7b66aa1eeb3de933522ddede65e20b702a2059fa
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint32_t literal_idx;
56 bool needs_vop3;
57 bool check_literal;
58
59 mad_info(aco_ptr<Instruction> instr, uint32_t id, bool vop3)
60 : add_instr(std::move(instr)), mul_temp_id(id), needs_vop3(vop3), check_literal(false) {}
61 };
62
63 enum Label {
64 label_vec = 1 << 0,
65 label_constant = 1 << 1,
66 label_abs = 1 << 2,
67 label_neg = 1 << 3,
68 label_mul = 1 << 4,
69 label_temp = 1 << 5,
70 label_literal = 1 << 6,
71 label_mad = 1 << 7,
72 label_omod2 = 1 << 8,
73 label_omod4 = 1 << 9,
74 label_omod5 = 1 << 10,
75 label_omod_success = 1 << 11,
76 label_clamp = 1 << 12,
77 label_clamp_success = 1 << 13,
78 label_undefined = 1 << 14,
79 label_vcc = 1 << 15,
80 label_b2f = 1 << 16,
81 label_add_sub = 1 << 17,
82 label_bitwise = 1 << 18,
83 label_minmax = 1 << 19,
84 label_fcmp = 1 << 20,
85 label_uniform_bool = 1 << 21,
86 };
87
88 static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success | label_add_sub | label_bitwise | label_minmax | label_fcmp;
89 static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool;
90 static constexpr uint32_t val_labels = label_constant | label_literal | label_mad;
91
92 struct ssa_info {
93 uint32_t val;
94 union {
95 Temp temp;
96 Instruction* instr;
97 };
98 uint32_t label;
99
100 void add_label(Label new_label)
101 {
102 /* Since all labels which use "instr" use it for the same thing
103 * (indicating the defining instruction), there is no need to clear
104 * any other instr labels. */
105 if (new_label & instr_labels)
106 label &= ~temp_labels; /* instr and temp alias */
107
108 if (new_label & temp_labels) {
109 label &= ~temp_labels;
110 label &= ~instr_labels; /* instr and temp alias */
111 }
112
113 if (new_label & val_labels)
114 label &= ~val_labels;
115
116 label |= new_label;
117 }
118
119 void set_vec(Instruction* vec)
120 {
121 add_label(label_vec);
122 instr = vec;
123 }
124
125 bool is_vec()
126 {
127 return label & label_vec;
128 }
129
130 void set_constant(uint32_t constant)
131 {
132 add_label(label_constant);
133 val = constant;
134 }
135
136 bool is_constant()
137 {
138 return label & label_constant;
139 }
140
141 void set_abs(Temp abs_temp)
142 {
143 add_label(label_abs);
144 temp = abs_temp;
145 }
146
147 bool is_abs()
148 {
149 return label & label_abs;
150 }
151
152 void set_neg(Temp neg_temp)
153 {
154 add_label(label_neg);
155 temp = neg_temp;
156 }
157
158 bool is_neg()
159 {
160 return label & label_neg;
161 }
162
163 void set_neg_abs(Temp neg_abs_temp)
164 {
165 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
166 temp = neg_abs_temp;
167 }
168
169 void set_mul(Instruction* mul)
170 {
171 add_label(label_mul);
172 instr = mul;
173 }
174
175 bool is_mul()
176 {
177 return label & label_mul;
178 }
179
180 void set_temp(Temp tmp)
181 {
182 add_label(label_temp);
183 temp = tmp;
184 }
185
186 bool is_temp()
187 {
188 return label & label_temp;
189 }
190
191 void set_literal(uint32_t lit)
192 {
193 add_label(label_literal);
194 val = lit;
195 }
196
197 bool is_literal()
198 {
199 return label & label_literal;
200 }
201
202 void set_mad(Instruction* mad, uint32_t mad_info_idx)
203 {
204 add_label(label_mad);
205 val = mad_info_idx;
206 instr = mad;
207 }
208
209 bool is_mad()
210 {
211 return label & label_mad;
212 }
213
214 void set_omod2()
215 {
216 add_label(label_omod2);
217 }
218
219 bool is_omod2()
220 {
221 return label & label_omod2;
222 }
223
224 void set_omod4()
225 {
226 add_label(label_omod4);
227 }
228
229 bool is_omod4()
230 {
231 return label & label_omod4;
232 }
233
234 void set_omod5()
235 {
236 add_label(label_omod5);
237 }
238
239 bool is_omod5()
240 {
241 return label & label_omod5;
242 }
243
244 void set_omod_success(Instruction* omod_instr)
245 {
246 add_label(label_omod_success);
247 instr = omod_instr;
248 }
249
250 bool is_omod_success()
251 {
252 return label & label_omod_success;
253 }
254
255 void set_clamp()
256 {
257 add_label(label_clamp);
258 }
259
260 bool is_clamp()
261 {
262 return label & label_clamp;
263 }
264
265 void set_clamp_success(Instruction* clamp_instr)
266 {
267 add_label(label_clamp_success);
268 instr = clamp_instr;
269 }
270
271 bool is_clamp_success()
272 {
273 return label & label_clamp_success;
274 }
275
276 void set_undefined()
277 {
278 add_label(label_undefined);
279 }
280
281 bool is_undefined()
282 {
283 return label & label_undefined;
284 }
285
286 void set_vcc(Temp vcc)
287 {
288 add_label(label_vcc);
289 temp = vcc;
290 }
291
292 bool is_vcc()
293 {
294 return label & label_vcc;
295 }
296
297 bool is_constant_or_literal()
298 {
299 return is_constant() || is_literal();
300 }
301
302 void set_b2f(Temp val)
303 {
304 add_label(label_b2f);
305 temp = val;
306 }
307
308 bool is_b2f()
309 {
310 return label & label_b2f;
311 }
312
313 void set_add_sub(Instruction *add_sub_instr)
314 {
315 add_label(label_add_sub);
316 instr = add_sub_instr;
317 }
318
319 bool is_add_sub()
320 {
321 return label & label_add_sub;
322 }
323
324 void set_bitwise(Instruction *bitwise_instr)
325 {
326 add_label(label_bitwise);
327 instr = bitwise_instr;
328 }
329
330 bool is_bitwise()
331 {
332 return label & label_bitwise;
333 }
334
335 void set_minmax(Instruction *minmax_instr)
336 {
337 add_label(label_minmax);
338 instr = minmax_instr;
339 }
340
341 bool is_minmax()
342 {
343 return label & label_minmax;
344 }
345
346 void set_fcmp(Instruction *fcmp_instr)
347 {
348 add_label(label_fcmp);
349 instr = fcmp_instr;
350 }
351
352 bool is_fcmp()
353 {
354 return label & label_fcmp;
355 }
356
357 void set_uniform_bool(Temp uniform_bool)
358 {
359 add_label(label_uniform_bool);
360 temp = uniform_bool;
361 }
362
363 bool is_uniform_bool()
364 {
365 return label & label_uniform_bool;
366 }
367
368 };
369
370 struct opt_ctx {
371 Program* program;
372 std::vector<aco_ptr<Instruction>> instructions;
373 ssa_info* info;
374 std::pair<uint32_t,Temp> last_literal;
375 std::vector<mad_info> mad_infos;
376 std::vector<uint16_t> uses;
377 };
378
379 bool can_swap_operands(aco_ptr<Instruction>& instr)
380 {
381 if (instr->operands[0].isConstant() ||
382 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
383 return false;
384
385 switch (instr->opcode) {
386 case aco_opcode::v_add_f32:
387 case aco_opcode::v_mul_f32:
388 case aco_opcode::v_or_b32:
389 case aco_opcode::v_and_b32:
390 case aco_opcode::v_xor_b32:
391 case aco_opcode::v_max_f32:
392 case aco_opcode::v_min_f32:
393 case aco_opcode::v_cmp_eq_f32:
394 case aco_opcode::v_cmp_lg_f32:
395 return true;
396 case aco_opcode::v_sub_f32:
397 instr->opcode = aco_opcode::v_subrev_f32;
398 return true;
399 case aco_opcode::v_cmp_lt_f32:
400 instr->opcode = aco_opcode::v_cmp_gt_f32;
401 return true;
402 case aco_opcode::v_cmp_ge_f32:
403 instr->opcode = aco_opcode::v_cmp_le_f32;
404 return true;
405 case aco_opcode::v_cmp_lt_i32:
406 instr->opcode = aco_opcode::v_cmp_gt_i32;
407 return true;
408 default:
409 return false;
410 }
411 }
412
413 bool can_use_VOP3(aco_ptr<Instruction>& instr)
414 {
415 if (instr->operands.size() && instr->operands[0].isLiteral())
416 return false;
417
418 if (instr->isDPP() || instr->isSDWA())
419 return false;
420
421 return instr->opcode != aco_opcode::v_madmk_f32 &&
422 instr->opcode != aco_opcode::v_madak_f32 &&
423 instr->opcode != aco_opcode::v_madmk_f16 &&
424 instr->opcode != aco_opcode::v_madak_f16;
425 }
426
427 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
428 {
429 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
430 instr->opcode != aco_opcode::v_readlane_b32 &&
431 instr->opcode != aco_opcode::v_writelane_b32;
432 }
433
434 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
435 {
436 if (instr->isVOP3())
437 return;
438
439 assert(!instr->operands[0].isLiteral());
440 aco_ptr<Instruction> tmp = std::move(instr);
441 Format format = asVOP3(tmp->format);
442 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
443 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
444 for (unsigned i = 0; i < instr->definitions.size(); i++) {
445 instr->definitions[i] = tmp->definitions[i];
446 if (instr->definitions[i].isTemp()) {
447 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
448 if (info.label & instr_labels && info.instr == tmp.get())
449 info.instr = instr.get();
450 }
451 }
452 }
453
454 /* only covers special cases */
455 bool can_accept_constant(aco_ptr<Instruction>& instr, unsigned operand)
456 {
457 switch (instr->opcode) {
458 case aco_opcode::v_interp_p2_f32:
459 case aco_opcode::v_mac_f32:
460 case aco_opcode::v_writelane_b32:
461 case aco_opcode::v_cndmask_b32:
462 return operand != 2;
463 case aco_opcode::s_addk_i32:
464 case aco_opcode::s_mulk_i32:
465 case aco_opcode::p_wqm:
466 case aco_opcode::p_extract_vector:
467 case aco_opcode::p_split_vector:
468 case aco_opcode::v_readlane_b32:
469 case aco_opcode::v_readfirstlane_b32:
470 return operand != 0;
471 default:
472 if ((instr->format == Format::MUBUF ||
473 instr->format == Format::MIMG) &&
474 instr->definitions.size() == 1 &&
475 instr->operands.size() == 4) {
476 return operand != 3;
477 }
478 return true;
479 }
480 }
481
482 bool valu_can_accept_literal(opt_ctx& ctx, aco_ptr<Instruction>& instr, unsigned operand)
483 {
484 /* instructions like v_cndmask_b32 can't take a literal because they always
485 * read SGPRs */
486 if (instr->operands.size() >= 3 &&
487 instr->operands[2].isTemp() && instr->operands[2].regClass().type() == RegType::sgpr)
488 return false;
489
490 // TODO: VOP3 can take a literal on GFX10
491 return !instr->isSDWA() && !instr->isDPP() && !instr->isVOP3() &&
492 operand == 0 && can_accept_constant(instr, operand);
493 }
494
495 bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
496 {
497 if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32)
498 return operand != 1;
499 return true;
500 }
501
502 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
503 {
504 Operand op = instr->operands[op_index];
505
506 if (!op.isTemp())
507 return false;
508 Temp tmp = op.getTemp();
509 if (!ctx.info[tmp.id()].is_add_sub())
510 return false;
511
512 Instruction *add_instr = ctx.info[tmp.id()].instr;
513
514 switch (add_instr->opcode) {
515 case aco_opcode::v_add_u32:
516 case aco_opcode::v_add_co_u32:
517 case aco_opcode::s_add_i32:
518 case aco_opcode::s_add_u32:
519 break;
520 default:
521 return false;
522 }
523
524 if (add_instr->usesModifiers())
525 return false;
526
527 for (unsigned i = 0; i < 2; i++) {
528 if (add_instr->operands[i].isConstant()) {
529 *offset = add_instr->operands[i].constantValue();
530 } else if (add_instr->operands[i].isTemp() &&
531 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) {
532 *offset = ctx.info[add_instr->operands[i].tempId()].val;
533 } else {
534 continue;
535 }
536 if (!add_instr->operands[!i].isTemp())
537 continue;
538
539 uint32_t offset2 = 0;
540 if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
541 *offset += offset2;
542 } else {
543 *base = add_instr->operands[!i].getTemp();
544 }
545 return true;
546 }
547
548 return false;
549 }
550
551 void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
552 {
553 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
554 ASSERTED bool all_const = false;
555 for (Operand& op : instr->operands)
556 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal());
557 perfwarn(all_const, "All instruction operands are constant", instr.get());
558 }
559
560 for (unsigned i = 0; i < instr->operands.size(); i++)
561 {
562 if (!instr->operands[i].isTemp())
563 continue;
564
565 ssa_info info = ctx.info[instr->operands[i].tempId()];
566 /* propagate undef */
567 if (info.is_undefined() && is_phi(instr))
568 instr->operands[i] = Operand(instr->operands[i].regClass());
569 /* propagate reg->reg of same type */
570 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
571 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
572 info = ctx.info[info.temp.id()];
573 }
574
575 /* SALU / PSEUDO: propagate inline constants */
576 if (instr->isSALU() || instr->format == Format::PSEUDO) {
577 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
578 instr->operands[i].setTemp(info.temp);
579 info = ctx.info[info.temp.id()];
580 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
581 /* propagate vgpr if it can take it */
582 switch (instr->opcode) {
583 case aco_opcode::p_create_vector:
584 case aco_opcode::p_split_vector:
585 case aco_opcode::p_extract_vector:
586 case aco_opcode::p_phi: {
587 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
588 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
589 if (all_vgpr) {
590 instr->operands[i] = Operand(info.temp);
591 info = ctx.info[info.temp.id()];
592 }
593 break;
594 }
595 default:
596 break;
597 }
598 }
599 if ((info.is_constant() || (info.is_literal() && instr->format == Format::PSEUDO)) && !instr->operands[i].isFixed() && can_accept_constant(instr, i)) {
600 instr->operands[i] = Operand(info.val);
601 continue;
602 }
603 }
604
605 /* VALU: propagate neg, abs & inline constants */
606 else if (instr->isVALU()) {
607 if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
608 instr->operands[i].setTemp(info.temp);
609 info = ctx.info[info.temp.id()];
610 }
611 if (info.is_abs() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
612 if (!instr->isDPP())
613 to_VOP3(ctx, instr);
614 instr->operands[i] = Operand(info.temp);
615 if (instr->isDPP())
616 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
617 else
618 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
619 }
620 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
621 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
622 instr->operands[i].setTemp(info.temp);
623 continue;
624 } else if (info.is_neg() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
625 if (!instr->isDPP())
626 to_VOP3(ctx, instr);
627 instr->operands[i].setTemp(info.temp);
628 if (instr->isDPP())
629 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
630 else
631 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
632 continue;
633 }
634 if (info.is_constant() && can_accept_constant(instr, i)) {
635 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
636 if (i == 0) {
637 instr->operands[i] = Operand(info.val);
638 continue;
639 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
640 instr->operands[i] = instr->operands[0];
641 instr->operands[0] = Operand(info.val);
642 continue;
643 } else if (can_use_VOP3(instr)) {
644 to_VOP3(ctx, instr);
645 instr->operands[i] = Operand(info.val);
646 continue;
647 }
648 }
649 }
650
651 /* MUBUF: propagate constants and combine additions */
652 else if (instr->format == Format::MUBUF) {
653 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
654 Temp base;
655 uint32_t offset;
656 while (info.is_temp())
657 info = ctx.info[info.temp.id()];
658
659 if (mubuf->offen && i == 0 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
660 assert(!mubuf->idxen);
661 instr->operands[i] = Operand(v1);
662 mubuf->offset += info.val;
663 mubuf->offen = false;
664 continue;
665 } else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
666 instr->operands[2] = Operand((uint32_t) 0);
667 mubuf->offset += info.val;
668 continue;
669 } else if (mubuf->offen && i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
670 assert(!mubuf->idxen);
671 instr->operands[i].setTemp(base);
672 mubuf->offset += offset;
673 continue;
674 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
675 instr->operands[i].setTemp(base);
676 mubuf->offset += offset;
677 continue;
678 }
679 }
680
681 /* DS: combine additions */
682 else if (instr->format == Format::DS) {
683
684 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
685 Temp base;
686 uint32_t offset;
687 if (i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == instr->operands[i].regClass()) {
688 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
689 instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
690 if (offset % 4 == 0 &&
691 ds->offset0 + (offset >> 2) <= 255 &&
692 ds->offset1 + (offset >> 2) <= 255) {
693 instr->operands[i].setTemp(base);
694 ds->offset0 += offset >> 2;
695 ds->offset1 += offset >> 2;
696 }
697 } else {
698 if (ds->offset0 + offset <= 65535) {
699 instr->operands[i].setTemp(base);
700 ds->offset0 += offset;
701 }
702 }
703 }
704 }
705
706 /* SMEM: propagate constants and combine additions */
707 else if (instr->format == Format::SMEM) {
708
709 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
710 Temp base;
711 uint32_t offset;
712 if (i == 1 && info.is_constant_or_literal() && info.val <= 0xFFFFF) {
713 instr->operands[i] = Operand(info.val);
714 continue;
715 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
716 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
717 if (soe &&
718 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() ||
719 ctx.info[smem->operands.back().tempId()].val != 0)) {
720 continue;
721 }
722 if (soe) {
723 smem->operands[1] = Operand(offset);
724 smem->operands.back() = Operand(base);
725 } else {
726 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
727 new_instr->operands[0] = smem->operands[0];
728 new_instr->operands[1] = Operand(offset);
729 if (smem->definitions.empty())
730 new_instr->operands[2] = smem->operands[2];
731 new_instr->operands.back() = Operand(base);
732 if (!smem->definitions.empty())
733 new_instr->definitions[0] = smem->definitions[0];
734 new_instr->can_reorder = smem->can_reorder;
735 new_instr->barrier = smem->barrier;
736 instr.reset(new_instr);
737 smem = static_cast<SMEM_instruction *>(instr.get());
738 }
739 continue;
740 }
741 }
742 }
743
744 /* if this instruction doesn't define anything, return */
745 if (instr->definitions.empty())
746 return;
747
748 switch (instr->opcode) {
749 case aco_opcode::p_create_vector: {
750 unsigned num_ops = instr->operands.size();
751 for (const Operand& op : instr->operands) {
752 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
753 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
754 }
755 if (num_ops != instr->operands.size()) {
756 aco_ptr<Instruction> old_vec = std::move(instr);
757 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
758 instr->definitions[0] = old_vec->definitions[0];
759 unsigned k = 0;
760 for (Operand& old_op : old_vec->operands) {
761 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
762 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++)
763 instr->operands[k++] = ctx.info[old_op.tempId()].instr->operands[j];
764 } else {
765 instr->operands[k++] = old_op;
766 }
767 }
768 assert(k == num_ops);
769 }
770 if (instr->operands.size() == 1 && instr->operands[0].isTemp())
771 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
772 else if (instr->definitions[0].getTemp().size() == instr->operands.size())
773 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
774 break;
775 }
776 case aco_opcode::p_split_vector: {
777 if (!ctx.info[instr->operands[0].tempId()].is_vec())
778 break;
779 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
780 assert(instr->definitions.size() == vec->operands.size());
781 for (unsigned i = 0; i < instr->definitions.size(); i++) {
782 Operand vec_op = vec->operands[i];
783 if (vec_op.isConstant()) {
784 if (vec_op.isLiteral())
785 ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue());
786 else if (vec_op.size() == 1)
787 ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue());
788 } else {
789 assert(vec_op.isTemp());
790 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
791 }
792 }
793 break;
794 }
795 case aco_opcode::p_extract_vector: { /* mov */
796 if (!ctx.info[instr->operands[0].tempId()].is_vec())
797 break;
798 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
799 if (vec->definitions[0].getTemp().size() == vec->operands.size() && /* TODO: what about 64bit or other combinations? */
800 vec->operands[0].size() == instr->definitions[0].size()) {
801
802 /* convert this extract into a mov instruction */
803 Operand vec_op = vec->operands[instr->operands[1].constantValue()];
804 bool is_vgpr = instr->definitions[0].getTemp().type() == RegType::vgpr;
805 aco_opcode opcode = is_vgpr ? aco_opcode::v_mov_b32 : aco_opcode::s_mov_b32;
806 Format format = is_vgpr ? Format::VOP1 : Format::SOP1;
807 instr->opcode = opcode;
808 instr->format = format;
809 instr->operands = {instr->operands.begin(), 1 };
810 instr->operands[0] = vec_op;
811
812 if (vec_op.isConstant()) {
813 if (vec_op.isLiteral())
814 ctx.info[instr->definitions[0].tempId()].set_literal(vec_op.constantValue());
815 else if (vec_op.size() == 1)
816 ctx.info[instr->definitions[0].tempId()].set_constant(vec_op.constantValue());
817 } else {
818 assert(vec_op.isTemp());
819 ctx.info[instr->definitions[0].tempId()].set_temp(vec_op.getTemp());
820 }
821 }
822 break;
823 }
824 case aco_opcode::s_mov_b32: /* propagate */
825 case aco_opcode::s_mov_b64:
826 case aco_opcode::v_mov_b32:
827 case aco_opcode::p_as_uniform:
828 if (instr->definitions[0].isFixed()) {
829 /* don't copy-propagate copies into fixed registers */
830 } else if (instr->usesModifiers()) {
831 // TODO
832 } else if (instr->operands[0].isConstant()) {
833 if (instr->operands[0].isLiteral())
834 ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue());
835 else if (instr->operands[0].size() == 1)
836 ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue());
837 } else if (instr->operands[0].isTemp()) {
838 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
839 } else {
840 assert(instr->operands[0].isFixed());
841 }
842 break;
843 case aco_opcode::p_is_helper:
844 if (!ctx.program->needs_wqm)
845 ctx.info[instr->definitions[0].tempId()].set_constant(0u);
846 break;
847 case aco_opcode::s_movk_i32: {
848 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
849 v = v & 0x8000 ? (v | 0xffff0000) : v;
850 if (v <= 64 || v >= 0xfffffff0)
851 ctx.info[instr->definitions[0].tempId()].set_constant(v);
852 else
853 ctx.info[instr->definitions[0].tempId()].set_literal(v);
854 break;
855 }
856 case aco_opcode::v_bfrev_b32:
857 case aco_opcode::s_brev_b32: {
858 if (instr->operands[0].isConstant()) {
859 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
860 if (v <= 64 || v >= 0xfffffff0)
861 ctx.info[instr->definitions[0].tempId()].set_constant(v);
862 else
863 ctx.info[instr->definitions[0].tempId()].set_literal(v);
864 }
865 break;
866 }
867 case aco_opcode::s_bfm_b32: {
868 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
869 unsigned size = instr->operands[0].constantValue() & 0x1f;
870 unsigned start = instr->operands[1].constantValue() & 0x1f;
871 uint32_t v = ((1u << size) - 1u) << start;
872 if (v <= 64 || v >= 0xfffffff0)
873 ctx.info[instr->definitions[0].tempId()].set_constant(v);
874 else
875 ctx.info[instr->definitions[0].tempId()].set_literal(v);
876 }
877 }
878 case aco_opcode::v_mul_f32: { /* omod */
879 /* TODO: try to move the negate/abs modifier to the consumer instead */
880 if (instr->usesModifiers())
881 break;
882
883 for (unsigned i = 0; i < 2; i++) {
884 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
885 if (instr->operands[!i].constantValue() == 0x40000000) { /* 2.0 */
886 ctx.info[instr->operands[i].tempId()].set_omod2();
887 } else if (instr->operands[!i].constantValue() == 0x40800000) { /* 4.0 */
888 ctx.info[instr->operands[i].tempId()].set_omod4();
889 } else if (instr->operands[!i].constantValue() == 0x3f000000) { /* 0.5 */
890 ctx.info[instr->operands[i].tempId()].set_omod5();
891 } else if (instr->operands[!i].constantValue() == 0x3f800000 &&
892 !block.fp_mode.must_flush_denorms32) { /* 1.0 */
893 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
894 } else {
895 continue;
896 }
897 break;
898 }
899 }
900 break;
901 }
902 case aco_opcode::v_and_b32: /* abs */
903 if (instr->operands[0].constantEquals(0x7FFFFFFF) && instr->operands[1].isTemp())
904 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
905 else
906 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
907 break;
908 case aco_opcode::v_xor_b32: { /* neg */
909 if (instr->operands[0].constantEquals(0x80000000u) && instr->operands[1].isTemp()) {
910 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
911 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
912 } else {
913 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
914 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
915 instr->opcode = aco_opcode::v_or_b32;
916 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
917 } else {
918 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
919 }
920 }
921 } else {
922 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
923 }
924 break;
925 }
926 case aco_opcode::v_med3_f32: { /* clamp */
927 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
928 if (vop3->abs[0] || vop3->neg[0] || vop3->opsel[0] ||
929 vop3->abs[1] || vop3->neg[1] || vop3->opsel[1] ||
930 vop3->abs[2] || vop3->neg[2] || vop3->opsel[2] ||
931 vop3->omod != 0)
932 break;
933
934 unsigned idx = 0;
935 bool found_zero = false, found_one = false;
936 for (unsigned i = 0; i < 3; i++)
937 {
938 if (instr->operands[i].constantEquals(0))
939 found_zero = true;
940 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
941 found_one = true;
942 else
943 idx = i;
944 }
945 if (found_zero && found_one && instr->operands[idx].isTemp()) {
946 ctx.info[instr->operands[idx].tempId()].set_clamp();
947 }
948 break;
949 }
950 case aco_opcode::v_cndmask_b32:
951 if (instr->operands[0].constantEquals(0) &&
952 instr->operands[1].constantEquals(0xFFFFFFFF) &&
953 instr->operands[2].isTemp())
954 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
955 else if (instr->operands[0].constantEquals(0) &&
956 instr->operands[1].constantEquals(0x3f800000u) &&
957 instr->operands[2].isTemp())
958 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
959 break;
960 case aco_opcode::v_cmp_lg_u32:
961 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
962 instr->operands[0].constantEquals(0) &&
963 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
964 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
965 break;
966 case aco_opcode::p_phi:
967 case aco_opcode::p_linear_phi: {
968 /* lower_bool_phis() can create phis like this */
969 bool all_same_temp = instr->operands[0].isTemp();
970 /* this check is needed when moving uniform loop counters out of a divergent loop */
971 if (all_same_temp)
972 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
973 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
974 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
975 all_same_temp = false;
976 }
977 if (all_same_temp) {
978 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
979 } else {
980 bool all_undef = instr->operands[0].isUndefined();
981 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
982 if (!instr->operands[i].isUndefined())
983 all_undef = false;
984 }
985 if (all_undef)
986 ctx.info[instr->definitions[0].tempId()].set_undefined();
987 }
988 break;
989 }
990 case aco_opcode::v_add_u32:
991 case aco_opcode::v_add_co_u32:
992 case aco_opcode::s_add_i32:
993 case aco_opcode::s_add_u32:
994 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
995 break;
996 case aco_opcode::s_and_b64:
997 if (instr->operands[1].isFixed() && instr->operands[1].physReg() == exec &&
998 instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
999 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
1000 }
1001 /* fallthrough */
1002 case aco_opcode::s_and_b32:
1003 case aco_opcode::s_not_b32:
1004 case aco_opcode::s_not_b64:
1005 case aco_opcode::s_or_b32:
1006 case aco_opcode::s_or_b64:
1007 case aco_opcode::s_xor_b32:
1008 case aco_opcode::s_xor_b64:
1009 case aco_opcode::s_lshl_b32:
1010 case aco_opcode::v_or_b32:
1011 case aco_opcode::v_lshlrev_b32:
1012 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1013 break;
1014 case aco_opcode::v_min_f32:
1015 case aco_opcode::v_min_f16:
1016 case aco_opcode::v_min_u32:
1017 case aco_opcode::v_min_i32:
1018 case aco_opcode::v_min_u16:
1019 case aco_opcode::v_min_i16:
1020 case aco_opcode::v_max_f32:
1021 case aco_opcode::v_max_f16:
1022 case aco_opcode::v_max_u32:
1023 case aco_opcode::v_max_i32:
1024 case aco_opcode::v_max_u16:
1025 case aco_opcode::v_max_i16:
1026 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
1027 break;
1028 case aco_opcode::v_cmp_lt_f32:
1029 case aco_opcode::v_cmp_eq_f32:
1030 case aco_opcode::v_cmp_le_f32:
1031 case aco_opcode::v_cmp_gt_f32:
1032 case aco_opcode::v_cmp_lg_f32:
1033 case aco_opcode::v_cmp_ge_f32:
1034 case aco_opcode::v_cmp_o_f32:
1035 case aco_opcode::v_cmp_u_f32:
1036 case aco_opcode::v_cmp_nge_f32:
1037 case aco_opcode::v_cmp_nlg_f32:
1038 case aco_opcode::v_cmp_ngt_f32:
1039 case aco_opcode::v_cmp_nle_f32:
1040 case aco_opcode::v_cmp_neq_f32:
1041 case aco_opcode::v_cmp_nlt_f32:
1042 ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
1043 break;
1044 case aco_opcode::s_cselect_b64:
1045 if (instr->operands[0].constantEquals((unsigned) -1) &&
1046 instr->operands[1].constantEquals(0)) {
1047 /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
1048 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
1049 }
1050 break;
1051 default:
1052 break;
1053 }
1054 }
1055
1056 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse)
1057 {
1058 *ordered = *unordered = op;
1059 switch (op) {
1060 #define CMP(ord, unord) \
1061 case aco_opcode::v_cmp_##ord##_f32:\
1062 case aco_opcode::v_cmp_n##unord##_f32:\
1063 *ordered = aco_opcode::v_cmp_##ord##_f32;\
1064 *unordered = aco_opcode::v_cmp_n##unord##_f32;\
1065 *inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\
1066 return true;
1067 CMP(lt, /*n*/ge)
1068 CMP(eq, /*n*/lg)
1069 CMP(le, /*n*/gt)
1070 CMP(gt, /*n*/le)
1071 CMP(lg, /*n*/eq)
1072 CMP(ge, /*n*/lt)
1073 #undef CMP
1074 default:
1075 return false;
1076 }
1077 }
1078
1079 aco_opcode get_ordered(aco_opcode op)
1080 {
1081 aco_opcode ordered, unordered, inverse;
1082 return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::last_opcode;
1083 }
1084
1085 aco_opcode get_unordered(aco_opcode op)
1086 {
1087 aco_opcode ordered, unordered, inverse;
1088 return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::last_opcode;
1089 }
1090
1091 aco_opcode get_inverse(aco_opcode op)
1092 {
1093 aco_opcode ordered, unordered, inverse;
1094 return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::last_opcode;
1095 }
1096
1097 bool is_cmp(aco_opcode op)
1098 {
1099 aco_opcode ordered, unordered, inverse;
1100 return get_cmp_info(op, &ordered, &unordered, &inverse);
1101 }
1102
1103 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1104 {
1105 if (ctx.info[tmp.id()].is_temp())
1106 return ctx.info[tmp.id()].temp.id();
1107 else
1108 return tmp.id();
1109 }
1110
1111 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1112 {
1113 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1114 for (const Operand& op : instr->operands) {
1115 if (op.isTemp())
1116 ctx.uses[op.tempId()]--;
1117 }
1118 }
1119 }
1120
1121 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1122 {
1123 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1124 return nullptr;
1125 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1126 return nullptr;
1127
1128 Instruction *instr = ctx.info[op.tempId()].instr;
1129
1130 if (instr->definitions.size() == 2) {
1131 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1132 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1133 return nullptr;
1134 }
1135
1136 return instr;
1137 }
1138
1139 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1140 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1141 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1142 {
1143 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1144 return false;
1145 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1146 return false;
1147
1148 bool neg[2] = {false, false};
1149 bool abs[2] = {false, false};
1150 bool opsel[2] = {false, false};
1151 Instruction *op_instr[2];
1152 Temp op[2];
1153
1154 for (unsigned i = 0; i < 2; i++) {
1155 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1156 if (!op_instr[i])
1157 return false;
1158
1159 aco_opcode expected_cmp = instr->opcode == aco_opcode::s_or_b64 ?
1160 aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1161
1162 if (op_instr[i]->opcode != expected_cmp)
1163 return false;
1164 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1165 return false;
1166
1167 if (op_instr[i]->isVOP3()) {
1168 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1169 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel[0] != vop3->opsel[1])
1170 return false;
1171 neg[i] = vop3->neg[0];
1172 abs[i] = vop3->abs[0];
1173 opsel[i] = vop3->opsel[0];
1174 }
1175
1176 Temp op0 = op_instr[i]->operands[0].getTemp();
1177 Temp op1 = op_instr[i]->operands[1].getTemp();
1178 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1179 return false;
1180 /* shouldn't happen yet, but best to be safe */
1181 if (op1.type() != RegType::vgpr)
1182 return false;
1183
1184 op[i] = op1;
1185 }
1186
1187 ctx.uses[op[0].id()]++;
1188 ctx.uses[op[1].id()]++;
1189 decrease_uses(ctx, op_instr[0]);
1190 decrease_uses(ctx, op_instr[1]);
1191
1192 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1193 aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1194 Instruction *new_instr;
1195 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel[0] || opsel[1]) {
1196 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1197 for (unsigned i = 0; i < 2; i++) {
1198 vop3->neg[i] = neg[i];
1199 vop3->abs[i] = abs[i];
1200 vop3->opsel[i] = opsel[i];
1201 }
1202 new_instr = static_cast<Instruction *>(vop3);
1203 } else {
1204 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1205 }
1206 new_instr->operands[0] = Operand(op[0]);
1207 new_instr->operands[1] = Operand(op[1]);
1208 new_instr->definitions[0] = instr->definitions[0];
1209
1210 ctx.info[instr->definitions[0].tempId()].label = 0;
1211 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1212
1213 instr.reset(new_instr);
1214
1215 return true;
1216 }
1217
1218 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1219 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1220 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1221 {
1222 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1223 return false;
1224 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1225 return false;
1226
1227 aco_opcode expected_nan_test = instr->opcode == aco_opcode::s_or_b64 ?
1228 aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1229
1230 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1231 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1232 if (!nan_test || !cmp)
1233 return false;
1234
1235 if (cmp->opcode == expected_nan_test)
1236 std::swap(nan_test, cmp);
1237 else if (nan_test->opcode != expected_nan_test)
1238 return false;
1239
1240 if (!is_cmp(cmp->opcode))
1241 return false;
1242
1243 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1244 return false;
1245 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1246 return false;
1247
1248 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1249 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1250 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1251 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1252 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1253 return false;
1254 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1255 return false;
1256
1257 ctx.uses[cmp->operands[0].tempId()]++;
1258 ctx.uses[cmp->operands[1].tempId()]++;
1259 decrease_uses(ctx, nan_test);
1260 decrease_uses(ctx, cmp);
1261
1262 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1263 get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1264 Instruction *new_instr;
1265 if (cmp->isVOP3()) {
1266 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1267 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1268 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1269 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1270 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1271 new_vop3->clamp = cmp_vop3->clamp;
1272 new_vop3->omod = cmp_vop3->omod;
1273 new_instr = new_vop3;
1274 } else {
1275 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1276 }
1277 new_instr->operands[0] = cmp->operands[0];
1278 new_instr->operands[1] = cmp->operands[1];
1279 new_instr->definitions[0] = instr->definitions[0];
1280
1281 ctx.info[instr->definitions[0].tempId()].label = 0;
1282 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1283
1284 instr.reset(new_instr);
1285
1286 return true;
1287 }
1288
1289 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1290 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1291 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1292 {
1293 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1294 return false;
1295 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1296 return false;
1297
1298 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1299 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1300
1301 if (!nan_test || !cmp)
1302 return false;
1303
1304 aco_opcode expected_nan_test = instr->opcode == aco_opcode::s_or_b64 ?
1305 aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1306 if (cmp->opcode == expected_nan_test)
1307 std::swap(nan_test, cmp);
1308 else if (nan_test->opcode != expected_nan_test)
1309 return false;
1310
1311 if (!is_cmp(cmp->opcode))
1312 return false;
1313
1314 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1315 return false;
1316 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1317 return false;
1318
1319 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1320 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1321 if (prop_nan0 != prop_nan1)
1322 return false;
1323
1324 int constant_operand = -1;
1325 for (unsigned i = 0; i < 2; i++) {
1326 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1327 constant_operand = !i;
1328 break;
1329 }
1330 }
1331 if (constant_operand == -1)
1332 return false;
1333
1334 uint32_t constant;
1335 if (cmp->operands[constant_operand].isConstant()) {
1336 constant = cmp->operands[constant_operand].constantValue();
1337 } else if (cmp->operands[constant_operand].isTemp()) {
1338 unsigned id = cmp->operands[constant_operand].tempId();
1339 if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal())
1340 return false;
1341 constant = ctx.info[id].val;
1342 } else {
1343 return false;
1344 }
1345
1346 float constantf;
1347 memcpy(&constantf, &constant, 4);
1348 if (isnan(constantf))
1349 return false;
1350
1351 if (cmp->operands[0].isTemp())
1352 ctx.uses[cmp->operands[0].tempId()]++;
1353 if (cmp->operands[1].isTemp())
1354 ctx.uses[cmp->operands[1].tempId()]++;
1355 decrease_uses(ctx, nan_test);
1356 decrease_uses(ctx, cmp);
1357
1358 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1359 get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1360 Instruction *new_instr;
1361 if (cmp->isVOP3()) {
1362 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1363 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1364 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1365 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1366 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1367 new_vop3->clamp = cmp_vop3->clamp;
1368 new_vop3->omod = cmp_vop3->omod;
1369 new_instr = new_vop3;
1370 } else {
1371 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1372 }
1373 new_instr->operands[0] = cmp->operands[0];
1374 new_instr->operands[1] = cmp->operands[1];
1375 new_instr->definitions[0] = instr->definitions[0];
1376
1377 ctx.info[instr->definitions[0].tempId()].label = 0;
1378 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1379
1380 instr.reset(new_instr);
1381
1382 return true;
1383 }
1384
1385 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1386 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1387 {
1388 if (instr->opcode != aco_opcode::s_not_b64)
1389 return false;
1390 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1391 return false;
1392 if (!instr->operands[0].isTemp())
1393 return false;
1394
1395 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1396 if (!cmp)
1397 return false;
1398
1399 aco_opcode new_opcode = get_inverse(cmp->opcode);
1400 if (new_opcode == aco_opcode::last_opcode)
1401 return false;
1402
1403 if (cmp->operands[0].isTemp())
1404 ctx.uses[cmp->operands[0].tempId()]++;
1405 if (cmp->operands[1].isTemp())
1406 ctx.uses[cmp->operands[1].tempId()]++;
1407 decrease_uses(ctx, cmp);
1408
1409 Instruction *new_instr;
1410 if (cmp->isVOP3()) {
1411 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1412 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1413 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1414 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1415 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1416 new_vop3->clamp = cmp_vop3->clamp;
1417 new_vop3->omod = cmp_vop3->omod;
1418 new_instr = new_vop3;
1419 } else {
1420 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1421 }
1422 new_instr->operands[0] = cmp->operands[0];
1423 new_instr->operands[1] = cmp->operands[1];
1424 new_instr->definitions[0] = instr->definitions[0];
1425
1426 ctx.info[instr->definitions[0].tempId()].label = 0;
1427 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1428
1429 instr.reset(new_instr);
1430
1431 return true;
1432 }
1433
1434 /* op1(op2(1, 2), 0) if swap = false
1435 * op1(0, op2(1, 2)) if swap = true */
1436 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1437 Instruction* op1_instr, bool swap, const char *shuffle_str,
1438 Operand operands[3], bool neg[3], bool abs[3], bool opsel[3],
1439 bool *op1_clamp, unsigned *op1_omod,
1440 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1441 {
1442 /* checks */
1443 if (op1_instr->opcode != op1)
1444 return false;
1445
1446 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1447 if (!op2_instr || op2_instr->opcode != op2)
1448 return false;
1449
1450 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1451 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1452
1453 /* don't support inbetween clamp/omod */
1454 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1455 return false;
1456
1457 /* get operands and modifiers and check inbetween modifiers */
1458 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1459 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1460
1461 if (inbetween_neg)
1462 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1463 else if (op1_vop3 && op1_vop3->neg[swap])
1464 return false;
1465
1466 if (inbetween_abs)
1467 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1468 else if (op1_vop3 && op1_vop3->abs[swap])
1469 return false;
1470
1471 if (inbetween_opsel)
1472 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel[swap] : false;
1473 else if (op1_vop3 && op1_vop3->opsel[swap])
1474 return false;
1475
1476 int shuffle[3];
1477 shuffle[shuffle_str[0] - '0'] = 0;
1478 shuffle[shuffle_str[1] - '0'] = 1;
1479 shuffle[shuffle_str[2] - '0'] = 2;
1480
1481 operands[shuffle[0]] = op1_instr->operands[!swap];
1482 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1483 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1484 opsel[shuffle[0]] = op1_vop3 ? op1_vop3->opsel[!swap] : false;
1485
1486 for (unsigned i = 0; i < 2; i++) {
1487 operands[shuffle[i + 1]] = op2_instr->operands[i];
1488 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1489 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1490 opsel[shuffle[i + 1]] = op2_vop3 ? op2_vop3->opsel[i] : false;
1491 }
1492
1493 /* check operands */
1494 unsigned sgpr_id = 0;
1495 for (unsigned i = 0; i < 3; i++) {
1496 Operand op = operands[i];
1497 if (op.isLiteral()) {
1498 return false;
1499 } else if (op.isTemp() && op.getTemp().type() == RegType::sgpr) {
1500 if (sgpr_id && sgpr_id != op.tempId())
1501 return false;
1502 sgpr_id = op.tempId();
1503 }
1504 }
1505
1506 return true;
1507 }
1508
1509 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1510 Operand operands[3], bool neg[3], bool abs[3], bool opsel[3],
1511 bool clamp, unsigned omod)
1512 {
1513 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1514 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1515 memcpy(new_instr->opsel, opsel, sizeof(bool[3]));
1516 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1517 new_instr->clamp = clamp;
1518 new_instr->omod = omod;
1519 new_instr->operands[0] = operands[0];
1520 new_instr->operands[1] = operands[1];
1521 new_instr->operands[2] = operands[2];
1522 new_instr->definitions[0] = instr->definitions[0];
1523 ctx.info[instr->definitions[0].tempId()].label = 0;
1524
1525 instr.reset(new_instr);
1526 }
1527
1528 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1529 {
1530 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1531 (label_omod_success | label_clamp_success);
1532
1533 for (unsigned swap = 0; swap < 2; swap++) {
1534 if (!((1 << swap) & ops))
1535 continue;
1536
1537 Operand operands[3];
1538 bool neg[3], abs[3], opsel[3], clamp;
1539 unsigned omod;
1540 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1541 instr.get(), swap, shuffle,
1542 operands, neg, abs, opsel,
1543 &clamp, &omod, NULL, NULL, NULL)) {
1544 ctx.uses[instr->operands[swap].tempId()]--;
1545 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1546 if (omod_clamp & label_omod_success)
1547 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1548 if (omod_clamp & label_clamp_success)
1549 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1550 return true;
1551 }
1552 }
1553 return false;
1554 }
1555
1556 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
1557 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
1558 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
1559 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
1560 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
1561 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
1562 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1563 {
1564 /* checks */
1565 if (!instr->operands[0].isTemp())
1566 return false;
1567 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1568 return false;
1569
1570 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
1571 if (!op2_instr)
1572 return false;
1573 switch (op2_instr->opcode) {
1574 case aco_opcode::s_and_b32:
1575 case aco_opcode::s_or_b32:
1576 case aco_opcode::s_xor_b32:
1577 case aco_opcode::s_and_b64:
1578 case aco_opcode::s_or_b64:
1579 case aco_opcode::s_xor_b64:
1580 break;
1581 default:
1582 return false;
1583 }
1584
1585 /* create instruction */
1586 std::swap(instr->definitions[0], op2_instr->definitions[0]);
1587 ctx.uses[instr->operands[0].tempId()]--;
1588 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
1589
1590 switch (op2_instr->opcode) {
1591 case aco_opcode::s_and_b32:
1592 op2_instr->opcode = aco_opcode::s_nand_b32;
1593 break;
1594 case aco_opcode::s_or_b32:
1595 op2_instr->opcode = aco_opcode::s_nor_b32;
1596 break;
1597 case aco_opcode::s_xor_b32:
1598 op2_instr->opcode = aco_opcode::s_xnor_b32;
1599 break;
1600 case aco_opcode::s_and_b64:
1601 op2_instr->opcode = aco_opcode::s_nand_b64;
1602 break;
1603 case aco_opcode::s_or_b64:
1604 op2_instr->opcode = aco_opcode::s_nor_b64;
1605 break;
1606 case aco_opcode::s_xor_b64:
1607 op2_instr->opcode = aco_opcode::s_xnor_b64;
1608 break;
1609 default:
1610 break;
1611 }
1612
1613 return true;
1614 }
1615
1616 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
1617 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
1618 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
1619 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
1620 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1621 {
1622 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1623 return false;
1624
1625 for (unsigned i = 0; i < 2; i++) {
1626 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1627 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
1628 continue;
1629
1630 ctx.uses[instr->operands[i].tempId()]--;
1631 instr->operands[0] = instr->operands[!i];
1632 instr->operands[1] = op2_instr->operands[0];
1633 ctx.info[instr->definitions[0].tempId()].label = 0;
1634
1635 switch (instr->opcode) {
1636 case aco_opcode::s_and_b32:
1637 instr->opcode = aco_opcode::s_andn2_b32;
1638 break;
1639 case aco_opcode::s_or_b32:
1640 instr->opcode = aco_opcode::s_orn2_b32;
1641 break;
1642 case aco_opcode::s_and_b64:
1643 instr->opcode = aco_opcode::s_andn2_b64;
1644 break;
1645 case aco_opcode::s_or_b64:
1646 instr->opcode = aco_opcode::s_orn2_b64;
1647 break;
1648 default:
1649 break;
1650 }
1651
1652 return true;
1653 }
1654 return false;
1655 }
1656
1657 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
1658 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1659 {
1660 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1661 return false;
1662
1663 for (unsigned i = 0; i < 2; i++) {
1664 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1665 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 || !op2_instr->operands[1].isConstant())
1666 continue;
1667
1668 uint32_t shift = op2_instr->operands[1].constantValue();
1669 if (shift < 1 || shift > 4)
1670 continue;
1671
1672 ctx.uses[instr->operands[i].tempId()]--;
1673 instr->operands[1] = instr->operands[!i];
1674 instr->operands[0] = op2_instr->operands[0];
1675 ctx.info[instr->definitions[0].tempId()].label = 0;
1676
1677 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
1678 aco_opcode::s_lshl2_add_u32,
1679 aco_opcode::s_lshl3_add_u32,
1680 aco_opcode::s_lshl4_add_u32})[shift - 1];
1681
1682 return true;
1683 }
1684 return false;
1685 }
1686
1687 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
1688 {
1689 switch (op) {
1690 #define MINMAX(type, gfx9) \
1691 case aco_opcode::v_min_##type:\
1692 case aco_opcode::v_max_##type:\
1693 case aco_opcode::v_med3_##type:\
1694 *min = aco_opcode::v_min_##type;\
1695 *max = aco_opcode::v_max_##type;\
1696 *med3 = aco_opcode::v_med3_##type;\
1697 *min3 = aco_opcode::v_min3_##type;\
1698 *max3 = aco_opcode::v_max3_##type;\
1699 *some_gfx9_only = gfx9;\
1700 return true;
1701 MINMAX(f32, false)
1702 MINMAX(u32, false)
1703 MINMAX(i32, false)
1704 MINMAX(f16, true)
1705 MINMAX(u16, true)
1706 MINMAX(i16, true)
1707 #undef MINMAX
1708 default:
1709 return false;
1710 }
1711 }
1712
1713 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
1714 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
1715 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
1716 aco_opcode min, aco_opcode max, aco_opcode med)
1717 {
1718 aco_opcode other_op;
1719 if (instr->opcode == min)
1720 other_op = max;
1721 else if (instr->opcode == max)
1722 other_op = min;
1723 else
1724 return false;
1725
1726 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1727 (label_omod_success | label_clamp_success);
1728
1729 for (unsigned swap = 0; swap < 2; swap++) {
1730 Operand operands[3];
1731 bool neg[3], abs[3], opsel[3], clamp, inbetween_neg, inbetween_abs;
1732 unsigned omod;
1733 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
1734 "012", operands, neg, abs, opsel,
1735 &clamp, &omod, &inbetween_neg, &inbetween_abs, NULL)) {
1736 int const0_idx = -1, const1_idx = -1;
1737 uint32_t const0 = 0, const1 = 0;
1738 for (int i = 0; i < 3; i++) {
1739 uint32_t val;
1740 if (operands[i].isConstant()) {
1741 val = operands[i].constantValue();
1742 } else if (operands[i].isTemp() && ctx.uses[operands[i].tempId()] == 1 &&
1743 ctx.info[operands[i].tempId()].is_constant_or_literal()) {
1744 val = ctx.info[operands[i].tempId()].val;
1745 } else {
1746 continue;
1747 }
1748 if (const0_idx >= 0) {
1749 const1_idx = i;
1750 const1 = val;
1751 } else {
1752 const0_idx = i;
1753 const0 = val;
1754 }
1755 }
1756 if (const0_idx < 0 || const1_idx < 0)
1757 continue;
1758
1759 if (opsel[const0_idx])
1760 const0 >>= 16;
1761 if (opsel[const1_idx])
1762 const1 >>= 16;
1763
1764 int lower_idx = const0_idx;
1765 switch (min) {
1766 case aco_opcode::v_min_f32:
1767 case aco_opcode::v_min_f16: {
1768 float const0_f, const1_f;
1769 if (min == aco_opcode::v_min_f32) {
1770 memcpy(&const0_f, &const0, 4);
1771 memcpy(&const1_f, &const1, 4);
1772 } else {
1773 const0_f = _mesa_half_to_float(const0);
1774 const1_f = _mesa_half_to_float(const1);
1775 }
1776 if (abs[const0_idx]) const0_f = fabsf(const0_f);
1777 if (abs[const1_idx]) const1_f = fabsf(const1_f);
1778 if (neg[const0_idx]) const0_f = -const0_f;
1779 if (neg[const1_idx]) const1_f = -const1_f;
1780 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
1781 break;
1782 }
1783 case aco_opcode::v_min_u32: {
1784 lower_idx = const0 < const1 ? const0_idx : const1_idx;
1785 break;
1786 }
1787 case aco_opcode::v_min_u16: {
1788 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
1789 break;
1790 }
1791 case aco_opcode::v_min_i32: {
1792 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
1793 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
1794 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1795 break;
1796 }
1797 case aco_opcode::v_min_i16: {
1798 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
1799 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
1800 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1801 break;
1802 }
1803 default:
1804 break;
1805 }
1806 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
1807
1808 if (instr->opcode == min) {
1809 if (upper_idx != 0 || lower_idx == 0)
1810 return false;
1811 } else {
1812 if (upper_idx == 0 || lower_idx != 0)
1813 return false;
1814 }
1815
1816 neg[1] ^= inbetween_neg;
1817 neg[2] ^= inbetween_neg;
1818 abs[1] |= inbetween_abs;
1819 abs[2] |= inbetween_abs;
1820
1821 ctx.uses[instr->operands[swap].tempId()]--;
1822 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
1823 if (omod_clamp & label_omod_success)
1824 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1825 if (omod_clamp & label_clamp_success)
1826 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1827
1828 return true;
1829 }
1830 }
1831
1832 return false;
1833 }
1834
1835
1836 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1837 {
1838 /* apply sgprs */
1839 uint32_t sgpr_idx = 0;
1840 uint32_t sgpr_info_id = 0;
1841 bool has_sgpr = false;
1842 uint32_t sgpr_ssa_id = 0;
1843 /* find 'best' possible sgpr */
1844 for (unsigned i = 0; i < instr->operands.size(); i++)
1845 {
1846 if (instr->operands[i].isLiteral()) {
1847 has_sgpr = true;
1848 break;
1849 }
1850 if (!instr->operands[i].isTemp())
1851 continue;
1852 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
1853 has_sgpr = true;
1854 sgpr_ssa_id = instr->operands[i].tempId();
1855 continue;
1856 }
1857 ssa_info& info = ctx.info[instr->operands[i].tempId()];
1858 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
1859 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
1860 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
1861 sgpr_idx = i;
1862 sgpr_info_id = instr->operands[i].tempId();
1863 }
1864 }
1865 }
1866 if (!has_sgpr && sgpr_info_id != 0) {
1867 ssa_info& info = ctx.info[sgpr_info_id];
1868 if (sgpr_idx == 0 || instr->isVOP3()) {
1869 instr->operands[sgpr_idx] = Operand(info.temp);
1870 ctx.uses[sgpr_info_id]--;
1871 ctx.uses[info.temp.id()]++;
1872 } else if (can_swap_operands(instr)) {
1873 instr->operands[sgpr_idx] = instr->operands[0];
1874 instr->operands[0] = Operand(info.temp);
1875 ctx.uses[sgpr_info_id]--;
1876 ctx.uses[info.temp.id()]++;
1877 } else if (can_use_VOP3(instr)) {
1878 to_VOP3(ctx, instr);
1879 instr->operands[sgpr_idx] = Operand(info.temp);
1880 ctx.uses[sgpr_info_id]--;
1881 ctx.uses[info.temp.id()]++;
1882 }
1883
1884 /* we can have two sgprs on one instruction if it is the same sgpr! */
1885 } else if (sgpr_info_id != 0 &&
1886 sgpr_ssa_id == sgpr_info_id &&
1887 ctx.uses[sgpr_info_id] == 1 &&
1888 can_use_VOP3(instr)) {
1889 to_VOP3(ctx, instr);
1890 instr->operands[sgpr_idx] = Operand(ctx.info[sgpr_info_id].temp);
1891 ctx.uses[sgpr_info_id]--;
1892 ctx.uses[ctx.info[sgpr_info_id].temp.id()]++;
1893 }
1894 }
1895
1896 bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
1897 {
1898 /* check if we could apply omod on predecessor */
1899 if (instr->opcode == aco_opcode::v_mul_f32) {
1900 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success()) {
1901
1902 /* omod was successfully applied */
1903 /* if the omod instruction is v_mad, we also have to change the original add */
1904 if (ctx.info[instr->operands[1].tempId()].is_mad()) {
1905 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[1].tempId()].val].add_instr.get();
1906 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
1907 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
1908 add_instr->definitions[0] = instr->definitions[0];
1909 }
1910
1911 Instruction* omod_instr = ctx.info[instr->operands[1].tempId()].instr;
1912 /* check if we have an additional clamp modifier */
1913 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1) {
1914 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
1915 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
1916 }
1917 /* change definition ssa-id of modified instruction */
1918 omod_instr->definitions[0] = instr->definitions[0];
1919
1920 /* change the definition of instr to something unused, e.g. the original omod def */
1921 instr->definitions[0] = Definition(instr->operands[1].getTemp());
1922 ctx.uses[instr->definitions[0].tempId()] = 0;
1923 return true;
1924 }
1925 if (!ctx.info[instr->definitions[0].tempId()].label) {
1926 /* in all other cases, label this instruction as option for multiply-add */
1927 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
1928 }
1929 }
1930
1931 /* check if we could apply clamp on predecessor */
1932 if (instr->opcode == aco_opcode::v_med3_f32) {
1933 unsigned idx = 0;
1934 bool found_zero = false, found_one = false;
1935 for (unsigned i = 0; i < 3; i++)
1936 {
1937 if (instr->operands[i].constantEquals(0))
1938 found_zero = true;
1939 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
1940 found_one = true;
1941 else
1942 idx = i;
1943 }
1944 if (found_zero && found_one && instr->operands[idx].isTemp() &&
1945 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
1946 /* clamp was successfully applied */
1947 /* if the clamp instruction is v_mad, we also have to change the original add */
1948 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
1949 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
1950 add_instr->definitions[0] = instr->definitions[0];
1951 }
1952 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
1953 /* change definition ssa-id of modified instruction */
1954 clamp_instr->definitions[0] = instr->definitions[0];
1955
1956 /* change the definition of instr to something unused, e.g. the original omod def */
1957 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
1958 ctx.uses[instr->definitions[0].tempId()] = 0;
1959 return true;
1960 }
1961 }
1962
1963 /* omod has no effect if denormals are enabled */
1964 bool can_use_omod = block.fp_mode.denorm32 == 0;
1965
1966 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
1967 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
1968 can_use_VOP3(instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
1969 if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod2()) {
1970 to_VOP3(ctx, instr);
1971 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
1972 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1973 } else if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod4()) {
1974 to_VOP3(ctx, instr);
1975 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
1976 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1977 } else if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod5()) {
1978 to_VOP3(ctx, instr);
1979 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
1980 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1981 } else if (ctx.info[instr->definitions[0].tempId()].is_clamp()) {
1982 to_VOP3(ctx, instr);
1983 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
1984 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1985 }
1986 }
1987
1988 return false;
1989 }
1990
1991 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
1992 // this would mean that we'd have to fix the instruction uses while value propagation
1993
1994 void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
1995 {
1996 if (instr->definitions.empty() || !ctx.uses[instr->definitions[0].tempId()])
1997 return;
1998
1999 if (instr->isVALU()) {
2000 if (can_apply_sgprs(instr))
2001 apply_sgprs(ctx, instr);
2002 if (apply_omod_clamp(ctx, block, instr))
2003 return;
2004 }
2005
2006 /* TODO: There are still some peephole optimizations that could be done:
2007 * - abs(a - b) -> s_absdiff_i32
2008 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
2009 * - patterns for v_alignbit_b32 and v_alignbyte_b32
2010 * These aren't probably too interesting though.
2011 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
2012 * probably more useful than the previously mentioned optimizations.
2013 * The various comparison optimizations also currently only work with 32-bit
2014 * floats. */
2015
2016 /* neg(mul(a, b)) -> mul(neg(a), b) */
2017 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
2018 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
2019
2020 if (!ctx.info[val.id()].is_mul())
2021 return;
2022
2023 Instruction* mul_instr = ctx.info[val.id()].instr;
2024
2025 if (mul_instr->operands[0].isLiteral())
2026 return;
2027 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
2028 return;
2029
2030 /* convert to mul(neg(a), b) */
2031 ctx.uses[mul_instr->definitions[0].tempId()]--;
2032 Definition def = instr->definitions[0];
2033 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
2034 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
2035 instr.reset(create_instruction<VOP3A_instruction>(aco_opcode::v_mul_f32, asVOP3(Format::VOP2), 2, 1));
2036 instr->operands[0] = mul_instr->operands[0];
2037 instr->operands[1] = mul_instr->operands[1];
2038 instr->definitions[0] = def;
2039 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
2040 if (mul_instr->isVOP3()) {
2041 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
2042 new_mul->neg[0] = mul->neg[0] && !is_abs;
2043 new_mul->neg[1] = mul->neg[1] && !is_abs;
2044 new_mul->abs[0] = mul->abs[0] || is_abs;
2045 new_mul->abs[1] = mul->abs[1] || is_abs;
2046 new_mul->omod = mul->omod;
2047 }
2048 new_mul->neg[0] ^= true;
2049 new_mul->clamp = false;
2050
2051 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2052 return;
2053 }
2054 /* combine mul+add -> mad */
2055 else if ((instr->opcode == aco_opcode::v_add_f32 ||
2056 instr->opcode == aco_opcode::v_sub_f32 ||
2057 instr->opcode == aco_opcode::v_subrev_f32) &&
2058 block.fp_mode.denorm32 == 0 && !block.fp_mode.preserve_signed_zero_inf_nan32) {
2059 //TODO: we could use fma instead when denormals are enabled if the NIR isn't marked as precise
2060
2061 uint32_t uses_src0 = UINT32_MAX;
2062 uint32_t uses_src1 = UINT32_MAX;
2063 Instruction* mul_instr = nullptr;
2064 unsigned add_op_idx;
2065 /* check if any of the operands is a multiplication */
2066 if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_mul())
2067 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2068 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_mul())
2069 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2070
2071 /* find the 'best' mul instruction to combine with the add */
2072 if (uses_src0 < uses_src1) {
2073 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2074 add_op_idx = 1;
2075 } else if (uses_src1 < uses_src0) {
2076 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2077 add_op_idx = 0;
2078 } else if (uses_src0 != UINT32_MAX) {
2079 /* tiebreaker: quite random what to pick */
2080 if (ctx.info[instr->operands[0].tempId()].instr->operands[0].isLiteral()) {
2081 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2082 add_op_idx = 0;
2083 } else {
2084 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2085 add_op_idx = 1;
2086 }
2087 }
2088 if (mul_instr) {
2089 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2090 bool neg[3] = {false, false, false};
2091 bool abs[3] = {false, false, false};
2092 unsigned omod = 0;
2093 bool clamp = false;
2094 bool need_vop3 = false;
2095 int num_sgpr = 0;
2096 op[0] = mul_instr->operands[0];
2097 op[1] = mul_instr->operands[1];
2098 op[2] = instr->operands[add_op_idx];
2099 for (unsigned i = 0; i < 3; i++)
2100 {
2101 if (op[i].isLiteral())
2102 return;
2103 if (op[i].isTemp() && op[i].getTemp().type() == RegType::sgpr)
2104 num_sgpr++;
2105 if (!(i == 0 || (op[i].isTemp() && op[i].getTemp().type() == RegType::vgpr)))
2106 need_vop3 = true;
2107 }
2108 // TODO: would be better to check this before selecting a mul instr?
2109 if (num_sgpr > 1)
2110 return;
2111
2112 if (mul_instr->isVOP3()) {
2113 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2114 neg[0] = vop3->neg[0];
2115 neg[1] = vop3->neg[1];
2116 abs[0] = vop3->abs[0];
2117 abs[1] = vop3->abs[1];
2118 need_vop3 = true;
2119 /* we cannot use these modifiers between mul and add */
2120 if (vop3->clamp || vop3->omod)
2121 return;
2122 }
2123
2124 /* convert to mad */
2125 ctx.uses[mul_instr->definitions[0].tempId()]--;
2126 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2127 if (op[0].isTemp())
2128 ctx.uses[op[0].tempId()]++;
2129 if (op[1].isTemp())
2130 ctx.uses[op[1].tempId()]++;
2131 }
2132
2133 if (instr->isVOP3()) {
2134 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2135 neg[2] = vop3->neg[add_op_idx];
2136 abs[2] = vop3->abs[add_op_idx];
2137 omod = vop3->omod;
2138 clamp = vop3->clamp;
2139 /* abs of the multiplication result */
2140 if (vop3->abs[1 - add_op_idx]) {
2141 neg[0] = false;
2142 neg[1] = false;
2143 abs[0] = true;
2144 abs[1] = true;
2145 }
2146 /* neg of the multiplication result */
2147 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2148 need_vop3 = true;
2149 }
2150 if (instr->opcode == aco_opcode::v_sub_f32) {
2151 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2152 need_vop3 = true;
2153 } else if (instr->opcode == aco_opcode::v_subrev_f32) {
2154 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2155 need_vop3 = true;
2156 }
2157
2158 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)};
2159 for (unsigned i = 0; i < 3; i++)
2160 {
2161 mad->operands[i] = op[i];
2162 mad->neg[i] = neg[i];
2163 mad->abs[i] = abs[i];
2164 }
2165 mad->omod = omod;
2166 mad->clamp = clamp;
2167 mad->definitions[0] = instr->definitions[0];
2168
2169 /* mark this ssa_def to be re-checked for profitability and literals */
2170 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId(), need_vop3);
2171 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2172 instr.reset(mad.release());
2173 return;
2174 }
2175 }
2176 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2177 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2178 for (unsigned i = 0; i < 2; i++) {
2179 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2180 ctx.uses[instr->operands[i].tempId()] == 1 &&
2181 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2182 ctx.uses[instr->operands[i].tempId()]--;
2183 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2184
2185 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2186 new_instr->operands[0] = Operand(0u);
2187 new_instr->operands[1] = instr->operands[!i];
2188 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2189 new_instr->definitions[0] = instr->definitions[0];
2190 instr.reset(new_instr.release());
2191 ctx.info[instr->definitions[0].tempId()].label = 0;
2192 return;
2193 }
2194 }
2195 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2196 if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2197 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2198 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2199 } else if (instr->opcode == aco_opcode::v_add_u32 && ctx.program->chip_class >= GFX9) {
2200 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2201 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2202 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2203 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2204 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2205 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2206 combine_salu_lshl_add(ctx, instr);
2207 } else if (instr->opcode == aco_opcode::s_not_b32) {
2208 combine_salu_not_bitwise(ctx, instr);
2209 } else if (instr->opcode == aco_opcode::s_not_b64) {
2210 if (combine_inverse_comparison(ctx, instr)) ;
2211 else combine_salu_not_bitwise(ctx, instr);
2212 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32) {
2213 combine_salu_n2(ctx, instr);
2214 } else if (instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2215 if (combine_ordering_test(ctx, instr)) ;
2216 else if (combine_comparison_ordering(ctx, instr)) ;
2217 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2218 else combine_salu_n2(ctx, instr);
2219 } else {
2220 aco_opcode min, max, min3, max3, med3;
2221 bool some_gfx9_only;
2222 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2223 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2224 if (combine_three_valu_op(ctx, instr, instr->opcode, instr->opcode == min ? min3 : max3, "012", 1 | 2));
2225 else combine_clamp(ctx, instr, min, max, med3);
2226 }
2227 }
2228 }
2229
2230
2231 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2232 {
2233 const uint32_t threshold = 4;
2234
2235 /* Dead Code Elimination:
2236 * We remove instructions if they define temporaries which all are unused */
2237 const bool is_used = instr->definitions.empty() ||
2238 std::any_of(instr->definitions.begin(), instr->definitions.end(),
2239 [&ctx](const Definition& def) { return ctx.uses[def.tempId()]; });
2240 if (!is_used) {
2241 instr.reset();
2242 return;
2243 }
2244
2245 /* convert split_vector into extract_vector if only one definition is ever used */
2246 if (instr->opcode == aco_opcode::p_split_vector) {
2247 unsigned num_used = 0;
2248 unsigned idx = 0;
2249 for (unsigned i = 0; i < instr->definitions.size(); i++) {
2250 if (ctx.uses[instr->definitions[i].tempId()]) {
2251 num_used++;
2252 idx = i;
2253 }
2254 }
2255 if (num_used == 1) {
2256 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2257 extract->operands[0] = instr->operands[0];
2258 extract->operands[1] = Operand((uint32_t) idx);
2259 extract->definitions[0] = instr->definitions[idx];
2260 instr.reset(extract.release());
2261 }
2262 }
2263
2264 /* re-check mad instructions */
2265 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2266 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2267 /* first, check profitability */
2268 if (ctx.uses[info->mul_temp_id]) {
2269 ctx.uses[info->mul_temp_id]++;
2270 instr.swap(info->add_instr);
2271
2272 /* second, check possible literals */
2273 } else if (!info->needs_vop3) {
2274 uint32_t literal_idx = 0;
2275 uint32_t literal_uses = UINT32_MAX;
2276 for (unsigned i = 0; i < instr->operands.size(); i++)
2277 {
2278 if (!instr->operands[i].isTemp())
2279 continue;
2280 /* if one of the operands is sgpr, we cannot add a literal somewhere else */
2281 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2282 if (ctx.info[instr->operands[i].tempId()].is_literal()) {
2283 literal_uses = ctx.uses[instr->operands[i].tempId()];
2284 literal_idx = i;
2285 } else {
2286 literal_uses = UINT32_MAX;
2287 }
2288 break;
2289 }
2290 else if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2291 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2292 literal_uses = ctx.uses[instr->operands[i].tempId()];
2293 literal_idx = i;
2294 }
2295 }
2296 if (literal_uses < threshold) {
2297 ctx.uses[instr->operands[literal_idx].tempId()]--;
2298 info->check_literal = true;
2299 info->literal_idx = literal_idx;
2300 }
2301 }
2302 return;
2303 }
2304
2305 /* check for literals */
2306 /* we do not apply the literals yet as we don't know if it is profitable */
2307 if (instr->isSALU()) {
2308 uint32_t literal_idx = 0;
2309 uint32_t literal_uses = UINT32_MAX;
2310 bool has_literal = false;
2311 for (unsigned i = 0; i < instr->operands.size(); i++)
2312 {
2313 if (instr->operands[i].isLiteral()) {
2314 has_literal = true;
2315 break;
2316 }
2317 if (!instr->operands[i].isTemp())
2318 continue;
2319 if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2320 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2321 literal_uses = ctx.uses[instr->operands[i].tempId()];
2322 literal_idx = i;
2323 }
2324 }
2325 if (!has_literal && literal_uses < threshold) {
2326 ctx.uses[instr->operands[literal_idx].tempId()]--;
2327 if (ctx.uses[instr->operands[literal_idx].tempId()] == 0)
2328 instr->operands[literal_idx] = Operand(ctx.info[instr->operands[literal_idx].tempId()].val);
2329 }
2330 } else if (instr->isVALU() && valu_can_accept_literal(ctx, instr, 0) &&
2331 instr->operands[0].isTemp() &&
2332 ctx.info[instr->operands[0].tempId()].is_literal() &&
2333 ctx.uses[instr->operands[0].tempId()] < threshold) {
2334 ctx.uses[instr->operands[0].tempId()]--;
2335 if (ctx.uses[instr->operands[0].tempId()] == 0)
2336 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2337 }
2338
2339 }
2340
2341
2342 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2343 {
2344 /* Cleanup Dead Instructions */
2345 if (!instr)
2346 return;
2347
2348 /* apply literals on SALU */
2349 if (instr->isSALU()) {
2350 for (Operand& op : instr->operands) {
2351 if (!op.isTemp())
2352 continue;
2353 if (op.isLiteral())
2354 break;
2355 if (ctx.info[op.tempId()].is_literal() &&
2356 ctx.uses[op.tempId()] == 0)
2357 op = Operand(ctx.info[op.tempId()].val);
2358 }
2359 }
2360
2361 /* apply literals on VALU */
2362 else if (instr->isVALU() && !instr->isVOP3() &&
2363 instr->operands[0].isTemp() &&
2364 ctx.info[instr->operands[0].tempId()].is_literal() &&
2365 ctx.uses[instr->operands[0].tempId()] == 0) {
2366 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2367 }
2368
2369 /* apply literals on MAD */
2370 else if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2371 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2372 aco_ptr<Instruction> new_mad;
2373 if (info->check_literal && ctx.uses[instr->operands[info->literal_idx].tempId()] == 0) {
2374 if (info->literal_idx == 2) { /* add literal -> madak */
2375 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
2376 new_mad->operands[0] = instr->operands[0];
2377 new_mad->operands[1] = instr->operands[1];
2378 } else { /* mul literal -> madmk */
2379 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
2380 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
2381 new_mad->operands[1] = instr->operands[2];
2382 }
2383 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
2384 new_mad->definitions[0] = instr->definitions[0];
2385 instr.swap(new_mad);
2386 }
2387 }
2388
2389 ctx.instructions.emplace_back(std::move(instr));
2390 }
2391
2392
2393 void optimize(Program* program)
2394 {
2395 opt_ctx ctx;
2396 ctx.program = program;
2397 std::vector<ssa_info> info(program->peekAllocationId());
2398 ctx.info = info.data();
2399
2400 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
2401 for (Block& block : program->blocks) {
2402 for (aco_ptr<Instruction>& instr : block.instructions)
2403 label_instruction(ctx, block, instr);
2404 }
2405
2406 ctx.uses = std::move(dead_code_analysis(program));
2407
2408 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
2409 for (Block& block : program->blocks) {
2410 for (aco_ptr<Instruction>& instr : block.instructions)
2411 combine_instruction(ctx, block, instr);
2412 }
2413
2414 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
2415 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
2416 Block* block = &(*it);
2417 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
2418 select_instruction(ctx, *it);
2419 }
2420
2421 /* 4. Add literals to instructions */
2422 for (Block& block : program->blocks) {
2423 ctx.instructions.clear();
2424 for (aco_ptr<Instruction>& instr : block.instructions)
2425 apply_literals(ctx, instr);
2426 block.instructions.swap(ctx.instructions);
2427 }
2428
2429 }
2430
2431 }