radv: Use enum for memory types.
[mesa.git] / src / amd / vulkan / radv_device.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include <dlfcn.h>
29 #include <stdbool.h>
30 #include <string.h>
31 #include <unistd.h>
32 #include <fcntl.h>
33 #include <sys/stat.h>
34 #include "radv_private.h"
35 #include "util/strtod.h"
36
37 #include <xf86drm.h>
38 #include <amdgpu.h>
39 #include <amdgpu_drm.h>
40 #include "amdgpu_id.h"
41 #include "winsys/amdgpu/radv_amdgpu_winsys_public.h"
42 #include "ac_llvm_util.h"
43 #include "vk_format.h"
44 #include "sid.h"
45 #include "util/debug.h"
46 struct radv_dispatch_table dtable;
47
48 static int
49 radv_get_function_timestamp(void *ptr, uint32_t* timestamp)
50 {
51 Dl_info info;
52 struct stat st;
53 if (!dladdr(ptr, &info) || !info.dli_fname) {
54 return -1;
55 }
56 if (stat(info.dli_fname, &st)) {
57 return -1;
58 }
59 *timestamp = st.st_mtim.tv_sec;
60 return 0;
61 }
62
63 static int
64 radv_device_get_cache_uuid(enum radeon_family family, void *uuid)
65 {
66 uint32_t mesa_timestamp, llvm_timestamp;
67 uint16_t f = family;
68 memset(uuid, 0, VK_UUID_SIZE);
69 if (radv_get_function_timestamp(radv_device_get_cache_uuid, &mesa_timestamp) ||
70 radv_get_function_timestamp(LLVMInitializeAMDGPUTargetInfo, &llvm_timestamp))
71 return -1;
72
73 memcpy(uuid, &mesa_timestamp, 4);
74 memcpy((char*)uuid + 4, &llvm_timestamp, 4);
75 memcpy((char*)uuid + 8, &f, 2);
76 snprintf((char*)uuid + 10, VK_UUID_SIZE - 10, "radv");
77 return 0;
78 }
79
80 static VkResult
81 radv_physical_device_init(struct radv_physical_device *device,
82 struct radv_instance *instance,
83 const char *path)
84 {
85 VkResult result;
86 drmVersionPtr version;
87 int fd;
88
89 fd = open(path, O_RDWR | O_CLOEXEC);
90 if (fd < 0)
91 return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
92 "failed to open %s: %m", path);
93
94 version = drmGetVersion(fd);
95 if (!version) {
96 close(fd);
97 return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
98 "failed to get version %s: %m", path);
99 }
100
101 if (strcmp(version->name, "amdgpu")) {
102 drmFreeVersion(version);
103 close(fd);
104 return VK_ERROR_INCOMPATIBLE_DRIVER;
105 }
106 drmFreeVersion(version);
107
108 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
109 device->instance = instance;
110 assert(strlen(path) < ARRAY_SIZE(device->path));
111 strncpy(device->path, path, ARRAY_SIZE(device->path));
112
113 device->ws = radv_amdgpu_winsys_create(fd);
114 if (!device->ws) {
115 result = VK_ERROR_INCOMPATIBLE_DRIVER;
116 goto fail;
117 }
118 device->ws->query_info(device->ws, &device->rad_info);
119 result = radv_init_wsi(device);
120 if (result != VK_SUCCESS) {
121 device->ws->destroy(device->ws);
122 goto fail;
123 }
124
125 if (radv_device_get_cache_uuid(device->rad_info.family, device->uuid)) {
126 radv_finish_wsi(device);
127 device->ws->destroy(device->ws);
128 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
129 "cannot generate UUID");
130 goto fail;
131 }
132
133 fprintf(stderr, "WARNING: radv is not a conformant vulkan implementation, testing use only.\n");
134 device->name = device->rad_info.name;
135 close(fd);
136 return VK_SUCCESS;
137
138 fail:
139 close(fd);
140 return result;
141 }
142
143 static void
144 radv_physical_device_finish(struct radv_physical_device *device)
145 {
146 radv_finish_wsi(device);
147 device->ws->destroy(device->ws);
148 }
149
150 static const VkExtensionProperties global_extensions[] = {
151 {
152 .extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
153 .specVersion = 25,
154 },
155 #ifdef VK_USE_PLATFORM_XCB_KHR
156 {
157 .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
158 .specVersion = 6,
159 },
160 #endif
161 #ifdef VK_USE_PLATFORM_XLIB_KHR
162 {
163 .extensionName = VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
164 .specVersion = 6,
165 },
166 #endif
167 #ifdef VK_USE_PLATFORM_WAYLAND_KHR
168 {
169 .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
170 .specVersion = 5,
171 },
172 #endif
173 };
174
175 static const VkExtensionProperties device_extensions[] = {
176 {
177 .extensionName = VK_KHR_SAMPLER_MIRROR_CLAMP_TO_EDGE_EXTENSION_NAME,
178 .specVersion = 1,
179 },
180 {
181 .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
182 .specVersion = 68,
183 },
184 {
185 .extensionName = VK_AMD_DRAW_INDIRECT_COUNT_EXTENSION_NAME,
186 .specVersion = 1,
187 },
188 {
189 .extensionName = VK_AMD_NEGATIVE_VIEWPORT_HEIGHT_EXTENSION_NAME,
190 .specVersion = 1,
191 },
192 };
193
194 static void *
195 default_alloc_func(void *pUserData, size_t size, size_t align,
196 VkSystemAllocationScope allocationScope)
197 {
198 return malloc(size);
199 }
200
201 static void *
202 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
203 size_t align, VkSystemAllocationScope allocationScope)
204 {
205 return realloc(pOriginal, size);
206 }
207
208 static void
209 default_free_func(void *pUserData, void *pMemory)
210 {
211 free(pMemory);
212 }
213
214 static const VkAllocationCallbacks default_alloc = {
215 .pUserData = NULL,
216 .pfnAllocation = default_alloc_func,
217 .pfnReallocation = default_realloc_func,
218 .pfnFree = default_free_func,
219 };
220
221 VkResult radv_CreateInstance(
222 const VkInstanceCreateInfo* pCreateInfo,
223 const VkAllocationCallbacks* pAllocator,
224 VkInstance* pInstance)
225 {
226 struct radv_instance *instance;
227
228 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
229
230 uint32_t client_version;
231 if (pCreateInfo->pApplicationInfo &&
232 pCreateInfo->pApplicationInfo->apiVersion != 0) {
233 client_version = pCreateInfo->pApplicationInfo->apiVersion;
234 } else {
235 client_version = VK_MAKE_VERSION(1, 0, 0);
236 }
237
238 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
239 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
240 return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
241 "Client requested version %d.%d.%d",
242 VK_VERSION_MAJOR(client_version),
243 VK_VERSION_MINOR(client_version),
244 VK_VERSION_PATCH(client_version));
245 }
246
247 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
248 bool found = false;
249 for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
250 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
251 global_extensions[j].extensionName) == 0) {
252 found = true;
253 break;
254 }
255 }
256 if (!found)
257 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
258 }
259
260 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
261 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
262 if (!instance)
263 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
264
265 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
266
267 if (pAllocator)
268 instance->alloc = *pAllocator;
269 else
270 instance->alloc = default_alloc;
271
272 instance->apiVersion = client_version;
273 instance->physicalDeviceCount = -1;
274
275 _mesa_locale_init();
276
277 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
278
279 *pInstance = radv_instance_to_handle(instance);
280
281 return VK_SUCCESS;
282 }
283
284 void radv_DestroyInstance(
285 VkInstance _instance,
286 const VkAllocationCallbacks* pAllocator)
287 {
288 RADV_FROM_HANDLE(radv_instance, instance, _instance);
289
290 if (instance->physicalDeviceCount > 0) {
291 /* We support at most one physical device. */
292 assert(instance->physicalDeviceCount == 1);
293 radv_physical_device_finish(&instance->physicalDevice);
294 }
295
296 VG(VALGRIND_DESTROY_MEMPOOL(instance));
297
298 _mesa_locale_fini();
299
300 vk_free(&instance->alloc, instance);
301 }
302
303 VkResult radv_EnumeratePhysicalDevices(
304 VkInstance _instance,
305 uint32_t* pPhysicalDeviceCount,
306 VkPhysicalDevice* pPhysicalDevices)
307 {
308 RADV_FROM_HANDLE(radv_instance, instance, _instance);
309 VkResult result;
310
311 if (instance->physicalDeviceCount < 0) {
312 char path[20];
313 for (unsigned i = 0; i < 8; i++) {
314 snprintf(path, sizeof(path), "/dev/dri/renderD%d", 128 + i);
315 result = radv_physical_device_init(&instance->physicalDevice,
316 instance, path);
317 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
318 break;
319 }
320
321 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
322 instance->physicalDeviceCount = 0;
323 } else if (result == VK_SUCCESS) {
324 instance->physicalDeviceCount = 1;
325 } else {
326 return result;
327 }
328 }
329
330 /* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
331 * otherwise it's an inout parameter.
332 *
333 * The Vulkan spec (git aaed022) says:
334 *
335 * pPhysicalDeviceCount is a pointer to an unsigned integer variable
336 * that is initialized with the number of devices the application is
337 * prepared to receive handles to. pname:pPhysicalDevices is pointer to
338 * an array of at least this many VkPhysicalDevice handles [...].
339 *
340 * Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
341 * overwrites the contents of the variable pointed to by
342 * pPhysicalDeviceCount with the number of physical devices in in the
343 * instance; otherwise, vkEnumeratePhysicalDevices overwrites
344 * pPhysicalDeviceCount with the number of physical handles written to
345 * pPhysicalDevices.
346 */
347 if (!pPhysicalDevices) {
348 *pPhysicalDeviceCount = instance->physicalDeviceCount;
349 } else if (*pPhysicalDeviceCount >= 1) {
350 pPhysicalDevices[0] = radv_physical_device_to_handle(&instance->physicalDevice);
351 *pPhysicalDeviceCount = 1;
352 } else if (*pPhysicalDeviceCount < instance->physicalDeviceCount) {
353 return VK_INCOMPLETE;
354 } else {
355 *pPhysicalDeviceCount = 0;
356 }
357
358 return VK_SUCCESS;
359 }
360
361 void radv_GetPhysicalDeviceFeatures(
362 VkPhysicalDevice physicalDevice,
363 VkPhysicalDeviceFeatures* pFeatures)
364 {
365 // RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
366
367 memset(pFeatures, 0, sizeof(*pFeatures));
368
369 *pFeatures = (VkPhysicalDeviceFeatures) {
370 .robustBufferAccess = true,
371 .fullDrawIndexUint32 = true,
372 .imageCubeArray = true,
373 .independentBlend = true,
374 .geometryShader = false,
375 .tessellationShader = false,
376 .sampleRateShading = false,
377 .dualSrcBlend = true,
378 .logicOp = true,
379 .multiDrawIndirect = true,
380 .drawIndirectFirstInstance = true,
381 .depthClamp = true,
382 .depthBiasClamp = true,
383 .fillModeNonSolid = true,
384 .depthBounds = true,
385 .wideLines = true,
386 .largePoints = true,
387 .alphaToOne = true,
388 .multiViewport = false,
389 .samplerAnisotropy = true,
390 .textureCompressionETC2 = false,
391 .textureCompressionASTC_LDR = false,
392 .textureCompressionBC = true,
393 .occlusionQueryPrecise = true,
394 .pipelineStatisticsQuery = false,
395 .vertexPipelineStoresAndAtomics = true,
396 .fragmentStoresAndAtomics = true,
397 .shaderTessellationAndGeometryPointSize = true,
398 .shaderImageGatherExtended = false,
399 .shaderStorageImageExtendedFormats = false,
400 .shaderStorageImageMultisample = false,
401 .shaderUniformBufferArrayDynamicIndexing = true,
402 .shaderSampledImageArrayDynamicIndexing = true,
403 .shaderStorageBufferArrayDynamicIndexing = true,
404 .shaderStorageImageArrayDynamicIndexing = true,
405 .shaderStorageImageReadWithoutFormat = false,
406 .shaderStorageImageWriteWithoutFormat = true,
407 .shaderClipDistance = true,
408 .shaderCullDistance = true,
409 .shaderFloat64 = false,
410 .shaderInt64 = false,
411 .shaderInt16 = false,
412 .alphaToOne = true,
413 .variableMultisampleRate = false,
414 .inheritedQueries = false,
415 };
416 }
417
418 void radv_GetPhysicalDeviceProperties(
419 VkPhysicalDevice physicalDevice,
420 VkPhysicalDeviceProperties* pProperties)
421 {
422 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
423 VkSampleCountFlags sample_counts = 0xf;
424 VkPhysicalDeviceLimits limits = {
425 .maxImageDimension1D = (1 << 14),
426 .maxImageDimension2D = (1 << 14),
427 .maxImageDimension3D = (1 << 11),
428 .maxImageDimensionCube = (1 << 14),
429 .maxImageArrayLayers = (1 << 11),
430 .maxTexelBufferElements = 128 * 1024 * 1024,
431 .maxUniformBufferRange = UINT32_MAX,
432 .maxStorageBufferRange = UINT32_MAX,
433 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
434 .maxMemoryAllocationCount = UINT32_MAX,
435 .maxSamplerAllocationCount = 64 * 1024,
436 .bufferImageGranularity = 64, /* A cache line */
437 .sparseAddressSpaceSize = 0,
438 .maxBoundDescriptorSets = MAX_SETS,
439 .maxPerStageDescriptorSamplers = 64,
440 .maxPerStageDescriptorUniformBuffers = 64,
441 .maxPerStageDescriptorStorageBuffers = 64,
442 .maxPerStageDescriptorSampledImages = 64,
443 .maxPerStageDescriptorStorageImages = 64,
444 .maxPerStageDescriptorInputAttachments = 64,
445 .maxPerStageResources = 128,
446 .maxDescriptorSetSamplers = 256,
447 .maxDescriptorSetUniformBuffers = 256,
448 .maxDescriptorSetUniformBuffersDynamic = 256,
449 .maxDescriptorSetStorageBuffers = 256,
450 .maxDescriptorSetStorageBuffersDynamic = 256,
451 .maxDescriptorSetSampledImages = 256,
452 .maxDescriptorSetStorageImages = 256,
453 .maxDescriptorSetInputAttachments = 256,
454 .maxVertexInputAttributes = 32,
455 .maxVertexInputBindings = 32,
456 .maxVertexInputAttributeOffset = 2047,
457 .maxVertexInputBindingStride = 2048,
458 .maxVertexOutputComponents = 128,
459 .maxTessellationGenerationLevel = 0,
460 .maxTessellationPatchSize = 0,
461 .maxTessellationControlPerVertexInputComponents = 0,
462 .maxTessellationControlPerVertexOutputComponents = 0,
463 .maxTessellationControlPerPatchOutputComponents = 0,
464 .maxTessellationControlTotalOutputComponents = 0,
465 .maxTessellationEvaluationInputComponents = 0,
466 .maxTessellationEvaluationOutputComponents = 0,
467 .maxGeometryShaderInvocations = 32,
468 .maxGeometryInputComponents = 64,
469 .maxGeometryOutputComponents = 128,
470 .maxGeometryOutputVertices = 256,
471 .maxGeometryTotalOutputComponents = 1024,
472 .maxFragmentInputComponents = 128,
473 .maxFragmentOutputAttachments = 8,
474 .maxFragmentDualSrcAttachments = 1,
475 .maxFragmentCombinedOutputResources = 8,
476 .maxComputeSharedMemorySize = 32768,
477 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
478 .maxComputeWorkGroupInvocations = 16 * 1024,
479 .maxComputeWorkGroupSize = {
480 16 * 1024/*devinfo->max_cs_threads*/,
481 16 * 1024,
482 16 * 1024
483 },
484 .subPixelPrecisionBits = 4 /* FIXME */,
485 .subTexelPrecisionBits = 4 /* FIXME */,
486 .mipmapPrecisionBits = 4 /* FIXME */,
487 .maxDrawIndexedIndexValue = UINT32_MAX,
488 .maxDrawIndirectCount = UINT32_MAX,
489 .maxSamplerLodBias = 16,
490 .maxSamplerAnisotropy = 16,
491 .maxViewports = MAX_VIEWPORTS,
492 .maxViewportDimensions = { (1 << 14), (1 << 14) },
493 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
494 .viewportSubPixelBits = 13, /* We take a float? */
495 .minMemoryMapAlignment = 4096, /* A page */
496 .minTexelBufferOffsetAlignment = 1,
497 .minUniformBufferOffsetAlignment = 4,
498 .minStorageBufferOffsetAlignment = 4,
499 .minTexelOffset = -8,
500 .maxTexelOffset = 7,
501 .minTexelGatherOffset = -8,
502 .maxTexelGatherOffset = 7,
503 .minInterpolationOffset = 0, /* FIXME */
504 .maxInterpolationOffset = 0, /* FIXME */
505 .subPixelInterpolationOffsetBits = 0, /* FIXME */
506 .maxFramebufferWidth = (1 << 14),
507 .maxFramebufferHeight = (1 << 14),
508 .maxFramebufferLayers = (1 << 10),
509 .framebufferColorSampleCounts = sample_counts,
510 .framebufferDepthSampleCounts = sample_counts,
511 .framebufferStencilSampleCounts = sample_counts,
512 .framebufferNoAttachmentsSampleCounts = sample_counts,
513 .maxColorAttachments = MAX_RTS,
514 .sampledImageColorSampleCounts = sample_counts,
515 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
516 .sampledImageDepthSampleCounts = sample_counts,
517 .sampledImageStencilSampleCounts = sample_counts,
518 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
519 .maxSampleMaskWords = 1,
520 .timestampComputeAndGraphics = false,
521 .timestampPeriod = 100000.0 / pdevice->rad_info.clock_crystal_freq,
522 .maxClipDistances = 8,
523 .maxCullDistances = 8,
524 .maxCombinedClipAndCullDistances = 8,
525 .discreteQueuePriorities = 1,
526 .pointSizeRange = { 0.125, 255.875 },
527 .lineWidthRange = { 0.0, 7.9921875 },
528 .pointSizeGranularity = (1.0 / 8.0),
529 .lineWidthGranularity = (1.0 / 128.0),
530 .strictLines = false, /* FINISHME */
531 .standardSampleLocations = true,
532 .optimalBufferCopyOffsetAlignment = 128,
533 .optimalBufferCopyRowPitchAlignment = 128,
534 .nonCoherentAtomSize = 64,
535 };
536
537 *pProperties = (VkPhysicalDeviceProperties) {
538 .apiVersion = VK_MAKE_VERSION(1, 0, 5),
539 .driverVersion = 1,
540 .vendorID = 0x1002,
541 .deviceID = pdevice->rad_info.pci_id,
542 .deviceType = VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU,
543 .limits = limits,
544 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
545 };
546
547 strcpy(pProperties->deviceName, pdevice->name);
548 memcpy(pProperties->pipelineCacheUUID, pdevice->uuid, VK_UUID_SIZE);
549 }
550
551 void radv_GetPhysicalDeviceQueueFamilyProperties(
552 VkPhysicalDevice physicalDevice,
553 uint32_t* pCount,
554 VkQueueFamilyProperties* pQueueFamilyProperties)
555 {
556 if (pQueueFamilyProperties == NULL) {
557 *pCount = 1;
558 return;
559 }
560 assert(*pCount >= 1);
561
562 *pQueueFamilyProperties = (VkQueueFamilyProperties) {
563 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
564 VK_QUEUE_COMPUTE_BIT |
565 VK_QUEUE_TRANSFER_BIT,
566 .queueCount = 1,
567 .timestampValidBits = 64,
568 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
569 };
570 }
571
572 void radv_GetPhysicalDeviceMemoryProperties(
573 VkPhysicalDevice physicalDevice,
574 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
575 {
576 RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
577
578 STATIC_ASSERT(RADV_MEM_TYPE_COUNT <= VK_MAX_MEMORY_TYPES);
579
580 pMemoryProperties->memoryTypeCount = RADV_MEM_TYPE_COUNT;
581 pMemoryProperties->memoryTypes[RADV_MEM_TYPE_VRAM] = (VkMemoryType) {
582 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
583 .heapIndex = RADV_MEM_HEAP_VRAM,
584 };
585 pMemoryProperties->memoryTypes[RADV_MEM_TYPE_GTT_WRITE_COMBINE] = (VkMemoryType) {
586 .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
587 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
588 .heapIndex = RADV_MEM_HEAP_GTT,
589 };
590 pMemoryProperties->memoryTypes[RADV_MEM_TYPE_VRAM_CPU_ACCESS] = (VkMemoryType) {
591 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
592 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
593 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
594 .heapIndex = RADV_MEM_HEAP_VRAM_CPU_ACCESS,
595 };
596 pMemoryProperties->memoryTypes[RADV_MEM_TYPE_GTT_CACHED] = (VkMemoryType) {
597 .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
598 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
599 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
600 .heapIndex = RADV_MEM_HEAP_GTT,
601 };
602
603 STATIC_ASSERT(RADV_MEM_HEAP_COUNT <= VK_MAX_MEMORY_HEAPS);
604
605 pMemoryProperties->memoryHeapCount = RADV_MEM_HEAP_COUNT;
606 pMemoryProperties->memoryHeaps[RADV_MEM_HEAP_VRAM] = (VkMemoryHeap) {
607 .size = physical_device->rad_info.vram_size -
608 physical_device->rad_info.visible_vram_size,
609 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
610 };
611 pMemoryProperties->memoryHeaps[RADV_MEM_HEAP_VRAM_CPU_ACCESS] = (VkMemoryHeap) {
612 .size = physical_device->rad_info.visible_vram_size,
613 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
614 };
615 pMemoryProperties->memoryHeaps[RADV_MEM_HEAP_GTT] = (VkMemoryHeap) {
616 .size = physical_device->rad_info.gart_size,
617 .flags = 0,
618 };
619 }
620
621 static void
622 radv_queue_init(struct radv_device *device, struct radv_queue *queue)
623 {
624 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
625 queue->device = device;
626 }
627
628 static void
629 radv_queue_finish(struct radv_queue *queue)
630 {
631 }
632
633 VkResult radv_CreateDevice(
634 VkPhysicalDevice physicalDevice,
635 const VkDeviceCreateInfo* pCreateInfo,
636 const VkAllocationCallbacks* pAllocator,
637 VkDevice* pDevice)
638 {
639 RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
640 VkResult result;
641 struct radv_device *device;
642
643 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
644 bool found = false;
645 for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
646 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
647 device_extensions[j].extensionName) == 0) {
648 found = true;
649 break;
650 }
651 }
652 if (!found)
653 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
654 }
655
656 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
657 sizeof(*device), 8,
658 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
659 if (!device)
660 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
661
662 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
663 device->instance = physical_device->instance;
664 device->shader_stats_dump = false;
665
666 device->ws = physical_device->ws;
667 if (pAllocator)
668 device->alloc = *pAllocator;
669 else
670 device->alloc = physical_device->instance->alloc;
671
672 device->hw_ctx = device->ws->ctx_create(device->ws);
673 if (!device->hw_ctx) {
674 result = VK_ERROR_OUT_OF_HOST_MEMORY;
675 goto fail_free;
676 }
677
678 radv_queue_init(device, &device->queue);
679
680 result = radv_device_init_meta(device);
681 if (result != VK_SUCCESS) {
682 device->ws->ctx_destroy(device->hw_ctx);
683 goto fail_free;
684 }
685 device->allow_fast_clears = env_var_as_boolean("RADV_FAST_CLEARS", false);
686 device->allow_dcc = !env_var_as_boolean("RADV_DCC_DISABLE", false);
687 device->shader_stats_dump = env_var_as_boolean("RADV_SHADER_STATS", false);
688
689 if (device->allow_fast_clears && device->allow_dcc)
690 radv_finishme("DCC fast clears have not been tested\n");
691
692 radv_device_init_msaa(device);
693 device->empty_cs = device->ws->cs_create(device->ws, RING_GFX);
694 radeon_emit(device->empty_cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
695 radeon_emit(device->empty_cs, CONTEXT_CONTROL_LOAD_ENABLE(1));
696 radeon_emit(device->empty_cs, CONTEXT_CONTROL_SHADOW_ENABLE(1));
697 device->ws->cs_finalize(device->empty_cs);
698 *pDevice = radv_device_to_handle(device);
699 return VK_SUCCESS;
700 fail_free:
701 vk_free(&device->alloc, device);
702 return result;
703 }
704
705 void radv_DestroyDevice(
706 VkDevice _device,
707 const VkAllocationCallbacks* pAllocator)
708 {
709 RADV_FROM_HANDLE(radv_device, device, _device);
710
711 device->ws->ctx_destroy(device->hw_ctx);
712 radv_queue_finish(&device->queue);
713 radv_device_finish_meta(device);
714
715 vk_free(&device->alloc, device);
716 }
717
718 VkResult radv_EnumerateInstanceExtensionProperties(
719 const char* pLayerName,
720 uint32_t* pPropertyCount,
721 VkExtensionProperties* pProperties)
722 {
723 if (pProperties == NULL) {
724 *pPropertyCount = ARRAY_SIZE(global_extensions);
725 return VK_SUCCESS;
726 }
727
728 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(global_extensions));
729 typed_memcpy(pProperties, global_extensions, *pPropertyCount);
730
731 if (*pPropertyCount < ARRAY_SIZE(global_extensions))
732 return VK_INCOMPLETE;
733
734 return VK_SUCCESS;
735 }
736
737 VkResult radv_EnumerateDeviceExtensionProperties(
738 VkPhysicalDevice physicalDevice,
739 const char* pLayerName,
740 uint32_t* pPropertyCount,
741 VkExtensionProperties* pProperties)
742 {
743 if (pProperties == NULL) {
744 *pPropertyCount = ARRAY_SIZE(device_extensions);
745 return VK_SUCCESS;
746 }
747
748 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(device_extensions));
749 typed_memcpy(pProperties, device_extensions, *pPropertyCount);
750
751 if (*pPropertyCount < ARRAY_SIZE(device_extensions))
752 return VK_INCOMPLETE;
753
754 return VK_SUCCESS;
755 }
756
757 VkResult radv_EnumerateInstanceLayerProperties(
758 uint32_t* pPropertyCount,
759 VkLayerProperties* pProperties)
760 {
761 if (pProperties == NULL) {
762 *pPropertyCount = 0;
763 return VK_SUCCESS;
764 }
765
766 /* None supported at this time */
767 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
768 }
769
770 VkResult radv_EnumerateDeviceLayerProperties(
771 VkPhysicalDevice physicalDevice,
772 uint32_t* pPropertyCount,
773 VkLayerProperties* pProperties)
774 {
775 if (pProperties == NULL) {
776 *pPropertyCount = 0;
777 return VK_SUCCESS;
778 }
779
780 /* None supported at this time */
781 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
782 }
783
784 void radv_GetDeviceQueue(
785 VkDevice _device,
786 uint32_t queueNodeIndex,
787 uint32_t queueIndex,
788 VkQueue* pQueue)
789 {
790 RADV_FROM_HANDLE(radv_device, device, _device);
791
792 assert(queueIndex == 0);
793
794 *pQueue = radv_queue_to_handle(&device->queue);
795 }
796
797 VkResult radv_QueueSubmit(
798 VkQueue _queue,
799 uint32_t submitCount,
800 const VkSubmitInfo* pSubmits,
801 VkFence _fence)
802 {
803 RADV_FROM_HANDLE(radv_queue, queue, _queue);
804 RADV_FROM_HANDLE(radv_fence, fence, _fence);
805 struct radeon_winsys_fence *base_fence = fence ? fence->fence : NULL;
806 struct radeon_winsys_ctx *ctx = queue->device->hw_ctx;
807 int ret;
808
809 for (uint32_t i = 0; i < submitCount; i++) {
810 struct radeon_winsys_cs **cs_array;
811 bool can_patch = true;
812
813 if (!pSubmits[i].commandBufferCount)
814 continue;
815
816 cs_array = malloc(sizeof(struct radeon_winsys_cs *) *
817 pSubmits[i].commandBufferCount);
818
819 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
820 RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer,
821 pSubmits[i].pCommandBuffers[j]);
822 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
823
824 cs_array[j] = cmd_buffer->cs;
825 if ((cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT))
826 can_patch = false;
827 }
828 ret = queue->device->ws->cs_submit(ctx, cs_array,
829 pSubmits[i].commandBufferCount,
830 can_patch, base_fence);
831 if (ret)
832 radv_loge("failed to submit CS %d\n", i);
833 free(cs_array);
834 }
835
836 if (fence) {
837 if (!submitCount)
838 ret = queue->device->ws->cs_submit(ctx, &queue->device->empty_cs,
839 1, false, base_fence);
840
841 fence->submitted = true;
842 }
843
844 return VK_SUCCESS;
845 }
846
847 VkResult radv_QueueWaitIdle(
848 VkQueue _queue)
849 {
850 RADV_FROM_HANDLE(radv_queue, queue, _queue);
851
852 queue->device->ws->ctx_wait_idle(queue->device->hw_ctx);
853 return VK_SUCCESS;
854 }
855
856 VkResult radv_DeviceWaitIdle(
857 VkDevice _device)
858 {
859 RADV_FROM_HANDLE(radv_device, device, _device);
860
861 device->ws->ctx_wait_idle(device->hw_ctx);
862 return VK_SUCCESS;
863 }
864
865 PFN_vkVoidFunction radv_GetInstanceProcAddr(
866 VkInstance instance,
867 const char* pName)
868 {
869 return radv_lookup_entrypoint(pName);
870 }
871
872 /* The loader wants us to expose a second GetInstanceProcAddr function
873 * to work around certain LD_PRELOAD issues seen in apps.
874 */
875 PUBLIC
876 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
877 VkInstance instance,
878 const char* pName);
879
880 PUBLIC
881 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
882 VkInstance instance,
883 const char* pName)
884 {
885 return radv_GetInstanceProcAddr(instance, pName);
886 }
887
888 PFN_vkVoidFunction radv_GetDeviceProcAddr(
889 VkDevice device,
890 const char* pName)
891 {
892 return radv_lookup_entrypoint(pName);
893 }
894
895 VkResult radv_AllocateMemory(
896 VkDevice _device,
897 const VkMemoryAllocateInfo* pAllocateInfo,
898 const VkAllocationCallbacks* pAllocator,
899 VkDeviceMemory* pMem)
900 {
901 RADV_FROM_HANDLE(radv_device, device, _device);
902 struct radv_device_memory *mem;
903 VkResult result;
904 enum radeon_bo_domain domain;
905 uint32_t flags = 0;
906 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
907
908 if (pAllocateInfo->allocationSize == 0) {
909 /* Apparently, this is allowed */
910 *pMem = VK_NULL_HANDLE;
911 return VK_SUCCESS;
912 }
913
914 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
915 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
916 if (mem == NULL)
917 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
918
919 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
920 if (pAllocateInfo->memoryTypeIndex == RADV_MEM_TYPE_GTT_WRITE_COMBINE ||
921 pAllocateInfo->memoryTypeIndex == RADV_MEM_TYPE_GTT_CACHED)
922 domain = RADEON_DOMAIN_GTT;
923 else
924 domain = RADEON_DOMAIN_VRAM;
925
926 if (pAllocateInfo->memoryTypeIndex == RADV_MEM_TYPE_VRAM)
927 flags |= RADEON_FLAG_NO_CPU_ACCESS;
928 else
929 flags |= RADEON_FLAG_CPU_ACCESS;
930
931 if (pAllocateInfo->memoryTypeIndex == RADV_MEM_TYPE_GTT_WRITE_COMBINE)
932 flags |= RADEON_FLAG_GTT_WC;
933
934 mem->bo = device->ws->buffer_create(device->ws, alloc_size, 32768,
935 domain, flags);
936
937 if (!mem->bo) {
938 result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
939 goto fail;
940 }
941 mem->type_index = pAllocateInfo->memoryTypeIndex;
942
943 *pMem = radv_device_memory_to_handle(mem);
944
945 return VK_SUCCESS;
946
947 fail:
948 vk_free2(&device->alloc, pAllocator, mem);
949
950 return result;
951 }
952
953 void radv_FreeMemory(
954 VkDevice _device,
955 VkDeviceMemory _mem,
956 const VkAllocationCallbacks* pAllocator)
957 {
958 RADV_FROM_HANDLE(radv_device, device, _device);
959 RADV_FROM_HANDLE(radv_device_memory, mem, _mem);
960
961 if (mem == NULL)
962 return;
963
964 device->ws->buffer_destroy(mem->bo);
965 mem->bo = NULL;
966
967 vk_free2(&device->alloc, pAllocator, mem);
968 }
969
970 VkResult radv_MapMemory(
971 VkDevice _device,
972 VkDeviceMemory _memory,
973 VkDeviceSize offset,
974 VkDeviceSize size,
975 VkMemoryMapFlags flags,
976 void** ppData)
977 {
978 RADV_FROM_HANDLE(radv_device, device, _device);
979 RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
980
981 if (mem == NULL) {
982 *ppData = NULL;
983 return VK_SUCCESS;
984 }
985
986 *ppData = device->ws->buffer_map(mem->bo);
987 if (*ppData) {
988 *ppData += offset;
989 return VK_SUCCESS;
990 }
991
992 return VK_ERROR_MEMORY_MAP_FAILED;
993 }
994
995 void radv_UnmapMemory(
996 VkDevice _device,
997 VkDeviceMemory _memory)
998 {
999 RADV_FROM_HANDLE(radv_device, device, _device);
1000 RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
1001
1002 if (mem == NULL)
1003 return;
1004
1005 device->ws->buffer_unmap(mem->bo);
1006 }
1007
1008 VkResult radv_FlushMappedMemoryRanges(
1009 VkDevice _device,
1010 uint32_t memoryRangeCount,
1011 const VkMappedMemoryRange* pMemoryRanges)
1012 {
1013 return VK_SUCCESS;
1014 }
1015
1016 VkResult radv_InvalidateMappedMemoryRanges(
1017 VkDevice _device,
1018 uint32_t memoryRangeCount,
1019 const VkMappedMemoryRange* pMemoryRanges)
1020 {
1021 return VK_SUCCESS;
1022 }
1023
1024 void radv_GetBufferMemoryRequirements(
1025 VkDevice device,
1026 VkBuffer _buffer,
1027 VkMemoryRequirements* pMemoryRequirements)
1028 {
1029 RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
1030
1031 pMemoryRequirements->memoryTypeBits = (1u << RADV_MEM_TYPE_COUNT) - 1;
1032
1033 pMemoryRequirements->size = buffer->size;
1034 pMemoryRequirements->alignment = 16;
1035 }
1036
1037 void radv_GetImageMemoryRequirements(
1038 VkDevice device,
1039 VkImage _image,
1040 VkMemoryRequirements* pMemoryRequirements)
1041 {
1042 RADV_FROM_HANDLE(radv_image, image, _image);
1043
1044 pMemoryRequirements->memoryTypeBits = (1u << RADV_MEM_TYPE_COUNT) - 1;
1045
1046 pMemoryRequirements->size = image->size;
1047 pMemoryRequirements->alignment = image->alignment;
1048 }
1049
1050 void radv_GetImageSparseMemoryRequirements(
1051 VkDevice device,
1052 VkImage image,
1053 uint32_t* pSparseMemoryRequirementCount,
1054 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
1055 {
1056 stub();
1057 }
1058
1059 void radv_GetDeviceMemoryCommitment(
1060 VkDevice device,
1061 VkDeviceMemory memory,
1062 VkDeviceSize* pCommittedMemoryInBytes)
1063 {
1064 *pCommittedMemoryInBytes = 0;
1065 }
1066
1067 VkResult radv_BindBufferMemory(
1068 VkDevice device,
1069 VkBuffer _buffer,
1070 VkDeviceMemory _memory,
1071 VkDeviceSize memoryOffset)
1072 {
1073 RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
1074 RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
1075
1076 if (mem) {
1077 buffer->bo = mem->bo;
1078 buffer->offset = memoryOffset;
1079 } else {
1080 buffer->bo = NULL;
1081 buffer->offset = 0;
1082 }
1083
1084 return VK_SUCCESS;
1085 }
1086
1087 VkResult radv_BindImageMemory(
1088 VkDevice device,
1089 VkImage _image,
1090 VkDeviceMemory _memory,
1091 VkDeviceSize memoryOffset)
1092 {
1093 RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
1094 RADV_FROM_HANDLE(radv_image, image, _image);
1095
1096 if (mem) {
1097 image->bo = mem->bo;
1098 image->offset = memoryOffset;
1099 } else {
1100 image->bo = NULL;
1101 image->offset = 0;
1102 }
1103
1104 return VK_SUCCESS;
1105 }
1106
1107 VkResult radv_QueueBindSparse(
1108 VkQueue queue,
1109 uint32_t bindInfoCount,
1110 const VkBindSparseInfo* pBindInfo,
1111 VkFence fence)
1112 {
1113 stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
1114 }
1115
1116 VkResult radv_CreateFence(
1117 VkDevice _device,
1118 const VkFenceCreateInfo* pCreateInfo,
1119 const VkAllocationCallbacks* pAllocator,
1120 VkFence* pFence)
1121 {
1122 RADV_FROM_HANDLE(radv_device, device, _device);
1123 struct radv_fence *fence = vk_alloc2(&device->alloc, pAllocator,
1124 sizeof(*fence), 8,
1125 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1126
1127 if (!fence)
1128 return VK_ERROR_OUT_OF_HOST_MEMORY;
1129
1130 memset(fence, 0, sizeof(*fence));
1131 fence->submitted = false;
1132 fence->signalled = !!(pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT);
1133 fence->fence = device->ws->create_fence();
1134
1135
1136 *pFence = radv_fence_to_handle(fence);
1137
1138 return VK_SUCCESS;
1139 }
1140
1141 void radv_DestroyFence(
1142 VkDevice _device,
1143 VkFence _fence,
1144 const VkAllocationCallbacks* pAllocator)
1145 {
1146 RADV_FROM_HANDLE(radv_device, device, _device);
1147 RADV_FROM_HANDLE(radv_fence, fence, _fence);
1148
1149 if (!fence)
1150 return;
1151 device->ws->destroy_fence(fence->fence);
1152 vk_free2(&device->alloc, pAllocator, fence);
1153 }
1154
1155 static uint64_t radv_get_absolute_timeout(uint64_t timeout)
1156 {
1157 uint64_t current_time;
1158 struct timespec tv;
1159
1160 clock_gettime(CLOCK_MONOTONIC, &tv);
1161 current_time = tv.tv_nsec + tv.tv_sec*1000000000ull;
1162
1163 timeout = MIN2(UINT64_MAX - current_time, timeout);
1164
1165 return current_time + timeout;
1166 }
1167
1168 VkResult radv_WaitForFences(
1169 VkDevice _device,
1170 uint32_t fenceCount,
1171 const VkFence* pFences,
1172 VkBool32 waitAll,
1173 uint64_t timeout)
1174 {
1175 RADV_FROM_HANDLE(radv_device, device, _device);
1176 timeout = radv_get_absolute_timeout(timeout);
1177
1178 if (!waitAll && fenceCount > 1) {
1179 fprintf(stderr, "radv: WaitForFences without waitAll not implemented yet\n");
1180 }
1181
1182 for (uint32_t i = 0; i < fenceCount; ++i) {
1183 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
1184 bool expired = false;
1185
1186 if (fence->signalled)
1187 continue;
1188
1189 if (!fence->submitted)
1190 return VK_TIMEOUT;
1191
1192 expired = device->ws->fence_wait(device->ws, fence->fence, true, timeout);
1193 if (!expired)
1194 return VK_TIMEOUT;
1195
1196 fence->signalled = true;
1197 }
1198
1199 return VK_SUCCESS;
1200 }
1201
1202 VkResult radv_ResetFences(VkDevice device,
1203 uint32_t fenceCount,
1204 const VkFence *pFences)
1205 {
1206 for (unsigned i = 0; i < fenceCount; ++i) {
1207 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
1208 fence->submitted = fence->signalled = false;
1209 }
1210
1211 return VK_SUCCESS;
1212 }
1213
1214 VkResult radv_GetFenceStatus(VkDevice _device, VkFence _fence)
1215 {
1216 RADV_FROM_HANDLE(radv_device, device, _device);
1217 RADV_FROM_HANDLE(radv_fence, fence, _fence);
1218
1219 if (fence->signalled)
1220 return VK_SUCCESS;
1221 if (!fence->submitted)
1222 return VK_NOT_READY;
1223
1224 if (!device->ws->fence_wait(device->ws, fence->fence, false, 0))
1225 return VK_NOT_READY;
1226
1227 return VK_SUCCESS;
1228 }
1229
1230
1231 // Queue semaphore functions
1232
1233 VkResult radv_CreateSemaphore(
1234 VkDevice device,
1235 const VkSemaphoreCreateInfo* pCreateInfo,
1236 const VkAllocationCallbacks* pAllocator,
1237 VkSemaphore* pSemaphore)
1238 {
1239 /* The DRM execbuffer ioctl always execute in-oder, even between different
1240 * rings. As such, there's nothing to do for the user space semaphore.
1241 */
1242
1243 *pSemaphore = (VkSemaphore)1;
1244
1245 return VK_SUCCESS;
1246 }
1247
1248 void radv_DestroySemaphore(
1249 VkDevice device,
1250 VkSemaphore semaphore,
1251 const VkAllocationCallbacks* pAllocator)
1252 {
1253 }
1254
1255 VkResult radv_CreateEvent(
1256 VkDevice _device,
1257 const VkEventCreateInfo* pCreateInfo,
1258 const VkAllocationCallbacks* pAllocator,
1259 VkEvent* pEvent)
1260 {
1261 RADV_FROM_HANDLE(radv_device, device, _device);
1262 struct radv_event *event = vk_alloc2(&device->alloc, pAllocator,
1263 sizeof(*event), 8,
1264 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1265
1266 if (!event)
1267 return VK_ERROR_OUT_OF_HOST_MEMORY;
1268
1269 event->bo = device->ws->buffer_create(device->ws, 8, 8,
1270 RADEON_DOMAIN_GTT,
1271 RADEON_FLAG_CPU_ACCESS);
1272 if (!event->bo) {
1273 vk_free2(&device->alloc, pAllocator, event);
1274 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1275 }
1276
1277 event->map = (uint64_t*)device->ws->buffer_map(event->bo);
1278
1279 *pEvent = radv_event_to_handle(event);
1280
1281 return VK_SUCCESS;
1282 }
1283
1284 void radv_DestroyEvent(
1285 VkDevice _device,
1286 VkEvent _event,
1287 const VkAllocationCallbacks* pAllocator)
1288 {
1289 RADV_FROM_HANDLE(radv_device, device, _device);
1290 RADV_FROM_HANDLE(radv_event, event, _event);
1291
1292 if (!event)
1293 return;
1294 device->ws->buffer_destroy(event->bo);
1295 vk_free2(&device->alloc, pAllocator, event);
1296 }
1297
1298 VkResult radv_GetEventStatus(
1299 VkDevice _device,
1300 VkEvent _event)
1301 {
1302 RADV_FROM_HANDLE(radv_event, event, _event);
1303
1304 if (*event->map == 1)
1305 return VK_EVENT_SET;
1306 return VK_EVENT_RESET;
1307 }
1308
1309 VkResult radv_SetEvent(
1310 VkDevice _device,
1311 VkEvent _event)
1312 {
1313 RADV_FROM_HANDLE(radv_event, event, _event);
1314 *event->map = 1;
1315
1316 return VK_SUCCESS;
1317 }
1318
1319 VkResult radv_ResetEvent(
1320 VkDevice _device,
1321 VkEvent _event)
1322 {
1323 RADV_FROM_HANDLE(radv_event, event, _event);
1324 *event->map = 0;
1325
1326 return VK_SUCCESS;
1327 }
1328
1329 VkResult radv_CreateBuffer(
1330 VkDevice _device,
1331 const VkBufferCreateInfo* pCreateInfo,
1332 const VkAllocationCallbacks* pAllocator,
1333 VkBuffer* pBuffer)
1334 {
1335 RADV_FROM_HANDLE(radv_device, device, _device);
1336 struct radv_buffer *buffer;
1337
1338 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
1339
1340 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
1341 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1342 if (buffer == NULL)
1343 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1344
1345 buffer->size = pCreateInfo->size;
1346 buffer->usage = pCreateInfo->usage;
1347 buffer->bo = NULL;
1348 buffer->offset = 0;
1349
1350 *pBuffer = radv_buffer_to_handle(buffer);
1351
1352 return VK_SUCCESS;
1353 }
1354
1355 void radv_DestroyBuffer(
1356 VkDevice _device,
1357 VkBuffer _buffer,
1358 const VkAllocationCallbacks* pAllocator)
1359 {
1360 RADV_FROM_HANDLE(radv_device, device, _device);
1361 RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
1362
1363 if (!buffer)
1364 return;
1365
1366 vk_free2(&device->alloc, pAllocator, buffer);
1367 }
1368
1369 static inline unsigned
1370 si_tile_mode_index(const struct radv_image *image, unsigned level, bool stencil)
1371 {
1372 if (stencil)
1373 return image->surface.stencil_tiling_index[level];
1374 else
1375 return image->surface.tiling_index[level];
1376 }
1377
1378 static void
1379 radv_initialise_color_surface(struct radv_device *device,
1380 struct radv_color_buffer_info *cb,
1381 struct radv_image_view *iview)
1382 {
1383 const struct vk_format_description *desc;
1384 unsigned ntype, format, swap, endian;
1385 unsigned blend_clamp = 0, blend_bypass = 0;
1386 unsigned pitch_tile_max, slice_tile_max, tile_mode_index;
1387 uint64_t va;
1388 const struct radeon_surf *surf = &iview->image->surface;
1389 const struct radeon_surf_level *level_info = &surf->level[iview->base_mip];
1390
1391 desc = vk_format_description(iview->vk_format);
1392
1393 memset(cb, 0, sizeof(*cb));
1394
1395 va = device->ws->buffer_get_va(iview->bo) + iview->image->offset;
1396 va += level_info->offset;
1397 cb->cb_color_base = va >> 8;
1398
1399 /* CMASK variables */
1400 va = device->ws->buffer_get_va(iview->bo) + iview->image->offset;
1401 va += iview->image->cmask.offset;
1402 cb->cb_color_cmask = va >> 8;
1403 cb->cb_color_cmask_slice = iview->image->cmask.slice_tile_max;
1404
1405 va = device->ws->buffer_get_va(iview->bo) + iview->image->offset;
1406 va += iview->image->dcc_offset;
1407 cb->cb_dcc_base = va >> 8;
1408
1409 cb->cb_color_view = S_028C6C_SLICE_START(iview->base_layer) |
1410 S_028C6C_SLICE_MAX(iview->base_layer + iview->extent.depth - 1);
1411
1412 cb->micro_tile_mode = iview->image->surface.micro_tile_mode;
1413 pitch_tile_max = level_info->nblk_x / 8 - 1;
1414 slice_tile_max = (level_info->nblk_x * level_info->nblk_y) / 64 - 1;
1415 tile_mode_index = si_tile_mode_index(iview->image, iview->base_mip, false);
1416
1417 cb->cb_color_pitch = S_028C64_TILE_MAX(pitch_tile_max);
1418 cb->cb_color_slice = S_028C68_TILE_MAX(slice_tile_max);
1419
1420 /* Intensity is implemented as Red, so treat it that way. */
1421 cb->cb_color_attrib = S_028C74_FORCE_DST_ALPHA_1(desc->swizzle[3] == VK_SWIZZLE_1) |
1422 S_028C74_TILE_MODE_INDEX(tile_mode_index);
1423
1424 if (iview->image->samples > 1) {
1425 unsigned log_samples = util_logbase2(iview->image->samples);
1426
1427 cb->cb_color_attrib |= S_028C74_NUM_SAMPLES(log_samples) |
1428 S_028C74_NUM_FRAGMENTS(log_samples);
1429 }
1430
1431 if (iview->image->fmask.size) {
1432 va = device->ws->buffer_get_va(iview->bo) + iview->image->offset + iview->image->fmask.offset;
1433 if (device->instance->physicalDevice.rad_info.chip_class >= CIK)
1434 cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(iview->image->fmask.pitch_in_pixels / 8 - 1);
1435 cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(iview->image->fmask.tile_mode_index);
1436 cb->cb_color_fmask = va >> 8;
1437 cb->cb_color_fmask_slice = S_028C88_TILE_MAX(iview->image->fmask.slice_tile_max);
1438 } else {
1439 /* This must be set for fast clear to work without FMASK. */
1440 if (device->instance->physicalDevice.rad_info.chip_class >= CIK)
1441 cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(pitch_tile_max);
1442 cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(tile_mode_index);
1443 cb->cb_color_fmask = cb->cb_color_base;
1444 cb->cb_color_fmask_slice = S_028C88_TILE_MAX(slice_tile_max);
1445 }
1446
1447 ntype = radv_translate_color_numformat(iview->vk_format,
1448 desc,
1449 vk_format_get_first_non_void_channel(iview->vk_format));
1450 format = radv_translate_colorformat(iview->vk_format);
1451 if (format == V_028C70_COLOR_INVALID || ntype == ~0u)
1452 radv_finishme("Illegal color\n");
1453 swap = radv_translate_colorswap(iview->vk_format, FALSE);
1454 endian = radv_colorformat_endian_swap(format);
1455
1456 /* blend clamp should be set for all NORM/SRGB types */
1457 if (ntype == V_028C70_NUMBER_UNORM ||
1458 ntype == V_028C70_NUMBER_SNORM ||
1459 ntype == V_028C70_NUMBER_SRGB)
1460 blend_clamp = 1;
1461
1462 /* set blend bypass according to docs if SINT/UINT or
1463 8/24 COLOR variants */
1464 if (ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT ||
1465 format == V_028C70_COLOR_8_24 || format == V_028C70_COLOR_24_8 ||
1466 format == V_028C70_COLOR_X24_8_32_FLOAT) {
1467 blend_clamp = 0;
1468 blend_bypass = 1;
1469 }
1470 #if 0
1471 if ((ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT) &&
1472 (format == V_028C70_COLOR_8 ||
1473 format == V_028C70_COLOR_8_8 ||
1474 format == V_028C70_COLOR_8_8_8_8))
1475 ->color_is_int8 = true;
1476 #endif
1477 cb->cb_color_info = S_028C70_FORMAT(format) |
1478 S_028C70_COMP_SWAP(swap) |
1479 S_028C70_BLEND_CLAMP(blend_clamp) |
1480 S_028C70_BLEND_BYPASS(blend_bypass) |
1481 S_028C70_SIMPLE_FLOAT(1) |
1482 S_028C70_ROUND_MODE(ntype != V_028C70_NUMBER_UNORM &&
1483 ntype != V_028C70_NUMBER_SNORM &&
1484 ntype != V_028C70_NUMBER_SRGB &&
1485 format != V_028C70_COLOR_8_24 &&
1486 format != V_028C70_COLOR_24_8) |
1487 S_028C70_NUMBER_TYPE(ntype) |
1488 S_028C70_ENDIAN(endian);
1489 if (iview->image->samples > 1)
1490 if (iview->image->fmask.size)
1491 cb->cb_color_info |= S_028C70_COMPRESSION(1);
1492
1493 if (iview->image->cmask.size && device->allow_fast_clears)
1494 cb->cb_color_info |= S_028C70_FAST_CLEAR(1);
1495
1496 if (iview->image->surface.dcc_size && level_info->dcc_enabled)
1497 cb->cb_color_info |= S_028C70_DCC_ENABLE(1);
1498
1499 if (device->instance->physicalDevice.rad_info.chip_class >= VI) {
1500 unsigned max_uncompressed_block_size = 2;
1501 if (iview->image->samples > 1) {
1502 if (iview->image->surface.bpe == 1)
1503 max_uncompressed_block_size = 0;
1504 else if (iview->image->surface.bpe == 2)
1505 max_uncompressed_block_size = 1;
1506 }
1507
1508 cb->cb_dcc_control = S_028C78_MAX_UNCOMPRESSED_BLOCK_SIZE(max_uncompressed_block_size) |
1509 S_028C78_INDEPENDENT_64B_BLOCKS(1);
1510 }
1511
1512 /* This must be set for fast clear to work without FMASK. */
1513 if (!iview->image->fmask.size &&
1514 device->instance->physicalDevice.rad_info.chip_class == SI) {
1515 unsigned bankh = util_logbase2(iview->image->surface.bankh);
1516 cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(bankh);
1517 }
1518 }
1519
1520 static void
1521 radv_initialise_ds_surface(struct radv_device *device,
1522 struct radv_ds_buffer_info *ds,
1523 struct radv_image_view *iview)
1524 {
1525 unsigned level = iview->base_mip;
1526 unsigned format;
1527 uint64_t va, s_offs, z_offs;
1528 const struct radeon_surf_level *level_info = &iview->image->surface.level[level];
1529 memset(ds, 0, sizeof(*ds));
1530 switch (iview->vk_format) {
1531 case VK_FORMAT_D24_UNORM_S8_UINT:
1532 case VK_FORMAT_X8_D24_UNORM_PACK32:
1533 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24);
1534 ds->offset_scale = 2.0f;
1535 break;
1536 case VK_FORMAT_D16_UNORM:
1537 case VK_FORMAT_D16_UNORM_S8_UINT:
1538 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
1539 ds->offset_scale = 4.0f;
1540 break;
1541 case VK_FORMAT_D32_SFLOAT:
1542 case VK_FORMAT_D32_SFLOAT_S8_UINT:
1543 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) |
1544 S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1);
1545 ds->offset_scale = 1.0f;
1546 break;
1547 default:
1548 break;
1549 }
1550
1551 format = radv_translate_dbformat(iview->vk_format);
1552 if (format == V_028040_Z_INVALID) {
1553 fprintf(stderr, "Invalid DB format: %d, disabling DB.\n", iview->vk_format);
1554 }
1555
1556 va = device->ws->buffer_get_va(iview->bo) + iview->image->offset;
1557 s_offs = z_offs = va;
1558 z_offs += iview->image->surface.level[level].offset;
1559 s_offs += iview->image->surface.stencil_level[level].offset;
1560
1561 ds->db_depth_view = S_028008_SLICE_START(iview->base_layer) |
1562 S_028008_SLICE_MAX(iview->base_layer + iview->extent.depth - 1);
1563 ds->db_depth_info = S_02803C_ADDR5_SWIZZLE_MASK(1);
1564 ds->db_z_info = S_028040_FORMAT(format) | S_028040_ZRANGE_PRECISION(1);
1565
1566 if (iview->image->samples > 1)
1567 ds->db_z_info |= S_028040_NUM_SAMPLES(util_logbase2(iview->image->samples));
1568
1569 if (iview->image->surface.flags & RADEON_SURF_SBUFFER)
1570 ds->db_stencil_info = S_028044_FORMAT(V_028044_STENCIL_8);
1571 else
1572 ds->db_stencil_info = S_028044_FORMAT(V_028044_STENCIL_INVALID);
1573
1574 if (device->instance->physicalDevice.rad_info.chip_class >= CIK) {
1575 struct radeon_info *info = &device->instance->physicalDevice.rad_info;
1576 unsigned tiling_index = iview->image->surface.tiling_index[level];
1577 unsigned stencil_index = iview->image->surface.stencil_tiling_index[level];
1578 unsigned macro_index = iview->image->surface.macro_tile_index;
1579 unsigned tile_mode = info->si_tile_mode_array[tiling_index];
1580 unsigned stencil_tile_mode = info->si_tile_mode_array[stencil_index];
1581 unsigned macro_mode = info->cik_macrotile_mode_array[macro_index];
1582
1583 ds->db_depth_info |=
1584 S_02803C_ARRAY_MODE(G_009910_ARRAY_MODE(tile_mode)) |
1585 S_02803C_PIPE_CONFIG(G_009910_PIPE_CONFIG(tile_mode)) |
1586 S_02803C_BANK_WIDTH(G_009990_BANK_WIDTH(macro_mode)) |
1587 S_02803C_BANK_HEIGHT(G_009990_BANK_HEIGHT(macro_mode)) |
1588 S_02803C_MACRO_TILE_ASPECT(G_009990_MACRO_TILE_ASPECT(macro_mode)) |
1589 S_02803C_NUM_BANKS(G_009990_NUM_BANKS(macro_mode));
1590 ds->db_z_info |= S_028040_TILE_SPLIT(G_009910_TILE_SPLIT(tile_mode));
1591 ds->db_stencil_info |= S_028044_TILE_SPLIT(G_009910_TILE_SPLIT(stencil_tile_mode));
1592 } else {
1593 unsigned tile_mode_index = si_tile_mode_index(iview->image, level, false);
1594 ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
1595 tile_mode_index = si_tile_mode_index(iview->image, level, true);
1596 ds->db_stencil_info |= S_028044_TILE_MODE_INDEX(tile_mode_index);
1597 }
1598
1599 if (iview->image->htile.size && !level) {
1600 ds->db_z_info |= S_028040_TILE_SURFACE_ENABLE(1) |
1601 S_028040_ALLOW_EXPCLEAR(1);
1602
1603 if (iview->image->surface.flags & RADEON_SURF_SBUFFER) {
1604 /* Workaround: For a not yet understood reason, the
1605 * combination of MSAA, fast stencil clear and stencil
1606 * decompress messes with subsequent stencil buffer
1607 * uses. Problem was reproduced on Verde, Bonaire,
1608 * Tonga, and Carrizo.
1609 *
1610 * Disabling EXPCLEAR works around the problem.
1611 *
1612 * Check piglit's arb_texture_multisample-stencil-clear
1613 * test if you want to try changing this.
1614 */
1615 if (iview->image->samples <= 1)
1616 ds->db_stencil_info |= S_028044_ALLOW_EXPCLEAR(1);
1617 } else
1618 /* Use all of the htile_buffer for depth if there's no stencil. */
1619 ds->db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1);
1620
1621 va = device->ws->buffer_get_va(iview->bo) + iview->image->offset +
1622 iview->image->htile.offset;
1623 ds->db_htile_data_base = va >> 8;
1624 ds->db_htile_surface = S_028ABC_FULL_CACHE(1);
1625 } else {
1626 ds->db_htile_data_base = 0;
1627 ds->db_htile_surface = 0;
1628 }
1629
1630 ds->db_z_read_base = ds->db_z_write_base = z_offs >> 8;
1631 ds->db_stencil_read_base = ds->db_stencil_write_base = s_offs >> 8;
1632
1633 ds->db_depth_size = S_028058_PITCH_TILE_MAX((level_info->nblk_x / 8) - 1) |
1634 S_028058_HEIGHT_TILE_MAX((level_info->nblk_y / 8) - 1);
1635 ds->db_depth_slice = S_02805C_SLICE_TILE_MAX((level_info->nblk_x * level_info->nblk_y) / 64 - 1);
1636 }
1637
1638 VkResult radv_CreateFramebuffer(
1639 VkDevice _device,
1640 const VkFramebufferCreateInfo* pCreateInfo,
1641 const VkAllocationCallbacks* pAllocator,
1642 VkFramebuffer* pFramebuffer)
1643 {
1644 RADV_FROM_HANDLE(radv_device, device, _device);
1645 struct radv_framebuffer *framebuffer;
1646
1647 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
1648
1649 size_t size = sizeof(*framebuffer) +
1650 sizeof(struct radv_attachment_info) * pCreateInfo->attachmentCount;
1651 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
1652 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1653 if (framebuffer == NULL)
1654 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1655
1656 framebuffer->attachment_count = pCreateInfo->attachmentCount;
1657 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
1658 VkImageView _iview = pCreateInfo->pAttachments[i];
1659 struct radv_image_view *iview = radv_image_view_from_handle(_iview);
1660 framebuffer->attachments[i].attachment = iview;
1661 if (iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT) {
1662 radv_initialise_color_surface(device, &framebuffer->attachments[i].cb, iview);
1663 } else if (iview->aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
1664 radv_initialise_ds_surface(device, &framebuffer->attachments[i].ds, iview);
1665 }
1666 }
1667
1668 framebuffer->width = pCreateInfo->width;
1669 framebuffer->height = pCreateInfo->height;
1670 framebuffer->layers = pCreateInfo->layers;
1671
1672 *pFramebuffer = radv_framebuffer_to_handle(framebuffer);
1673 return VK_SUCCESS;
1674 }
1675
1676 void radv_DestroyFramebuffer(
1677 VkDevice _device,
1678 VkFramebuffer _fb,
1679 const VkAllocationCallbacks* pAllocator)
1680 {
1681 RADV_FROM_HANDLE(radv_device, device, _device);
1682 RADV_FROM_HANDLE(radv_framebuffer, fb, _fb);
1683
1684 if (!fb)
1685 return;
1686 vk_free2(&device->alloc, pAllocator, fb);
1687 }
1688
1689 static unsigned radv_tex_wrap(VkSamplerAddressMode address_mode)
1690 {
1691 switch (address_mode) {
1692 case VK_SAMPLER_ADDRESS_MODE_REPEAT:
1693 return V_008F30_SQ_TEX_WRAP;
1694 case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT:
1695 return V_008F30_SQ_TEX_MIRROR;
1696 case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:
1697 return V_008F30_SQ_TEX_CLAMP_LAST_TEXEL;
1698 case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER:
1699 return V_008F30_SQ_TEX_CLAMP_BORDER;
1700 case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE:
1701 return V_008F30_SQ_TEX_MIRROR_ONCE_LAST_TEXEL;
1702 default:
1703 unreachable("illegal tex wrap mode");
1704 break;
1705 }
1706 }
1707
1708 static unsigned
1709 radv_tex_compare(VkCompareOp op)
1710 {
1711 switch (op) {
1712 case VK_COMPARE_OP_NEVER:
1713 return V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
1714 case VK_COMPARE_OP_LESS:
1715 return V_008F30_SQ_TEX_DEPTH_COMPARE_LESS;
1716 case VK_COMPARE_OP_EQUAL:
1717 return V_008F30_SQ_TEX_DEPTH_COMPARE_EQUAL;
1718 case VK_COMPARE_OP_LESS_OR_EQUAL:
1719 return V_008F30_SQ_TEX_DEPTH_COMPARE_LESSEQUAL;
1720 case VK_COMPARE_OP_GREATER:
1721 return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATER;
1722 case VK_COMPARE_OP_NOT_EQUAL:
1723 return V_008F30_SQ_TEX_DEPTH_COMPARE_NOTEQUAL;
1724 case VK_COMPARE_OP_GREATER_OR_EQUAL:
1725 return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATEREQUAL;
1726 case VK_COMPARE_OP_ALWAYS:
1727 return V_008F30_SQ_TEX_DEPTH_COMPARE_ALWAYS;
1728 default:
1729 unreachable("illegal compare mode");
1730 break;
1731 }
1732 }
1733
1734 static unsigned
1735 radv_tex_filter(VkFilter filter, unsigned max_ansio)
1736 {
1737 switch (filter) {
1738 case VK_FILTER_NEAREST:
1739 return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_POINT :
1740 V_008F38_SQ_TEX_XY_FILTER_POINT);
1741 case VK_FILTER_LINEAR:
1742 return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_BILINEAR :
1743 V_008F38_SQ_TEX_XY_FILTER_BILINEAR);
1744 case VK_FILTER_CUBIC_IMG:
1745 default:
1746 fprintf(stderr, "illegal texture filter");
1747 return 0;
1748 }
1749 }
1750
1751 static unsigned
1752 radv_tex_mipfilter(VkSamplerMipmapMode mode)
1753 {
1754 switch (mode) {
1755 case VK_SAMPLER_MIPMAP_MODE_NEAREST:
1756 return V_008F38_SQ_TEX_Z_FILTER_POINT;
1757 case VK_SAMPLER_MIPMAP_MODE_LINEAR:
1758 return V_008F38_SQ_TEX_Z_FILTER_LINEAR;
1759 default:
1760 return V_008F38_SQ_TEX_Z_FILTER_NONE;
1761 }
1762 }
1763
1764 static unsigned
1765 radv_tex_bordercolor(VkBorderColor bcolor)
1766 {
1767 switch (bcolor) {
1768 case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK:
1769 case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK:
1770 return V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK;
1771 case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK:
1772 case VK_BORDER_COLOR_INT_OPAQUE_BLACK:
1773 return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_BLACK;
1774 case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE:
1775 case VK_BORDER_COLOR_INT_OPAQUE_WHITE:
1776 return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_WHITE;
1777 default:
1778 break;
1779 }
1780 return 0;
1781 }
1782
1783 static unsigned
1784 radv_tex_aniso_filter(unsigned filter)
1785 {
1786 if (filter < 2)
1787 return 0;
1788 if (filter < 4)
1789 return 1;
1790 if (filter < 8)
1791 return 2;
1792 if (filter < 16)
1793 return 3;
1794 return 4;
1795 }
1796
1797 static void
1798 radv_init_sampler(struct radv_device *device,
1799 struct radv_sampler *sampler,
1800 const VkSamplerCreateInfo *pCreateInfo)
1801 {
1802 uint32_t max_aniso = pCreateInfo->anisotropyEnable && pCreateInfo->maxAnisotropy > 1.0 ?
1803 (uint32_t) pCreateInfo->maxAnisotropy : 0;
1804 uint32_t max_aniso_ratio = radv_tex_aniso_filter(max_aniso);
1805 bool is_vi = (device->instance->physicalDevice.rad_info.chip_class >= VI);
1806
1807 sampler->state[0] = (S_008F30_CLAMP_X(radv_tex_wrap(pCreateInfo->addressModeU)) |
1808 S_008F30_CLAMP_Y(radv_tex_wrap(pCreateInfo->addressModeV)) |
1809 S_008F30_CLAMP_Z(radv_tex_wrap(pCreateInfo->addressModeW)) |
1810 S_008F30_MAX_ANISO_RATIO(max_aniso_ratio) |
1811 S_008F30_DEPTH_COMPARE_FUNC(radv_tex_compare(pCreateInfo->compareOp)) |
1812 S_008F30_FORCE_UNNORMALIZED(pCreateInfo->unnormalizedCoordinates ? 1 : 0) |
1813 S_008F30_ANISO_THRESHOLD(max_aniso_ratio >> 1) |
1814 S_008F30_ANISO_BIAS(max_aniso_ratio) |
1815 S_008F30_DISABLE_CUBE_WRAP(0) |
1816 S_008F30_COMPAT_MODE(is_vi));
1817 sampler->state[1] = (S_008F34_MIN_LOD(S_FIXED(CLAMP(pCreateInfo->minLod, 0, 15), 8)) |
1818 S_008F34_MAX_LOD(S_FIXED(CLAMP(pCreateInfo->maxLod, 0, 15), 8)) |
1819 S_008F34_PERF_MIP(max_aniso_ratio ? max_aniso_ratio + 6 : 0));
1820 sampler->state[2] = (S_008F38_LOD_BIAS(S_FIXED(CLAMP(pCreateInfo->mipLodBias, -16, 16), 8)) |
1821 S_008F38_XY_MAG_FILTER(radv_tex_filter(pCreateInfo->magFilter, max_aniso)) |
1822 S_008F38_XY_MIN_FILTER(radv_tex_filter(pCreateInfo->minFilter, max_aniso)) |
1823 S_008F38_MIP_FILTER(radv_tex_mipfilter(pCreateInfo->mipmapMode)) |
1824 S_008F38_MIP_POINT_PRECLAMP(1) |
1825 S_008F38_DISABLE_LSB_CEIL(1) |
1826 S_008F38_FILTER_PREC_FIX(1) |
1827 S_008F38_ANISO_OVERRIDE(is_vi));
1828 sampler->state[3] = (S_008F3C_BORDER_COLOR_PTR(0) |
1829 S_008F3C_BORDER_COLOR_TYPE(radv_tex_bordercolor(pCreateInfo->borderColor)));
1830 }
1831
1832 VkResult radv_CreateSampler(
1833 VkDevice _device,
1834 const VkSamplerCreateInfo* pCreateInfo,
1835 const VkAllocationCallbacks* pAllocator,
1836 VkSampler* pSampler)
1837 {
1838 RADV_FROM_HANDLE(radv_device, device, _device);
1839 struct radv_sampler *sampler;
1840
1841 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
1842
1843 sampler = vk_alloc2(&device->alloc, pAllocator, sizeof(*sampler), 8,
1844 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1845 if (!sampler)
1846 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1847
1848 radv_init_sampler(device, sampler, pCreateInfo);
1849 *pSampler = radv_sampler_to_handle(sampler);
1850
1851 return VK_SUCCESS;
1852 }
1853
1854 void radv_DestroySampler(
1855 VkDevice _device,
1856 VkSampler _sampler,
1857 const VkAllocationCallbacks* pAllocator)
1858 {
1859 RADV_FROM_HANDLE(radv_device, device, _device);
1860 RADV_FROM_HANDLE(radv_sampler, sampler, _sampler);
1861
1862 if (!sampler)
1863 return;
1864 vk_free2(&device->alloc, pAllocator, sampler);
1865 }