f3819676df9bf8775eefc668ee3581f250bf1227
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint32_t literal_idx;
56 bool check_literal;
57
58 mad_info(aco_ptr<Instruction> instr, uint32_t id)
59 : add_instr(std::move(instr)), mul_temp_id(id), check_literal(false) {}
60 };
61
62 enum Label {
63 label_vec = 1 << 0,
64 label_constant = 1 << 1,
65 label_abs = 1 << 2,
66 label_neg = 1 << 3,
67 label_mul = 1 << 4,
68 label_temp = 1 << 5,
69 label_literal = 1 << 6,
70 label_mad = 1 << 7,
71 label_omod2 = 1 << 8,
72 label_omod4 = 1 << 9,
73 label_omod5 = 1 << 10,
74 label_omod_success = 1 << 11,
75 label_clamp = 1 << 12,
76 label_clamp_success = 1 << 13,
77 label_undefined = 1 << 14,
78 label_vcc = 1 << 15,
79 label_b2f = 1 << 16,
80 label_add_sub = 1 << 17,
81 label_bitwise = 1 << 18,
82 label_minmax = 1 << 19,
83 label_fcmp = 1 << 20,
84 label_uniform_bool = 1 << 21,
85 label_constant_64bit = 1 << 22,
86 label_uniform_bitwise = 1 << 23,
87 label_scc_invert = 1 << 24,
88 label_vcc_hint = 1 << 25,
89 label_scc_needed = 1 << 26,
90 };
91
92 static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success |
93 label_add_sub | label_bitwise | label_uniform_bitwise | label_minmax | label_fcmp;
94 static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool |
95 label_omod2 | label_omod4 | label_omod5 | label_clamp | label_scc_invert;
96 static constexpr uint32_t val_labels = label_constant | label_constant_64bit | label_literal | label_mad;
97
98 struct ssa_info {
99 uint32_t val;
100 union {
101 Temp temp;
102 Instruction* instr;
103 };
104 uint32_t label;
105
106 void add_label(Label new_label)
107 {
108 /* Since all labels which use "instr" use it for the same thing
109 * (indicating the defining instruction), there is no need to clear
110 * any other instr labels. */
111 if (new_label & instr_labels)
112 label &= ~temp_labels; /* instr and temp alias */
113
114 if (new_label & temp_labels) {
115 label &= ~temp_labels;
116 label &= ~instr_labels; /* instr and temp alias */
117 }
118
119 if (new_label & val_labels)
120 label &= ~val_labels;
121
122 label |= new_label;
123 }
124
125 void set_vec(Instruction* vec)
126 {
127 add_label(label_vec);
128 instr = vec;
129 }
130
131 bool is_vec()
132 {
133 return label & label_vec;
134 }
135
136 void set_constant(uint32_t constant)
137 {
138 add_label(label_constant);
139 val = constant;
140 }
141
142 bool is_constant()
143 {
144 return label & label_constant;
145 }
146
147 void set_constant_64bit(uint32_t constant)
148 {
149 add_label(label_constant_64bit);
150 val = constant;
151 }
152
153 bool is_constant_64bit()
154 {
155 return label & label_constant_64bit;
156 }
157
158 void set_abs(Temp abs_temp)
159 {
160 add_label(label_abs);
161 temp = abs_temp;
162 }
163
164 bool is_abs()
165 {
166 return label & label_abs;
167 }
168
169 void set_neg(Temp neg_temp)
170 {
171 add_label(label_neg);
172 temp = neg_temp;
173 }
174
175 bool is_neg()
176 {
177 return label & label_neg;
178 }
179
180 void set_neg_abs(Temp neg_abs_temp)
181 {
182 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
183 temp = neg_abs_temp;
184 }
185
186 void set_mul(Instruction* mul)
187 {
188 add_label(label_mul);
189 instr = mul;
190 }
191
192 bool is_mul()
193 {
194 return label & label_mul;
195 }
196
197 void set_temp(Temp tmp)
198 {
199 add_label(label_temp);
200 temp = tmp;
201 }
202
203 bool is_temp()
204 {
205 return label & label_temp;
206 }
207
208 void set_literal(uint32_t lit)
209 {
210 add_label(label_literal);
211 val = lit;
212 }
213
214 bool is_literal()
215 {
216 return label & label_literal;
217 }
218
219 void set_mad(Instruction* mad, uint32_t mad_info_idx)
220 {
221 add_label(label_mad);
222 val = mad_info_idx;
223 instr = mad;
224 }
225
226 bool is_mad()
227 {
228 return label & label_mad;
229 }
230
231 void set_omod2(Temp def)
232 {
233 add_label(label_omod2);
234 temp = def;
235 }
236
237 bool is_omod2()
238 {
239 return label & label_omod2;
240 }
241
242 void set_omod4(Temp def)
243 {
244 add_label(label_omod4);
245 temp = def;
246 }
247
248 bool is_omod4()
249 {
250 return label & label_omod4;
251 }
252
253 void set_omod5(Temp def)
254 {
255 add_label(label_omod5);
256 temp = def;
257 }
258
259 bool is_omod5()
260 {
261 return label & label_omod5;
262 }
263
264 void set_omod_success(Instruction* omod_instr)
265 {
266 add_label(label_omod_success);
267 instr = omod_instr;
268 }
269
270 bool is_omod_success()
271 {
272 return label & label_omod_success;
273 }
274
275 void set_clamp(Temp def)
276 {
277 add_label(label_clamp);
278 temp = def;
279 }
280
281 bool is_clamp()
282 {
283 return label & label_clamp;
284 }
285
286 void set_clamp_success(Instruction* clamp_instr)
287 {
288 add_label(label_clamp_success);
289 instr = clamp_instr;
290 }
291
292 bool is_clamp_success()
293 {
294 return label & label_clamp_success;
295 }
296
297 void set_undefined()
298 {
299 add_label(label_undefined);
300 }
301
302 bool is_undefined()
303 {
304 return label & label_undefined;
305 }
306
307 void set_vcc(Temp vcc)
308 {
309 add_label(label_vcc);
310 temp = vcc;
311 }
312
313 bool is_vcc()
314 {
315 return label & label_vcc;
316 }
317
318 bool is_constant_or_literal()
319 {
320 return is_constant() || is_literal();
321 }
322
323 void set_b2f(Temp val)
324 {
325 add_label(label_b2f);
326 temp = val;
327 }
328
329 bool is_b2f()
330 {
331 return label & label_b2f;
332 }
333
334 void set_add_sub(Instruction *add_sub_instr)
335 {
336 add_label(label_add_sub);
337 instr = add_sub_instr;
338 }
339
340 bool is_add_sub()
341 {
342 return label & label_add_sub;
343 }
344
345 void set_bitwise(Instruction *bitwise_instr)
346 {
347 add_label(label_bitwise);
348 instr = bitwise_instr;
349 }
350
351 bool is_bitwise()
352 {
353 return label & label_bitwise;
354 }
355
356 void set_uniform_bitwise()
357 {
358 add_label(label_uniform_bitwise);
359 }
360
361 bool is_uniform_bitwise()
362 {
363 return label & label_uniform_bitwise;
364 }
365
366 void set_minmax(Instruction *minmax_instr)
367 {
368 add_label(label_minmax);
369 instr = minmax_instr;
370 }
371
372 bool is_minmax()
373 {
374 return label & label_minmax;
375 }
376
377 void set_fcmp(Instruction *fcmp_instr)
378 {
379 add_label(label_fcmp);
380 instr = fcmp_instr;
381 }
382
383 bool is_fcmp()
384 {
385 return label & label_fcmp;
386 }
387
388 void set_scc_needed()
389 {
390 add_label(label_scc_needed);
391 }
392
393 bool is_scc_needed()
394 {
395 return label & label_scc_needed;
396 }
397
398 void set_scc_invert(Temp scc_inv)
399 {
400 add_label(label_scc_invert);
401 temp = scc_inv;
402 }
403
404 bool is_scc_invert()
405 {
406 return label & label_scc_invert;
407 }
408
409 void set_uniform_bool(Temp uniform_bool)
410 {
411 add_label(label_uniform_bool);
412 temp = uniform_bool;
413 }
414
415 bool is_uniform_bool()
416 {
417 return label & label_uniform_bool;
418 }
419
420 void set_vcc_hint()
421 {
422 add_label(label_vcc_hint);
423 }
424
425 bool is_vcc_hint()
426 {
427 return label & label_vcc_hint;
428 }
429 };
430
431 struct opt_ctx {
432 Program* program;
433 std::vector<aco_ptr<Instruction>> instructions;
434 ssa_info* info;
435 std::pair<uint32_t,Temp> last_literal;
436 std::vector<mad_info> mad_infos;
437 std::vector<uint16_t> uses;
438 };
439
440 bool can_swap_operands(aco_ptr<Instruction>& instr)
441 {
442 if (instr->operands[0].isConstant() ||
443 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
444 return false;
445
446 switch (instr->opcode) {
447 case aco_opcode::v_add_f32:
448 case aco_opcode::v_mul_f32:
449 case aco_opcode::v_or_b32:
450 case aco_opcode::v_and_b32:
451 case aco_opcode::v_xor_b32:
452 case aco_opcode::v_max_f32:
453 case aco_opcode::v_min_f32:
454 case aco_opcode::v_max_i32:
455 case aco_opcode::v_min_i32:
456 case aco_opcode::v_max_u32:
457 case aco_opcode::v_min_u32:
458 case aco_opcode::v_cmp_eq_f32:
459 case aco_opcode::v_cmp_lg_f32:
460 return true;
461 case aco_opcode::v_sub_f32:
462 instr->opcode = aco_opcode::v_subrev_f32;
463 return true;
464 case aco_opcode::v_cmp_lt_f32:
465 instr->opcode = aco_opcode::v_cmp_gt_f32;
466 return true;
467 case aco_opcode::v_cmp_ge_f32:
468 instr->opcode = aco_opcode::v_cmp_le_f32;
469 return true;
470 case aco_opcode::v_cmp_lt_i32:
471 instr->opcode = aco_opcode::v_cmp_gt_i32;
472 return true;
473 default:
474 return false;
475 }
476 }
477
478 bool can_use_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
479 {
480 if (instr->isVOP3())
481 return true;
482
483 if (instr->operands.size() && instr->operands[0].isLiteral() && ctx.program->chip_class < GFX10)
484 return false;
485
486 if (instr->isDPP() || instr->isSDWA())
487 return false;
488
489 return instr->opcode != aco_opcode::v_madmk_f32 &&
490 instr->opcode != aco_opcode::v_madak_f32 &&
491 instr->opcode != aco_opcode::v_madmk_f16 &&
492 instr->opcode != aco_opcode::v_madak_f16 &&
493 instr->opcode != aco_opcode::v_fmamk_f32 &&
494 instr->opcode != aco_opcode::v_fmaak_f32 &&
495 instr->opcode != aco_opcode::v_fmamk_f16 &&
496 instr->opcode != aco_opcode::v_fmaak_f16 &&
497 instr->opcode != aco_opcode::v_readlane_b32 &&
498 instr->opcode != aco_opcode::v_writelane_b32 &&
499 instr->opcode != aco_opcode::v_readfirstlane_b32;
500 }
501
502 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
503 {
504 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
505 instr->opcode != aco_opcode::v_readlane_b32 &&
506 instr->opcode != aco_opcode::v_readlane_b32_e64 &&
507 instr->opcode != aco_opcode::v_writelane_b32 &&
508 instr->opcode != aco_opcode::v_writelane_b32_e64;
509 }
510
511 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
512 {
513 if (instr->isVOP3())
514 return;
515
516 aco_ptr<Instruction> tmp = std::move(instr);
517 Format format = asVOP3(tmp->format);
518 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
519 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
520 for (unsigned i = 0; i < instr->definitions.size(); i++) {
521 instr->definitions[i] = tmp->definitions[i];
522 if (instr->definitions[i].isTemp()) {
523 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
524 if (info.label & instr_labels && info.instr == tmp.get())
525 info.instr = instr.get();
526 }
527 }
528 }
529
530 /* only covers special cases */
531 bool alu_can_accept_constant(aco_opcode opcode, unsigned operand)
532 {
533 switch (opcode) {
534 case aco_opcode::v_interp_p2_f32:
535 case aco_opcode::v_mac_f32:
536 case aco_opcode::v_writelane_b32:
537 case aco_opcode::v_writelane_b32_e64:
538 case aco_opcode::v_cndmask_b32:
539 return operand != 2;
540 case aco_opcode::s_addk_i32:
541 case aco_opcode::s_mulk_i32:
542 case aco_opcode::p_wqm:
543 case aco_opcode::p_extract_vector:
544 case aco_opcode::p_split_vector:
545 case aco_opcode::v_readlane_b32:
546 case aco_opcode::v_readlane_b32_e64:
547 case aco_opcode::v_readfirstlane_b32:
548 return operand != 0;
549 default:
550 return true;
551 }
552 }
553
554 bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
555 {
556 if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
557 instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64)
558 return operand != 1;
559 return true;
560 }
561
562 /* check constant bus and literal limitations */
563 bool check_vop3_operands(opt_ctx& ctx, unsigned num_operands, Operand *operands)
564 {
565 int limit = ctx.program->chip_class >= GFX10 ? 2 : 1;
566 Operand literal32(s1);
567 Operand literal64(s2);
568 unsigned num_sgprs = 0;
569 unsigned sgpr[] = {0, 0};
570
571 for (unsigned i = 0; i < num_operands; i++) {
572 Operand op = operands[i];
573
574 if (op.hasRegClass() && op.regClass().type() == RegType::sgpr) {
575 /* two reads of the same SGPR count as 1 to the limit */
576 if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
577 if (num_sgprs < 2)
578 sgpr[num_sgprs++] = op.tempId();
579 limit--;
580 if (limit < 0)
581 return false;
582 }
583 } else if (op.isLiteral()) {
584 if (ctx.program->chip_class < GFX10)
585 return false;
586
587 if (!literal32.isUndefined() && literal32.constantValue() != op.constantValue())
588 return false;
589 if (!literal64.isUndefined() && literal64.constantValue() != op.constantValue())
590 return false;
591
592 /* Any number of 32-bit literals counts as only 1 to the limit. Same
593 * (but separately) for 64-bit literals. */
594 if (op.size() == 1 && literal32.isUndefined()) {
595 limit--;
596 literal32 = op;
597 } else if (op.size() == 2 && literal64.isUndefined()) {
598 limit--;
599 literal64 = op;
600 }
601
602 if (limit < 0)
603 return false;
604 }
605 }
606
607 return true;
608 }
609
610 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
611 {
612 Operand op = instr->operands[op_index];
613
614 if (!op.isTemp())
615 return false;
616 Temp tmp = op.getTemp();
617 if (!ctx.info[tmp.id()].is_add_sub())
618 return false;
619
620 Instruction *add_instr = ctx.info[tmp.id()].instr;
621
622 switch (add_instr->opcode) {
623 case aco_opcode::v_add_u32:
624 case aco_opcode::v_add_co_u32:
625 case aco_opcode::v_add_co_u32_e64:
626 case aco_opcode::s_add_i32:
627 case aco_opcode::s_add_u32:
628 break;
629 default:
630 return false;
631 }
632
633 if (add_instr->usesModifiers())
634 return false;
635
636 for (unsigned i = 0; i < 2; i++) {
637 if (add_instr->operands[i].isConstant()) {
638 *offset = add_instr->operands[i].constantValue();
639 } else if (add_instr->operands[i].isTemp() &&
640 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) {
641 *offset = ctx.info[add_instr->operands[i].tempId()].val;
642 } else {
643 continue;
644 }
645 if (!add_instr->operands[!i].isTemp())
646 continue;
647
648 uint32_t offset2 = 0;
649 if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
650 *offset += offset2;
651 } else {
652 *base = add_instr->operands[!i].getTemp();
653 }
654 return true;
655 }
656
657 return false;
658 }
659
660 Operand get_constant_op(opt_ctx &ctx, uint32_t val, bool is64bit = false)
661 {
662 // TODO: this functions shouldn't be needed if we store Operand instead of value.
663 Operand op(val, is64bit);
664 if (val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
665 op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
666 return op;
667 }
668
669 bool fixed_to_exec(Operand op)
670 {
671 return op.isFixed() && op.physReg() == exec;
672 }
673
674 void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
675 {
676 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
677 ASSERTED bool all_const = false;
678 for (Operand& op : instr->operands)
679 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal());
680 perfwarn(all_const, "All instruction operands are constant", instr.get());
681 }
682
683 for (unsigned i = 0; i < instr->operands.size(); i++)
684 {
685 if (!instr->operands[i].isTemp())
686 continue;
687
688 ssa_info info = ctx.info[instr->operands[i].tempId()];
689 /* propagate undef */
690 if (info.is_undefined() && is_phi(instr))
691 instr->operands[i] = Operand(instr->operands[i].regClass());
692 /* propagate reg->reg of same type */
693 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
694 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
695 info = ctx.info[info.temp.id()];
696 }
697
698 /* SALU / PSEUDO: propagate inline constants */
699 if (instr->isSALU() || instr->format == Format::PSEUDO) {
700 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
701 const bool is_subdword = std::any_of(instr->definitions.begin(), instr->definitions.end(),
702 [] (const Definition& def) { return def.regClass().is_subdword();});
703 if (instr->isSALU() || !is_subdword) {
704 instr->operands[i].setTemp(info.temp);
705 info = ctx.info[info.temp.id()];
706 }
707 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
708 /* propagate vgpr if it can take it */
709 switch (instr->opcode) {
710 case aco_opcode::p_create_vector:
711 case aco_opcode::p_split_vector:
712 case aco_opcode::p_extract_vector:
713 case aco_opcode::p_phi: {
714 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
715 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
716 if (all_vgpr) {
717 instr->operands[i] = Operand(info.temp);
718 info = ctx.info[info.temp.id()];
719 }
720 break;
721 }
722 default:
723 break;
724 }
725 }
726 if ((info.is_constant() || info.is_constant_64bit() || (info.is_literal() && instr->format == Format::PSEUDO)) &&
727 !instr->operands[i].isFixed() && alu_can_accept_constant(instr->opcode, i)) {
728 instr->operands[i] = get_constant_op(ctx, info.val, info.is_constant_64bit());
729 continue;
730 }
731 }
732
733 /* VALU: propagate neg, abs & inline constants */
734 else if (instr->isVALU()) {
735 if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
736 instr->operands[i].setTemp(info.temp);
737 info = ctx.info[info.temp.id()];
738 }
739 if (info.is_abs() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
740 if (!instr->isDPP())
741 to_VOP3(ctx, instr);
742 instr->operands[i] = Operand(info.temp);
743 if (instr->isDPP())
744 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
745 else
746 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
747 }
748 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
749 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
750 instr->operands[i].setTemp(info.temp);
751 continue;
752 } else if (info.is_neg() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
753 if (!instr->isDPP())
754 to_VOP3(ctx, instr);
755 instr->operands[i].setTemp(info.temp);
756 if (instr->isDPP())
757 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
758 else
759 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
760 continue;
761 }
762 if ((info.is_constant() || info.is_constant_64bit()) && alu_can_accept_constant(instr->opcode, i)) {
763 Operand op = get_constant_op(ctx, info.val, info.is_constant_64bit());
764 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
765 if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) {
766 instr->operands[i] = op;
767 continue;
768 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
769 instr->operands[i] = instr->operands[0];
770 instr->operands[0] = op;
771 continue;
772 } else if (can_use_VOP3(ctx, instr)) {
773 to_VOP3(ctx, instr);
774 instr->operands[i] = op;
775 continue;
776 }
777 }
778 }
779
780 /* MUBUF: propagate constants and combine additions */
781 else if (instr->format == Format::MUBUF) {
782 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
783 Temp base;
784 uint32_t offset;
785 while (info.is_temp())
786 info = ctx.info[info.temp.id()];
787
788 if (mubuf->offen && i == 1 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
789 assert(!mubuf->idxen);
790 instr->operands[1] = Operand(v1);
791 mubuf->offset += info.val;
792 mubuf->offen = false;
793 continue;
794 } else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
795 instr->operands[2] = Operand((uint32_t) 0);
796 mubuf->offset += info.val;
797 continue;
798 } else if (mubuf->offen && i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
799 assert(!mubuf->idxen);
800 instr->operands[1].setTemp(base);
801 mubuf->offset += offset;
802 continue;
803 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
804 instr->operands[i].setTemp(base);
805 mubuf->offset += offset;
806 continue;
807 }
808 }
809
810 /* DS: combine additions */
811 else if (instr->format == Format::DS) {
812
813 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
814 Temp base;
815 uint32_t offset;
816 bool has_usable_ds_offset = ctx.program->chip_class >= GFX7;
817 if (has_usable_ds_offset &&
818 i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) &&
819 base.regClass() == instr->operands[i].regClass() &&
820 instr->opcode != aco_opcode::ds_swizzle_b32) {
821 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
822 instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
823 unsigned mask = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 0x7 : 0x3;
824 unsigned shifts = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 3 : 2;
825
826 if ((offset & mask) == 0 &&
827 ds->offset0 + (offset >> shifts) <= 255 &&
828 ds->offset1 + (offset >> shifts) <= 255) {
829 instr->operands[i].setTemp(base);
830 ds->offset0 += offset >> shifts;
831 ds->offset1 += offset >> shifts;
832 }
833 } else {
834 if (ds->offset0 + offset <= 65535) {
835 instr->operands[i].setTemp(base);
836 ds->offset0 += offset;
837 }
838 }
839 }
840 }
841
842 /* SMEM: propagate constants and combine additions */
843 else if (instr->format == Format::SMEM) {
844
845 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
846 Temp base;
847 uint32_t offset;
848 if (i == 1 && info.is_constant_or_literal() &&
849 ((ctx.program->chip_class == GFX6 && info.val <= 0x3FF) ||
850 (ctx.program->chip_class == GFX7 && info.val <= 0xFFFFFFFF) ||
851 (ctx.program->chip_class >= GFX8 && info.val <= 0xFFFFF))) {
852 instr->operands[i] = Operand(info.val);
853 continue;
854 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
855 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
856 if (soe &&
857 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() ||
858 ctx.info[smem->operands.back().tempId()].val != 0)) {
859 continue;
860 }
861 if (soe) {
862 smem->operands[1] = Operand(offset);
863 smem->operands.back() = Operand(base);
864 } else {
865 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
866 new_instr->operands[0] = smem->operands[0];
867 new_instr->operands[1] = Operand(offset);
868 if (smem->definitions.empty())
869 new_instr->operands[2] = smem->operands[2];
870 new_instr->operands.back() = Operand(base);
871 if (!smem->definitions.empty())
872 new_instr->definitions[0] = smem->definitions[0];
873 new_instr->can_reorder = smem->can_reorder;
874 new_instr->barrier = smem->barrier;
875 instr.reset(new_instr);
876 smem = static_cast<SMEM_instruction *>(instr.get());
877 }
878 continue;
879 }
880 }
881
882 else if (instr->format == Format::PSEUDO_BRANCH) {
883 if (ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
884 /* Flip the branch instruction to get rid of the scc_invert instruction */
885 instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz : aco_opcode::p_cbranch_z;
886 instr->operands[0].setTemp(ctx.info[instr->operands[0].tempId()].temp);
887 }
888 }
889 }
890
891 /* if this instruction doesn't define anything, return */
892 if (instr->definitions.empty())
893 return;
894
895 switch (instr->opcode) {
896 case aco_opcode::p_create_vector: {
897 unsigned num_ops = instr->operands.size();
898 for (const Operand& op : instr->operands) {
899 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
900 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
901 }
902 if (num_ops != instr->operands.size()) {
903 aco_ptr<Instruction> old_vec = std::move(instr);
904 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
905 instr->definitions[0] = old_vec->definitions[0];
906 unsigned k = 0;
907 for (Operand& old_op : old_vec->operands) {
908 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
909 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++) {
910 Operand op = ctx.info[old_op.tempId()].instr->operands[j];
911 if (op.isTemp() && ctx.info[op.tempId()].is_temp() &&
912 ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type())
913 op.setTemp(ctx.info[op.tempId()].temp);
914 instr->operands[k++] = op;
915 }
916 } else {
917 instr->operands[k++] = old_op;
918 }
919 }
920 assert(k == num_ops);
921 }
922 if (instr->operands.size() == 1 && instr->operands[0].isTemp())
923 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
924 else if (instr->definitions[0].getTemp().size() == instr->operands.size())
925 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
926 break;
927 }
928 case aco_opcode::p_split_vector: {
929 if (!ctx.info[instr->operands[0].tempId()].is_vec())
930 break;
931 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
932 assert(instr->definitions.size() == vec->operands.size());
933 for (unsigned i = 0; i < instr->definitions.size(); i++) {
934 Operand vec_op = vec->operands[i];
935 if (vec_op.isConstant()) {
936 if (vec_op.isLiteral())
937 ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue());
938 else if (vec_op.size() == 1)
939 ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue());
940 else if (vec_op.size() == 2)
941 ctx.info[instr->definitions[i].tempId()].set_constant_64bit(vec_op.constantValue());
942 } else {
943 assert(vec_op.isTemp());
944 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
945 }
946 }
947 break;
948 }
949 case aco_opcode::p_extract_vector: { /* mov */
950 if (!ctx.info[instr->operands[0].tempId()].is_vec())
951 break;
952 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
953 if (vec->definitions[0].getTemp().size() == vec->operands.size() && /* TODO: what about 64bit or other combinations? */
954 vec->operands[0].size() == instr->definitions[0].size()) {
955
956 /* convert this extract into a mov instruction */
957 Operand vec_op = vec->operands[instr->operands[1].constantValue()];
958 bool is_vgpr = instr->definitions[0].getTemp().type() == RegType::vgpr;
959 aco_opcode opcode = is_vgpr ? aco_opcode::v_mov_b32 : aco_opcode::s_mov_b32;
960 Format format = is_vgpr ? Format::VOP1 : Format::SOP1;
961 instr->opcode = opcode;
962 instr->format = format;
963 while (instr->operands.size() > 1)
964 instr->operands.pop_back();
965 instr->operands[0] = vec_op;
966
967 if (vec_op.isConstant()) {
968 if (vec_op.isLiteral())
969 ctx.info[instr->definitions[0].tempId()].set_literal(vec_op.constantValue());
970 else if (vec_op.size() == 1)
971 ctx.info[instr->definitions[0].tempId()].set_constant(vec_op.constantValue());
972 else if (vec_op.size() == 2)
973 ctx.info[instr->definitions[0].tempId()].set_constant_64bit(vec_op.constantValue());
974
975 } else {
976 assert(vec_op.isTemp());
977 ctx.info[instr->definitions[0].tempId()].set_temp(vec_op.getTemp());
978 }
979 }
980 break;
981 }
982 case aco_opcode::s_mov_b32: /* propagate */
983 case aco_opcode::s_mov_b64:
984 case aco_opcode::v_mov_b32:
985 case aco_opcode::p_as_uniform:
986 if (instr->definitions[0].isFixed()) {
987 /* don't copy-propagate copies into fixed registers */
988 } else if (instr->usesModifiers()) {
989 // TODO
990 } else if (instr->operands[0].isConstant()) {
991 if (instr->operands[0].isLiteral())
992 ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue());
993 else if (instr->operands[0].size() == 1)
994 ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue());
995 else if (instr->operands[0].size() == 2)
996 ctx.info[instr->definitions[0].tempId()].set_constant_64bit(instr->operands[0].constantValue());
997 } else if (instr->operands[0].isTemp()) {
998 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
999 } else {
1000 assert(instr->operands[0].isFixed());
1001 }
1002 break;
1003 case aco_opcode::p_is_helper:
1004 if (!ctx.program->needs_wqm)
1005 ctx.info[instr->definitions[0].tempId()].set_constant(0u);
1006 break;
1007 case aco_opcode::s_movk_i32: {
1008 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
1009 v = v & 0x8000 ? (v | 0xffff0000) : v;
1010 if (v <= 64 || v >= 0xfffffff0)
1011 ctx.info[instr->definitions[0].tempId()].set_constant(v);
1012 else
1013 ctx.info[instr->definitions[0].tempId()].set_literal(v);
1014 break;
1015 }
1016 case aco_opcode::v_bfrev_b32:
1017 case aco_opcode::s_brev_b32: {
1018 if (instr->operands[0].isConstant()) {
1019 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
1020 if (v <= 64 || v >= 0xfffffff0)
1021 ctx.info[instr->definitions[0].tempId()].set_constant(v);
1022 else
1023 ctx.info[instr->definitions[0].tempId()].set_literal(v);
1024 }
1025 break;
1026 }
1027 case aco_opcode::s_bfm_b32: {
1028 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
1029 unsigned size = instr->operands[0].constantValue() & 0x1f;
1030 unsigned start = instr->operands[1].constantValue() & 0x1f;
1031 uint32_t v = ((1u << size) - 1u) << start;
1032 if (v <= 64 || v >= 0xfffffff0)
1033 ctx.info[instr->definitions[0].tempId()].set_constant(v);
1034 else
1035 ctx.info[instr->definitions[0].tempId()].set_literal(v);
1036 }
1037 }
1038 case aco_opcode::v_mul_f32: { /* omod */
1039 /* TODO: try to move the negate/abs modifier to the consumer instead */
1040 if (instr->usesModifiers())
1041 break;
1042
1043 for (unsigned i = 0; i < 2; i++) {
1044 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
1045 if (instr->operands[!i].constantValue() == 0x40000000) { /* 2.0 */
1046 ctx.info[instr->operands[i].tempId()].set_omod2(instr->definitions[0].getTemp());
1047 } else if (instr->operands[!i].constantValue() == 0x40800000) { /* 4.0 */
1048 ctx.info[instr->operands[i].tempId()].set_omod4(instr->definitions[0].getTemp());
1049 } else if (instr->operands[!i].constantValue() == 0x3f000000) { /* 0.5 */
1050 ctx.info[instr->operands[i].tempId()].set_omod5(instr->definitions[0].getTemp());
1051 } else if (instr->operands[!i].constantValue() == 0x3f800000 &&
1052 !block.fp_mode.must_flush_denorms32) { /* 1.0 */
1053 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
1054 } else {
1055 continue;
1056 }
1057 break;
1058 }
1059 }
1060 break;
1061 }
1062 case aco_opcode::v_and_b32: /* abs */
1063 if (!instr->usesModifiers() && instr->operands[0].constantEquals(0x7FFFFFFF) &&
1064 instr->operands[1].isTemp() && instr->operands[1].getTemp().type() == RegType::vgpr)
1065 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
1066 else
1067 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1068 break;
1069 case aco_opcode::v_xor_b32: { /* neg */
1070 if (!instr->usesModifiers() && instr->operands[0].constantEquals(0x80000000u) && instr->operands[1].isTemp()) {
1071 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
1072 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1073 } else if (instr->operands[1].getTemp().type() == RegType::vgpr) {
1074 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
1075 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
1076 instr->opcode = aco_opcode::v_or_b32;
1077 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
1078 } else {
1079 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
1080 }
1081 }
1082 } else {
1083 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1084 }
1085 break;
1086 }
1087 case aco_opcode::v_med3_f32: { /* clamp */
1088 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
1089 if (vop3->abs[0] || vop3->abs[1] || vop3->abs[2] ||
1090 vop3->neg[0] || vop3->neg[1] || vop3->neg[2] ||
1091 vop3->omod != 0 || vop3->opsel != 0)
1092 break;
1093
1094 unsigned idx = 0;
1095 bool found_zero = false, found_one = false;
1096 for (unsigned i = 0; i < 3; i++)
1097 {
1098 if (instr->operands[i].constantEquals(0))
1099 found_zero = true;
1100 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
1101 found_one = true;
1102 else
1103 idx = i;
1104 }
1105 if (found_zero && found_one && instr->operands[idx].isTemp()) {
1106 ctx.info[instr->operands[idx].tempId()].set_clamp(instr->definitions[0].getTemp());
1107 }
1108 break;
1109 }
1110 case aco_opcode::v_cndmask_b32:
1111 if (instr->operands[0].constantEquals(0) &&
1112 instr->operands[1].constantEquals(0xFFFFFFFF) &&
1113 instr->operands[2].isTemp())
1114 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
1115 else if (instr->operands[0].constantEquals(0) &&
1116 instr->operands[1].constantEquals(0x3f800000u) &&
1117 instr->operands[2].isTemp())
1118 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
1119
1120 ctx.info[instr->operands[2].tempId()].set_vcc_hint();
1121 break;
1122 case aco_opcode::v_cmp_lg_u32:
1123 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
1124 instr->operands[0].constantEquals(0) &&
1125 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
1126 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1127 break;
1128 case aco_opcode::p_phi:
1129 case aco_opcode::p_linear_phi: {
1130 /* lower_bool_phis() can create phis like this */
1131 bool all_same_temp = instr->operands[0].isTemp();
1132 /* this check is needed when moving uniform loop counters out of a divergent loop */
1133 if (all_same_temp)
1134 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
1135 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
1136 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
1137 all_same_temp = false;
1138 }
1139 if (all_same_temp) {
1140 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1141 } else {
1142 bool all_undef = instr->operands[0].isUndefined();
1143 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
1144 if (!instr->operands[i].isUndefined())
1145 all_undef = false;
1146 }
1147 if (all_undef)
1148 ctx.info[instr->definitions[0].tempId()].set_undefined();
1149 }
1150 break;
1151 }
1152 case aco_opcode::v_add_u32:
1153 case aco_opcode::v_add_co_u32:
1154 case aco_opcode::v_add_co_u32_e64:
1155 case aco_opcode::s_add_i32:
1156 case aco_opcode::s_add_u32:
1157 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
1158 break;
1159 case aco_opcode::s_not_b32:
1160 case aco_opcode::s_not_b64:
1161 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1162 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1163 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].temp);
1164 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1165 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1166 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1167 }
1168 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1169 break;
1170 case aco_opcode::s_and_b32:
1171 case aco_opcode::s_and_b64:
1172 if (fixed_to_exec(instr->operands[1]) && instr->operands[0].isTemp()) {
1173 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1174 /* Try to get rid of the superfluous s_cselect + s_and_b64 that comes from turning a uniform bool into divergent */
1175 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
1176 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].temp);
1177 break;
1178 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1179 /* Try to get rid of the superfluous s_and_b64, since the uniform bitwise instruction already produces the same SCC */
1180 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1181 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1182 break;
1183 }
1184 }
1185 /* fallthrough */
1186 case aco_opcode::s_or_b32:
1187 case aco_opcode::s_or_b64:
1188 case aco_opcode::s_xor_b32:
1189 case aco_opcode::s_xor_b64:
1190 if (std::all_of(instr->operands.begin(), instr->operands.end(), [&ctx](const Operand& op) {
1191 return op.isTemp() && (ctx.info[op.tempId()].is_uniform_bool() || ctx.info[op.tempId()].is_uniform_bitwise());
1192 })) {
1193 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1194 }
1195 /* fallthrough */
1196 case aco_opcode::s_lshl_b32:
1197 case aco_opcode::v_or_b32:
1198 case aco_opcode::v_lshlrev_b32:
1199 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1200 break;
1201 case aco_opcode::v_min_f32:
1202 case aco_opcode::v_min_f16:
1203 case aco_opcode::v_min_u32:
1204 case aco_opcode::v_min_i32:
1205 case aco_opcode::v_min_u16:
1206 case aco_opcode::v_min_i16:
1207 case aco_opcode::v_max_f32:
1208 case aco_opcode::v_max_f16:
1209 case aco_opcode::v_max_u32:
1210 case aco_opcode::v_max_i32:
1211 case aco_opcode::v_max_u16:
1212 case aco_opcode::v_max_i16:
1213 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
1214 break;
1215 case aco_opcode::v_cmp_lt_f32:
1216 case aco_opcode::v_cmp_eq_f32:
1217 case aco_opcode::v_cmp_le_f32:
1218 case aco_opcode::v_cmp_gt_f32:
1219 case aco_opcode::v_cmp_lg_f32:
1220 case aco_opcode::v_cmp_ge_f32:
1221 case aco_opcode::v_cmp_o_f32:
1222 case aco_opcode::v_cmp_u_f32:
1223 case aco_opcode::v_cmp_nge_f32:
1224 case aco_opcode::v_cmp_nlg_f32:
1225 case aco_opcode::v_cmp_ngt_f32:
1226 case aco_opcode::v_cmp_nle_f32:
1227 case aco_opcode::v_cmp_neq_f32:
1228 case aco_opcode::v_cmp_nlt_f32:
1229 ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
1230 break;
1231 case aco_opcode::s_cselect_b64:
1232 case aco_opcode::s_cselect_b32:
1233 if (instr->operands[0].constantEquals((unsigned) -1) &&
1234 instr->operands[1].constantEquals(0)) {
1235 /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
1236 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
1237 }
1238 if (instr->operands[2].isTemp() && ctx.info[instr->operands[2].tempId()].is_scc_invert()) {
1239 /* Flip the operands to get rid of the scc_invert instruction */
1240 std::swap(instr->operands[0], instr->operands[1]);
1241 instr->operands[2].setTemp(ctx.info[instr->operands[2].tempId()].temp);
1242 }
1243 break;
1244 case aco_opcode::p_wqm:
1245 if (instr->operands[0].isTemp() &&
1246 ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
1247 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1248 }
1249 break;
1250 default:
1251 break;
1252 }
1253 }
1254
1255 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse)
1256 {
1257 *ordered = *unordered = op;
1258 switch (op) {
1259 #define CMP(ord, unord) \
1260 case aco_opcode::v_cmp_##ord##_f32:\
1261 case aco_opcode::v_cmp_n##unord##_f32:\
1262 *ordered = aco_opcode::v_cmp_##ord##_f32;\
1263 *unordered = aco_opcode::v_cmp_n##unord##_f32;\
1264 *inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\
1265 return true;
1266 CMP(lt, /*n*/ge)
1267 CMP(eq, /*n*/lg)
1268 CMP(le, /*n*/gt)
1269 CMP(gt, /*n*/le)
1270 CMP(lg, /*n*/eq)
1271 CMP(ge, /*n*/lt)
1272 #undef CMP
1273 default:
1274 return false;
1275 }
1276 }
1277
1278 aco_opcode get_ordered(aco_opcode op)
1279 {
1280 aco_opcode ordered, unordered, inverse;
1281 return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::last_opcode;
1282 }
1283
1284 aco_opcode get_unordered(aco_opcode op)
1285 {
1286 aco_opcode ordered, unordered, inverse;
1287 return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::last_opcode;
1288 }
1289
1290 aco_opcode get_inverse(aco_opcode op)
1291 {
1292 aco_opcode ordered, unordered, inverse;
1293 return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::last_opcode;
1294 }
1295
1296 bool is_cmp(aco_opcode op)
1297 {
1298 aco_opcode ordered, unordered, inverse;
1299 return get_cmp_info(op, &ordered, &unordered, &inverse);
1300 }
1301
1302 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1303 {
1304 if (ctx.info[tmp.id()].is_temp())
1305 return ctx.info[tmp.id()].temp.id();
1306 else
1307 return tmp.id();
1308 }
1309
1310 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1311 {
1312 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1313 for (const Operand& op : instr->operands) {
1314 if (op.isTemp())
1315 ctx.uses[op.tempId()]--;
1316 }
1317 }
1318 }
1319
1320 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1321 {
1322 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1323 return nullptr;
1324 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1325 return nullptr;
1326
1327 Instruction *instr = ctx.info[op.tempId()].instr;
1328
1329 if (instr->definitions.size() == 2) {
1330 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1331 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1332 return nullptr;
1333 }
1334
1335 return instr;
1336 }
1337
1338 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1339 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1340 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1341 {
1342 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1343 return false;
1344 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1345 return false;
1346
1347 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1348
1349 bool neg[2] = {false, false};
1350 bool abs[2] = {false, false};
1351 uint8_t opsel = 0;
1352 Instruction *op_instr[2];
1353 Temp op[2];
1354
1355 for (unsigned i = 0; i < 2; i++) {
1356 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1357 if (!op_instr[i])
1358 return false;
1359
1360 aco_opcode expected_cmp = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1361
1362 if (op_instr[i]->opcode != expected_cmp)
1363 return false;
1364 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1365 return false;
1366
1367 if (op_instr[i]->isVOP3()) {
1368 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1369 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1370 return false;
1371 neg[i] = vop3->neg[0];
1372 abs[i] = vop3->abs[0];
1373 opsel |= (vop3->opsel & 1) << i;
1374 }
1375
1376 Temp op0 = op_instr[i]->operands[0].getTemp();
1377 Temp op1 = op_instr[i]->operands[1].getTemp();
1378 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1379 return false;
1380
1381 op[i] = op1;
1382 }
1383
1384 if (op[1].type() == RegType::sgpr)
1385 std::swap(op[0], op[1]);
1386 unsigned num_sgprs = (op[0].type() == RegType::sgpr) + (op[1].type() == RegType::sgpr);
1387 if (num_sgprs > (ctx.program->chip_class >= GFX10 ? 2 : 1))
1388 return false;
1389
1390 ctx.uses[op[0].id()]++;
1391 ctx.uses[op[1].id()]++;
1392 decrease_uses(ctx, op_instr[0]);
1393 decrease_uses(ctx, op_instr[1]);
1394
1395 aco_opcode new_op = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1396 Instruction *new_instr;
1397 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel || num_sgprs > 1) {
1398 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1399 for (unsigned i = 0; i < 2; i++) {
1400 vop3->neg[i] = neg[i];
1401 vop3->abs[i] = abs[i];
1402 }
1403 vop3->opsel = opsel;
1404 new_instr = static_cast<Instruction *>(vop3);
1405 } else {
1406 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1407 }
1408 new_instr->operands[0] = Operand(op[0]);
1409 new_instr->operands[1] = Operand(op[1]);
1410 new_instr->definitions[0] = instr->definitions[0];
1411
1412 ctx.info[instr->definitions[0].tempId()].label = 0;
1413 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1414
1415 instr.reset(new_instr);
1416
1417 return true;
1418 }
1419
1420 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1421 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1422 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1423 {
1424 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1425 return false;
1426 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1427 return false;
1428
1429 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1430 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1431
1432 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1433 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1434 if (!nan_test || !cmp)
1435 return false;
1436
1437 if (cmp->opcode == expected_nan_test)
1438 std::swap(nan_test, cmp);
1439 else if (nan_test->opcode != expected_nan_test)
1440 return false;
1441
1442 if (!is_cmp(cmp->opcode))
1443 return false;
1444
1445 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1446 return false;
1447 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1448 return false;
1449
1450 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1451 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1452 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1453 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1454 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1455 return false;
1456 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1457 return false;
1458
1459 ctx.uses[cmp->operands[0].tempId()]++;
1460 ctx.uses[cmp->operands[1].tempId()]++;
1461 decrease_uses(ctx, nan_test);
1462 decrease_uses(ctx, cmp);
1463
1464 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1465 Instruction *new_instr;
1466 if (cmp->isVOP3()) {
1467 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1468 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1469 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1470 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1471 new_vop3->clamp = cmp_vop3->clamp;
1472 new_vop3->omod = cmp_vop3->omod;
1473 new_vop3->opsel = cmp_vop3->opsel;
1474 new_instr = new_vop3;
1475 } else {
1476 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1477 }
1478 new_instr->operands[0] = cmp->operands[0];
1479 new_instr->operands[1] = cmp->operands[1];
1480 new_instr->definitions[0] = instr->definitions[0];
1481
1482 ctx.info[instr->definitions[0].tempId()].label = 0;
1483 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1484
1485 instr.reset(new_instr);
1486
1487 return true;
1488 }
1489
1490 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1491 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1492 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1493 {
1494 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1495 return false;
1496 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1497 return false;
1498
1499 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1500
1501 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1502 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1503
1504 if (!nan_test || !cmp)
1505 return false;
1506
1507 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1508 if (cmp->opcode == expected_nan_test)
1509 std::swap(nan_test, cmp);
1510 else if (nan_test->opcode != expected_nan_test)
1511 return false;
1512
1513 if (!is_cmp(cmp->opcode))
1514 return false;
1515
1516 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1517 return false;
1518 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1519 return false;
1520
1521 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1522 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1523 if (prop_nan0 != prop_nan1)
1524 return false;
1525
1526 if (nan_test->isVOP3()) {
1527 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(nan_test);
1528 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1529 return false;
1530 }
1531
1532 int constant_operand = -1;
1533 for (unsigned i = 0; i < 2; i++) {
1534 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1535 constant_operand = !i;
1536 break;
1537 }
1538 }
1539 if (constant_operand == -1)
1540 return false;
1541
1542 uint32_t constant;
1543 if (cmp->operands[constant_operand].isConstant()) {
1544 constant = cmp->operands[constant_operand].constantValue();
1545 } else if (cmp->operands[constant_operand].isTemp()) {
1546 Temp tmp = cmp->operands[constant_operand].getTemp();
1547 unsigned id = original_temp_id(ctx, tmp);
1548 if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal())
1549 return false;
1550 constant = ctx.info[id].val;
1551 } else {
1552 return false;
1553 }
1554
1555 float constantf;
1556 memcpy(&constantf, &constant, 4);
1557 if (isnan(constantf))
1558 return false;
1559
1560 if (cmp->operands[0].isTemp())
1561 ctx.uses[cmp->operands[0].tempId()]++;
1562 if (cmp->operands[1].isTemp())
1563 ctx.uses[cmp->operands[1].tempId()]++;
1564 decrease_uses(ctx, nan_test);
1565 decrease_uses(ctx, cmp);
1566
1567 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1568 Instruction *new_instr;
1569 if (cmp->isVOP3()) {
1570 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1571 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1572 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1573 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1574 new_vop3->clamp = cmp_vop3->clamp;
1575 new_vop3->omod = cmp_vop3->omod;
1576 new_vop3->opsel = cmp_vop3->opsel;
1577 new_instr = new_vop3;
1578 } else {
1579 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1580 }
1581 new_instr->operands[0] = cmp->operands[0];
1582 new_instr->operands[1] = cmp->operands[1];
1583 new_instr->definitions[0] = instr->definitions[0];
1584
1585 ctx.info[instr->definitions[0].tempId()].label = 0;
1586 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1587
1588 instr.reset(new_instr);
1589
1590 return true;
1591 }
1592
1593 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1594 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1595 {
1596 if (instr->opcode != aco_opcode::s_not_b64)
1597 return false;
1598 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1599 return false;
1600 if (!instr->operands[0].isTemp())
1601 return false;
1602
1603 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1604 if (!cmp)
1605 return false;
1606
1607 aco_opcode new_opcode = get_inverse(cmp->opcode);
1608 if (new_opcode == aco_opcode::last_opcode)
1609 return false;
1610
1611 if (cmp->operands[0].isTemp())
1612 ctx.uses[cmp->operands[0].tempId()]++;
1613 if (cmp->operands[1].isTemp())
1614 ctx.uses[cmp->operands[1].tempId()]++;
1615 decrease_uses(ctx, cmp);
1616
1617 Instruction *new_instr;
1618 if (cmp->isVOP3()) {
1619 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1620 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1621 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1622 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1623 new_vop3->clamp = cmp_vop3->clamp;
1624 new_vop3->omod = cmp_vop3->omod;
1625 new_vop3->opsel = cmp_vop3->opsel;
1626 new_instr = new_vop3;
1627 } else {
1628 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1629 }
1630 new_instr->operands[0] = cmp->operands[0];
1631 new_instr->operands[1] = cmp->operands[1];
1632 new_instr->definitions[0] = instr->definitions[0];
1633
1634 ctx.info[instr->definitions[0].tempId()].label = 0;
1635 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1636
1637 instr.reset(new_instr);
1638
1639 return true;
1640 }
1641
1642 /* op1(op2(1, 2), 0) if swap = false
1643 * op1(0, op2(1, 2)) if swap = true */
1644 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1645 Instruction* op1_instr, bool swap, const char *shuffle_str,
1646 Operand operands[3], bool neg[3], bool abs[3], uint8_t *opsel,
1647 bool *op1_clamp, uint8_t *op1_omod,
1648 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1649 {
1650 /* checks */
1651 if (op1_instr->opcode != op1)
1652 return false;
1653
1654 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1655 if (!op2_instr || op2_instr->opcode != op2)
1656 return false;
1657 if (fixed_to_exec(op2_instr->operands[0]) || fixed_to_exec(op2_instr->operands[1]))
1658 return false;
1659
1660 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1661 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1662
1663 /* don't support inbetween clamp/omod */
1664 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1665 return false;
1666
1667 /* get operands and modifiers and check inbetween modifiers */
1668 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1669 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1670
1671 if (inbetween_neg)
1672 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1673 else if (op1_vop3 && op1_vop3->neg[swap])
1674 return false;
1675
1676 if (inbetween_abs)
1677 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1678 else if (op1_vop3 && op1_vop3->abs[swap])
1679 return false;
1680
1681 if (inbetween_opsel)
1682 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel & (1 << swap) : false;
1683 else if (op1_vop3 && op1_vop3->opsel & (1 << swap))
1684 return false;
1685
1686 int shuffle[3];
1687 shuffle[shuffle_str[0] - '0'] = 0;
1688 shuffle[shuffle_str[1] - '0'] = 1;
1689 shuffle[shuffle_str[2] - '0'] = 2;
1690
1691 operands[shuffle[0]] = op1_instr->operands[!swap];
1692 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1693 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1694 if (op1_vop3 && op1_vop3->opsel & (1 << !swap))
1695 *opsel |= 1 << shuffle[0];
1696
1697 for (unsigned i = 0; i < 2; i++) {
1698 operands[shuffle[i + 1]] = op2_instr->operands[i];
1699 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1700 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1701 if (op2_vop3 && op2_vop3->opsel & (1 << i))
1702 *opsel |= 1 << shuffle[i + 1];
1703 }
1704
1705 /* check operands */
1706 if (!check_vop3_operands(ctx, 3, operands))
1707 return false;
1708
1709 return true;
1710 }
1711
1712 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1713 Operand operands[3], bool neg[3], bool abs[3], uint8_t opsel,
1714 bool clamp, unsigned omod)
1715 {
1716 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1717 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1718 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1719 new_instr->clamp = clamp;
1720 new_instr->omod = omod;
1721 new_instr->opsel = opsel;
1722 new_instr->operands[0] = operands[0];
1723 new_instr->operands[1] = operands[1];
1724 new_instr->operands[2] = operands[2];
1725 new_instr->definitions[0] = instr->definitions[0];
1726 ctx.info[instr->definitions[0].tempId()].label = 0;
1727
1728 instr.reset(new_instr);
1729 }
1730
1731 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1732 {
1733 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1734 (label_omod_success | label_clamp_success);
1735
1736 for (unsigned swap = 0; swap < 2; swap++) {
1737 if (!((1 << swap) & ops))
1738 continue;
1739
1740 Operand operands[3];
1741 bool neg[3], abs[3], clamp;
1742 uint8_t opsel = 0, omod = 0;
1743 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1744 instr.get(), swap, shuffle,
1745 operands, neg, abs, &opsel,
1746 &clamp, &omod, NULL, NULL, NULL)) {
1747 ctx.uses[instr->operands[swap].tempId()]--;
1748 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1749 if (omod_clamp & label_omod_success)
1750 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1751 if (omod_clamp & label_clamp_success)
1752 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1753 return true;
1754 }
1755 }
1756 return false;
1757 }
1758
1759 bool combine_minmax(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode opposite, aco_opcode minmax3)
1760 {
1761 if (combine_three_valu_op(ctx, instr, instr->opcode, minmax3, "012", 1 | 2))
1762 return true;
1763
1764 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1765 (label_omod_success | label_clamp_success);
1766
1767 /* min(-max(a, b), c) -> min3(-a, -b, c) *
1768 * max(-min(a, b), c) -> max3(-a, -b, c) */
1769 for (unsigned swap = 0; swap < 2; swap++) {
1770 Operand operands[3];
1771 bool neg[3], abs[3], clamp;
1772 uint8_t opsel = 0, omod = 0;
1773 bool inbetween_neg;
1774 if (match_op3_for_vop3(ctx, instr->opcode, opposite,
1775 instr.get(), swap, "012",
1776 operands, neg, abs, &opsel,
1777 &clamp, &omod, &inbetween_neg, NULL, NULL) &&
1778 inbetween_neg) {
1779 ctx.uses[instr->operands[swap].tempId()]--;
1780 neg[1] = true;
1781 neg[2] = true;
1782 create_vop3_for_op3(ctx, minmax3, instr, operands, neg, abs, opsel, clamp, omod);
1783 if (omod_clamp & label_omod_success)
1784 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1785 if (omod_clamp & label_clamp_success)
1786 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1787 return true;
1788 }
1789 }
1790 return false;
1791 }
1792
1793 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
1794 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
1795 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
1796 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
1797 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
1798 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
1799 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1800 {
1801 /* checks */
1802 if (!instr->operands[0].isTemp())
1803 return false;
1804 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1805 return false;
1806
1807 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
1808 if (!op2_instr)
1809 return false;
1810 switch (op2_instr->opcode) {
1811 case aco_opcode::s_and_b32:
1812 case aco_opcode::s_or_b32:
1813 case aco_opcode::s_xor_b32:
1814 case aco_opcode::s_and_b64:
1815 case aco_opcode::s_or_b64:
1816 case aco_opcode::s_xor_b64:
1817 break;
1818 default:
1819 return false;
1820 }
1821
1822 /* create instruction */
1823 std::swap(instr->definitions[0], op2_instr->definitions[0]);
1824 std::swap(instr->definitions[1], op2_instr->definitions[1]);
1825 ctx.uses[instr->operands[0].tempId()]--;
1826 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
1827
1828 switch (op2_instr->opcode) {
1829 case aco_opcode::s_and_b32:
1830 op2_instr->opcode = aco_opcode::s_nand_b32;
1831 break;
1832 case aco_opcode::s_or_b32:
1833 op2_instr->opcode = aco_opcode::s_nor_b32;
1834 break;
1835 case aco_opcode::s_xor_b32:
1836 op2_instr->opcode = aco_opcode::s_xnor_b32;
1837 break;
1838 case aco_opcode::s_and_b64:
1839 op2_instr->opcode = aco_opcode::s_nand_b64;
1840 break;
1841 case aco_opcode::s_or_b64:
1842 op2_instr->opcode = aco_opcode::s_nor_b64;
1843 break;
1844 case aco_opcode::s_xor_b64:
1845 op2_instr->opcode = aco_opcode::s_xnor_b64;
1846 break;
1847 default:
1848 break;
1849 }
1850
1851 return true;
1852 }
1853
1854 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
1855 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
1856 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
1857 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
1858 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1859 {
1860 if (instr->definitions[0].isTemp() && ctx.info[instr->definitions[0].tempId()].is_uniform_bool())
1861 return false;
1862
1863 for (unsigned i = 0; i < 2; i++) {
1864 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1865 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
1866 continue;
1867 if (ctx.uses[op2_instr->definitions[1].tempId()] || fixed_to_exec(op2_instr->operands[0]))
1868 continue;
1869
1870 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
1871 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
1872 continue;
1873
1874 ctx.uses[instr->operands[i].tempId()]--;
1875 instr->operands[0] = instr->operands[!i];
1876 instr->operands[1] = op2_instr->operands[0];
1877 ctx.info[instr->definitions[0].tempId()].label = 0;
1878
1879 switch (instr->opcode) {
1880 case aco_opcode::s_and_b32:
1881 instr->opcode = aco_opcode::s_andn2_b32;
1882 break;
1883 case aco_opcode::s_or_b32:
1884 instr->opcode = aco_opcode::s_orn2_b32;
1885 break;
1886 case aco_opcode::s_and_b64:
1887 instr->opcode = aco_opcode::s_andn2_b64;
1888 break;
1889 case aco_opcode::s_or_b64:
1890 instr->opcode = aco_opcode::s_orn2_b64;
1891 break;
1892 default:
1893 break;
1894 }
1895
1896 return true;
1897 }
1898 return false;
1899 }
1900
1901 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
1902 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1903 {
1904 if (instr->opcode == aco_opcode::s_add_i32 && ctx.uses[instr->definitions[1].tempId()])
1905 return false;
1906
1907 for (unsigned i = 0; i < 2; i++) {
1908 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1909 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 ||
1910 ctx.uses[op2_instr->definitions[1].tempId()])
1911 continue;
1912 if (!op2_instr->operands[1].isConstant() || fixed_to_exec(op2_instr->operands[0]))
1913 continue;
1914
1915 uint32_t shift = op2_instr->operands[1].constantValue();
1916 if (shift < 1 || shift > 4)
1917 continue;
1918
1919 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
1920 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
1921 continue;
1922
1923 ctx.uses[instr->operands[i].tempId()]--;
1924 instr->operands[1] = instr->operands[!i];
1925 instr->operands[0] = op2_instr->operands[0];
1926 ctx.info[instr->definitions[0].tempId()].label = 0;
1927
1928 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
1929 aco_opcode::s_lshl2_add_u32,
1930 aco_opcode::s_lshl3_add_u32,
1931 aco_opcode::s_lshl4_add_u32})[shift - 1];
1932
1933 return true;
1934 }
1935 return false;
1936 }
1937
1938 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
1939 {
1940 switch (op) {
1941 #define MINMAX(type, gfx9) \
1942 case aco_opcode::v_min_##type:\
1943 case aco_opcode::v_max_##type:\
1944 case aco_opcode::v_med3_##type:\
1945 *min = aco_opcode::v_min_##type;\
1946 *max = aco_opcode::v_max_##type;\
1947 *med3 = aco_opcode::v_med3_##type;\
1948 *min3 = aco_opcode::v_min3_##type;\
1949 *max3 = aco_opcode::v_max3_##type;\
1950 *some_gfx9_only = gfx9;\
1951 return true;
1952 MINMAX(f32, false)
1953 MINMAX(u32, false)
1954 MINMAX(i32, false)
1955 MINMAX(f16, true)
1956 MINMAX(u16, true)
1957 MINMAX(i16, true)
1958 #undef MINMAX
1959 default:
1960 return false;
1961 }
1962 }
1963
1964 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
1965 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
1966 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
1967 aco_opcode min, aco_opcode max, aco_opcode med)
1968 {
1969 /* TODO: GLSL's clamp(x, minVal, maxVal) and SPIR-V's
1970 * FClamp(x, minVal, maxVal)/NClamp(x, minVal, maxVal) are undefined if
1971 * minVal > maxVal, which means we can always select it to a v_med3_f32 */
1972 aco_opcode other_op;
1973 if (instr->opcode == min)
1974 other_op = max;
1975 else if (instr->opcode == max)
1976 other_op = min;
1977 else
1978 return false;
1979
1980 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1981 (label_omod_success | label_clamp_success);
1982
1983 for (unsigned swap = 0; swap < 2; swap++) {
1984 Operand operands[3];
1985 bool neg[3], abs[3], clamp;
1986 uint8_t opsel = 0, omod = 0;
1987 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
1988 "012", operands, neg, abs, &opsel,
1989 &clamp, &omod, NULL, NULL, NULL)) {
1990 int const0_idx = -1, const1_idx = -1;
1991 uint32_t const0 = 0, const1 = 0;
1992 for (int i = 0; i < 3; i++) {
1993 uint32_t val;
1994 if (operands[i].isConstant()) {
1995 val = operands[i].constantValue();
1996 } else if (operands[i].isTemp() && ctx.info[operands[i].tempId()].is_constant_or_literal()) {
1997 val = ctx.info[operands[i].tempId()].val;
1998 } else {
1999 continue;
2000 }
2001 if (const0_idx >= 0) {
2002 const1_idx = i;
2003 const1 = val;
2004 } else {
2005 const0_idx = i;
2006 const0 = val;
2007 }
2008 }
2009 if (const0_idx < 0 || const1_idx < 0)
2010 continue;
2011
2012 if (opsel & (1 << const0_idx))
2013 const0 >>= 16;
2014 if (opsel & (1 << const1_idx))
2015 const1 >>= 16;
2016
2017 int lower_idx = const0_idx;
2018 switch (min) {
2019 case aco_opcode::v_min_f32:
2020 case aco_opcode::v_min_f16: {
2021 float const0_f, const1_f;
2022 if (min == aco_opcode::v_min_f32) {
2023 memcpy(&const0_f, &const0, 4);
2024 memcpy(&const1_f, &const1, 4);
2025 } else {
2026 const0_f = _mesa_half_to_float(const0);
2027 const1_f = _mesa_half_to_float(const1);
2028 }
2029 if (abs[const0_idx]) const0_f = fabsf(const0_f);
2030 if (abs[const1_idx]) const1_f = fabsf(const1_f);
2031 if (neg[const0_idx]) const0_f = -const0_f;
2032 if (neg[const1_idx]) const1_f = -const1_f;
2033 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
2034 break;
2035 }
2036 case aco_opcode::v_min_u32: {
2037 lower_idx = const0 < const1 ? const0_idx : const1_idx;
2038 break;
2039 }
2040 case aco_opcode::v_min_u16: {
2041 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
2042 break;
2043 }
2044 case aco_opcode::v_min_i32: {
2045 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
2046 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
2047 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2048 break;
2049 }
2050 case aco_opcode::v_min_i16: {
2051 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
2052 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
2053 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2054 break;
2055 }
2056 default:
2057 break;
2058 }
2059 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
2060
2061 if (instr->opcode == min) {
2062 if (upper_idx != 0 || lower_idx == 0)
2063 return false;
2064 } else {
2065 if (upper_idx == 0 || lower_idx != 0)
2066 return false;
2067 }
2068
2069 ctx.uses[instr->operands[swap].tempId()]--;
2070 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
2071 if (omod_clamp & label_omod_success)
2072 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2073 if (omod_clamp & label_clamp_success)
2074 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
2075
2076 return true;
2077 }
2078 }
2079
2080 return false;
2081 }
2082
2083
2084 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2085 {
2086 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
2087 instr->opcode == aco_opcode::v_lshrrev_b64 ||
2088 instr->opcode == aco_opcode::v_ashrrev_i64;
2089
2090 /* find candidates and create the set of sgprs already read */
2091 unsigned sgpr_ids[2] = {0, 0};
2092 uint32_t operand_mask = 0;
2093 bool has_literal = false;
2094 for (unsigned i = 0; i < instr->operands.size(); i++) {
2095 if (instr->operands[i].isLiteral())
2096 has_literal = true;
2097 if (!instr->operands[i].isTemp())
2098 continue;
2099 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2100 if (instr->operands[i].tempId() != sgpr_ids[0])
2101 sgpr_ids[!!sgpr_ids[0]] = instr->operands[i].tempId();
2102 }
2103 ssa_info& info = ctx.info[instr->operands[i].tempId()];
2104 if (info.is_temp() && info.temp.type() == RegType::sgpr)
2105 operand_mask |= 1u << i;
2106 }
2107 unsigned max_sgprs = 1;
2108 if (ctx.program->chip_class >= GFX10 && !is_shift64)
2109 max_sgprs = 2;
2110 if (has_literal)
2111 max_sgprs--;
2112
2113 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
2114
2115 /* keep on applying sgprs until there is nothing left to be done */
2116 while (operand_mask) {
2117 uint32_t sgpr_idx = 0;
2118 uint32_t sgpr_info_id = 0;
2119 uint32_t mask = operand_mask;
2120 /* choose a sgpr */
2121 while (mask) {
2122 unsigned i = u_bit_scan(&mask);
2123 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
2124 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
2125 sgpr_idx = i;
2126 sgpr_info_id = instr->operands[i].tempId();
2127 }
2128 }
2129 operand_mask &= ~(1u << sgpr_idx);
2130
2131 /* Applying two sgprs require making it VOP3, so don't do it unless it's
2132 * definitively beneficial.
2133 * TODO: this is too conservative because later the use count could be reduced to 1 */
2134 if (num_sgprs && ctx.uses[sgpr_info_id] > 1 && !instr->isVOP3())
2135 break;
2136
2137 Temp sgpr = ctx.info[sgpr_info_id].temp;
2138 bool new_sgpr = sgpr.id() != sgpr_ids[0] && sgpr.id() != sgpr_ids[1];
2139 if (new_sgpr && num_sgprs >= max_sgprs)
2140 continue;
2141
2142 if (sgpr_idx == 0 || instr->isVOP3()) {
2143 instr->operands[sgpr_idx] = Operand(sgpr);
2144 } else if (can_swap_operands(instr)) {
2145 instr->operands[sgpr_idx] = instr->operands[0];
2146 instr->operands[0] = Operand(sgpr);
2147 /* swap bits using a 4-entry LUT */
2148 uint32_t swapped = (0x3120 >> (operand_mask & 0x3)) & 0xf;
2149 operand_mask = (operand_mask & ~0x3) | swapped;
2150 } else if (can_use_VOP3(ctx, instr)) {
2151 to_VOP3(ctx, instr);
2152 instr->operands[sgpr_idx] = Operand(sgpr);
2153 } else {
2154 continue;
2155 }
2156
2157 if (new_sgpr)
2158 sgpr_ids[num_sgprs++] = sgpr.id();
2159 ctx.uses[sgpr_info_id]--;
2160 ctx.uses[sgpr.id()]++;
2161 }
2162 }
2163
2164 bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2165 {
2166 /* check if we could apply omod on predecessor */
2167 if (instr->opcode == aco_opcode::v_mul_f32) {
2168 bool op0 = instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_omod_success();
2169 bool op1 = instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success();
2170 if (op0 || op1) {
2171 unsigned idx = op0 ? 0 : 1;
2172 /* omod was successfully applied */
2173 /* if the omod instruction is v_mad, we also have to change the original add */
2174 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
2175 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
2176 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
2177 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
2178 add_instr->definitions[0] = instr->definitions[0];
2179 }
2180
2181 Instruction* omod_instr = ctx.info[instr->operands[idx].tempId()].instr;
2182 /* check if we have an additional clamp modifier */
2183 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2184 ctx.uses[ctx.info[instr->definitions[0].tempId()].temp.id()]) {
2185 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
2186 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
2187 }
2188 /* change definition ssa-id of modified instruction */
2189 omod_instr->definitions[0] = instr->definitions[0];
2190
2191 /* change the definition of instr to something unused, e.g. the original omod def */
2192 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
2193 ctx.uses[instr->definitions[0].tempId()] = 0;
2194 return true;
2195 }
2196 if (!ctx.info[instr->definitions[0].tempId()].label) {
2197 /* in all other cases, label this instruction as option for multiply-add */
2198 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2199 }
2200 }
2201
2202 /* check if we could apply clamp on predecessor */
2203 if (instr->opcode == aco_opcode::v_med3_f32) {
2204 unsigned idx = 0;
2205 bool found_zero = false, found_one = false;
2206 for (unsigned i = 0; i < 3; i++)
2207 {
2208 if (instr->operands[i].constantEquals(0))
2209 found_zero = true;
2210 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
2211 found_one = true;
2212 else
2213 idx = i;
2214 }
2215 if (found_zero && found_one && instr->operands[idx].isTemp() &&
2216 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
2217 /* clamp was successfully applied */
2218 /* if the clamp instruction is v_mad, we also have to change the original add */
2219 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
2220 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
2221 add_instr->definitions[0] = instr->definitions[0];
2222 }
2223 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
2224 /* change definition ssa-id of modified instruction */
2225 clamp_instr->definitions[0] = instr->definitions[0];
2226
2227 /* change the definition of instr to something unused, e.g. the original omod def */
2228 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
2229 ctx.uses[instr->definitions[0].tempId()] = 0;
2230 return true;
2231 }
2232 }
2233
2234 /* omod has no effect if denormals are enabled */
2235 bool can_use_omod = block.fp_mode.denorm32 == 0;
2236
2237 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
2238 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2239 can_use_VOP3(ctx, instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
2240 ssa_info& def_info = ctx.info[instr->definitions[0].tempId()];
2241 if (can_use_omod && def_info.is_omod2() && ctx.uses[def_info.temp.id()]) {
2242 to_VOP3(ctx, instr);
2243 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
2244 def_info.set_omod_success(instr.get());
2245 } else if (can_use_omod && def_info.is_omod4() && ctx.uses[def_info.temp.id()]) {
2246 to_VOP3(ctx, instr);
2247 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
2248 def_info.set_omod_success(instr.get());
2249 } else if (can_use_omod && def_info.is_omod5() && ctx.uses[def_info.temp.id()]) {
2250 to_VOP3(ctx, instr);
2251 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
2252 def_info.set_omod_success(instr.get());
2253 } else if (def_info.is_clamp() && ctx.uses[def_info.temp.id()]) {
2254 to_VOP3(ctx, instr);
2255 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
2256 def_info.set_clamp_success(instr.get());
2257 }
2258 }
2259
2260 return false;
2261 }
2262
2263 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
2264 // this would mean that we'd have to fix the instruction uses while value propagation
2265
2266 void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2267 {
2268 if (instr->definitions.empty() || is_dead(ctx.uses, instr.get()))
2269 return;
2270
2271 if (instr->isVALU()) {
2272 if (can_apply_sgprs(instr))
2273 apply_sgprs(ctx, instr);
2274 if (apply_omod_clamp(ctx, block, instr))
2275 return;
2276 }
2277
2278 if (ctx.info[instr->definitions[0].tempId()].is_vcc_hint()) {
2279 instr->definitions[0].setHint(vcc);
2280 }
2281
2282 /* TODO: There are still some peephole optimizations that could be done:
2283 * - abs(a - b) -> s_absdiff_i32
2284 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
2285 * - patterns for v_alignbit_b32 and v_alignbyte_b32
2286 * These aren't probably too interesting though.
2287 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
2288 * probably more useful than the previously mentioned optimizations.
2289 * The various comparison optimizations also currently only work with 32-bit
2290 * floats. */
2291
2292 /* neg(mul(a, b)) -> mul(neg(a), b) */
2293 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
2294 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
2295
2296 if (!ctx.info[val.id()].is_mul())
2297 return;
2298
2299 Instruction* mul_instr = ctx.info[val.id()].instr;
2300
2301 if (mul_instr->operands[0].isLiteral())
2302 return;
2303 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
2304 return;
2305
2306 /* convert to mul(neg(a), b) */
2307 ctx.uses[mul_instr->definitions[0].tempId()]--;
2308 Definition def = instr->definitions[0];
2309 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
2310 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
2311 instr.reset(create_instruction<VOP3A_instruction>(aco_opcode::v_mul_f32, asVOP3(Format::VOP2), 2, 1));
2312 instr->operands[0] = mul_instr->operands[0];
2313 instr->operands[1] = mul_instr->operands[1];
2314 instr->definitions[0] = def;
2315 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
2316 if (mul_instr->isVOP3()) {
2317 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
2318 new_mul->neg[0] = mul->neg[0] && !is_abs;
2319 new_mul->neg[1] = mul->neg[1] && !is_abs;
2320 new_mul->abs[0] = mul->abs[0] || is_abs;
2321 new_mul->abs[1] = mul->abs[1] || is_abs;
2322 new_mul->omod = mul->omod;
2323 }
2324 new_mul->neg[0] ^= true;
2325 new_mul->clamp = false;
2326
2327 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2328 return;
2329 }
2330 /* combine mul+add -> mad */
2331 else if ((instr->opcode == aco_opcode::v_add_f32 ||
2332 instr->opcode == aco_opcode::v_sub_f32 ||
2333 instr->opcode == aco_opcode::v_subrev_f32) &&
2334 block.fp_mode.denorm32 == 0 && !block.fp_mode.preserve_signed_zero_inf_nan32) {
2335 //TODO: we could use fma instead when denormals are enabled if the NIR isn't marked as precise
2336
2337 uint32_t uses_src0 = UINT32_MAX;
2338 uint32_t uses_src1 = UINT32_MAX;
2339 Instruction* mul_instr = nullptr;
2340 unsigned add_op_idx;
2341 /* check if any of the operands is a multiplication */
2342 if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_mul())
2343 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2344 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_mul())
2345 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2346
2347 /* find the 'best' mul instruction to combine with the add */
2348 if (uses_src0 < uses_src1) {
2349 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2350 add_op_idx = 1;
2351 } else if (uses_src1 < uses_src0) {
2352 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2353 add_op_idx = 0;
2354 } else if (uses_src0 != UINT32_MAX) {
2355 /* tiebreaker: quite random what to pick */
2356 if (ctx.info[instr->operands[0].tempId()].instr->operands[0].isLiteral()) {
2357 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2358 add_op_idx = 0;
2359 } else {
2360 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2361 add_op_idx = 1;
2362 }
2363 }
2364 if (mul_instr) {
2365 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2366 bool neg[3] = {false, false, false};
2367 bool abs[3] = {false, false, false};
2368 unsigned omod = 0;
2369 bool clamp = false;
2370 op[0] = mul_instr->operands[0];
2371 op[1] = mul_instr->operands[1];
2372 op[2] = instr->operands[add_op_idx];
2373 // TODO: would be better to check this before selecting a mul instr?
2374 if (!check_vop3_operands(ctx, 3, op))
2375 return;
2376
2377 if (mul_instr->isVOP3()) {
2378 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2379 neg[0] = vop3->neg[0];
2380 neg[1] = vop3->neg[1];
2381 abs[0] = vop3->abs[0];
2382 abs[1] = vop3->abs[1];
2383 /* we cannot use these modifiers between mul and add */
2384 if (vop3->clamp || vop3->omod)
2385 return;
2386 }
2387
2388 /* convert to mad */
2389 ctx.uses[mul_instr->definitions[0].tempId()]--;
2390 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2391 if (op[0].isTemp())
2392 ctx.uses[op[0].tempId()]++;
2393 if (op[1].isTemp())
2394 ctx.uses[op[1].tempId()]++;
2395 }
2396
2397 if (instr->isVOP3()) {
2398 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2399 neg[2] = vop3->neg[add_op_idx];
2400 abs[2] = vop3->abs[add_op_idx];
2401 omod = vop3->omod;
2402 clamp = vop3->clamp;
2403 /* abs of the multiplication result */
2404 if (vop3->abs[1 - add_op_idx]) {
2405 neg[0] = false;
2406 neg[1] = false;
2407 abs[0] = true;
2408 abs[1] = true;
2409 }
2410 /* neg of the multiplication result */
2411 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2412 }
2413 if (instr->opcode == aco_opcode::v_sub_f32)
2414 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2415 else if (instr->opcode == aco_opcode::v_subrev_f32)
2416 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2417
2418 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)};
2419 for (unsigned i = 0; i < 3; i++)
2420 {
2421 mad->operands[i] = op[i];
2422 mad->neg[i] = neg[i];
2423 mad->abs[i] = abs[i];
2424 }
2425 mad->omod = omod;
2426 mad->clamp = clamp;
2427 mad->definitions[0] = instr->definitions[0];
2428
2429 /* mark this ssa_def to be re-checked for profitability and literals */
2430 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId());
2431 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2432 instr.reset(mad.release());
2433 return;
2434 }
2435 }
2436 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2437 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2438 for (unsigned i = 0; i < 2; i++) {
2439 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2440 ctx.uses[instr->operands[i].tempId()] == 1 &&
2441 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2442 ctx.uses[instr->operands[i].tempId()]--;
2443 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2444
2445 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2446 new_instr->operands[0] = Operand(0u);
2447 new_instr->operands[1] = instr->operands[!i];
2448 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2449 new_instr->definitions[0] = instr->definitions[0];
2450 instr.reset(new_instr.release());
2451 ctx.info[instr->definitions[0].tempId()].label = 0;
2452 return;
2453 }
2454 }
2455 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2456 if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2457 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2458 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2459 } else if (instr->opcode == aco_opcode::v_add_u32 && ctx.program->chip_class >= GFX9) {
2460 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2461 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2462 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2463 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2464 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2465 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2466 combine_salu_lshl_add(ctx, instr);
2467 } else if (instr->opcode == aco_opcode::s_not_b32) {
2468 combine_salu_not_bitwise(ctx, instr);
2469 } else if (instr->opcode == aco_opcode::s_not_b64) {
2470 if (combine_inverse_comparison(ctx, instr)) ;
2471 else combine_salu_not_bitwise(ctx, instr);
2472 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 ||
2473 instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2474 if (combine_ordering_test(ctx, instr)) ;
2475 else if (combine_comparison_ordering(ctx, instr)) ;
2476 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2477 else combine_salu_n2(ctx, instr);
2478 } else {
2479 aco_opcode min, max, min3, max3, med3;
2480 bool some_gfx9_only;
2481 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2482 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2483 if (combine_minmax(ctx, instr, instr->opcode == min ? max : min, instr->opcode == min ? min3 : max3)) ;
2484 else combine_clamp(ctx, instr, min, max, med3);
2485 }
2486 }
2487 }
2488
2489 bool to_uniform_bool_instr(opt_ctx &ctx, aco_ptr<Instruction> &instr)
2490 {
2491 switch (instr->opcode) {
2492 case aco_opcode::s_and_b32:
2493 case aco_opcode::s_and_b64:
2494 instr->opcode = aco_opcode::s_and_b32;
2495 break;
2496 case aco_opcode::s_or_b32:
2497 case aco_opcode::s_or_b64:
2498 instr->opcode = aco_opcode::s_or_b32;
2499 break;
2500 case aco_opcode::s_xor_b32:
2501 case aco_opcode::s_xor_b64:
2502 instr->opcode = aco_opcode::s_absdiff_i32;
2503 break;
2504 default:
2505 /* Don't transform other instructions. They are very unlikely to appear here. */
2506 return false;
2507 }
2508
2509 for (Operand &op : instr->operands) {
2510 ctx.uses[op.tempId()]--;
2511
2512 if (ctx.info[op.tempId()].is_uniform_bool()) {
2513 /* Just use the uniform boolean temp. */
2514 op.setTemp(ctx.info[op.tempId()].temp);
2515 } else if (ctx.info[op.tempId()].is_uniform_bitwise()) {
2516 /* Use the SCC definition of the predecessor instruction.
2517 * This allows the predecessor to get picked up by the same optimization (if it has no divergent users),
2518 * and it also makes sure that the current instruction will keep working even if the predecessor won't be transformed.
2519 */
2520 Instruction *pred_instr = ctx.info[op.tempId()].instr;
2521 assert(pred_instr->definitions.size() >= 2);
2522 assert(pred_instr->definitions[1].isFixed() && pred_instr->definitions[1].physReg() == scc);
2523 op.setTemp(pred_instr->definitions[1].getTemp());
2524 } else {
2525 unreachable("Invalid operand on uniform bitwise instruction.");
2526 }
2527
2528 ctx.uses[op.tempId()]++;
2529 }
2530
2531 instr->definitions[0].setTemp(Temp(instr->definitions[0].tempId(), s1));
2532 assert(instr->operands[0].regClass() == s1);
2533 assert(instr->operands[1].regClass() == s1);
2534 return true;
2535 }
2536
2537 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2538 {
2539 const uint32_t threshold = 4;
2540
2541 if (is_dead(ctx.uses, instr.get())) {
2542 instr.reset();
2543 return;
2544 }
2545
2546 /* convert split_vector into a copy or extract_vector if only one definition is ever used */
2547 if (instr->opcode == aco_opcode::p_split_vector) {
2548 unsigned num_used = 0;
2549 unsigned idx = 0;
2550 for (unsigned i = 0; i < instr->definitions.size(); i++) {
2551 if (ctx.uses[instr->definitions[i].tempId()]) {
2552 num_used++;
2553 idx = i;
2554 }
2555 }
2556 bool done = false;
2557 if (num_used == 1 && ctx.info[instr->operands[0].tempId()].is_vec() &&
2558 ctx.uses[instr->operands[0].tempId()] == 1) {
2559 Instruction *vec = ctx.info[instr->operands[0].tempId()].instr;
2560
2561 unsigned off = 0;
2562 Operand op;
2563 for (Operand& vec_op : vec->operands) {
2564 if (off == idx * instr->definitions[0].size()) {
2565 op = vec_op;
2566 break;
2567 }
2568 off += vec_op.size();
2569 }
2570 if (off != instr->operands[0].size()) {
2571 ctx.uses[instr->operands[0].tempId()]--;
2572 for (Operand& vec_op : vec->operands) {
2573 if (vec_op.isTemp())
2574 ctx.uses[vec_op.tempId()]--;
2575 }
2576 if (op.isTemp())
2577 ctx.uses[op.tempId()]++;
2578
2579 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 1, 1)};
2580 extract->operands[0] = op;
2581 extract->definitions[0] = instr->definitions[idx];
2582 instr.reset(extract.release());
2583
2584 done = true;
2585 }
2586 }
2587
2588 if (!done && num_used == 1) {
2589 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2590 extract->operands[0] = instr->operands[0];
2591 extract->operands[1] = Operand((uint32_t) idx);
2592 extract->definitions[0] = instr->definitions[idx];
2593 instr.reset(extract.release());
2594 }
2595 }
2596
2597 mad_info* mad_info = NULL;
2598 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2599 mad_info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2600 /* re-check mad instructions */
2601 if (ctx.uses[mad_info->mul_temp_id]) {
2602 ctx.uses[mad_info->mul_temp_id]++;
2603 if (instr->operands[0].isTemp())
2604 ctx.uses[instr->operands[0].tempId()]--;
2605 if (instr->operands[1].isTemp())
2606 ctx.uses[instr->operands[1].tempId()]--;
2607 instr.swap(mad_info->add_instr);
2608 mad_info = NULL;
2609 }
2610 /* check literals */
2611 else if (!instr->usesModifiers()) {
2612 bool sgpr_used = false;
2613 uint32_t literal_idx = 0;
2614 uint32_t literal_uses = UINT32_MAX;
2615 for (unsigned i = 0; i < instr->operands.size(); i++)
2616 {
2617 if (instr->operands[i].isConstant() && i > 0) {
2618 literal_uses = UINT32_MAX;
2619 break;
2620 }
2621 if (!instr->operands[i].isTemp())
2622 continue;
2623 /* if one of the operands is sgpr, we cannot add a literal somewhere else on pre-GFX10 or operands other than the 1st */
2624 if (instr->operands[i].getTemp().type() == RegType::sgpr && (i > 0 || ctx.program->chip_class < GFX10)) {
2625 if (!sgpr_used && ctx.info[instr->operands[i].tempId()].is_literal()) {
2626 literal_uses = ctx.uses[instr->operands[i].tempId()];
2627 literal_idx = i;
2628 } else {
2629 literal_uses = UINT32_MAX;
2630 }
2631 sgpr_used = true;
2632 /* don't break because we still need to check constants */
2633 } else if (!sgpr_used &&
2634 ctx.info[instr->operands[i].tempId()].is_literal() &&
2635 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2636 literal_uses = ctx.uses[instr->operands[i].tempId()];
2637 literal_idx = i;
2638 }
2639 }
2640
2641 /* Limit the number of literals to apply to not increase the code
2642 * size too much, but always apply literals for v_mad->v_madak
2643 * because both instructions are 64-bit and this doesn't increase
2644 * code size.
2645 * TODO: try to apply the literals earlier to lower the number of
2646 * uses below threshold
2647 */
2648 if (literal_uses < threshold || literal_idx == 2) {
2649 ctx.uses[instr->operands[literal_idx].tempId()]--;
2650 mad_info->check_literal = true;
2651 mad_info->literal_idx = literal_idx;
2652 return;
2653 }
2654 }
2655 }
2656
2657 /* Mark SCC needed, so the uniform boolean transformation won't swap the definitions when it isn't beneficial */
2658 if (instr->format == Format::PSEUDO_BRANCH &&
2659 instr->operands.size() &&
2660 instr->operands[0].isTemp()) {
2661 ctx.info[instr->operands[0].tempId()].set_scc_needed();
2662 return;
2663 } else if ((instr->opcode == aco_opcode::s_cselect_b64 ||
2664 instr->opcode == aco_opcode::s_cselect_b32) &&
2665 instr->operands[2].isTemp()) {
2666 ctx.info[instr->operands[2].tempId()].set_scc_needed();
2667 }
2668
2669 /* check for literals */
2670 if (!instr->isSALU() && !instr->isVALU())
2671 return;
2672
2673 /* Transform uniform bitwise boolean operations to 32-bit when there are no divergent uses. */
2674 if (instr->definitions.size() &&
2675 ctx.uses[instr->definitions[0].tempId()] == 0 &&
2676 ctx.info[instr->definitions[0].tempId()].is_uniform_bitwise()) {
2677 bool transform_done = to_uniform_bool_instr(ctx, instr);
2678
2679 if (transform_done && !ctx.info[instr->definitions[1].tempId()].is_scc_needed()) {
2680 /* Swap the two definition IDs in order to avoid overusing the SCC. This reduces extra moves generated by RA. */
2681 uint32_t def0_id = instr->definitions[0].getTemp().id();
2682 uint32_t def1_id = instr->definitions[1].getTemp().id();
2683 instr->definitions[0].setTemp(Temp(def1_id, s1));
2684 instr->definitions[1].setTemp(Temp(def0_id, s1));
2685 }
2686
2687 return;
2688 }
2689
2690 if (instr->isSDWA() || instr->isDPP() || (instr->isVOP3() && ctx.program->chip_class < GFX10))
2691 return; /* some encodings can't ever take literals */
2692
2693 /* we do not apply the literals yet as we don't know if it is profitable */
2694 Operand current_literal(s1);
2695
2696 unsigned literal_id = 0;
2697 unsigned literal_uses = UINT32_MAX;
2698 Operand literal(s1);
2699 unsigned num_operands = 1;
2700 if (instr->isSALU() || (ctx.program->chip_class >= GFX10 && can_use_VOP3(ctx, instr)))
2701 num_operands = instr->operands.size();
2702 /* catch VOP2 with a 3rd SGPR operand (e.g. v_cndmask_b32, v_addc_co_u32) */
2703 else if (instr->isVALU() && instr->operands.size() >= 3)
2704 return;
2705
2706 unsigned sgpr_ids[2] = {0, 0};
2707 bool is_literal_sgpr = false;
2708 uint32_t mask = 0;
2709
2710 /* choose a literal to apply */
2711 for (unsigned i = 0; i < num_operands; i++) {
2712 Operand op = instr->operands[i];
2713
2714 if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr &&
2715 op.tempId() != sgpr_ids[0])
2716 sgpr_ids[!!sgpr_ids[0]] = op.tempId();
2717
2718 if (op.isLiteral()) {
2719 current_literal = op;
2720 continue;
2721 } else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal()) {
2722 continue;
2723 }
2724
2725 if (!alu_can_accept_constant(instr->opcode, i))
2726 continue;
2727
2728 if (ctx.uses[op.tempId()] < literal_uses) {
2729 is_literal_sgpr = op.getTemp().type() == RegType::sgpr;
2730 mask = 0;
2731 literal = Operand(ctx.info[op.tempId()].val);
2732 literal_uses = ctx.uses[op.tempId()];
2733 literal_id = op.tempId();
2734 }
2735
2736 mask |= (op.tempId() == literal_id) << i;
2737 }
2738
2739
2740 /* don't go over the constant bus limit */
2741 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
2742 instr->opcode == aco_opcode::v_lshrrev_b64 ||
2743 instr->opcode == aco_opcode::v_ashrrev_i64;
2744 unsigned const_bus_limit = instr->isVALU() ? 1 : UINT32_MAX;
2745 if (ctx.program->chip_class >= GFX10 && !is_shift64)
2746 const_bus_limit = 2;
2747
2748 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
2749 if (num_sgprs == const_bus_limit && !is_literal_sgpr)
2750 return;
2751
2752 if (literal_id && literal_uses < threshold &&
2753 (current_literal.isUndefined() ||
2754 (current_literal.size() == literal.size() &&
2755 current_literal.constantValue() == literal.constantValue()))) {
2756 /* mark the literal to be applied */
2757 while (mask) {
2758 unsigned i = u_bit_scan(&mask);
2759 if (instr->operands[i].isTemp() && instr->operands[i].tempId() == literal_id)
2760 ctx.uses[instr->operands[i].tempId()]--;
2761 }
2762 }
2763 }
2764
2765
2766 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2767 {
2768 /* Cleanup Dead Instructions */
2769 if (!instr)
2770 return;
2771
2772 /* apply literals on MAD */
2773 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2774 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2775 if (info->check_literal &&
2776 (ctx.uses[instr->operands[info->literal_idx].tempId()] == 0 || info->literal_idx == 2)) {
2777 aco_ptr<Instruction> new_mad;
2778 if (info->literal_idx == 2) { /* add literal -> madak */
2779 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
2780 new_mad->operands[0] = instr->operands[0];
2781 new_mad->operands[1] = instr->operands[1];
2782 } else { /* mul literal -> madmk */
2783 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
2784 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
2785 new_mad->operands[1] = instr->operands[2];
2786 }
2787 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
2788 new_mad->definitions[0] = instr->definitions[0];
2789 ctx.instructions.emplace_back(std::move(new_mad));
2790 return;
2791 }
2792 }
2793
2794 /* apply literals on other SALU/VALU */
2795 if (instr->isSALU() || instr->isVALU()) {
2796 for (unsigned i = 0; i < instr->operands.size(); i++) {
2797 Operand op = instr->operands[i];
2798 if (op.isTemp() && ctx.info[op.tempId()].is_literal() && ctx.uses[op.tempId()] == 0) {
2799 Operand literal(ctx.info[op.tempId()].val);
2800 if (instr->isVALU() && i > 0)
2801 to_VOP3(ctx, instr);
2802 instr->operands[i] = literal;
2803 }
2804 }
2805 }
2806
2807 ctx.instructions.emplace_back(std::move(instr));
2808 }
2809
2810
2811 void optimize(Program* program)
2812 {
2813 opt_ctx ctx;
2814 ctx.program = program;
2815 std::vector<ssa_info> info(program->peekAllocationId());
2816 ctx.info = info.data();
2817
2818 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
2819 for (Block& block : program->blocks) {
2820 for (aco_ptr<Instruction>& instr : block.instructions)
2821 label_instruction(ctx, block, instr);
2822 }
2823
2824 ctx.uses = std::move(dead_code_analysis(program));
2825
2826 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
2827 for (Block& block : program->blocks) {
2828 for (aco_ptr<Instruction>& instr : block.instructions)
2829 combine_instruction(ctx, block, instr);
2830 }
2831
2832 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
2833 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
2834 Block* block = &(*it);
2835 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
2836 select_instruction(ctx, *it);
2837 }
2838
2839 /* 4. Add literals to instructions */
2840 for (Block& block : program->blocks) {
2841 ctx.instructions.clear();
2842 for (aco_ptr<Instruction>& instr : block.instructions)
2843 apply_literals(ctx, instr);
2844 block.instructions.swap(ctx.instructions);
2845 }
2846
2847 }
2848
2849 }