aco: fix printing ASM on GFX6-7 if clrxdisasm is not found
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint16_t literal_idx;
56 bool check_literal;
57
58 mad_info(aco_ptr<Instruction> instr, uint32_t id)
59 : add_instr(std::move(instr)), mul_temp_id(id), check_literal(false) {}
60 };
61
62 enum Label {
63 label_vec = 1 << 0,
64 label_constant_32bit = 1 << 1,
65 /* label_{abs,neg,mul,omod2,omod4,omod5,clamp} are used for both 16 and
66 * 32-bit operations but this shouldn't cause any issues because we don't
67 * look through any conversions */
68 label_abs = 1 << 2,
69 label_neg = 1 << 3,
70 label_mul = 1 << 4,
71 label_temp = 1 << 5,
72 label_literal = 1 << 6,
73 label_mad = 1 << 7,
74 label_omod2 = 1 << 8,
75 label_omod4 = 1 << 9,
76 label_omod5 = 1 << 10,
77 label_omod_success = 1 << 11,
78 label_clamp = 1 << 12,
79 label_clamp_success = 1 << 13,
80 label_undefined = 1 << 14,
81 label_vcc = 1 << 15,
82 label_b2f = 1 << 16,
83 label_add_sub = 1 << 17,
84 label_bitwise = 1 << 18,
85 label_minmax = 1 << 19,
86 label_fcmp = 1 << 20,
87 label_uniform_bool = 1 << 21,
88 label_constant_64bit = 1 << 22,
89 label_uniform_bitwise = 1 << 23,
90 label_scc_invert = 1 << 24,
91 label_vcc_hint = 1 << 25,
92 label_scc_needed = 1 << 26,
93 label_b2i = 1 << 27,
94 label_constant_16bit = 1 << 29,
95 };
96
97 static constexpr uint64_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success |
98 label_add_sub | label_bitwise | label_uniform_bitwise | label_minmax | label_fcmp;
99 static constexpr uint64_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool |
100 label_omod2 | label_omod4 | label_omod5 | label_clamp | label_scc_invert | label_b2i;
101 static constexpr uint32_t val_labels = label_constant_32bit | label_constant_64bit | label_constant_16bit | label_literal;
102
103 struct ssa_info {
104 uint64_t label;
105 union {
106 uint32_t val;
107 Temp temp;
108 Instruction* instr;
109 };
110
111 ssa_info() : label(0) {}
112
113 void add_label(Label new_label)
114 {
115 /* Since all labels which use "instr" use it for the same thing
116 * (indicating the defining instruction), there is no need to clear
117 * any other instr labels. */
118 if (new_label & instr_labels)
119 label &= ~(temp_labels | val_labels); /* instr, temp and val alias */
120
121 if (new_label & temp_labels) {
122 label &= ~temp_labels;
123 label &= ~(instr_labels | val_labels); /* instr, temp and val alias */
124 }
125
126 uint32_t const_labels = label_literal | label_constant_32bit | label_constant_64bit | label_constant_16bit;
127 if (new_label & const_labels) {
128 label &= ~val_labels | const_labels;
129 label &= ~(instr_labels | temp_labels); /* instr, temp and val alias */
130 } else if (new_label & val_labels) {
131 label &= ~val_labels;
132 label &= ~(instr_labels | temp_labels); /* instr, temp and val alias */
133 }
134
135 label |= new_label;
136 }
137
138 void set_vec(Instruction* vec)
139 {
140 add_label(label_vec);
141 instr = vec;
142 }
143
144 bool is_vec()
145 {
146 return label & label_vec;
147 }
148
149 void set_constant(chip_class chip, uint64_t constant)
150 {
151 Operand op16((uint16_t)constant);
152 Operand op32((uint32_t)constant);
153 add_label(label_literal);
154 val = constant;
155
156 if (chip >= GFX8 && !op16.isLiteral())
157 add_label(label_constant_16bit);
158
159 if (!op32.isLiteral() || ((uint32_t)constant == 0x3e22f983 && chip >= GFX8))
160 add_label(label_constant_32bit);
161
162 if (constant <= 64) {
163 add_label(label_constant_64bit);
164 } else if (constant >= 0xFFFFFFFFFFFFFFF0) { /* [-16 .. -1] */
165 add_label(label_constant_64bit);
166 } else if (constant == 0x3FE0000000000000) { /* 0.5 */
167 add_label(label_constant_64bit);
168 } else if (constant == 0xBFE0000000000000) { /* -0.5 */
169 add_label(label_constant_64bit);
170 } else if (constant == 0x3FF0000000000000) { /* 1.0 */
171 add_label(label_constant_64bit);
172 } else if (constant == 0xBFF0000000000000) { /* -1.0 */
173 add_label(label_constant_64bit);
174 } else if (constant == 0x4000000000000000) { /* 2.0 */
175 add_label(label_constant_64bit);
176 } else if (constant == 0xC000000000000000) { /* -2.0 */
177 add_label(label_constant_64bit);
178 } else if (constant == 0x4010000000000000) { /* 4.0 */
179 add_label(label_constant_64bit);
180 } else if (constant == 0xC010000000000000) { /* -4.0 */
181 add_label(label_constant_64bit);
182 }
183
184 if (label & label_constant_64bit) {
185 val = Operand(constant).constantValue();
186 if (val != constant)
187 label &= ~(label_literal | label_constant_16bit | label_constant_32bit);
188 }
189 }
190
191 bool is_constant(unsigned bits)
192 {
193 switch (bits) {
194 case 8:
195 return label & label_literal;
196 case 16:
197 return label & label_constant_16bit;
198 case 32:
199 return label & label_constant_32bit;
200 case 64:
201 return label & label_constant_64bit;
202 }
203 return false;
204 }
205
206 bool is_literal(unsigned bits)
207 {
208 bool is_lit = label & label_literal;
209 switch (bits) {
210 case 8:
211 return false;
212 case 16:
213 return is_lit && ~(label & label_constant_16bit);
214 case 32:
215 return is_lit && ~(label & label_constant_32bit);
216 case 64:
217 return false;
218 }
219 return false;
220 }
221
222 bool is_constant_or_literal(unsigned bits)
223 {
224 if (bits == 64)
225 return label & label_constant_64bit;
226 else
227 return label & label_literal;
228 }
229
230 void set_abs(Temp abs_temp)
231 {
232 add_label(label_abs);
233 temp = abs_temp;
234 }
235
236 bool is_abs()
237 {
238 return label & label_abs;
239 }
240
241 void set_neg(Temp neg_temp)
242 {
243 add_label(label_neg);
244 temp = neg_temp;
245 }
246
247 bool is_neg()
248 {
249 return label & label_neg;
250 }
251
252 void set_neg_abs(Temp neg_abs_temp)
253 {
254 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
255 temp = neg_abs_temp;
256 }
257
258 void set_mul(Instruction* mul)
259 {
260 add_label(label_mul);
261 instr = mul;
262 }
263
264 bool is_mul()
265 {
266 return label & label_mul;
267 }
268
269 void set_temp(Temp tmp)
270 {
271 add_label(label_temp);
272 temp = tmp;
273 }
274
275 bool is_temp()
276 {
277 return label & label_temp;
278 }
279
280 void set_mad(Instruction* mad, uint32_t mad_info_idx)
281 {
282 add_label(label_mad);
283 mad->pass_flags = mad_info_idx;
284 instr = mad;
285 }
286
287 bool is_mad()
288 {
289 return label & label_mad;
290 }
291
292 void set_omod2(Temp def)
293 {
294 add_label(label_omod2);
295 temp = def;
296 }
297
298 bool is_omod2()
299 {
300 return label & label_omod2;
301 }
302
303 void set_omod4(Temp def)
304 {
305 add_label(label_omod4);
306 temp = def;
307 }
308
309 bool is_omod4()
310 {
311 return label & label_omod4;
312 }
313
314 void set_omod5(Temp def)
315 {
316 add_label(label_omod5);
317 temp = def;
318 }
319
320 bool is_omod5()
321 {
322 return label & label_omod5;
323 }
324
325 void set_omod_success(Instruction* omod_instr)
326 {
327 add_label(label_omod_success);
328 instr = omod_instr;
329 }
330
331 bool is_omod_success()
332 {
333 return label & label_omod_success;
334 }
335
336 void set_clamp(Temp def)
337 {
338 add_label(label_clamp);
339 temp = def;
340 }
341
342 bool is_clamp()
343 {
344 return label & label_clamp;
345 }
346
347 void set_clamp_success(Instruction* clamp_instr)
348 {
349 add_label(label_clamp_success);
350 instr = clamp_instr;
351 }
352
353 bool is_clamp_success()
354 {
355 return label & label_clamp_success;
356 }
357
358 void set_undefined()
359 {
360 add_label(label_undefined);
361 }
362
363 bool is_undefined()
364 {
365 return label & label_undefined;
366 }
367
368 void set_vcc(Temp vcc)
369 {
370 add_label(label_vcc);
371 temp = vcc;
372 }
373
374 bool is_vcc()
375 {
376 return label & label_vcc;
377 }
378
379 void set_b2f(Temp val)
380 {
381 add_label(label_b2f);
382 temp = val;
383 }
384
385 bool is_b2f()
386 {
387 return label & label_b2f;
388 }
389
390 void set_add_sub(Instruction *add_sub_instr)
391 {
392 add_label(label_add_sub);
393 instr = add_sub_instr;
394 }
395
396 bool is_add_sub()
397 {
398 return label & label_add_sub;
399 }
400
401 void set_bitwise(Instruction *bitwise_instr)
402 {
403 add_label(label_bitwise);
404 instr = bitwise_instr;
405 }
406
407 bool is_bitwise()
408 {
409 return label & label_bitwise;
410 }
411
412 void set_uniform_bitwise()
413 {
414 add_label(label_uniform_bitwise);
415 }
416
417 bool is_uniform_bitwise()
418 {
419 return label & label_uniform_bitwise;
420 }
421
422 void set_minmax(Instruction *minmax_instr)
423 {
424 add_label(label_minmax);
425 instr = minmax_instr;
426 }
427
428 bool is_minmax()
429 {
430 return label & label_minmax;
431 }
432
433 void set_fcmp(Instruction *fcmp_instr)
434 {
435 add_label(label_fcmp);
436 instr = fcmp_instr;
437 }
438
439 bool is_fcmp()
440 {
441 return label & label_fcmp;
442 }
443
444 void set_scc_needed()
445 {
446 add_label(label_scc_needed);
447 }
448
449 bool is_scc_needed()
450 {
451 return label & label_scc_needed;
452 }
453
454 void set_scc_invert(Temp scc_inv)
455 {
456 add_label(label_scc_invert);
457 temp = scc_inv;
458 }
459
460 bool is_scc_invert()
461 {
462 return label & label_scc_invert;
463 }
464
465 void set_uniform_bool(Temp uniform_bool)
466 {
467 add_label(label_uniform_bool);
468 temp = uniform_bool;
469 }
470
471 bool is_uniform_bool()
472 {
473 return label & label_uniform_bool;
474 }
475
476 void set_vcc_hint()
477 {
478 add_label(label_vcc_hint);
479 }
480
481 bool is_vcc_hint()
482 {
483 return label & label_vcc_hint;
484 }
485
486 void set_b2i(Temp val)
487 {
488 add_label(label_b2i);
489 temp = val;
490 }
491
492 bool is_b2i()
493 {
494 return label & label_b2i;
495 }
496
497 };
498
499 struct opt_ctx {
500 Program* program;
501 std::vector<aco_ptr<Instruction>> instructions;
502 ssa_info* info;
503 std::pair<uint32_t,Temp> last_literal;
504 std::vector<mad_info> mad_infos;
505 std::vector<uint16_t> uses;
506 };
507
508 struct CmpInfo {
509 aco_opcode ordered;
510 aco_opcode unordered;
511 aco_opcode ordered_swapped;
512 aco_opcode unordered_swapped;
513 aco_opcode inverse;
514 aco_opcode f32;
515 unsigned size;
516 };
517
518 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, CmpInfo *info);
519
520 bool can_swap_operands(aco_ptr<Instruction>& instr)
521 {
522 if (instr->operands[0].isConstant() ||
523 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
524 return false;
525
526 switch (instr->opcode) {
527 case aco_opcode::v_add_f16:
528 case aco_opcode::v_add_f32:
529 case aco_opcode::v_mul_f16:
530 case aco_opcode::v_mul_f32:
531 case aco_opcode::v_or_b32:
532 case aco_opcode::v_and_b32:
533 case aco_opcode::v_xor_b32:
534 case aco_opcode::v_max_f16:
535 case aco_opcode::v_max_f32:
536 case aco_opcode::v_min_f16:
537 case aco_opcode::v_min_f32:
538 case aco_opcode::v_max_i32:
539 case aco_opcode::v_min_i32:
540 case aco_opcode::v_max_u32:
541 case aco_opcode::v_min_u32:
542 case aco_opcode::v_max_i16:
543 case aco_opcode::v_min_i16:
544 case aco_opcode::v_max_u16:
545 case aco_opcode::v_min_u16:
546 case aco_opcode::v_max_i16_e64:
547 case aco_opcode::v_min_i16_e64:
548 case aco_opcode::v_max_u16_e64:
549 case aco_opcode::v_min_u16_e64:
550 return true;
551 case aco_opcode::v_sub_f16:
552 instr->opcode = aco_opcode::v_subrev_f16;
553 return true;
554 case aco_opcode::v_sub_f32:
555 instr->opcode = aco_opcode::v_subrev_f32;
556 return true;
557 case aco_opcode::v_sub_co_u32:
558 instr->opcode = aco_opcode::v_subrev_co_u32;
559 return true;
560 case aco_opcode::v_sub_u16:
561 instr->opcode = aco_opcode::v_subrev_u16;
562 return true;
563 case aco_opcode::v_sub_u32:
564 instr->opcode = aco_opcode::v_subrev_u32;
565 return true;
566 default: {
567 CmpInfo info;
568 get_cmp_info(instr->opcode, &info);
569 if (info.ordered == instr->opcode) {
570 instr->opcode = info.ordered_swapped;
571 return true;
572 }
573 if (info.unordered == instr->opcode) {
574 instr->opcode = info.unordered_swapped;
575 return true;
576 }
577 return false;
578 }
579 }
580 }
581
582 bool can_use_VOP3(opt_ctx& ctx, const aco_ptr<Instruction>& instr)
583 {
584 if (instr->isVOP3())
585 return true;
586
587 if (instr->operands.size() && instr->operands[0].isLiteral() && ctx.program->chip_class < GFX10)
588 return false;
589
590 if (instr->isDPP() || instr->isSDWA())
591 return false;
592
593 return instr->opcode != aco_opcode::v_madmk_f32 &&
594 instr->opcode != aco_opcode::v_madak_f32 &&
595 instr->opcode != aco_opcode::v_madmk_f16 &&
596 instr->opcode != aco_opcode::v_madak_f16 &&
597 instr->opcode != aco_opcode::v_fmamk_f32 &&
598 instr->opcode != aco_opcode::v_fmaak_f32 &&
599 instr->opcode != aco_opcode::v_fmamk_f16 &&
600 instr->opcode != aco_opcode::v_fmaak_f16 &&
601 instr->opcode != aco_opcode::v_readlane_b32 &&
602 instr->opcode != aco_opcode::v_writelane_b32 &&
603 instr->opcode != aco_opcode::v_readfirstlane_b32;
604 }
605
606 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
607 {
608 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
609 instr->opcode != aco_opcode::v_readlane_b32 &&
610 instr->opcode != aco_opcode::v_readlane_b32_e64 &&
611 instr->opcode != aco_opcode::v_writelane_b32 &&
612 instr->opcode != aco_opcode::v_writelane_b32_e64;
613 }
614
615 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
616 {
617 if (instr->isVOP3())
618 return;
619
620 aco_ptr<Instruction> tmp = std::move(instr);
621 Format format = asVOP3(tmp->format);
622 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
623 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
624 for (unsigned i = 0; i < instr->definitions.size(); i++) {
625 instr->definitions[i] = tmp->definitions[i];
626 if (instr->definitions[i].isTemp()) {
627 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
628 if (info.label & instr_labels && info.instr == tmp.get())
629 info.instr = instr.get();
630 }
631 }
632 }
633
634 /* only covers special cases */
635 bool alu_can_accept_constant(aco_opcode opcode, unsigned operand)
636 {
637 switch (opcode) {
638 case aco_opcode::v_interp_p2_f32:
639 case aco_opcode::v_mac_f32:
640 case aco_opcode::v_writelane_b32:
641 case aco_opcode::v_writelane_b32_e64:
642 case aco_opcode::v_cndmask_b32:
643 return operand != 2;
644 case aco_opcode::s_addk_i32:
645 case aco_opcode::s_mulk_i32:
646 case aco_opcode::p_wqm:
647 case aco_opcode::p_extract_vector:
648 case aco_opcode::p_split_vector:
649 case aco_opcode::v_readlane_b32:
650 case aco_opcode::v_readlane_b32_e64:
651 case aco_opcode::v_readfirstlane_b32:
652 return operand != 0;
653 default:
654 return true;
655 }
656 }
657
658 bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
659 {
660 if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
661 instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64)
662 return operand != 1;
663 return true;
664 }
665
666 /* check constant bus and literal limitations */
667 bool check_vop3_operands(opt_ctx& ctx, unsigned num_operands, Operand *operands)
668 {
669 int limit = ctx.program->chip_class >= GFX10 ? 2 : 1;
670 Operand literal32(s1);
671 Operand literal64(s2);
672 unsigned num_sgprs = 0;
673 unsigned sgpr[] = {0, 0};
674
675 for (unsigned i = 0; i < num_operands; i++) {
676 Operand op = operands[i];
677
678 if (op.hasRegClass() && op.regClass().type() == RegType::sgpr) {
679 /* two reads of the same SGPR count as 1 to the limit */
680 if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
681 if (num_sgprs < 2)
682 sgpr[num_sgprs++] = op.tempId();
683 limit--;
684 if (limit < 0)
685 return false;
686 }
687 } else if (op.isLiteral()) {
688 if (ctx.program->chip_class < GFX10)
689 return false;
690
691 if (!literal32.isUndefined() && literal32.constantValue() != op.constantValue())
692 return false;
693 if (!literal64.isUndefined() && literal64.constantValue() != op.constantValue())
694 return false;
695
696 /* Any number of 32-bit literals counts as only 1 to the limit. Same
697 * (but separately) for 64-bit literals. */
698 if (op.size() == 1 && literal32.isUndefined()) {
699 limit--;
700 literal32 = op;
701 } else if (op.size() == 2 && literal64.isUndefined()) {
702 limit--;
703 literal64 = op;
704 }
705
706 if (limit < 0)
707 return false;
708 }
709 }
710
711 return true;
712 }
713
714 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
715 {
716 Operand op = instr->operands[op_index];
717
718 if (!op.isTemp())
719 return false;
720 Temp tmp = op.getTemp();
721 if (!ctx.info[tmp.id()].is_add_sub())
722 return false;
723
724 Instruction *add_instr = ctx.info[tmp.id()].instr;
725
726 switch (add_instr->opcode) {
727 case aco_opcode::v_add_u32:
728 case aco_opcode::v_add_co_u32:
729 case aco_opcode::v_add_co_u32_e64:
730 case aco_opcode::s_add_i32:
731 case aco_opcode::s_add_u32:
732 break;
733 default:
734 return false;
735 }
736
737 if (add_instr->usesModifiers())
738 return false;
739
740 for (unsigned i = 0; i < 2; i++) {
741 if (add_instr->operands[i].isConstant()) {
742 *offset = add_instr->operands[i].constantValue();
743 } else if (add_instr->operands[i].isTemp() &&
744 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal(32)) {
745 *offset = ctx.info[add_instr->operands[i].tempId()].val;
746 } else {
747 continue;
748 }
749 if (!add_instr->operands[!i].isTemp())
750 continue;
751
752 uint32_t offset2 = 0;
753 if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
754 *offset += offset2;
755 } else {
756 *base = add_instr->operands[!i].getTemp();
757 }
758 return true;
759 }
760
761 return false;
762 }
763
764 unsigned get_operand_size(aco_ptr<Instruction>& instr, unsigned index)
765 {
766 if (instr->format == Format::PSEUDO)
767 return instr->operands[index].bytes() * 8u;
768 else if (instr->opcode == aco_opcode::v_mad_u64_u32 || instr->opcode == aco_opcode::v_mad_i64_i32)
769 return index == 2 ? 64 : 32;
770 else if (instr->isVALU() || instr->isSALU())
771 return instr_info.operand_size[(int)instr->opcode];
772 else
773 return 0;
774 }
775
776 Operand get_constant_op(opt_ctx &ctx, ssa_info info, uint32_t bits)
777 {
778 if (bits == 8)
779 return Operand((uint8_t)info.val);
780 if (bits == 16)
781 return Operand((uint16_t)info.val);
782 // TODO: this functions shouldn't be needed if we store Operand instead of value.
783 Operand op(info.val, bits == 64);
784 if (info.is_literal(32) && info.val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
785 op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
786 return op;
787 }
788
789 bool fixed_to_exec(Operand op)
790 {
791 return op.isFixed() && op.physReg() == exec;
792 }
793
794 void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
795 {
796 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
797 ASSERTED bool all_const = false;
798 for (Operand& op : instr->operands)
799 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal(32));
800 perfwarn(all_const, "All instruction operands are constant", instr.get());
801 }
802
803 for (unsigned i = 0; i < instr->operands.size(); i++)
804 {
805 if (!instr->operands[i].isTemp())
806 continue;
807
808 ssa_info info = ctx.info[instr->operands[i].tempId()];
809 /* propagate undef */
810 if (info.is_undefined() && is_phi(instr))
811 instr->operands[i] = Operand(instr->operands[i].regClass());
812 /* propagate reg->reg of same type */
813 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
814 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
815 info = ctx.info[info.temp.id()];
816 }
817
818 /* SALU / PSEUDO: propagate inline constants */
819 if (instr->isSALU() || instr->format == Format::PSEUDO) {
820 bool is_subdword = false;
821 // TODO: optimize SGPR propagation for subdword pseudo instructions on gfx9+
822 if (instr->format == Format::PSEUDO) {
823 is_subdword = std::any_of(instr->definitions.begin(), instr->definitions.end(),
824 [] (const Definition& def) { return def.regClass().is_subdword();});
825 is_subdword = is_subdword || std::any_of(instr->operands.begin(), instr->operands.end(),
826 [] (const Operand& op) { return op.hasRegClass() && op.regClass().is_subdword();});
827 if (is_subdword && ctx.program->chip_class < GFX9)
828 continue;
829 }
830
831 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
832 instr->operands[i].setTemp(info.temp);
833 info = ctx.info[info.temp.id()];
834 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
835 /* propagate vgpr if it can take it */
836 switch (instr->opcode) {
837 case aco_opcode::p_create_vector:
838 case aco_opcode::p_split_vector:
839 case aco_opcode::p_extract_vector:
840 case aco_opcode::p_phi: {
841 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
842 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
843 if (all_vgpr) {
844 instr->operands[i] = Operand(info.temp);
845 info = ctx.info[info.temp.id()];
846 }
847 break;
848 }
849 default:
850 break;
851 }
852 }
853 unsigned bits = get_operand_size(instr, i);
854 if ((info.is_constant(bits) || (!is_subdword && info.is_literal(bits) && instr->format == Format::PSEUDO)) &&
855 !instr->operands[i].isFixed() && alu_can_accept_constant(instr->opcode, i)) {
856 instr->operands[i] = get_constant_op(ctx, info, bits);
857 continue;
858 }
859 }
860
861 /* VALU: propagate neg, abs & inline constants */
862 else if (instr->isVALU()) {
863 if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
864 instr->operands[i].setTemp(info.temp);
865 info = ctx.info[info.temp.id()];
866 }
867
868 /* for instructions other than v_cndmask_b32, the size of the instruction should match the operand size */
869 unsigned can_use_mod = instr->opcode != aco_opcode::v_cndmask_b32 || instr->operands[i].getTemp().bytes() == 4;
870 can_use_mod = can_use_mod && instr_info.can_use_input_modifiers[(int)instr->opcode];
871
872 if (info.is_abs() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && can_use_mod) {
873 if (!instr->isDPP())
874 to_VOP3(ctx, instr);
875 instr->operands[i] = Operand(info.temp);
876 if (instr->isDPP())
877 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
878 else
879 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
880 }
881 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
882 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
883 instr->operands[i].setTemp(info.temp);
884 continue;
885 } else if (info.is_neg() && instr->opcode == aco_opcode::v_add_f16) {
886 instr->opcode = i ? aco_opcode::v_sub_f16 : aco_opcode::v_subrev_f16;
887 instr->operands[i].setTemp(info.temp);
888 continue;
889 } else if (info.is_neg() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && can_use_mod) {
890 if (!instr->isDPP())
891 to_VOP3(ctx, instr);
892 instr->operands[i].setTemp(info.temp);
893 if (instr->isDPP())
894 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
895 else
896 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
897 continue;
898 }
899 unsigned bits = get_operand_size(instr, i);
900 if (info.is_constant(bits) && alu_can_accept_constant(instr->opcode, i)) {
901 Operand op = get_constant_op(ctx, info, bits);
902 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
903 if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) {
904 instr->operands[i] = op;
905 continue;
906 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
907 instr->operands[i] = instr->operands[0];
908 instr->operands[0] = op;
909 continue;
910 } else if (can_use_VOP3(ctx, instr)) {
911 to_VOP3(ctx, instr);
912 instr->operands[i] = op;
913 continue;
914 }
915 }
916 }
917
918 /* MUBUF: propagate constants and combine additions */
919 else if (instr->format == Format::MUBUF) {
920 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
921 Temp base;
922 uint32_t offset;
923 while (info.is_temp())
924 info = ctx.info[info.temp.id()];
925
926 if (mubuf->offen && i == 1 && info.is_constant_or_literal(32) && mubuf->offset + info.val < 4096) {
927 assert(!mubuf->idxen);
928 instr->operands[1] = Operand(v1);
929 mubuf->offset += info.val;
930 mubuf->offen = false;
931 continue;
932 } else if (i == 2 && info.is_constant_or_literal(32) && mubuf->offset + info.val < 4096) {
933 instr->operands[2] = Operand((uint32_t) 0);
934 mubuf->offset += info.val;
935 continue;
936 } else if (mubuf->offen && i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
937 assert(!mubuf->idxen);
938 instr->operands[1].setTemp(base);
939 mubuf->offset += offset;
940 continue;
941 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
942 instr->operands[i].setTemp(base);
943 mubuf->offset += offset;
944 continue;
945 }
946 }
947
948 /* DS: combine additions */
949 else if (instr->format == Format::DS) {
950
951 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
952 Temp base;
953 uint32_t offset;
954 bool has_usable_ds_offset = ctx.program->chip_class >= GFX7;
955 if (has_usable_ds_offset &&
956 i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) &&
957 base.regClass() == instr->operands[i].regClass() &&
958 instr->opcode != aco_opcode::ds_swizzle_b32) {
959 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
960 instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
961 unsigned mask = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 0x7 : 0x3;
962 unsigned shifts = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 3 : 2;
963
964 if ((offset & mask) == 0 &&
965 ds->offset0 + (offset >> shifts) <= 255 &&
966 ds->offset1 + (offset >> shifts) <= 255) {
967 instr->operands[i].setTemp(base);
968 ds->offset0 += offset >> shifts;
969 ds->offset1 += offset >> shifts;
970 }
971 } else {
972 if (ds->offset0 + offset <= 65535) {
973 instr->operands[i].setTemp(base);
974 ds->offset0 += offset;
975 }
976 }
977 }
978 }
979
980 /* SMEM: propagate constants and combine additions */
981 else if (instr->format == Format::SMEM) {
982
983 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
984 Temp base;
985 uint32_t offset;
986 if (i == 1 && info.is_constant_or_literal(32) &&
987 ((ctx.program->chip_class == GFX6 && info.val <= 0x3FF) ||
988 (ctx.program->chip_class == GFX7 && info.val <= 0xFFFFFFFF) ||
989 (ctx.program->chip_class >= GFX8 && info.val <= 0xFFFFF))) {
990 instr->operands[i] = Operand(info.val);
991 continue;
992 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
993 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
994 if (soe &&
995 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal(32) ||
996 ctx.info[smem->operands.back().tempId()].val != 0)) {
997 continue;
998 }
999 if (soe) {
1000 smem->operands[1] = Operand(offset);
1001 smem->operands.back() = Operand(base);
1002 } else {
1003 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
1004 new_instr->operands[0] = smem->operands[0];
1005 new_instr->operands[1] = Operand(offset);
1006 if (smem->definitions.empty())
1007 new_instr->operands[2] = smem->operands[2];
1008 new_instr->operands.back() = Operand(base);
1009 if (!smem->definitions.empty())
1010 new_instr->definitions[0] = smem->definitions[0];
1011 new_instr->can_reorder = smem->can_reorder;
1012 new_instr->barrier = smem->barrier;
1013 new_instr->glc = smem->glc;
1014 new_instr->dlc = smem->dlc;
1015 new_instr->nv = smem->nv;
1016 new_instr->disable_wqm = smem->disable_wqm;
1017 instr.reset(new_instr);
1018 smem = static_cast<SMEM_instruction *>(instr.get());
1019 }
1020 continue;
1021 }
1022 }
1023
1024 else if (instr->format == Format::PSEUDO_BRANCH) {
1025 if (ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
1026 /* Flip the branch instruction to get rid of the scc_invert instruction */
1027 instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz : aco_opcode::p_cbranch_z;
1028 instr->operands[0].setTemp(ctx.info[instr->operands[0].tempId()].temp);
1029 }
1030 }
1031 }
1032
1033 /* if this instruction doesn't define anything, return */
1034 if (instr->definitions.empty())
1035 return;
1036
1037 switch (instr->opcode) {
1038 case aco_opcode::p_create_vector: {
1039 bool copy_prop = instr->operands.size() == 1 && instr->operands[0].isTemp() &&
1040 instr->operands[0].regClass() == instr->definitions[0].regClass();
1041 if (copy_prop) {
1042 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1043 break;
1044 }
1045
1046 unsigned num_ops = instr->operands.size();
1047 for (const Operand& op : instr->operands) {
1048 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
1049 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
1050 }
1051 if (num_ops != instr->operands.size()) {
1052 aco_ptr<Instruction> old_vec = std::move(instr);
1053 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
1054 instr->definitions[0] = old_vec->definitions[0];
1055 unsigned k = 0;
1056 for (Operand& old_op : old_vec->operands) {
1057 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
1058 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++) {
1059 Operand op = ctx.info[old_op.tempId()].instr->operands[j];
1060 if (op.isTemp() && ctx.info[op.tempId()].is_temp() &&
1061 ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type())
1062 op.setTemp(ctx.info[op.tempId()].temp);
1063 instr->operands[k++] = op;
1064 }
1065 } else {
1066 instr->operands[k++] = old_op;
1067 }
1068 }
1069 assert(k == num_ops);
1070 }
1071
1072 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
1073 break;
1074 }
1075 case aco_opcode::p_split_vector: {
1076 ssa_info& info = ctx.info[instr->operands[0].tempId()];
1077
1078 if (info.is_constant_or_literal(32)) {
1079 uint32_t val = info.val;
1080 for (Definition def : instr->definitions) {
1081 uint32_t mask = u_bit_consecutive(0, def.bytes() * 8u);
1082 ctx.info[def.tempId()].set_constant(ctx.program->chip_class, val & mask);
1083 val >>= def.bytes() * 8u;
1084 }
1085 break;
1086 } else if (!info.is_vec()) {
1087 break;
1088 }
1089
1090 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
1091 unsigned split_offset = 0;
1092 unsigned vec_offset = 0;
1093 unsigned vec_index = 0;
1094 for (unsigned i = 0; i < instr->definitions.size(); split_offset += instr->definitions[i++].bytes()) {
1095 while (vec_offset < split_offset && vec_index < vec->operands.size())
1096 vec_offset += vec->operands[vec_index++].bytes();
1097
1098 if (vec_offset != split_offset || vec->operands[vec_index].bytes() != instr->definitions[i].bytes())
1099 continue;
1100
1101 Operand vec_op = vec->operands[vec_index];
1102 if (vec_op.isConstant()) {
1103 ctx.info[instr->definitions[i].tempId()].set_constant(ctx.program->chip_class, vec_op.constantValue64());
1104 } else if (vec_op.isUndefined()) {
1105 ctx.info[instr->definitions[i].tempId()].set_undefined();
1106 } else {
1107 assert(vec_op.isTemp());
1108 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
1109 }
1110 }
1111 break;
1112 }
1113 case aco_opcode::p_extract_vector: { /* mov */
1114 ssa_info& info = ctx.info[instr->operands[0].tempId()];
1115 const unsigned index = instr->operands[1].constantValue();
1116 const unsigned dst_offset = index * instr->definitions[0].bytes();
1117
1118 if (info.is_constant_or_literal(32)) {
1119 uint32_t mask = u_bit_consecutive(0, instr->definitions[0].bytes() * 8u);
1120 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, (info.val >> (dst_offset * 8u)) & mask);
1121 break;
1122 } else if (!info.is_vec()) {
1123 break;
1124 }
1125
1126 /* check if we index directly into a vector element */
1127 Instruction* vec = info.instr;
1128 unsigned offset = 0;
1129
1130 for (const Operand& op : vec->operands) {
1131 if (offset < dst_offset) {
1132 offset += op.bytes();
1133 continue;
1134 } else if (offset != dst_offset || op.bytes() != instr->definitions[0].bytes()) {
1135 break;
1136 }
1137
1138 /* convert this extract into a copy instruction */
1139 instr->opcode = aco_opcode::p_parallelcopy;
1140 instr->operands.pop_back();
1141 instr->operands[0] = op;
1142
1143 if (op.isConstant()) {
1144 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, op.constantValue64());
1145 } else if (op.isUndefined()) {
1146 ctx.info[instr->definitions[0].tempId()].set_undefined();
1147 } else {
1148 assert(op.isTemp());
1149 ctx.info[instr->definitions[0].tempId()].set_temp(op.getTemp());
1150 }
1151 break;
1152 }
1153 break;
1154 }
1155 case aco_opcode::s_mov_b32: /* propagate */
1156 case aco_opcode::s_mov_b64:
1157 case aco_opcode::v_mov_b32:
1158 case aco_opcode::p_as_uniform:
1159 if (instr->definitions[0].isFixed()) {
1160 /* don't copy-propagate copies into fixed registers */
1161 } else if (instr->usesModifiers()) {
1162 // TODO
1163 } else if (instr->operands[0].isConstant()) {
1164 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, instr->operands[0].constantValue64());
1165 } else if (instr->operands[0].isTemp()) {
1166 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1167 } else {
1168 assert(instr->operands[0].isFixed());
1169 }
1170 break;
1171 case aco_opcode::p_is_helper:
1172 if (!ctx.program->needs_wqm)
1173 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, 0u);
1174 break;
1175 case aco_opcode::s_movk_i32: {
1176 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
1177 v = v & 0x8000 ? (v | 0xffff0000) : v;
1178 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
1179 break;
1180 }
1181 case aco_opcode::v_bfrev_b32:
1182 case aco_opcode::s_brev_b32: {
1183 if (instr->operands[0].isConstant()) {
1184 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
1185 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
1186 }
1187 break;
1188 }
1189 case aco_opcode::s_bfm_b32: {
1190 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
1191 unsigned size = instr->operands[0].constantValue() & 0x1f;
1192 unsigned start = instr->operands[1].constantValue() & 0x1f;
1193 uint32_t v = ((1u << size) - 1u) << start;
1194 ctx.info[instr->definitions[0].tempId()].set_constant(ctx.program->chip_class, v);
1195 }
1196 break;
1197 }
1198 case aco_opcode::v_mul_f16:
1199 case aco_opcode::v_mul_f32: { /* omod */
1200 /* TODO: try to move the negate/abs modifier to the consumer instead */
1201 if (instr->usesModifiers())
1202 break;
1203
1204 bool fp16 = instr->opcode == aco_opcode::v_mul_f16;
1205
1206 for (unsigned i = 0; i < 2; i++) {
1207 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
1208 if (instr->operands[!i].constantValue() == (fp16 ? 0x4000 : 0x40000000)) { /* 2.0 */
1209 ctx.info[instr->operands[i].tempId()].set_omod2(instr->definitions[0].getTemp());
1210 } else if (instr->operands[!i].constantValue() == (fp16 ? 0x4400 : 0x40800000)) { /* 4.0 */
1211 ctx.info[instr->operands[i].tempId()].set_omod4(instr->definitions[0].getTemp());
1212 } else if (instr->operands[!i].constantValue() == (fp16 ? 0xb800 : 0x3f000000)) { /* 0.5 */
1213 ctx.info[instr->operands[i].tempId()].set_omod5(instr->definitions[0].getTemp());
1214 } else if (instr->operands[!i].constantValue() == (fp16 ? 0x3c00 : 0x3f800000) &&
1215 !(fp16 ? block.fp_mode.must_flush_denorms16_64 : block.fp_mode.must_flush_denorms32)) { /* 1.0 */
1216 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
1217 } else {
1218 continue;
1219 }
1220 break;
1221 }
1222 }
1223 break;
1224 }
1225 case aco_opcode::v_and_b32: { /* abs */
1226 if (!instr->usesModifiers() && instr->operands[1].isTemp() &&
1227 instr->operands[1].getTemp().type() == RegType::vgpr &&
1228 ((instr->definitions[0].bytes() == 4 && instr->operands[0].constantEquals(0x7FFFFFFFu)) ||
1229 (instr->definitions[0].bytes() == 2 && instr->operands[0].constantEquals(0x7FFFu))))
1230 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
1231 else
1232 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1233 break;
1234 }
1235 case aco_opcode::v_xor_b32: { /* neg */
1236 if (!instr->usesModifiers() && instr->operands[1].isTemp() &&
1237 ((instr->definitions[0].bytes() == 4 && instr->operands[0].constantEquals(0x80000000u)) ||
1238 (instr->definitions[0].bytes() == 2 && instr->operands[0].constantEquals(0x8000u)))) {
1239 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
1240 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1241 } else if (instr->operands[1].getTemp().type() == RegType::vgpr) {
1242 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
1243 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
1244 instr->opcode = aco_opcode::v_or_b32;
1245 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
1246 } else {
1247 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
1248 }
1249 }
1250 } else {
1251 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1252 }
1253 break;
1254 }
1255 case aco_opcode::v_med3_f16:
1256 case aco_opcode::v_med3_f32: { /* clamp */
1257 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
1258 if (vop3->abs[0] || vop3->abs[1] || vop3->abs[2] ||
1259 vop3->neg[0] || vop3->neg[1] || vop3->neg[2] ||
1260 vop3->omod != 0 || vop3->opsel != 0)
1261 break;
1262
1263 unsigned idx = 0;
1264 bool found_zero = false, found_one = false;
1265 bool is_fp16 = instr->opcode == aco_opcode::v_med3_f16;
1266 for (unsigned i = 0; i < 3; i++)
1267 {
1268 if (instr->operands[i].constantEquals(0))
1269 found_zero = true;
1270 else if (instr->operands[i].constantEquals(is_fp16 ? 0x3c00 : 0x3f800000)) /* 1.0 */
1271 found_one = true;
1272 else
1273 idx = i;
1274 }
1275 if (found_zero && found_one && instr->operands[idx].isTemp()) {
1276 ctx.info[instr->operands[idx].tempId()].set_clamp(instr->definitions[0].getTemp());
1277 }
1278 break;
1279 }
1280 case aco_opcode::v_cndmask_b32:
1281 if (instr->operands[0].constantEquals(0) &&
1282 instr->operands[1].constantEquals(0xFFFFFFFF))
1283 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
1284 else if (instr->operands[0].constantEquals(0) &&
1285 instr->operands[1].constantEquals(0x3f800000u))
1286 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
1287 else if (instr->operands[0].constantEquals(0) &&
1288 instr->operands[1].constantEquals(1))
1289 ctx.info[instr->definitions[0].tempId()].set_b2i(instr->operands[2].getTemp());
1290
1291 ctx.info[instr->operands[2].tempId()].set_vcc_hint();
1292 break;
1293 case aco_opcode::v_cmp_lg_u32:
1294 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
1295 instr->operands[0].constantEquals(0) &&
1296 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
1297 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1298 break;
1299 case aco_opcode::p_phi:
1300 case aco_opcode::p_linear_phi: {
1301 /* lower_bool_phis() can create phis like this */
1302 bool all_same_temp = instr->operands[0].isTemp();
1303 /* this check is needed when moving uniform loop counters out of a divergent loop */
1304 if (all_same_temp)
1305 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
1306 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
1307 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
1308 all_same_temp = false;
1309 }
1310 if (all_same_temp) {
1311 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1312 } else {
1313 bool all_undef = instr->operands[0].isUndefined();
1314 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
1315 if (!instr->operands[i].isUndefined())
1316 all_undef = false;
1317 }
1318 if (all_undef)
1319 ctx.info[instr->definitions[0].tempId()].set_undefined();
1320 }
1321 break;
1322 }
1323 case aco_opcode::v_add_u32:
1324 case aco_opcode::v_add_co_u32:
1325 case aco_opcode::v_add_co_u32_e64:
1326 case aco_opcode::s_add_i32:
1327 case aco_opcode::s_add_u32:
1328 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
1329 break;
1330 case aco_opcode::s_not_b32:
1331 case aco_opcode::s_not_b64:
1332 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1333 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1334 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].temp);
1335 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1336 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1337 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1338 }
1339 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1340 break;
1341 case aco_opcode::s_and_b32:
1342 case aco_opcode::s_and_b64:
1343 if (fixed_to_exec(instr->operands[1]) && instr->operands[0].isTemp()) {
1344 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1345 /* Try to get rid of the superfluous s_cselect + s_and_b64 that comes from turning a uniform bool into divergent */
1346 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
1347 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].temp);
1348 break;
1349 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1350 /* Try to get rid of the superfluous s_and_b64, since the uniform bitwise instruction already produces the same SCC */
1351 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1352 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1353 break;
1354 }
1355 }
1356 /* fallthrough */
1357 case aco_opcode::s_or_b32:
1358 case aco_opcode::s_or_b64:
1359 case aco_opcode::s_xor_b32:
1360 case aco_opcode::s_xor_b64:
1361 if (std::all_of(instr->operands.begin(), instr->operands.end(), [&ctx](const Operand& op) {
1362 return op.isTemp() && (ctx.info[op.tempId()].is_uniform_bool() || ctx.info[op.tempId()].is_uniform_bitwise());
1363 })) {
1364 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1365 }
1366 /* fallthrough */
1367 case aco_opcode::s_lshl_b32:
1368 case aco_opcode::v_or_b32:
1369 case aco_opcode::v_lshlrev_b32:
1370 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1371 break;
1372 case aco_opcode::v_min_f32:
1373 case aco_opcode::v_min_f16:
1374 case aco_opcode::v_min_u32:
1375 case aco_opcode::v_min_i32:
1376 case aco_opcode::v_min_u16:
1377 case aco_opcode::v_min_i16:
1378 case aco_opcode::v_max_f32:
1379 case aco_opcode::v_max_f16:
1380 case aco_opcode::v_max_u32:
1381 case aco_opcode::v_max_i32:
1382 case aco_opcode::v_max_u16:
1383 case aco_opcode::v_max_i16:
1384 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
1385 break;
1386 #define CMP(cmp) \
1387 case aco_opcode::v_cmp_##cmp##_f16:\
1388 case aco_opcode::v_cmp_##cmp##_f32:\
1389 case aco_opcode::v_cmp_##cmp##_f64:\
1390 case aco_opcode::v_cmp_n##cmp##_f16:\
1391 case aco_opcode::v_cmp_n##cmp##_f32:\
1392 case aco_opcode::v_cmp_n##cmp##_f64:
1393 CMP(lt)
1394 CMP(eq)
1395 CMP(le)
1396 CMP(gt)
1397 CMP(lg)
1398 CMP(ge)
1399 case aco_opcode::v_cmp_o_f16:
1400 case aco_opcode::v_cmp_u_f16:
1401 case aco_opcode::v_cmp_o_f32:
1402 case aco_opcode::v_cmp_u_f32:
1403 case aco_opcode::v_cmp_o_f64:
1404 case aco_opcode::v_cmp_u_f64:
1405 #undef CMP
1406 ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
1407 break;
1408 case aco_opcode::s_cselect_b64:
1409 case aco_opcode::s_cselect_b32:
1410 if (instr->operands[0].constantEquals((unsigned) -1) &&
1411 instr->operands[1].constantEquals(0)) {
1412 /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
1413 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
1414 }
1415 if (instr->operands[2].isTemp() && ctx.info[instr->operands[2].tempId()].is_scc_invert()) {
1416 /* Flip the operands to get rid of the scc_invert instruction */
1417 std::swap(instr->operands[0], instr->operands[1]);
1418 instr->operands[2].setTemp(ctx.info[instr->operands[2].tempId()].temp);
1419 }
1420 break;
1421 case aco_opcode::p_wqm:
1422 if (instr->operands[0].isTemp() &&
1423 ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
1424 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1425 }
1426 break;
1427 default:
1428 break;
1429 }
1430 }
1431
1432 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, CmpInfo *info)
1433 {
1434 info->ordered = aco_opcode::num_opcodes;
1435 info->unordered = aco_opcode::num_opcodes;
1436 info->ordered_swapped = aco_opcode::num_opcodes;
1437 info->unordered_swapped = aco_opcode::num_opcodes;
1438 switch (op) {
1439 #define CMP2(ord, unord, ord_swap, unord_swap, sz) \
1440 case aco_opcode::v_cmp_##ord##_f##sz:\
1441 case aco_opcode::v_cmp_n##unord##_f##sz:\
1442 info->ordered = aco_opcode::v_cmp_##ord##_f##sz;\
1443 info->unordered = aco_opcode::v_cmp_n##unord##_f##sz;\
1444 info->ordered_swapped = aco_opcode::v_cmp_##ord_swap##_f##sz;\
1445 info->unordered_swapped = aco_opcode::v_cmp_n##unord_swap##_f##sz;\
1446 info->inverse = op == aco_opcode::v_cmp_n##unord##_f##sz ? aco_opcode::v_cmp_##unord##_f##sz : aco_opcode::v_cmp_n##ord##_f##sz;\
1447 info->f32 = op == aco_opcode::v_cmp_##ord##_f##sz ? aco_opcode::v_cmp_##ord##_f32 : aco_opcode::v_cmp_n##unord##_f32;\
1448 info->size = sz;\
1449 return true;
1450 #define CMP(ord, unord, ord_swap, unord_swap) \
1451 CMP2(ord, unord, ord_swap, unord_swap, 16)\
1452 CMP2(ord, unord, ord_swap, unord_swap, 32)\
1453 CMP2(ord, unord, ord_swap, unord_swap, 64)
1454 CMP(lt, /*n*/ge, gt, /*n*/le)
1455 CMP(eq, /*n*/lg, eq, /*n*/lg)
1456 CMP(le, /*n*/gt, ge, /*n*/lt)
1457 CMP(gt, /*n*/le, lt, /*n*/le)
1458 CMP(lg, /*n*/eq, lg, /*n*/eq)
1459 CMP(ge, /*n*/lt, le, /*n*/gt)
1460 #undef CMP
1461 #undef CMP2
1462 #define ORD_TEST(sz) \
1463 case aco_opcode::v_cmp_u_f##sz:\
1464 info->f32 = aco_opcode::v_cmp_u_f32;\
1465 info->inverse = aco_opcode::v_cmp_o_f##sz;\
1466 info->size = sz;\
1467 return true;\
1468 case aco_opcode::v_cmp_o_f##sz:\
1469 info->f32 = aco_opcode::v_cmp_o_f32;\
1470 info->inverse = aco_opcode::v_cmp_u_f##sz;\
1471 info->size = sz;\
1472 return true;
1473 ORD_TEST(16)
1474 ORD_TEST(32)
1475 ORD_TEST(64)
1476 #undef ORD_TEST
1477 default:
1478 return false;
1479 }
1480 }
1481
1482 aco_opcode get_ordered(aco_opcode op)
1483 {
1484 CmpInfo info;
1485 return get_cmp_info(op, &info) ? info.ordered : aco_opcode::num_opcodes;
1486 }
1487
1488 aco_opcode get_unordered(aco_opcode op)
1489 {
1490 CmpInfo info;
1491 return get_cmp_info(op, &info) ? info.unordered : aco_opcode::num_opcodes;
1492 }
1493
1494 aco_opcode get_inverse(aco_opcode op)
1495 {
1496 CmpInfo info;
1497 return get_cmp_info(op, &info) ? info.inverse : aco_opcode::num_opcodes;
1498 }
1499
1500 aco_opcode get_f32_cmp(aco_opcode op)
1501 {
1502 CmpInfo info;
1503 return get_cmp_info(op, &info) ? info.f32 : aco_opcode::num_opcodes;
1504 }
1505
1506 unsigned get_cmp_bitsize(aco_opcode op)
1507 {
1508 CmpInfo info;
1509 return get_cmp_info(op, &info) ? info.size : 0;
1510 }
1511
1512 bool is_cmp(aco_opcode op)
1513 {
1514 CmpInfo info;
1515 return get_cmp_info(op, &info) && info.ordered != aco_opcode::num_opcodes;
1516 }
1517
1518 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1519 {
1520 if (ctx.info[tmp.id()].is_temp())
1521 return ctx.info[tmp.id()].temp.id();
1522 else
1523 return tmp.id();
1524 }
1525
1526 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1527 {
1528 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1529 for (const Operand& op : instr->operands) {
1530 if (op.isTemp())
1531 ctx.uses[op.tempId()]--;
1532 }
1533 }
1534 }
1535
1536 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1537 {
1538 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1539 return nullptr;
1540 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1541 return nullptr;
1542
1543 Instruction *instr = ctx.info[op.tempId()].instr;
1544
1545 if (instr->definitions.size() == 2) {
1546 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1547 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1548 return nullptr;
1549 }
1550
1551 return instr;
1552 }
1553
1554 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1555 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1556 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1557 {
1558 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1559 return false;
1560 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1561 return false;
1562
1563 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1564
1565 bool neg[2] = {false, false};
1566 bool abs[2] = {false, false};
1567 uint8_t opsel = 0;
1568 Instruction *op_instr[2];
1569 Temp op[2];
1570
1571 unsigned bitsize = 0;
1572 for (unsigned i = 0; i < 2; i++) {
1573 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1574 if (!op_instr[i])
1575 return false;
1576
1577 aco_opcode expected_cmp = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1578 unsigned op_bitsize = get_cmp_bitsize(op_instr[i]->opcode);
1579
1580 if (get_f32_cmp(op_instr[i]->opcode) != expected_cmp)
1581 return false;
1582 if (bitsize && op_bitsize != bitsize)
1583 return false;
1584 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1585 return false;
1586
1587 if (op_instr[i]->isVOP3()) {
1588 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1589 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1590 return false;
1591 neg[i] = vop3->neg[0];
1592 abs[i] = vop3->abs[0];
1593 opsel |= (vop3->opsel & 1) << i;
1594 }
1595
1596 Temp op0 = op_instr[i]->operands[0].getTemp();
1597 Temp op1 = op_instr[i]->operands[1].getTemp();
1598 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1599 return false;
1600
1601 op[i] = op1;
1602 bitsize = op_bitsize;
1603 }
1604
1605 if (op[1].type() == RegType::sgpr)
1606 std::swap(op[0], op[1]);
1607 unsigned num_sgprs = (op[0].type() == RegType::sgpr) + (op[1].type() == RegType::sgpr);
1608 if (num_sgprs > (ctx.program->chip_class >= GFX10 ? 2 : 1))
1609 return false;
1610
1611 ctx.uses[op[0].id()]++;
1612 ctx.uses[op[1].id()]++;
1613 decrease_uses(ctx, op_instr[0]);
1614 decrease_uses(ctx, op_instr[1]);
1615
1616 aco_opcode new_op = aco_opcode::num_opcodes;
1617 switch (bitsize) {
1618 case 16:
1619 new_op = is_or ? aco_opcode::v_cmp_u_f16 : aco_opcode::v_cmp_o_f16;
1620 break;
1621 case 32:
1622 new_op = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1623 break;
1624 case 64:
1625 new_op = is_or ? aco_opcode::v_cmp_u_f64 : aco_opcode::v_cmp_o_f64;
1626 break;
1627 }
1628 Instruction *new_instr;
1629 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel || num_sgprs > 1) {
1630 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1631 for (unsigned i = 0; i < 2; i++) {
1632 vop3->neg[i] = neg[i];
1633 vop3->abs[i] = abs[i];
1634 }
1635 vop3->opsel = opsel;
1636 new_instr = static_cast<Instruction *>(vop3);
1637 } else {
1638 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1639 }
1640 new_instr->operands[0] = Operand(op[0]);
1641 new_instr->operands[1] = Operand(op[1]);
1642 new_instr->definitions[0] = instr->definitions[0];
1643
1644 ctx.info[instr->definitions[0].tempId()].label = 0;
1645 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1646
1647 instr.reset(new_instr);
1648
1649 return true;
1650 }
1651
1652 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1653 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1654 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1655 {
1656 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1657 return false;
1658 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1659 return false;
1660
1661 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1662 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1663
1664 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1665 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1666 if (!nan_test || !cmp)
1667 return false;
1668
1669 if (get_f32_cmp(cmp->opcode) == expected_nan_test)
1670 std::swap(nan_test, cmp);
1671 else if (get_f32_cmp(nan_test->opcode) != expected_nan_test)
1672 return false;
1673
1674 if (!is_cmp(cmp->opcode) || get_cmp_bitsize(cmp->opcode) != get_cmp_bitsize(nan_test->opcode))
1675 return false;
1676
1677 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1678 return false;
1679 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1680 return false;
1681
1682 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1683 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1684 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1685 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1686 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1687 return false;
1688 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1689 return false;
1690
1691 ctx.uses[cmp->operands[0].tempId()]++;
1692 ctx.uses[cmp->operands[1].tempId()]++;
1693 decrease_uses(ctx, nan_test);
1694 decrease_uses(ctx, cmp);
1695
1696 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1697 Instruction *new_instr;
1698 if (cmp->isVOP3()) {
1699 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1700 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1701 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1702 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1703 new_vop3->clamp = cmp_vop3->clamp;
1704 new_vop3->omod = cmp_vop3->omod;
1705 new_vop3->opsel = cmp_vop3->opsel;
1706 new_instr = new_vop3;
1707 } else {
1708 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1709 }
1710 new_instr->operands[0] = cmp->operands[0];
1711 new_instr->operands[1] = cmp->operands[1];
1712 new_instr->definitions[0] = instr->definitions[0];
1713
1714 ctx.info[instr->definitions[0].tempId()].label = 0;
1715 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1716
1717 instr.reset(new_instr);
1718
1719 return true;
1720 }
1721
1722 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1723 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1724 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1725 {
1726 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1727 return false;
1728 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1729 return false;
1730
1731 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1732
1733 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1734 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1735
1736 if (!nan_test || !cmp)
1737 return false;
1738
1739 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1740 if (get_f32_cmp(cmp->opcode) == expected_nan_test)
1741 std::swap(nan_test, cmp);
1742 else if (get_f32_cmp(nan_test->opcode) != expected_nan_test)
1743 return false;
1744
1745 if (!is_cmp(cmp->opcode) || get_cmp_bitsize(cmp->opcode) != get_cmp_bitsize(nan_test->opcode))
1746 return false;
1747
1748 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1749 return false;
1750 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1751 return false;
1752
1753 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1754 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1755 if (prop_nan0 != prop_nan1)
1756 return false;
1757
1758 if (nan_test->isVOP3()) {
1759 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(nan_test);
1760 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1761 return false;
1762 }
1763
1764 int constant_operand = -1;
1765 for (unsigned i = 0; i < 2; i++) {
1766 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1767 constant_operand = !i;
1768 break;
1769 }
1770 }
1771 if (constant_operand == -1)
1772 return false;
1773
1774 uint32_t constant;
1775 if (cmp->operands[constant_operand].isConstant()) {
1776 constant = cmp->operands[constant_operand].constantValue();
1777 } else if (cmp->operands[constant_operand].isTemp()) {
1778 Temp tmp = cmp->operands[constant_operand].getTemp();
1779 unsigned id = original_temp_id(ctx, tmp);
1780 if (!ctx.info[id].is_constant_or_literal(32))
1781 return false;
1782 constant = ctx.info[id].val;
1783 } else {
1784 return false;
1785 }
1786
1787 float constantf;
1788 memcpy(&constantf, &constant, 4);
1789 if (isnan(constantf))
1790 return false;
1791
1792 if (cmp->operands[0].isTemp())
1793 ctx.uses[cmp->operands[0].tempId()]++;
1794 if (cmp->operands[1].isTemp())
1795 ctx.uses[cmp->operands[1].tempId()]++;
1796 decrease_uses(ctx, nan_test);
1797 decrease_uses(ctx, cmp);
1798
1799 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1800 Instruction *new_instr;
1801 if (cmp->isVOP3()) {
1802 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1803 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1804 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1805 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1806 new_vop3->clamp = cmp_vop3->clamp;
1807 new_vop3->omod = cmp_vop3->omod;
1808 new_vop3->opsel = cmp_vop3->opsel;
1809 new_instr = new_vop3;
1810 } else {
1811 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1812 }
1813 new_instr->operands[0] = cmp->operands[0];
1814 new_instr->operands[1] = cmp->operands[1];
1815 new_instr->definitions[0] = instr->definitions[0];
1816
1817 ctx.info[instr->definitions[0].tempId()].label = 0;
1818 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1819
1820 instr.reset(new_instr);
1821
1822 return true;
1823 }
1824
1825 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1826 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1827 {
1828 if (instr->opcode != aco_opcode::s_not_b64)
1829 return false;
1830 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1831 return false;
1832 if (!instr->operands[0].isTemp())
1833 return false;
1834
1835 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1836 if (!cmp)
1837 return false;
1838
1839 aco_opcode new_opcode = get_inverse(cmp->opcode);
1840 if (new_opcode == aco_opcode::num_opcodes)
1841 return false;
1842
1843 if (cmp->operands[0].isTemp())
1844 ctx.uses[cmp->operands[0].tempId()]++;
1845 if (cmp->operands[1].isTemp())
1846 ctx.uses[cmp->operands[1].tempId()]++;
1847 decrease_uses(ctx, cmp);
1848
1849 Instruction *new_instr;
1850 if (cmp->isVOP3()) {
1851 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1852 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1853 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1854 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1855 new_vop3->clamp = cmp_vop3->clamp;
1856 new_vop3->omod = cmp_vop3->omod;
1857 new_vop3->opsel = cmp_vop3->opsel;
1858 new_instr = new_vop3;
1859 } else {
1860 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1861 }
1862 new_instr->operands[0] = cmp->operands[0];
1863 new_instr->operands[1] = cmp->operands[1];
1864 new_instr->definitions[0] = instr->definitions[0];
1865
1866 ctx.info[instr->definitions[0].tempId()].label = 0;
1867 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1868
1869 instr.reset(new_instr);
1870
1871 return true;
1872 }
1873
1874 /* op1(op2(1, 2), 0) if swap = false
1875 * op1(0, op2(1, 2)) if swap = true */
1876 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1877 Instruction* op1_instr, bool swap, const char *shuffle_str,
1878 Operand operands[3], bool neg[3], bool abs[3], uint8_t *opsel,
1879 bool *op1_clamp, uint8_t *op1_omod,
1880 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1881 {
1882 /* checks */
1883 if (op1_instr->opcode != op1)
1884 return false;
1885
1886 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1887 if (!op2_instr || op2_instr->opcode != op2)
1888 return false;
1889 if (fixed_to_exec(op2_instr->operands[0]) || fixed_to_exec(op2_instr->operands[1]))
1890 return false;
1891
1892 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1893 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1894
1895 /* don't support inbetween clamp/omod */
1896 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1897 return false;
1898
1899 /* get operands and modifiers and check inbetween modifiers */
1900 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1901 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1902
1903 if (inbetween_neg)
1904 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1905 else if (op1_vop3 && op1_vop3->neg[swap])
1906 return false;
1907
1908 if (inbetween_abs)
1909 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1910 else if (op1_vop3 && op1_vop3->abs[swap])
1911 return false;
1912
1913 if (inbetween_opsel)
1914 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel & (1 << swap) : false;
1915 else if (op1_vop3 && op1_vop3->opsel & (1 << swap))
1916 return false;
1917
1918 int shuffle[3];
1919 shuffle[shuffle_str[0] - '0'] = 0;
1920 shuffle[shuffle_str[1] - '0'] = 1;
1921 shuffle[shuffle_str[2] - '0'] = 2;
1922
1923 operands[shuffle[0]] = op1_instr->operands[!swap];
1924 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1925 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1926 if (op1_vop3 && op1_vop3->opsel & (1 << !swap))
1927 *opsel |= 1 << shuffle[0];
1928
1929 for (unsigned i = 0; i < 2; i++) {
1930 operands[shuffle[i + 1]] = op2_instr->operands[i];
1931 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1932 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1933 if (op2_vop3 && op2_vop3->opsel & (1 << i))
1934 *opsel |= 1 << shuffle[i + 1];
1935 }
1936
1937 /* check operands */
1938 if (!check_vop3_operands(ctx, 3, operands))
1939 return false;
1940
1941 return true;
1942 }
1943
1944 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1945 Operand operands[3], bool neg[3], bool abs[3], uint8_t opsel,
1946 bool clamp, unsigned omod)
1947 {
1948 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1949 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1950 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1951 new_instr->clamp = clamp;
1952 new_instr->omod = omod;
1953 new_instr->opsel = opsel;
1954 new_instr->operands[0] = operands[0];
1955 new_instr->operands[1] = operands[1];
1956 new_instr->operands[2] = operands[2];
1957 new_instr->definitions[0] = instr->definitions[0];
1958 ctx.info[instr->definitions[0].tempId()].label = 0;
1959
1960 instr.reset(new_instr);
1961 }
1962
1963 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1964 {
1965 uint64_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1966 (label_omod_success | label_clamp_success);
1967
1968 for (unsigned swap = 0; swap < 2; swap++) {
1969 if (!((1 << swap) & ops))
1970 continue;
1971
1972 Operand operands[3];
1973 bool neg[3], abs[3], clamp;
1974 uint8_t opsel = 0, omod = 0;
1975 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1976 instr.get(), swap, shuffle,
1977 operands, neg, abs, &opsel,
1978 &clamp, &omod, NULL, NULL, NULL)) {
1979 ctx.uses[instr->operands[swap].tempId()]--;
1980 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1981 if (omod_clamp & label_omod_success)
1982 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1983 if (omod_clamp & label_clamp_success)
1984 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1985 return true;
1986 }
1987 }
1988 return false;
1989 }
1990
1991 bool combine_minmax(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode opposite, aco_opcode minmax3)
1992 {
1993 if (combine_three_valu_op(ctx, instr, instr->opcode, minmax3, "012", 1 | 2))
1994 return true;
1995
1996 uint64_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1997 (label_omod_success | label_clamp_success);
1998
1999 /* min(-max(a, b), c) -> min3(-a, -b, c) *
2000 * max(-min(a, b), c) -> max3(-a, -b, c) */
2001 for (unsigned swap = 0; swap < 2; swap++) {
2002 Operand operands[3];
2003 bool neg[3], abs[3], clamp;
2004 uint8_t opsel = 0, omod = 0;
2005 bool inbetween_neg;
2006 if (match_op3_for_vop3(ctx, instr->opcode, opposite,
2007 instr.get(), swap, "012",
2008 operands, neg, abs, &opsel,
2009 &clamp, &omod, &inbetween_neg, NULL, NULL) &&
2010 inbetween_neg) {
2011 ctx.uses[instr->operands[swap].tempId()]--;
2012 neg[1] = true;
2013 neg[2] = true;
2014 create_vop3_for_op3(ctx, minmax3, instr, operands, neg, abs, opsel, clamp, omod);
2015 if (omod_clamp & label_omod_success)
2016 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2017 if (omod_clamp & label_clamp_success)
2018 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
2019 return true;
2020 }
2021 }
2022 return false;
2023 }
2024
2025 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
2026 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
2027 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
2028 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
2029 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
2030 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
2031 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
2032 {
2033 /* checks */
2034 if (!instr->operands[0].isTemp())
2035 return false;
2036 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
2037 return false;
2038
2039 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
2040 if (!op2_instr)
2041 return false;
2042 switch (op2_instr->opcode) {
2043 case aco_opcode::s_and_b32:
2044 case aco_opcode::s_or_b32:
2045 case aco_opcode::s_xor_b32:
2046 case aco_opcode::s_and_b64:
2047 case aco_opcode::s_or_b64:
2048 case aco_opcode::s_xor_b64:
2049 break;
2050 default:
2051 return false;
2052 }
2053
2054 /* create instruction */
2055 std::swap(instr->definitions[0], op2_instr->definitions[0]);
2056 std::swap(instr->definitions[1], op2_instr->definitions[1]);
2057 ctx.uses[instr->operands[0].tempId()]--;
2058 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
2059
2060 switch (op2_instr->opcode) {
2061 case aco_opcode::s_and_b32:
2062 op2_instr->opcode = aco_opcode::s_nand_b32;
2063 break;
2064 case aco_opcode::s_or_b32:
2065 op2_instr->opcode = aco_opcode::s_nor_b32;
2066 break;
2067 case aco_opcode::s_xor_b32:
2068 op2_instr->opcode = aco_opcode::s_xnor_b32;
2069 break;
2070 case aco_opcode::s_and_b64:
2071 op2_instr->opcode = aco_opcode::s_nand_b64;
2072 break;
2073 case aco_opcode::s_or_b64:
2074 op2_instr->opcode = aco_opcode::s_nor_b64;
2075 break;
2076 case aco_opcode::s_xor_b64:
2077 op2_instr->opcode = aco_opcode::s_xnor_b64;
2078 break;
2079 default:
2080 break;
2081 }
2082
2083 return true;
2084 }
2085
2086 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
2087 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
2088 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
2089 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
2090 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
2091 {
2092 if (instr->definitions[0].isTemp() && ctx.info[instr->definitions[0].tempId()].is_uniform_bool())
2093 return false;
2094
2095 for (unsigned i = 0; i < 2; i++) {
2096 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
2097 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
2098 continue;
2099 if (ctx.uses[op2_instr->definitions[1].tempId()] || fixed_to_exec(op2_instr->operands[0]))
2100 continue;
2101
2102 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
2103 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
2104 continue;
2105
2106 ctx.uses[instr->operands[i].tempId()]--;
2107 instr->operands[0] = instr->operands[!i];
2108 instr->operands[1] = op2_instr->operands[0];
2109 ctx.info[instr->definitions[0].tempId()].label = 0;
2110
2111 switch (instr->opcode) {
2112 case aco_opcode::s_and_b32:
2113 instr->opcode = aco_opcode::s_andn2_b32;
2114 break;
2115 case aco_opcode::s_or_b32:
2116 instr->opcode = aco_opcode::s_orn2_b32;
2117 break;
2118 case aco_opcode::s_and_b64:
2119 instr->opcode = aco_opcode::s_andn2_b64;
2120 break;
2121 case aco_opcode::s_or_b64:
2122 instr->opcode = aco_opcode::s_orn2_b64;
2123 break;
2124 default:
2125 break;
2126 }
2127
2128 return true;
2129 }
2130 return false;
2131 }
2132
2133 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
2134 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
2135 {
2136 if (instr->opcode == aco_opcode::s_add_i32 && ctx.uses[instr->definitions[1].tempId()])
2137 return false;
2138
2139 for (unsigned i = 0; i < 2; i++) {
2140 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
2141 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 ||
2142 ctx.uses[op2_instr->definitions[1].tempId()])
2143 continue;
2144 if (!op2_instr->operands[1].isConstant() || fixed_to_exec(op2_instr->operands[0]))
2145 continue;
2146
2147 uint32_t shift = op2_instr->operands[1].constantValue();
2148 if (shift < 1 || shift > 4)
2149 continue;
2150
2151 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
2152 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
2153 continue;
2154
2155 ctx.uses[instr->operands[i].tempId()]--;
2156 instr->operands[1] = instr->operands[!i];
2157 instr->operands[0] = op2_instr->operands[0];
2158 ctx.info[instr->definitions[0].tempId()].label = 0;
2159
2160 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
2161 aco_opcode::s_lshl2_add_u32,
2162 aco_opcode::s_lshl3_add_u32,
2163 aco_opcode::s_lshl4_add_u32})[shift - 1];
2164
2165 return true;
2166 }
2167 return false;
2168 }
2169
2170 bool combine_add_sub_b2i(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode new_op, uint8_t ops)
2171 {
2172 if (instr->usesModifiers())
2173 return false;
2174
2175 for (unsigned i = 0; i < 2; i++) {
2176 if (!((1 << i) & ops))
2177 continue;
2178 if (instr->operands[i].isTemp() &&
2179 ctx.info[instr->operands[i].tempId()].is_b2i() &&
2180 ctx.uses[instr->operands[i].tempId()] == 1) {
2181
2182 aco_ptr<Instruction> new_instr;
2183 if (instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2184 new_instr.reset(create_instruction<VOP2_instruction>(new_op, Format::VOP2, 3, 2));
2185 } else if (ctx.program->chip_class >= GFX10 ||
2186 (instr->operands[!i].isConstant() && !instr->operands[!i].isLiteral())) {
2187 new_instr.reset(create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOP2), 3, 2));
2188 } else {
2189 return false;
2190 }
2191 ctx.uses[instr->operands[i].tempId()]--;
2192 new_instr->definitions[0] = instr->definitions[0];
2193 new_instr->definitions[1] = instr->definitions.size() == 2 ? instr->definitions[1] :
2194 Definition(ctx.program->allocateId(), ctx.program->lane_mask);
2195 new_instr->definitions[1].setHint(vcc);
2196 new_instr->operands[0] = Operand(0u);
2197 new_instr->operands[1] = instr->operands[!i];
2198 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2199 instr = std::move(new_instr);
2200 ctx.info[instr->definitions[0].tempId()].label = 0;
2201 return true;
2202 }
2203 }
2204
2205 return false;
2206 }
2207
2208 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
2209 {
2210 switch (op) {
2211 #define MINMAX(type, gfx9) \
2212 case aco_opcode::v_min_##type:\
2213 case aco_opcode::v_max_##type:\
2214 case aco_opcode::v_med3_##type:\
2215 *min = aco_opcode::v_min_##type;\
2216 *max = aco_opcode::v_max_##type;\
2217 *med3 = aco_opcode::v_med3_##type;\
2218 *min3 = aco_opcode::v_min3_##type;\
2219 *max3 = aco_opcode::v_max3_##type;\
2220 *some_gfx9_only = gfx9;\
2221 return true;
2222 MINMAX(f32, false)
2223 MINMAX(u32, false)
2224 MINMAX(i32, false)
2225 MINMAX(f16, true)
2226 MINMAX(u16, true)
2227 MINMAX(i16, true)
2228 #undef MINMAX
2229 default:
2230 return false;
2231 }
2232 }
2233
2234 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
2235 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
2236 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
2237 aco_opcode min, aco_opcode max, aco_opcode med)
2238 {
2239 /* TODO: GLSL's clamp(x, minVal, maxVal) and SPIR-V's
2240 * FClamp(x, minVal, maxVal)/NClamp(x, minVal, maxVal) are undefined if
2241 * minVal > maxVal, which means we can always select it to a v_med3_f32 */
2242 aco_opcode other_op;
2243 if (instr->opcode == min)
2244 other_op = max;
2245 else if (instr->opcode == max)
2246 other_op = min;
2247 else
2248 return false;
2249
2250 uint64_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
2251 (label_omod_success | label_clamp_success);
2252
2253 for (unsigned swap = 0; swap < 2; swap++) {
2254 Operand operands[3];
2255 bool neg[3], abs[3], clamp;
2256 uint8_t opsel = 0, omod = 0;
2257 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
2258 "012", operands, neg, abs, &opsel,
2259 &clamp, &omod, NULL, NULL, NULL)) {
2260 int const0_idx = -1, const1_idx = -1;
2261 uint32_t const0 = 0, const1 = 0;
2262 for (int i = 0; i < 3; i++) {
2263 uint32_t val;
2264 if (operands[i].isConstant()) {
2265 val = operands[i].constantValue();
2266 } else if (operands[i].isTemp() && ctx.info[operands[i].tempId()].is_constant_or_literal(32)) {
2267 val = ctx.info[operands[i].tempId()].val;
2268 } else {
2269 continue;
2270 }
2271 if (const0_idx >= 0) {
2272 const1_idx = i;
2273 const1 = val;
2274 } else {
2275 const0_idx = i;
2276 const0 = val;
2277 }
2278 }
2279 if (const0_idx < 0 || const1_idx < 0)
2280 continue;
2281
2282 if (opsel & (1 << const0_idx))
2283 const0 >>= 16;
2284 if (opsel & (1 << const1_idx))
2285 const1 >>= 16;
2286
2287 int lower_idx = const0_idx;
2288 switch (min) {
2289 case aco_opcode::v_min_f32:
2290 case aco_opcode::v_min_f16: {
2291 float const0_f, const1_f;
2292 if (min == aco_opcode::v_min_f32) {
2293 memcpy(&const0_f, &const0, 4);
2294 memcpy(&const1_f, &const1, 4);
2295 } else {
2296 const0_f = _mesa_half_to_float(const0);
2297 const1_f = _mesa_half_to_float(const1);
2298 }
2299 if (abs[const0_idx]) const0_f = fabsf(const0_f);
2300 if (abs[const1_idx]) const1_f = fabsf(const1_f);
2301 if (neg[const0_idx]) const0_f = -const0_f;
2302 if (neg[const1_idx]) const1_f = -const1_f;
2303 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
2304 break;
2305 }
2306 case aco_opcode::v_min_u32: {
2307 lower_idx = const0 < const1 ? const0_idx : const1_idx;
2308 break;
2309 }
2310 case aco_opcode::v_min_u16: {
2311 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
2312 break;
2313 }
2314 case aco_opcode::v_min_i32: {
2315 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
2316 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
2317 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2318 break;
2319 }
2320 case aco_opcode::v_min_i16: {
2321 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
2322 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
2323 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2324 break;
2325 }
2326 default:
2327 break;
2328 }
2329 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
2330
2331 if (instr->opcode == min) {
2332 if (upper_idx != 0 || lower_idx == 0)
2333 return false;
2334 } else {
2335 if (upper_idx == 0 || lower_idx != 0)
2336 return false;
2337 }
2338
2339 ctx.uses[instr->operands[swap].tempId()]--;
2340 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
2341 if (omod_clamp & label_omod_success)
2342 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2343 if (omod_clamp & label_clamp_success)
2344 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
2345
2346 return true;
2347 }
2348 }
2349
2350 return false;
2351 }
2352
2353
2354 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2355 {
2356 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
2357 instr->opcode == aco_opcode::v_lshrrev_b64 ||
2358 instr->opcode == aco_opcode::v_ashrrev_i64;
2359
2360 /* find candidates and create the set of sgprs already read */
2361 unsigned sgpr_ids[2] = {0, 0};
2362 uint32_t operand_mask = 0;
2363 bool has_literal = false;
2364 for (unsigned i = 0; i < instr->operands.size(); i++) {
2365 if (instr->operands[i].isLiteral())
2366 has_literal = true;
2367 if (!instr->operands[i].isTemp())
2368 continue;
2369 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2370 if (instr->operands[i].tempId() != sgpr_ids[0])
2371 sgpr_ids[!!sgpr_ids[0]] = instr->operands[i].tempId();
2372 }
2373 ssa_info& info = ctx.info[instr->operands[i].tempId()];
2374 if (info.is_temp() && info.temp.type() == RegType::sgpr)
2375 operand_mask |= 1u << i;
2376 }
2377 unsigned max_sgprs = 1;
2378 if (ctx.program->chip_class >= GFX10 && !is_shift64)
2379 max_sgprs = 2;
2380 if (has_literal)
2381 max_sgprs--;
2382
2383 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
2384
2385 /* keep on applying sgprs until there is nothing left to be done */
2386 while (operand_mask) {
2387 uint32_t sgpr_idx = 0;
2388 uint32_t sgpr_info_id = 0;
2389 uint32_t mask = operand_mask;
2390 /* choose a sgpr */
2391 while (mask) {
2392 unsigned i = u_bit_scan(&mask);
2393 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
2394 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
2395 sgpr_idx = i;
2396 sgpr_info_id = instr->operands[i].tempId();
2397 }
2398 }
2399 operand_mask &= ~(1u << sgpr_idx);
2400
2401 /* Applying two sgprs require making it VOP3, so don't do it unless it's
2402 * definitively beneficial.
2403 * TODO: this is too conservative because later the use count could be reduced to 1 */
2404 if (num_sgprs && ctx.uses[sgpr_info_id] > 1 && !instr->isVOP3())
2405 break;
2406
2407 Temp sgpr = ctx.info[sgpr_info_id].temp;
2408 bool new_sgpr = sgpr.id() != sgpr_ids[0] && sgpr.id() != sgpr_ids[1];
2409 if (new_sgpr && num_sgprs >= max_sgprs)
2410 continue;
2411
2412 if (sgpr_idx == 0 || instr->isVOP3()) {
2413 instr->operands[sgpr_idx] = Operand(sgpr);
2414 } else if (can_swap_operands(instr)) {
2415 instr->operands[sgpr_idx] = instr->operands[0];
2416 instr->operands[0] = Operand(sgpr);
2417 /* swap bits using a 4-entry LUT */
2418 uint32_t swapped = (0x3120 >> (operand_mask & 0x3)) & 0xf;
2419 operand_mask = (operand_mask & ~0x3) | swapped;
2420 } else if (can_use_VOP3(ctx, instr)) {
2421 to_VOP3(ctx, instr);
2422 instr->operands[sgpr_idx] = Operand(sgpr);
2423 } else {
2424 continue;
2425 }
2426
2427 if (new_sgpr)
2428 sgpr_ids[num_sgprs++] = sgpr.id();
2429 ctx.uses[sgpr_info_id]--;
2430 ctx.uses[sgpr.id()]++;
2431 }
2432 }
2433
2434 bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2435 {
2436 /* check if we could apply omod on predecessor */
2437 if (instr->opcode == aco_opcode::v_mul_f32 || instr->opcode == aco_opcode::v_mul_f16) {
2438 bool op0 = instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_omod_success();
2439 bool op1 = instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success();
2440 if (op0 || op1) {
2441 unsigned idx = op0 ? 0 : 1;
2442 /* omod was successfully applied */
2443 /* if the omod instruction is v_mad, we also have to change the original add */
2444 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
2445 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].instr->pass_flags].add_instr.get();
2446 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
2447 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
2448 add_instr->definitions[0] = instr->definitions[0];
2449 }
2450
2451 Instruction* omod_instr = ctx.info[instr->operands[idx].tempId()].instr;
2452 /* check if we have an additional clamp modifier */
2453 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2454 ctx.uses[ctx.info[instr->definitions[0].tempId()].temp.id()]) {
2455 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
2456 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
2457 }
2458 /* change definition ssa-id of modified instruction */
2459 omod_instr->definitions[0] = instr->definitions[0];
2460
2461 /* change the definition of instr to something unused, e.g. the original omod def */
2462 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
2463 ctx.uses[instr->definitions[0].tempId()] = 0;
2464 return true;
2465 }
2466 if (!ctx.info[instr->definitions[0].tempId()].label) {
2467 /* in all other cases, label this instruction as option for multiply-add */
2468 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2469 }
2470 }
2471
2472 /* check if we could apply clamp on predecessor */
2473 if (instr->opcode == aco_opcode::v_med3_f32 || instr->opcode == aco_opcode::v_med3_f16) {
2474 bool is_fp16 = instr->opcode == aco_opcode::v_med3_f16;
2475 unsigned idx = 0;
2476 bool found_zero = false, found_one = false;
2477 for (unsigned i = 0; i < 3; i++)
2478 {
2479 if (instr->operands[i].constantEquals(0))
2480 found_zero = true;
2481 else if (instr->operands[i].constantEquals(is_fp16 ? 0x3c00 : 0x3f800000)) /* 1.0 */
2482 found_one = true;
2483 else
2484 idx = i;
2485 }
2486 if (found_zero && found_one && instr->operands[idx].isTemp() &&
2487 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
2488 /* clamp was successfully applied */
2489 /* if the clamp instruction is v_mad, we also have to change the original add */
2490 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
2491 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].instr->pass_flags].add_instr.get();
2492 add_instr->definitions[0] = instr->definitions[0];
2493 }
2494 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
2495 /* change definition ssa-id of modified instruction */
2496 clamp_instr->definitions[0] = instr->definitions[0];
2497
2498 /* change the definition of instr to something unused, e.g. the original omod def */
2499 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
2500 ctx.uses[instr->definitions[0].tempId()] = 0;
2501 return true;
2502 }
2503 }
2504
2505 /* omod has no effect if denormals are enabled */
2506 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
2507 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2508 can_use_VOP3(ctx, instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
2509 bool can_use_omod = (instr->definitions[0].bytes() == 4 ? block.fp_mode.denorm32 : block.fp_mode.denorm16_64) == 0;
2510 ssa_info& def_info = ctx.info[instr->definitions[0].tempId()];
2511 if (can_use_omod && def_info.is_omod2() && ctx.uses[def_info.temp.id()]) {
2512 to_VOP3(ctx, instr);
2513 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
2514 def_info.set_omod_success(instr.get());
2515 } else if (can_use_omod && def_info.is_omod4() && ctx.uses[def_info.temp.id()]) {
2516 to_VOP3(ctx, instr);
2517 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
2518 def_info.set_omod_success(instr.get());
2519 } else if (can_use_omod && def_info.is_omod5() && ctx.uses[def_info.temp.id()]) {
2520 to_VOP3(ctx, instr);
2521 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
2522 def_info.set_omod_success(instr.get());
2523 } else if (def_info.is_clamp() && ctx.uses[def_info.temp.id()]) {
2524 to_VOP3(ctx, instr);
2525 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
2526 def_info.set_clamp_success(instr.get());
2527 }
2528 }
2529
2530 return false;
2531 }
2532
2533 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
2534 // this would mean that we'd have to fix the instruction uses while value propagation
2535
2536 void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2537 {
2538 if (instr->definitions.empty() || is_dead(ctx.uses, instr.get()))
2539 return;
2540
2541 if (instr->isVALU()) {
2542 if (can_apply_sgprs(instr))
2543 apply_sgprs(ctx, instr);
2544 if (apply_omod_clamp(ctx, block, instr))
2545 return;
2546 }
2547
2548 if (ctx.info[instr->definitions[0].tempId()].is_vcc_hint()) {
2549 instr->definitions[0].setHint(vcc);
2550 }
2551
2552 /* TODO: There are still some peephole optimizations that could be done:
2553 * - abs(a - b) -> s_absdiff_i32
2554 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
2555 * - patterns for v_alignbit_b32 and v_alignbyte_b32
2556 * These aren't probably too interesting though.
2557 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
2558 * probably more useful than the previously mentioned optimizations.
2559 * The various comparison optimizations also currently only work with 32-bit
2560 * floats. */
2561
2562 /* neg(mul(a, b)) -> mul(neg(a), b) */
2563 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
2564 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
2565
2566 if (!ctx.info[val.id()].is_mul())
2567 return;
2568
2569 Instruction* mul_instr = ctx.info[val.id()].instr;
2570
2571 if (mul_instr->operands[0].isLiteral())
2572 return;
2573 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
2574 return;
2575
2576 /* convert to mul(neg(a), b) */
2577 ctx.uses[mul_instr->definitions[0].tempId()]--;
2578 Definition def = instr->definitions[0];
2579 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
2580 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
2581 instr.reset(create_instruction<VOP3A_instruction>(mul_instr->opcode, asVOP3(Format::VOP2), 2, 1));
2582 instr->operands[0] = mul_instr->operands[0];
2583 instr->operands[1] = mul_instr->operands[1];
2584 instr->definitions[0] = def;
2585 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
2586 if (mul_instr->isVOP3()) {
2587 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
2588 new_mul->neg[0] = mul->neg[0] && !is_abs;
2589 new_mul->neg[1] = mul->neg[1] && !is_abs;
2590 new_mul->abs[0] = mul->abs[0] || is_abs;
2591 new_mul->abs[1] = mul->abs[1] || is_abs;
2592 new_mul->omod = mul->omod;
2593 }
2594 new_mul->neg[0] ^= true;
2595 new_mul->clamp = false;
2596
2597 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2598 return;
2599 }
2600
2601 /* combine mul+add -> mad */
2602 bool mad32 = instr->opcode == aco_opcode::v_add_f32 ||
2603 instr->opcode == aco_opcode::v_sub_f32 ||
2604 instr->opcode == aco_opcode::v_subrev_f32;
2605 bool mad16 = instr->opcode == aco_opcode::v_add_f16 ||
2606 instr->opcode == aco_opcode::v_sub_f16 ||
2607 instr->opcode == aco_opcode::v_subrev_f16;
2608 if (mad16 || mad32) {
2609 bool need_fma = mad32 ? block.fp_mode.denorm32 != 0 :
2610 (block.fp_mode.denorm16_64 != 0 || ctx.program->chip_class >= GFX10);
2611 if (need_fma && instr->definitions[0].isPrecise())
2612 return;
2613 if (need_fma && mad32 && !ctx.program->has_fast_fma32)
2614 return;
2615
2616 uint32_t uses_src0 = UINT32_MAX;
2617 uint32_t uses_src1 = UINT32_MAX;
2618 Instruction* mul_instr = nullptr;
2619 unsigned add_op_idx;
2620 /* check if any of the operands is a multiplication */
2621 ssa_info *op0_info = instr->operands[0].isTemp() ? &ctx.info[instr->operands[0].tempId()] : NULL;
2622 ssa_info *op1_info = instr->operands[1].isTemp() ? &ctx.info[instr->operands[1].tempId()] : NULL;
2623 if (op0_info && op0_info->is_mul() && (!need_fma || !op0_info->instr->definitions[0].isPrecise()))
2624 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2625 if (op1_info && op1_info->is_mul() && (!need_fma || !op1_info->instr->definitions[0].isPrecise()))
2626 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2627
2628 /* find the 'best' mul instruction to combine with the add */
2629 if (uses_src0 < uses_src1) {
2630 mul_instr = op0_info->instr;
2631 add_op_idx = 1;
2632 } else if (uses_src1 < uses_src0) {
2633 mul_instr = op1_info->instr;
2634 add_op_idx = 0;
2635 } else if (uses_src0 != UINT32_MAX) {
2636 /* tiebreaker: quite random what to pick */
2637 if (op0_info->instr->operands[0].isLiteral()) {
2638 mul_instr = op1_info->instr;
2639 add_op_idx = 0;
2640 } else {
2641 mul_instr = op0_info->instr;
2642 add_op_idx = 1;
2643 }
2644 }
2645 if (mul_instr) {
2646 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2647 bool neg[3] = {false, false, false};
2648 bool abs[3] = {false, false, false};
2649 unsigned omod = 0;
2650 bool clamp = false;
2651 op[0] = mul_instr->operands[0];
2652 op[1] = mul_instr->operands[1];
2653 op[2] = instr->operands[add_op_idx];
2654 // TODO: would be better to check this before selecting a mul instr?
2655 if (!check_vop3_operands(ctx, 3, op))
2656 return;
2657
2658 if (mul_instr->isVOP3()) {
2659 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2660 neg[0] = vop3->neg[0];
2661 neg[1] = vop3->neg[1];
2662 abs[0] = vop3->abs[0];
2663 abs[1] = vop3->abs[1];
2664 /* we cannot use these modifiers between mul and add */
2665 if (vop3->clamp || vop3->omod)
2666 return;
2667 }
2668
2669 /* convert to mad */
2670 ctx.uses[mul_instr->definitions[0].tempId()]--;
2671 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2672 if (op[0].isTemp())
2673 ctx.uses[op[0].tempId()]++;
2674 if (op[1].isTemp())
2675 ctx.uses[op[1].tempId()]++;
2676 }
2677
2678 if (instr->isVOP3()) {
2679 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2680 neg[2] = vop3->neg[add_op_idx];
2681 abs[2] = vop3->abs[add_op_idx];
2682 omod = vop3->omod;
2683 clamp = vop3->clamp;
2684 /* abs of the multiplication result */
2685 if (vop3->abs[1 - add_op_idx]) {
2686 neg[0] = false;
2687 neg[1] = false;
2688 abs[0] = true;
2689 abs[1] = true;
2690 }
2691 /* neg of the multiplication result */
2692 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2693 }
2694 if (instr->opcode == aco_opcode::v_sub_f32 || instr->opcode == aco_opcode::v_sub_f16)
2695 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2696 else if (instr->opcode == aco_opcode::v_subrev_f32 || instr->opcode == aco_opcode::v_subrev_f16)
2697 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2698
2699 aco_opcode mad_op = need_fma ? aco_opcode::v_fma_f32 : aco_opcode::v_mad_f32;
2700 if (mad16)
2701 mad_op = need_fma ? (ctx.program->chip_class == GFX8 ? aco_opcode::v_fma_legacy_f16 : aco_opcode::v_fma_f16) :
2702 (ctx.program->chip_class == GFX8 ? aco_opcode::v_mad_legacy_f16 : aco_opcode::v_mad_f16);
2703
2704 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(mad_op, Format::VOP3A, 3, 1)};
2705 for (unsigned i = 0; i < 3; i++)
2706 {
2707 mad->operands[i] = op[i];
2708 mad->neg[i] = neg[i];
2709 mad->abs[i] = abs[i];
2710 }
2711 mad->omod = omod;
2712 mad->clamp = clamp;
2713 mad->definitions[0] = instr->definitions[0];
2714
2715 /* mark this ssa_def to be re-checked for profitability and literals */
2716 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId());
2717 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2718 instr.reset(mad.release());
2719 return;
2720 }
2721 }
2722 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2723 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2724 for (unsigned i = 0; i < 2; i++) {
2725 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2726 ctx.uses[instr->operands[i].tempId()] == 1 &&
2727 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2728 ctx.uses[instr->operands[i].tempId()]--;
2729 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2730
2731 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2732 new_instr->operands[0] = Operand(0u);
2733 new_instr->operands[1] = instr->operands[!i];
2734 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2735 new_instr->definitions[0] = instr->definitions[0];
2736 instr.reset(new_instr.release());
2737 ctx.info[instr->definitions[0].tempId()].label = 0;
2738 return;
2739 }
2740 }
2741 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2742 if (combine_three_valu_op(ctx, instr, aco_opcode::s_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2743 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2744 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2745 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2746 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_or_b32, "120", 1 | 2)) ;
2747 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2748 } else if (instr->opcode == aco_opcode::v_xor_b32 && ctx.program->chip_class >= GFX10) {
2749 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xor3_b32, "012", 1 | 2)) ;
2750 else combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xor3_b32, "012", 1 | 2);
2751 } else if (instr->opcode == aco_opcode::v_add_u32) {
2752 if (combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2)) ;
2753 else if (ctx.program->chip_class >= GFX9) {
2754 if (combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2755 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2756 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_i32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2757 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2758 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2759 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_add_u32, "120", 1 | 2)) ;
2760 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2761 }
2762 } else if (instr->opcode == aco_opcode::v_add_co_u32 ||
2763 instr->opcode == aco_opcode::v_add_co_u32_e64) {
2764 combine_add_sub_b2i(ctx, instr, aco_opcode::v_addc_co_u32, 1 | 2);
2765 } else if (instr->opcode == aco_opcode::v_sub_u32 ||
2766 instr->opcode == aco_opcode::v_sub_co_u32 ||
2767 instr->opcode == aco_opcode::v_sub_co_u32_e64) {
2768 combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 2);
2769 } else if (instr->opcode == aco_opcode::v_subrev_u32 ||
2770 instr->opcode == aco_opcode::v_subrev_co_u32 ||
2771 instr->opcode == aco_opcode::v_subrev_co_u32_e64) {
2772 combine_add_sub_b2i(ctx, instr, aco_opcode::v_subbrev_co_u32, 1);
2773 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2774 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2775 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2776 combine_salu_lshl_add(ctx, instr);
2777 } else if (instr->opcode == aco_opcode::s_not_b32) {
2778 combine_salu_not_bitwise(ctx, instr);
2779 } else if (instr->opcode == aco_opcode::s_not_b64) {
2780 if (combine_inverse_comparison(ctx, instr)) ;
2781 else combine_salu_not_bitwise(ctx, instr);
2782 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 ||
2783 instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2784 if (combine_ordering_test(ctx, instr)) ;
2785 else if (combine_comparison_ordering(ctx, instr)) ;
2786 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2787 else combine_salu_n2(ctx, instr);
2788 } else {
2789 aco_opcode min, max, min3, max3, med3;
2790 bool some_gfx9_only;
2791 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2792 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2793 if (combine_minmax(ctx, instr, instr->opcode == min ? max : min, instr->opcode == min ? min3 : max3)) ;
2794 else combine_clamp(ctx, instr, min, max, med3);
2795 }
2796 }
2797 }
2798
2799 bool to_uniform_bool_instr(opt_ctx &ctx, aco_ptr<Instruction> &instr)
2800 {
2801 switch (instr->opcode) {
2802 case aco_opcode::s_and_b32:
2803 case aco_opcode::s_and_b64:
2804 instr->opcode = aco_opcode::s_and_b32;
2805 break;
2806 case aco_opcode::s_or_b32:
2807 case aco_opcode::s_or_b64:
2808 instr->opcode = aco_opcode::s_or_b32;
2809 break;
2810 case aco_opcode::s_xor_b32:
2811 case aco_opcode::s_xor_b64:
2812 instr->opcode = aco_opcode::s_absdiff_i32;
2813 break;
2814 default:
2815 /* Don't transform other instructions. They are very unlikely to appear here. */
2816 return false;
2817 }
2818
2819 for (Operand &op : instr->operands) {
2820 ctx.uses[op.tempId()]--;
2821
2822 if (ctx.info[op.tempId()].is_uniform_bool()) {
2823 /* Just use the uniform boolean temp. */
2824 op.setTemp(ctx.info[op.tempId()].temp);
2825 } else if (ctx.info[op.tempId()].is_uniform_bitwise()) {
2826 /* Use the SCC definition of the predecessor instruction.
2827 * This allows the predecessor to get picked up by the same optimization (if it has no divergent users),
2828 * and it also makes sure that the current instruction will keep working even if the predecessor won't be transformed.
2829 */
2830 Instruction *pred_instr = ctx.info[op.tempId()].instr;
2831 assert(pred_instr->definitions.size() >= 2);
2832 assert(pred_instr->definitions[1].isFixed() && pred_instr->definitions[1].physReg() == scc);
2833 op.setTemp(pred_instr->definitions[1].getTemp());
2834 } else {
2835 unreachable("Invalid operand on uniform bitwise instruction.");
2836 }
2837
2838 ctx.uses[op.tempId()]++;
2839 }
2840
2841 instr->definitions[0].setTemp(Temp(instr->definitions[0].tempId(), s1));
2842 assert(instr->operands[0].regClass() == s1);
2843 assert(instr->operands[1].regClass() == s1);
2844 return true;
2845 }
2846
2847 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2848 {
2849 const uint32_t threshold = 4;
2850
2851 if (is_dead(ctx.uses, instr.get())) {
2852 instr.reset();
2853 return;
2854 }
2855
2856 /* convert split_vector into a copy or extract_vector if only one definition is ever used */
2857 if (instr->opcode == aco_opcode::p_split_vector) {
2858 unsigned num_used = 0;
2859 unsigned idx = 0;
2860 unsigned split_offset = 0;
2861 for (unsigned i = 0, offset = 0; i < instr->definitions.size(); offset += instr->definitions[i++].bytes()) {
2862 if (ctx.uses[instr->definitions[i].tempId()]) {
2863 num_used++;
2864 idx = i;
2865 split_offset = offset;
2866 }
2867 }
2868 bool done = false;
2869 if (num_used == 1 && ctx.info[instr->operands[0].tempId()].is_vec() &&
2870 ctx.uses[instr->operands[0].tempId()] == 1) {
2871 Instruction *vec = ctx.info[instr->operands[0].tempId()].instr;
2872
2873 unsigned off = 0;
2874 Operand op;
2875 for (Operand& vec_op : vec->operands) {
2876 if (off == split_offset) {
2877 op = vec_op;
2878 break;
2879 }
2880 off += vec_op.bytes();
2881 }
2882 if (off != instr->operands[0].bytes() && op.bytes() == instr->definitions[idx].bytes()) {
2883 ctx.uses[instr->operands[0].tempId()]--;
2884 for (Operand& vec_op : vec->operands) {
2885 if (vec_op.isTemp())
2886 ctx.uses[vec_op.tempId()]--;
2887 }
2888 if (op.isTemp())
2889 ctx.uses[op.tempId()]++;
2890
2891 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 1, 1)};
2892 extract->operands[0] = op;
2893 extract->definitions[0] = instr->definitions[idx];
2894 instr.reset(extract.release());
2895
2896 done = true;
2897 }
2898 }
2899
2900 if (!done && num_used == 1 &&
2901 instr->operands[0].bytes() % instr->definitions[idx].bytes() == 0 &&
2902 split_offset % instr->definitions[idx].bytes() == 0) {
2903 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2904 extract->operands[0] = instr->operands[0];
2905 extract->operands[1] = Operand((uint32_t) split_offset / instr->definitions[idx].bytes());
2906 extract->definitions[0] = instr->definitions[idx];
2907 instr.reset(extract.release());
2908 }
2909 }
2910
2911 mad_info* mad_info = NULL;
2912 if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2913 mad_info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].instr->pass_flags];
2914 /* re-check mad instructions */
2915 if (ctx.uses[mad_info->mul_temp_id]) {
2916 ctx.uses[mad_info->mul_temp_id]++;
2917 if (instr->operands[0].isTemp())
2918 ctx.uses[instr->operands[0].tempId()]--;
2919 if (instr->operands[1].isTemp())
2920 ctx.uses[instr->operands[1].tempId()]--;
2921 instr.swap(mad_info->add_instr);
2922 mad_info = NULL;
2923 }
2924 /* check literals */
2925 else if (!instr->usesModifiers()) {
2926 /* FMA can only take literals on GFX10+ */
2927 if ((instr->opcode == aco_opcode::v_fma_f32 || instr->opcode == aco_opcode::v_fma_f16) &&
2928 ctx.program->chip_class < GFX10)
2929 return;
2930
2931 bool sgpr_used = false;
2932 uint32_t literal_idx = 0;
2933 uint32_t literal_uses = UINT32_MAX;
2934 for (unsigned i = 0; i < instr->operands.size(); i++)
2935 {
2936 if (instr->operands[i].isConstant() && i > 0) {
2937 literal_uses = UINT32_MAX;
2938 break;
2939 }
2940 if (!instr->operands[i].isTemp())
2941 continue;
2942 unsigned bits = get_operand_size(instr, i);
2943 /* if one of the operands is sgpr, we cannot add a literal somewhere else on pre-GFX10 or operands other than the 1st */
2944 if (instr->operands[i].getTemp().type() == RegType::sgpr && (i > 0 || ctx.program->chip_class < GFX10)) {
2945 if (!sgpr_used && ctx.info[instr->operands[i].tempId()].is_literal(bits)) {
2946 literal_uses = ctx.uses[instr->operands[i].tempId()];
2947 literal_idx = i;
2948 } else {
2949 literal_uses = UINT32_MAX;
2950 }
2951 sgpr_used = true;
2952 /* don't break because we still need to check constants */
2953 } else if (!sgpr_used &&
2954 ctx.info[instr->operands[i].tempId()].is_literal(bits) &&
2955 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2956 literal_uses = ctx.uses[instr->operands[i].tempId()];
2957 literal_idx = i;
2958 }
2959 }
2960
2961 /* Limit the number of literals to apply to not increase the code
2962 * size too much, but always apply literals for v_mad->v_madak
2963 * because both instructions are 64-bit and this doesn't increase
2964 * code size.
2965 * TODO: try to apply the literals earlier to lower the number of
2966 * uses below threshold
2967 */
2968 if (literal_uses < threshold || literal_idx == 2) {
2969 ctx.uses[instr->operands[literal_idx].tempId()]--;
2970 mad_info->check_literal = true;
2971 mad_info->literal_idx = literal_idx;
2972 return;
2973 }
2974 }
2975 }
2976
2977 /* Mark SCC needed, so the uniform boolean transformation won't swap the definitions when it isn't beneficial */
2978 if (instr->format == Format::PSEUDO_BRANCH &&
2979 instr->operands.size() &&
2980 instr->operands[0].isTemp()) {
2981 ctx.info[instr->operands[0].tempId()].set_scc_needed();
2982 return;
2983 } else if ((instr->opcode == aco_opcode::s_cselect_b64 ||
2984 instr->opcode == aco_opcode::s_cselect_b32) &&
2985 instr->operands[2].isTemp()) {
2986 ctx.info[instr->operands[2].tempId()].set_scc_needed();
2987 }
2988
2989 /* check for literals */
2990 if (!instr->isSALU() && !instr->isVALU())
2991 return;
2992
2993 /* Transform uniform bitwise boolean operations to 32-bit when there are no divergent uses. */
2994 if (instr->definitions.size() &&
2995 ctx.uses[instr->definitions[0].tempId()] == 0 &&
2996 ctx.info[instr->definitions[0].tempId()].is_uniform_bitwise()) {
2997 bool transform_done = to_uniform_bool_instr(ctx, instr);
2998
2999 if (transform_done && !ctx.info[instr->definitions[1].tempId()].is_scc_needed()) {
3000 /* Swap the two definition IDs in order to avoid overusing the SCC. This reduces extra moves generated by RA. */
3001 uint32_t def0_id = instr->definitions[0].getTemp().id();
3002 uint32_t def1_id = instr->definitions[1].getTemp().id();
3003 instr->definitions[0].setTemp(Temp(def1_id, s1));
3004 instr->definitions[1].setTemp(Temp(def0_id, s1));
3005 }
3006
3007 return;
3008 }
3009
3010 if (instr->isSDWA() || instr->isDPP() || (instr->isVOP3() && ctx.program->chip_class < GFX10))
3011 return; /* some encodings can't ever take literals */
3012
3013 /* we do not apply the literals yet as we don't know if it is profitable */
3014 Operand current_literal(s1);
3015
3016 unsigned literal_id = 0;
3017 unsigned literal_uses = UINT32_MAX;
3018 Operand literal(s1);
3019 unsigned num_operands = 1;
3020 if (instr->isSALU() || (ctx.program->chip_class >= GFX10 && can_use_VOP3(ctx, instr)))
3021 num_operands = instr->operands.size();
3022 /* catch VOP2 with a 3rd SGPR operand (e.g. v_cndmask_b32, v_addc_co_u32) */
3023 else if (instr->isVALU() && instr->operands.size() >= 3)
3024 return;
3025
3026 unsigned sgpr_ids[2] = {0, 0};
3027 bool is_literal_sgpr = false;
3028 uint32_t mask = 0;
3029
3030 /* choose a literal to apply */
3031 for (unsigned i = 0; i < num_operands; i++) {
3032 Operand op = instr->operands[i];
3033 unsigned bits = get_operand_size(instr, i);
3034
3035 if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr &&
3036 op.tempId() != sgpr_ids[0])
3037 sgpr_ids[!!sgpr_ids[0]] = op.tempId();
3038
3039 if (op.isLiteral()) {
3040 current_literal = op;
3041 continue;
3042 } else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal(bits)) {
3043 continue;
3044 }
3045
3046 if (!alu_can_accept_constant(instr->opcode, i))
3047 continue;
3048
3049 if (ctx.uses[op.tempId()] < literal_uses) {
3050 is_literal_sgpr = op.getTemp().type() == RegType::sgpr;
3051 mask = 0;
3052 literal = Operand(ctx.info[op.tempId()].val);
3053 literal_uses = ctx.uses[op.tempId()];
3054 literal_id = op.tempId();
3055 }
3056
3057 mask |= (op.tempId() == literal_id) << i;
3058 }
3059
3060
3061 /* don't go over the constant bus limit */
3062 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
3063 instr->opcode == aco_opcode::v_lshrrev_b64 ||
3064 instr->opcode == aco_opcode::v_ashrrev_i64;
3065 unsigned const_bus_limit = instr->isVALU() ? 1 : UINT32_MAX;
3066 if (ctx.program->chip_class >= GFX10 && !is_shift64)
3067 const_bus_limit = 2;
3068
3069 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
3070 if (num_sgprs == const_bus_limit && !is_literal_sgpr)
3071 return;
3072
3073 if (literal_id && literal_uses < threshold &&
3074 (current_literal.isUndefined() ||
3075 (current_literal.size() == literal.size() &&
3076 current_literal.constantValue() == literal.constantValue()))) {
3077 /* mark the literal to be applied */
3078 while (mask) {
3079 unsigned i = u_bit_scan(&mask);
3080 if (instr->operands[i].isTemp() && instr->operands[i].tempId() == literal_id)
3081 ctx.uses[instr->operands[i].tempId()]--;
3082 }
3083 }
3084 }
3085
3086
3087 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
3088 {
3089 /* Cleanup Dead Instructions */
3090 if (!instr)
3091 return;
3092
3093 /* apply literals on MAD */
3094 if (!instr->definitions.empty() && ctx.info[instr->definitions[0].tempId()].is_mad()) {
3095 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].instr->pass_flags];
3096 if (info->check_literal &&
3097 (ctx.uses[instr->operands[info->literal_idx].tempId()] == 0 || info->literal_idx == 2)) {
3098 aco_ptr<Instruction> new_mad;
3099
3100 aco_opcode new_op = info->literal_idx == 2 ? aco_opcode::v_madak_f32 : aco_opcode::v_madmk_f32;
3101 if (instr->opcode == aco_opcode::v_fma_f32)
3102 new_op = info->literal_idx == 2 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_fmamk_f32;
3103 else if (instr->opcode == aco_opcode::v_mad_f16 || instr->opcode == aco_opcode::v_mad_legacy_f16)
3104 new_op = info->literal_idx == 2 ? aco_opcode::v_madak_f16 : aco_opcode::v_madmk_f16;
3105 else if (instr->opcode == aco_opcode::v_fma_f16)
3106 new_op = info->literal_idx == 2 ? aco_opcode::v_fmaak_f16 : aco_opcode::v_fmamk_f16;
3107
3108 new_mad.reset(create_instruction<VOP2_instruction>(new_op, Format::VOP2, 3, 1));
3109 if (info->literal_idx == 2) { /* add literal -> madak */
3110 new_mad->operands[0] = instr->operands[0];
3111 new_mad->operands[1] = instr->operands[1];
3112 } else { /* mul literal -> madmk */
3113 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
3114 new_mad->operands[1] = instr->operands[2];
3115 }
3116 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
3117 new_mad->definitions[0] = instr->definitions[0];
3118 ctx.instructions.emplace_back(std::move(new_mad));
3119 return;
3120 }
3121 }
3122
3123 /* apply literals on other SALU/VALU */
3124 if (instr->isSALU() || instr->isVALU()) {
3125 for (unsigned i = 0; i < instr->operands.size(); i++) {
3126 Operand op = instr->operands[i];
3127 unsigned bits = get_operand_size(instr, i);
3128 if (op.isTemp() && ctx.info[op.tempId()].is_literal(bits) && ctx.uses[op.tempId()] == 0) {
3129 Operand literal(ctx.info[op.tempId()].val);
3130 if (instr->isVALU() && i > 0)
3131 to_VOP3(ctx, instr);
3132 instr->operands[i] = literal;
3133 }
3134 }
3135 }
3136
3137 ctx.instructions.emplace_back(std::move(instr));
3138 }
3139
3140
3141 void optimize(Program* program)
3142 {
3143 opt_ctx ctx;
3144 ctx.program = program;
3145 std::vector<ssa_info> info(program->peekAllocationId());
3146 ctx.info = info.data();
3147
3148 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
3149 for (Block& block : program->blocks) {
3150 for (aco_ptr<Instruction>& instr : block.instructions)
3151 label_instruction(ctx, block, instr);
3152 }
3153
3154 ctx.uses = dead_code_analysis(program);
3155
3156 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
3157 for (Block& block : program->blocks) {
3158 for (aco_ptr<Instruction>& instr : block.instructions)
3159 combine_instruction(ctx, block, instr);
3160 }
3161
3162 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
3163 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
3164 Block* block = &(*it);
3165 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
3166 select_instruction(ctx, *it);
3167 }
3168
3169 /* 4. Add literals to instructions */
3170 for (Block& block : program->blocks) {
3171 ctx.instructions.clear();
3172 for (aco_ptr<Instruction>& instr : block.instructions)
3173 apply_literals(ctx, instr);
3174 block.instructions.swap(ctx.instructions);
3175 }
3176
3177 }
3178
3179 }