68831a653a353d635d1d3e1265e8a8efeb47a22a
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint32_t literal_idx;
56 bool needs_vop3;
57 bool check_literal;
58
59 mad_info(aco_ptr<Instruction> instr, uint32_t id, bool vop3)
60 : add_instr(std::move(instr)), mul_temp_id(id), needs_vop3(vop3), check_literal(false) {}
61 };
62
63 enum Label {
64 label_vec = 1 << 0,
65 label_constant = 1 << 1,
66 label_abs = 1 << 2,
67 label_neg = 1 << 3,
68 label_mul = 1 << 4,
69 label_temp = 1 << 5,
70 label_literal = 1 << 6,
71 label_mad = 1 << 7,
72 label_omod2 = 1 << 8,
73 label_omod4 = 1 << 9,
74 label_omod5 = 1 << 10,
75 label_omod_success = 1 << 11,
76 label_clamp = 1 << 12,
77 label_clamp_success = 1 << 13,
78 label_undefined = 1 << 14,
79 label_vcc = 1 << 15,
80 label_b2f = 1 << 16,
81 label_add_sub = 1 << 17,
82 label_bitwise = 1 << 18,
83 label_minmax = 1 << 19,
84 label_fcmp = 1 << 20,
85 label_uniform_bool = 1 << 21,
86 };
87
88 static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success | label_add_sub | label_bitwise | label_minmax | label_fcmp;
89 static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool;
90 static constexpr uint32_t val_labels = label_constant | label_literal | label_mad;
91
92 struct ssa_info {
93 uint32_t val;
94 union {
95 Temp temp;
96 Instruction* instr;
97 };
98 uint32_t label;
99
100 void add_label(Label new_label)
101 {
102 /* Since all labels which use "instr" use it for the same thing
103 * (indicating the defining instruction), there is no need to clear
104 * any other instr labels. */
105 if (new_label & instr_labels)
106 label &= ~temp_labels; /* instr and temp alias */
107
108 if (new_label & temp_labels) {
109 label &= ~temp_labels;
110 label &= ~instr_labels; /* instr and temp alias */
111 }
112
113 if (new_label & val_labels)
114 label &= ~val_labels;
115
116 label |= new_label;
117 }
118
119 void set_vec(Instruction* vec)
120 {
121 add_label(label_vec);
122 instr = vec;
123 }
124
125 bool is_vec()
126 {
127 return label & label_vec;
128 }
129
130 void set_constant(uint32_t constant)
131 {
132 add_label(label_constant);
133 val = constant;
134 }
135
136 bool is_constant()
137 {
138 return label & label_constant;
139 }
140
141 void set_abs(Temp abs_temp)
142 {
143 add_label(label_abs);
144 temp = abs_temp;
145 }
146
147 bool is_abs()
148 {
149 return label & label_abs;
150 }
151
152 void set_neg(Temp neg_temp)
153 {
154 add_label(label_neg);
155 temp = neg_temp;
156 }
157
158 bool is_neg()
159 {
160 return label & label_neg;
161 }
162
163 void set_neg_abs(Temp neg_abs_temp)
164 {
165 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
166 temp = neg_abs_temp;
167 }
168
169 void set_mul(Instruction* mul)
170 {
171 add_label(label_mul);
172 instr = mul;
173 }
174
175 bool is_mul()
176 {
177 return label & label_mul;
178 }
179
180 void set_temp(Temp tmp)
181 {
182 add_label(label_temp);
183 temp = tmp;
184 }
185
186 bool is_temp()
187 {
188 return label & label_temp;
189 }
190
191 void set_literal(uint32_t lit)
192 {
193 add_label(label_literal);
194 val = lit;
195 }
196
197 bool is_literal()
198 {
199 return label & label_literal;
200 }
201
202 void set_mad(Instruction* mad, uint32_t mad_info_idx)
203 {
204 add_label(label_mad);
205 val = mad_info_idx;
206 instr = mad;
207 }
208
209 bool is_mad()
210 {
211 return label & label_mad;
212 }
213
214 void set_omod2()
215 {
216 add_label(label_omod2);
217 }
218
219 bool is_omod2()
220 {
221 return label & label_omod2;
222 }
223
224 void set_omod4()
225 {
226 add_label(label_omod4);
227 }
228
229 bool is_omod4()
230 {
231 return label & label_omod4;
232 }
233
234 void set_omod5()
235 {
236 add_label(label_omod5);
237 }
238
239 bool is_omod5()
240 {
241 return label & label_omod5;
242 }
243
244 void set_omod_success(Instruction* omod_instr)
245 {
246 add_label(label_omod_success);
247 instr = omod_instr;
248 }
249
250 bool is_omod_success()
251 {
252 return label & label_omod_success;
253 }
254
255 void set_clamp()
256 {
257 add_label(label_clamp);
258 }
259
260 bool is_clamp()
261 {
262 return label & label_clamp;
263 }
264
265 void set_clamp_success(Instruction* clamp_instr)
266 {
267 add_label(label_clamp_success);
268 instr = clamp_instr;
269 }
270
271 bool is_clamp_success()
272 {
273 return label & label_clamp_success;
274 }
275
276 void set_undefined()
277 {
278 add_label(label_undefined);
279 }
280
281 bool is_undefined()
282 {
283 return label & label_undefined;
284 }
285
286 void set_vcc(Temp vcc)
287 {
288 add_label(label_vcc);
289 temp = vcc;
290 }
291
292 bool is_vcc()
293 {
294 return label & label_vcc;
295 }
296
297 bool is_constant_or_literal()
298 {
299 return is_constant() || is_literal();
300 }
301
302 void set_b2f(Temp val)
303 {
304 add_label(label_b2f);
305 temp = val;
306 }
307
308 bool is_b2f()
309 {
310 return label & label_b2f;
311 }
312
313 void set_add_sub(Instruction *add_sub_instr)
314 {
315 add_label(label_add_sub);
316 instr = add_sub_instr;
317 }
318
319 bool is_add_sub()
320 {
321 return label & label_add_sub;
322 }
323
324 void set_bitwise(Instruction *bitwise_instr)
325 {
326 add_label(label_bitwise);
327 instr = bitwise_instr;
328 }
329
330 bool is_bitwise()
331 {
332 return label & label_bitwise;
333 }
334
335 void set_minmax(Instruction *minmax_instr)
336 {
337 add_label(label_minmax);
338 instr = minmax_instr;
339 }
340
341 bool is_minmax()
342 {
343 return label & label_minmax;
344 }
345
346 void set_fcmp(Instruction *fcmp_instr)
347 {
348 add_label(label_fcmp);
349 instr = fcmp_instr;
350 }
351
352 bool is_fcmp()
353 {
354 return label & label_fcmp;
355 }
356
357 void set_uniform_bool(Temp uniform_bool)
358 {
359 add_label(label_uniform_bool);
360 temp = uniform_bool;
361 }
362
363 bool is_uniform_bool()
364 {
365 return label & label_uniform_bool;
366 }
367
368 };
369
370 struct opt_ctx {
371 Program* program;
372 std::vector<aco_ptr<Instruction>> instructions;
373 ssa_info* info;
374 std::pair<uint32_t,Temp> last_literal;
375 std::vector<mad_info> mad_infos;
376 std::vector<uint16_t> uses;
377 };
378
379 bool can_swap_operands(aco_ptr<Instruction>& instr)
380 {
381 if (instr->operands[0].isConstant() ||
382 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
383 return false;
384
385 switch (instr->opcode) {
386 case aco_opcode::v_add_f32:
387 case aco_opcode::v_mul_f32:
388 case aco_opcode::v_or_b32:
389 case aco_opcode::v_and_b32:
390 case aco_opcode::v_xor_b32:
391 case aco_opcode::v_max_f32:
392 case aco_opcode::v_min_f32:
393 case aco_opcode::v_cmp_eq_f32:
394 case aco_opcode::v_cmp_lg_f32:
395 return true;
396 case aco_opcode::v_sub_f32:
397 instr->opcode = aco_opcode::v_subrev_f32;
398 return true;
399 case aco_opcode::v_cmp_lt_f32:
400 instr->opcode = aco_opcode::v_cmp_gt_f32;
401 return true;
402 case aco_opcode::v_cmp_ge_f32:
403 instr->opcode = aco_opcode::v_cmp_le_f32;
404 return true;
405 case aco_opcode::v_cmp_lt_i32:
406 instr->opcode = aco_opcode::v_cmp_gt_i32;
407 return true;
408 default:
409 return false;
410 }
411 }
412
413 bool can_use_VOP3(aco_ptr<Instruction>& instr)
414 {
415 if (instr->operands.size() && instr->operands[0].isLiteral())
416 return false;
417
418 if (instr->isDPP() || instr->isSDWA())
419 return false;
420
421 return instr->opcode != aco_opcode::v_madmk_f32 &&
422 instr->opcode != aco_opcode::v_madak_f32 &&
423 instr->opcode != aco_opcode::v_madmk_f16 &&
424 instr->opcode != aco_opcode::v_madak_f16 &&
425 instr->opcode != aco_opcode::v_readlane_b32 &&
426 instr->opcode != aco_opcode::v_writelane_b32 &&
427 instr->opcode != aco_opcode::v_readfirstlane_b32;
428 }
429
430 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
431 {
432 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
433 instr->opcode != aco_opcode::v_readlane_b32 &&
434 instr->opcode != aco_opcode::v_readlane_b32_e64 &&
435 instr->opcode != aco_opcode::v_writelane_b32 &&
436 instr->opcode != aco_opcode::v_writelane_b32_e64;
437 }
438
439 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
440 {
441 if (instr->isVOP3())
442 return;
443
444 assert(!instr->operands[0].isLiteral());
445 aco_ptr<Instruction> tmp = std::move(instr);
446 Format format = asVOP3(tmp->format);
447 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
448 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
449 for (unsigned i = 0; i < instr->definitions.size(); i++) {
450 instr->definitions[i] = tmp->definitions[i];
451 if (instr->definitions[i].isTemp()) {
452 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
453 if (info.label & instr_labels && info.instr == tmp.get())
454 info.instr = instr.get();
455 }
456 }
457 }
458
459 /* only covers special cases */
460 bool can_accept_constant(aco_ptr<Instruction>& instr, unsigned operand)
461 {
462 switch (instr->opcode) {
463 case aco_opcode::v_interp_p2_f32:
464 case aco_opcode::v_mac_f32:
465 case aco_opcode::v_writelane_b32:
466 case aco_opcode::v_writelane_b32_e64:
467 case aco_opcode::v_cndmask_b32:
468 return operand != 2;
469 case aco_opcode::s_addk_i32:
470 case aco_opcode::s_mulk_i32:
471 case aco_opcode::p_wqm:
472 case aco_opcode::p_extract_vector:
473 case aco_opcode::p_split_vector:
474 case aco_opcode::v_readlane_b32:
475 case aco_opcode::v_readlane_b32_e64:
476 case aco_opcode::v_readfirstlane_b32:
477 return operand != 0;
478 default:
479 if ((instr->format == Format::MUBUF ||
480 instr->format == Format::MIMG) &&
481 instr->definitions.size() == 1 &&
482 instr->operands.size() == 4) {
483 return operand != 3;
484 }
485 return true;
486 }
487 }
488
489 bool valu_can_accept_literal(opt_ctx& ctx, aco_ptr<Instruction>& instr, unsigned operand)
490 {
491 /* instructions like v_cndmask_b32 can't take a literal because they always
492 * read SGPRs */
493 if (instr->operands.size() >= 3 &&
494 instr->operands[2].isTemp() && instr->operands[2].regClass().type() == RegType::sgpr)
495 return false;
496
497 // TODO: VOP3 can take a literal on GFX10
498 return !instr->isSDWA() && !instr->isDPP() && !instr->isVOP3() &&
499 operand == 0 && can_accept_constant(instr, operand);
500 }
501
502 bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
503 {
504 if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
505 instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64)
506 return operand != 1;
507 return true;
508 }
509
510 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
511 {
512 Operand op = instr->operands[op_index];
513
514 if (!op.isTemp())
515 return false;
516 Temp tmp = op.getTemp();
517 if (!ctx.info[tmp.id()].is_add_sub())
518 return false;
519
520 Instruction *add_instr = ctx.info[tmp.id()].instr;
521
522 switch (add_instr->opcode) {
523 case aco_opcode::v_add_u32:
524 case aco_opcode::v_add_co_u32:
525 case aco_opcode::s_add_i32:
526 case aco_opcode::s_add_u32:
527 break;
528 default:
529 return false;
530 }
531
532 if (add_instr->usesModifiers())
533 return false;
534
535 for (unsigned i = 0; i < 2; i++) {
536 if (add_instr->operands[i].isConstant()) {
537 *offset = add_instr->operands[i].constantValue();
538 } else if (add_instr->operands[i].isTemp() &&
539 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) {
540 *offset = ctx.info[add_instr->operands[i].tempId()].val;
541 } else {
542 continue;
543 }
544 if (!add_instr->operands[!i].isTemp())
545 continue;
546
547 uint32_t offset2 = 0;
548 if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
549 *offset += offset2;
550 } else {
551 *base = add_instr->operands[!i].getTemp();
552 }
553 return true;
554 }
555
556 return false;
557 }
558
559 Operand get_constant_op(opt_ctx &ctx, uint32_t val)
560 {
561 // TODO: this functions shouldn't be needed if we store Operand instead of value.
562 Operand op(val);
563 if (val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
564 op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
565 return op;
566 }
567
568 void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
569 {
570 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
571 ASSERTED bool all_const = false;
572 for (Operand& op : instr->operands)
573 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal());
574 perfwarn(all_const, "All instruction operands are constant", instr.get());
575 }
576
577 for (unsigned i = 0; i < instr->operands.size(); i++)
578 {
579 if (!instr->operands[i].isTemp())
580 continue;
581
582 ssa_info info = ctx.info[instr->operands[i].tempId()];
583 /* propagate undef */
584 if (info.is_undefined() && is_phi(instr))
585 instr->operands[i] = Operand(instr->operands[i].regClass());
586 /* propagate reg->reg of same type */
587 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
588 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
589 info = ctx.info[info.temp.id()];
590 }
591
592 /* SALU / PSEUDO: propagate inline constants */
593 if (instr->isSALU() || instr->format == Format::PSEUDO) {
594 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
595 instr->operands[i].setTemp(info.temp);
596 info = ctx.info[info.temp.id()];
597 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
598 /* propagate vgpr if it can take it */
599 switch (instr->opcode) {
600 case aco_opcode::p_create_vector:
601 case aco_opcode::p_split_vector:
602 case aco_opcode::p_extract_vector:
603 case aco_opcode::p_phi: {
604 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
605 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
606 if (all_vgpr) {
607 instr->operands[i] = Operand(info.temp);
608 info = ctx.info[info.temp.id()];
609 }
610 break;
611 }
612 default:
613 break;
614 }
615 }
616 if ((info.is_constant() || (info.is_literal() && instr->format == Format::PSEUDO)) && !instr->operands[i].isFixed() && can_accept_constant(instr, i)) {
617 instr->operands[i] = get_constant_op(ctx, info.val);
618 continue;
619 }
620 }
621
622 /* VALU: propagate neg, abs & inline constants */
623 else if (instr->isVALU()) {
624 if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
625 instr->operands[i].setTemp(info.temp);
626 info = ctx.info[info.temp.id()];
627 }
628 if (info.is_abs() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
629 if (!instr->isDPP())
630 to_VOP3(ctx, instr);
631 instr->operands[i] = Operand(info.temp);
632 if (instr->isDPP())
633 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
634 else
635 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
636 }
637 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
638 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
639 instr->operands[i].setTemp(info.temp);
640 continue;
641 } else if (info.is_neg() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
642 if (!instr->isDPP())
643 to_VOP3(ctx, instr);
644 instr->operands[i].setTemp(info.temp);
645 if (instr->isDPP())
646 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
647 else
648 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
649 continue;
650 }
651 if (info.is_constant() && can_accept_constant(instr, i)) {
652 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
653 if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) {
654 instr->operands[i] = get_constant_op(ctx, info.val);
655 continue;
656 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
657 instr->operands[i] = instr->operands[0];
658 instr->operands[0] = get_constant_op(ctx, info.val);
659 continue;
660 } else if (can_use_VOP3(instr)) {
661 to_VOP3(ctx, instr);
662 instr->operands[i] = get_constant_op(ctx, info.val);
663 continue;
664 }
665 }
666 }
667
668 /* MUBUF: propagate constants and combine additions */
669 else if (instr->format == Format::MUBUF) {
670 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
671 Temp base;
672 uint32_t offset;
673 while (info.is_temp())
674 info = ctx.info[info.temp.id()];
675
676 if (mubuf->offen && i == 0 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
677 assert(!mubuf->idxen);
678 instr->operands[i] = Operand(v1);
679 mubuf->offset += info.val;
680 mubuf->offen = false;
681 continue;
682 } else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
683 instr->operands[2] = Operand((uint32_t) 0);
684 mubuf->offset += info.val;
685 continue;
686 } else if (mubuf->offen && i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
687 assert(!mubuf->idxen);
688 instr->operands[i].setTemp(base);
689 mubuf->offset += offset;
690 continue;
691 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
692 instr->operands[i].setTemp(base);
693 mubuf->offset += offset;
694 continue;
695 }
696 }
697
698 /* DS: combine additions */
699 else if (instr->format == Format::DS) {
700
701 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
702 Temp base;
703 uint32_t offset;
704 if (i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == instr->operands[i].regClass()) {
705 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
706 instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
707 if (offset % 4 == 0 &&
708 ds->offset0 + (offset >> 2) <= 255 &&
709 ds->offset1 + (offset >> 2) <= 255) {
710 instr->operands[i].setTemp(base);
711 ds->offset0 += offset >> 2;
712 ds->offset1 += offset >> 2;
713 }
714 } else {
715 if (ds->offset0 + offset <= 65535) {
716 instr->operands[i].setTemp(base);
717 ds->offset0 += offset;
718 }
719 }
720 }
721 }
722
723 /* SMEM: propagate constants and combine additions */
724 else if (instr->format == Format::SMEM) {
725
726 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
727 Temp base;
728 uint32_t offset;
729 if (i == 1 && info.is_constant_or_literal() &&
730 (ctx.program->chip_class < GFX8 || info.val <= 0xFFFFF)) {
731 instr->operands[i] = Operand(info.val);
732 continue;
733 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
734 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
735 if (soe &&
736 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() ||
737 ctx.info[smem->operands.back().tempId()].val != 0)) {
738 continue;
739 }
740 if (soe) {
741 smem->operands[1] = Operand(offset);
742 smem->operands.back() = Operand(base);
743 } else {
744 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
745 new_instr->operands[0] = smem->operands[0];
746 new_instr->operands[1] = Operand(offset);
747 if (smem->definitions.empty())
748 new_instr->operands[2] = smem->operands[2];
749 new_instr->operands.back() = Operand(base);
750 if (!smem->definitions.empty())
751 new_instr->definitions[0] = smem->definitions[0];
752 new_instr->can_reorder = smem->can_reorder;
753 new_instr->barrier = smem->barrier;
754 instr.reset(new_instr);
755 smem = static_cast<SMEM_instruction *>(instr.get());
756 }
757 continue;
758 }
759 }
760 }
761
762 /* if this instruction doesn't define anything, return */
763 if (instr->definitions.empty())
764 return;
765
766 switch (instr->opcode) {
767 case aco_opcode::p_create_vector: {
768 unsigned num_ops = instr->operands.size();
769 for (const Operand& op : instr->operands) {
770 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
771 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
772 }
773 if (num_ops != instr->operands.size()) {
774 aco_ptr<Instruction> old_vec = std::move(instr);
775 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
776 instr->definitions[0] = old_vec->definitions[0];
777 unsigned k = 0;
778 for (Operand& old_op : old_vec->operands) {
779 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
780 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++) {
781 Operand op = ctx.info[old_op.tempId()].instr->operands[j];
782 if (op.isTemp() && ctx.info[op.tempId()].is_temp() &&
783 ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type())
784 op.setTemp(ctx.info[op.tempId()].temp);
785 instr->operands[k++] = op;
786 }
787 } else {
788 instr->operands[k++] = old_op;
789 }
790 }
791 assert(k == num_ops);
792 }
793 if (instr->operands.size() == 1 && instr->operands[0].isTemp())
794 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
795 else if (instr->definitions[0].getTemp().size() == instr->operands.size())
796 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
797 break;
798 }
799 case aco_opcode::p_split_vector: {
800 if (!ctx.info[instr->operands[0].tempId()].is_vec())
801 break;
802 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
803 assert(instr->definitions.size() == vec->operands.size());
804 for (unsigned i = 0; i < instr->definitions.size(); i++) {
805 Operand vec_op = vec->operands[i];
806 if (vec_op.isConstant()) {
807 if (vec_op.isLiteral())
808 ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue());
809 else if (vec_op.size() == 1)
810 ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue());
811 } else {
812 assert(vec_op.isTemp());
813 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
814 }
815 }
816 break;
817 }
818 case aco_opcode::p_extract_vector: { /* mov */
819 if (!ctx.info[instr->operands[0].tempId()].is_vec())
820 break;
821 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
822 if (vec->definitions[0].getTemp().size() == vec->operands.size() && /* TODO: what about 64bit or other combinations? */
823 vec->operands[0].size() == instr->definitions[0].size()) {
824
825 /* convert this extract into a mov instruction */
826 Operand vec_op = vec->operands[instr->operands[1].constantValue()];
827 bool is_vgpr = instr->definitions[0].getTemp().type() == RegType::vgpr;
828 aco_opcode opcode = is_vgpr ? aco_opcode::v_mov_b32 : aco_opcode::s_mov_b32;
829 Format format = is_vgpr ? Format::VOP1 : Format::SOP1;
830 instr->opcode = opcode;
831 instr->format = format;
832 while (instr->operands.size() > 1)
833 instr->operands.pop_back();
834 instr->operands[0] = vec_op;
835
836 if (vec_op.isConstant()) {
837 if (vec_op.isLiteral())
838 ctx.info[instr->definitions[0].tempId()].set_literal(vec_op.constantValue());
839 else if (vec_op.size() == 1)
840 ctx.info[instr->definitions[0].tempId()].set_constant(vec_op.constantValue());
841 } else {
842 assert(vec_op.isTemp());
843 ctx.info[instr->definitions[0].tempId()].set_temp(vec_op.getTemp());
844 }
845 }
846 break;
847 }
848 case aco_opcode::s_mov_b32: /* propagate */
849 case aco_opcode::s_mov_b64:
850 case aco_opcode::v_mov_b32:
851 case aco_opcode::p_as_uniform:
852 if (instr->definitions[0].isFixed()) {
853 /* don't copy-propagate copies into fixed registers */
854 } else if (instr->usesModifiers()) {
855 // TODO
856 } else if (instr->operands[0].isConstant()) {
857 if (instr->operands[0].isLiteral())
858 ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue());
859 else if (instr->operands[0].size() == 1)
860 ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue());
861 } else if (instr->operands[0].isTemp()) {
862 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
863 } else {
864 assert(instr->operands[0].isFixed());
865 }
866 break;
867 case aco_opcode::p_is_helper:
868 if (!ctx.program->needs_wqm)
869 ctx.info[instr->definitions[0].tempId()].set_constant(0u);
870 break;
871 case aco_opcode::s_movk_i32: {
872 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
873 v = v & 0x8000 ? (v | 0xffff0000) : v;
874 if (v <= 64 || v >= 0xfffffff0)
875 ctx.info[instr->definitions[0].tempId()].set_constant(v);
876 else
877 ctx.info[instr->definitions[0].tempId()].set_literal(v);
878 break;
879 }
880 case aco_opcode::v_bfrev_b32:
881 case aco_opcode::s_brev_b32: {
882 if (instr->operands[0].isConstant()) {
883 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
884 if (v <= 64 || v >= 0xfffffff0)
885 ctx.info[instr->definitions[0].tempId()].set_constant(v);
886 else
887 ctx.info[instr->definitions[0].tempId()].set_literal(v);
888 }
889 break;
890 }
891 case aco_opcode::s_bfm_b32: {
892 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
893 unsigned size = instr->operands[0].constantValue() & 0x1f;
894 unsigned start = instr->operands[1].constantValue() & 0x1f;
895 uint32_t v = ((1u << size) - 1u) << start;
896 if (v <= 64 || v >= 0xfffffff0)
897 ctx.info[instr->definitions[0].tempId()].set_constant(v);
898 else
899 ctx.info[instr->definitions[0].tempId()].set_literal(v);
900 }
901 }
902 case aco_opcode::v_mul_f32: { /* omod */
903 /* TODO: try to move the negate/abs modifier to the consumer instead */
904 if (instr->usesModifiers())
905 break;
906
907 for (unsigned i = 0; i < 2; i++) {
908 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
909 if (instr->operands[!i].constantValue() == 0x40000000) { /* 2.0 */
910 ctx.info[instr->operands[i].tempId()].set_omod2();
911 } else if (instr->operands[!i].constantValue() == 0x40800000) { /* 4.0 */
912 ctx.info[instr->operands[i].tempId()].set_omod4();
913 } else if (instr->operands[!i].constantValue() == 0x3f000000) { /* 0.5 */
914 ctx.info[instr->operands[i].tempId()].set_omod5();
915 } else if (instr->operands[!i].constantValue() == 0x3f800000 &&
916 !block.fp_mode.must_flush_denorms32) { /* 1.0 */
917 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
918 } else {
919 continue;
920 }
921 break;
922 }
923 }
924 break;
925 }
926 case aco_opcode::v_and_b32: /* abs */
927 if (!instr->usesModifiers() && instr->operands[0].constantEquals(0x7FFFFFFF) &&
928 instr->operands[1].isTemp() && instr->operands[1].getTemp().type() == RegType::vgpr)
929 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
930 else
931 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
932 break;
933 case aco_opcode::v_xor_b32: { /* neg */
934 if (!instr->usesModifiers() && instr->operands[0].constantEquals(0x80000000u) && instr->operands[1].isTemp()) {
935 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
936 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
937 } else if (instr->operands[1].getTemp().type() == RegType::vgpr) {
938 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
939 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
940 instr->opcode = aco_opcode::v_or_b32;
941 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
942 } else {
943 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
944 }
945 }
946 } else {
947 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
948 }
949 break;
950 }
951 case aco_opcode::v_med3_f32: { /* clamp */
952 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
953 if (vop3->abs[0] || vop3->abs[1] || vop3->abs[2] ||
954 vop3->neg[0] || vop3->neg[1] || vop3->neg[2] ||
955 vop3->omod != 0 || vop3->opsel != 0)
956 break;
957
958 unsigned idx = 0;
959 bool found_zero = false, found_one = false;
960 for (unsigned i = 0; i < 3; i++)
961 {
962 if (instr->operands[i].constantEquals(0))
963 found_zero = true;
964 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
965 found_one = true;
966 else
967 idx = i;
968 }
969 if (found_zero && found_one && instr->operands[idx].isTemp()) {
970 ctx.info[instr->operands[idx].tempId()].set_clamp();
971 }
972 break;
973 }
974 case aco_opcode::v_cndmask_b32:
975 if (instr->operands[0].constantEquals(0) &&
976 instr->operands[1].constantEquals(0xFFFFFFFF) &&
977 instr->operands[2].isTemp())
978 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
979 else if (instr->operands[0].constantEquals(0) &&
980 instr->operands[1].constantEquals(0x3f800000u) &&
981 instr->operands[2].isTemp())
982 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
983 break;
984 case aco_opcode::v_cmp_lg_u32:
985 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
986 instr->operands[0].constantEquals(0) &&
987 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
988 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
989 break;
990 case aco_opcode::p_phi:
991 case aco_opcode::p_linear_phi: {
992 /* lower_bool_phis() can create phis like this */
993 bool all_same_temp = instr->operands[0].isTemp();
994 /* this check is needed when moving uniform loop counters out of a divergent loop */
995 if (all_same_temp)
996 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
997 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
998 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
999 all_same_temp = false;
1000 }
1001 if (all_same_temp) {
1002 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1003 } else {
1004 bool all_undef = instr->operands[0].isUndefined();
1005 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
1006 if (!instr->operands[i].isUndefined())
1007 all_undef = false;
1008 }
1009 if (all_undef)
1010 ctx.info[instr->definitions[0].tempId()].set_undefined();
1011 }
1012 break;
1013 }
1014 case aco_opcode::v_add_u32:
1015 case aco_opcode::v_add_co_u32:
1016 case aco_opcode::s_add_i32:
1017 case aco_opcode::s_add_u32:
1018 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
1019 break;
1020 case aco_opcode::s_and_b32:
1021 case aco_opcode::s_and_b64:
1022 if (instr->operands[1].isFixed() && instr->operands[1].physReg() == exec &&
1023 instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1024 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
1025 }
1026 /* fallthrough */
1027 case aco_opcode::s_not_b32:
1028 case aco_opcode::s_not_b64:
1029 case aco_opcode::s_or_b32:
1030 case aco_opcode::s_or_b64:
1031 case aco_opcode::s_xor_b32:
1032 case aco_opcode::s_xor_b64:
1033 case aco_opcode::s_lshl_b32:
1034 case aco_opcode::v_or_b32:
1035 case aco_opcode::v_lshlrev_b32:
1036 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1037 break;
1038 case aco_opcode::v_min_f32:
1039 case aco_opcode::v_min_f16:
1040 case aco_opcode::v_min_u32:
1041 case aco_opcode::v_min_i32:
1042 case aco_opcode::v_min_u16:
1043 case aco_opcode::v_min_i16:
1044 case aco_opcode::v_max_f32:
1045 case aco_opcode::v_max_f16:
1046 case aco_opcode::v_max_u32:
1047 case aco_opcode::v_max_i32:
1048 case aco_opcode::v_max_u16:
1049 case aco_opcode::v_max_i16:
1050 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
1051 break;
1052 case aco_opcode::v_cmp_lt_f32:
1053 case aco_opcode::v_cmp_eq_f32:
1054 case aco_opcode::v_cmp_le_f32:
1055 case aco_opcode::v_cmp_gt_f32:
1056 case aco_opcode::v_cmp_lg_f32:
1057 case aco_opcode::v_cmp_ge_f32:
1058 case aco_opcode::v_cmp_o_f32:
1059 case aco_opcode::v_cmp_u_f32:
1060 case aco_opcode::v_cmp_nge_f32:
1061 case aco_opcode::v_cmp_nlg_f32:
1062 case aco_opcode::v_cmp_ngt_f32:
1063 case aco_opcode::v_cmp_nle_f32:
1064 case aco_opcode::v_cmp_neq_f32:
1065 case aco_opcode::v_cmp_nlt_f32:
1066 ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
1067 break;
1068 case aco_opcode::s_cselect_b64:
1069 case aco_opcode::s_cselect_b32:
1070 if (instr->operands[0].constantEquals((unsigned) -1) &&
1071 instr->operands[1].constantEquals(0)) {
1072 /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
1073 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
1074 }
1075 break;
1076 default:
1077 break;
1078 }
1079 }
1080
1081 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse)
1082 {
1083 *ordered = *unordered = op;
1084 switch (op) {
1085 #define CMP(ord, unord) \
1086 case aco_opcode::v_cmp_##ord##_f32:\
1087 case aco_opcode::v_cmp_n##unord##_f32:\
1088 *ordered = aco_opcode::v_cmp_##ord##_f32;\
1089 *unordered = aco_opcode::v_cmp_n##unord##_f32;\
1090 *inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\
1091 return true;
1092 CMP(lt, /*n*/ge)
1093 CMP(eq, /*n*/lg)
1094 CMP(le, /*n*/gt)
1095 CMP(gt, /*n*/le)
1096 CMP(lg, /*n*/eq)
1097 CMP(ge, /*n*/lt)
1098 #undef CMP
1099 default:
1100 return false;
1101 }
1102 }
1103
1104 aco_opcode get_ordered(aco_opcode op)
1105 {
1106 aco_opcode ordered, unordered, inverse;
1107 return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::last_opcode;
1108 }
1109
1110 aco_opcode get_unordered(aco_opcode op)
1111 {
1112 aco_opcode ordered, unordered, inverse;
1113 return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::last_opcode;
1114 }
1115
1116 aco_opcode get_inverse(aco_opcode op)
1117 {
1118 aco_opcode ordered, unordered, inverse;
1119 return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::last_opcode;
1120 }
1121
1122 bool is_cmp(aco_opcode op)
1123 {
1124 aco_opcode ordered, unordered, inverse;
1125 return get_cmp_info(op, &ordered, &unordered, &inverse);
1126 }
1127
1128 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1129 {
1130 if (ctx.info[tmp.id()].is_temp())
1131 return ctx.info[tmp.id()].temp.id();
1132 else
1133 return tmp.id();
1134 }
1135
1136 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1137 {
1138 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1139 for (const Operand& op : instr->operands) {
1140 if (op.isTemp())
1141 ctx.uses[op.tempId()]--;
1142 }
1143 }
1144 }
1145
1146 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1147 {
1148 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1149 return nullptr;
1150 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1151 return nullptr;
1152
1153 Instruction *instr = ctx.info[op.tempId()].instr;
1154
1155 if (instr->definitions.size() == 2) {
1156 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1157 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1158 return nullptr;
1159 }
1160
1161 return instr;
1162 }
1163
1164 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1165 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1166 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1167 {
1168 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1169 return false;
1170 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1171 return false;
1172
1173 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1174
1175 bool neg[2] = {false, false};
1176 bool abs[2] = {false, false};
1177 uint8_t opsel = 0;
1178 Instruction *op_instr[2];
1179 Temp op[2];
1180
1181 for (unsigned i = 0; i < 2; i++) {
1182 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1183 if (!op_instr[i])
1184 return false;
1185
1186 aco_opcode expected_cmp = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1187
1188 if (op_instr[i]->opcode != expected_cmp)
1189 return false;
1190 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1191 return false;
1192
1193 if (op_instr[i]->isVOP3()) {
1194 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1195 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1196 return false;
1197 neg[i] = vop3->neg[0];
1198 abs[i] = vop3->abs[0];
1199 opsel |= (vop3->opsel & 1) << i;
1200 }
1201
1202 Temp op0 = op_instr[i]->operands[0].getTemp();
1203 Temp op1 = op_instr[i]->operands[1].getTemp();
1204 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1205 return false;
1206 /* shouldn't happen yet, but best to be safe */
1207 if (op1.type() != RegType::vgpr)
1208 return false;
1209
1210 op[i] = op1;
1211 }
1212
1213 ctx.uses[op[0].id()]++;
1214 ctx.uses[op[1].id()]++;
1215 decrease_uses(ctx, op_instr[0]);
1216 decrease_uses(ctx, op_instr[1]);
1217
1218 aco_opcode new_op = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1219 Instruction *new_instr;
1220 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel) {
1221 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1222 for (unsigned i = 0; i < 2; i++) {
1223 vop3->neg[i] = neg[i];
1224 vop3->abs[i] = abs[i];
1225 }
1226 vop3->opsel = opsel;
1227 new_instr = static_cast<Instruction *>(vop3);
1228 } else {
1229 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1230 }
1231 new_instr->operands[0] = Operand(op[0]);
1232 new_instr->operands[1] = Operand(op[1]);
1233 new_instr->definitions[0] = instr->definitions[0];
1234
1235 ctx.info[instr->definitions[0].tempId()].label = 0;
1236 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1237
1238 instr.reset(new_instr);
1239
1240 return true;
1241 }
1242
1243 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1244 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1245 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1246 {
1247 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1248 return false;
1249 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1250 return false;
1251
1252 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1253 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1254
1255 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1256 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1257 if (!nan_test || !cmp)
1258 return false;
1259
1260 if (cmp->opcode == expected_nan_test)
1261 std::swap(nan_test, cmp);
1262 else if (nan_test->opcode != expected_nan_test)
1263 return false;
1264
1265 if (!is_cmp(cmp->opcode))
1266 return false;
1267
1268 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1269 return false;
1270 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1271 return false;
1272
1273 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1274 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1275 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1276 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1277 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1278 return false;
1279 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1280 return false;
1281
1282 ctx.uses[cmp->operands[0].tempId()]++;
1283 ctx.uses[cmp->operands[1].tempId()]++;
1284 decrease_uses(ctx, nan_test);
1285 decrease_uses(ctx, cmp);
1286
1287 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1288 Instruction *new_instr;
1289 if (cmp->isVOP3()) {
1290 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1291 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1292 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1293 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1294 new_vop3->clamp = cmp_vop3->clamp;
1295 new_vop3->omod = cmp_vop3->omod;
1296 new_vop3->opsel = cmp_vop3->opsel;
1297 new_instr = new_vop3;
1298 } else {
1299 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1300 }
1301 new_instr->operands[0] = cmp->operands[0];
1302 new_instr->operands[1] = cmp->operands[1];
1303 new_instr->definitions[0] = instr->definitions[0];
1304
1305 ctx.info[instr->definitions[0].tempId()].label = 0;
1306 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1307
1308 instr.reset(new_instr);
1309
1310 return true;
1311 }
1312
1313 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1314 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1315 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1316 {
1317 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1318 return false;
1319 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1320 return false;
1321
1322 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1323
1324 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1325 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1326
1327 if (!nan_test || !cmp)
1328 return false;
1329
1330 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1331 if (cmp->opcode == expected_nan_test)
1332 std::swap(nan_test, cmp);
1333 else if (nan_test->opcode != expected_nan_test)
1334 return false;
1335
1336 if (!is_cmp(cmp->opcode))
1337 return false;
1338
1339 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1340 return false;
1341 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1342 return false;
1343
1344 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1345 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1346 if (prop_nan0 != prop_nan1)
1347 return false;
1348
1349 if (nan_test->isVOP3()) {
1350 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(nan_test);
1351 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1352 return false;
1353 }
1354
1355 int constant_operand = -1;
1356 for (unsigned i = 0; i < 2; i++) {
1357 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1358 constant_operand = !i;
1359 break;
1360 }
1361 }
1362 if (constant_operand == -1)
1363 return false;
1364
1365 uint32_t constant;
1366 if (cmp->operands[constant_operand].isConstant()) {
1367 constant = cmp->operands[constant_operand].constantValue();
1368 } else if (cmp->operands[constant_operand].isTemp()) {
1369 unsigned id = cmp->operands[constant_operand].tempId();
1370 if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal())
1371 return false;
1372 constant = ctx.info[id].val;
1373 } else {
1374 return false;
1375 }
1376
1377 float constantf;
1378 memcpy(&constantf, &constant, 4);
1379 if (isnan(constantf))
1380 return false;
1381
1382 if (cmp->operands[0].isTemp())
1383 ctx.uses[cmp->operands[0].tempId()]++;
1384 if (cmp->operands[1].isTemp())
1385 ctx.uses[cmp->operands[1].tempId()]++;
1386 decrease_uses(ctx, nan_test);
1387 decrease_uses(ctx, cmp);
1388
1389 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1390 Instruction *new_instr;
1391 if (cmp->isVOP3()) {
1392 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1393 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1394 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1395 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1396 new_vop3->clamp = cmp_vop3->clamp;
1397 new_vop3->omod = cmp_vop3->omod;
1398 new_vop3->opsel = cmp_vop3->opsel;
1399 new_instr = new_vop3;
1400 } else {
1401 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1402 }
1403 new_instr->operands[0] = cmp->operands[0];
1404 new_instr->operands[1] = cmp->operands[1];
1405 new_instr->definitions[0] = instr->definitions[0];
1406
1407 ctx.info[instr->definitions[0].tempId()].label = 0;
1408 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1409
1410 instr.reset(new_instr);
1411
1412 return true;
1413 }
1414
1415 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1416 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1417 {
1418 if (instr->opcode != aco_opcode::s_not_b64)
1419 return false;
1420 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1421 return false;
1422 if (!instr->operands[0].isTemp())
1423 return false;
1424
1425 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1426 if (!cmp)
1427 return false;
1428
1429 aco_opcode new_opcode = get_inverse(cmp->opcode);
1430 if (new_opcode == aco_opcode::last_opcode)
1431 return false;
1432
1433 if (cmp->operands[0].isTemp())
1434 ctx.uses[cmp->operands[0].tempId()]++;
1435 if (cmp->operands[1].isTemp())
1436 ctx.uses[cmp->operands[1].tempId()]++;
1437 decrease_uses(ctx, cmp);
1438
1439 Instruction *new_instr;
1440 if (cmp->isVOP3()) {
1441 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1442 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1443 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1444 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1445 new_vop3->clamp = cmp_vop3->clamp;
1446 new_vop3->omod = cmp_vop3->omod;
1447 new_vop3->opsel = cmp_vop3->opsel;
1448 new_instr = new_vop3;
1449 } else {
1450 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1451 }
1452 new_instr->operands[0] = cmp->operands[0];
1453 new_instr->operands[1] = cmp->operands[1];
1454 new_instr->definitions[0] = instr->definitions[0];
1455
1456 ctx.info[instr->definitions[0].tempId()].label = 0;
1457 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1458
1459 instr.reset(new_instr);
1460
1461 return true;
1462 }
1463
1464 /* op1(op2(1, 2), 0) if swap = false
1465 * op1(0, op2(1, 2)) if swap = true */
1466 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1467 Instruction* op1_instr, bool swap, const char *shuffle_str,
1468 Operand operands[3], bool neg[3], bool abs[3], uint8_t *opsel,
1469 bool *op1_clamp, uint8_t *op1_omod,
1470 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1471 {
1472 /* checks */
1473 if (op1_instr->opcode != op1)
1474 return false;
1475
1476 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1477 if (!op2_instr || op2_instr->opcode != op2)
1478 return false;
1479
1480 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1481 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1482
1483 /* don't support inbetween clamp/omod */
1484 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1485 return false;
1486
1487 /* get operands and modifiers and check inbetween modifiers */
1488 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1489 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1490
1491 if (inbetween_neg)
1492 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1493 else if (op1_vop3 && op1_vop3->neg[swap])
1494 return false;
1495
1496 if (inbetween_abs)
1497 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1498 else if (op1_vop3 && op1_vop3->abs[swap])
1499 return false;
1500
1501 if (inbetween_opsel)
1502 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel & (1 << swap) : false;
1503 else if (op1_vop3 && op1_vop3->opsel & (1 << swap))
1504 return false;
1505
1506 int shuffle[3];
1507 shuffle[shuffle_str[0] - '0'] = 0;
1508 shuffle[shuffle_str[1] - '0'] = 1;
1509 shuffle[shuffle_str[2] - '0'] = 2;
1510
1511 operands[shuffle[0]] = op1_instr->operands[!swap];
1512 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1513 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1514 if (op1_vop3 && op1_vop3->opsel & (1 << !swap))
1515 *opsel |= 1 << shuffle[0];
1516
1517 for (unsigned i = 0; i < 2; i++) {
1518 operands[shuffle[i + 1]] = op2_instr->operands[i];
1519 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1520 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1521 if (op2_vop3 && op2_vop3->opsel & (1 << i))
1522 *opsel |= 1 << shuffle[i + 1];
1523 }
1524
1525 /* check operands */
1526 unsigned sgpr_id = 0;
1527 for (unsigned i = 0; i < 3; i++) {
1528 Operand op = operands[i];
1529 if (op.isLiteral()) {
1530 return false;
1531 } else if (op.isTemp() && op.getTemp().type() == RegType::sgpr) {
1532 if (sgpr_id && sgpr_id != op.tempId())
1533 return false;
1534 sgpr_id = op.tempId();
1535 }
1536 }
1537
1538 return true;
1539 }
1540
1541 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1542 Operand operands[3], bool neg[3], bool abs[3], uint8_t opsel,
1543 bool clamp, unsigned omod)
1544 {
1545 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1546 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1547 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1548 new_instr->clamp = clamp;
1549 new_instr->omod = omod;
1550 new_instr->opsel = opsel;
1551 new_instr->operands[0] = operands[0];
1552 new_instr->operands[1] = operands[1];
1553 new_instr->operands[2] = operands[2];
1554 new_instr->definitions[0] = instr->definitions[0];
1555 ctx.info[instr->definitions[0].tempId()].label = 0;
1556
1557 instr.reset(new_instr);
1558 }
1559
1560 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1561 {
1562 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1563 (label_omod_success | label_clamp_success);
1564
1565 for (unsigned swap = 0; swap < 2; swap++) {
1566 if (!((1 << swap) & ops))
1567 continue;
1568
1569 Operand operands[3];
1570 bool neg[3], abs[3], clamp;
1571 uint8_t opsel = 0, omod = 0;
1572 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1573 instr.get(), swap, shuffle,
1574 operands, neg, abs, &opsel,
1575 &clamp, &omod, NULL, NULL, NULL)) {
1576 ctx.uses[instr->operands[swap].tempId()]--;
1577 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1578 if (omod_clamp & label_omod_success)
1579 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1580 if (omod_clamp & label_clamp_success)
1581 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1582 return true;
1583 }
1584 }
1585 return false;
1586 }
1587
1588 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
1589 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
1590 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
1591 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
1592 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
1593 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
1594 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1595 {
1596 /* checks */
1597 if (!instr->operands[0].isTemp())
1598 return false;
1599 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1600 return false;
1601
1602 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
1603 if (!op2_instr)
1604 return false;
1605 switch (op2_instr->opcode) {
1606 case aco_opcode::s_and_b32:
1607 case aco_opcode::s_or_b32:
1608 case aco_opcode::s_xor_b32:
1609 case aco_opcode::s_and_b64:
1610 case aco_opcode::s_or_b64:
1611 case aco_opcode::s_xor_b64:
1612 break;
1613 default:
1614 return false;
1615 }
1616
1617 /* create instruction */
1618 std::swap(instr->definitions[0], op2_instr->definitions[0]);
1619 ctx.uses[instr->operands[0].tempId()]--;
1620 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
1621
1622 switch (op2_instr->opcode) {
1623 case aco_opcode::s_and_b32:
1624 op2_instr->opcode = aco_opcode::s_nand_b32;
1625 break;
1626 case aco_opcode::s_or_b32:
1627 op2_instr->opcode = aco_opcode::s_nor_b32;
1628 break;
1629 case aco_opcode::s_xor_b32:
1630 op2_instr->opcode = aco_opcode::s_xnor_b32;
1631 break;
1632 case aco_opcode::s_and_b64:
1633 op2_instr->opcode = aco_opcode::s_nand_b64;
1634 break;
1635 case aco_opcode::s_or_b64:
1636 op2_instr->opcode = aco_opcode::s_nor_b64;
1637 break;
1638 case aco_opcode::s_xor_b64:
1639 op2_instr->opcode = aco_opcode::s_xnor_b64;
1640 break;
1641 default:
1642 break;
1643 }
1644
1645 return true;
1646 }
1647
1648 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
1649 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
1650 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
1651 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
1652 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1653 {
1654 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1655 return false;
1656
1657 for (unsigned i = 0; i < 2; i++) {
1658 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1659 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
1660 continue;
1661
1662 ctx.uses[instr->operands[i].tempId()]--;
1663 instr->operands[0] = instr->operands[!i];
1664 instr->operands[1] = op2_instr->operands[0];
1665 ctx.info[instr->definitions[0].tempId()].label = 0;
1666
1667 switch (instr->opcode) {
1668 case aco_opcode::s_and_b32:
1669 instr->opcode = aco_opcode::s_andn2_b32;
1670 break;
1671 case aco_opcode::s_or_b32:
1672 instr->opcode = aco_opcode::s_orn2_b32;
1673 break;
1674 case aco_opcode::s_and_b64:
1675 instr->opcode = aco_opcode::s_andn2_b64;
1676 break;
1677 case aco_opcode::s_or_b64:
1678 instr->opcode = aco_opcode::s_orn2_b64;
1679 break;
1680 default:
1681 break;
1682 }
1683
1684 return true;
1685 }
1686 return false;
1687 }
1688
1689 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
1690 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1691 {
1692 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1693 return false;
1694
1695 for (unsigned i = 0; i < 2; i++) {
1696 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1697 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 || !op2_instr->operands[1].isConstant())
1698 continue;
1699
1700 uint32_t shift = op2_instr->operands[1].constantValue();
1701 if (shift < 1 || shift > 4)
1702 continue;
1703
1704 ctx.uses[instr->operands[i].tempId()]--;
1705 instr->operands[1] = instr->operands[!i];
1706 instr->operands[0] = op2_instr->operands[0];
1707 ctx.info[instr->definitions[0].tempId()].label = 0;
1708
1709 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
1710 aco_opcode::s_lshl2_add_u32,
1711 aco_opcode::s_lshl3_add_u32,
1712 aco_opcode::s_lshl4_add_u32})[shift - 1];
1713
1714 return true;
1715 }
1716 return false;
1717 }
1718
1719 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
1720 {
1721 switch (op) {
1722 #define MINMAX(type, gfx9) \
1723 case aco_opcode::v_min_##type:\
1724 case aco_opcode::v_max_##type:\
1725 case aco_opcode::v_med3_##type:\
1726 *min = aco_opcode::v_min_##type;\
1727 *max = aco_opcode::v_max_##type;\
1728 *med3 = aco_opcode::v_med3_##type;\
1729 *min3 = aco_opcode::v_min3_##type;\
1730 *max3 = aco_opcode::v_max3_##type;\
1731 *some_gfx9_only = gfx9;\
1732 return true;
1733 MINMAX(f32, false)
1734 MINMAX(u32, false)
1735 MINMAX(i32, false)
1736 MINMAX(f16, true)
1737 MINMAX(u16, true)
1738 MINMAX(i16, true)
1739 #undef MINMAX
1740 default:
1741 return false;
1742 }
1743 }
1744
1745 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
1746 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
1747 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
1748 aco_opcode min, aco_opcode max, aco_opcode med)
1749 {
1750 aco_opcode other_op;
1751 if (instr->opcode == min)
1752 other_op = max;
1753 else if (instr->opcode == max)
1754 other_op = min;
1755 else
1756 return false;
1757
1758 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1759 (label_omod_success | label_clamp_success);
1760
1761 for (unsigned swap = 0; swap < 2; swap++) {
1762 Operand operands[3];
1763 bool neg[3], abs[3], clamp, inbetween_neg, inbetween_abs;
1764 uint8_t opsel = 0, omod = 0;
1765 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
1766 "012", operands, neg, abs, &opsel,
1767 &clamp, &omod, &inbetween_neg, &inbetween_abs, NULL)) {
1768 int const0_idx = -1, const1_idx = -1;
1769 uint32_t const0 = 0, const1 = 0;
1770 for (int i = 0; i < 3; i++) {
1771 uint32_t val;
1772 if (operands[i].isConstant()) {
1773 val = operands[i].constantValue();
1774 } else if (operands[i].isTemp() && ctx.uses[operands[i].tempId()] == 1 &&
1775 ctx.info[operands[i].tempId()].is_constant_or_literal()) {
1776 val = ctx.info[operands[i].tempId()].val;
1777 } else {
1778 continue;
1779 }
1780 if (const0_idx >= 0) {
1781 const1_idx = i;
1782 const1 = val;
1783 } else {
1784 const0_idx = i;
1785 const0 = val;
1786 }
1787 }
1788 if (const0_idx < 0 || const1_idx < 0)
1789 continue;
1790
1791 if (opsel & (1 << const0_idx))
1792 const0 >>= 16;
1793 if (opsel & (1 << const1_idx))
1794 const1 >>= 16;
1795
1796 int lower_idx = const0_idx;
1797 switch (min) {
1798 case aco_opcode::v_min_f32:
1799 case aco_opcode::v_min_f16: {
1800 float const0_f, const1_f;
1801 if (min == aco_opcode::v_min_f32) {
1802 memcpy(&const0_f, &const0, 4);
1803 memcpy(&const1_f, &const1, 4);
1804 } else {
1805 const0_f = _mesa_half_to_float(const0);
1806 const1_f = _mesa_half_to_float(const1);
1807 }
1808 if (abs[const0_idx]) const0_f = fabsf(const0_f);
1809 if (abs[const1_idx]) const1_f = fabsf(const1_f);
1810 if (neg[const0_idx]) const0_f = -const0_f;
1811 if (neg[const1_idx]) const1_f = -const1_f;
1812 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
1813 break;
1814 }
1815 case aco_opcode::v_min_u32: {
1816 lower_idx = const0 < const1 ? const0_idx : const1_idx;
1817 break;
1818 }
1819 case aco_opcode::v_min_u16: {
1820 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
1821 break;
1822 }
1823 case aco_opcode::v_min_i32: {
1824 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
1825 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
1826 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1827 break;
1828 }
1829 case aco_opcode::v_min_i16: {
1830 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
1831 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
1832 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1833 break;
1834 }
1835 default:
1836 break;
1837 }
1838 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
1839
1840 if (instr->opcode == min) {
1841 if (upper_idx != 0 || lower_idx == 0)
1842 return false;
1843 } else {
1844 if (upper_idx == 0 || lower_idx != 0)
1845 return false;
1846 }
1847
1848 neg[1] ^= inbetween_neg;
1849 neg[2] ^= inbetween_neg;
1850 abs[1] |= inbetween_abs;
1851 abs[2] |= inbetween_abs;
1852
1853 ctx.uses[instr->operands[swap].tempId()]--;
1854 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
1855 if (omod_clamp & label_omod_success)
1856 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1857 if (omod_clamp & label_clamp_success)
1858 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1859
1860 return true;
1861 }
1862 }
1863
1864 return false;
1865 }
1866
1867
1868 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1869 {
1870 /* apply sgprs */
1871 uint32_t sgpr_idx = 0;
1872 uint32_t sgpr_info_id = 0;
1873 bool has_sgpr = false;
1874 uint32_t sgpr_ssa_id = 0;
1875 /* find 'best' possible sgpr */
1876 for (unsigned i = 0; i < instr->operands.size(); i++)
1877 {
1878 if (instr->operands[i].isLiteral()) {
1879 has_sgpr = true;
1880 break;
1881 }
1882 if (!instr->operands[i].isTemp())
1883 continue;
1884 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
1885 has_sgpr = true;
1886 sgpr_ssa_id = instr->operands[i].tempId();
1887 continue;
1888 }
1889 ssa_info& info = ctx.info[instr->operands[i].tempId()];
1890 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
1891 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
1892 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
1893 sgpr_idx = i;
1894 sgpr_info_id = instr->operands[i].tempId();
1895 }
1896 }
1897 }
1898 if (!has_sgpr && sgpr_info_id != 0) {
1899 ssa_info& info = ctx.info[sgpr_info_id];
1900 if (sgpr_idx == 0 || instr->isVOP3()) {
1901 instr->operands[sgpr_idx] = Operand(info.temp);
1902 ctx.uses[sgpr_info_id]--;
1903 ctx.uses[info.temp.id()]++;
1904 } else if (can_swap_operands(instr)) {
1905 instr->operands[sgpr_idx] = instr->operands[0];
1906 instr->operands[0] = Operand(info.temp);
1907 ctx.uses[sgpr_info_id]--;
1908 ctx.uses[info.temp.id()]++;
1909 } else if (can_use_VOP3(instr)) {
1910 to_VOP3(ctx, instr);
1911 instr->operands[sgpr_idx] = Operand(info.temp);
1912 ctx.uses[sgpr_info_id]--;
1913 ctx.uses[info.temp.id()]++;
1914 }
1915
1916 /* we can have two sgprs on one instruction if it is the same sgpr! */
1917 } else if (sgpr_info_id != 0 &&
1918 sgpr_ssa_id == sgpr_info_id &&
1919 ctx.uses[sgpr_info_id] == 1 &&
1920 can_use_VOP3(instr)) {
1921 to_VOP3(ctx, instr);
1922 instr->operands[sgpr_idx] = Operand(ctx.info[sgpr_info_id].temp);
1923 ctx.uses[sgpr_info_id]--;
1924 ctx.uses[ctx.info[sgpr_info_id].temp.id()]++;
1925 }
1926 }
1927
1928 bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
1929 {
1930 /* check if we could apply omod on predecessor */
1931 if (instr->opcode == aco_opcode::v_mul_f32) {
1932 bool op0 = instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_omod_success();
1933 bool op1 = instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success();
1934 if (op0 || op1) {
1935 unsigned idx = op0 ? 0 : 1;
1936 /* omod was successfully applied */
1937 /* if the omod instruction is v_mad, we also have to change the original add */
1938 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
1939 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
1940 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
1941 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
1942 add_instr->definitions[0] = instr->definitions[0];
1943 }
1944
1945 Instruction* omod_instr = ctx.info[instr->operands[idx].tempId()].instr;
1946 /* check if we have an additional clamp modifier */
1947 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1) {
1948 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
1949 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
1950 }
1951 /* change definition ssa-id of modified instruction */
1952 omod_instr->definitions[0] = instr->definitions[0];
1953
1954 /* change the definition of instr to something unused, e.g. the original omod def */
1955 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
1956 ctx.uses[instr->definitions[0].tempId()] = 0;
1957 return true;
1958 }
1959 if (!ctx.info[instr->definitions[0].tempId()].label) {
1960 /* in all other cases, label this instruction as option for multiply-add */
1961 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
1962 }
1963 }
1964
1965 /* check if we could apply clamp on predecessor */
1966 if (instr->opcode == aco_opcode::v_med3_f32) {
1967 unsigned idx = 0;
1968 bool found_zero = false, found_one = false;
1969 for (unsigned i = 0; i < 3; i++)
1970 {
1971 if (instr->operands[i].constantEquals(0))
1972 found_zero = true;
1973 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
1974 found_one = true;
1975 else
1976 idx = i;
1977 }
1978 if (found_zero && found_one && instr->operands[idx].isTemp() &&
1979 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
1980 /* clamp was successfully applied */
1981 /* if the clamp instruction is v_mad, we also have to change the original add */
1982 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
1983 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
1984 add_instr->definitions[0] = instr->definitions[0];
1985 }
1986 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
1987 /* change definition ssa-id of modified instruction */
1988 clamp_instr->definitions[0] = instr->definitions[0];
1989
1990 /* change the definition of instr to something unused, e.g. the original omod def */
1991 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
1992 ctx.uses[instr->definitions[0].tempId()] = 0;
1993 return true;
1994 }
1995 }
1996
1997 /* omod has no effect if denormals are enabled */
1998 bool can_use_omod = block.fp_mode.denorm32 == 0;
1999
2000 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
2001 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2002 can_use_VOP3(instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
2003 if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod2()) {
2004 to_VOP3(ctx, instr);
2005 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
2006 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2007 } else if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod4()) {
2008 to_VOP3(ctx, instr);
2009 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
2010 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2011 } else if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod5()) {
2012 to_VOP3(ctx, instr);
2013 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
2014 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2015 } else if (ctx.info[instr->definitions[0].tempId()].is_clamp()) {
2016 to_VOP3(ctx, instr);
2017 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
2018 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
2019 }
2020 }
2021
2022 return false;
2023 }
2024
2025 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
2026 // this would mean that we'd have to fix the instruction uses while value propagation
2027
2028 void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2029 {
2030 if (instr->definitions.empty() || !ctx.uses[instr->definitions[0].tempId()])
2031 return;
2032
2033 if (instr->isVALU()) {
2034 if (can_apply_sgprs(instr))
2035 apply_sgprs(ctx, instr);
2036 if (apply_omod_clamp(ctx, block, instr))
2037 return;
2038 }
2039
2040 /* TODO: There are still some peephole optimizations that could be done:
2041 * - abs(a - b) -> s_absdiff_i32
2042 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
2043 * - patterns for v_alignbit_b32 and v_alignbyte_b32
2044 * These aren't probably too interesting though.
2045 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
2046 * probably more useful than the previously mentioned optimizations.
2047 * The various comparison optimizations also currently only work with 32-bit
2048 * floats. */
2049
2050 /* neg(mul(a, b)) -> mul(neg(a), b) */
2051 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
2052 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
2053
2054 if (!ctx.info[val.id()].is_mul())
2055 return;
2056
2057 Instruction* mul_instr = ctx.info[val.id()].instr;
2058
2059 if (mul_instr->operands[0].isLiteral())
2060 return;
2061 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
2062 return;
2063
2064 /* convert to mul(neg(a), b) */
2065 ctx.uses[mul_instr->definitions[0].tempId()]--;
2066 Definition def = instr->definitions[0];
2067 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
2068 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
2069 instr.reset(create_instruction<VOP3A_instruction>(aco_opcode::v_mul_f32, asVOP3(Format::VOP2), 2, 1));
2070 instr->operands[0] = mul_instr->operands[0];
2071 instr->operands[1] = mul_instr->operands[1];
2072 instr->definitions[0] = def;
2073 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
2074 if (mul_instr->isVOP3()) {
2075 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
2076 new_mul->neg[0] = mul->neg[0] && !is_abs;
2077 new_mul->neg[1] = mul->neg[1] && !is_abs;
2078 new_mul->abs[0] = mul->abs[0] || is_abs;
2079 new_mul->abs[1] = mul->abs[1] || is_abs;
2080 new_mul->omod = mul->omod;
2081 }
2082 new_mul->neg[0] ^= true;
2083 new_mul->clamp = false;
2084
2085 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2086 return;
2087 }
2088 /* combine mul+add -> mad */
2089 else if ((instr->opcode == aco_opcode::v_add_f32 ||
2090 instr->opcode == aco_opcode::v_sub_f32 ||
2091 instr->opcode == aco_opcode::v_subrev_f32) &&
2092 block.fp_mode.denorm32 == 0 && !block.fp_mode.preserve_signed_zero_inf_nan32) {
2093 //TODO: we could use fma instead when denormals are enabled if the NIR isn't marked as precise
2094
2095 uint32_t uses_src0 = UINT32_MAX;
2096 uint32_t uses_src1 = UINT32_MAX;
2097 Instruction* mul_instr = nullptr;
2098 unsigned add_op_idx;
2099 /* check if any of the operands is a multiplication */
2100 if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_mul())
2101 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2102 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_mul())
2103 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2104
2105 /* find the 'best' mul instruction to combine with the add */
2106 if (uses_src0 < uses_src1) {
2107 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2108 add_op_idx = 1;
2109 } else if (uses_src1 < uses_src0) {
2110 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2111 add_op_idx = 0;
2112 } else if (uses_src0 != UINT32_MAX) {
2113 /* tiebreaker: quite random what to pick */
2114 if (ctx.info[instr->operands[0].tempId()].instr->operands[0].isLiteral()) {
2115 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2116 add_op_idx = 0;
2117 } else {
2118 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2119 add_op_idx = 1;
2120 }
2121 }
2122 if (mul_instr) {
2123 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2124 bool neg[3] = {false, false, false};
2125 bool abs[3] = {false, false, false};
2126 unsigned omod = 0;
2127 bool clamp = false;
2128 bool need_vop3 = false;
2129 int num_sgpr = 0;
2130 op[0] = mul_instr->operands[0];
2131 op[1] = mul_instr->operands[1];
2132 op[2] = instr->operands[add_op_idx];
2133 for (unsigned i = 0; i < 3; i++)
2134 {
2135 if (op[i].isLiteral())
2136 return;
2137 if (op[i].isTemp() && op[i].getTemp().type() == RegType::sgpr)
2138 num_sgpr++;
2139 if (!(i == 0 || (op[i].isTemp() && op[i].getTemp().type() == RegType::vgpr)))
2140 need_vop3 = true;
2141 }
2142 // TODO: would be better to check this before selecting a mul instr?
2143 if (num_sgpr > 1)
2144 return;
2145
2146 if (mul_instr->isVOP3()) {
2147 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2148 neg[0] = vop3->neg[0];
2149 neg[1] = vop3->neg[1];
2150 abs[0] = vop3->abs[0];
2151 abs[1] = vop3->abs[1];
2152 need_vop3 = true;
2153 /* we cannot use these modifiers between mul and add */
2154 if (vop3->clamp || vop3->omod)
2155 return;
2156 }
2157
2158 /* convert to mad */
2159 ctx.uses[mul_instr->definitions[0].tempId()]--;
2160 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2161 if (op[0].isTemp())
2162 ctx.uses[op[0].tempId()]++;
2163 if (op[1].isTemp())
2164 ctx.uses[op[1].tempId()]++;
2165 }
2166
2167 if (instr->isVOP3()) {
2168 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2169 neg[2] = vop3->neg[add_op_idx];
2170 abs[2] = vop3->abs[add_op_idx];
2171 omod = vop3->omod;
2172 clamp = vop3->clamp;
2173 /* abs of the multiplication result */
2174 if (vop3->abs[1 - add_op_idx]) {
2175 neg[0] = false;
2176 neg[1] = false;
2177 abs[0] = true;
2178 abs[1] = true;
2179 }
2180 /* neg of the multiplication result */
2181 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2182 need_vop3 = true;
2183 }
2184 if (instr->opcode == aco_opcode::v_sub_f32) {
2185 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2186 need_vop3 = true;
2187 } else if (instr->opcode == aco_opcode::v_subrev_f32) {
2188 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2189 need_vop3 = true;
2190 }
2191
2192 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)};
2193 for (unsigned i = 0; i < 3; i++)
2194 {
2195 mad->operands[i] = op[i];
2196 mad->neg[i] = neg[i];
2197 mad->abs[i] = abs[i];
2198 }
2199 mad->omod = omod;
2200 mad->clamp = clamp;
2201 mad->definitions[0] = instr->definitions[0];
2202
2203 /* mark this ssa_def to be re-checked for profitability and literals */
2204 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId(), need_vop3);
2205 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2206 instr.reset(mad.release());
2207 return;
2208 }
2209 }
2210 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2211 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2212 for (unsigned i = 0; i < 2; i++) {
2213 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2214 ctx.uses[instr->operands[i].tempId()] == 1 &&
2215 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2216 ctx.uses[instr->operands[i].tempId()]--;
2217 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2218
2219 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2220 new_instr->operands[0] = Operand(0u);
2221 new_instr->operands[1] = instr->operands[!i];
2222 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2223 new_instr->definitions[0] = instr->definitions[0];
2224 instr.reset(new_instr.release());
2225 ctx.info[instr->definitions[0].tempId()].label = 0;
2226 return;
2227 }
2228 }
2229 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2230 if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2231 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2232 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2233 } else if (instr->opcode == aco_opcode::v_add_u32 && ctx.program->chip_class >= GFX9) {
2234 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2235 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2236 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2237 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2238 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2239 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2240 combine_salu_lshl_add(ctx, instr);
2241 } else if (instr->opcode == aco_opcode::s_not_b32) {
2242 combine_salu_not_bitwise(ctx, instr);
2243 } else if (instr->opcode == aco_opcode::s_not_b64) {
2244 if (combine_inverse_comparison(ctx, instr)) ;
2245 else combine_salu_not_bitwise(ctx, instr);
2246 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 ||
2247 instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2248 if (combine_ordering_test(ctx, instr)) ;
2249 else if (combine_comparison_ordering(ctx, instr)) ;
2250 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2251 else combine_salu_n2(ctx, instr);
2252 } else {
2253 aco_opcode min, max, min3, max3, med3;
2254 bool some_gfx9_only;
2255 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2256 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2257 if (combine_three_valu_op(ctx, instr, instr->opcode, instr->opcode == min ? min3 : max3, "012", 1 | 2));
2258 else combine_clamp(ctx, instr, min, max, med3);
2259 }
2260 }
2261 }
2262
2263
2264 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2265 {
2266 const uint32_t threshold = 4;
2267
2268 /* Dead Code Elimination:
2269 * We remove instructions if they define temporaries which all are unused */
2270 const bool is_used = instr->definitions.empty() ||
2271 std::any_of(instr->definitions.begin(), instr->definitions.end(),
2272 [&ctx](const Definition& def) { return ctx.uses[def.tempId()]; });
2273 if (!is_used) {
2274 instr.reset();
2275 return;
2276 }
2277
2278 /* convert split_vector into extract_vector if only one definition is ever used */
2279 if (instr->opcode == aco_opcode::p_split_vector) {
2280 unsigned num_used = 0;
2281 unsigned idx = 0;
2282 for (unsigned i = 0; i < instr->definitions.size(); i++) {
2283 if (ctx.uses[instr->definitions[i].tempId()]) {
2284 num_used++;
2285 idx = i;
2286 }
2287 }
2288 if (num_used == 1) {
2289 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2290 extract->operands[0] = instr->operands[0];
2291 extract->operands[1] = Operand((uint32_t) idx);
2292 extract->definitions[0] = instr->definitions[idx];
2293 instr.reset(extract.release());
2294 }
2295 }
2296
2297 /* re-check mad instructions */
2298 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2299 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2300 /* first, check profitability */
2301 if (ctx.uses[info->mul_temp_id]) {
2302 ctx.uses[info->mul_temp_id]++;
2303 instr.swap(info->add_instr);
2304
2305 /* second, check possible literals */
2306 } else if (!info->needs_vop3) {
2307 uint32_t literal_idx = 0;
2308 uint32_t literal_uses = UINT32_MAX;
2309 for (unsigned i = 0; i < instr->operands.size(); i++)
2310 {
2311 if (!instr->operands[i].isTemp())
2312 continue;
2313 /* if one of the operands is sgpr, we cannot add a literal somewhere else */
2314 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2315 if (ctx.info[instr->operands[i].tempId()].is_literal()) {
2316 literal_uses = ctx.uses[instr->operands[i].tempId()];
2317 literal_idx = i;
2318 } else {
2319 literal_uses = UINT32_MAX;
2320 }
2321 break;
2322 }
2323 else if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2324 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2325 literal_uses = ctx.uses[instr->operands[i].tempId()];
2326 literal_idx = i;
2327 }
2328 }
2329 if (literal_uses < threshold) {
2330 ctx.uses[instr->operands[literal_idx].tempId()]--;
2331 info->check_literal = true;
2332 info->literal_idx = literal_idx;
2333 }
2334 }
2335 return;
2336 }
2337
2338 /* check for literals */
2339 /* we do not apply the literals yet as we don't know if it is profitable */
2340 if (instr->isSALU()) {
2341 uint32_t literal_idx = 0;
2342 uint32_t literal_uses = UINT32_MAX;
2343 bool has_literal = false;
2344 for (unsigned i = 0; i < instr->operands.size(); i++)
2345 {
2346 if (instr->operands[i].isLiteral()) {
2347 has_literal = true;
2348 break;
2349 }
2350 if (!instr->operands[i].isTemp())
2351 continue;
2352 if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2353 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2354 literal_uses = ctx.uses[instr->operands[i].tempId()];
2355 literal_idx = i;
2356 }
2357 }
2358 if (!has_literal && literal_uses < threshold) {
2359 ctx.uses[instr->operands[literal_idx].tempId()]--;
2360 if (ctx.uses[instr->operands[literal_idx].tempId()] == 0)
2361 instr->operands[literal_idx] = Operand(ctx.info[instr->operands[literal_idx].tempId()].val);
2362 }
2363 } else if (instr->isVALU() && valu_can_accept_literal(ctx, instr, 0) &&
2364 instr->operands[0].isTemp() &&
2365 ctx.info[instr->operands[0].tempId()].is_literal() &&
2366 ctx.uses[instr->operands[0].tempId()] < threshold) {
2367 ctx.uses[instr->operands[0].tempId()]--;
2368 if (ctx.uses[instr->operands[0].tempId()] == 0)
2369 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2370 }
2371
2372 }
2373
2374
2375 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2376 {
2377 /* Cleanup Dead Instructions */
2378 if (!instr)
2379 return;
2380
2381 /* apply literals on SALU */
2382 if (instr->isSALU()) {
2383 for (Operand& op : instr->operands) {
2384 if (!op.isTemp())
2385 continue;
2386 if (op.isLiteral())
2387 break;
2388 if (ctx.info[op.tempId()].is_literal() &&
2389 ctx.uses[op.tempId()] == 0)
2390 op = Operand(ctx.info[op.tempId()].val);
2391 }
2392 }
2393
2394 /* apply literals on VALU */
2395 else if (instr->isVALU() && !instr->isVOP3() &&
2396 instr->operands[0].isTemp() &&
2397 ctx.info[instr->operands[0].tempId()].is_literal() &&
2398 ctx.uses[instr->operands[0].tempId()] == 0) {
2399 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2400 }
2401
2402 /* apply literals on MAD */
2403 else if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2404 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2405 aco_ptr<Instruction> new_mad;
2406 if (info->check_literal && ctx.uses[instr->operands[info->literal_idx].tempId()] == 0) {
2407 if (info->literal_idx == 2) { /* add literal -> madak */
2408 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
2409 new_mad->operands[0] = instr->operands[0];
2410 new_mad->operands[1] = instr->operands[1];
2411 } else { /* mul literal -> madmk */
2412 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
2413 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
2414 new_mad->operands[1] = instr->operands[2];
2415 }
2416 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
2417 new_mad->definitions[0] = instr->definitions[0];
2418 instr.swap(new_mad);
2419 }
2420 }
2421
2422 ctx.instructions.emplace_back(std::move(instr));
2423 }
2424
2425
2426 void optimize(Program* program)
2427 {
2428 opt_ctx ctx;
2429 ctx.program = program;
2430 std::vector<ssa_info> info(program->peekAllocationId());
2431 ctx.info = info.data();
2432
2433 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
2434 for (Block& block : program->blocks) {
2435 for (aco_ptr<Instruction>& instr : block.instructions)
2436 label_instruction(ctx, block, instr);
2437 }
2438
2439 ctx.uses = std::move(dead_code_analysis(program));
2440
2441 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
2442 for (Block& block : program->blocks) {
2443 for (aco_ptr<Instruction>& instr : block.instructions)
2444 combine_instruction(ctx, block, instr);
2445 }
2446
2447 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
2448 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
2449 Block* block = &(*it);
2450 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
2451 select_instruction(ctx, *it);
2452 }
2453
2454 /* 4. Add literals to instructions */
2455 for (Block& block : program->blocks) {
2456 ctx.instructions.clear();
2457 for (aco_ptr<Instruction>& instr : block.instructions)
2458 apply_literals(ctx, instr);
2459 block.instructions.swap(ctx.instructions);
2460 }
2461
2462 }
2463
2464 }