULL;
2630 }
2631 /* check literals */
2632 else if (!instr->usesModifiers()) {
2633 bool sgpr_used = false;
2634 uint32_t literal_idx = 0;
2635 uint32_t literal_uses = UINT32_MAX;
2636 for (unsigned i = 0; i < instr->operands.size(); i++)
2637 {
2638 if (instr->operands[i].isConstant() && i > 0) {
2639 literal_uses = UINT32_MAX;
2640 break;
2641 }
2642 if (!instr->operands[i].isTemp())
2643 continue;
2644 /* if one of the operands is sgpr, we cannot add a literal somewhere else on pre-GFX10 or operands other than the 1st */
2645 if (instr->operands[i].getTemp().type() == RegType::sgpr && (i > 0 || ctx.program->chip_class < GFX10)) {
2646 if (!sgpr_used && ctx.info[instr->operands[i].tempId()].is_literal()) {
2647 literal_uses = ctx.uses[instr->operands[i].tempId()];
2648 literal_idx = i;
2649 } else {
2650 literal_uses = UINT32_MAX;
2651 }
2652 sgpr_used = true;
2653 /* don't break because we still need to check constants */
2654 } else if (!sgpr_used &&
2655 ctx.info[instr->operands[i].tempId()].is_literal() &&
2656 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2657 literal_uses = ctx.uses[instr->operands[i].tempId()];
2658 literal_idx = i;
2659 }
2660 }
2661
2662 /* Limit the number of literals to apply to not increase the code
2663 * size too much, but always apply literals for v_mad->v_madak
2664 * because both instructions are 64-bit and this doesn't increase
2665 * code size.
2666 * TODO: try to apply the literals earlier to lower the number of
2667 * uses below threshold
2668 */
2669 if (literal_uses < threshold || literal_idx == 2) {
2670 ctx.uses[instr->operands[literal_idx].tempId()]--;
2671 mad_info->check_literal = true;
2672 mad_info->literal_idx = literal_idx;
2673 return;
2674 }
2675 }
2676 }
2677
2678 /* Mark SCC needed, so the uniform boolean transformation won't swap the definitions when it isn't beneficial */
2679 if (instr->format == Format::PSEUDO_BRANCH &&
2680 instr->operands.size() &&
2681 instr->operands[0].isTemp()) {
2682 ctx.info[instr->operands[0].tempId()].set_scc_needed();
2683 return;
2684 } else if ((instr->opcode == aco_opcode::s_cselect_b64 ||
2685 instr->opcode == aco_opcode::s_cselect_b32) &&
2686 instr->operands[2].isTemp()) {
2687 ctx.info[instr->operands[2].tempId()].set_scc_needed();
2688 }
2689
2690 /* check for literals */
2691 if (!instr->isSALU() && !instr->isVALU())
2692 return;
2693
2694 /* Transform uniform bitwise boolean operations to 32-bit when there are no divergent uses. */
2695 if (instr->definitions.size() &&
2696 ctx.uses[instr->definitions[0].tempId()] == 0 &&
2697 ctx.info[instr->definitions[0].tempId()].is_uniform_bitwise()) {
2698 bool transform_done = to_uniform_bool_instr(ctx, instr);
2699
2700 if (transform_done && !ctx.info[instr->definitions[1].tempId()].is_scc_needed()) {
2701 /* Swap the two definition IDs in order to avoid overusing the SCC. This reduces extra moves generated by RA. */
2702 uint32_t def0_id = instr->definitions[0].getTemp().id();
2703 uint32_t def1_id = instr->definitions[1].getTemp().id();
2704 instr->definitions[0].setTemp(Temp(def1_id, s1));
2705 instr->definitions[1].setTemp(Temp(def0_id, s1));
2706 }
2707
2708 return;
2709 }
2710
2711 if (instr->isSDWA() || instr->isDPP() || (instr->isVOP3() && ctx.program->chip_class < GFX10))
2712 return; /* some encodings can't ever take literals */
2713
2714 /* we do not apply the literals yet as we don't know if it is profitable */
2715 Operand current_literal(s1);
2716
2717 unsigned literal_id = 0;
2718 unsigned literal_uses = UINT32_MAX;
2719 Operand literal(s1);
2720 unsigned num_operands = 1;
2721 if (instr->isSALU() || (ctx.program->chip_class >= GFX10 && can_use_VOP3(ctx, instr)))
2722 num_operands = instr->operands.size();
2723 /* catch VOP2 with a 3rd SGPR operand (e.g. v_cndmask_b32, v_addc_co_u32) */
2724 else if (instr->isVALU() && instr->operands.size() >= 3)
2725 return;
2726
2727 unsigned sgpr_ids[2] = {0, 0};
2728 bool is_literal_sgpr = false;
2729 uint32_t mask = 0;
2730
2731 /* choose a literal to apply */
2732 for (unsigned i = 0; i < num_operands; i++) {
2733 Operand op = instr->operands[i];
2734
2735 if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr &&
2736 op.tempId() != sgpr_ids[0])
2737 sgpr_ids[!!sgpr_ids[0]] = op.tempId();
2738
2739 if (op.isLiteral()) {
2740 current_literal = op;
2741 continue;
2742 } else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal()) {
2743 continue;
2744 }
2745
2746 if (!alu_can_accept_constant(instr->opcode, i))
2747 continue;
2748
2749 if (ctx.uses[op.tempId()] < literal_uses) {
2750 is_literal_sgpr = op.getTemp().type() == RegType::sgpr;
2751 mask = 0;
2752 literal = Operand(ctx.info[op.tempId()].val);
2753 literal_uses = ctx.uses[op.tempId()];
2754 literal_id = op.tempId();
2755 }
2756
2757 mask |= (op.tempId() == literal_id) << i;
2758 }
2759
2760
2761 /* don't go over the constant bus limit */
2762 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
2763 instr->opcode == aco_opcode::v_lshrrev_b64 ||
2764 instr->opcode == aco_opcode::v_ashrrev_i64;
2765 unsigned const_bus_limit = instr->isVALU() ? 1 : UINT32_MAX;
2766 if (ctx.program->chip_class >= GFX10 && !is_shift64)
2767 const_bus_limit = 2;
2768
2769 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
2770 if (num_sgprs == const_bus_limit && !is_literal_sgpr)
2771 return;
2772
2773 if (literal_id && literal_uses < threshold &&
2774 (current_literal.isUndefined() ||
2775 (current_literal.size() == literal.size() &&
2776 current_literal.constantValue() == literal.constantValue()))) {
2777 /* mark the literal to be applied */
2778 while (mask) {
2779 unsigned i = u_bit_scan(&mask);
2780 if (instr->operands[i].isTemp() && instr->operands[i].tempId() == literal_id)
2781 ctx.uses[instr->operands[i].tempId()]--;
2782 }
2783 }
2784 }
2785
2786
2787 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2788 {
2789 /* Cleanup Dead Instructions */
2790 if (!instr)
2791 return;
2792
2793 /* apply literals on MAD */
2794 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2795 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2796 if (info->check_literal &&
2797 (ctx.uses[instr->operands[info->literal_idx].tempId()] == 0 || info->literal_idx == 2)) {
2798 aco_ptr<Instruction> new_mad;
2799 if (info->literal_idx == 2) { /* add literal -> madak */
2800 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
2801 new_mad->operands[0] = instr->operands[0];
2802 new_mad->operands[1] = instr->operands[1];
2803 } else { /* mul literal -> madmk */
2804 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
2805 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
2806 new_mad->operands[1] = instr->operands[2];
2807 }
2808 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
2809 new_mad->definitions[0] = instr->definitions[0];
2810 ctx.instructions.emplace_back(std::move(new_mad));
2811 return;
2812 }
2813 }
2814
2815 /* apply literals on other SALU/VALU */
2816 if (instr->isSALU() || instr->isVALU()) {
2817 for (unsigned i = 0; i < instr->operands.size(); i++) {
2818 Operand op = instr->operands[i];
2819 if (op.isTemp() && ctx.info[op.tempId()].is_literal() && ctx.uses[op.tempId()] == 0) {
2820 Operand literal(ctx.info[op.tempId()].val);
2821 if (instr->isVALU() && i > 0)
2822 to_VOP3(ctx, instr);
2823 instr->operands[i] = literal;
2824 }
2825 }
2826 }
2827
2828 ctx.instructions.emplace_back(std::move(instr));
2829 }
2830
2831
2832 void optimize(Program* program)
2833 {
2834 opt_ctx ctx;
2835 ctx.program = program;
2836 std::vector<ssa_info> info(program->peekAllocationId());
2837 ctx.info = info.data();
2838
2839 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
2840 for (Block& block : program->blocks) {
2841 for (aco_ptr<Instruction>& instr : block.instructions)
2842 label_instruction(ctx, block, instr);
2843 }
2844
2845 ctx.uses = std::move(dead_code_analysis(program));
2846
2847 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
2848 for (Block& block : program->blocks) {
2849 for (aco_ptr<Instruction>& instr : block.instructions)
2850 combine_instruction(ctx, block, instr);
2851 }
2852
2853 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
2854 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
2855 Block* block = &(*it);
2856 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
2857 select_instruction(ctx, *it);
2858 }
2859
2860 /* 4. Add literals to instructions */
2861 for (Block& block : program->blocks) {
2862 ctx.instructions.clear();
2863 for (aco_ptr<Instruction>& instr : block.instructions)
2864 apply_literals(ctx, instr);
2865 block.instructions.swap(ctx.instructions);
2866 }
2867
2868 }
2869
2870 }