aco: add new addr64 bit to MUBUF instructions on GFX6-GFX7
[mesa.git] / src / amd / compiler / aco_print_ir.cpp
1 #include "aco_ir.h"
2 #include "aco_builder.h"
3
4 #include "sid.h"
5 #include "ac_shader_util.h"
6
7 namespace aco {
8
9 static const char *reduce_ops[] = {
10 [iadd32] = "iadd32",
11 [iadd64] = "iadd64",
12 [imul32] = "imul32",
13 [imul64] = "imul64",
14 [fadd32] = "fadd32",
15 [fadd64] = "fadd64",
16 [fmul32] = "fmul32",
17 [fmul64] = "fmul64",
18 [imin32] = "imin32",
19 [imin64] = "imin64",
20 [imax32] = "imax32",
21 [imax64] = "imax64",
22 [umin32] = "umin32",
23 [umin64] = "umin64",
24 [umax32] = "umax32",
25 [umax64] = "umax64",
26 [fmin32] = "fmin32",
27 [fmin64] = "fmin64",
28 [fmax32] = "fmax32",
29 [fmax64] = "fmax64",
30 [iand32] = "iand32",
31 [iand64] = "iand64",
32 [ior32] = "ior32",
33 [ior64] = "ior64",
34 [ixor32] = "ixor32",
35 [ixor64] = "ixor64",
36 };
37
38 static void print_reg_class(const RegClass rc, FILE *output)
39 {
40 switch (rc) {
41 case RegClass::s1: fprintf(output, " s1: "); return;
42 case RegClass::s2: fprintf(output, " s2: "); return;
43 case RegClass::s3: fprintf(output, " s3: "); return;
44 case RegClass::s4: fprintf(output, " s4: "); return;
45 case RegClass::s6: fprintf(output, " s6: "); return;
46 case RegClass::s8: fprintf(output, " s8: "); return;
47 case RegClass::s16: fprintf(output, "s16: "); return;
48 case RegClass::v1: fprintf(output, " v1: "); return;
49 case RegClass::v2: fprintf(output, " v2: "); return;
50 case RegClass::v3: fprintf(output, " v3: "); return;
51 case RegClass::v4: fprintf(output, " v4: "); return;
52 case RegClass::v5: fprintf(output, " v5: "); return;
53 case RegClass::v6: fprintf(output, " v6: "); return;
54 case RegClass::v7: fprintf(output, " v7: "); return;
55 case RegClass::v8: fprintf(output, " v8: "); return;
56 case RegClass::v1_linear: fprintf(output, " v1: "); return;
57 case RegClass::v2_linear: fprintf(output, " v2: "); return;
58 }
59 }
60
61 void print_physReg(unsigned reg, unsigned size, FILE *output)
62 {
63 if (reg == 124) {
64 fprintf(output, ":m0");
65 } else if (reg == 106) {
66 fprintf(output, ":vcc");
67 } else if (reg == 253) {
68 fprintf(output, ":scc");
69 } else if (reg == 126) {
70 fprintf(output, ":exec");
71 } else {
72 bool is_vgpr = reg / 256;
73 reg = reg % 256;
74 fprintf(output, ":%c[%d", is_vgpr ? 'v' : 's', reg);
75 if (size > 1)
76 fprintf(output, "-%d]", reg + size -1);
77 else
78 fprintf(output, "]");
79 }
80 }
81
82 static void print_constant(uint8_t reg, FILE *output)
83 {
84 if (reg >= 128 && reg <= 192) {
85 fprintf(output, "%d", reg - 128);
86 return;
87 } else if (reg >= 192 && reg <= 208) {
88 fprintf(output, "%d", 192 - reg);
89 return;
90 }
91
92 switch (reg) {
93 case 240:
94 fprintf(output, "0.5");
95 break;
96 case 241:
97 fprintf(output, "-0.5");
98 break;
99 case 242:
100 fprintf(output, "1.0");
101 break;
102 case 243:
103 fprintf(output, "-1.0");
104 break;
105 case 244:
106 fprintf(output, "2.0");
107 break;
108 case 245:
109 fprintf(output, "-2.0");
110 break;
111 case 246:
112 fprintf(output, "4.0");
113 break;
114 case 247:
115 fprintf(output, "-4.0");
116 break;
117 case 248:
118 fprintf(output, "1/(2*PI)");
119 break;
120 }
121 }
122
123 static void print_operand(const Operand *operand, FILE *output)
124 {
125 if (operand->isLiteral()) {
126 fprintf(output, "0x%x", operand->constantValue());
127 } else if (operand->isConstant()) {
128 print_constant(operand->physReg().reg, output);
129 } else if (operand->isUndefined()) {
130 print_reg_class(operand->regClass(), output);
131 fprintf(output, "undef");
132 } else {
133 fprintf(output, "%%%d", operand->tempId());
134
135 if (operand->isFixed())
136 print_physReg(operand->physReg(), operand->size(), output);
137 }
138 }
139
140 static void print_definition(const Definition *definition, FILE *output)
141 {
142 print_reg_class(definition->regClass(), output);
143 fprintf(output, "%%%d", definition->tempId());
144
145 if (definition->isFixed())
146 print_physReg(definition->physReg(), definition->size(), output);
147 }
148
149 static void print_barrier_reorder(bool can_reorder, barrier_interaction barrier, FILE *output)
150 {
151 if (can_reorder)
152 fprintf(output, " reorder");
153
154 if (barrier & barrier_buffer)
155 fprintf(output, " buffer");
156 if (barrier & barrier_image)
157 fprintf(output, " image");
158 if (barrier & barrier_atomic)
159 fprintf(output, " atomic");
160 if (barrier & barrier_shared)
161 fprintf(output, " shared");
162 }
163
164 static void print_instr_format_specific(struct Instruction *instr, FILE *output)
165 {
166 switch (instr->format) {
167 case Format::SOPK: {
168 SOPK_instruction* sopk = static_cast<SOPK_instruction*>(instr);
169 fprintf(output, " imm:%d", sopk->imm & 0x8000 ? (sopk->imm - 65536) : sopk->imm);
170 break;
171 }
172 case Format::SOPP: {
173 SOPP_instruction* sopp = static_cast<SOPP_instruction*>(instr);
174 uint16_t imm = sopp->imm;
175 switch (instr->opcode) {
176 case aco_opcode::s_waitcnt: {
177 /* we usually should check the chip class for vmcnt/lgkm, but
178 * insert_waitcnt() should fill it in regardless. */
179 unsigned vmcnt = (imm & 0xF) | ((imm & (0x3 << 14)) >> 10);
180 if (vmcnt != 63) fprintf(output, " vmcnt(%d)", vmcnt);
181 if (((imm >> 4) & 0x7) < 0x7) fprintf(output, " expcnt(%d)", (imm >> 4) & 0x7);
182 if (((imm >> 8) & 0x3F) < 0x3F) fprintf(output, " lgkmcnt(%d)", (imm >> 8) & 0x3F);
183 break;
184 }
185 case aco_opcode::s_endpgm:
186 case aco_opcode::s_endpgm_saved:
187 case aco_opcode::s_endpgm_ordered_ps_done:
188 case aco_opcode::s_wakeup:
189 case aco_opcode::s_barrier:
190 case aco_opcode::s_icache_inv:
191 case aco_opcode::s_ttracedata:
192 case aco_opcode::s_set_gpr_idx_off: {
193 break;
194 }
195 default: {
196 if (imm)
197 fprintf(output, " imm:%u", imm);
198 break;
199 }
200 }
201 if (sopp->block != -1)
202 fprintf(output, " block:BB%d", sopp->block);
203 break;
204 }
205 case Format::SMEM: {
206 SMEM_instruction* smem = static_cast<SMEM_instruction*>(instr);
207 if (smem->glc)
208 fprintf(output, " glc");
209 if (smem->dlc)
210 fprintf(output, " dlc");
211 if (smem->nv)
212 fprintf(output, " nv");
213 print_barrier_reorder(smem->can_reorder, smem->barrier, output);
214 break;
215 }
216 case Format::VINTRP: {
217 Interp_instruction* vintrp = static_cast<Interp_instruction*>(instr);
218 fprintf(output, " attr%d.%c", vintrp->attribute, "xyzw"[vintrp->component]);
219 break;
220 }
221 case Format::DS: {
222 DS_instruction* ds = static_cast<DS_instruction*>(instr);
223 if (ds->offset0)
224 fprintf(output, " offset0:%u", ds->offset0);
225 if (ds->offset1)
226 fprintf(output, " offset1:%u", ds->offset1);
227 if (ds->gds)
228 fprintf(output, " gds");
229 break;
230 }
231 case Format::MUBUF: {
232 MUBUF_instruction* mubuf = static_cast<MUBUF_instruction*>(instr);
233 if (mubuf->offset)
234 fprintf(output, " offset:%u", mubuf->offset);
235 if (mubuf->offen)
236 fprintf(output, " offen");
237 if (mubuf->idxen)
238 fprintf(output, " idxen");
239 if (mubuf->addr64)
240 fprintf(output, " addr64");
241 if (mubuf->glc)
242 fprintf(output, " glc");
243 if (mubuf->dlc)
244 fprintf(output, " dlc");
245 if (mubuf->slc)
246 fprintf(output, " slc");
247 if (mubuf->tfe)
248 fprintf(output, " tfe");
249 if (mubuf->lds)
250 fprintf(output, " lds");
251 if (mubuf->disable_wqm)
252 fprintf(output, " disable_wqm");
253 print_barrier_reorder(mubuf->can_reorder, mubuf->barrier, output);
254 break;
255 }
256 case Format::MIMG: {
257 MIMG_instruction* mimg = static_cast<MIMG_instruction*>(instr);
258 unsigned identity_dmask = !instr->definitions.empty() ?
259 (1 << instr->definitions[0].size()) - 1 :
260 0xf;
261 if ((mimg->dmask & identity_dmask) != identity_dmask)
262 fprintf(output, " dmask:%s%s%s%s",
263 mimg->dmask & 0x1 ? "x" : "",
264 mimg->dmask & 0x2 ? "y" : "",
265 mimg->dmask & 0x4 ? "z" : "",
266 mimg->dmask & 0x8 ? "w" : "");
267 switch (mimg->dim) {
268 case ac_image_1d:
269 fprintf(output, " 1d");
270 break;
271 case ac_image_2d:
272 fprintf(output, " 2d");
273 break;
274 case ac_image_3d:
275 fprintf(output, " 3d");
276 break;
277 case ac_image_cube:
278 fprintf(output, " cube");
279 break;
280 case ac_image_1darray:
281 fprintf(output, " 1darray");
282 break;
283 case ac_image_2darray:
284 fprintf(output, " 2darray");
285 break;
286 case ac_image_2dmsaa:
287 fprintf(output, " 2dmsaa");
288 break;
289 case ac_image_2darraymsaa:
290 fprintf(output, " 2darraymsaa");
291 break;
292 }
293 if (mimg->unrm)
294 fprintf(output, " unrm");
295 if (mimg->glc)
296 fprintf(output, " glc");
297 if (mimg->dlc)
298 fprintf(output, " dlc");
299 if (mimg->slc)
300 fprintf(output, " slc");
301 if (mimg->tfe)
302 fprintf(output, " tfe");
303 if (mimg->da)
304 fprintf(output, " da");
305 if (mimg->lwe)
306 fprintf(output, " lwe");
307 if (mimg->r128 || mimg->a16)
308 fprintf(output, " r128/a16");
309 if (mimg->d16)
310 fprintf(output, " d16");
311 if (mimg->disable_wqm)
312 fprintf(output, " disable_wqm");
313 print_barrier_reorder(mimg->can_reorder, mimg->barrier, output);
314 break;
315 }
316 case Format::EXP: {
317 Export_instruction* exp = static_cast<Export_instruction*>(instr);
318 unsigned identity_mask = exp->compressed ? 0x5 : 0xf;
319 if ((exp->enabled_mask & identity_mask) != identity_mask)
320 fprintf(output, " en:%c%c%c%c",
321 exp->enabled_mask & 0x1 ? 'r' : '*',
322 exp->enabled_mask & 0x2 ? 'g' : '*',
323 exp->enabled_mask & 0x4 ? 'b' : '*',
324 exp->enabled_mask & 0x8 ? 'a' : '*');
325 if (exp->compressed)
326 fprintf(output, " compr");
327 if (exp->done)
328 fprintf(output, " done");
329 if (exp->valid_mask)
330 fprintf(output, " vm");
331
332 if (exp->dest <= V_008DFC_SQ_EXP_MRT + 7)
333 fprintf(output, " mrt%d", exp->dest - V_008DFC_SQ_EXP_MRT);
334 else if (exp->dest == V_008DFC_SQ_EXP_MRTZ)
335 fprintf(output, " mrtz");
336 else if (exp->dest == V_008DFC_SQ_EXP_NULL)
337 fprintf(output, " null");
338 else if (exp->dest >= V_008DFC_SQ_EXP_POS && exp->dest <= V_008DFC_SQ_EXP_POS + 3)
339 fprintf(output, " pos%d", exp->dest - V_008DFC_SQ_EXP_POS);
340 else if (exp->dest >= V_008DFC_SQ_EXP_PARAM && exp->dest <= V_008DFC_SQ_EXP_PARAM + 31)
341 fprintf(output, " param%d", exp->dest - V_008DFC_SQ_EXP_PARAM);
342 break;
343 }
344 case Format::PSEUDO_BRANCH: {
345 Pseudo_branch_instruction* branch = static_cast<Pseudo_branch_instruction*>(instr);
346 /* Note: BB0 cannot be a branch target */
347 if (branch->target[0] != 0)
348 fprintf(output, " BB%d", branch->target[0]);
349 if (branch->target[1] != 0)
350 fprintf(output, ", BB%d", branch->target[1]);
351 break;
352 }
353 case Format::PSEUDO_REDUCTION: {
354 Pseudo_reduction_instruction* reduce = static_cast<Pseudo_reduction_instruction*>(instr);
355 fprintf(output, " op:%s", reduce_ops[reduce->reduce_op]);
356 if (reduce->cluster_size)
357 fprintf(output, " cluster_size:%u", reduce->cluster_size);
358 break;
359 }
360 case Format::FLAT:
361 case Format::GLOBAL:
362 case Format::SCRATCH: {
363 FLAT_instruction* flat = static_cast<FLAT_instruction*>(instr);
364 if (flat->offset)
365 fprintf(output, " offset:%u", flat->offset);
366 if (flat->glc)
367 fprintf(output, " glc");
368 if (flat->dlc)
369 fprintf(output, " dlc");
370 if (flat->slc)
371 fprintf(output, " slc");
372 if (flat->lds)
373 fprintf(output, " lds");
374 if (flat->nv)
375 fprintf(output, " nv");
376 if (flat->disable_wqm)
377 fprintf(output, " disable_wqm");
378 print_barrier_reorder(flat->can_reorder, flat->barrier, output);
379 break;
380 }
381 case Format::MTBUF: {
382 MTBUF_instruction* mtbuf = static_cast<MTBUF_instruction*>(instr);
383 fprintf(output, " dfmt:");
384 switch (mtbuf->dfmt) {
385 case V_008F0C_BUF_DATA_FORMAT_8: fprintf(output, "8"); break;
386 case V_008F0C_BUF_DATA_FORMAT_16: fprintf(output, "16"); break;
387 case V_008F0C_BUF_DATA_FORMAT_8_8: fprintf(output, "8_8"); break;
388 case V_008F0C_BUF_DATA_FORMAT_32: fprintf(output, "32"); break;
389 case V_008F0C_BUF_DATA_FORMAT_16_16: fprintf(output, "16_16"); break;
390 case V_008F0C_BUF_DATA_FORMAT_10_11_11: fprintf(output, "10_11_11"); break;
391 case V_008F0C_BUF_DATA_FORMAT_11_11_10: fprintf(output, "11_11_10"); break;
392 case V_008F0C_BUF_DATA_FORMAT_10_10_10_2: fprintf(output, "10_10_10_2"); break;
393 case V_008F0C_BUF_DATA_FORMAT_2_10_10_10: fprintf(output, "2_10_10_10"); break;
394 case V_008F0C_BUF_DATA_FORMAT_8_8_8_8: fprintf(output, "8_8_8_8"); break;
395 case V_008F0C_BUF_DATA_FORMAT_32_32: fprintf(output, "32_32"); break;
396 case V_008F0C_BUF_DATA_FORMAT_16_16_16_16: fprintf(output, "16_16_16_16"); break;
397 case V_008F0C_BUF_DATA_FORMAT_32_32_32: fprintf(output, "32_32_32"); break;
398 case V_008F0C_BUF_DATA_FORMAT_32_32_32_32: fprintf(output, "32_32_32_32"); break;
399 case V_008F0C_BUF_DATA_FORMAT_RESERVED_15: fprintf(output, "reserved15"); break;
400 }
401 fprintf(output, " nfmt:");
402 switch (mtbuf->nfmt) {
403 case V_008F0C_BUF_NUM_FORMAT_UNORM: fprintf(output, "unorm"); break;
404 case V_008F0C_BUF_NUM_FORMAT_SNORM: fprintf(output, "snorm"); break;
405 case V_008F0C_BUF_NUM_FORMAT_USCALED: fprintf(output, "uscaled"); break;
406 case V_008F0C_BUF_NUM_FORMAT_SSCALED: fprintf(output, "sscaled"); break;
407 case V_008F0C_BUF_NUM_FORMAT_UINT: fprintf(output, "uint"); break;
408 case V_008F0C_BUF_NUM_FORMAT_SINT: fprintf(output, "sint"); break;
409 case V_008F0C_BUF_NUM_FORMAT_SNORM_OGL: fprintf(output, "snorm"); break;
410 case V_008F0C_BUF_NUM_FORMAT_FLOAT: fprintf(output, "float"); break;
411 }
412 if (mtbuf->offset)
413 fprintf(output, " offset:%u", mtbuf->offset);
414 if (mtbuf->offen)
415 fprintf(output, " offen");
416 if (mtbuf->idxen)
417 fprintf(output, " idxen");
418 if (mtbuf->glc)
419 fprintf(output, " glc");
420 if (mtbuf->dlc)
421 fprintf(output, " dlc");
422 if (mtbuf->slc)
423 fprintf(output, " slc");
424 if (mtbuf->tfe)
425 fprintf(output, " tfe");
426 if (mtbuf->disable_wqm)
427 fprintf(output, " disable_wqm");
428 print_barrier_reorder(mtbuf->can_reorder, mtbuf->barrier, output);
429 break;
430 }
431 default: {
432 break;
433 }
434 }
435 if (instr->isVOP3()) {
436 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr);
437 switch (vop3->omod) {
438 case 1:
439 fprintf(output, " *2");
440 break;
441 case 2:
442 fprintf(output, " *4");
443 break;
444 case 3:
445 fprintf(output, " *0.5");
446 break;
447 }
448 if (vop3->clamp)
449 fprintf(output, " clamp");
450 } else if (instr->isDPP()) {
451 DPP_instruction* dpp = static_cast<DPP_instruction*>(instr);
452 if (dpp->dpp_ctrl <= 0xff) {
453 fprintf(output, " quad_perm:[%d,%d,%d,%d]",
454 dpp->dpp_ctrl & 0x3, (dpp->dpp_ctrl >> 2) & 0x3,
455 (dpp->dpp_ctrl >> 4) & 0x3, (dpp->dpp_ctrl >> 6) & 0x3);
456 } else if (dpp->dpp_ctrl >= 0x101 && dpp->dpp_ctrl <= 0x10f) {
457 fprintf(output, " row_shl:%d", dpp->dpp_ctrl & 0xf);
458 } else if (dpp->dpp_ctrl >= 0x111 && dpp->dpp_ctrl <= 0x11f) {
459 fprintf(output, " row_shr:%d", dpp->dpp_ctrl & 0xf);
460 } else if (dpp->dpp_ctrl >= 0x121 && dpp->dpp_ctrl <= 0x12f) {
461 fprintf(output, " row_ror:%d", dpp->dpp_ctrl & 0xf);
462 } else if (dpp->dpp_ctrl == dpp_wf_sl1) {
463 fprintf(output, " wave_shl:1");
464 } else if (dpp->dpp_ctrl == dpp_wf_rl1) {
465 fprintf(output, " wave_rol:1");
466 } else if (dpp->dpp_ctrl == dpp_wf_sr1) {
467 fprintf(output, " wave_shr:1");
468 } else if (dpp->dpp_ctrl == dpp_wf_rr1) {
469 fprintf(output, " wave_ror:1");
470 } else if (dpp->dpp_ctrl == dpp_row_mirror) {
471 fprintf(output, " row_mirror");
472 } else if (dpp->dpp_ctrl == dpp_row_half_mirror) {
473 fprintf(output, " row_half_mirror");
474 } else if (dpp->dpp_ctrl == dpp_row_bcast15) {
475 fprintf(output, " row_bcast:15");
476 } else if (dpp->dpp_ctrl == dpp_row_bcast31) {
477 fprintf(output, " row_bcast:31");
478 } else {
479 fprintf(output, " dpp_ctrl:0x%.3x", dpp->dpp_ctrl);
480 }
481 if (dpp->row_mask != 0xf)
482 fprintf(output, " row_mask:0x%.1x", dpp->row_mask);
483 if (dpp->bank_mask != 0xf)
484 fprintf(output, " bank_mask:0x%.1x", dpp->bank_mask);
485 if (dpp->bound_ctrl)
486 fprintf(output, " bound_ctrl:1");
487 } else if ((int)instr->format & (int)Format::SDWA) {
488 fprintf(output, " (printing unimplemented)");
489 }
490 }
491
492 void aco_print_instr(struct Instruction *instr, FILE *output)
493 {
494 if (!instr->definitions.empty()) {
495 for (unsigned i = 0; i < instr->definitions.size(); ++i) {
496 print_definition(&instr->definitions[i], output);
497 if (i + 1 != instr->definitions.size())
498 fprintf(output, ", ");
499 }
500 fprintf(output, " = ");
501 }
502 fprintf(output, "%s", instr_info.name[(int)instr->opcode]);
503 if (instr->operands.size()) {
504 bool abs[instr->operands.size()];
505 bool neg[instr->operands.size()];
506 if ((int)instr->format & (int)Format::VOP3A) {
507 VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr);
508 for (unsigned i = 0; i < instr->operands.size(); ++i) {
509 abs[i] = vop3->abs[i];
510 neg[i] = vop3->neg[i];
511 }
512 } else if (instr->isDPP()) {
513 DPP_instruction* dpp = static_cast<DPP_instruction*>(instr);
514 assert(instr->operands.size() <= 2);
515 for (unsigned i = 0; i < instr->operands.size(); ++i) {
516 abs[i] = dpp->abs[i];
517 neg[i] = dpp->neg[i];
518 }
519 } else {
520 for (unsigned i = 0; i < instr->operands.size(); ++i) {
521 abs[i] = false;
522 neg[i] = false;
523 }
524 }
525 for (unsigned i = 0; i < instr->operands.size(); ++i) {
526 if (i)
527 fprintf(output, ", ");
528 else
529 fprintf(output, " ");
530
531 if (neg[i])
532 fprintf(output, "-");
533 if (abs[i])
534 fprintf(output, "|");
535 print_operand(&instr->operands[i], output);
536 if (abs[i])
537 fprintf(output, "|");
538 }
539 }
540 print_instr_format_specific(instr, output);
541 }
542
543 static void print_block_kind(uint16_t kind, FILE *output)
544 {
545 if (kind & block_kind_uniform)
546 fprintf(output, "uniform, ");
547 if (kind & block_kind_top_level)
548 fprintf(output, "top-level, ");
549 if (kind & block_kind_loop_preheader)
550 fprintf(output, "loop-preheader, ");
551 if (kind & block_kind_loop_header)
552 fprintf(output, "loop-header, ");
553 if (kind & block_kind_loop_exit)
554 fprintf(output, "loop-exit, ");
555 if (kind & block_kind_continue)
556 fprintf(output, "continue, ");
557 if (kind & block_kind_break)
558 fprintf(output, "break, ");
559 if (kind & block_kind_continue_or_break)
560 fprintf(output, "continue_or_break, ");
561 if (kind & block_kind_discard)
562 fprintf(output, "discard, ");
563 if (kind & block_kind_branch)
564 fprintf(output, "branch, ");
565 if (kind & block_kind_merge)
566 fprintf(output, "merge, ");
567 if (kind & block_kind_invert)
568 fprintf(output, "invert, ");
569 if (kind & block_kind_uses_discard_if)
570 fprintf(output, "discard_if, ");
571 if (kind & block_kind_needs_lowering)
572 fprintf(output, "needs_lowering, ");
573 if (kind & block_kind_uses_demote)
574 fprintf(output, "uses_demote, ");
575 }
576
577 void aco_print_block(const struct Block* block, FILE *output)
578 {
579 fprintf(output, "BB%d\n", block->index);
580 fprintf(output, "/* logical preds: ");
581 for (unsigned pred : block->logical_preds)
582 fprintf(output, "BB%d, ", pred);
583 fprintf(output, "/ linear preds: ");
584 for (unsigned pred : block->linear_preds)
585 fprintf(output, "BB%d, ", pred);
586 fprintf(output, "/ kind: ");
587 print_block_kind(block->kind, output);
588 fprintf(output, "*/\n");
589 for (auto const& instr : block->instructions) {
590 fprintf(output, "\t");
591 aco_print_instr(instr.get(), output);
592 fprintf(output, "\n");
593 }
594 }
595
596 void aco_print_program(Program *program, FILE *output)
597 {
598 for (Block const& block : program->blocks)
599 aco_print_block(&block, output);
600
601 if (program->constant_data.size()) {
602 fprintf(output, "\n/* constant data */\n");
603 for (unsigned i = 0; i < program->constant_data.size(); i += 32) {
604 fprintf(output, "[%06d] ", i);
605 unsigned line_size = std::min<size_t>(program->constant_data.size() - i, 32);
606 for (unsigned j = 0; j < line_size; j += 4) {
607 unsigned size = std::min<size_t>(program->constant_data.size() - (i + j), 4);
608 uint32_t v = 0;
609 memcpy(&v, &program->constant_data[i + j], size);
610 fprintf(output, " %08x", v);
611 }
612 fprintf(output, "\n");
613 }
614 }
615
616 fprintf(output, "\n");
617 }
618
619 }