aco: combine VALU and SALU into various VOP3 instructions
[mesa.git] / src / amd / compiler / aco_optimizer.cpp
1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de)
25 *
26 */
27
28 #include <algorithm>
29 #include <math.h>
30
31 #include "aco_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34
35 namespace aco {
36
37 /**
38 * The optimizer works in 4 phases:
39 * (1) The first pass collects information for each ssa-def,
40 * propagates reg->reg operands of the same type, inline constants
41 * and neg/abs input modifiers.
42 * (2) The second pass combines instructions like mad, omod, clamp and
43 * propagates sgpr's on VALU instructions.
44 * This pass depends on information collected in the first pass.
45 * (3) The third pass goes backwards, and selects instructions,
46 * i.e. decides if a mad instruction is profitable and eliminates dead code.
47 * (4) The fourth pass cleans up the sequence: literals get applied and dead
48 * instructions are removed from the sequence.
49 */
50
51
52 struct mad_info {
53 aco_ptr<Instruction> add_instr;
54 uint32_t mul_temp_id;
55 uint32_t literal_idx;
56 bool check_literal;
57
58 mad_info(aco_ptr<Instruction> instr, uint32_t id)
59 : add_instr(std::move(instr)), mul_temp_id(id), check_literal(false) {}
60 };
61
62 enum Label {
63 label_vec = 1 << 0,
64 label_constant = 1 << 1,
65 label_abs = 1 << 2,
66 label_neg = 1 << 3,
67 label_mul = 1 << 4,
68 label_temp = 1 << 5,
69 label_literal = 1 << 6,
70 label_mad = 1 << 7,
71 label_omod2 = 1 << 8,
72 label_omod4 = 1 << 9,
73 label_omod5 = 1 << 10,
74 label_omod_success = 1 << 11,
75 label_clamp = 1 << 12,
76 label_clamp_success = 1 << 13,
77 label_undefined = 1 << 14,
78 label_vcc = 1 << 15,
79 label_b2f = 1 << 16,
80 label_add_sub = 1 << 17,
81 label_bitwise = 1 << 18,
82 label_minmax = 1 << 19,
83 label_fcmp = 1 << 20,
84 label_uniform_bool = 1 << 21,
85 label_constant_64bit = 1 << 22,
86 label_uniform_bitwise = 1 << 23,
87 label_scc_invert = 1 << 24,
88 label_vcc_hint = 1 << 25,
89 label_scc_needed = 1 << 26,
90 };
91
92 static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success |
93 label_add_sub | label_bitwise | label_uniform_bitwise | label_minmax | label_fcmp;
94 static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool |
95 label_omod2 | label_omod4 | label_omod5 | label_clamp | label_scc_invert;
96 static constexpr uint32_t val_labels = label_constant | label_constant_64bit | label_literal | label_mad;
97
98 struct ssa_info {
99 uint32_t val;
100 union {
101 Temp temp;
102 Instruction* instr;
103 };
104 uint32_t label;
105
106 ssa_info() : label(0) {}
107
108 void add_label(Label new_label)
109 {
110 /* Since all labels which use "instr" use it for the same thing
111 * (indicating the defining instruction), there is no need to clear
112 * any other instr labels. */
113 if (new_label & instr_labels)
114 label &= ~temp_labels; /* instr and temp alias */
115
116 if (new_label & temp_labels) {
117 label &= ~temp_labels;
118 label &= ~instr_labels; /* instr and temp alias */
119 }
120
121 if (new_label & val_labels)
122 label &= ~val_labels;
123
124 label |= new_label;
125 }
126
127 void set_vec(Instruction* vec)
128 {
129 add_label(label_vec);
130 instr = vec;
131 }
132
133 bool is_vec()
134 {
135 return label & label_vec;
136 }
137
138 void set_constant(uint32_t constant)
139 {
140 add_label(label_constant);
141 val = constant;
142 }
143
144 bool is_constant()
145 {
146 return label & label_constant;
147 }
148
149 void set_constant_64bit(uint32_t constant)
150 {
151 add_label(label_constant_64bit);
152 val = constant;
153 }
154
155 bool is_constant_64bit()
156 {
157 return label & label_constant_64bit;
158 }
159
160 void set_abs(Temp abs_temp)
161 {
162 add_label(label_abs);
163 temp = abs_temp;
164 }
165
166 bool is_abs()
167 {
168 return label & label_abs;
169 }
170
171 void set_neg(Temp neg_temp)
172 {
173 add_label(label_neg);
174 temp = neg_temp;
175 }
176
177 bool is_neg()
178 {
179 return label & label_neg;
180 }
181
182 void set_neg_abs(Temp neg_abs_temp)
183 {
184 add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg));
185 temp = neg_abs_temp;
186 }
187
188 void set_mul(Instruction* mul)
189 {
190 add_label(label_mul);
191 instr = mul;
192 }
193
194 bool is_mul()
195 {
196 return label & label_mul;
197 }
198
199 void set_temp(Temp tmp)
200 {
201 add_label(label_temp);
202 temp = tmp;
203 }
204
205 bool is_temp()
206 {
207 return label & label_temp;
208 }
209
210 void set_literal(uint32_t lit)
211 {
212 add_label(label_literal);
213 val = lit;
214 }
215
216 bool is_literal()
217 {
218 return label & label_literal;
219 }
220
221 void set_mad(Instruction* mad, uint32_t mad_info_idx)
222 {
223 add_label(label_mad);
224 val = mad_info_idx;
225 instr = mad;
226 }
227
228 bool is_mad()
229 {
230 return label & label_mad;
231 }
232
233 void set_omod2(Temp def)
234 {
235 add_label(label_omod2);
236 temp = def;
237 }
238
239 bool is_omod2()
240 {
241 return label & label_omod2;
242 }
243
244 void set_omod4(Temp def)
245 {
246 add_label(label_omod4);
247 temp = def;
248 }
249
250 bool is_omod4()
251 {
252 return label & label_omod4;
253 }
254
255 void set_omod5(Temp def)
256 {
257 add_label(label_omod5);
258 temp = def;
259 }
260
261 bool is_omod5()
262 {
263 return label & label_omod5;
264 }
265
266 void set_omod_success(Instruction* omod_instr)
267 {
268 add_label(label_omod_success);
269 instr = omod_instr;
270 }
271
272 bool is_omod_success()
273 {
274 return label & label_omod_success;
275 }
276
277 void set_clamp(Temp def)
278 {
279 add_label(label_clamp);
280 temp = def;
281 }
282
283 bool is_clamp()
284 {
285 return label & label_clamp;
286 }
287
288 void set_clamp_success(Instruction* clamp_instr)
289 {
290 add_label(label_clamp_success);
291 instr = clamp_instr;
292 }
293
294 bool is_clamp_success()
295 {
296 return label & label_clamp_success;
297 }
298
299 void set_undefined()
300 {
301 add_label(label_undefined);
302 }
303
304 bool is_undefined()
305 {
306 return label & label_undefined;
307 }
308
309 void set_vcc(Temp vcc)
310 {
311 add_label(label_vcc);
312 temp = vcc;
313 }
314
315 bool is_vcc()
316 {
317 return label & label_vcc;
318 }
319
320 bool is_constant_or_literal()
321 {
322 return is_constant() || is_literal();
323 }
324
325 void set_b2f(Temp val)
326 {
327 add_label(label_b2f);
328 temp = val;
329 }
330
331 bool is_b2f()
332 {
333 return label & label_b2f;
334 }
335
336 void set_add_sub(Instruction *add_sub_instr)
337 {
338 add_label(label_add_sub);
339 instr = add_sub_instr;
340 }
341
342 bool is_add_sub()
343 {
344 return label & label_add_sub;
345 }
346
347 void set_bitwise(Instruction *bitwise_instr)
348 {
349 add_label(label_bitwise);
350 instr = bitwise_instr;
351 }
352
353 bool is_bitwise()
354 {
355 return label & label_bitwise;
356 }
357
358 void set_uniform_bitwise()
359 {
360 add_label(label_uniform_bitwise);
361 }
362
363 bool is_uniform_bitwise()
364 {
365 return label & label_uniform_bitwise;
366 }
367
368 void set_minmax(Instruction *minmax_instr)
369 {
370 add_label(label_minmax);
371 instr = minmax_instr;
372 }
373
374 bool is_minmax()
375 {
376 return label & label_minmax;
377 }
378
379 void set_fcmp(Instruction *fcmp_instr)
380 {
381 add_label(label_fcmp);
382 instr = fcmp_instr;
383 }
384
385 bool is_fcmp()
386 {
387 return label & label_fcmp;
388 }
389
390 void set_scc_needed()
391 {
392 add_label(label_scc_needed);
393 }
394
395 bool is_scc_needed()
396 {
397 return label & label_scc_needed;
398 }
399
400 void set_scc_invert(Temp scc_inv)
401 {
402 add_label(label_scc_invert);
403 temp = scc_inv;
404 }
405
406 bool is_scc_invert()
407 {
408 return label & label_scc_invert;
409 }
410
411 void set_uniform_bool(Temp uniform_bool)
412 {
413 add_label(label_uniform_bool);
414 temp = uniform_bool;
415 }
416
417 bool is_uniform_bool()
418 {
419 return label & label_uniform_bool;
420 }
421
422 void set_vcc_hint()
423 {
424 add_label(label_vcc_hint);
425 }
426
427 bool is_vcc_hint()
428 {
429 return label & label_vcc_hint;
430 }
431 };
432
433 struct opt_ctx {
434 Program* program;
435 std::vector<aco_ptr<Instruction>> instructions;
436 ssa_info* info;
437 std::pair<uint32_t,Temp> last_literal;
438 std::vector<mad_info> mad_infos;
439 std::vector<uint16_t> uses;
440 };
441
442 bool can_swap_operands(aco_ptr<Instruction>& instr)
443 {
444 if (instr->operands[0].isConstant() ||
445 (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr))
446 return false;
447
448 switch (instr->opcode) {
449 case aco_opcode::v_add_f32:
450 case aco_opcode::v_mul_f32:
451 case aco_opcode::v_or_b32:
452 case aco_opcode::v_and_b32:
453 case aco_opcode::v_xor_b32:
454 case aco_opcode::v_max_f32:
455 case aco_opcode::v_min_f32:
456 case aco_opcode::v_max_i32:
457 case aco_opcode::v_min_i32:
458 case aco_opcode::v_max_u32:
459 case aco_opcode::v_min_u32:
460 case aco_opcode::v_cmp_eq_f32:
461 case aco_opcode::v_cmp_lg_f32:
462 return true;
463 case aco_opcode::v_sub_f32:
464 instr->opcode = aco_opcode::v_subrev_f32;
465 return true;
466 case aco_opcode::v_cmp_lt_f32:
467 instr->opcode = aco_opcode::v_cmp_gt_f32;
468 return true;
469 case aco_opcode::v_cmp_ge_f32:
470 instr->opcode = aco_opcode::v_cmp_le_f32;
471 return true;
472 case aco_opcode::v_cmp_lt_i32:
473 instr->opcode = aco_opcode::v_cmp_gt_i32;
474 return true;
475 default:
476 return false;
477 }
478 }
479
480 bool can_use_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
481 {
482 if (instr->isVOP3())
483 return true;
484
485 if (instr->operands.size() && instr->operands[0].isLiteral() && ctx.program->chip_class < GFX10)
486 return false;
487
488 if (instr->isDPP() || instr->isSDWA())
489 return false;
490
491 return instr->opcode != aco_opcode::v_madmk_f32 &&
492 instr->opcode != aco_opcode::v_madak_f32 &&
493 instr->opcode != aco_opcode::v_madmk_f16 &&
494 instr->opcode != aco_opcode::v_madak_f16 &&
495 instr->opcode != aco_opcode::v_fmamk_f32 &&
496 instr->opcode != aco_opcode::v_fmaak_f32 &&
497 instr->opcode != aco_opcode::v_fmamk_f16 &&
498 instr->opcode != aco_opcode::v_fmaak_f16 &&
499 instr->opcode != aco_opcode::v_readlane_b32 &&
500 instr->opcode != aco_opcode::v_writelane_b32 &&
501 instr->opcode != aco_opcode::v_readfirstlane_b32;
502 }
503
504 bool can_apply_sgprs(aco_ptr<Instruction>& instr)
505 {
506 return instr->opcode != aco_opcode::v_readfirstlane_b32 &&
507 instr->opcode != aco_opcode::v_readlane_b32 &&
508 instr->opcode != aco_opcode::v_readlane_b32_e64 &&
509 instr->opcode != aco_opcode::v_writelane_b32 &&
510 instr->opcode != aco_opcode::v_writelane_b32_e64;
511 }
512
513 void to_VOP3(opt_ctx& ctx, aco_ptr<Instruction>& instr)
514 {
515 if (instr->isVOP3())
516 return;
517
518 aco_ptr<Instruction> tmp = std::move(instr);
519 Format format = asVOP3(tmp->format);
520 instr.reset(create_instruction<VOP3A_instruction>(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size()));
521 std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin());
522 for (unsigned i = 0; i < instr->definitions.size(); i++) {
523 instr->definitions[i] = tmp->definitions[i];
524 if (instr->definitions[i].isTemp()) {
525 ssa_info& info = ctx.info[instr->definitions[i].tempId()];
526 if (info.label & instr_labels && info.instr == tmp.get())
527 info.instr = instr.get();
528 }
529 }
530 }
531
532 /* only covers special cases */
533 bool alu_can_accept_constant(aco_opcode opcode, unsigned operand)
534 {
535 switch (opcode) {
536 case aco_opcode::v_interp_p2_f32:
537 case aco_opcode::v_mac_f32:
538 case aco_opcode::v_writelane_b32:
539 case aco_opcode::v_writelane_b32_e64:
540 case aco_opcode::v_cndmask_b32:
541 return operand != 2;
542 case aco_opcode::s_addk_i32:
543 case aco_opcode::s_mulk_i32:
544 case aco_opcode::p_wqm:
545 case aco_opcode::p_extract_vector:
546 case aco_opcode::p_split_vector:
547 case aco_opcode::v_readlane_b32:
548 case aco_opcode::v_readlane_b32_e64:
549 case aco_opcode::v_readfirstlane_b32:
550 return operand != 0;
551 default:
552 return true;
553 }
554 }
555
556 bool valu_can_accept_vgpr(aco_ptr<Instruction>& instr, unsigned operand)
557 {
558 if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 ||
559 instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64)
560 return operand != 1;
561 return true;
562 }
563
564 /* check constant bus and literal limitations */
565 bool check_vop3_operands(opt_ctx& ctx, unsigned num_operands, Operand *operands)
566 {
567 int limit = ctx.program->chip_class >= GFX10 ? 2 : 1;
568 Operand literal32(s1);
569 Operand literal64(s2);
570 unsigned num_sgprs = 0;
571 unsigned sgpr[] = {0, 0};
572
573 for (unsigned i = 0; i < num_operands; i++) {
574 Operand op = operands[i];
575
576 if (op.hasRegClass() && op.regClass().type() == RegType::sgpr) {
577 /* two reads of the same SGPR count as 1 to the limit */
578 if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
579 if (num_sgprs < 2)
580 sgpr[num_sgprs++] = op.tempId();
581 limit--;
582 if (limit < 0)
583 return false;
584 }
585 } else if (op.isLiteral()) {
586 if (ctx.program->chip_class < GFX10)
587 return false;
588
589 if (!literal32.isUndefined() && literal32.constantValue() != op.constantValue())
590 return false;
591 if (!literal64.isUndefined() && literal64.constantValue() != op.constantValue())
592 return false;
593
594 /* Any number of 32-bit literals counts as only 1 to the limit. Same
595 * (but separately) for 64-bit literals. */
596 if (op.size() == 1 && literal32.isUndefined()) {
597 limit--;
598 literal32 = op;
599 } else if (op.size() == 2 && literal64.isUndefined()) {
600 limit--;
601 literal64 = op;
602 }
603
604 if (limit < 0)
605 return false;
606 }
607 }
608
609 return true;
610 }
611
612 bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset)
613 {
614 Operand op = instr->operands[op_index];
615
616 if (!op.isTemp())
617 return false;
618 Temp tmp = op.getTemp();
619 if (!ctx.info[tmp.id()].is_add_sub())
620 return false;
621
622 Instruction *add_instr = ctx.info[tmp.id()].instr;
623
624 switch (add_instr->opcode) {
625 case aco_opcode::v_add_u32:
626 case aco_opcode::v_add_co_u32:
627 case aco_opcode::v_add_co_u32_e64:
628 case aco_opcode::s_add_i32:
629 case aco_opcode::s_add_u32:
630 break;
631 default:
632 return false;
633 }
634
635 if (add_instr->usesModifiers())
636 return false;
637
638 for (unsigned i = 0; i < 2; i++) {
639 if (add_instr->operands[i].isConstant()) {
640 *offset = add_instr->operands[i].constantValue();
641 } else if (add_instr->operands[i].isTemp() &&
642 ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) {
643 *offset = ctx.info[add_instr->operands[i].tempId()].val;
644 } else {
645 continue;
646 }
647 if (!add_instr->operands[!i].isTemp())
648 continue;
649
650 uint32_t offset2 = 0;
651 if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) {
652 *offset += offset2;
653 } else {
654 *base = add_instr->operands[!i].getTemp();
655 }
656 return true;
657 }
658
659 return false;
660 }
661
662 Operand get_constant_op(opt_ctx &ctx, uint32_t val, bool is64bit = false)
663 {
664 // TODO: this functions shouldn't be needed if we store Operand instead of value.
665 Operand op(val, is64bit);
666 if (val == 0x3e22f983 && ctx.program->chip_class >= GFX8)
667 op.setFixed(PhysReg{248}); /* 1/2 PI can be an inline constant on GFX8+ */
668 return op;
669 }
670
671 bool fixed_to_exec(Operand op)
672 {
673 return op.isFixed() && op.physReg() == exec;
674 }
675
676 void label_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
677 {
678 if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) {
679 ASSERTED bool all_const = false;
680 for (Operand& op : instr->operands)
681 all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal());
682 perfwarn(all_const, "All instruction operands are constant", instr.get());
683 }
684
685 for (unsigned i = 0; i < instr->operands.size(); i++)
686 {
687 if (!instr->operands[i].isTemp())
688 continue;
689
690 ssa_info info = ctx.info[instr->operands[i].tempId()];
691 /* propagate undef */
692 if (info.is_undefined() && is_phi(instr))
693 instr->operands[i] = Operand(instr->operands[i].regClass());
694 /* propagate reg->reg of same type */
695 if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) {
696 instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp);
697 info = ctx.info[info.temp.id()];
698 }
699
700 /* SALU / PSEUDO: propagate inline constants */
701 if (instr->isSALU() || instr->format == Format::PSEUDO) {
702 const bool is_subdword = std::any_of(instr->definitions.begin(), instr->definitions.end(),
703 [] (const Definition& def) { return def.regClass().is_subdword();});
704 // TODO: optimize SGPR and constant propagation for subdword pseudo instructions on gfx9+
705 if (is_subdword)
706 continue;
707
708 if (info.is_temp() && info.temp.type() == RegType::sgpr) {
709 instr->operands[i].setTemp(info.temp);
710 info = ctx.info[info.temp.id()];
711 } else if (info.is_temp() && info.temp.type() == RegType::vgpr) {
712 /* propagate vgpr if it can take it */
713 switch (instr->opcode) {
714 case aco_opcode::p_create_vector:
715 case aco_opcode::p_split_vector:
716 case aco_opcode::p_extract_vector:
717 case aco_opcode::p_phi: {
718 const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(),
719 [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;});
720 if (all_vgpr) {
721 instr->operands[i] = Operand(info.temp);
722 info = ctx.info[info.temp.id()];
723 }
724 break;
725 }
726 default:
727 break;
728 }
729 }
730 if ((info.is_constant() || info.is_constant_64bit() || (info.is_literal() && instr->format == Format::PSEUDO)) &&
731 !instr->operands[i].isFixed() && alu_can_accept_constant(instr->opcode, i)) {
732 instr->operands[i] = get_constant_op(ctx, info.val, info.is_constant_64bit());
733 continue;
734 }
735 }
736
737 /* VALU: propagate neg, abs & inline constants */
738 else if (instr->isVALU()) {
739 if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) {
740 instr->operands[i].setTemp(info.temp);
741 info = ctx.info[info.temp.id()];
742 }
743 if (info.is_abs() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
744 if (!instr->isDPP())
745 to_VOP3(ctx, instr);
746 instr->operands[i] = Operand(info.temp);
747 if (instr->isDPP())
748 static_cast<DPP_instruction*>(instr.get())->abs[i] = true;
749 else
750 static_cast<VOP3A_instruction*>(instr.get())->abs[i] = true;
751 }
752 if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) {
753 instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32;
754 instr->operands[i].setTemp(info.temp);
755 continue;
756 } else if (info.is_neg() && (can_use_VOP3(ctx, instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) {
757 if (!instr->isDPP())
758 to_VOP3(ctx, instr);
759 instr->operands[i].setTemp(info.temp);
760 if (instr->isDPP())
761 static_cast<DPP_instruction*>(instr.get())->neg[i] = true;
762 else
763 static_cast<VOP3A_instruction*>(instr.get())->neg[i] = true;
764 continue;
765 }
766 if ((info.is_constant() || info.is_constant_64bit()) && alu_can_accept_constant(instr->opcode, i)) {
767 Operand op = get_constant_op(ctx, info.val, info.is_constant_64bit());
768 perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get());
769 if (i == 0 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) {
770 instr->operands[i] = op;
771 continue;
772 } else if (!instr->isVOP3() && can_swap_operands(instr)) {
773 instr->operands[i] = instr->operands[0];
774 instr->operands[0] = op;
775 continue;
776 } else if (can_use_VOP3(ctx, instr)) {
777 to_VOP3(ctx, instr);
778 instr->operands[i] = op;
779 continue;
780 }
781 }
782 }
783
784 /* MUBUF: propagate constants and combine additions */
785 else if (instr->format == Format::MUBUF) {
786 MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get());
787 Temp base;
788 uint32_t offset;
789 while (info.is_temp())
790 info = ctx.info[info.temp.id()];
791
792 if (mubuf->offen && i == 1 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
793 assert(!mubuf->idxen);
794 instr->operands[1] = Operand(v1);
795 mubuf->offset += info.val;
796 mubuf->offen = false;
797 continue;
798 } else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) {
799 instr->operands[2] = Operand((uint32_t) 0);
800 mubuf->offset += info.val;
801 continue;
802 } else if (mubuf->offen && i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) {
803 assert(!mubuf->idxen);
804 instr->operands[1].setTemp(base);
805 mubuf->offset += offset;
806 continue;
807 } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) {
808 instr->operands[i].setTemp(base);
809 mubuf->offset += offset;
810 continue;
811 }
812 }
813
814 /* DS: combine additions */
815 else if (instr->format == Format::DS) {
816
817 DS_instruction *ds = static_cast<DS_instruction *>(instr.get());
818 Temp base;
819 uint32_t offset;
820 bool has_usable_ds_offset = ctx.program->chip_class >= GFX7;
821 if (has_usable_ds_offset &&
822 i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) &&
823 base.regClass() == instr->operands[i].regClass() &&
824 instr->opcode != aco_opcode::ds_swizzle_b32) {
825 if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 ||
826 instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) {
827 unsigned mask = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 0x7 : 0x3;
828 unsigned shifts = (instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) ? 3 : 2;
829
830 if ((offset & mask) == 0 &&
831 ds->offset0 + (offset >> shifts) <= 255 &&
832 ds->offset1 + (offset >> shifts) <= 255) {
833 instr->operands[i].setTemp(base);
834 ds->offset0 += offset >> shifts;
835 ds->offset1 += offset >> shifts;
836 }
837 } else {
838 if (ds->offset0 + offset <= 65535) {
839 instr->operands[i].setTemp(base);
840 ds->offset0 += offset;
841 }
842 }
843 }
844 }
845
846 /* SMEM: propagate constants and combine additions */
847 else if (instr->format == Format::SMEM) {
848
849 SMEM_instruction *smem = static_cast<SMEM_instruction *>(instr.get());
850 Temp base;
851 uint32_t offset;
852 if (i == 1 && info.is_constant_or_literal() &&
853 ((ctx.program->chip_class == GFX6 && info.val <= 0x3FF) ||
854 (ctx.program->chip_class == GFX7 && info.val <= 0xFFFFFFFF) ||
855 (ctx.program->chip_class >= GFX8 && info.val <= 0xFFFFF))) {
856 instr->operands[i] = Operand(info.val);
857 continue;
858 } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) {
859 bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4);
860 if (soe &&
861 (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() ||
862 ctx.info[smem->operands.back().tempId()].val != 0)) {
863 continue;
864 }
865 if (soe) {
866 smem->operands[1] = Operand(offset);
867 smem->operands.back() = Operand(base);
868 } else {
869 SMEM_instruction *new_instr = create_instruction<SMEM_instruction>(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size());
870 new_instr->operands[0] = smem->operands[0];
871 new_instr->operands[1] = Operand(offset);
872 if (smem->definitions.empty())
873 new_instr->operands[2] = smem->operands[2];
874 new_instr->operands.back() = Operand(base);
875 if (!smem->definitions.empty())
876 new_instr->definitions[0] = smem->definitions[0];
877 new_instr->can_reorder = smem->can_reorder;
878 new_instr->barrier = smem->barrier;
879 instr.reset(new_instr);
880 smem = static_cast<SMEM_instruction *>(instr.get());
881 }
882 continue;
883 }
884 }
885
886 else if (instr->format == Format::PSEUDO_BRANCH) {
887 if (ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
888 /* Flip the branch instruction to get rid of the scc_invert instruction */
889 instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz : aco_opcode::p_cbranch_z;
890 instr->operands[0].setTemp(ctx.info[instr->operands[0].tempId()].temp);
891 }
892 }
893 }
894
895 /* if this instruction doesn't define anything, return */
896 if (instr->definitions.empty())
897 return;
898
899 switch (instr->opcode) {
900 case aco_opcode::p_create_vector: {
901 if (instr->operands.size() == 1 && instr->operands[0].isTemp())
902 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
903 else
904 ctx.info[instr->definitions[0].tempId()].set_vec(instr.get());
905
906 unsigned num_ops = instr->operands.size();
907 for (const Operand& op : instr->operands) {
908 if (op.isTemp() && ctx.info[op.tempId()].is_vec())
909 num_ops += ctx.info[op.tempId()].instr->operands.size() - 1;
910 }
911 if (num_ops != instr->operands.size()) {
912 aco_ptr<Instruction> old_vec = std::move(instr);
913 instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1));
914 instr->definitions[0] = old_vec->definitions[0];
915 unsigned k = 0;
916 for (Operand& old_op : old_vec->operands) {
917 if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) {
918 for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++) {
919 Operand op = ctx.info[old_op.tempId()].instr->operands[j];
920 if (op.isTemp() && ctx.info[op.tempId()].is_temp() &&
921 ctx.info[op.tempId()].temp.type() == instr->definitions[0].regClass().type())
922 op.setTemp(ctx.info[op.tempId()].temp);
923 instr->operands[k++] = op;
924 }
925 } else {
926 instr->operands[k++] = old_op;
927 }
928 }
929 assert(k == num_ops);
930 }
931 break;
932 }
933 case aco_opcode::p_split_vector: {
934 if (!ctx.info[instr->operands[0].tempId()].is_vec())
935 break;
936 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
937 unsigned split_offset = 0;
938 unsigned vec_offset = 0;
939 unsigned vec_index = 0;
940 for (unsigned i = 0; i < instr->definitions.size(); split_offset += instr->definitions[i++].bytes()) {
941 while (vec_offset < split_offset && vec_index < vec->operands.size())
942 vec_offset += vec->operands[vec_index++].bytes();
943
944 if (vec_offset != split_offset || vec->operands[vec_index].bytes() != instr->definitions[i].bytes())
945 continue;
946
947 Operand vec_op = vec->operands[vec_index];
948 if (vec_op.isConstant()) {
949 if (vec_op.isLiteral())
950 ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue());
951 else if (vec_op.size() == 1)
952 ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue());
953 else if (vec_op.size() == 2)
954 ctx.info[instr->definitions[i].tempId()].set_constant_64bit(vec_op.constantValue());
955 } else {
956 assert(vec_op.isTemp());
957 ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp());
958 }
959 }
960 break;
961 }
962 case aco_opcode::p_extract_vector: { /* mov */
963 if (!ctx.info[instr->operands[0].tempId()].is_vec())
964 break;
965
966 /* check if we index directly into a vector element */
967 Instruction* vec = ctx.info[instr->operands[0].tempId()].instr;
968 const unsigned index = instr->operands[1].constantValue();
969 const unsigned dst_offset = index * instr->definitions[0].bytes();
970 unsigned offset = 0;
971
972 for (const Operand& op : vec->operands) {
973 if (offset < dst_offset) {
974 offset += op.bytes();
975 continue;
976 } else if (offset != dst_offset || op.bytes() != instr->definitions[0].bytes()) {
977 break;
978 }
979
980 /* convert this extract into a copy instruction */
981 instr->opcode = aco_opcode::p_parallelcopy;
982 instr->operands.pop_back();
983 instr->operands[0] = op;
984
985 if (op.isConstant()) {
986 if (op.isLiteral())
987 ctx.info[instr->definitions[0].tempId()].set_literal(op.constantValue());
988 else if (op.size() == 1)
989 ctx.info[instr->definitions[0].tempId()].set_constant(op.constantValue());
990 else if (op.size() == 2)
991 ctx.info[instr->definitions[0].tempId()].set_constant_64bit(op.constantValue());
992 } else {
993 assert(op.isTemp());
994 ctx.info[instr->definitions[0].tempId()].set_temp(op.getTemp());
995 }
996 break;
997 }
998 break;
999 }
1000 case aco_opcode::s_mov_b32: /* propagate */
1001 case aco_opcode::s_mov_b64:
1002 case aco_opcode::v_mov_b32:
1003 case aco_opcode::p_as_uniform:
1004 if (instr->definitions[0].isFixed()) {
1005 /* don't copy-propagate copies into fixed registers */
1006 } else if (instr->usesModifiers()) {
1007 // TODO
1008 } else if (instr->operands[0].isConstant()) {
1009 if (instr->operands[0].isLiteral())
1010 ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue());
1011 else if (instr->operands[0].size() == 1)
1012 ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue());
1013 else if (instr->operands[0].size() == 2)
1014 ctx.info[instr->definitions[0].tempId()].set_constant_64bit(instr->operands[0].constantValue());
1015 } else if (instr->operands[0].isTemp()) {
1016 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1017 } else {
1018 assert(instr->operands[0].isFixed());
1019 }
1020 break;
1021 case aco_opcode::p_is_helper:
1022 if (!ctx.program->needs_wqm)
1023 ctx.info[instr->definitions[0].tempId()].set_constant(0u);
1024 break;
1025 case aco_opcode::s_movk_i32: {
1026 uint32_t v = static_cast<SOPK_instruction*>(instr.get())->imm;
1027 v = v & 0x8000 ? (v | 0xffff0000) : v;
1028 if (v <= 64 || v >= 0xfffffff0)
1029 ctx.info[instr->definitions[0].tempId()].set_constant(v);
1030 else
1031 ctx.info[instr->definitions[0].tempId()].set_literal(v);
1032 break;
1033 }
1034 case aco_opcode::v_bfrev_b32:
1035 case aco_opcode::s_brev_b32: {
1036 if (instr->operands[0].isConstant()) {
1037 uint32_t v = util_bitreverse(instr->operands[0].constantValue());
1038 if (v <= 64 || v >= 0xfffffff0)
1039 ctx.info[instr->definitions[0].tempId()].set_constant(v);
1040 else
1041 ctx.info[instr->definitions[0].tempId()].set_literal(v);
1042 }
1043 break;
1044 }
1045 case aco_opcode::s_bfm_b32: {
1046 if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) {
1047 unsigned size = instr->operands[0].constantValue() & 0x1f;
1048 unsigned start = instr->operands[1].constantValue() & 0x1f;
1049 uint32_t v = ((1u << size) - 1u) << start;
1050 if (v <= 64 || v >= 0xfffffff0)
1051 ctx.info[instr->definitions[0].tempId()].set_constant(v);
1052 else
1053 ctx.info[instr->definitions[0].tempId()].set_literal(v);
1054 }
1055 }
1056 case aco_opcode::v_mul_f32: { /* omod */
1057 /* TODO: try to move the negate/abs modifier to the consumer instead */
1058 if (instr->usesModifiers())
1059 break;
1060
1061 for (unsigned i = 0; i < 2; i++) {
1062 if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) {
1063 if (instr->operands[!i].constantValue() == 0x40000000) { /* 2.0 */
1064 ctx.info[instr->operands[i].tempId()].set_omod2(instr->definitions[0].getTemp());
1065 } else if (instr->operands[!i].constantValue() == 0x40800000) { /* 4.0 */
1066 ctx.info[instr->operands[i].tempId()].set_omod4(instr->definitions[0].getTemp());
1067 } else if (instr->operands[!i].constantValue() == 0x3f000000) { /* 0.5 */
1068 ctx.info[instr->operands[i].tempId()].set_omod5(instr->definitions[0].getTemp());
1069 } else if (instr->operands[!i].constantValue() == 0x3f800000 &&
1070 !block.fp_mode.must_flush_denorms32) { /* 1.0 */
1071 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp());
1072 } else {
1073 continue;
1074 }
1075 break;
1076 }
1077 }
1078 break;
1079 }
1080 case aco_opcode::v_and_b32: /* abs */
1081 if (!instr->usesModifiers() && instr->operands[0].constantEquals(0x7FFFFFFF) &&
1082 instr->operands[1].isTemp() && instr->operands[1].getTemp().type() == RegType::vgpr)
1083 ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp());
1084 else
1085 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1086 break;
1087 case aco_opcode::v_xor_b32: { /* neg */
1088 if (!instr->usesModifiers() && instr->operands[0].constantEquals(0x80000000u) && instr->operands[1].isTemp()) {
1089 if (ctx.info[instr->operands[1].tempId()].is_neg()) {
1090 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1091 } else if (instr->operands[1].getTemp().type() == RegType::vgpr) {
1092 if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */
1093 instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp);
1094 instr->opcode = aco_opcode::v_or_b32;
1095 ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp());
1096 } else {
1097 ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp());
1098 }
1099 }
1100 } else {
1101 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1102 }
1103 break;
1104 }
1105 case aco_opcode::v_med3_f32: { /* clamp */
1106 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr.get());
1107 if (vop3->abs[0] || vop3->abs[1] || vop3->abs[2] ||
1108 vop3->neg[0] || vop3->neg[1] || vop3->neg[2] ||
1109 vop3->omod != 0 || vop3->opsel != 0)
1110 break;
1111
1112 unsigned idx = 0;
1113 bool found_zero = false, found_one = false;
1114 for (unsigned i = 0; i < 3; i++)
1115 {
1116 if (instr->operands[i].constantEquals(0))
1117 found_zero = true;
1118 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
1119 found_one = true;
1120 else
1121 idx = i;
1122 }
1123 if (found_zero && found_one && instr->operands[idx].isTemp()) {
1124 ctx.info[instr->operands[idx].tempId()].set_clamp(instr->definitions[0].getTemp());
1125 }
1126 break;
1127 }
1128 case aco_opcode::v_cndmask_b32:
1129 if (instr->operands[0].constantEquals(0) &&
1130 instr->operands[1].constantEquals(0xFFFFFFFF) &&
1131 instr->operands[2].isTemp())
1132 ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp());
1133 else if (instr->operands[0].constantEquals(0) &&
1134 instr->operands[1].constantEquals(0x3f800000u) &&
1135 instr->operands[2].isTemp())
1136 ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp());
1137
1138 ctx.info[instr->operands[2].tempId()].set_vcc_hint();
1139 break;
1140 case aco_opcode::v_cmp_lg_u32:
1141 if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */
1142 instr->operands[0].constantEquals(0) &&
1143 instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc())
1144 ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp);
1145 break;
1146 case aco_opcode::p_phi:
1147 case aco_opcode::p_linear_phi: {
1148 /* lower_bool_phis() can create phis like this */
1149 bool all_same_temp = instr->operands[0].isTemp();
1150 /* this check is needed when moving uniform loop counters out of a divergent loop */
1151 if (all_same_temp)
1152 all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass();
1153 for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) {
1154 if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId())
1155 all_same_temp = false;
1156 }
1157 if (all_same_temp) {
1158 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1159 } else {
1160 bool all_undef = instr->operands[0].isUndefined();
1161 for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) {
1162 if (!instr->operands[i].isUndefined())
1163 all_undef = false;
1164 }
1165 if (all_undef)
1166 ctx.info[instr->definitions[0].tempId()].set_undefined();
1167 }
1168 break;
1169 }
1170 case aco_opcode::v_add_u32:
1171 case aco_opcode::v_add_co_u32:
1172 case aco_opcode::v_add_co_u32_e64:
1173 case aco_opcode::s_add_i32:
1174 case aco_opcode::s_add_u32:
1175 ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get());
1176 break;
1177 case aco_opcode::s_not_b32:
1178 case aco_opcode::s_not_b64:
1179 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1180 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1181 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].temp);
1182 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1183 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1184 ctx.info[instr->definitions[1].tempId()].set_scc_invert(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1185 }
1186 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1187 break;
1188 case aco_opcode::s_and_b32:
1189 case aco_opcode::s_and_b64:
1190 if (fixed_to_exec(instr->operands[1]) && instr->operands[0].isTemp()) {
1191 if (ctx.info[instr->operands[0].tempId()].is_uniform_bool()) {
1192 /* Try to get rid of the superfluous s_cselect + s_and_b64 that comes from turning a uniform bool into divergent */
1193 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp);
1194 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].temp);
1195 break;
1196 } else if (ctx.info[instr->operands[0].tempId()].is_uniform_bitwise()) {
1197 /* Try to get rid of the superfluous s_and_b64, since the uniform bitwise instruction already produces the same SCC */
1198 ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1199 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(ctx.info[instr->operands[0].tempId()].instr->definitions[1].getTemp());
1200 break;
1201 }
1202 }
1203 /* fallthrough */
1204 case aco_opcode::s_or_b32:
1205 case aco_opcode::s_or_b64:
1206 case aco_opcode::s_xor_b32:
1207 case aco_opcode::s_xor_b64:
1208 if (std::all_of(instr->operands.begin(), instr->operands.end(), [&ctx](const Operand& op) {
1209 return op.isTemp() && (ctx.info[op.tempId()].is_uniform_bool() || ctx.info[op.tempId()].is_uniform_bitwise());
1210 })) {
1211 ctx.info[instr->definitions[0].tempId()].set_uniform_bitwise();
1212 }
1213 /* fallthrough */
1214 case aco_opcode::s_lshl_b32:
1215 case aco_opcode::v_or_b32:
1216 case aco_opcode::v_lshlrev_b32:
1217 ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get());
1218 break;
1219 case aco_opcode::v_min_f32:
1220 case aco_opcode::v_min_f16:
1221 case aco_opcode::v_min_u32:
1222 case aco_opcode::v_min_i32:
1223 case aco_opcode::v_min_u16:
1224 case aco_opcode::v_min_i16:
1225 case aco_opcode::v_max_f32:
1226 case aco_opcode::v_max_f16:
1227 case aco_opcode::v_max_u32:
1228 case aco_opcode::v_max_i32:
1229 case aco_opcode::v_max_u16:
1230 case aco_opcode::v_max_i16:
1231 ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get());
1232 break;
1233 case aco_opcode::v_cmp_lt_f32:
1234 case aco_opcode::v_cmp_eq_f32:
1235 case aco_opcode::v_cmp_le_f32:
1236 case aco_opcode::v_cmp_gt_f32:
1237 case aco_opcode::v_cmp_lg_f32:
1238 case aco_opcode::v_cmp_ge_f32:
1239 case aco_opcode::v_cmp_o_f32:
1240 case aco_opcode::v_cmp_u_f32:
1241 case aco_opcode::v_cmp_nge_f32:
1242 case aco_opcode::v_cmp_nlg_f32:
1243 case aco_opcode::v_cmp_ngt_f32:
1244 case aco_opcode::v_cmp_nle_f32:
1245 case aco_opcode::v_cmp_neq_f32:
1246 case aco_opcode::v_cmp_nlt_f32:
1247 ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get());
1248 break;
1249 case aco_opcode::s_cselect_b64:
1250 case aco_opcode::s_cselect_b32:
1251 if (instr->operands[0].constantEquals((unsigned) -1) &&
1252 instr->operands[1].constantEquals(0)) {
1253 /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */
1254 ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp());
1255 }
1256 if (instr->operands[2].isTemp() && ctx.info[instr->operands[2].tempId()].is_scc_invert()) {
1257 /* Flip the operands to get rid of the scc_invert instruction */
1258 std::swap(instr->operands[0], instr->operands[1]);
1259 instr->operands[2].setTemp(ctx.info[instr->operands[2].tempId()].temp);
1260 }
1261 break;
1262 case aco_opcode::p_wqm:
1263 if (instr->operands[0].isTemp() &&
1264 ctx.info[instr->operands[0].tempId()].is_scc_invert()) {
1265 ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp());
1266 }
1267 break;
1268 default:
1269 break;
1270 }
1271 }
1272
1273 ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse)
1274 {
1275 *ordered = *unordered = op;
1276 switch (op) {
1277 #define CMP(ord, unord) \
1278 case aco_opcode::v_cmp_##ord##_f32:\
1279 case aco_opcode::v_cmp_n##unord##_f32:\
1280 *ordered = aco_opcode::v_cmp_##ord##_f32;\
1281 *unordered = aco_opcode::v_cmp_n##unord##_f32;\
1282 *inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\
1283 return true;
1284 CMP(lt, /*n*/ge)
1285 CMP(eq, /*n*/lg)
1286 CMP(le, /*n*/gt)
1287 CMP(gt, /*n*/le)
1288 CMP(lg, /*n*/eq)
1289 CMP(ge, /*n*/lt)
1290 #undef CMP
1291 default:
1292 return false;
1293 }
1294 }
1295
1296 aco_opcode get_ordered(aco_opcode op)
1297 {
1298 aco_opcode ordered, unordered, inverse;
1299 return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::last_opcode;
1300 }
1301
1302 aco_opcode get_unordered(aco_opcode op)
1303 {
1304 aco_opcode ordered, unordered, inverse;
1305 return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::last_opcode;
1306 }
1307
1308 aco_opcode get_inverse(aco_opcode op)
1309 {
1310 aco_opcode ordered, unordered, inverse;
1311 return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::last_opcode;
1312 }
1313
1314 bool is_cmp(aco_opcode op)
1315 {
1316 aco_opcode ordered, unordered, inverse;
1317 return get_cmp_info(op, &ordered, &unordered, &inverse);
1318 }
1319
1320 unsigned original_temp_id(opt_ctx &ctx, Temp tmp)
1321 {
1322 if (ctx.info[tmp.id()].is_temp())
1323 return ctx.info[tmp.id()].temp.id();
1324 else
1325 return tmp.id();
1326 }
1327
1328 void decrease_uses(opt_ctx &ctx, Instruction* instr)
1329 {
1330 if (!--ctx.uses[instr->definitions[0].tempId()]) {
1331 for (const Operand& op : instr->operands) {
1332 if (op.isTemp())
1333 ctx.uses[op.tempId()]--;
1334 }
1335 }
1336 }
1337
1338 Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false)
1339 {
1340 if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels))
1341 return nullptr;
1342 if (!ignore_uses && ctx.uses[op.tempId()] > 1)
1343 return nullptr;
1344
1345 Instruction *instr = ctx.info[op.tempId()].instr;
1346
1347 if (instr->definitions.size() == 2) {
1348 assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId());
1349 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1350 return nullptr;
1351 }
1352
1353 return instr;
1354 }
1355
1356 /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b)
1357 * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */
1358 bool combine_ordering_test(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1359 {
1360 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1361 return false;
1362 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1363 return false;
1364
1365 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1366
1367 bool neg[2] = {false, false};
1368 bool abs[2] = {false, false};
1369 uint8_t opsel = 0;
1370 Instruction *op_instr[2];
1371 Temp op[2];
1372
1373 for (unsigned i = 0; i < 2; i++) {
1374 op_instr[i] = follow_operand(ctx, instr->operands[i], true);
1375 if (!op_instr[i])
1376 return false;
1377
1378 aco_opcode expected_cmp = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1379
1380 if (op_instr[i]->opcode != expected_cmp)
1381 return false;
1382 if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp())
1383 return false;
1384
1385 if (op_instr[i]->isVOP3()) {
1386 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(op_instr[i]);
1387 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1388 return false;
1389 neg[i] = vop3->neg[0];
1390 abs[i] = vop3->abs[0];
1391 opsel |= (vop3->opsel & 1) << i;
1392 }
1393
1394 Temp op0 = op_instr[i]->operands[0].getTemp();
1395 Temp op1 = op_instr[i]->operands[1].getTemp();
1396 if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1))
1397 return false;
1398
1399 op[i] = op1;
1400 }
1401
1402 if (op[1].type() == RegType::sgpr)
1403 std::swap(op[0], op[1]);
1404 unsigned num_sgprs = (op[0].type() == RegType::sgpr) + (op[1].type() == RegType::sgpr);
1405 if (num_sgprs > (ctx.program->chip_class >= GFX10 ? 2 : 1))
1406 return false;
1407
1408 ctx.uses[op[0].id()]++;
1409 ctx.uses[op[1].id()]++;
1410 decrease_uses(ctx, op_instr[0]);
1411 decrease_uses(ctx, op_instr[1]);
1412
1413 aco_opcode new_op = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1414 Instruction *new_instr;
1415 if (neg[0] || neg[1] || abs[0] || abs[1] || opsel || num_sgprs > 1) {
1416 VOP3A_instruction *vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1417 for (unsigned i = 0; i < 2; i++) {
1418 vop3->neg[i] = neg[i];
1419 vop3->abs[i] = abs[i];
1420 }
1421 vop3->opsel = opsel;
1422 new_instr = static_cast<Instruction *>(vop3);
1423 } else {
1424 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1425 }
1426 new_instr->operands[0] = Operand(op[0]);
1427 new_instr->operands[1] = Operand(op[1]);
1428 new_instr->definitions[0] = instr->definitions[0];
1429
1430 ctx.info[instr->definitions[0].tempId()].label = 0;
1431 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1432
1433 instr.reset(new_instr);
1434
1435 return true;
1436 }
1437
1438 /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b)
1439 * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */
1440 bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1441 {
1442 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1443 return false;
1444 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1445 return false;
1446
1447 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1448 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32;
1449
1450 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1451 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1452 if (!nan_test || !cmp)
1453 return false;
1454
1455 if (cmp->opcode == expected_nan_test)
1456 std::swap(nan_test, cmp);
1457 else if (nan_test->opcode != expected_nan_test)
1458 return false;
1459
1460 if (!is_cmp(cmp->opcode))
1461 return false;
1462
1463 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1464 return false;
1465 if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp())
1466 return false;
1467
1468 unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp());
1469 unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp());
1470 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1471 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1472 if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1)
1473 return false;
1474 if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1)
1475 return false;
1476
1477 ctx.uses[cmp->operands[0].tempId()]++;
1478 ctx.uses[cmp->operands[1].tempId()]++;
1479 decrease_uses(ctx, nan_test);
1480 decrease_uses(ctx, cmp);
1481
1482 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1483 Instruction *new_instr;
1484 if (cmp->isVOP3()) {
1485 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1486 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1487 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1488 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1489 new_vop3->clamp = cmp_vop3->clamp;
1490 new_vop3->omod = cmp_vop3->omod;
1491 new_vop3->opsel = cmp_vop3->opsel;
1492 new_instr = new_vop3;
1493 } else {
1494 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1495 }
1496 new_instr->operands[0] = cmp->operands[0];
1497 new_instr->operands[1] = cmp->operands[1];
1498 new_instr->definitions[0] = instr->definitions[0];
1499
1500 ctx.info[instr->definitions[0].tempId()].label = 0;
1501 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1502
1503 instr.reset(new_instr);
1504
1505 return true;
1506 }
1507
1508 /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b)
1509 * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */
1510 bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1511 {
1512 if (instr->definitions[0].regClass() != ctx.program->lane_mask)
1513 return false;
1514 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1515 return false;
1516
1517 bool is_or = instr->opcode == aco_opcode::s_or_b64 || instr->opcode == aco_opcode::s_or_b32;
1518
1519 Instruction *nan_test = follow_operand(ctx, instr->operands[0], true);
1520 Instruction *cmp = follow_operand(ctx, instr->operands[1], true);
1521
1522 if (!nan_test || !cmp)
1523 return false;
1524
1525 aco_opcode expected_nan_test = is_or ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32;
1526 if (cmp->opcode == expected_nan_test)
1527 std::swap(nan_test, cmp);
1528 else if (nan_test->opcode != expected_nan_test)
1529 return false;
1530
1531 if (!is_cmp(cmp->opcode))
1532 return false;
1533
1534 if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp())
1535 return false;
1536 if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp())
1537 return false;
1538
1539 unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp());
1540 unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp());
1541 if (prop_nan0 != prop_nan1)
1542 return false;
1543
1544 if (nan_test->isVOP3()) {
1545 VOP3A_instruction *vop3 = static_cast<VOP3A_instruction*>(nan_test);
1546 if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel == 1 || vop3->opsel == 2)
1547 return false;
1548 }
1549
1550 int constant_operand = -1;
1551 for (unsigned i = 0; i < 2; i++) {
1552 if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) {
1553 constant_operand = !i;
1554 break;
1555 }
1556 }
1557 if (constant_operand == -1)
1558 return false;
1559
1560 uint32_t constant;
1561 if (cmp->operands[constant_operand].isConstant()) {
1562 constant = cmp->operands[constant_operand].constantValue();
1563 } else if (cmp->operands[constant_operand].isTemp()) {
1564 Temp tmp = cmp->operands[constant_operand].getTemp();
1565 unsigned id = original_temp_id(ctx, tmp);
1566 if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal())
1567 return false;
1568 constant = ctx.info[id].val;
1569 } else {
1570 return false;
1571 }
1572
1573 float constantf;
1574 memcpy(&constantf, &constant, 4);
1575 if (isnan(constantf))
1576 return false;
1577
1578 if (cmp->operands[0].isTemp())
1579 ctx.uses[cmp->operands[0].tempId()]++;
1580 if (cmp->operands[1].isTemp())
1581 ctx.uses[cmp->operands[1].tempId()]++;
1582 decrease_uses(ctx, nan_test);
1583 decrease_uses(ctx, cmp);
1584
1585 aco_opcode new_op = is_or ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode);
1586 Instruction *new_instr;
1587 if (cmp->isVOP3()) {
1588 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_op, asVOP3(Format::VOPC), 2, 1);
1589 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1590 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1591 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1592 new_vop3->clamp = cmp_vop3->clamp;
1593 new_vop3->omod = cmp_vop3->omod;
1594 new_vop3->opsel = cmp_vop3->opsel;
1595 new_instr = new_vop3;
1596 } else {
1597 new_instr = create_instruction<VOPC_instruction>(new_op, Format::VOPC, 2, 1);
1598 }
1599 new_instr->operands[0] = cmp->operands[0];
1600 new_instr->operands[1] = cmp->operands[1];
1601 new_instr->definitions[0] = instr->definitions[0];
1602
1603 ctx.info[instr->definitions[0].tempId()].label = 0;
1604 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1605
1606 instr.reset(new_instr);
1607
1608 return true;
1609 }
1610
1611 /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */
1612 bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr<Instruction>& instr)
1613 {
1614 if (instr->opcode != aco_opcode::s_not_b64)
1615 return false;
1616 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1617 return false;
1618 if (!instr->operands[0].isTemp())
1619 return false;
1620
1621 Instruction *cmp = follow_operand(ctx, instr->operands[0]);
1622 if (!cmp)
1623 return false;
1624
1625 aco_opcode new_opcode = get_inverse(cmp->opcode);
1626 if (new_opcode == aco_opcode::last_opcode)
1627 return false;
1628
1629 if (cmp->operands[0].isTemp())
1630 ctx.uses[cmp->operands[0].tempId()]++;
1631 if (cmp->operands[1].isTemp())
1632 ctx.uses[cmp->operands[1].tempId()]++;
1633 decrease_uses(ctx, cmp);
1634
1635 Instruction *new_instr;
1636 if (cmp->isVOP3()) {
1637 VOP3A_instruction *new_vop3 = create_instruction<VOP3A_instruction>(new_opcode, asVOP3(Format::VOPC), 2, 1);
1638 VOP3A_instruction *cmp_vop3 = static_cast<VOP3A_instruction*>(cmp);
1639 memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs));
1640 memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg));
1641 new_vop3->clamp = cmp_vop3->clamp;
1642 new_vop3->omod = cmp_vop3->omod;
1643 new_vop3->opsel = cmp_vop3->opsel;
1644 new_instr = new_vop3;
1645 } else {
1646 new_instr = create_instruction<VOPC_instruction>(new_opcode, Format::VOPC, 2, 1);
1647 }
1648 new_instr->operands[0] = cmp->operands[0];
1649 new_instr->operands[1] = cmp->operands[1];
1650 new_instr->definitions[0] = instr->definitions[0];
1651
1652 ctx.info[instr->definitions[0].tempId()].label = 0;
1653 ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr);
1654
1655 instr.reset(new_instr);
1656
1657 return true;
1658 }
1659
1660 /* op1(op2(1, 2), 0) if swap = false
1661 * op1(0, op2(1, 2)) if swap = true */
1662 bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2,
1663 Instruction* op1_instr, bool swap, const char *shuffle_str,
1664 Operand operands[3], bool neg[3], bool abs[3], uint8_t *opsel,
1665 bool *op1_clamp, uint8_t *op1_omod,
1666 bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel)
1667 {
1668 /* checks */
1669 if (op1_instr->opcode != op1)
1670 return false;
1671
1672 Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]);
1673 if (!op2_instr || op2_instr->opcode != op2)
1674 return false;
1675 if (fixed_to_exec(op2_instr->operands[0]) || fixed_to_exec(op2_instr->operands[1]))
1676 return false;
1677
1678 VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op1_instr) : NULL;
1679 VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast<VOP3A_instruction *>(op2_instr) : NULL;
1680
1681 /* don't support inbetween clamp/omod */
1682 if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod))
1683 return false;
1684
1685 /* get operands and modifiers and check inbetween modifiers */
1686 *op1_clamp = op1_vop3 ? op1_vop3->clamp : false;
1687 *op1_omod = op1_vop3 ? op1_vop3->omod : 0u;
1688
1689 if (inbetween_neg)
1690 *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false;
1691 else if (op1_vop3 && op1_vop3->neg[swap])
1692 return false;
1693
1694 if (inbetween_abs)
1695 *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false;
1696 else if (op1_vop3 && op1_vop3->abs[swap])
1697 return false;
1698
1699 if (inbetween_opsel)
1700 *inbetween_opsel = op1_vop3 ? op1_vop3->opsel & (1 << swap) : false;
1701 else if (op1_vop3 && op1_vop3->opsel & (1 << swap))
1702 return false;
1703
1704 int shuffle[3];
1705 shuffle[shuffle_str[0] - '0'] = 0;
1706 shuffle[shuffle_str[1] - '0'] = 1;
1707 shuffle[shuffle_str[2] - '0'] = 2;
1708
1709 operands[shuffle[0]] = op1_instr->operands[!swap];
1710 neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false;
1711 abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false;
1712 if (op1_vop3 && op1_vop3->opsel & (1 << !swap))
1713 *opsel |= 1 << shuffle[0];
1714
1715 for (unsigned i = 0; i < 2; i++) {
1716 operands[shuffle[i + 1]] = op2_instr->operands[i];
1717 neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false;
1718 abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false;
1719 if (op2_vop3 && op2_vop3->opsel & (1 << i))
1720 *opsel |= 1 << shuffle[i + 1];
1721 }
1722
1723 /* check operands */
1724 if (!check_vop3_operands(ctx, 3, operands))
1725 return false;
1726
1727 return true;
1728 }
1729
1730 void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr<Instruction>& instr,
1731 Operand operands[3], bool neg[3], bool abs[3], uint8_t opsel,
1732 bool clamp, unsigned omod)
1733 {
1734 VOP3A_instruction *new_instr = create_instruction<VOP3A_instruction>(opcode, Format::VOP3A, 3, 1);
1735 memcpy(new_instr->abs, abs, sizeof(bool[3]));
1736 memcpy(new_instr->neg, neg, sizeof(bool[3]));
1737 new_instr->clamp = clamp;
1738 new_instr->omod = omod;
1739 new_instr->opsel = opsel;
1740 new_instr->operands[0] = operands[0];
1741 new_instr->operands[1] = operands[1];
1742 new_instr->operands[2] = operands[2];
1743 new_instr->definitions[0] = instr->definitions[0];
1744 ctx.info[instr->definitions[0].tempId()].label = 0;
1745
1746 instr.reset(new_instr);
1747 }
1748
1749 bool combine_three_valu_op(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops)
1750 {
1751 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1752 (label_omod_success | label_clamp_success);
1753
1754 for (unsigned swap = 0; swap < 2; swap++) {
1755 if (!((1 << swap) & ops))
1756 continue;
1757
1758 Operand operands[3];
1759 bool neg[3], abs[3], clamp;
1760 uint8_t opsel = 0, omod = 0;
1761 if (match_op3_for_vop3(ctx, instr->opcode, op2,
1762 instr.get(), swap, shuffle,
1763 operands, neg, abs, &opsel,
1764 &clamp, &omod, NULL, NULL, NULL)) {
1765 ctx.uses[instr->operands[swap].tempId()]--;
1766 create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod);
1767 if (omod_clamp & label_omod_success)
1768 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1769 if (omod_clamp & label_clamp_success)
1770 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1771 return true;
1772 }
1773 }
1774 return false;
1775 }
1776
1777 bool combine_minmax(opt_ctx& ctx, aco_ptr<Instruction>& instr, aco_opcode opposite, aco_opcode minmax3)
1778 {
1779 if (combine_three_valu_op(ctx, instr, instr->opcode, minmax3, "012", 1 | 2))
1780 return true;
1781
1782 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1783 (label_omod_success | label_clamp_success);
1784
1785 /* min(-max(a, b), c) -> min3(-a, -b, c) *
1786 * max(-min(a, b), c) -> max3(-a, -b, c) */
1787 for (unsigned swap = 0; swap < 2; swap++) {
1788 Operand operands[3];
1789 bool neg[3], abs[3], clamp;
1790 uint8_t opsel = 0, omod = 0;
1791 bool inbetween_neg;
1792 if (match_op3_for_vop3(ctx, instr->opcode, opposite,
1793 instr.get(), swap, "012",
1794 operands, neg, abs, &opsel,
1795 &clamp, &omod, &inbetween_neg, NULL, NULL) &&
1796 inbetween_neg) {
1797 ctx.uses[instr->operands[swap].tempId()]--;
1798 neg[1] = true;
1799 neg[2] = true;
1800 create_vop3_for_op3(ctx, minmax3, instr, operands, neg, abs, opsel, clamp, omod);
1801 if (omod_clamp & label_omod_success)
1802 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
1803 if (omod_clamp & label_clamp_success)
1804 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
1805 return true;
1806 }
1807 }
1808 return false;
1809 }
1810
1811 /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b)
1812 * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b)
1813 * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b)
1814 * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b)
1815 * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b)
1816 * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */
1817 bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1818 {
1819 /* checks */
1820 if (!instr->operands[0].isTemp())
1821 return false;
1822 if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()])
1823 return false;
1824
1825 Instruction *op2_instr = follow_operand(ctx, instr->operands[0]);
1826 if (!op2_instr)
1827 return false;
1828 switch (op2_instr->opcode) {
1829 case aco_opcode::s_and_b32:
1830 case aco_opcode::s_or_b32:
1831 case aco_opcode::s_xor_b32:
1832 case aco_opcode::s_and_b64:
1833 case aco_opcode::s_or_b64:
1834 case aco_opcode::s_xor_b64:
1835 break;
1836 default:
1837 return false;
1838 }
1839
1840 /* create instruction */
1841 std::swap(instr->definitions[0], op2_instr->definitions[0]);
1842 std::swap(instr->definitions[1], op2_instr->definitions[1]);
1843 ctx.uses[instr->operands[0].tempId()]--;
1844 ctx.info[op2_instr->definitions[0].tempId()].label = 0;
1845
1846 switch (op2_instr->opcode) {
1847 case aco_opcode::s_and_b32:
1848 op2_instr->opcode = aco_opcode::s_nand_b32;
1849 break;
1850 case aco_opcode::s_or_b32:
1851 op2_instr->opcode = aco_opcode::s_nor_b32;
1852 break;
1853 case aco_opcode::s_xor_b32:
1854 op2_instr->opcode = aco_opcode::s_xnor_b32;
1855 break;
1856 case aco_opcode::s_and_b64:
1857 op2_instr->opcode = aco_opcode::s_nand_b64;
1858 break;
1859 case aco_opcode::s_or_b64:
1860 op2_instr->opcode = aco_opcode::s_nor_b64;
1861 break;
1862 case aco_opcode::s_xor_b64:
1863 op2_instr->opcode = aco_opcode::s_xnor_b64;
1864 break;
1865 default:
1866 break;
1867 }
1868
1869 return true;
1870 }
1871
1872 /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b)
1873 * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b)
1874 * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b)
1875 * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */
1876 bool combine_salu_n2(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1877 {
1878 if (instr->definitions[0].isTemp() && ctx.info[instr->definitions[0].tempId()].is_uniform_bool())
1879 return false;
1880
1881 for (unsigned i = 0; i < 2; i++) {
1882 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1883 if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64))
1884 continue;
1885 if (ctx.uses[op2_instr->definitions[1].tempId()] || fixed_to_exec(op2_instr->operands[0]))
1886 continue;
1887
1888 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
1889 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
1890 continue;
1891
1892 ctx.uses[instr->operands[i].tempId()]--;
1893 instr->operands[0] = instr->operands[!i];
1894 instr->operands[1] = op2_instr->operands[0];
1895 ctx.info[instr->definitions[0].tempId()].label = 0;
1896
1897 switch (instr->opcode) {
1898 case aco_opcode::s_and_b32:
1899 instr->opcode = aco_opcode::s_andn2_b32;
1900 break;
1901 case aco_opcode::s_or_b32:
1902 instr->opcode = aco_opcode::s_orn2_b32;
1903 break;
1904 case aco_opcode::s_and_b64:
1905 instr->opcode = aco_opcode::s_andn2_b64;
1906 break;
1907 case aco_opcode::s_or_b64:
1908 instr->opcode = aco_opcode::s_orn2_b64;
1909 break;
1910 default:
1911 break;
1912 }
1913
1914 return true;
1915 }
1916 return false;
1917 }
1918
1919 /* s_add_{i32,u32}(a, s_lshl_b32(b, <n>)) -> s_lshl<n>_add_u32(a, b) */
1920 bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr<Instruction>& instr)
1921 {
1922 if (instr->opcode == aco_opcode::s_add_i32 && ctx.uses[instr->definitions[1].tempId()])
1923 return false;
1924
1925 for (unsigned i = 0; i < 2; i++) {
1926 Instruction *op2_instr = follow_operand(ctx, instr->operands[i]);
1927 if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 ||
1928 ctx.uses[op2_instr->definitions[1].tempId()])
1929 continue;
1930 if (!op2_instr->operands[1].isConstant() || fixed_to_exec(op2_instr->operands[0]))
1931 continue;
1932
1933 uint32_t shift = op2_instr->operands[1].constantValue();
1934 if (shift < 1 || shift > 4)
1935 continue;
1936
1937 if (instr->operands[!i].isLiteral() && op2_instr->operands[0].isLiteral() &&
1938 instr->operands[!i].constantValue() != op2_instr->operands[0].constantValue())
1939 continue;
1940
1941 ctx.uses[instr->operands[i].tempId()]--;
1942 instr->operands[1] = instr->operands[!i];
1943 instr->operands[0] = op2_instr->operands[0];
1944 ctx.info[instr->definitions[0].tempId()].label = 0;
1945
1946 instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32,
1947 aco_opcode::s_lshl2_add_u32,
1948 aco_opcode::s_lshl3_add_u32,
1949 aco_opcode::s_lshl4_add_u32})[shift - 1];
1950
1951 return true;
1952 }
1953 return false;
1954 }
1955
1956 bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only)
1957 {
1958 switch (op) {
1959 #define MINMAX(type, gfx9) \
1960 case aco_opcode::v_min_##type:\
1961 case aco_opcode::v_max_##type:\
1962 case aco_opcode::v_med3_##type:\
1963 *min = aco_opcode::v_min_##type;\
1964 *max = aco_opcode::v_max_##type;\
1965 *med3 = aco_opcode::v_med3_##type;\
1966 *min3 = aco_opcode::v_min3_##type;\
1967 *max3 = aco_opcode::v_max3_##type;\
1968 *some_gfx9_only = gfx9;\
1969 return true;
1970 MINMAX(f32, false)
1971 MINMAX(u32, false)
1972 MINMAX(i32, false)
1973 MINMAX(f16, true)
1974 MINMAX(u16, true)
1975 MINMAX(i16, true)
1976 #undef MINMAX
1977 default:
1978 return false;
1979 }
1980 }
1981
1982 /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb
1983 * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */
1984 bool combine_clamp(opt_ctx& ctx, aco_ptr<Instruction>& instr,
1985 aco_opcode min, aco_opcode max, aco_opcode med)
1986 {
1987 /* TODO: GLSL's clamp(x, minVal, maxVal) and SPIR-V's
1988 * FClamp(x, minVal, maxVal)/NClamp(x, minVal, maxVal) are undefined if
1989 * minVal > maxVal, which means we can always select it to a v_med3_f32 */
1990 aco_opcode other_op;
1991 if (instr->opcode == min)
1992 other_op = max;
1993 else if (instr->opcode == max)
1994 other_op = min;
1995 else
1996 return false;
1997
1998 uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label &
1999 (label_omod_success | label_clamp_success);
2000
2001 for (unsigned swap = 0; swap < 2; swap++) {
2002 Operand operands[3];
2003 bool neg[3], abs[3], clamp;
2004 uint8_t opsel = 0, omod = 0;
2005 if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap,
2006 "012", operands, neg, abs, &opsel,
2007 &clamp, &omod, NULL, NULL, NULL)) {
2008 int const0_idx = -1, const1_idx = -1;
2009 uint32_t const0 = 0, const1 = 0;
2010 for (int i = 0; i < 3; i++) {
2011 uint32_t val;
2012 if (operands[i].isConstant()) {
2013 val = operands[i].constantValue();
2014 } else if (operands[i].isTemp() && ctx.info[operands[i].tempId()].is_constant_or_literal()) {
2015 val = ctx.info[operands[i].tempId()].val;
2016 } else {
2017 continue;
2018 }
2019 if (const0_idx >= 0) {
2020 const1_idx = i;
2021 const1 = val;
2022 } else {
2023 const0_idx = i;
2024 const0 = val;
2025 }
2026 }
2027 if (const0_idx < 0 || const1_idx < 0)
2028 continue;
2029
2030 if (opsel & (1 << const0_idx))
2031 const0 >>= 16;
2032 if (opsel & (1 << const1_idx))
2033 const1 >>= 16;
2034
2035 int lower_idx = const0_idx;
2036 switch (min) {
2037 case aco_opcode::v_min_f32:
2038 case aco_opcode::v_min_f16: {
2039 float const0_f, const1_f;
2040 if (min == aco_opcode::v_min_f32) {
2041 memcpy(&const0_f, &const0, 4);
2042 memcpy(&const1_f, &const1, 4);
2043 } else {
2044 const0_f = _mesa_half_to_float(const0);
2045 const1_f = _mesa_half_to_float(const1);
2046 }
2047 if (abs[const0_idx]) const0_f = fabsf(const0_f);
2048 if (abs[const1_idx]) const1_f = fabsf(const1_f);
2049 if (neg[const0_idx]) const0_f = -const0_f;
2050 if (neg[const1_idx]) const1_f = -const1_f;
2051 lower_idx = const0_f < const1_f ? const0_idx : const1_idx;
2052 break;
2053 }
2054 case aco_opcode::v_min_u32: {
2055 lower_idx = const0 < const1 ? const0_idx : const1_idx;
2056 break;
2057 }
2058 case aco_opcode::v_min_u16: {
2059 lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx;
2060 break;
2061 }
2062 case aco_opcode::v_min_i32: {
2063 int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0;
2064 int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1;
2065 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2066 break;
2067 }
2068 case aco_opcode::v_min_i16: {
2069 int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0;
2070 int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1;
2071 lower_idx = const0_i < const1_i ? const0_idx : const1_idx;
2072 break;
2073 }
2074 default:
2075 break;
2076 }
2077 int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx;
2078
2079 if (instr->opcode == min) {
2080 if (upper_idx != 0 || lower_idx == 0)
2081 return false;
2082 } else {
2083 if (upper_idx == 0 || lower_idx != 0)
2084 return false;
2085 }
2086
2087 ctx.uses[instr->operands[swap].tempId()]--;
2088 create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod);
2089 if (omod_clamp & label_omod_success)
2090 ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get());
2091 if (omod_clamp & label_clamp_success)
2092 ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get());
2093
2094 return true;
2095 }
2096 }
2097
2098 return false;
2099 }
2100
2101
2102 void apply_sgprs(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2103 {
2104 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
2105 instr->opcode == aco_opcode::v_lshrrev_b64 ||
2106 instr->opcode == aco_opcode::v_ashrrev_i64;
2107
2108 /* find candidates and create the set of sgprs already read */
2109 unsigned sgpr_ids[2] = {0, 0};
2110 uint32_t operand_mask = 0;
2111 bool has_literal = false;
2112 for (unsigned i = 0; i < instr->operands.size(); i++) {
2113 if (instr->operands[i].isLiteral())
2114 has_literal = true;
2115 if (!instr->operands[i].isTemp())
2116 continue;
2117 if (instr->operands[i].getTemp().type() == RegType::sgpr) {
2118 if (instr->operands[i].tempId() != sgpr_ids[0])
2119 sgpr_ids[!!sgpr_ids[0]] = instr->operands[i].tempId();
2120 }
2121 ssa_info& info = ctx.info[instr->operands[i].tempId()];
2122 if (info.is_temp() && info.temp.type() == RegType::sgpr)
2123 operand_mask |= 1u << i;
2124 }
2125 unsigned max_sgprs = 1;
2126 if (ctx.program->chip_class >= GFX10 && !is_shift64)
2127 max_sgprs = 2;
2128 if (has_literal)
2129 max_sgprs--;
2130
2131 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
2132
2133 /* keep on applying sgprs until there is nothing left to be done */
2134 while (operand_mask) {
2135 uint32_t sgpr_idx = 0;
2136 uint32_t sgpr_info_id = 0;
2137 uint32_t mask = operand_mask;
2138 /* choose a sgpr */
2139 while (mask) {
2140 unsigned i = u_bit_scan(&mask);
2141 uint16_t uses = ctx.uses[instr->operands[i].tempId()];
2142 if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) {
2143 sgpr_idx = i;
2144 sgpr_info_id = instr->operands[i].tempId();
2145 }
2146 }
2147 operand_mask &= ~(1u << sgpr_idx);
2148
2149 /* Applying two sgprs require making it VOP3, so don't do it unless it's
2150 * definitively beneficial.
2151 * TODO: this is too conservative because later the use count could be reduced to 1 */
2152 if (num_sgprs && ctx.uses[sgpr_info_id] > 1 && !instr->isVOP3())
2153 break;
2154
2155 Temp sgpr = ctx.info[sgpr_info_id].temp;
2156 bool new_sgpr = sgpr.id() != sgpr_ids[0] && sgpr.id() != sgpr_ids[1];
2157 if (new_sgpr && num_sgprs >= max_sgprs)
2158 continue;
2159
2160 if (sgpr_idx == 0 || instr->isVOP3()) {
2161 instr->operands[sgpr_idx] = Operand(sgpr);
2162 } else if (can_swap_operands(instr)) {
2163 instr->operands[sgpr_idx] = instr->operands[0];
2164 instr->operands[0] = Operand(sgpr);
2165 /* swap bits using a 4-entry LUT */
2166 uint32_t swapped = (0x3120 >> (operand_mask & 0x3)) & 0xf;
2167 operand_mask = (operand_mask & ~0x3) | swapped;
2168 } else if (can_use_VOP3(ctx, instr)) {
2169 to_VOP3(ctx, instr);
2170 instr->operands[sgpr_idx] = Operand(sgpr);
2171 } else {
2172 continue;
2173 }
2174
2175 if (new_sgpr)
2176 sgpr_ids[num_sgprs++] = sgpr.id();
2177 ctx.uses[sgpr_info_id]--;
2178 ctx.uses[sgpr.id()]++;
2179 }
2180 }
2181
2182 bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2183 {
2184 /* check if we could apply omod on predecessor */
2185 if (instr->opcode == aco_opcode::v_mul_f32) {
2186 bool op0 = instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_omod_success();
2187 bool op1 = instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success();
2188 if (op0 || op1) {
2189 unsigned idx = op0 ? 0 : 1;
2190 /* omod was successfully applied */
2191 /* if the omod instruction is v_mad, we also have to change the original add */
2192 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
2193 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
2194 if (ctx.info[instr->definitions[0].tempId()].is_clamp())
2195 static_cast<VOP3A_instruction*>(add_instr)->clamp = true;
2196 add_instr->definitions[0] = instr->definitions[0];
2197 }
2198
2199 Instruction* omod_instr = ctx.info[instr->operands[idx].tempId()].instr;
2200 /* check if we have an additional clamp modifier */
2201 if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2202 ctx.uses[ctx.info[instr->definitions[0].tempId()].temp.id()]) {
2203 static_cast<VOP3A_instruction*>(omod_instr)->clamp = true;
2204 ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr);
2205 }
2206 /* change definition ssa-id of modified instruction */
2207 omod_instr->definitions[0] = instr->definitions[0];
2208
2209 /* change the definition of instr to something unused, e.g. the original omod def */
2210 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
2211 ctx.uses[instr->definitions[0].tempId()] = 0;
2212 return true;
2213 }
2214 if (!ctx.info[instr->definitions[0].tempId()].label) {
2215 /* in all other cases, label this instruction as option for multiply-add */
2216 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2217 }
2218 }
2219
2220 /* check if we could apply clamp on predecessor */
2221 if (instr->opcode == aco_opcode::v_med3_f32) {
2222 unsigned idx = 0;
2223 bool found_zero = false, found_one = false;
2224 for (unsigned i = 0; i < 3; i++)
2225 {
2226 if (instr->operands[i].constantEquals(0))
2227 found_zero = true;
2228 else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */
2229 found_one = true;
2230 else
2231 idx = i;
2232 }
2233 if (found_zero && found_one && instr->operands[idx].isTemp() &&
2234 ctx.info[instr->operands[idx].tempId()].is_clamp_success()) {
2235 /* clamp was successfully applied */
2236 /* if the clamp instruction is v_mad, we also have to change the original add */
2237 if (ctx.info[instr->operands[idx].tempId()].is_mad()) {
2238 Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get();
2239 add_instr->definitions[0] = instr->definitions[0];
2240 }
2241 Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr;
2242 /* change definition ssa-id of modified instruction */
2243 clamp_instr->definitions[0] = instr->definitions[0];
2244
2245 /* change the definition of instr to something unused, e.g. the original omod def */
2246 instr->definitions[0] = Definition(instr->operands[idx].getTemp());
2247 ctx.uses[instr->definitions[0].tempId()] = 0;
2248 return true;
2249 }
2250 }
2251
2252 /* omod has no effect if denormals are enabled */
2253 bool can_use_omod = block.fp_mode.denorm32 == 0;
2254
2255 /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */
2256 if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 &&
2257 can_use_VOP3(ctx, instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) {
2258 ssa_info& def_info = ctx.info[instr->definitions[0].tempId()];
2259 if (can_use_omod && def_info.is_omod2() && ctx.uses[def_info.temp.id()]) {
2260 to_VOP3(ctx, instr);
2261 static_cast<VOP3A_instruction*>(instr.get())->omod = 1;
2262 def_info.set_omod_success(instr.get());
2263 } else if (can_use_omod && def_info.is_omod4() && ctx.uses[def_info.temp.id()]) {
2264 to_VOP3(ctx, instr);
2265 static_cast<VOP3A_instruction*>(instr.get())->omod = 2;
2266 def_info.set_omod_success(instr.get());
2267 } else if (can_use_omod && def_info.is_omod5() && ctx.uses[def_info.temp.id()]) {
2268 to_VOP3(ctx, instr);
2269 static_cast<VOP3A_instruction*>(instr.get())->omod = 3;
2270 def_info.set_omod_success(instr.get());
2271 } else if (def_info.is_clamp() && ctx.uses[def_info.temp.id()]) {
2272 to_VOP3(ctx, instr);
2273 static_cast<VOP3A_instruction*>(instr.get())->clamp = true;
2274 def_info.set_clamp_success(instr.get());
2275 }
2276 }
2277
2278 return false;
2279 }
2280
2281 // TODO: we could possibly move the whole label_instruction pass to combine_instruction:
2282 // this would mean that we'd have to fix the instruction uses while value propagation
2283
2284 void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr<Instruction>& instr)
2285 {
2286 if (instr->definitions.empty() || is_dead(ctx.uses, instr.get()))
2287 return;
2288
2289 if (instr->isVALU()) {
2290 if (can_apply_sgprs(instr))
2291 apply_sgprs(ctx, instr);
2292 if (apply_omod_clamp(ctx, block, instr))
2293 return;
2294 }
2295
2296 if (ctx.info[instr->definitions[0].tempId()].is_vcc_hint()) {
2297 instr->definitions[0].setHint(vcc);
2298 }
2299
2300 /* TODO: There are still some peephole optimizations that could be done:
2301 * - abs(a - b) -> s_absdiff_i32
2302 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32
2303 * - patterns for v_alignbit_b32 and v_alignbyte_b32
2304 * These aren't probably too interesting though.
2305 * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but
2306 * probably more useful than the previously mentioned optimizations.
2307 * The various comparison optimizations also currently only work with 32-bit
2308 * floats. */
2309
2310 /* neg(mul(a, b)) -> mul(neg(a), b) */
2311 if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) {
2312 Temp val = ctx.info[instr->definitions[0].tempId()].temp;
2313
2314 if (!ctx.info[val.id()].is_mul())
2315 return;
2316
2317 Instruction* mul_instr = ctx.info[val.id()].instr;
2318
2319 if (mul_instr->operands[0].isLiteral())
2320 return;
2321 if (mul_instr->isVOP3() && static_cast<VOP3A_instruction*>(mul_instr)->clamp)
2322 return;
2323
2324 /* convert to mul(neg(a), b) */
2325 ctx.uses[mul_instr->definitions[0].tempId()]--;
2326 Definition def = instr->definitions[0];
2327 /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */
2328 bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs();
2329 instr.reset(create_instruction<VOP3A_instruction>(aco_opcode::v_mul_f32, asVOP3(Format::VOP2), 2, 1));
2330 instr->operands[0] = mul_instr->operands[0];
2331 instr->operands[1] = mul_instr->operands[1];
2332 instr->definitions[0] = def;
2333 VOP3A_instruction* new_mul = static_cast<VOP3A_instruction*>(instr.get());
2334 if (mul_instr->isVOP3()) {
2335 VOP3A_instruction* mul = static_cast<VOP3A_instruction*>(mul_instr);
2336 new_mul->neg[0] = mul->neg[0] && !is_abs;
2337 new_mul->neg[1] = mul->neg[1] && !is_abs;
2338 new_mul->abs[0] = mul->abs[0] || is_abs;
2339 new_mul->abs[1] = mul->abs[1] || is_abs;
2340 new_mul->omod = mul->omod;
2341 }
2342 new_mul->neg[0] ^= true;
2343 new_mul->clamp = false;
2344
2345 ctx.info[instr->definitions[0].tempId()].set_mul(instr.get());
2346 return;
2347 }
2348 /* combine mul+add -> mad */
2349 else if ((instr->opcode == aco_opcode::v_add_f32 ||
2350 instr->opcode == aco_opcode::v_sub_f32 ||
2351 instr->opcode == aco_opcode::v_subrev_f32) &&
2352 block.fp_mode.denorm32 == 0 && !block.fp_mode.preserve_signed_zero_inf_nan32) {
2353 //TODO: we could use fma instead when denormals are enabled if the NIR isn't marked as precise
2354
2355 uint32_t uses_src0 = UINT32_MAX;
2356 uint32_t uses_src1 = UINT32_MAX;
2357 Instruction* mul_instr = nullptr;
2358 unsigned add_op_idx;
2359 /* check if any of the operands is a multiplication */
2360 if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_mul())
2361 uses_src0 = ctx.uses[instr->operands[0].tempId()];
2362 if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_mul())
2363 uses_src1 = ctx.uses[instr->operands[1].tempId()];
2364
2365 /* find the 'best' mul instruction to combine with the add */
2366 if (uses_src0 < uses_src1) {
2367 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2368 add_op_idx = 1;
2369 } else if (uses_src1 < uses_src0) {
2370 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2371 add_op_idx = 0;
2372 } else if (uses_src0 != UINT32_MAX) {
2373 /* tiebreaker: quite random what to pick */
2374 if (ctx.info[instr->operands[0].tempId()].instr->operands[0].isLiteral()) {
2375 mul_instr = ctx.info[instr->operands[1].tempId()].instr;
2376 add_op_idx = 0;
2377 } else {
2378 mul_instr = ctx.info[instr->operands[0].tempId()].instr;
2379 add_op_idx = 1;
2380 }
2381 }
2382 if (mul_instr) {
2383 Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)};
2384 bool neg[3] = {false, false, false};
2385 bool abs[3] = {false, false, false};
2386 unsigned omod = 0;
2387 bool clamp = false;
2388 op[0] = mul_instr->operands[0];
2389 op[1] = mul_instr->operands[1];
2390 op[2] = instr->operands[add_op_idx];
2391 // TODO: would be better to check this before selecting a mul instr?
2392 if (!check_vop3_operands(ctx, 3, op))
2393 return;
2394
2395 if (mul_instr->isVOP3()) {
2396 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (mul_instr);
2397 neg[0] = vop3->neg[0];
2398 neg[1] = vop3->neg[1];
2399 abs[0] = vop3->abs[0];
2400 abs[1] = vop3->abs[1];
2401 /* we cannot use these modifiers between mul and add */
2402 if (vop3->clamp || vop3->omod)
2403 return;
2404 }
2405
2406 /* convert to mad */
2407 ctx.uses[mul_instr->definitions[0].tempId()]--;
2408 if (ctx.uses[mul_instr->definitions[0].tempId()]) {
2409 if (op[0].isTemp())
2410 ctx.uses[op[0].tempId()]++;
2411 if (op[1].isTemp())
2412 ctx.uses[op[1].tempId()]++;
2413 }
2414
2415 if (instr->isVOP3()) {
2416 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*> (instr.get());
2417 neg[2] = vop3->neg[add_op_idx];
2418 abs[2] = vop3->abs[add_op_idx];
2419 omod = vop3->omod;
2420 clamp = vop3->clamp;
2421 /* abs of the multiplication result */
2422 if (vop3->abs[1 - add_op_idx]) {
2423 neg[0] = false;
2424 neg[1] = false;
2425 abs[0] = true;
2426 abs[1] = true;
2427 }
2428 /* neg of the multiplication result */
2429 neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx];
2430 }
2431 if (instr->opcode == aco_opcode::v_sub_f32)
2432 neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true;
2433 else if (instr->opcode == aco_opcode::v_subrev_f32)
2434 neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true;
2435
2436 aco_ptr<VOP3A_instruction> mad{create_instruction<VOP3A_instruction>(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)};
2437 for (unsigned i = 0; i < 3; i++)
2438 {
2439 mad->operands[i] = op[i];
2440 mad->neg[i] = neg[i];
2441 mad->abs[i] = abs[i];
2442 }
2443 mad->omod = omod;
2444 mad->clamp = clamp;
2445 mad->definitions[0] = instr->definitions[0];
2446
2447 /* mark this ssa_def to be re-checked for profitability and literals */
2448 ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId());
2449 ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1);
2450 instr.reset(mad.release());
2451 return;
2452 }
2453 }
2454 /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */
2455 else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) {
2456 for (unsigned i = 0; i < 2; i++) {
2457 if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() &&
2458 ctx.uses[instr->operands[i].tempId()] == 1 &&
2459 instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) {
2460 ctx.uses[instr->operands[i].tempId()]--;
2461 ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++;
2462
2463 aco_ptr<VOP2_instruction> new_instr{create_instruction<VOP2_instruction>(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)};
2464 new_instr->operands[0] = Operand(0u);
2465 new_instr->operands[1] = instr->operands[!i];
2466 new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp);
2467 new_instr->definitions[0] = instr->definitions[0];
2468 instr.reset(new_instr.release());
2469 ctx.info[instr->definitions[0].tempId()].label = 0;
2470 return;
2471 }
2472 }
2473 } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) {
2474 if (combine_three_valu_op(ctx, instr, aco_opcode::s_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2475 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ;
2476 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2477 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ;
2478 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_or_b32, "201", 1 | 2)) ;
2479 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2);
2480 } else if (instr->opcode == aco_opcode::v_add_u32 && ctx.program->chip_class >= GFX9) {
2481 if (combine_three_valu_op(ctx, instr, aco_opcode::s_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2482 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ;
2483 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_i32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2484 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2485 else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ;
2486 else if (combine_three_valu_op(ctx, instr, aco_opcode::s_lshl_b32, aco_opcode::v_lshl_add_u32, "201", 1 | 2)) ;
2487 else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2);
2488 } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) {
2489 combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2);
2490 } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) {
2491 combine_salu_lshl_add(ctx, instr);
2492 } else if (instr->opcode == aco_opcode::s_not_b32) {
2493 combine_salu_not_bitwise(ctx, instr);
2494 } else if (instr->opcode == aco_opcode::s_not_b64) {
2495 if (combine_inverse_comparison(ctx, instr)) ;
2496 else combine_salu_not_bitwise(ctx, instr);
2497 } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32 ||
2498 instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) {
2499 if (combine_ordering_test(ctx, instr)) ;
2500 else if (combine_comparison_ordering(ctx, instr)) ;
2501 else if (combine_constant_comparison_ordering(ctx, instr)) ;
2502 else combine_salu_n2(ctx, instr);
2503 } else {
2504 aco_opcode min, max, min3, max3, med3;
2505 bool some_gfx9_only;
2506 if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) &&
2507 (!some_gfx9_only || ctx.program->chip_class >= GFX9)) {
2508 if (combine_minmax(ctx, instr, instr->opcode == min ? max : min, instr->opcode == min ? min3 : max3)) ;
2509 else combine_clamp(ctx, instr, min, max, med3);
2510 }
2511 }
2512 }
2513
2514 bool to_uniform_bool_instr(opt_ctx &ctx, aco_ptr<Instruction> &instr)
2515 {
2516 switch (instr->opcode) {
2517 case aco_opcode::s_and_b32:
2518 case aco_opcode::s_and_b64:
2519 instr->opcode = aco_opcode::s_and_b32;
2520 break;
2521 case aco_opcode::s_or_b32:
2522 case aco_opcode::s_or_b64:
2523 instr->opcode = aco_opcode::s_or_b32;
2524 break;
2525 case aco_opcode::s_xor_b32:
2526 case aco_opcode::s_xor_b64:
2527 instr->opcode = aco_opcode::s_absdiff_i32;
2528 break;
2529 default:
2530 /* Don't transform other instructions. They are very unlikely to appear here. */
2531 return false;
2532 }
2533
2534 for (Operand &op : instr->operands) {
2535 ctx.uses[op.tempId()]--;
2536
2537 if (ctx.info[op.tempId()].is_uniform_bool()) {
2538 /* Just use the uniform boolean temp. */
2539 op.setTemp(ctx.info[op.tempId()].temp);
2540 } else if (ctx.info[op.tempId()].is_uniform_bitwise()) {
2541 /* Use the SCC definition of the predecessor instruction.
2542 * This allows the predecessor to get picked up by the same optimization (if it has no divergent users),
2543 * and it also makes sure that the current instruction will keep working even if the predecessor won't be transformed.
2544 */
2545 Instruction *pred_instr = ctx.info[op.tempId()].instr;
2546 assert(pred_instr->definitions.size() >= 2);
2547 assert(pred_instr->definitions[1].isFixed() && pred_instr->definitions[1].physReg() == scc);
2548 op.setTemp(pred_instr->definitions[1].getTemp());
2549 } else {
2550 unreachable("Invalid operand on uniform bitwise instruction.");
2551 }
2552
2553 ctx.uses[op.tempId()]++;
2554 }
2555
2556 instr->definitions[0].setTemp(Temp(instr->definitions[0].tempId(), s1));
2557 assert(instr->operands[0].regClass() == s1);
2558 assert(instr->operands[1].regClass() == s1);
2559 return true;
2560 }
2561
2562 void select_instruction(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2563 {
2564 const uint32_t threshold = 4;
2565
2566 if (is_dead(ctx.uses, instr.get())) {
2567 instr.reset();
2568 return;
2569 }
2570
2571 /* convert split_vector into a copy or extract_vector if only one definition is ever used */
2572 if (instr->opcode == aco_opcode::p_split_vector) {
2573 unsigned num_used = 0;
2574 unsigned idx = 0;
2575 unsigned split_offset = 0;
2576 for (unsigned i = 0, offset = 0; i < instr->definitions.size(); offset += instr->definitions[i++].bytes()) {
2577 if (ctx.uses[instr->definitions[i].tempId()]) {
2578 num_used++;
2579 idx = i;
2580 split_offset = offset;
2581 }
2582 }
2583 bool done = false;
2584 if (num_used == 1 && ctx.info[instr->operands[0].tempId()].is_vec() &&
2585 ctx.uses[instr->operands[0].tempId()] == 1) {
2586 Instruction *vec = ctx.info[instr->operands[0].tempId()].instr;
2587
2588 unsigned off = 0;
2589 Operand op;
2590 for (Operand& vec_op : vec->operands) {
2591 if (off == split_offset) {
2592 op = vec_op;
2593 break;
2594 }
2595 off += vec_op.bytes();
2596 }
2597 if (off != instr->operands[0].bytes() && op.bytes() == instr->definitions[idx].bytes()) {
2598 ctx.uses[instr->operands[0].tempId()]--;
2599 for (Operand& vec_op : vec->operands) {
2600 if (vec_op.isTemp())
2601 ctx.uses[vec_op.tempId()]--;
2602 }
2603 if (op.isTemp())
2604 ctx.uses[op.tempId()]++;
2605
2606 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_create_vector, Format::PSEUDO, 1, 1)};
2607 extract->operands[0] = op;
2608 extract->definitions[0] = instr->definitions[idx];
2609 instr.reset(extract.release());
2610
2611 done = true;
2612 }
2613 }
2614
2615 if (!done && num_used == 1 &&
2616 instr->operands[0].bytes() % instr->definitions[idx].bytes() == 0 &&
2617 split_offset % instr->definitions[idx].bytes() == 0) {
2618 aco_ptr<Pseudo_instruction> extract{create_instruction<Pseudo_instruction>(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)};
2619 extract->operands[0] = instr->operands[0];
2620 extract->operands[1] = Operand((uint32_t) split_offset / instr->definitions[idx].bytes());
2621 extract->definitions[0] = instr->definitions[idx];
2622 instr.reset(extract.release());
2623 }
2624 }
2625
2626 mad_info* mad_info = NULL;
2627 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2628 mad_info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2629 /* re-check mad instructions */
2630 if (ctx.uses[mad_info->mul_temp_id]) {
2631 ctx.uses[mad_info->mul_temp_id]++;
2632 if (instr->operands[0].isTemp())
2633 ctx.uses[instr->operands[0].tempId()]--;
2634 if (instr->operands[1].isTemp())
2635 ctx.uses[instr->operands[1].tempId()]--;
2636 instr.swap(mad_info->add_instr);
2637 mad_info = NULL;
2638 }
2639 /* check literals */
2640 else if (!instr->usesModifiers()) {
2641 bool sgpr_used = false;
2642 uint32_t literal_idx = 0;
2643 uint32_t literal_uses = UINT32_MAX;
2644 for (unsigned i = 0; i < instr->operands.size(); i++)
2645 {
2646 if (instr->operands[i].isConstant() && i > 0) {
2647 literal_uses = UINT32_MAX;
2648 break;
2649 }
2650 if (!instr->operands[i].isTemp())
2651 continue;
2652 /* if one of the operands is sgpr, we cannot add a literal somewhere else on pre-GFX10 or operands other than the 1st */
2653 if (instr->operands[i].getTemp().type() == RegType::sgpr && (i > 0 || ctx.program->chip_class < GFX10)) {
2654 if (!sgpr_used && ctx.info[instr->operands[i].tempId()].is_literal()) {
2655 literal_uses = ctx.uses[instr->operands[i].tempId()];
2656 literal_idx = i;
2657 } else {
2658 literal_uses = UINT32_MAX;
2659 }
2660 sgpr_used = true;
2661 /* don't break because we still need to check constants */
2662 } else if (!sgpr_used &&
2663 ctx.info[instr->operands[i].tempId()].is_literal() &&
2664 ctx.uses[instr->operands[i].tempId()] < literal_uses) {
2665 literal_uses = ctx.uses[instr->operands[i].tempId()];
2666 literal_idx = i;
2667 }
2668 }
2669
2670 /* Limit the number of literals to apply to not increase the code
2671 * size too much, but always apply literals for v_mad->v_madak
2672 * because both instructions are 64-bit and this doesn't increase
2673 * code size.
2674 * TODO: try to apply the literals earlier to lower the number of
2675 * uses below threshold
2676 */
2677 if (literal_uses < threshold || literal_idx == 2) {
2678 ctx.uses[instr->operands[literal_idx].tempId()]--;
2679 mad_info->check_literal = true;
2680 mad_info->literal_idx = literal_idx;
2681 return;
2682 }
2683 }
2684 }
2685
2686 /* Mark SCC needed, so the uniform boolean transformation won't swap the definitions when it isn't beneficial */
2687 if (instr->format == Format::PSEUDO_BRANCH &&
2688 instr->operands.size() &&
2689 instr->operands[0].isTemp()) {
2690 ctx.info[instr->operands[0].tempId()].set_scc_needed();
2691 return;
2692 } else if ((instr->opcode == aco_opcode::s_cselect_b64 ||
2693 instr->opcode == aco_opcode::s_cselect_b32) &&
2694 instr->operands[2].isTemp()) {
2695 ctx.info[instr->operands[2].tempId()].set_scc_needed();
2696 }
2697
2698 /* check for literals */
2699 if (!instr->isSALU() && !instr->isVALU())
2700 return;
2701
2702 /* Transform uniform bitwise boolean operations to 32-bit when there are no divergent uses. */
2703 if (instr->definitions.size() &&
2704 ctx.uses[instr->definitions[0].tempId()] == 0 &&
2705 ctx.info[instr->definitions[0].tempId()].is_uniform_bitwise()) {
2706 bool transform_done = to_uniform_bool_instr(ctx, instr);
2707
2708 if (transform_done && !ctx.info[instr->definitions[1].tempId()].is_scc_needed()) {
2709 /* Swap the two definition IDs in order to avoid overusing the SCC. This reduces extra moves generated by RA. */
2710 uint32_t def0_id = instr->definitions[0].getTemp().id();
2711 uint32_t def1_id = instr->definitions[1].getTemp().id();
2712 instr->definitions[0].setTemp(Temp(def1_id, s1));
2713 instr->definitions[1].setTemp(Temp(def0_id, s1));
2714 }
2715
2716 return;
2717 }
2718
2719 if (instr->isSDWA() || instr->isDPP() || (instr->isVOP3() && ctx.program->chip_class < GFX10))
2720 return; /* some encodings can't ever take literals */
2721
2722 /* we do not apply the literals yet as we don't know if it is profitable */
2723 Operand current_literal(s1);
2724
2725 unsigned literal_id = 0;
2726 unsigned literal_uses = UINT32_MAX;
2727 Operand literal(s1);
2728 unsigned num_operands = 1;
2729 if (instr->isSALU() || (ctx.program->chip_class >= GFX10 && can_use_VOP3(ctx, instr)))
2730 num_operands = instr->operands.size();
2731 /* catch VOP2 with a 3rd SGPR operand (e.g. v_cndmask_b32, v_addc_co_u32) */
2732 else if (instr->isVALU() && instr->operands.size() >= 3)
2733 return;
2734
2735 unsigned sgpr_ids[2] = {0, 0};
2736 bool is_literal_sgpr = false;
2737 uint32_t mask = 0;
2738
2739 /* choose a literal to apply */
2740 for (unsigned i = 0; i < num_operands; i++) {
2741 Operand op = instr->operands[i];
2742
2743 if (instr->isVALU() && op.isTemp() && op.getTemp().type() == RegType::sgpr &&
2744 op.tempId() != sgpr_ids[0])
2745 sgpr_ids[!!sgpr_ids[0]] = op.tempId();
2746
2747 if (op.isLiteral()) {
2748 current_literal = op;
2749 continue;
2750 } else if (!op.isTemp() || !ctx.info[op.tempId()].is_literal()) {
2751 continue;
2752 }
2753
2754 if (!alu_can_accept_constant(instr->opcode, i))
2755 continue;
2756
2757 if (ctx.uses[op.tempId()] < literal_uses) {
2758 is_literal_sgpr = op.getTemp().type() == RegType::sgpr;
2759 mask = 0;
2760 literal = Operand(ctx.info[op.tempId()].val);
2761 literal_uses = ctx.uses[op.tempId()];
2762 literal_id = op.tempId();
2763 }
2764
2765 mask |= (op.tempId() == literal_id) << i;
2766 }
2767
2768
2769 /* don't go over the constant bus limit */
2770 bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
2771 instr->opcode == aco_opcode::v_lshrrev_b64 ||
2772 instr->opcode == aco_opcode::v_ashrrev_i64;
2773 unsigned const_bus_limit = instr->isVALU() ? 1 : UINT32_MAX;
2774 if (ctx.program->chip_class >= GFX10 && !is_shift64)
2775 const_bus_limit = 2;
2776
2777 unsigned num_sgprs = !!sgpr_ids[0] + !!sgpr_ids[1];
2778 if (num_sgprs == const_bus_limit && !is_literal_sgpr)
2779 return;
2780
2781 if (literal_id && literal_uses < threshold &&
2782 (current_literal.isUndefined() ||
2783 (current_literal.size() == literal.size() &&
2784 current_literal.constantValue() == literal.constantValue()))) {
2785 /* mark the literal to be applied */
2786 while (mask) {
2787 unsigned i = u_bit_scan(&mask);
2788 if (instr->operands[i].isTemp() && instr->operands[i].tempId() == literal_id)
2789 ctx.uses[instr->operands[i].tempId()]--;
2790 }
2791 }
2792 }
2793
2794
2795 void apply_literals(opt_ctx &ctx, aco_ptr<Instruction>& instr)
2796 {
2797 /* Cleanup Dead Instructions */
2798 if (!instr)
2799 return;
2800
2801 /* apply literals on MAD */
2802 if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) {
2803 mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val];
2804 if (info->check_literal &&
2805 (ctx.uses[instr->operands[info->literal_idx].tempId()] == 0 || info->literal_idx == 2)) {
2806 aco_ptr<Instruction> new_mad;
2807 if (info->literal_idx == 2) { /* add literal -> madak */
2808 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madak_f32, Format::VOP2, 3, 1));
2809 new_mad->operands[0] = instr->operands[0];
2810 new_mad->operands[1] = instr->operands[1];
2811 } else { /* mul literal -> madmk */
2812 new_mad.reset(create_instruction<VOP2_instruction>(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1));
2813 new_mad->operands[0] = instr->operands[1 - info->literal_idx];
2814 new_mad->operands[1] = instr->operands[2];
2815 }
2816 new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val);
2817 new_mad->definitions[0] = instr->definitions[0];
2818 ctx.instructions.emplace_back(std::move(new_mad));
2819 return;
2820 }
2821 }
2822
2823 /* apply literals on other SALU/VALU */
2824 if (instr->isSALU() || instr->isVALU()) {
2825 for (unsigned i = 0; i < instr->operands.size(); i++) {
2826 Operand op = instr->operands[i];
2827 if (op.isTemp() && ctx.info[op.tempId()].is_literal() && ctx.uses[op.tempId()] == 0) {
2828 Operand literal(ctx.info[op.tempId()].val);
2829 if (instr->isVALU() && i > 0)
2830 to_VOP3(ctx, instr);
2831 instr->operands[i] = literal;
2832 }
2833 }
2834 }
2835
2836 ctx.instructions.emplace_back(std::move(instr));
2837 }
2838
2839
2840 void optimize(Program* program)
2841 {
2842 opt_ctx ctx;
2843 ctx.program = program;
2844 std::vector<ssa_info> info(program->peekAllocationId());
2845 ctx.info = info.data();
2846
2847 /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */
2848 for (Block& block : program->blocks) {
2849 for (aco_ptr<Instruction>& instr : block.instructions)
2850 label_instruction(ctx, block, instr);
2851 }
2852
2853 ctx.uses = std::move(dead_code_analysis(program));
2854
2855 /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */
2856 for (Block& block : program->blocks) {
2857 for (aco_ptr<Instruction>& instr : block.instructions)
2858 combine_instruction(ctx, block, instr);
2859 }
2860
2861 /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */
2862 for (std::vector<Block>::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) {
2863 Block* block = &(*it);
2864 for (std::vector<aco_ptr<Instruction>>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it)
2865 select_instruction(ctx, *it);
2866 }
2867
2868 /* 4. Add literals to instructions */
2869 for (Block& block : program->blocks) {
2870 ctx.instructions.clear();
2871 for (aco_ptr<Instruction>& instr : block.instructions)
2872 apply_literals(ctx, instr);
2873 block.instructions.swap(ctx.instructions);
2874 }
2875
2876 }
2877
2878 }