aco: fix 64-bit p_extract_vector on 32-bit p_create_vector
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint32_t literal_idx;
56 bool needs_vop3;
57 bool check_literal;
58
59 mad_info(aco_ptr<Instruction> instr, uint32_t id, bool vop3)
60 : add_instr(std::move(instr)), mul_temp_id(id), needs_vop3(vop3), check_literal(false) {}
61 };
62
63 enum Label {
64 label_vec = 1 << 0,
65 label_constant = 1 << 1,
66 label_abs = 1 << 2,
67 label_neg = 1 << 3,
68 label_mul = 1 << 4,
69 label_temp = 1 << 5,
70 label_literal = 1 << 6,
71 label_mad = 1 << 7,
72 label_omod2 = 1 << 8,
73 label_omod4 = 1 << 9,
74 label_omod5 = 1 << 10,
75 label_omod_success = 1 << 11,
76 label_clamp = 1 << 12,
77 label_clamp_success = 1 << 13,
78 label_undefined = 1 << 14,
79 label_vcc = 1 << 15,
80 label_b2f = 1 << 16,
81 label_add_sub = 1 << 17,
82 label_bitwise = 1 << 18,
83 label_minmax = 1 << 19,
84 label_fcmp = 1 << 20,
85 };
86
87 static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success | label_add_sub | label_bitwise | label_minmax | label_fcmp;
88 static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f;
89 static constexpr uint32_t val_labels = label_constant | label_literal | label_mad;
90
91 struct ssa_info {
92 uint32_t val;
93 union {
94 Temp temp;
95 Instruction* instr;
96 };
97 uint32_t label;
98
99 void add_label(Label new_label)
100 {
101 /* Since all labels which use "instr" use it for the same thing
102 * (indicating the defining instruction), there is no need to clear
103 * any other instr labels. */
104 if (new_label & instr_labels)
105 label &= ~temp_labels; /* instr and temp alias */
106
107 if (new_label & temp_labels) {
108 label &= ~temp_labels;
109 label &= ~instr_labels; /* instr and temp alias */
110 }
111
112 if (new_label & val_labels)
113 label &= ~val_labels;
114
115 label |= new_label;
116 }
117
118 void set_vec(Instruction* vec)
119 {
120 add_label(label_vec);
121 instr = vec;
122 }
123
124 bool is_vec()
125 {
126 return label & label_vec;
127 }
128
129 void set_constant(uint32_t constant)
130 {
131 add_label(label_constant);
132 val = constant;
133 }
134
135 bool is_constant()
136 {
137 return label & label_constant;
138 }
139
140 void set_abs(Temp abs_temp)
141 {
142 add_label(label_abs);
143 temp = abs_temp;
144 }
145
146 bool is_abs()
147 {
148 return label & label_abs;
149 }
150
151 void set_neg(Temp neg_temp)
152 {
153 add_label(label_neg);
154 temp = neg_temp;
155 }
156
157 bool is_neg()
158 {
159 return label & label_neg;
160 }
161
162 void set_neg_abs(Temp neg_abs_temp)
163 {
164 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
165 temp = neg_abs_temp;
166 }
167
168 void set_mul(Instruction* mul)
169 {
170 add_label(label_mul);
171 instr = mul;
172 }
173
174 bool is_mul()
175 {
176 return label & label_mul;
177 }
178
179 void set_temp(Temp tmp)
180 {
181 add_label(label_temp);
182 temp = tmp;
183 }
184
185 bool is_temp()
186 {
187 return label & label_temp;
188 }
189
190 void set_literal(uint32_t lit)
191 {
192 add_label(label_literal);
193 val = lit;
194 }
195
196 bool is_literal()
197 {
198 return label & label_literal;
199 }
200
201 void set_mad(Instruction* mad, uint32_t mad_info_idx)
202 {
203 add_label(label_mad);
204 val = mad_info_idx;
205 instr = mad;
206 }
207
208 bool is_mad()
209 {
210 return label & label_mad;
211 }
212
213 void set_omod2()
214 {
215 add_label(label_omod2);
216 }
217
218 bool is_omod2()
219 {
220 return label & label_omod2;
221 }
222
223 void set_omod4()
224 {
225 add_label(label_omod4);
226 }
227
228 bool is_omod4()
229 {
230 return label & label_omod4;
231 }
232
233 void set_omod5()
234 {
235 add_label(label_omod5);
236 }
237
238 bool is_omod5()
239 {
240 return label & label_omod5;
241 }
242
243 void set_omod_success(Instruction* omod_instr)
244 {
245 add_label(label_omod_success);
246 instr = omod_instr;
247 }
248
249 bool is_omod_success()
250 {
251 return label & label_omod_success;
252 }
253
254 void set_clamp()
255 {
256 add_label(label_clamp);
257 }
258
259 bool is_clamp()
260 {
261 return label & label_clamp;
262 }
263
264 void set_clamp_success(Instruction* clamp_instr)
265 {
266 add_label(label_clamp_success);
267 instr = clamp_instr;
268 }
269
270 bool is_clamp_success()
271 {
272 return label & label_clamp_success;
273 }
274
275 void set_undefined()
276 {
277 add_label(label_undefined);
278 }
279
280 bool is_undefined()
281 {
282 return label & label_undefined;
283 }
284
285 void set_vcc(Temp vcc)
286 {
287 add_label(label_vcc);
288 temp = vcc;
289 }
290
291 bool is_vcc()
292 {
293 return label & label_vcc;
294 }
295
296 bool is_constant_or_literal()
297 {
298 return is_constant() || is_literal();
299 }
300
301 void set_b2f(Temp val)
302 {
303 add_label(label_b2f);
304 temp = val;
305 }
306
307 bool is_b2f()
308 {
309 return label & label_b2f;
310 }
311
312 void set_add_sub(Instruction *add_sub_instr)
313 {
314 add_label(label_add_sub);
315 instr = add_sub_instr;
316 }
317
318 bool is_add_sub()
319 {
320 return label & label_add_sub;
321 }
322
323 void set_bitwise(Instruction *bitwise_instr)
324 {
325 add_label(label_bitwise);
326 instr = bitwise_instr;
327 }
328
329 bool is_bitwise()
330 {
331 return label & label_bitwise;
332 }
333
334 void set_minmax(Instruction *minmax_instr)
335 {
336 add_label(label_minmax);
337 instr = minmax_instr;
338 }
339
340 bool is_minmax()
341 {
342 return label & label_minmax;
343 }
344
345 void set_fcmp(Instruction *fcmp_instr)
346 {
347 add_label(label_fcmp);
348 instr = fcmp_instr;
349 }
350
351 bool is_fcmp()
352 {
353 return label & label_fcmp;
354 }
355
356 };
357
358 struct opt_ctx {
359 Program* program;
360 std::vector<aco_ptr<Instruction>> instructions;
361 ssa_info* info;
362 std::pair<uint32_t,Temp> last_literal;
363 std::vector<mad_info> mad_infos;
364 std::vector<uint16_t> uses;
365 };
366
367 bool can_swap_operands(aco_ptr<Instruction>& instr)
368 {
369 if (instr->operands[0].isConstant() ||
370 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
371 return false;
372
373 switch (instr->opcode) {
374 case aco_opcode::v_add_f32:
375 case aco_opcode::v_mul_f32:
376 case aco_opcode::v_or_b32:
377 case aco_opcode::v_and_b32:
378 case aco_opcode::v_xor_b32:
379 case aco_opcode::v_max_f32:
380 case aco_opcode::v_min_f32:
381 case aco_opcode::v_cmp_eq_f32:
382 case aco_opcode::v_cmp_lg_f32:
383 return true;
384 case aco_opcode::v_sub_f32:
385 instr->opcode = aco_opcode::v_subrev_f32;
386 return true;
387 case aco_opcode::v_cmp_lt_f32:
388 instr->opcode = aco_opcode::v_cmp_gt_f32;
389 return true;
390 case aco_opcode::v_cmp_ge_f32:
391 instr->opcode = aco_opcode::v_cmp_le_f32;
392 return true;
393 case aco_opcode::v_cmp_lt_i32:
394 instr->opcode = aco_opcode::v_cmp_gt_i32;
395 return true;
396 default:
397 return false;
398 }
399 }
400
401 bool can_use_VOP3(aco_ptr<Instruction>& instr)
402 {
403 if (instr->operands.size() && instr->operands[0].isLiteral())
404 return false;
405
406 if (instr->isDPP() || instr->isSDWA())
407 return false;
408
409 return instr->opcode != aco_opcode::v_madmk_f32 &&
410 instr->opcode != aco_opcode::v_madak_f32 &&
411 instr->opcode != aco_opcode::v_madmk_f16 &&
412 instr->opcode != aco_opcode::v_madak_f16;
413 }
414
415 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
416 {
417 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
418 instr->opcode != aco_opcode::v_readlane_b32 &&
419 instr->opcode != aco_opcode::v_writelane_b32;
420 }
421
422 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
423 {
424 if (instr->isVOP3())
425 return;
426
427 assert(!instr->operands[0].isLiteral());
428 aco_ptr<Instruction> tmp = std::move(instr);
429 Format format = asVOP3(tmp->format);
430 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
431 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
432 for (unsigned i = 0; i < instr->definitions.size(); i++) {
433 instr->definitions[i] = tmp->definitions[i];
434 if (instr->definitions[i].isTemp()) {
435 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
436 if (info.label & instr_labels && info.instr == tmp.get())
437 info.instr = instr.get();
438 }
439 }
440 }
441
442 /* only covers special cases */
443 bool can_accept_constant(aco_ptr<Instruction>& instr, unsigned operand)
444 {
445 switch (instr->opcode) {
446 case aco_opcode::v_interp_p2_f32:
447 case aco_opcode::v_mac_f32:
448 case aco_opcode::v_writelane_b32:
449 case aco_opcode::v_cndmask_b32:
450 return operand != 2;
451 case aco_opcode::s_addk_i32:
452 case aco_opcode::s_mulk_i32:
453 case aco_opcode::p_wqm:
454 case aco_opcode::p_extract_vector:
455 case aco_opcode::p_split_vector:
456 case aco_opcode::v_readlane_b32:
457 case aco_opcode::v_readfirstlane_b32:
458 return operand != 0;
459 default:
460 if ((instr->format == Format::MUBUF ||
461 instr->format == Format::MIMG) &&
462 instr->definitions.size() == 1 &&
463 instr->operands.size() == 4) {
464 return operand != 3;
465 }
466 return true;
467 }
468 }
469
470 bool valu_can_accept_literal(opt_ctx& ctx, aco_ptr<Instruction>& instr, unsigned operand)
471 {
472 // TODO: VOP3 can take a literal on GFX10
473 return !instr->isSDWA() && !instr->isDPP() && !instr->isVOP3() &&
474 operand == 0 && can_accept_constant(instr, operand);
475 }
476
477 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
478 {
479 Operand op = instr->operands[op_index];
480
481 if (!op.isTemp())
482 return false;
483 Temp tmp = op.getTemp();
484 if (!ctx.info[tmp.id()].is_add_sub())
485 return false;
486
487 Instruction *add_instr = ctx.info[tmp.id()].instr;
488
489 switch (add_instr->opcode) {
490 case aco_opcode::v_add_u32:
491 case aco_opcode::v_add_co_u32:
492 case aco_opcode::s_add_i32:
493 case aco_opcode::s_add_u32:
494 break;
495 default:
496 return false;
497 }
498
499 for (unsigned i = 0; i < 2; i++) {
500 if (add_instr->operands[i].isConstant()) {
501 *offset = add_instr->operands[i].constantValue();
502 } else if (add_instr->operands[i].isTemp() &&
503 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) {
504 *offset = ctx.info[add_instr->operands[i].tempId()].val;
505 } else {
506 continue;
507 }
508 if (!add_instr->operands[!i].isTemp())
509 continue;
510
511 uint32_t offset2 = 0;
512 if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
513 *offset += offset2;
514 } else {
515 *base = add_instr->operands[!i].getTemp();
516 }
517 return true;
518 }
519
520 return false;
521 }
522
523 void label_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
524 {
525 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
526 ASSERTED bool all_const = false;
527 for (Operand& op : instr->operands)
528 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal());
529 perfwarn(all_const, "All instruction operands are constant", instr.get());
530 }
531
532 for (unsigned i = 0; i < instr->operands.size(); i++)
533 {
534 if (!instr->operands[i].isTemp())
535 continue;
536
537 ssa_info info = ctx.info[instr->operands[i].tempId()];
538 /* propagate undef */
539 if (info.is_undefined() && is_phi(instr))
540 instr->operands[i] = Operand(instr->operands[i].regClass());
541 /* propagate reg->reg of same type */
542 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
543 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
544 info = ctx.info[info.temp.id()];
545 }
546
547 /* SALU / PSEUDO: propagate inline constants */
548 if (instr->isSALU() || instr->format == Format::PSEUDO) {
549 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
550 instr->operands[i].setTemp(info.temp);
551 info = ctx.info[info.temp.id()];
552 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
553 /* propagate vgpr if it can take it */
554 switch (instr->opcode) {
555 case aco_opcode::p_create_vector:
556 case aco_opcode::p_split_vector:
557 case aco_opcode::p_extract_vector:
558 case aco_opcode::p_phi: {
559 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
560 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
561 if (all_vgpr) {
562 instr->operands[i] = Operand(info.temp);
563 info = ctx.info[info.temp.id()];
564 }
565 break;
566 }
567 default:
568 break;
569 }
570 }
571 if ((info.is_constant() || (info.is_literal() && instr->format == Format::PSEUDO)) && !instr->operands[i].isFixed() && can_accept_constant(instr, i)) {
572 instr->operands[i] = Operand(info.val);
573 continue;
574 }
575 }
576
577 /* VALU: propagate neg, abs & inline constants */
578 else if (instr->isVALU()) {
579 if (info.is_temp() && info.temp.type() == RegType::vgpr) {
580 instr->operands[i].setTemp(info.temp);
581 info = ctx.info[info.temp.id()];
582 }
583 if (info.is_abs() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
584 if (!instr->isDPP())
585 to_VOP3(ctx, instr);
586 instr->operands[i] = Operand(info.temp);
587 if (instr->isDPP())
588 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
589 else
590 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
591 }
592 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
593 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
594 instr->operands[i].setTemp(info.temp);
595 continue;
596 } else if (info.is_neg() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
597 if (!instr->isDPP())
598 to_VOP3(ctx, instr);
599 instr->operands[i].setTemp(info.temp);
600 if (instr->isDPP())
601 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
602 else
603 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
604 continue;
605 }
606 if (info.is_constant() && can_accept_constant(instr, i)) {
607 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
608 if (i == 0) {
609 instr->operands[i] = Operand(info.val);
610 continue;
611 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
612 instr->operands[i] = instr->operands[0];
613 instr->operands[0] = Operand(info.val);
614 continue;
615 } else if (can_use_VOP3(instr)) {
616 to_VOP3(ctx, instr);
617 instr->operands[i] = Operand(info.val);
618 continue;
619 }
620 }
621 }
622
623 /* MUBUF: propagate constants and combine additions */
624 else if (instr->format == Format::MUBUF) {
625 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
626 Temp base;
627 uint32_t offset;
628 while (info.is_temp())
629 info = ctx.info[info.temp.id()];
630
631 if (mubuf->offen && i == 0 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
632 assert(!mubuf->idxen);
633 instr->operands[i] = Operand(v1);
634 mubuf->offset += info.val;
635 mubuf->offen = false;
636 continue;
637 } else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
638 instr->operands[2] = Operand((uint32_t) 0);
639 mubuf->offset += info.val;
640 continue;
641 } else if (mubuf->offen && i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
642 assert(!mubuf->idxen);
643 instr->operands[i].setTemp(base);
644 mubuf->offset += offset;
645 continue;
646 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
647 instr->operands[i].setTemp(base);
648 mubuf->offset += offset;
649 continue;
650 }
651 }
652
653 /* DS: combine additions */
654 else if (instr->format == Format::DS) {
655
656 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
657 Temp base;
658 uint32_t offset;
659 if (i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == instr->operands[i].regClass()) {
660 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32) {
661 if (offset % 4 == 0 &&
662 ds->offset0 + (offset >> 2) <= 255 &&
663 ds->offset1 + (offset >> 2) <= 255) {
664 instr->operands[i].setTemp(base);
665 ds->offset0 += offset >> 2;
666 ds->offset1 += offset >> 2;
667 }
668 } else {
669 if (ds->offset0 + offset <= 65535) {
670 instr->operands[i].setTemp(base);
671 ds->offset0 += offset;
672 }
673 }
674 }
675 }
676
677 /* SMEM: propagate constants and combine additions */
678 else if (instr->format == Format::SMEM) {
679
680 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
681 Temp base;
682 uint32_t offset;
683 if (i == 1 && info.is_constant_or_literal() && info.val <= 0xFFFFF) {
684 instr->operands[i] = Operand(info.val);
685 continue;
686 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
687 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
688 if (soe &&
689 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() ||
690 ctx.info[smem->operands.back().tempId()].val != 0)) {
691 continue;
692 }
693 if (soe) {
694 smem->operands[1] = Operand(offset);
695 smem->operands.back() = Operand(base);
696 } else {
697 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
698 new_instr->operands[0] = smem->operands[0];
699 new_instr->operands[1] = Operand(offset);
700 if (smem->definitions.empty())
701 new_instr->operands[2] = smem->operands[2];
702 new_instr->operands.back() = Operand(base);
703 if (!smem->definitions.empty())
704 new_instr->definitions[0] = smem->definitions[0];
705 instr.reset(new_instr);
706 smem = static_cast<SMEM_instruction *>(instr.get());
707 }
708 continue;
709 }
710 }
711 }
712
713 /* if this instruction doesn't define anything, return */
714 if (instr->definitions.empty())
715 return;
716
717 switch (instr->opcode) {
718 case aco_opcode::p_create_vector: {
719 unsigned num_ops = instr->operands.size();
720 for (const Operand& op : instr->operands) {
721 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
722 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
723 }
724 if (num_ops != instr->operands.size()) {
725 aco_ptr<Instruction> old_vec = std::move(instr);
726 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
727 instr->definitions[0] = old_vec->definitions[0];
728 unsigned k = 0;
729 for (Operand& old_op : old_vec->operands) {
730 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
731 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++)
732 instr->operands[k++] = ctx.info[old_op.tempId()].instr->operands[j];
733 } else {
734 instr->operands[k++] = old_op;
735 }
736 }
737 assert(k == num_ops);
738 }
739 if (instr->operands.size() == 1 && instr->operands[0].isTemp())
740 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
741 else if (instr->definitions[0].getTemp().size() == instr->operands.size())
742 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
743 break;
744 }
745 case aco_opcode::p_split_vector: {
746 if (!ctx.info[instr->operands[0].tempId()].is_vec())
747 break;
748 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
749 assert(instr->definitions.size() == vec->operands.size());
750 for (unsigned i = 0; i < instr->definitions.size(); i++) {
751 Operand vec_op = vec->operands[i];
752 if (vec_op.isConstant()) {
753 if (vec_op.isLiteral())
754 ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue());
755 else
756 ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue());
757 } else {
758 assert(vec_op.isTemp());
759 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
760 }
761 }
762 break;
763 }
764 case aco_opcode::p_extract_vector: { /* mov */
765 if (!ctx.info[instr->operands[0].tempId()].is_vec())
766 break;
767 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
768 if (vec->definitions[0].getTemp().size() == vec->operands.size() && /* TODO: what about 64bit or other combinations? */
769 vec->operands[0].size() == instr->definitions[0].size()) {
770
771 /* convert this extract into a mov instruction */
772 Operand vec_op = vec->operands[instr->operands[1].constantValue()];
773 bool is_vgpr = instr->definitions[0].getTemp().type() == RegType::vgpr;
774 aco_opcode opcode = is_vgpr ? aco_opcode::v_mov_b32 : aco_opcode::s_mov_b32;
775 Format format = is_vgpr ? Format::VOP1 : Format::SOP1;
776 instr->opcode = opcode;
777 instr->format = format;
778 instr->operands = {instr->operands.begin(), 1 };
779 instr->operands[0] = vec_op;
780
781 if (vec_op.isConstant()) {
782 if (vec_op.isLiteral())
783 ctx.info[instr->definitions[0].tempId()].set_literal(vec_op.constantValue());
784 else
785 ctx.info[instr->definitions[0].tempId()].set_constant(vec_op.constantValue());
786 } else {
787 assert(vec_op.isTemp());
788 ctx.info[instr->definitions[0].tempId()].set_temp(vec_op.getTemp());
789 }
790 }
791 break;
792 }
793 case aco_opcode::s_mov_b32: /* propagate */
794 case aco_opcode::s_mov_b64:
795 case aco_opcode::v_mov_b32:
796 case aco_opcode::p_as_uniform:
797 if (instr->definitions[0].isFixed()) {
798 /* don't copy-propagate copies into fixed registers */
799 } else if (instr->operands[0].isConstant()) {
800 if (instr->operands[0].isLiteral())
801 ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue());
802 else
803 ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue());
804 } else if (instr->isDPP()) {
805 // TODO
806 } else if (instr->operands[0].isTemp()) {
807 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
808 } else {
809 assert(instr->operands[0].isFixed());
810 }
811 break;
812 case aco_opcode::p_is_helper:
813 if (!ctx.program->needs_wqm)
814 ctx.info[instr->definitions[0].tempId()].set_constant(0u);
815 break;
816 case aco_opcode::s_movk_i32: {
817 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
818 v = v & 0x8000 ? (v | 0xffff0000) : v;
819 if (v <= 64 || v >= 0xfffffff0)
820 ctx.info[instr->definitions[0].tempId()].set_constant(v);
821 else
822 ctx.info[instr->definitions[0].tempId()].set_literal(v);
823 break;
824 }
825 case aco_opcode::v_bfrev_b32:
826 case aco_opcode::s_brev_b32: {
827 if (instr->operands[0].isConstant()) {
828 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
829 if (v <= 64 || v >= 0xfffffff0)
830 ctx.info[instr->definitions[0].tempId()].set_constant(v);
831 else
832 ctx.info[instr->definitions[0].tempId()].set_literal(v);
833 }
834 break;
835 }
836 case aco_opcode::s_bfm_b32: {
837 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
838 unsigned size = instr->operands[0].constantValue() & 0x1f;
839 unsigned start = instr->operands[1].constantValue() & 0x1f;
840 uint32_t v = ((1u << size) - 1u) << start;
841 if (v <= 64 || v >= 0xfffffff0)
842 ctx.info[instr->definitions[0].tempId()].set_constant(v);
843 else
844 ctx.info[instr->definitions[0].tempId()].set_literal(v);
845 }
846 }
847 case aco_opcode::v_mul_f32: { /* omod */
848 /* TODO: try to move the negate/abs modifier to the consumer instead */
849 if (instr->isVOP3()) {
850 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(instr.get());
851 if (vop3->abs[0] || vop3->abs[1] || vop3->neg[0] || vop3->neg[1] || vop3->omod || vop3->clamp)
852 break;
853 }
854
855 for (unsigned i = 0; i < 2; i++) {
856 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
857 if (instr->operands[!i].constantValue() == 0x40000000) { /* 2.0 */
858 ctx.info[instr->operands[i].tempId()].set_omod2();
859 } else if (instr->operands[!i].constantValue() == 0x40800000) { /* 4.0 */
860 ctx.info[instr->operands[i].tempId()].set_omod4();
861 } else if (instr->operands[!i].constantValue() == 0x3f000000) { /* 0.5 */
862 ctx.info[instr->operands[i].tempId()].set_omod5();
863 } else if (instr->operands[!i].constantValue() == 0x3f800000) { /* 1.0 */
864 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
865 } else {
866 continue;
867 }
868 break;
869 }
870 }
871 break;
872 }
873 case aco_opcode::v_and_b32: /* abs */
874 if (instr->operands[0].constantEquals(0x7FFFFFFF) && instr->operands[1].isTemp())
875 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
876 else
877 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
878 break;
879 case aco_opcode::v_xor_b32: { /* neg */
880 if (instr->operands[0].constantEquals(0x80000000u) && instr->operands[1].isTemp()) {
881 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
882 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
883 } else {
884 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
885 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
886 instr->opcode = aco_opcode::v_or_b32;
887 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
888 } else {
889 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
890 }
891 }
892 } else {
893 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
894 }
895 break;
896 }
897 case aco_opcode::v_med3_f32: { /* clamp */
898 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
899 if (vop3->abs[0] || vop3->neg[0] || vop3->opsel[0] ||
900 vop3->abs[1] || vop3->neg[1] || vop3->opsel[1] ||
901 vop3->abs[2] || vop3->neg[2] || vop3->opsel[2] ||
902 vop3->omod != 0)
903 break;
904
905 unsigned idx = 0;
906 bool found_zero = false, found_one = false;
907 for (unsigned i = 0; i < 3; i++)
908 {
909 if (instr->operands[i].constantEquals(0))
910 found_zero = true;
911 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
912 found_one = true;
913 else
914 idx = i;
915 }
916 if (found_zero && found_one && instr->operands[idx].isTemp()) {
917 ctx.info[instr->operands[idx].tempId()].set_clamp();
918 }
919 break;
920 }
921 case aco_opcode::v_cndmask_b32:
922 if (instr->operands[0].constantEquals(0) &&
923 instr->operands[1].constantEquals(0xFFFFFFFF) &&
924 instr->operands[2].isTemp())
925 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
926 else if (instr->operands[0].constantEquals(0) &&
927 instr->operands[1].constantEquals(0x3f800000u) &&
928 instr->operands[2].isTemp())
929 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
930 break;
931 case aco_opcode::v_cmp_lg_u32:
932 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
933 instr->operands[0].constantEquals(0) &&
934 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
935 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
936 break;
937 case aco_opcode::p_phi:
938 case aco_opcode::p_linear_phi: {
939 /* lower_bool_phis() can create phis like this */
940 bool all_same_temp = instr->operands[0].isTemp();
941 /* this check is needed when moving uniform loop counters out of a divergent loop */
942 if (all_same_temp)
943 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
944 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
945 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
946 all_same_temp = false;
947 }
948 if (all_same_temp) {
949 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
950 } else {
951 bool all_undef = instr->operands[0].isUndefined();
952 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
953 if (!instr->operands[i].isUndefined())
954 all_undef = false;
955 }
956 if (all_undef)
957 ctx.info[instr->definitions[0].tempId()].set_undefined();
958 }
959 break;
960 }
961 case aco_opcode::v_add_u32:
962 case aco_opcode::v_add_co_u32:
963 case aco_opcode::s_add_i32:
964 case aco_opcode::s_add_u32:
965 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
966 break;
967 case aco_opcode::s_not_b32:
968 case aco_opcode::s_not_b64:
969 case aco_opcode::s_and_b32:
970 case aco_opcode::s_and_b64:
971 case aco_opcode::s_or_b32:
972 case aco_opcode::s_or_b64:
973 case aco_opcode::s_xor_b32:
974 case aco_opcode::s_xor_b64:
975 case aco_opcode::s_lshl_b32:
976 case aco_opcode::v_or_b32:
977 case aco_opcode::v_lshlrev_b32:
978 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
979 break;
980 case aco_opcode::v_min_f32:
981 case aco_opcode::v_min_f16:
982 case aco_opcode::v_min_u32:
983 case aco_opcode::v_min_i32:
984 case aco_opcode::v_min_u16:
985 case aco_opcode::v_min_i16:
986 case aco_opcode::v_max_f32:
987 case aco_opcode::v_max_f16:
988 case aco_opcode::v_max_u32:
989 case aco_opcode::v_max_i32:
990 case aco_opcode::v_max_u16:
991 case aco_opcode::v_max_i16:
992 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
993 break;
994 case aco_opcode::v_cmp_lt_f32:
995 case aco_opcode::v_cmp_eq_f32:
996 case aco_opcode::v_cmp_le_f32:
997 case aco_opcode::v_cmp_gt_f32:
998 case aco_opcode::v_cmp_lg_f32:
999 case aco_opcode::v_cmp_ge_f32:
1000 case aco_opcode::v_cmp_o_f32:
1001 case aco_opcode::v_cmp_u_f32:
1002 case aco_opcode::v_cmp_nge_f32:
1003 case aco_opcode::v_cmp_nlg_f32:
1004 case aco_opcode::v_cmp_ngt_f32:
1005 case aco_opcode::v_cmp_nle_f32:
1006 case aco_opcode::v_cmp_neq_f32:
1007 case aco_opcode::v_cmp_nlt_f32:
1008 ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
1009 break;
1010 default:
1011 break;
1012 }
1013 }
1014
1015 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse)
1016 {
1017 *ordered = *unordered = op;
1018 switch (op) {
1019 #define CMP(ord, unord) \
1020 case aco_opcode::v_cmp_##ord##_f32:\
1021 case aco_opcode::v_cmp_n##unord##_f32:\
1022 *ordered = aco_opcode::v_cmp_##ord##_f32;\
1023 *unordered = aco_opcode::v_cmp_n##unord##_f32;\
1024 *inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\
1025 return true;
1026 CMP(lt, /*n*/ge)
1027 CMP(eq, /*n*/lg)
1028 CMP(le, /*n*/gt)
1029 CMP(gt, /*n*/le)
1030 CMP(lg, /*n*/eq)
1031 CMP(ge, /*n*/lt)
1032 #undef CMP
1033 default:
1034 return false;
1035 }
1036 }
1037
1038 aco_opcode get_ordered(aco_opcode op)
1039 {
1040 aco_opcode ordered, unordered, inverse;
1041 return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::last_opcode;
1042 }
1043
1044 aco_opcode get_unordered(aco_opcode op)
1045 {
1046 aco_opcode ordered, unordered, inverse;
1047 return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::last_opcode;
1048 }
1049
1050 aco_opcode get_inverse(aco_opcode op)
1051 {
1052 aco_opcode ordered, unordered, inverse;
1053 return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::last_opcode;
1054 }
1055
1056 bool is_cmp(aco_opcode op)
1057 {
1058 aco_opcode ordered, unordered, inverse;
1059 return get_cmp_info(op, &ordered, &unordered, &inverse);
1060 }
1061
1062 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1063 {
1064 if (ctx.info[tmp.id()].is_temp())
1065 return ctx.info[tmp.id()].temp.id();
1066 else
1067 return tmp.id();
1068 }
1069
1070 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1071 {
1072 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1073 for (const Operand& op : instr->operands) {
1074 if (op.isTemp())
1075 ctx.uses[op.tempId()]--;
1076 }
1077 }
1078 }
1079
1080 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1081 {
1082 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1083 return nullptr;
1084 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1085 return nullptr;
1086
1087 Instruction *instr = ctx.info[op.tempId()].instr;
1088
1089 if (instr->definitions.size() == 2) {
1090 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1091 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1092 return nullptr;
1093 }
1094
1095 return instr;
1096 }
1097
1098 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1099 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1100 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1101 {
1102 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1103 return false;
1104 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1105 return false;
1106
1107 bool neg[2] = {false, false};
1108 bool abs[2] = {false, false};
1109 bool opsel[2] = {false, false};
1110 Instruction *op_instr[2];
1111 Temp op[2];
1112
1113 for (unsigned i = 0; i < 2; i++) {
1114 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1115 if (!op_instr[i])
1116 return false;
1117
1118 aco_opcode expected_cmp = instr->opcode == aco_opcode::s_or_b64 ?
1119 aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1120
1121 if (op_instr[i]->opcode != expected_cmp)
1122 return false;
1123 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1124 return false;
1125
1126 if (op_instr[i]->isVOP3()) {
1127 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1128 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel[0] != vop3->opsel[1])
1129 return false;
1130 neg[i] = vop3->neg[0];
1131 abs[i] = vop3->abs[0];
1132 opsel[i] = vop3->opsel[0];
1133 }
1134
1135 Temp op0 = op_instr[i]->operands[0].getTemp();
1136 Temp op1 = op_instr[i]->operands[1].getTemp();
1137 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1138 return false;
1139 /* shouldn't happen yet, but best to be safe */
1140 if (op1.type() != RegType::vgpr)
1141 return false;
1142
1143 op[i] = op1;
1144 }
1145
1146 ctx.uses[op[0].id()]++;
1147 ctx.uses[op[1].id()]++;
1148 decrease_uses(ctx, op_instr[0]);
1149 decrease_uses(ctx, op_instr[1]);
1150
1151 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1152 aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1153 Instruction *new_instr;
1154 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel[0] || opsel[1]) {
1155 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1156 for (unsigned i = 0; i < 2; i++) {
1157 vop3->neg[i] = neg[i];
1158 vop3->abs[i] = abs[i];
1159 vop3->opsel[i] = opsel[i];
1160 }
1161 new_instr = static_cast<Instruction *>(vop3);
1162 } else {
1163 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1164 }
1165 new_instr->operands[0] = Operand(op[0]);
1166 new_instr->operands[1] = Operand(op[1]);
1167 new_instr->definitions[0] = instr->definitions[0];
1168
1169 ctx.info[instr->definitions[0].tempId()].label = 0;
1170 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1171
1172 instr.reset(new_instr);
1173
1174 return true;
1175 }
1176
1177 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1178 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1179 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1180 {
1181 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1182 return false;
1183 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1184 return false;
1185
1186 aco_opcode expected_nan_test = instr->opcode == aco_opcode::s_or_b64 ?
1187 aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1188
1189 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1190 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1191 if (!nan_test || !cmp)
1192 return false;
1193
1194 if (cmp->opcode == expected_nan_test)
1195 std::swap(nan_test, cmp);
1196 else if (nan_test->opcode != expected_nan_test)
1197 return false;
1198
1199 if (!is_cmp(cmp->opcode))
1200 return false;
1201
1202 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1203 return false;
1204 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1205 return false;
1206
1207 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1208 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1209 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1210 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1211 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1212 return false;
1213 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1214 return false;
1215
1216 ctx.uses[cmp->operands[0].tempId()]++;
1217 ctx.uses[cmp->operands[1].tempId()]++;
1218 decrease_uses(ctx, nan_test);
1219 decrease_uses(ctx, cmp);
1220
1221 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1222 get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1223 Instruction *new_instr;
1224 if (cmp->isVOP3()) {
1225 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1226 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1227 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1228 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1229 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1230 new_vop3->clamp = cmp_vop3->clamp;
1231 new_vop3->omod = cmp_vop3->omod;
1232 new_instr = new_vop3;
1233 } else {
1234 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1235 }
1236 new_instr->operands[0] = cmp->operands[0];
1237 new_instr->operands[1] = cmp->operands[1];
1238 new_instr->definitions[0] = instr->definitions[0];
1239
1240 ctx.info[instr->definitions[0].tempId()].label = 0;
1241 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1242
1243 instr.reset(new_instr);
1244
1245 return true;
1246 }
1247
1248 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1249 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1250 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1251 {
1252 if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64)
1253 return false;
1254 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1255 return false;
1256
1257 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1258 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1259
1260 if (!nan_test || !cmp)
1261 return false;
1262
1263 aco_opcode expected_nan_test = instr->opcode == aco_opcode::s_or_b64 ?
1264 aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1265 if (cmp->opcode == expected_nan_test)
1266 std::swap(nan_test, cmp);
1267 else if (nan_test->opcode != expected_nan_test)
1268 return false;
1269
1270 if (!is_cmp(cmp->opcode))
1271 return false;
1272
1273 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1274 return false;
1275 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1276 return false;
1277
1278 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1279 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1280 if (prop_nan0 != prop_nan1)
1281 return false;
1282
1283 int constant_operand = -1;
1284 for (unsigned i = 0; i < 2; i++) {
1285 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1286 constant_operand = !i;
1287 break;
1288 }
1289 }
1290 if (constant_operand == -1)
1291 return false;
1292
1293 uint32_t constant;
1294 if (cmp->operands[constant_operand].isConstant()) {
1295 constant = cmp->operands[constant_operand].constantValue();
1296 } else if (cmp->operands[constant_operand].isTemp()) {
1297 unsigned id = cmp->operands[constant_operand].tempId();
1298 if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal())
1299 return false;
1300 constant = ctx.info[id].val;
1301 } else {
1302 return false;
1303 }
1304
1305 float constantf;
1306 memcpy(&constantf, &constant, 4);
1307 if (isnan(constantf))
1308 return false;
1309
1310 if (cmp->operands[0].isTemp())
1311 ctx.uses[cmp->operands[0].tempId()]++;
1312 if (cmp->operands[1].isTemp())
1313 ctx.uses[cmp->operands[1].tempId()]++;
1314 decrease_uses(ctx, nan_test);
1315 decrease_uses(ctx, cmp);
1316
1317 aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ?
1318 get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1319 Instruction *new_instr;
1320 if (cmp->isVOP3()) {
1321 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1322 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1323 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1324 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1325 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1326 new_vop3->clamp = cmp_vop3->clamp;
1327 new_vop3->omod = cmp_vop3->omod;
1328 new_instr = new_vop3;
1329 } else {
1330 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1331 }
1332 new_instr->operands[0] = cmp->operands[0];
1333 new_instr->operands[1] = cmp->operands[1];
1334 new_instr->definitions[0] = instr->definitions[0];
1335
1336 ctx.info[instr->definitions[0].tempId()].label = 0;
1337 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1338
1339 instr.reset(new_instr);
1340
1341 return true;
1342 }
1343
1344 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1345 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1346 {
1347 if (instr->opcode != aco_opcode::s_not_b64)
1348 return false;
1349 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1350 return false;
1351 if (!instr->operands[0].isTemp())
1352 return false;
1353
1354 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1355 if (!cmp)
1356 return false;
1357
1358 aco_opcode new_opcode = get_inverse(cmp->opcode);
1359 if (new_opcode == aco_opcode::last_opcode)
1360 return false;
1361
1362 if (cmp->operands[0].isTemp())
1363 ctx.uses[cmp->operands[0].tempId()]++;
1364 if (cmp->operands[1].isTemp())
1365 ctx.uses[cmp->operands[1].tempId()]++;
1366 decrease_uses(ctx, cmp);
1367
1368 Instruction *new_instr;
1369 if (cmp->isVOP3()) {
1370 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1371 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1372 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1373 memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel));
1374 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1375 new_vop3->clamp = cmp_vop3->clamp;
1376 new_vop3->omod = cmp_vop3->omod;
1377 new_instr = new_vop3;
1378 } else {
1379 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1380 }
1381 new_instr->operands[0] = cmp->operands[0];
1382 new_instr->operands[1] = cmp->operands[1];
1383 new_instr->definitions[0] = instr->definitions[0];
1384
1385 ctx.info[instr->definitions[0].tempId()].label = 0;
1386 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1387
1388 instr.reset(new_instr);
1389
1390 return true;
1391 }
1392
1393 /* op1(op2(1, 2), 0) if swap = false
1394 * op1(0, op2(1, 2)) if swap = true */
1395 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1396 Instruction* op1_instr, bool swap, const char *shuffle_str,
1397 Operand operands[3], bool neg[3], bool abs[3], bool opsel[3],
1398 bool *op1_clamp, unsigned *op1_omod,
1399 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1400 {
1401 /* checks */
1402 if (op1_instr->opcode != op1)
1403 return false;
1404
1405 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1406 if (!op2_instr || op2_instr->opcode != op2)
1407 return false;
1408
1409 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1410 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1411
1412 /* don't support inbetween clamp/omod */
1413 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1414 return false;
1415
1416 /* get operands and modifiers and check inbetween modifiers */
1417 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1418 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1419
1420 if (inbetween_neg)
1421 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1422 else if (op1_vop3 && op1_vop3->neg[swap])
1423 return false;
1424
1425 if (inbetween_abs)
1426 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1427 else if (op1_vop3 && op1_vop3->abs[swap])
1428 return false;
1429
1430 if (inbetween_opsel)
1431 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel[swap] : false;
1432 else if (op1_vop3 && op1_vop3->opsel[swap])
1433 return false;
1434
1435 int shuffle[3];
1436 shuffle[shuffle_str[0] - '0'] = 0;
1437 shuffle[shuffle_str[1] - '0'] = 1;
1438 shuffle[shuffle_str[2] - '0'] = 2;
1439
1440 operands[shuffle[0]] = op1_instr->operands[!swap];
1441 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1442 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1443 opsel[shuffle[0]] = op1_vop3 ? op1_vop3->opsel[!swap] : false;
1444
1445 for (unsigned i = 0; i < 2; i++) {
1446 operands[shuffle[i + 1]] = op2_instr->operands[i];
1447 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1448 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1449 opsel[shuffle[i + 1]] = op2_vop3 ? op2_vop3->opsel[i] : false;
1450 }
1451
1452 /* check operands */
1453 unsigned sgpr_id = 0;
1454 for (unsigned i = 0; i < 3; i++) {
1455 Operand op = operands[i];
1456 if (op.isLiteral()) {
1457 return false;
1458 } else if (op.isTemp() && op.getTemp().type() == RegType::sgpr) {
1459 if (sgpr_id && sgpr_id != op.tempId())
1460 return false;
1461 sgpr_id = op.tempId();
1462 }
1463 }
1464
1465 return true;
1466 }
1467
1468 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1469 Operand operands[3], bool neg[3], bool abs[3], bool opsel[3],
1470 bool clamp, unsigned omod)
1471 {
1472 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1473 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1474 memcpy(new_instr->opsel, opsel, sizeof(bool[3]));
1475 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1476 new_instr->clamp = clamp;
1477 new_instr->omod = omod;
1478 new_instr->operands[0] = operands[0];
1479 new_instr->operands[1] = operands[1];
1480 new_instr->operands[2] = operands[2];
1481 new_instr->definitions[0] = instr->definitions[0];
1482 ctx.info[instr->definitions[0].tempId()].label = 0;
1483
1484 instr.reset(new_instr);
1485 }
1486
1487 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1488 {
1489 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1490 (label_omod_success | label_clamp_success);
1491
1492 for (unsigned swap = 0; swap < 2; swap++) {
1493 if (!((1 << swap) & ops))
1494 continue;
1495
1496 Operand operands[3];
1497 bool neg[3], abs[3], opsel[3], clamp;
1498 unsigned omod;
1499 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1500 instr.get(), swap, shuffle,
1501 operands, neg, abs, opsel,
1502 &clamp, &omod, NULL, NULL, NULL)) {
1503 ctx.uses[instr->operands[swap].tempId()]--;
1504 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1505 if (omod_clamp & label_omod_success)
1506 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1507 if (omod_clamp & label_clamp_success)
1508 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1509 return true;
1510 }
1511 }
1512 return false;
1513 }
1514
1515 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
1516 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
1517 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
1518 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
1519 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
1520 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
1521 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1522 {
1523 /* checks */
1524 if (!instr->operands[0].isTemp())
1525 return false;
1526 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1527 return false;
1528
1529 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
1530 if (!op2_instr)
1531 return false;
1532 switch (op2_instr->opcode) {
1533 case aco_opcode::s_and_b32:
1534 case aco_opcode::s_or_b32:
1535 case aco_opcode::s_xor_b32:
1536 case aco_opcode::s_and_b64:
1537 case aco_opcode::s_or_b64:
1538 case aco_opcode::s_xor_b64:
1539 break;
1540 default:
1541 return false;
1542 }
1543
1544 /* create instruction */
1545 std::swap(instr->definitions[0], op2_instr->definitions[0]);
1546 ctx.uses[instr->operands[0].tempId()]--;
1547 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
1548
1549 switch (op2_instr->opcode) {
1550 case aco_opcode::s_and_b32:
1551 op2_instr->opcode = aco_opcode::s_nand_b32;
1552 break;
1553 case aco_opcode::s_or_b32:
1554 op2_instr->opcode = aco_opcode::s_nor_b32;
1555 break;
1556 case aco_opcode::s_xor_b32:
1557 op2_instr->opcode = aco_opcode::s_xnor_b32;
1558 break;
1559 case aco_opcode::s_and_b64:
1560 op2_instr->opcode = aco_opcode::s_nand_b64;
1561 break;
1562 case aco_opcode::s_or_b64:
1563 op2_instr->opcode = aco_opcode::s_nor_b64;
1564 break;
1565 case aco_opcode::s_xor_b64:
1566 op2_instr->opcode = aco_opcode::s_xnor_b64;
1567 break;
1568 default:
1569 break;
1570 }
1571
1572 return true;
1573 }
1574
1575 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
1576 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
1577 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
1578 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
1579 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1580 {
1581 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1582 return false;
1583
1584 for (unsigned i = 0; i < 2; i++) {
1585 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1586 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
1587 continue;
1588
1589 ctx.uses[instr->operands[i].tempId()]--;
1590 instr->operands[0] = instr->operands[!i];
1591 instr->operands[1] = op2_instr->operands[0];
1592 ctx.info[instr->definitions[0].tempId()].label = 0;
1593
1594 switch (instr->opcode) {
1595 case aco_opcode::s_and_b32:
1596 instr->opcode = aco_opcode::s_andn2_b32;
1597 break;
1598 case aco_opcode::s_or_b32:
1599 instr->opcode = aco_opcode::s_orn2_b32;
1600 break;
1601 case aco_opcode::s_and_b64:
1602 instr->opcode = aco_opcode::s_andn2_b64;
1603 break;
1604 case aco_opcode::s_or_b64:
1605 instr->opcode = aco_opcode::s_orn2_b64;
1606 break;
1607 default:
1608 break;
1609 }
1610
1611 return true;
1612 }
1613 return false;
1614 }
1615
1616 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
1617 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1618 {
1619 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1620 return false;
1621
1622 for (unsigned i = 0; i < 2; i++) {
1623 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1624 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 || !op2_instr->operands[1].isConstant())
1625 continue;
1626
1627 uint32_t shift = op2_instr->operands[1].constantValue();
1628 if (shift < 1 || shift > 4)
1629 continue;
1630
1631 ctx.uses[instr->operands[i].tempId()]--;
1632 instr->operands[1] = instr->operands[!i];
1633 instr->operands[0] = op2_instr->operands[0];
1634 ctx.info[instr->definitions[0].tempId()].label = 0;
1635
1636 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
1637 aco_opcode::s_lshl2_add_u32,
1638 aco_opcode::s_lshl3_add_u32,
1639 aco_opcode::s_lshl4_add_u32})[shift - 1];
1640
1641 return true;
1642 }
1643 return false;
1644 }
1645
1646 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
1647 {
1648 switch (op) {
1649 #define MINMAX(type, gfx9) \
1650 case aco_opcode::v_min_##type:\
1651 case aco_opcode::v_max_##type:\
1652 case aco_opcode::v_med3_##type:\
1653 *min = aco_opcode::v_min_##type;\
1654 *max = aco_opcode::v_max_##type;\
1655 *med3 = aco_opcode::v_med3_##type;\
1656 *min3 = aco_opcode::v_min3_##type;\
1657 *max3 = aco_opcode::v_max3_##type;\
1658 *some_gfx9_only = gfx9;\
1659 return true;
1660 MINMAX(f32, false)
1661 MINMAX(u32, false)
1662 MINMAX(i32, false)
1663 MINMAX(f16, true)
1664 MINMAX(u16, true)
1665 MINMAX(i16, true)
1666 #undef MINMAX
1667 default:
1668 return false;
1669 }
1670 }
1671
1672 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
1673 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
1674 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
1675 aco_opcode min, aco_opcode max, aco_opcode med)
1676 {
1677 aco_opcode other_op;
1678 if (instr->opcode == min)
1679 other_op = max;
1680 else if (instr->opcode == max)
1681 other_op = min;
1682 else
1683 return false;
1684
1685 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1686 (label_omod_success | label_clamp_success);
1687
1688 for (unsigned swap = 0; swap < 2; swap++) {
1689 Operand operands[3];
1690 bool neg[3], abs[3], opsel[3], clamp, inbetween_neg, inbetween_abs;
1691 unsigned omod;
1692 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
1693 "012", operands, neg, abs, opsel,
1694 &clamp, &omod, &inbetween_neg, &inbetween_abs, NULL)) {
1695 int const0_idx = -1, const1_idx = -1;
1696 uint32_t const0 = 0, const1 = 0;
1697 for (int i = 0; i < 3; i++) {
1698 uint32_t val;
1699 if (operands[i].isConstant()) {
1700 val = operands[i].constantValue();
1701 } else if (operands[i].isTemp() && ctx.uses[operands[i].tempId()] == 1 &&
1702 ctx.info[operands[i].tempId()].is_constant_or_literal()) {
1703 val = ctx.info[operands[i].tempId()].val;
1704 } else {
1705 continue;
1706 }
1707 if (const0_idx >= 0) {
1708 const1_idx = i;
1709 const1 = val;
1710 } else {
1711 const0_idx = i;
1712 const0 = val;
1713 }
1714 }
1715 if (const0_idx < 0 || const1_idx < 0)
1716 continue;
1717
1718 if (opsel[const0_idx])
1719 const0 >>= 16;
1720 if (opsel[const1_idx])
1721 const1 >>= 16;
1722
1723 int lower_idx = const0_idx;
1724 switch (min) {
1725 case aco_opcode::v_min_f32:
1726 case aco_opcode::v_min_f16: {
1727 float const0_f, const1_f;
1728 if (min == aco_opcode::v_min_f32) {
1729 memcpy(&const0_f, &const0, 4);
1730 memcpy(&const1_f, &const1, 4);
1731 } else {
1732 const0_f = _mesa_half_to_float(const0);
1733 const1_f = _mesa_half_to_float(const1);
1734 }
1735 if (abs[const0_idx]) const0_f = fabsf(const0_f);
1736 if (abs[const1_idx]) const1_f = fabsf(const1_f);
1737 if (neg[const0_idx]) const0_f = -const0_f;
1738 if (neg[const1_idx]) const1_f = -const1_f;
1739 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
1740 break;
1741 }
1742 case aco_opcode::v_min_u32: {
1743 lower_idx = const0 < const1 ? const0_idx : const1_idx;
1744 break;
1745 }
1746 case aco_opcode::v_min_u16: {
1747 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
1748 break;
1749 }
1750 case aco_opcode::v_min_i32: {
1751 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
1752 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
1753 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1754 break;
1755 }
1756 case aco_opcode::v_min_i16: {
1757 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
1758 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
1759 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
1760 break;
1761 }
1762 default:
1763 break;
1764 }
1765 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
1766
1767 if (instr->opcode == min) {
1768 if (upper_idx != 0 || lower_idx == 0)
1769 return false;
1770 } else {
1771 if (upper_idx == 0 || lower_idx != 0)
1772 return false;
1773 }
1774
1775 neg[1] ^= inbetween_neg;
1776 neg[2] ^= inbetween_neg;
1777 abs[1] |= inbetween_abs;
1778 abs[2] |= inbetween_abs;
1779
1780 ctx.uses[instr->operands[swap].tempId()]--;
1781 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
1782 if (omod_clamp & label_omod_success)
1783 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1784 if (omod_clamp & label_clamp_success)
1785 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1786
1787 return true;
1788 }
1789 }
1790
1791 return false;
1792 }
1793
1794
1795 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1796 {
1797 /* apply sgprs */
1798 uint32_t sgpr_idx = 0;
1799 uint32_t sgpr_info_id = 0;
1800 bool has_sgpr = false;
1801 uint32_t sgpr_ssa_id = 0;
1802 /* find 'best' possible sgpr */
1803 for (unsigned i = 0; i < instr->operands.size(); i++)
1804 {
1805 if (instr->operands[i].isLiteral()) {
1806 has_sgpr = true;
1807 break;
1808 }
1809 if (!instr->operands[i].isTemp())
1810 continue;
1811 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
1812 has_sgpr = true;
1813 sgpr_ssa_id = instr->operands[i].tempId();
1814 continue;
1815 }
1816 ssa_info& info = ctx.info[instr->operands[i].tempId()];
1817 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
1818 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
1819 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
1820 sgpr_idx = i;
1821 sgpr_info_id = instr->operands[i].tempId();
1822 }
1823 }
1824 }
1825 if (!has_sgpr && sgpr_info_id != 0) {
1826 ssa_info& info = ctx.info[sgpr_info_id];
1827 if (sgpr_idx == 0 || instr->isVOP3()) {
1828 instr->operands[sgpr_idx] = Operand(info.temp);
1829 ctx.uses[sgpr_info_id]--;
1830 ctx.uses[info.temp.id()]++;
1831 } else if (can_swap_operands(instr)) {
1832 instr->operands[sgpr_idx] = instr->operands[0];
1833 instr->operands[0] = Operand(info.temp);
1834 ctx.uses[sgpr_info_id]--;
1835 ctx.uses[info.temp.id()]++;
1836 } else if (can_use_VOP3(instr)) {
1837 to_VOP3(ctx, instr);
1838 instr->operands[sgpr_idx] = Operand(info.temp);
1839 ctx.uses[sgpr_info_id]--;
1840 ctx.uses[info.temp.id()]++;
1841 }
1842
1843 /* we can have two sgprs on one instruction if it is the same sgpr! */
1844 } else if (sgpr_info_id != 0 &&
1845 sgpr_ssa_id == sgpr_info_id &&
1846 ctx.uses[sgpr_info_id] == 1 &&
1847 can_use_VOP3(instr)) {
1848 to_VOP3(ctx, instr);
1849 instr->operands[sgpr_idx] = Operand(ctx.info[sgpr_info_id].temp);
1850 ctx.uses[sgpr_info_id]--;
1851 ctx.uses[ctx.info[sgpr_info_id].temp.id()]++;
1852 }
1853 }
1854
1855 bool apply_omod_clamp(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1856 {
1857 /* check if we could apply omod on predecessor */
1858 if (instr->opcode == aco_opcode::v_mul_f32) {
1859 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success()) {
1860
1861 /* omod was successfully applied */
1862 /* if the omod instruction is v_mad, we also have to change the original add */
1863 if (ctx.info[instr->operands[1].tempId()].is_mad()) {
1864 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[1].tempId()].val].add_instr.get();
1865 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
1866 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
1867 add_instr->definitions[0] = instr->definitions[0];
1868 }
1869
1870 Instruction* omod_instr = ctx.info[instr->operands[1].tempId()].instr;
1871 /* check if we have an additional clamp modifier */
1872 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1) {
1873 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
1874 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
1875 }
1876 /* change definition ssa-id of modified instruction */
1877 omod_instr->definitions[0] = instr->definitions[0];
1878
1879 /* change the definition of instr to something unused, e.g. the original omod def */
1880 instr->definitions[0] = Definition(instr->operands[1].getTemp());
1881 ctx.uses[instr->definitions[0].tempId()] = 0;
1882 return true;
1883 }
1884 if (!ctx.info[instr->definitions[0].tempId()].label) {
1885 /* in all other cases, label this instruction as option for multiply-add */
1886 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
1887 }
1888 }
1889
1890 /* check if we could apply clamp on predecessor */
1891 if (instr->opcode == aco_opcode::v_med3_f32) {
1892 unsigned idx = 0;
1893 bool found_zero = false, found_one = false;
1894 for (unsigned i = 0; i < 3; i++)
1895 {
1896 if (instr->operands[i].constantEquals(0))
1897 found_zero = true;
1898 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
1899 found_one = true;
1900 else
1901 idx = i;
1902 }
1903 if (found_zero && found_one && instr->operands[idx].isTemp() &&
1904 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
1905 /* clamp was successfully applied */
1906 /* if the clamp instruction is v_mad, we also have to change the original add */
1907 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
1908 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
1909 add_instr->definitions[0] = instr->definitions[0];
1910 }
1911 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
1912 /* change definition ssa-id of modified instruction */
1913 clamp_instr->definitions[0] = instr->definitions[0];
1914
1915 /* change the definition of instr to something unused, e.g. the original omod def */
1916 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
1917 ctx.uses[instr->definitions[0].tempId()] = 0;
1918 return true;
1919 }
1920 }
1921
1922 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
1923 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
1924 can_use_VOP3(instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
1925 if(ctx.info[instr->definitions[0].tempId()].is_omod2()) {
1926 to_VOP3(ctx, instr);
1927 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
1928 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1929 } else if (ctx.info[instr->definitions[0].tempId()].is_omod4()) {
1930 to_VOP3(ctx, instr);
1931 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
1932 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1933 } else if (ctx.info[instr->definitions[0].tempId()].is_omod5()) {
1934 to_VOP3(ctx, instr);
1935 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
1936 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1937 } else if (ctx.info[instr->definitions[0].tempId()].is_clamp()) {
1938 to_VOP3(ctx, instr);
1939 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
1940 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1941 }
1942 }
1943
1944 return false;
1945 }
1946
1947 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
1948 // this would mean that we'd have to fix the instruction uses while value propagation
1949
1950 void combine_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1951 {
1952 if (instr->definitions.empty() || !ctx.uses[instr->definitions[0].tempId()])
1953 return;
1954
1955 if (instr->isVALU()) {
1956 if (can_apply_sgprs(instr))
1957 apply_sgprs(ctx, instr);
1958 if (apply_omod_clamp(ctx, instr))
1959 return;
1960 }
1961
1962 /* TODO: There are still some peephole optimizations that could be done:
1963 * - abs(a - b) -> s_absdiff_i32
1964 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
1965 * - patterns for v_alignbit_b32 and v_alignbyte_b32
1966 * These aren't probably too interesting though.
1967 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
1968 * probably more useful than the previously mentioned optimizations.
1969 * The various comparison optimizations also currently only work with 32-bit
1970 * floats. */
1971
1972 /* neg(mul(a, b)) -> mul(neg(a), b) */
1973 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
1974 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
1975
1976 if (!ctx.info[val.id()].is_mul())
1977 return;
1978
1979 Instruction* mul_instr = ctx.info[val.id()].instr;
1980
1981 if (mul_instr->operands[0].isLiteral())
1982 return;
1983 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
1984 return;
1985
1986 /* convert to mul(neg(a), b) */
1987 ctx.uses[mul_instr->definitions[0].tempId()]--;
1988 Definition def = instr->definitions[0];
1989 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
1990 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
1991 instr.reset(create_instruction<VOP3A_instruction>(aco_opcode::v_mul_f32, asVOP3(Format::VOP2), 2, 1));
1992 instr->operands[0] = mul_instr->operands[0];
1993 instr->operands[1] = mul_instr->operands[1];
1994 instr->definitions[0] = def;
1995 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
1996 if (mul_instr->isVOP3()) {
1997 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
1998 new_mul->neg[0] = mul->neg[0] && !is_abs;
1999 new_mul->neg[1] = mul->neg[1] && !is_abs;
2000 new_mul->abs[0] = mul->abs[0] || is_abs;
2001 new_mul->abs[1] = mul->abs[1] || is_abs;
2002 new_mul->omod = mul->omod;
2003 }
2004 new_mul->neg[0] ^= true;
2005 new_mul->clamp = false;
2006
2007 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2008 return;
2009 }
2010 /* combine mul+add -> mad */
2011 else if (instr->opcode == aco_opcode::v_add_f32 ||
2012 instr->opcode == aco_opcode::v_sub_f32 ||
2013 instr->opcode == aco_opcode::v_subrev_f32) {
2014
2015 uint32_t uses_src0 = UINT32_MAX;
2016 uint32_t uses_src1 = UINT32_MAX;
2017 Instruction* mul_instr = nullptr;
2018 unsigned add_op_idx;
2019 /* check if any of the operands is a multiplication */
2020 if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_mul())
2021 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2022 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_mul())
2023 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2024
2025 /* find the 'best' mul instruction to combine with the add */
2026 if (uses_src0 < uses_src1) {
2027 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2028 add_op_idx = 1;
2029 } else if (uses_src1 < uses_src0) {
2030 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2031 add_op_idx = 0;
2032 } else if (uses_src0 != UINT32_MAX) {
2033 /* tiebreaker: quite random what to pick */
2034 if (ctx.info[instr->operands[0].tempId()].instr->operands[0].isLiteral()) {
2035 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2036 add_op_idx = 0;
2037 } else {
2038 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2039 add_op_idx = 1;
2040 }
2041 }
2042 if (mul_instr) {
2043 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2044 bool neg[3] = {false, false, false};
2045 bool abs[3] = {false, false, false};
2046 unsigned omod = 0;
2047 bool clamp = false;
2048 bool need_vop3 = false;
2049 int num_sgpr = 0;
2050 op[0] = mul_instr->operands[0];
2051 op[1] = mul_instr->operands[1];
2052 op[2] = instr->operands[add_op_idx];
2053 for (unsigned i = 0; i < 3; i++)
2054 {
2055 if (op[i].isLiteral())
2056 return;
2057 if (op[i].isTemp() && op[i].getTemp().type() == RegType::sgpr)
2058 num_sgpr++;
2059 if (!(i == 0 || (op[i].isTemp() && op[i].getTemp().type() == RegType::vgpr)))
2060 need_vop3 = true;
2061 }
2062 // TODO: would be better to check this before selecting a mul instr?
2063 if (num_sgpr > 1)
2064 return;
2065
2066 if (mul_instr->isVOP3()) {
2067 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2068 neg[0] = vop3->neg[0];
2069 neg[1] = vop3->neg[1];
2070 abs[0] = vop3->abs[0];
2071 abs[1] = vop3->abs[1];
2072 need_vop3 = true;
2073 /* we cannot use these modifiers between mul and add */
2074 if (vop3->clamp || vop3->omod)
2075 return;
2076 }
2077
2078 /* convert to mad */
2079 ctx.uses[mul_instr->definitions[0].tempId()]--;
2080 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2081 if (op[0].isTemp())
2082 ctx.uses[op[0].tempId()]++;
2083 if (op[1].isTemp())
2084 ctx.uses[op[1].tempId()]++;
2085 }
2086
2087 if (instr->isVOP3()) {
2088 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2089 neg[2] = vop3->neg[add_op_idx];
2090 abs[2] = vop3->abs[add_op_idx];
2091 omod = vop3->omod;
2092 clamp = vop3->clamp;
2093 /* abs of the multiplication result */
2094 if (vop3->abs[1 - add_op_idx]) {
2095 neg[0] = false;
2096 neg[1] = false;
2097 abs[0] = true;
2098 abs[1] = true;
2099 }
2100 /* neg of the multiplication result */
2101 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2102 need_vop3 = true;
2103 }
2104 if (instr->opcode == aco_opcode::v_sub_f32) {
2105 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2106 need_vop3 = true;
2107 } else if (instr->opcode == aco_opcode::v_subrev_f32) {
2108 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2109 need_vop3 = true;
2110 }
2111
2112 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)};
2113 for (unsigned i = 0; i < 3; i++)
2114 {
2115 mad->operands[i] = op[i];
2116 mad->neg[i] = neg[i];
2117 mad->abs[i] = abs[i];
2118 }
2119 mad->omod = omod;
2120 mad->clamp = clamp;
2121 mad->definitions[0] = instr->definitions[0];
2122
2123 /* mark this ssa_def to be re-checked for profitability and literals */
2124 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId(), need_vop3);
2125 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2126 instr.reset(mad.release());
2127 return;
2128 }
2129 }
2130 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2131 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2132 for (unsigned i = 0; i < 2; i++) {
2133 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2134 ctx.uses[instr->operands[i].tempId()] == 1 &&
2135 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2136 ctx.uses[instr->operands[i].tempId()]--;
2137 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2138
2139 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2140 new_instr->operands[0] = Operand(0u);
2141 new_instr->operands[1] = instr->operands[!i];
2142 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2143 new_instr->definitions[0] = instr->definitions[0];
2144 instr.reset(new_instr.release());
2145 ctx.info[instr->definitions[0].tempId()].label = 0;
2146 return;
2147 }
2148 }
2149 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2150 if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2151 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2152 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2153 } else if (instr->opcode == aco_opcode::v_add_u32 && ctx.program->chip_class >= GFX9) {
2154 if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2155 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2156 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2157 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2158 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2159 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2160 combine_salu_lshl_add(ctx, instr);
2161 } else if (instr->opcode == aco_opcode::s_not_b32) {
2162 combine_salu_not_bitwise(ctx, instr);
2163 } else if (instr->opcode == aco_opcode::s_not_b64) {
2164 if (combine_inverse_comparison(ctx, instr)) ;
2165 else combine_salu_not_bitwise(ctx, instr);
2166 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32) {
2167 combine_salu_n2(ctx, instr);
2168 } else if (instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2169 if (combine_ordering_test(ctx, instr)) ;
2170 else if (combine_comparison_ordering(ctx, instr)) ;
2171 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2172 else combine_salu_n2(ctx, instr);
2173 } else {
2174 aco_opcode min, max, min3, max3, med3;
2175 bool some_gfx9_only;
2176 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2177 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2178 if (combine_three_valu_op(ctx, instr, instr->opcode, instr->opcode == min ? min3 : max3, "012", 1 | 2));
2179 else combine_clamp(ctx, instr, min, max, med3);
2180 }
2181 }
2182 }
2183
2184
2185 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2186 {
2187 const uint32_t threshold = 4;
2188
2189 /* Dead Code Elimination:
2190 * We remove instructions if they define temporaries which all are unused */
2191 const bool is_used = instr->definitions.empty() ||
2192 std::any_of(instr->definitions.begin(), instr->definitions.end(),
2193 [&ctx](const Definition& def) { return ctx.uses[def.tempId()]; });
2194 if (!is_used) {
2195 instr.reset();
2196 return;
2197 }
2198
2199 /* convert split_vector into extract_vector if only one definition is ever used */
2200 if (instr->opcode == aco_opcode::p_split_vector) {
2201 unsigned num_used = 0;
2202 unsigned idx = 0;
2203 for (unsigned i = 0; i < instr->definitions.size(); i++) {
2204 if (ctx.uses[instr->definitions[i].tempId()]) {
2205 num_used++;
2206 idx = i;
2207 }
2208 }
2209 if (num_used == 1) {
2210 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2211 extract->operands[0] = instr->operands[0];
2212 extract->operands[1] = Operand((uint32_t) idx);
2213 extract->definitions[0] = instr->definitions[idx];
2214 instr.reset(extract.release());
2215 }
2216 }
2217
2218 /* re-check mad instructions */
2219 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2220 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2221 /* first, check profitability */
2222 if (ctx.uses[info->mul_temp_id]) {
2223 ctx.uses[info->mul_temp_id]++;
2224 instr.swap(info->add_instr);
2225
2226 /* second, check possible literals */
2227 } else if (!info->needs_vop3) {
2228 uint32_t literal_idx = 0;
2229 uint32_t literal_uses = UINT32_MAX;
2230 for (unsigned i = 0; i < instr->operands.size(); i++)
2231 {
2232 if (!instr->operands[i].isTemp())
2233 continue;
2234 /* if one of the operands is sgpr, we cannot add a literal somewhere else */
2235 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2236 if (ctx.info[instr->operands[i].tempId()].is_literal()) {
2237 literal_uses = ctx.uses[instr->operands[i].tempId()];
2238 literal_idx = i;
2239 } else {
2240 literal_uses = UINT32_MAX;
2241 }
2242 break;
2243 }
2244 else if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2245 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2246 literal_uses = ctx.uses[instr->operands[i].tempId()];
2247 literal_idx = i;
2248 }
2249 }
2250 if (literal_uses < threshold) {
2251 ctx.uses[instr->operands[literal_idx].tempId()]--;
2252 info->check_literal = true;
2253 info->literal_idx = literal_idx;
2254 }
2255 }
2256 return;
2257 }
2258
2259 /* check for literals */
2260 /* we do not apply the literals yet as we don't know if it is profitable */
2261 if (instr->isSALU()) {
2262 uint32_t literal_idx = 0;
2263 uint32_t literal_uses = UINT32_MAX;
2264 bool has_literal = false;
2265 for (unsigned i = 0; i < instr->operands.size(); i++)
2266 {
2267 if (instr->operands[i].isLiteral()) {
2268 has_literal = true;
2269 break;
2270 }
2271 if (!instr->operands[i].isTemp())
2272 continue;
2273 if (ctx.info[instr->operands[i].tempId()].is_literal() &&
2274 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2275 literal_uses = ctx.uses[instr->operands[i].tempId()];
2276 literal_idx = i;
2277 }
2278 }
2279 if (!has_literal && literal_uses < threshold) {
2280 ctx.uses[instr->operands[literal_idx].tempId()]--;
2281 if (ctx.uses[instr->operands[literal_idx].tempId()] == 0)
2282 instr->operands[literal_idx] = Operand(ctx.info[instr->operands[literal_idx].tempId()].val);
2283 }
2284 } else if (instr->isVALU() && valu_can_accept_literal(ctx, instr, 0) &&
2285 instr->operands[0].isTemp() &&
2286 ctx.info[instr->operands[0].tempId()].is_literal() &&
2287 ctx.uses[instr->operands[0].tempId()] < threshold) {
2288 ctx.uses[instr->operands[0].tempId()]--;
2289 if (ctx.uses[instr->operands[0].tempId()] == 0)
2290 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2291 }
2292
2293 }
2294
2295
2296 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2297 {
2298 /* Cleanup Dead Instructions */
2299 if (!instr)
2300 return;
2301
2302 /* apply literals on SALU */
2303 if (instr->isSALU()) {
2304 for (Operand& op : instr->operands) {
2305 if (!op.isTemp())
2306 continue;
2307 if (op.isLiteral())
2308 break;
2309 if (ctx.info[op.tempId()].is_literal() &&
2310 ctx.uses[op.tempId()] == 0)
2311 op = Operand(ctx.info[op.tempId()].val);
2312 }
2313 }
2314
2315 /* apply literals on VALU */
2316 else if (instr->isVALU() && !instr->isVOP3() &&
2317 instr->operands[0].isTemp() &&
2318 ctx.info[instr->operands[0].tempId()].is_literal() &&
2319 ctx.uses[instr->operands[0].tempId()] == 0) {
2320 instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val);
2321 }
2322
2323 /* apply literals on MAD */
2324 else if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2325 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2326 aco_ptr<Instruction> new_mad;
2327 if (info->check_literal && ctx.uses[instr->operands[info->literal_idx].tempId()] == 0) {
2328 if (info->literal_idx == 2) { /* add literal -> madak */
2329 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
2330 new_mad->operands[0] = instr->operands[0];
2331 new_mad->operands[1] = instr->operands[1];
2332 } else { /* mul literal -> madmk */
2333 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
2334 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
2335 new_mad->operands[1] = instr->operands[2];
2336 }
2337 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
2338 new_mad->definitions[0] = instr->definitions[0];
2339 instr.swap(new_mad);
2340 }
2341 }
2342
2343 ctx.instructions.emplace_back(std::move(instr));
2344 }
2345
2346
2347 void optimize(Program* program)
2348 {
2349 opt_ctx ctx;
2350 ctx.program = program;
2351 std::vector<ssa_info> info(program->peekAllocationId());
2352 ctx.info = info.data();
2353
2354 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
2355 for (Block& block : program->blocks) {
2356 for (aco_ptr<Instruction>& instr : block.instructions)
2357 label_instruction(ctx, instr);
2358 }
2359
2360 ctx.uses = std::move(dead_code_analysis(program));
2361
2362 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
2363 for (Block& block : program->blocks) {
2364 for (aco_ptr<Instruction>& instr : block.instructions)
2365 combine_instruction(ctx, instr);
2366 }
2367
2368 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
2369 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
2370 Block* block = &(*it);
2371 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
2372 select_instruction(ctx, *it);
2373 }
2374
2375 /* 4. Add literals to instructions */
2376 for (Block& block : program->blocks) {
2377 ctx.instructions.clear();
2378 for (aco_ptr<Instruction>& instr : block.instructions)
2379 apply_literals(ctx, instr);
2380 block.instructions.swap(ctx.instructions);
2381 }
2382
2383 }
2384
2385 }