aco/wave32: fix comparison optimizations
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint32_t literal_idx;
56 bool needs_vop3;
57 bool check_literal;
58
59 mad_info(aco_ptr<Instruction> instr, uint32_t id, bool vop3)
60 : add_instr(std::move(instr)), mul_temp_id(id), needs_vop3(vop3), check_literal(false) {}
61 };
62
63 enum Label {
64 label_vec = 1 << 0,
65 label_constant = 1 << 1,
66 label_abs = 1 << 2,
67 label_neg = 1 << 3,
68 label_mul = 1 << 4,
69 label_temp = 1 << 5,
70 label_literal = 1 << 6,
71 label_mad = 1 << 7,
72 label_omod2 = 1 << 8,
73 label_omod4 = 1 << 9,
74 label_omod5 = 1 << 10,
75 label_omod_success = 1 << 11,
76 label_clamp = 1 << 12,
77 label_clamp_success = 1 << 13,
78 label_undefined = 1 << 14,
79 label_vcc = 1 << 15,
80 label_b2f = 1 << 16,
81 label_add_sub = 1 << 17,
82 label_bitwise = 1 << 18,
83 label_minmax = 1 << 19,
84 label_fcmp = 1 << 20,
85 label_uniform_bool = 1 << 21,
86 };
87
88 static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success | label_add_sub | label_bitwise | label_minmax | label_fcmp;
89 static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool;
90 static constexpr uint32_t val_labels = label_constant | label_literal | label_mad;
91
92 struct ssa_info {
93 uint32_t val;
94 union {
95 Temp temp;
96 Instruction* instr;
97 };
98 uint32_t label;
99
100 void add_label(Label new_label)
101 {
102 /* Since all labels which use "instr" use it for the same thing
103 * (indicating the defining instruction), there is no need to clear
104 * any other instr labels. */
105 if (new_label & instr_labels)
106 label &= ~temp_labels; /* instr and temp alias */
107
108 if (new_label & temp_labels) {
109 label &= ~temp_labels;
110 label &= ~instr_labels; /* instr and temp alias */
111 }
112
113 if (new_label & val_labels)
114 label &= ~val_labels;
115
116 label |= new_label;
117 }
118
119 void set_vec(Instruction* vec)
120 {
121 add_label(label_vec);
122 instr = vec;
123 }
124
125 bool is_vec()
126 {
127 return label & label_vec;
128 }
129
130 void set_constant(uint32_t constant)
131 {
132 add_label(label_constant);
133 val = constant;
134 }
135
136 bool is_constant()
137 {
138 return label & label_constant;
139 }
140
141 void set_abs(Temp abs_temp)
142 {
143 add_label(label_abs);
144 temp = abs_temp;
145 }
146
147 bool is_abs()
148 {
149 return label & label_abs;
150 }
151
152 void set_neg(Temp neg_temp)
153 {
154 add_label(label_neg);
155 temp = neg_temp;
156 }
157
158 bool is_neg()
159 {
160 return label & label_neg;
161 }
162
163 void set_neg_abs(Temp neg_abs_temp)
164 {
165 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
166 temp = neg_abs_temp;
167 }
168
169 void set_mul(Instruction* mul)
170 {
171 add_label(label_mul);
172 instr = mul;
173 }
174
175 bool is_mul()
176 {
177 return label & label_mul;
178 }
179
180 void set_temp(Temp tmp)
181 {
182 add_label(label_temp);
183 temp = tmp;
184 }
185
186 bool is_temp()
187 {
188 return label & label_temp;
189 }
190
191 void set_literal(uint32_t lit)
192 {
193 add_label(label_literal);
194 val = lit;
195 }
196
197 bool is_literal()
198 {
199 return label & label_literal;
200 }
201
202 void set_mad(Instruction* mad, uint32_t mad_info_idx)
203 {
204 add_label(label_mad);
205 val = mad_info_idx;
206 instr = mad;
207 }
208
209 bool is_mad()
210 {
211 return label & label_mad;
212 }
213
214 void set_omod2()
215 {
216 add_label(label_omod2);
217 }
218
219 bool is_omod2()
220 {
221 return label & label_omod2;
222 }
223
224 void set_omod4()
225 {
226 add_label(label_omod4);
227 }
228
229 bool is_omod4()
230 {
231 return label & label_omod4;
232 }
233
234 void set_omod5()
235 {
236 add_label(label_omod5);
237 }
238
239 bool is_omod5()
240 {
241 return label & label_omod5;
242 }
243
244 void set_omod_success(Instruction* omod_instr)
245 {
246 add_label(label_omod_success);
247 instr = omod_instr;
248 }
249
250 bool is_omod_success()
251 {
252 return label & label_omod_success;
253 }
254
255 void set_clamp()
256 {
257 add_label(label_clamp);
258 }
259
260 bool is_clamp()
261 {
262 return label & label_clamp;
263 }
264
265 void set_clamp_success(Instruction* clamp_instr)
266 {
267 add_label(label_clamp_success);
268 instr = clamp_instr;
269 }
270
271 bool is_clamp_success()
272 {
273 return label & label_clamp_success;
274 }
275
276 void set_undefined()
277 {
278 add_label(label_undefined);
279 }
280
281 bool is_undefined()
282 {
283 return label & label_undefined;
284 }
285
286 void set_vcc(Temp vcc)
287 {
288 add_label(label_vcc);
289 temp = vcc;
290 }
291
292 bool is_vcc()
293 {
294 return label & label_vcc;
295 }
296
297 bool is_constant_or_literal()
298 {
299 return is_constant() || is_literal();
300 }
301
302 void set_b2f(Temp val)
303 {
304 add_label(label_b2f);
305 temp = val;
306 }
307
308 bool is_b2f()
309 {
310 return label & label_b2f;
311 }
312
313 void set_add_sub(Instruction *add_sub_instr)
314 {
315 add_label(label_add_sub);
316 instr = add_sub_instr;
317 }
318
319 bool is_add_sub()
320 {
321 return label & label_add_sub;
322 }
323
324 void set_bitwise(Instruction *bitwise_instr)
325 {
326 add_label(label_bitwise);
327 instr = bitwise_instr;
328 }
329
330 bool is_bitwise()
331 {
332 return label & label_bitwise;
333 }
334
335 void set_minmax(Instruction *minmax_instr)
336 {
337 add_label(label_minmax);
338 instr = minmax_instr;
339 }
340
341 bool is_minmax()
342 {
343 return label & label_minmax;
344 }
345
346 void set_fcmp(Instruction *fcmp_instr)
347 {
348 add_label(label_fcmp);
349 instr = fcmp_instr;
350 }
351
352 bool is_fcmp()
353 {
354 return label & label_fcmp;
355 }
356
357 void set_uniform_bool(Temp uniform_bool)
358 {
359 add_label(label_uniform_bool);
360 temp = uniform_bool;
361 }
362
363 bool is_uniform_bool()
364 {
365 return label & label_uniform_bool;
366 }
367
368 };
369
370 struct opt_ctx {
371 Program* program;
372 std::vector<aco_ptr<Instruction>> instructions;
373 ssa_info* info;
374 std::pair<uint32_t,Temp> last_literal;
375 std::vector<mad_info> mad_infos;
376 std::vector<uint16_t> uses;
377 };
378
379 bool can_swap_operands(aco_ptr<Instruction>& instr)
380 {
381 if (instr->operands[0].isConstant() ||
382 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
383 return false;
384
385 switch (instr->opcode) {
386 case aco_opcode::v_add_f32:
387 case aco_opcode::v_mul_f32:
388 case aco_opcode::v_or_b32:
389 case aco_opcode::v_and_b32:
390 case aco_opcode::v_xor_b32:
391 case aco_opcode::v_max_f32:
392 case aco_opcode::v_min_f32:
393 case aco_opcode::v_cmp_eq_f32:
394 case aco_opcode::v_cmp_lg_f32:
395 return true;
396 case aco_opcode::v_sub_f32:
397 instr->opcode = aco_opcode::v_subrev_f32;
398 return true;
399 case aco_opcode::v_cmp_lt_f32:
400 instr->opcode = aco_opcode::v_cmp_gt_f32;
401 return true;
402 case aco_opcode::v_cmp_ge_f32:
403 instr->opcode = aco_opcode::v_cmp_le_f32;
404 return true;
405 case aco_opcode::v_cmp_lt_i32:
406 instr->opcode = aco_opcode::v_cmp_gt_i32;
407 return true;
408 default:
409 return false;
410 }
411 }
412
413 bool can_use_VOP3(aco_ptr<Instruction>& instr)
414 {
415 if (instr->operands.size() && instr->operands[0].isLiteral())
416 return false;
417
418 if (instr->isDPP() || instr->isSDWA())
419 return false;
420
421 return instr->opcode != aco_opcode::v_madmk_f32 &&
422 instr->opcode != aco_opcode::v_madak_f32 &&
423 instr->opcode != aco_opcode::v_madmk_f16 &&
424 instr->opcode != aco_opcode::v_madak_f16 &&
425 instr->opcode != aco_opcode::v_readlane_b32 &&
426 instr->opcode != aco_opcode::v_writelane_b32 &&
427 instr->opcode != aco_opcode::v_readfirstlane_b32;
428 }
429
430 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
431 {
432 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
433 instr->opcode != aco_opcode::v_readlane_b32 &&
434 instr->opcode != aco_opcode::v_readlane_b32_e64 &&
435 instr->opcode != aco_opcode::v_writelane_b32 &&
436 instr->opcode != aco_opcode::v_writelane_b32_e64;
437 }
438
439 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
440 {
441 if (instr->isVOP3())
442 return;
443
444 assert(!instr->operands[0].isLiteral());
445 aco_ptr<Instruction> tmp = std::move(instr);
446 Format format = asVOP3(tmp->format);
447 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
448 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
449 for (unsigned i = 0; i < instr->definitions.size(); i++) {
450 instr->definitions[i] = tmp->definitions[i];
451 if (instr->definitions[i].isTemp()) {
452 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
453 if (info.label & instr_labels && info.instr == tmp.get())
454 info.instr = instr.get();
455 }
456 }
457 }
458
459 /* only covers special cases */
460 bool can_accept_constant(aco_ptr<Instruction>& instr, unsigned operand)
461 {
462 switch (instr->opcode) {
463 case aco_opcode::v_interp_p2_f32:
464 case aco_opcode::v_mac_f32:
465 case aco_opcode::v_writelane_b32:
466 case aco_opcode::v_writelane_b32_e64:
467 case aco_opcode::v_cndmask_b32:
468 return operand != 2;
469 case aco_opcode::s_addk_i32:
470 case aco_opcode::s_mulk_i32:
471 case aco_opcode::p_wqm:
472 case aco_opcode::p_extract_vector:
473 case aco_opcode::p_split_vector:
474 case aco_opcode::v_readlane_b32:
475 case aco_opcode::v_readlane_b32_e64:
476 case aco_opcode::v_readfirstlane_b32:
477 return operand != 0;
478 default:
479 if ((instr->format == Format::MUBUF ||
480 instr->format == Format::MIMG) &&
481 instr->definitions.size() == 1 &&
482 instr->operands.size() == 4) {
483 return operand != 3;
484 }
485 return true;
486 }
487 }
488
489 bool valu_can_accept_literal(opt_ctx& ctx, aco_ptr<Instruction>& instr, unsigned operand)
490 {
491 /* instructions like v_cndmask_b32 can't take a literal because they always
492 * read SGPRs */
493 if (instr->operands.size() >= 3 &&
494 instr->operands[2].isTemp() && instr->operands[2].regClass().type() == RegType::sgpr)
495 return false;
496
497 // TODO: VOP3 can take a literal on GFX10
498 return !instr->isSDWA() && !instr->isDPP() && !instr->isVOP3() &&
499 operand == 0 && can_accept_constant(instr, operand);
500 }
501
502 bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
503 {
504 if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
505 instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64)
506 return operand != 1;
507 return true;
508 }
509
510 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
511 {
512 Operand op = instr->operands[op_index];
513
514 if (!op.isTemp())
515 return false;
516 Temp tmp = op.getTemp();
517 if (!ctx.info[tmp.id()].is_add_sub())
518 return false;
519
520 Instruction *add_instr = ctx.info[tmp.id()].instr;
521
522 switch (add_instr->opcode) {
523 case aco_opcode::v_add_u32:
524 case aco_opcode::v_add_co_u32:
525 case aco_opcode::s_add_i32:
526 case aco_opcode::s_add_u32:
527 break;
528 default:
529 return false;
530 }
531
532 if (add_instr->usesModifiers())
533 return false;
534
535 for (unsigned i = 0; i < 2; i++) {
536 if (add_instr->operands[i].isConstant()) {
537 *offset = add_instr->operands[i].constantValue();
538 } else if (add_instr->operands[i].isTemp() &&
539 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) {
540 *offset = ctx.info[add_instr->operands[i].tempId()].val;
541 } else {
542 continue;
543 }
544 if (!add_instr->operands[!i].isTemp())
545 continue;
546
547 uint32_t offset2 = 0;
548 if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
549 *offset += offset2;
550 } else {
551 *base = add_instr->operands[!i].getTemp();
552 }
553 return true;
554 }
555
556 return false;
557 }
558
559 Operand get_constant_op(opt_ctx &ctx, uint32_t val)
560 {
561 // TODO: this functions shouldn't be needed if we store Operand instead of value.
562 Operand op(val);
563 if (val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
564 op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
565 return op;
566 }
567
568 void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
569 {
570 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
571 ASSERTED bool all_const = false;
572 for (Operand& op : instr->operands)
573 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal());
574 perfwarn(all_const, "All instruction operands are constant", instr.get());
575 }
576
577 for (unsigned i = 0; i < instr->operands.size(); i++)
578 {
579 if (!instr->operands[i].isTemp())
580 continue;
581
582 ssa_info info = ctx.info[instr->operands[i].tempId()];
583 /* propagate undef */
584 if (info.is_undefined() && is_phi(instr))
585 instr->operands[i] = Operand(instr->operands[i].regClass());
586 /* propagate reg->reg of same type */
587 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
588 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
589 info = ctx.info[info.temp.id()];
590 }
591
592 /* SALU / PSEUDO: propagate inline constants */
593 if (instr->isSALU() || instr->format == Format::PSEUDO) {
594 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
595 instr->operands[i].setTemp(info.temp);
596 info = ctx.info[info.temp.id()];
597 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
598 /* propagate vgpr if it can take it */
599 switch (instr->opcode) {
600 case aco_opcode::p_create_vector:
601 case aco_opcode::p_split_vector:
602 case aco_opcode::p_extract_vector:
603 case aco_opcode::p_phi: {
604 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
605 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
606 if (all_vgpr) {
607 instr->operands[i] = Operand(info.temp);
608 info = ctx.info[info.temp.id()];
609 }
610 break;
611 }
612 default:
613 break;
614 }
615 }
616 if ((info.is_constant() || (info.is_literal() && instr->format == Format::PSEUDO)) && !instr->operands[i].isFixed() && can_accept_constant(instr, i)) {
617 instr->operands[i] = get_constant_op(ctx, info.val);
618 continue;
619 }
620 }
621
622 /* VALU: propagate neg, abs & inline constants */
623 else if (instr->isVALU()) {
624 if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
625 instr->operands[i].setTemp(info.temp);
626 info = ctx.info[info.temp.id()];
627 }
628 if (info.is_abs() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
629 if (!instr->isDPP())
630 to_VOP3(ctx, instr);
631 instr->operands[i] = Operand(info.temp);
632 if (instr->isDPP())
633 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
634 else
635 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
636 }
637 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
638 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
639 instr->operands[i].setTemp(info.temp);
640 continue;
641 } else if (info.is_neg() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
642 if (!instr->isDPP())
643 to_VOP3(ctx, instr);
644 instr->operands[i].setTemp(info.temp);
645 if (instr->isDPP())
646 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
647 else
648 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
649 continue;
650 }
651 if (info.is_constant() && can_accept_constant(instr, i)) {
652 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
653 if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) {
654 instr->operands[i] = get_constant_op(ctx, info.val);
655 continue;
656 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
657 instr->operands[i] = instr->operands[0];
658 instr->operands[0] = get_constant_op(ctx, info.val);
659 continue;
660 } else if (can_use_VOP3(instr)) {
661 to_VOP3(ctx, instr);
662 instr->operands[i] = get_constant_op(ctx, info.val);
663 continue;
664 }
665 }
666 }
667
668 /* MUBUF: propagate constants and combine additions */
669 else if (instr->format == Format::MUBUF) {
670 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
671 Temp base;
672 uint32_t offset;
673 while (info.is_temp())
674 info = ctx.info[info.temp.id()];
675
676 if (mubuf->offen && i == 0 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
677 assert(!mubuf->idxen);
678 instr->operands[i] = Operand(v1);
679 mubuf->offset += info.val;
680 mubuf->offen = false;
681 continue;
682 } else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
683 instr->operands[2] = Operand((uint32_t) 0);
684 mubuf->offset += info.val;
685 continue;
686 } else if (mubuf->offen && i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
687 assert(!mubuf->idxen);
688 instr->operands[i].setTemp(base);
689 mubuf->offset += offset;
690 continue;
691 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
692 instr->operands[i].setTemp(base);
693 mubuf->offset += offset;
694 continue;
695 }
696 }
697
698 /* DS: combine additions */
699 else if (instr->format == Format::DS) {
700
701 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
702 Temp base;
703 uint32_t offset;
704 if (i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == instr->operands[i].regClass()) {
705 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
706 instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
707 if (offset % 4 == 0 &&
708 ds->offset0 + (offset >> 2) <= 255 &&
709 ds->offset1 + (offset >> 2) <= 255) {
710 instr->operands[i].setTemp(base);
711 ds->offset0 += offset >> 2;
712 ds->offset1 += offset >> 2;
713 }
714 } else {
715 if (ds->offset0 + offset <= 65535) {
716 instr->operands[i].setTemp(base);
717 ds->offset0 += offset;
718 }
719 }
720 }
721 }
722
723 /* SMEM: propagate constants and combine additions */
724 else if (instr->format == Format::SMEM) {
725
726 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
727 Temp base;
728 uint32_t offset;
729 if (i == 1 && info.is_constant_or_literal() &&
730 (ctx.program->chip_class < GFX8 || info.val <= 0xFFFFF)) {
731 instr->operands[i] = Operand(info.val);
732 continue;
733 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
734 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
735 if (soe &&
736 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() ||
737 ctx.info[smem->operands.back().tempId()].val != 0)) {
738 continue;
739 }
740 if (soe) {
741 smem->operands[1] = Operand(offset);
742 smem->operands.back() = Operand(base);
743 } else {
744 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
745 new_instr->operands[0] = smem->operands[0];
746 new_instr->operands[1] = Operand(offset);
747 if (smem->definitions.empty())
748 new_instr->operands[2] = smem->operands[2];
749 new_instr->operands.back() = Operand(base);
750 if (!smem->definitions.empty())
751 new_instr->definitions[0] = smem->definitions[0];
752 new_instr->can_reorder = smem->can_reorder;
753 new_instr->barrier = smem->barrier;
754 instr.reset(new_instr);
755 smem = static_cast<SMEM_instruction *>(instr.get());
756 }
757 continue;
758 }
759 }
760 }
761
762 /* if this instruction doesn't define anything, return */
763 if (instr->definitions.empty())
764 return;
765
766 switch (instr->opcode) {
767 case aco_opcode::p_create_vector: {
768 unsigned num_ops = instr->operands.size();
769 for (const Operand& op : instr->operands) {
770 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
771 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
772 }
773 if (num_ops != instr->operands.size()) {
774 aco_ptr<Instruction> old_vec = std::move(instr);
775 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
776 instr->definitions[0] = old_vec->definitions[0];
777 unsigned k = 0;
778 for (Operand& old_op : old_vec->operands) {
779 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
780 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++) {
781 Operand op = ctx.info[old_op.tempId()].instr->operands[j];
782 if (op.isTemp() && ctx.info[op.tempId()].is_temp() &&
783 ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type())
784 op.setTemp(ctx.info[op.tempId()].temp);
785 instr->operands[k++] = op;
786 }
787 } else {
788 instr->operands[k++] = old_op;
789 }
790 }
791 assert(k == num_ops);
792 }
793 if (instr->operands.size() == 1 && instr->operands[0].isTemp())
794 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
795 else if (instr->definitions[0].getTemp().size() == instr->operands.size())
796 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
797 break;
798 }
799 case aco_opcode::p_split_vector: {
800 if (!ctx.info[instr->operands[0].tempId()].is_vec())
801 break;
802 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
803 assert(instr->definitions.size() == vec->operands.size());
804 for (unsigned i = 0; i < instr->definitions.size(); i++) {
805 Operand vec_op = vec->operands[i];
806 if (vec_op.isConstant()) {
807 if (vec_op.isLiteral())
808 ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue());
809 else if (vec_op.size() == 1)
810 ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue());
811 } else {
812 assert(vec_op.isTemp());
813 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
814 }
815 }
816 break;
817 }
818 case aco_opcode::p_extract_vector: { /* mov */
819 if (!ctx.info[instr->operands[0].tempId()].is_vec())
820 break;
821 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
822 if (vec->definitions[0].getTemp().size() == vec->operands.size() && /* TODO: what about 64bit or other combinations? */
823 vec->operands[0].size() == instr->definitions[0].size()) {
824
825 /* convert this extract into a mov instruction */
826 Operand vec_op = vec->operands[instr->operands[1].constantValue()];
827 bool is_vgpr = instr->definitions[0].getTemp().type() == RegType::vgpr;
828 aco_opcode opcode = is_vgpr ? aco_opcode::v_mov_b32 : aco_opcode::s_mov_b32;
829 Format format = is_vgpr ? Format::VOP1 : Format::SOP1;
830 instr->opcode = opcode;
831 instr->format = format;
832 instr->operands = {instr->operands.begin(), 1 };
833 instr->operands[0] = vec_op;
834
835 if (vec_op.isConstant()) {
836 if (vec_op.isLiteral())
837 ctx.info[instr->definitions[0].tempId()].set_literal(vec_op.constantValue());
838 else if (vec_op.size() == 1)
839 ctx.info[instr->definitions[0].tempId()].set_constant(vec_op.constantValue());
840 } else {
841 assert(vec_op.isTemp());
842 ctx.info[instr->definitions[0].tempId()].set_temp(vec_op.getTemp());
843 }
844 }
845 break;
846 }
847 case aco_opcode::s_mov_b32: /* propagate */
848 case aco_opcode::s_mov_b64:
849 case aco_opcode::v_mov_b32:
850 case aco_opcode::p_as_uniform:
851 if (instr->definitions[0].isFixed()) {
852 /* don't copy-propagate copies into fixed registers */
853 } else if (instr->usesModifiers()) {
854 // TODO
855 } else if (instr->operands[0].isConstant()) {
856 if (instr->operands[0].isLiteral())
857 ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue());
858 else if (instr->operands[0].size() == 1)
859 ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue());
860 } else if (instr->operands[0].isTemp()) {
861 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
862 } else {
863 assert(instr->operands[0].isFixed());
864 }
865 break;
866 case aco_opcode::p_is_helper:
867 if (!ctx.program->needs_wqm)
868 ctx.info[instr->definitions[0].tempId()].set_constant(0u);
869 break;
870 case aco_opcode::s_movk_i32: {
871 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
872 v = v & 0x8000 ? (v | 0xffff0000) : v;
873 if (v <= 64 || v >= 0xfffffff0)
874 ctx.info[instr->definitions[0].tempId()].set_constant(v);
875 else
876 ctx.info[instr->definitions[0].tempId()].set_literal(v);
877 break;
878 }
879 case aco_opcode::v_bfrev_b32:
880 case aco_opcode::s_brev_b32: {
881 if (instr->operands[0].isConstant()) {
882 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
883 if (v <= 64 || v >= 0xfffffff0)
884 ctx.info[instr->definitions[0].tempId()].set_constant(v);
885 else
886 ctx.info[instr->definitions[0].tempId()].set_literal(v);
887 }
888 break;
889 }
890 case aco_opcode::s_bfm_b32: {
891 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
892 unsigned size = instr->operands[0].constantValue() & 0x1f;
893 unsigned start = instr->operands[1].constantValue() & 0x1f;
894 uint32_t v = ((1u << size) - 1u) << start;
895 if (v <= 64 || v >= 0xfffffff0)
896 ctx.info[instr->definitions[0].tempId()].set_constant(v);
897 else
898 ctx.info[instr->definitions[0].tempId()].set_literal(v);
899 }
900 }
901 case aco_opcode::v_mul_f32: { /* omod */
902 /* TODO: try to move the negate/abs modifier to the consumer instead */
903 if (instr->usesModifiers())
904 break;
905
906 for (unsigned i = 0; i < 2; i++) {
907 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
908 if (instr->operands[!i].constantValue() == 0x40000000) { /* 2.0 */
909 ctx.info[instr->operands[i].tempId()].set_omod2();
910 } else if (instr->operands[!i].constantValue() == 0x40800000) { /* 4.0 */
911 ctx.info[instr->operands[i].tempId()].set_omod4();
912 } else if (instr->operands[!i].constantValue() == 0x3f000000) { /* 0.5 */
913 ctx.info[instr->operands[i].tempId()].set_omod5();
914 } else if (instr->operands[!i].constantValue() == 0x3f800000 &&
915 !block.fp_mode.must_flush_denorms32) { /* 1.0 */
916 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
917 } else {
918 continue;
919 }
920 break;
921 }
922 }
923 break;
924 }
925 case aco_opcode::v_and_b32: /* abs */
926 if (instr->operands[0].constantEquals(0x7FFFFFFF) && instr->operands[1].isTemp())
927 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
928 else
929 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
930 break;
931 case aco_opcode::v_xor_b32: { /* neg */
932 if (instr->operands[0].constantEquals(0x80000000u) && instr->operands[1].isTemp()) {
933 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
934 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
935 } else {
936 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
937 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
938 instr->opcode = aco_opcode::v_or_b32;
939 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
940 } else {
941 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
942 }
943 }
944 } else {
945 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
946 }
947 break;
948 }
949 case aco_opcode::v_med3_f32: { /* clamp */
950 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
951 if (vop3->abs[0] || vop3->neg[0] || vop3->opsel[0] ||
952 vop3->abs[1] || vop3->neg[1] || vop3->opsel[1] ||
953 vop3->abs[2] || vop3->neg[2] || vop3->opsel[2] ||
954 vop3->omod != 0)
955 break;
956
957 unsigned idx = 0;
958 bool found_zero = false, found_one = false;
959 for (unsigned i = 0; i < 3; i++)
960 {
961 if (instr->operands[i].constantEquals(0))
962 found_zero = true;
963 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
964 found_one = true;
965 else
966 idx = i;
967 }
968 if (found_zero && found_one && instr->operands[idx].isTemp()) {
969 ctx.info[instr->operands[idx].tempId()].set_clamp();
970 }
971 break;
972 }
973 case aco_opcode::v_cndmask_b32:
974 if (instr->operands[0].constantEquals(0) &&
975 instr->operands[1].constantEquals(0xFFFFFFFF) &&
976 instr->operands[2].isTemp())
977 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
978 else if (instr->operands[0].constantEquals(0) &&
979 instr->operands[1].constantEquals(0x3f800000u) &&
980 instr->operands[2].isTemp())
981 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
982 break;
983 case aco_opcode::v_cmp_lg_u32:
984 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
985 instr->operands[0].constantEquals(0) &&
986 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
987 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
988 break;
989 case aco_opcode::p_phi:
990 case aco_opcode::p_linear_phi: {
991 /* lower_bool_phis() can create phis like this */
992 bool all_same_temp = instr->operands[0].isTemp();
993 /* this check is needed when moving uniform loop counters out of a divergent loop */
994 if (all_same_temp)
995 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
996 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
997 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
998 all_same_temp = false;
999 }
1000 if (all_same_temp) {
1001 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1002 } else {
1003 bool all_undef = instr->operands[0].isUndefined();
1004 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
1005 if (!instr->operands[i].isUndefined())
1006 all_undef = false;
1007 }
1008 if (all_undef)
1009 ctx.info[instr->definitions[0].tempId()].set_undefined();
1010 }
1011 break;
1012 }
1013 case aco_opcode::v_add_u32:
1014 case aco_opcode::v_add_co_u32:
1015 case aco_opcode::s_add_i32:
1016 case aco_opcode::s_add_u32:
1017 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
1018 break;
1019 case aco_opcode::s_and_b32:
1020 case aco_opcode::s_and_b64:
1021 if (instr->operands[1].isFixed() && instr->operands[1].physReg() == exec &&
1022 instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1023 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
1024 }
1025 /* fallthrough */
1026 case aco_opcode::s_not_b32:
1027 case aco_opcode::s_not_b64:
1028 case aco_opcode::s_or_b32:
1029 case aco_opcode::s_or_b64:
1030 case aco_opcode::s_xor_b32:
1031 case aco_opcode::s_xor_b64:
1032 case aco_opcode::s_lshl_b32:
1033 case aco_opcode::v_or_b32:
1034 case aco_opcode::v_lshlrev_b32:
1035 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1036 break;
1037 case aco_opcode::v_min_f32:
1038 case aco_opcode::v_min_f16:
1039 case aco_opcode::v_min_u32:
1040 case aco_opcode::v_min_i32:
1041 case aco_opcode::v_min_u16:
1042 case aco_opcode::v_min_i16:
1043 case aco_opcode::v_max_f32:
1044 case aco_opcode::v_max_f16:
1045 case aco_opcode::v_max_u32:
1046 case aco_opcode::v_max_i32:
1047 case aco_opcode::v_max_u16:
1048 case aco_opcode::v_max_i16:
1049 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
1050 break;
1051 case aco_opcode::v_cmp_lt_f32:
1052 case aco_opcode::v_cmp_eq_f32:
1053 case aco_opcode::v_cmp_le_f32:
1054 case aco_opcode::v_cmp_gt_f32:
1055 case aco_opcode::v_cmp_lg_f32:
1056 case aco_opcode::v_cmp_ge_f32:
1057 case aco_opcode::v_cmp_o_f32:
1058 case aco_opcode::v_cmp_u_f32:
1059 case aco_opcode::v_cmp_nge_f32:
1060 case aco_opcode::v_cmp_nlg_f32:
1061 case aco_opcode::v_cmp_ngt_f32:
1062 case aco_opcode::v_cmp_nle_f32:
1063 case aco_opcode::v_cmp_neq_f32:
1064 case aco_opcode::v_cmp_nlt_f32:
1065 ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
1066 break;
1067 case aco_opcode::s_cselect_b64:
1068 case aco_opcode::s_cselect_b32:
1069 if (instr->operands[0].constantEquals((unsigned) -1) &&
1070 instr->operands[1].constantEquals(0)) {
1071 /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
1072 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
1073 }
1074 break;
1075 default:
1076 break;
1077 }
1078 }
1079
1080 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse)
1081 {
1082 *ordered = *unordered = op;
1083 switch (op) {
1084 #define CMP(ord, unord) \
1085 case aco_opcode::v_cmp_##ord##_f32:\
1086 case aco_opcode::v_cmp_n##unord##_f32:\
1087 *ordered = aco_opcode::v_cmp_##ord##_f32;\
1088 *unordered = aco_opcode::v_cmp_n##unord##_f32;\
1089 *inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\
1090 return true;
1091 CMP(lt, /*n*/ge)
1092 CMP(eq, /*n*/lg)
1093 CMP(le, /*n*/gt)
1094 CMP(gt, /*n*/le)
1095 CMP(lg, /*n*/eq)
1096 CMP(ge, /*n*/lt)
1097 #undef CMP
1098 default:
1099 return false;
1100 }
1101 }
1102
1103 aco_opcode get_ordered(aco_opcode op)
1104 {
1105 aco_opcode ordered, unordered, inverse;
1106 return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::last_opcode;
1107 }
1108
1109 aco_opcode get_unordered(aco_opcode op)
1110 {
1111 aco_opcode ordered, unordered, inverse;
1112 return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::last_opcode;
1113 }
1114
1115 aco_opcode get_inverse(aco_opcode op)
1116 {
1117 aco_opcode ordered, unordered, inverse;
1118 return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::last_opcode;
1119 }
1120
1121 bool is_cmp(aco_opcode op)
1122 {
1123 aco_opcode ordered, unordered, inverse;
1124 return get_cmp_info(op, &ordered, &unordered, &inverse);
1125 }
1126
1127 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1128 {
1129 if (ctx.info[tmp.id()].is_temp())
1130 return ctx.info[tmp.id()].temp.id();
1131 else
1132 return tmp.id();
1133 }
1134
1135 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1136 {
1137 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1138 for (const Operand& op : instr->operands) {
1139 if (op.isTemp())
1140 ctx.uses[op.tempId()]--;
1141 }
1142 }
1143 }
1144
1145 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1146 {
1147 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1148 return nullptr;
1149 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1150 return nullptr;
1151
1152 Instruction *instr = ctx.info[op.tempId()].instr;
1153
1154 if (instr->definitions.size() == 2) {
1155 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1156 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1157 return nullptr;
1158 }
1159
1160 return instr;
1161 }
1162
1163 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1164 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1165 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1166 {
1167 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1168 return false;
1169 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1170 return false;
1171
1172 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1173
1174 bool neg[2] = {false, false};
1175 bool abs[2] = {false, false};
1176 bool opsel[2] = {false, false};
1177 Instruction *op_instr[2];
1178 Temp op[2];
1179
1180 for (unsigned i = 0; i < 2; i++) {
1181 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1182 if (!op_instr[i])
1183 return false;
1184
1185 aco_opcode expected_cmp = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1186
1187 if (op_instr[i]->opcode != expected_cmp)
1188 return false;
1189 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1190 return false;
1191
1192 if (op_instr[i]->isVOP3()) {
1193 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1194 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel[0] != vop3->opsel[1])
1195 return false;
1196 neg[i] = vop3->neg[0];
1197 abs[i] = vop3->abs[0];
1198 opsel[i] = vop3->opsel[0];
1199 }
1200
1201 Temp op0 = op_instr[i]->operands[0].getTemp();
1202 Temp op1 = op_instr[i]->operands[1].getTemp();
1203 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1204 return false;
1205 /* shouldn't happen yet, but best to be safe */
1206 if (op1.type() != RegType::vgpr)
1207 return false;
1208
1209 op[i] = op1;
1210 }
1211
1212 ctx.uses[op[0].id()]++;
1213 ctx.uses[op[1].id()]++;
1214 decrease_uses(ctx, op_instr[0]);
1215 decrease_uses(ctx, op_instr[1]);
1216
1217 aco_opcode new_op = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1218 Instruction *new_instr;
1219 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel[0] || opsel[1]) {
1220 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1221 for (unsigned i = 0; i < 2; i++) {
1222 vop3->neg[i] = neg[i];
1223 vop3->abs[i] = abs[i];
1224 vop3->opsel[i] = opsel[i];
1225 }
1226 new_instr = static_cast<Instruction *>(vop3);
1227 } else {
1228 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1229 }
1230 new_instr->operands[0] = Operand(op[0]);
1231 new_instr->operands[1] = Operand(op[1]);
1232 new_instr->definitions[0] = instr->definitions[0];
1233
1234 ctx.info[instr->definitions[0].tempId()].label = 0;
1235 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1236
1237 instr.reset(new_instr);
1238
1239 return true;
1240 }
1241
1242 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1243 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1244 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1245 {
1246 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1247 return false;
1248 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1249 return false;
1250
1251 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1252 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1253
1254 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1255 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1256 if (!nan_test || !cmp)
1257 return false;
1258
1259 if (cmp->opcode == expected_nan_test)
1260 std::swap(nan_test, cmp);
1261 else if (nan_test->opcode != expected_nan_test)
1262 return false;
1263
1264 if (!is_cmp(cmp->opcode))
1265 return false;
1266
1267 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1268 return false;
1269 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1270 return false;
1271
1272 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1273 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1274 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1275 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1276 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1277 return false;
1278 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1279 return false;
1280
1281 ctx.uses[cmp->operands[0].tempId()]++;
1282 ctx.uses[cmp->operands[1].tempId()]++;
1283 decrease_uses(ctx, nan_test);
1284 decrease_uses(ctx, cmp);
1285
1286 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1287 Instruction *new_instr;
1288 if (cmp->isVOP3()) {
1289 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1290 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1291 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1292 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1293 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1294 new_vop3->clamp = cmp_vop3->clamp;
1295 new_vop3->omod = cmp_vop3->omod;
1296 new_instr = new_vop3;
1297 } else {
1298 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1299 }
1300 new_instr->operands[0] = cmp->operands[0];
1301 new_instr->operands[1] = cmp->operands[1];
1302 new_instr->definitions[0] = instr->definitions[0];
1303
1304 ctx.info[instr->definitions[0].tempId()].label = 0;
1305 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1306
1307 instr.reset(new_instr);
1308
1309 return true;
1310 }
1311
1312 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1313 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1314 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1315 {
1316 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1317 return false;
1318 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1319 return false;
1320
1321 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1322
1323 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1324 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1325
1326 if (!nan_test || !cmp)
1327 return false;
1328
1329 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1330 if (cmp->opcode == expected_nan_test)
1331 std::swap(nan_test, cmp);
1332 else if (nan_test->opcode != expected_nan_test)
1333 return false;
1334
1335 if (!is_cmp(cmp->opcode))
1336 return false;
1337
1338 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1339 return false;
1340 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1341 return false;
1342
1343 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1344 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1345 if (prop_nan0 != prop_nan1)
1346 return false;
1347
1348 int constant_operand = -1;
1349 for (unsigned i = 0; i < 2; i++) {
1350 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1351 constant_operand = !i;
1352 break;
1353 }
1354 }
1355 if (constant_operand == -1)
1356 return false;
1357
1358 uint32_t constant;
1359 if (cmp->operands[constant_operand].isConstant()) {
1360 constant = cmp->operands[constant_operand].constantValue();
1361 } else if (cmp->operands[constant_operand].isTemp()) {
1362 unsigned id = cmp->operands[constant_operand].tempId();
1363 if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal())
1364 return false;
1365 constant = ctx.info[id].val;
1366 } else {
1367 return false;
1368 }
1369
1370 float constantf;
1371 memcpy(&constantf, &constant, 4);
1372 if (isnan(constantf))
1373 return false;
1374
1375 if (cmp->operands[0].isTemp())
1376 ctx.uses[cmp->operands[0].tempId()]++;
1377 if (cmp->operands[1].isTemp())
1378 ctx.uses[cmp->operands[1].tempId()]++;
1379 decrease_uses(ctx, nan_test);
1380 decrease_uses(ctx, cmp);
1381
1382 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1383 Instruction *new_instr;
1384 if (cmp->isVOP3()) {
1385 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1386 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1387 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1388 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1389 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1390 new_vop3->clamp = cmp_vop3->clamp;
1391 new_vop3->omod = cmp_vop3->omod;
1392 new_instr = new_vop3;
1393 } else {
1394 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1395 }
1396 new_instr->operands[0] = cmp->operands[0];
1397 new_instr->operands[1] = cmp->operands[1];
1398 new_instr->definitions[0] = instr->definitions[0];
1399
1400 ctx.info[instr->definitions[0].tempId()].label = 0;
1401 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1402
1403 instr.reset(new_instr);
1404
1405 return true;
1406 }
1407
1408 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1409 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1410 {
1411 if (instr->opcode != aco_opcode::s_not_b64)
1412 return false;
1413 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1414 return false;
1415 if (!instr->operands[0].isTemp())
1416 return false;
1417
1418 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1419 if (!cmp)
1420 return false;
1421
1422 aco_opcode new_opcode = get_inverse(cmp->opcode);
1423 if (new_opcode == aco_opcode::last_opcode)
1424 return false;
1425
1426 if (cmp->operands[0].isTemp())
1427 ctx.uses[cmp->operands[0].tempId()]++;
1428 if (cmp->operands[1].isTemp())
1429 ctx.uses[cmp->operands[1].tempId()]++;
1430 decrease_uses(ctx, cmp);
1431
1432 Instruction *new_instr;
1433 if (cmp->isVOP3()) {
1434 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1435 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1436 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1437 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1438 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1439 new_vop3->clamp = cmp_vop3->clamp;
1440 new_vop3->omod = cmp_vop3->omod;
1441 new_instr = new_vop3;
1442 } else {
1443 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1444 }
1445 new_instr->operands[0] = cmp->operands[0];
1446 new_instr->operands[1] = cmp->operands[1];
1447 new_instr->definitions[0] = instr->definitions[0];
1448
1449 ctx.info[instr->definitions[0].tempId()].label = 0;
1450 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1451
1452 instr.reset(new_instr);
1453
1454 return true;
1455 }
1456
1457 /* op1(op2(1, 2), 0) if swap = false
1458 * op1(0, op2(1, 2)) if swap = true */
1459 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1460 Instruction* op1_instr, bool swap, const char *shuffle_str,
1461 Operand operands[3], bool neg[3], bool abs[3], bool opsel[3],
1462 bool *op1_clamp, unsigned *op1_omod,
1463 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1464 {
1465 /* checks */
1466 if (op1_instr->opcode != op1)
1467 return false;
1468
1469 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1470 if (!op2_instr || op2_instr->opcode != op2)
1471 return false;
1472
1473 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1474 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1475
1476 /* don't support inbetween clamp/omod */
1477 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1478 return false;
1479
1480 /* get operands and modifiers and check inbetween modifiers */
1481 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1482 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1483
1484 if (inbetween_neg)
1485 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1486 else if (op1_vop3 && op1_vop3->neg[swap])
1487 return false;
1488
1489 if (inbetween_abs)
1490 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1491 else if (op1_vop3 && op1_vop3->abs[swap])
1492 return false;
1493
1494 if (inbetween_opsel)
1495 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel[swap] : false;
1496 else if (op1_vop3 && op1_vop3->opsel[swap])
1497 return false;
1498
1499 int shuffle[3];
1500 shuffle[shuffle_str[0] - '0'] = 0;
1501 shuffle[shuffle_str[1] - '0'] = 1;
1502 shuffle[shuffle_str[2] - '0'] = 2;
1503
1504 operands[shuffle[0]] = op1_instr->operands[!swap];
1505 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1506 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1507 opsel[shuffle[0]] = op1_vop3 ? op1_vop3->opsel[!swap] : false;
1508
1509 for (unsigned i = 0; i < 2; i++) {
1510 operands[shuffle[i + 1]] = op2_instr->operands[i];
1511 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1512 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1513 opsel[shuffle[i + 1]] = op2_vop3 ? op2_vop3->opsel[i] : false;
1514 }
1515
1516 /* check operands */
1517 unsigned sgpr_id = 0;
1518 for (unsigned i = 0; i < 3; i++) {
1519 Operand op = operands[i];
1520 if (op.isLiteral()) {
1521 return false;
1522 } else if (op.isTemp() && op.getTemp().type() == RegType::sgpr) {
1523 if (sgpr_id && sgpr_id != op.tempId())
1524 return false;
1525 sgpr_id = op.tempId();
1526 }
1527 }
1528
1529 return true;
1530 }
1531
1532 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1533 Operand operands[3], bool neg[3], bool abs[3], bool opsel[3],
1534 bool clamp, unsigned omod)
1535 {
1536 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1537 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1538 memcpy(new_instr->opsel, opsel, sizeof(bool[3]));
1539 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1540 new_instr->clamp = clamp;
1541 new_instr->omod = omod;
1542 new_instr->operands[0] = operands[0];
1543 new_instr->operands[1] = operands[1];
1544 new_instr->operands[2] = operands[2];
1545 new_instr->definitions[0] = instr->definitions[0];
1546 ctx.info[instr->definitions[0].tempId()].label = 0;
1547
1548 instr.reset(new_instr);
1549 }
1550
1551 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1552 {
1553 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1554 (label_omod_success | label_clamp_success);
1555
1556 for (unsigned swap = 0; swap < 2; swap++) {
1557 if (!((1 << swap) & ops))
1558 continue;
1559
1560 Operand operands[3];
1561 bool neg[3], abs[3], opsel[3], clamp;
1562 unsigned omod;
1563 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1564 instr.get(), swap, shuffle,
1565 operands, neg, abs, opsel,
1566 &clamp, &omod, NULL, NULL, NULL)) {
1567 ctx.uses[instr->operands[swap].tempId()]--;
1568 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1569 if (omod_clamp & label_omod_success)
1570 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1571 if (omod_clamp & label_clamp_success)
1572 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1573 return true;
1574 }
1575 }
1576 return false;
1577 }
1578
1579 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
1580 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
1581 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
1582 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
1583 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
1584 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
1585 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1586 {
1587 /* checks */
1588 if (!instr->operands[0].isTemp())
1589 return false;
1590 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1591 return false;
1592
1593 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
1594 if (!op2_instr)
1595 return false;
1596 switch (op2_instr->opcode) {
1597 case aco_opcode::s_and_b32:
1598 case aco_opcode::s_or_b32:
1599 case aco_opcode::s_xor_b32:
1600 case aco_opcode::s_and_b64:
1601 case aco_opcode::s_or_b64:
1602 case aco_opcode::s_xor_b64:
1603 break;
1604 default:
1605 return false;
1606 }
1607
1608 /* create instruction */
1609 std::swap(instr->definitions[0], op2_instr->definitions[0]);
1610 ctx.uses[instr->operands[0].tempId()]--;
1611 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
1612
1613 switch (op2_instr->opcode) {
1614 case aco_opcode::s_and_b32:
1615 op2_instr->opcode = aco_opcode::s_nand_b32;
1616 break;
1617 case aco_opcode::s_or_b32:
1618 op2_instr->opcode = aco_opcode::s_nor_b32;
1619 break;
1620 case aco_opcode::s_xor_b32:
1621 op2_instr->opcode = aco_opcode::s_xnor_b32;
1622 break;
1623 case aco_opcode::s_and_b64:
1624 op2_instr->opcode = aco_opcode::s_nand_b64;
1625 break;
1626 case aco_opcode::s_or_b64:
1627 op2_instr->opcode = aco_opcode::s_nor_b64;
1628 break;
1629 case aco_opcode::s_xor_b64:
1630 op2_instr->opcode = aco_opcode::s_xnor_b64;
1631 break;
1632 default:
1633 break;
1634 }
1635
1636 return true;
1637 }
1638
1639 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
1640 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
1641 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
1642 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
1643 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1644 {
1645 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1646 return false;
1647
1648 for (unsigned i = 0; i < 2; i++) {
1649 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1650 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
1651 continue;
1652
1653 ctx.uses[instr->operands[i].tempId()]--;
1654 instr->operands[0] = instr->operands[!i];
1655 instr->operands[1] = op2_instr->operands[0];
1656 ctx.info[instr->definitions[0].tempId()].label = 0;
1657
1658 switch (instr->opcode) {
1659 case aco_opcode::s_and_b32:
1660 instr->opcode = aco_opcode::s_andn2_b32;
1661 break;
1662 case aco_opcode::s_or_b32:
1663 instr->opcode = aco_opcode::s_orn2_b32;
1664 break;
1665 case aco_opcode::s_and_b64:
1666 instr->opcode = aco_opcode::s_andn2_b64;
1667 break;
1668 case aco_opcode::s_or_b64:
1669 instr->opcode = aco_opcode::s_orn2_b64;
1670 break;
1671 default:
1672 break;
1673 }
1674
1675 return true;
1676 }
1677 return false;
1678 }
1679
1680 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
1681 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1682 {
1683 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1684 return false;
1685
1686 for (unsigned i = 0; i < 2; i++) {
1687 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1688 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 || !op2_instr->operands[1].isConstant())
1689 continue;
1690
1691 uint32_t shift = op2_instr->operands[1].constantValue();
1692 if (shift < 1 || shift > 4)
1693 continue;
1694
1695 ctx.uses[instr->operands[i].tempId()]--;
1696 instr->operands[1] = instr->operands[!i];
1697 instr->operands[0] = op2_instr->operands[0];
1698 ctx.info[instr->definitions[0].tempId()].label = 0;
1699
1700 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
1701 aco_opcode::s_lshl2_add_u32,
1702 aco_opcode::s_lshl3_add_u32,
1703 aco_opcode::s_lshl4_add_u32})[shift - 1];
1704
1705 return true;
1706 }
1707 return false;
1708 }
1709
1710 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
1711 {
1712 switch (op) {
1713 #define MINMAX(type, gfx9) \
1714 case aco_opcode::v_min_##type:\
1715 case aco_opcode::v_max_##type:\
1716 case aco_opcode::v_med3_##type:\
1717 *min = aco_opcode::v_min_##type;\
1718 *max = aco_opcode::v_max_##type;\
1719 *med3 = aco_opcode::v_med3_##type;\
1720 *min3 = aco_opcode::v_min3_##type;\
1721 *max3 = aco_opcode::v_max3_##type;\
1722 *some_gfx9_only = gfx9;\
1723 return true;
1724 MINMAX(f32, false)
1725 MINMAX(u32, false)
1726 MINMAX(i32, false)
1727 MINMAX(f16, true)
1728 MINMAX(u16, true)
1729 MINMAX(i16, true)
1730 #undef MINMAX
1731 default:
1732 return false;
1733 }
1734 }
1735
1736 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
1737 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
1738 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
1739 aco_opcode min, aco_opcode max, aco_opcode med)
1740 {
1741 aco_opcode other_op;
1742 if (instr->opcode == min)
1743 other_op = max;
1744 else if (instr->opcode == max)
1745 other_op = min;
1746 else
1747 return false;
1748
1749 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1750 (label_omod_success | label_clamp_success);
1751
1752 for (unsigned swap = 0; swap < 2; swap++) {
1753 Operand operands[3];
1754 bool neg[3], abs[3], opsel[3], clamp, inbetween_neg, inbetween_abs;
1755 unsigned omod;
1756 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
1757 "012", operands, neg, abs, opsel,
1758 &clamp, &omod, &inbetween_neg, &inbetween_abs, NULL)) {
1759 int const0_idx = -1, const1_idx = -1;
1760 uint32_t const0 = 0, const1 = 0;
1761 for (int i = 0; i < 3; i++) {
1762 uint32_t val;
1763 if (operands[i].isConstant()) {
1764 val = operands[i].constantValue();
1765 } else if (operands[i].isTemp() && ctx.uses[operands[i].tempId()] == 1 &&
1766 ctx.info[operands[i].tempId()].is_constant_or_literal()) {
1767 val = ctx.info[operands[i].tempId()].val;
1768 } else {
1769 continue;
1770 }
1771 if (const0_idx >= 0) {
1772 const1_idx = i;
1773 const1 = val;
1774 } else {
1775 const0_idx = i;
1776 const0 = val;
1777 }
1778 }
1779 if (const0_idx < 0 || const1_idx < 0)
1780 continue;
1781
1782 if (opsel[const0_idx])
1783 const0 >>= 16;
1784 if (opsel[const1_idx])
1785 const1 >>= 16;
1786
1787 int lower_idx = const0_idx;
1788 switch (min) {
1789 case aco_opcode::v_min_f32:
1790 case aco_opcode::v_min_f16: {
1791 float const0_f, const1_f;
1792 if (min == aco_opcode::v_min_f32) {
1793 memcpy(&const0_f, &const0, 4);
1794 memcpy(&const1_f, &const1, 4);
1795 } else {
1796 const0_f = _mesa_half_to_float(const0);
1797 const1_f = _mesa_half_to_float(const1);
1798 }
1799 if (abs[const0_idx]) const0_f = fabsf(const0_f);
1800 if (abs[const1_idx]) const1_f = fabsf(const1_f);
1801 if (neg[const0_idx]) const0_f = -const0_f;
1802 if (neg[const1_idx]) const1_f = -const1_f;
1803 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
1804 break;
1805 }
1806 case aco_opcode::v_min_u32: {
1807 lower_idx = const0 < const1 ? const0_idx : const1_idx;
1808 break;
1809 }
1810 case aco_opcode::v_min_u16: {
1811 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
1812 break;
1813 }
1814 case aco_opcode::v_min_i32: {
1815 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
1816 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
1817 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1818 break;
1819 }
1820 case aco_opcode::v_min_i16: {
1821 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
1822 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
1823 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1824 break;
1825 }
1826 default:
1827 break;
1828 }
1829 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
1830
1831 if (instr->opcode == min) {
1832 if (upper_idx != 0 || lower_idx == 0)
1833 return false;
1834 } else {
1835 if (upper_idx == 0 || lower_idx != 0)
1836 return false;
1837 }
1838
1839 neg[1] ^= inbetween_neg;
1840 neg[2] ^= inbetween_neg;
1841 abs[1] |= inbetween_abs;
1842 abs[2] |= inbetween_abs;
1843
1844 ctx.uses[instr->operands[swap].tempId()]--;
1845 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
1846 if (omod_clamp & label_omod_success)
1847 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1848 if (omod_clamp & label_clamp_success)
1849 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1850
1851 return true;
1852 }
1853 }
1854
1855 return false;
1856 }
1857
1858
1859 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1860 {
1861 /* apply sgprs */
1862 uint32_t sgpr_idx = 0;
1863 uint32_t sgpr_info_id = 0;
1864 bool has_sgpr = false;
1865 uint32_t sgpr_ssa_id = 0;
1866 /* find 'best' possible sgpr */
1867 for (unsigned i = 0; i < instr->operands.size(); i++)
1868 {
1869 if (instr->operands[i].isLiteral()) {
1870 has_sgpr = true;
1871 break;
1872 }
1873 if (!instr->operands[i].isTemp())
1874 continue;
1875 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
1876 has_sgpr = true;
1877 sgpr_ssa_id = instr->operands[i].tempId();
1878 continue;
1879 }
1880 ssa_info& info = ctx.info[instr->operands[i].tempId()];
1881 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
1882 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
1883 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
1884 sgpr_idx = i;
1885 sgpr_info_id = instr->operands[i].tempId();
1886 }
1887 }
1888 }
1889 if (!has_sgpr && sgpr_info_id != 0) {
1890 ssa_info& info = ctx.info[sgpr_info_id];
1891 if (sgpr_idx == 0 || instr->isVOP3()) {
1892 instr->operands[sgpr_idx] = Operand(info.temp);
1893 ctx.uses[sgpr_info_id]--;
1894 ctx.uses[info.temp.id()]++;
1895 } else if (can_swap_operands(instr)) {
1896 instr->operands[sgpr_idx] = instr->operands[0];
1897 instr->operands[0] = Operand(info.temp);
1898 ctx.uses[sgpr_info_id]--;
1899 ctx.uses[info.temp.id()]++;
1900 } else if (can_use_VOP3(instr)) {
1901 to_VOP3(ctx, instr);
1902 instr->operands[sgpr_idx] = Operand(info.temp);
1903 ctx.uses[sgpr_info_id]--;
1904 ctx.uses[info.temp.id()]++;
1905 }
1906
1907 /* we can have two sgprs on one instruction if it is the same sgpr! */
1908 } else if (sgpr_info_id != 0 &&
1909 sgpr_ssa_id == sgpr_info_id &&
1910 ctx.uses[sgpr_info_id] == 1 &&
1911 can_use_VOP3(instr)) {
1912 to_VOP3(ctx, instr);
1913 instr->operands[sgpr_idx] = Operand(ctx.info[sgpr_info_id].temp);
1914 ctx.uses[sgpr_info_id]--;
1915 ctx.uses[ctx.info[sgpr_info_id].temp.id()]++;
1916 }
1917 }
1918
1919 bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
1920 {
1921 /* check if we could apply omod on predecessor */
1922 if (instr->opcode == aco_opcode::v_mul_f32) {
1923 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success()) {
1924
1925 /* omod was successfully applied */
1926 /* if the omod instruction is v_mad, we also have to change the original add */
1927 if (ctx.info[instr->operands[1].tempId()].is_mad()) {
1928 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[1].tempId()].val].add_instr.get();
1929 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
1930 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
1931 add_instr->definitions[0] = instr->definitions[0];
1932 }
1933
1934 Instruction* omod_instr = ctx.info[instr->operands[1].tempId()].instr;
1935 /* check if we have an additional clamp modifier */
1936 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1) {
1937 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
1938 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
1939 }
1940 /* change definition ssa-id of modified instruction */
1941 omod_instr->definitions[0] = instr->definitions[0];
1942
1943 /* change the definition of instr to something unused, e.g. the original omod def */
1944 instr->definitions[0] = Definition(instr->operands[1].getTemp());
1945 ctx.uses[instr->definitions[0].tempId()] = 0;
1946 return true;
1947 }
1948 if (!ctx.info[instr->definitions[0].tempId()].label) {
1949 /* in all other cases, label this instruction as option for multiply-add */
1950 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
1951 }
1952 }
1953
1954 /* check if we could apply clamp on predecessor */
1955 if (instr->opcode == aco_opcode::v_med3_f32) {
1956 unsigned idx = 0;
1957 bool found_zero = false, found_one = false;
1958 for (unsigned i = 0; i < 3; i++)
1959 {
1960 if (instr->operands[i].constantEquals(0))
1961 found_zero = true;
1962 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
1963 found_one = true;
1964 else
1965 idx = i;
1966 }
1967 if (found_zero && found_one && instr->operands[idx].isTemp() &&
1968 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
1969 /* clamp was successfully applied */
1970 /* if the clamp instruction is v_mad, we also have to change the original add */
1971 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
1972 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
1973 add_instr->definitions[0] = instr->definitions[0];
1974 }
1975 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
1976 /* change definition ssa-id of modified instruction */
1977 clamp_instr->definitions[0] = instr->definitions[0];
1978
1979 /* change the definition of instr to something unused, e.g. the original omod def */
1980 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
1981 ctx.uses[instr->definitions[0].tempId()] = 0;
1982 return true;
1983 }
1984 }
1985
1986 /* omod has no effect if denormals are enabled */
1987 bool can_use_omod = block.fp_mode.denorm32 == 0;
1988
1989 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
1990 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
1991 can_use_VOP3(instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
1992 if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod2()) {
1993 to_VOP3(ctx, instr);
1994 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
1995 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1996 } else if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod4()) {
1997 to_VOP3(ctx, instr);
1998 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
1999 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2000 } else if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod5()) {
2001 to_VOP3(ctx, instr);
2002 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
2003 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2004 } else if (ctx.info[instr->definitions[0].tempId()].is_clamp()) {
2005 to_VOP3(ctx, instr);
2006 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
2007 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
2008 }
2009 }
2010
2011 return false;
2012 }
2013
2014 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
2015 // this would mean that we'd have to fix the instruction uses while value propagation
2016
2017 void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2018 {
2019 if (instr->definitions.empty() || !ctx.uses[instr->definitions[0].tempId()])
2020 return;
2021
2022 if (instr->isVALU()) {
2023 if (can_apply_sgprs(instr))
2024 apply_sgprs(ctx, instr);
2025 if (apply_omod_clamp(ctx, block, instr))
2026 return;
2027 }
2028
2029 /* TODO: There are still some peephole optimizations that could be done:
2030 * - abs(a - b) -> s_absdiff_i32
2031 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
2032 * - patterns for v_alignbit_b32 and v_alignbyte_b32
2033 * These aren't probably too interesting though.
2034 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
2035 * probably more useful than the previously mentioned optimizations.
2036 * The various comparison optimizations also currently only work with 32-bit
2037 * floats. */
2038
2039 /* neg(mul(a, b)) -> mul(neg(a), b) */
2040 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
2041 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
2042
2043 if (!ctx.info[val.id()].is_mul())
2044 return;
2045
2046 Instruction* mul_instr = ctx.info[val.id()].instr;
2047
2048 if (mul_instr->operands[0].isLiteral())
2049 return;
2050 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
2051 return;
2052
2053 /* convert to mul(neg(a), b) */
2054 ctx.uses[mul_instr->definitions[0].tempId()]--;
2055 Definition def = instr->definitions[0];
2056 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
2057 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
2058 instr.reset(create_instruction<VOP3A_instruction>(aco_opcode::v_mul_f32, asVOP3(Format::VOP2), 2, 1));
2059 instr->operands[0] = mul_instr->operands[0];
2060 instr->operands[1] = mul_instr->operands[1];
2061 instr->definitions[0] = def;
2062 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
2063 if (mul_instr->isVOP3()) {
2064 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
2065 new_mul->neg[0] = mul->neg[0] && !is_abs;
2066 new_mul->neg[1] = mul->neg[1] && !is_abs;
2067 new_mul->abs[0] = mul->abs[0] || is_abs;
2068 new_mul->abs[1] = mul->abs[1] || is_abs;
2069 new_mul->omod = mul->omod;
2070 }
2071 new_mul->neg[0] ^= true;
2072 new_mul->clamp = false;
2073
2074 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2075 return;
2076 }
2077 /* combine mul+add -> mad */
2078 else if ((instr->opcode == aco_opcode::v_add_f32 ||
2079 instr->opcode == aco_opcode::v_sub_f32 ||
2080 instr->opcode == aco_opcode::v_subrev_f32) &&
2081 block.fp_mode.denorm32 == 0 && !block.fp_mode.preserve_signed_zero_inf_nan32) {
2082 //TODO: we could use fma instead when denormals are enabled if the NIR isn't marked as precise
2083
2084 uint32_t uses_src0 = UINT32_MAX;
2085 uint32_t uses_src1 = UINT32_MAX;
2086 Instruction* mul_instr = nullptr;
2087 unsigned add_op_idx;
2088 /* check if any of the operands is a multiplication */
2089 if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_mul())
2090 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2091 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_mul())
2092 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2093
2094 /* find the 'best' mul instruction to combine with the add */
2095 if (uses_src0 < uses_src1) {
2096 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2097 add_op_idx = 1;
2098 } else if (uses_src1 < uses_src0) {
2099 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2100 add_op_idx = 0;
2101 } else if (uses_src0 != UINT32_MAX) {
2102 /* tiebreaker: quite random what to pick */
2103 if (ctx.info[instr->operands[0].tempId()].instr->operands[0].isLiteral()) {
2104 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2105 add_op_idx = 0;
2106 } else {
2107 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2108 add_op_idx = 1;
2109 }
2110 }
2111 if (mul_instr) {
2112 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2113 bool neg[3] = {false, false, false};
2114 bool abs[3] = {false, false, false};
2115 unsigned omod = 0;
2116 bool clamp = false;
2117 bool need_vop3 = false;
2118 int num_sgpr = 0;
2119 op[0] = mul_instr->operands[0];
2120 op[1] = mul_instr->operands[1];
2121 op[2] = instr->operands[add_op_idx];
2122 for (unsigned i = 0; i < 3; i++)
2123 {
2124 if (op[i].isLiteral())
2125 return;
2126 if (op[i].isTemp() && op[i].getTemp().type() == RegType::sgpr)
2127 num_sgpr++;
2128 if (!(i == 0 || (op[i].isTemp() && op[i].getTemp().type() == RegType::vgpr)))
2129 need_vop3 = true;
2130 }
2131 // TODO: would be better to check this before selecting a mul instr?
2132 if (num_sgpr > 1)
2133 return;
2134
2135 if (mul_instr->isVOP3()) {
2136 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2137 neg[0] = vop3->neg[0];
2138 neg[1] = vop3->neg[1];
2139 abs[0] = vop3->abs[0];
2140 abs[1] = vop3->abs[1];
2141 need_vop3 = true;
2142 /* we cannot use these modifiers between mul and add */
2143 if (vop3->clamp || vop3->omod)
2144 return;
2145 }
2146
2147 /* convert to mad */
2148 ctx.uses[mul_instr->definitions[0].tempId()]--;
2149 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2150 if (op[0].isTemp())
2151 ctx.uses[op[0].tempId()]++;
2152 if (op[1].isTemp())
2153 ctx.uses[op[1].tempId()]++;
2154 }
2155
2156 if (instr->isVOP3()) {
2157 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2158 neg[2] = vop3->neg[add_op_idx];
2159 abs[2] = vop3->abs[add_op_idx];
2160 omod = vop3->omod;
2161 clamp = vop3->clamp;
2162 /* abs of the multiplication result */
2163 if (vop3->abs[1 - add_op_idx]) {
2164 neg[0] = false;
2165 neg[1] = false;
2166 abs[0] = true;
2167 abs[1] = true;
2168 }
2169 /* neg of the multiplication result */
2170 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2171 need_vop3 = true;
2172 }
2173 if (instr->opcode == aco_opcode::v_sub_f32) {
2174 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2175 need_vop3 = true;
2176 } else if (instr->opcode == aco_opcode::v_subrev_f32) {
2177 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2178 need_vop3 = true;
2179 }
2180
2181 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)};
2182 for (unsigned i = 0; i < 3; i++)
2183 {
2184 mad->operands[i] = op[i];
2185 mad->neg[i] = neg[i];
2186 mad->abs[i] = abs[i];
2187 }
2188 mad->omod = omod;
2189 mad->clamp = clamp;
2190 mad->definitions[0] = instr->definitions[0];
2191
2192 /* mark this ssa_def to be re-checked for profitability and literals */
2193 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId(), need_vop3);
2194 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2195 instr.reset(mad.release());
2196 return;
2197 }
2198 }
2199 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2200 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2201 for (unsigned i = 0; i < 2; i++) {
2202 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2203 ctx.uses[instr->operands[i].tempId()] == 1 &&
2204 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2205 ctx.uses[instr->operands[i].tempId()]--;
2206 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2207
2208 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2209 new_instr->operands[0] = Operand(0u);
2210 new_instr->operands[1] = instr->operands[!i];
2211 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2212 new_instr->definitions[0] = instr->definitions[0];
2213 instr.reset(new_instr.release());
2214 ctx.info[instr->definitions[0].tempId()].label = 0;
2215 return;
2216 }
2217 }
2218 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2219 if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2220 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2221 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2222 } else if (instr->opcode == aco_opcode::v_add_u32 && ctx.program->chip_class >= GFX9) {
2223 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2224 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2225 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2226 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2227 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2228 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2229 combine_salu_lshl_add(ctx, instr);
2230 } else if (instr->opcode == aco_opcode::s_not_b32) {
2231 combine_salu_not_bitwise(ctx, instr);
2232 } else if (instr->opcode == aco_opcode::s_not_b64) {
2233 if (combine_inverse_comparison(ctx, instr)) ;
2234 else combine_salu_not_bitwise(ctx, instr);
2235 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 ||
2236 instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2237 if (combine_ordering_test(ctx, instr)) ;
2238 else if (combine_comparison_ordering(ctx, instr)) ;
2239 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2240 else combine_salu_n2(ctx, instr);
2241 } else {
2242 aco_opcode min, max, min3, max3, med3;
2243 bool some_gfx9_only;
2244 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2245 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2246 if (combine_three_valu_op(ctx, instr, instr->opcode, instr->opcode == min ? min3 : max3, "012", 1 | 2));
2247 else combine_clamp(ctx, instr, min, max, med3);
2248 }
2249 }
2250 }
2251
2252
2253 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2254 {
2255 const uint32_t threshold = 4;
2256
2257 /* Dead Code Elimination:
2258 * We remove instructions if they define temporaries which all are unused */
2259 const bool is_used = instr->definitions.empty() ||
2260 std::any_of(instr->definitions.begin(), instr->definitions.end(),
2261 [&ctx](const Definition& def) { return ctx.uses[def.tempId()]; });
2262 if (!is_used) {
2263 instr.reset();
2264 return;
2265 }
2266
2267 /* convert split_vector into extract_vector if only one definition is ever used */
2268 if (instr->opcode == aco_opcode::p_split_vector) {
2269 unsigned num_used = 0;
2270 unsigned idx = 0;
2271 for (unsigned i = 0; i < instr->definitions.size(); i++) {
2272 if (ctx.uses[instr->definitions[i].tempId()]) {
2273 num_used++;
2274 idx = i;
2275 }
2276 }
2277 if (num_used == 1) {
2278 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2279 extract->operands[0] = instr->operands[0];
2280 extract->operands[1] = Operand((uint32_t) idx);
2281 extract->definitions[0] = instr->definitions[idx];
2282 instr.reset(extract.release());
2283 }
2284 }
2285
2286 /* re-check mad instructions */
2287 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2288 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2289 /* first, check profitability */
2290 if (ctx.uses[info->mul_temp_id]) {
2291 ctx.uses[info->mul_temp_id]++;
2292 instr.swap(info->add_instr);
2293
2294 /* second, check possible literals */
2295 } else if (!info->needs_vop3) {
2296 uint32_t literal_idx = 0;
2297 uint32_t literal_uses = UINT32_MAX;
2298 for (unsigned i = 0; i < instr->operands.size(); i++)
2299 {
2300 if (!instr->operands[i].isTemp())
2301 continue;
2302 /* if one of the operands is sgpr, we cannot add a literal somewhere else */
2303 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2304 if (ctx.info[instr->operands[i].tempId()].is_literal()) {
2305 literal_uses = ctx.uses[instr->operands[i].tempId()];
2306 literal_idx = i;
2307 } else {
2308 literal_uses = UINT32_MAX;
2309 }
2310 break;
2311 }
2312 else if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2313 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2314 literal_uses = ctx.uses[instr->operands[i].tempId()];
2315 literal_idx = i;
2316 }
2317 }
2318 if (literal_uses < threshold) {
2319 ctx.uses[instr->operands[literal_idx].tempId()]--;
2320 info->check_literal = true;
2321 info->literal_idx = literal_idx;
2322 }
2323 }
2324 return;
2325 }
2326
2327 /* check for literals */
2328 /* we do not apply the literals yet as we don't know if it is profitable */
2329 if (instr->isSALU()) {
2330 uint32_t literal_idx = 0;
2331 uint32_t literal_uses = UINT32_MAX;
2332 bool has_literal = false;
2333 for (unsigned i = 0; i < instr->operands.size(); i++)
2334 {
2335 if (instr->operands[i].isLiteral()) {
2336 has_literal = true;
2337 break;
2338 }
2339 if (!instr->operands[i].isTemp())
2340 continue;
2341 if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2342 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2343 literal_uses = ctx.uses[instr->operands[i].tempId()];
2344 literal_idx = i;
2345 }
2346 }
2347 if (!has_literal && literal_uses < threshold) {
2348 ctx.uses[instr->operands[literal_idx].tempId()]--;
2349 if (ctx.uses[instr->operands[literal_idx].tempId()] == 0)
2350 instr->operands[literal_idx] = Operand(ctx.info[instr->operands[literal_idx].tempId()].val);
2351 }
2352 } else if (instr->isVALU() && valu_can_accept_literal(ctx, instr, 0) &&
2353 instr->operands[0].isTemp() &&
2354 ctx.info[instr->operands[0].tempId()].is_literal() &&
2355 ctx.uses[instr->operands[0].tempId()] < threshold) {
2356 ctx.uses[instr->operands[0].tempId()]--;
2357 if (ctx.uses[instr->operands[0].tempId()] == 0)
2358 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2359 }
2360
2361 }
2362
2363
2364 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2365 {
2366 /* Cleanup Dead Instructions */
2367 if (!instr)
2368 return;
2369
2370 /* apply literals on SALU */
2371 if (instr->isSALU()) {
2372 for (Operand& op : instr->operands) {
2373 if (!op.isTemp())
2374 continue;
2375 if (op.isLiteral())
2376 break;
2377 if (ctx.info[op.tempId()].is_literal() &&
2378 ctx.uses[op.tempId()] == 0)
2379 op = Operand(ctx.info[op.tempId()].val);
2380 }
2381 }
2382
2383 /* apply literals on VALU */
2384 else if (instr->isVALU() && !instr->isVOP3() &&
2385 instr->operands[0].isTemp() &&
2386 ctx.info[instr->operands[0].tempId()].is_literal() &&
2387 ctx.uses[instr->operands[0].tempId()] == 0) {
2388 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2389 }
2390
2391 /* apply literals on MAD */
2392 else if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2393 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2394 aco_ptr<Instruction> new_mad;
2395 if (info->check_literal && ctx.uses[instr->operands[info->literal_idx].tempId()] == 0) {
2396 if (info->literal_idx == 2) { /* add literal -> madak */
2397 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
2398 new_mad->operands[0] = instr->operands[0];
2399 new_mad->operands[1] = instr->operands[1];
2400 } else { /* mul literal -> madmk */
2401 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
2402 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
2403 new_mad->operands[1] = instr->operands[2];
2404 }
2405 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
2406 new_mad->definitions[0] = instr->definitions[0];
2407 instr.swap(new_mad);
2408 }
2409 }
2410
2411 ctx.instructions.emplace_back(std::move(instr));
2412 }
2413
2414
2415 void optimize(Program* program)
2416 {
2417 opt_ctx ctx;
2418 ctx.program = program;
2419 std::vector<ssa_info> info(program->peekAllocationId());
2420 ctx.info = info.data();
2421
2422 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
2423 for (Block& block : program->blocks) {
2424 for (aco_ptr<Instruction>& instr : block.instructions)
2425 label_instruction(ctx, block, instr);
2426 }
2427
2428 ctx.uses = std::move(dead_code_analysis(program));
2429
2430 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
2431 for (Block& block : program->blocks) {
2432 for (aco_ptr<Instruction>& instr : block.instructions)
2433 combine_instruction(ctx, block, instr);
2434 }
2435
2436 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
2437 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
2438 Block* block = &(*it);
2439 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
2440 select_instruction(ctx, *it);
2441 }
2442
2443 /* 4. Add literals to instructions */
2444 for (Block& block : program->blocks) {
2445 ctx.instructions.clear();
2446 for (aco_ptr<Instruction>& instr : block.instructions)
2447 apply_literals(ctx, instr);
2448 block.instructions.swap(ctx.instructions);
2449 }
2450
2451 }
2452
2453 }