radv: fix a crash in radv_can_dump_shader()
[mesa.git] / src / amd / vulkan / radv_image.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "radv_debug.h"
29 #include "radv_private.h"
30 #include "vk_format.h"
31 #include "vk_util.h"
32 #include "radv_radeon_winsys.h"
33 #include "sid.h"
34 #include "gfx9d.h"
35 #include "util/debug.h"
36 #include "util/u_atomic.h"
37 static unsigned
38 radv_choose_tiling(struct radv_device *device,
39 const struct radv_image_create_info *create_info)
40 {
41 const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
42
43 if (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) {
44 assert(pCreateInfo->samples <= 1);
45 return RADEON_SURF_MODE_LINEAR_ALIGNED;
46 }
47
48 if (!vk_format_is_compressed(pCreateInfo->format) &&
49 !vk_format_is_depth_or_stencil(pCreateInfo->format)
50 && device->physical_device->rad_info.chip_class <= VI) {
51 /* this causes hangs in some VK CTS tests on GFX9. */
52 /* Textures with a very small height are recommended to be linear. */
53 if (pCreateInfo->imageType == VK_IMAGE_TYPE_1D ||
54 /* Only very thin and long 2D textures should benefit from
55 * linear_aligned. */
56 (pCreateInfo->extent.width > 8 && pCreateInfo->extent.height <= 2))
57 return RADEON_SURF_MODE_LINEAR_ALIGNED;
58 }
59
60 /* MSAA resources must be 2D tiled. */
61 if (pCreateInfo->samples > 1)
62 return RADEON_SURF_MODE_2D;
63
64 return RADEON_SURF_MODE_2D;
65 }
66 static int
67 radv_init_surface(struct radv_device *device,
68 struct radeon_surf *surface,
69 const struct radv_image_create_info *create_info)
70 {
71 const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
72 unsigned array_mode = radv_choose_tiling(device, create_info);
73 const struct vk_format_description *desc =
74 vk_format_description(pCreateInfo->format);
75 bool is_depth, is_stencil, blendable;
76
77 is_depth = vk_format_has_depth(desc);
78 is_stencil = vk_format_has_stencil(desc);
79
80 surface->blk_w = vk_format_get_blockwidth(pCreateInfo->format);
81 surface->blk_h = vk_format_get_blockheight(pCreateInfo->format);
82
83 surface->bpe = vk_format_get_blocksize(vk_format_depth_only(pCreateInfo->format));
84 /* align byte per element on dword */
85 if (surface->bpe == 3) {
86 surface->bpe = 4;
87 }
88 surface->flags = RADEON_SURF_SET(array_mode, MODE);
89
90 switch (pCreateInfo->imageType){
91 case VK_IMAGE_TYPE_1D:
92 if (pCreateInfo->arrayLayers > 1)
93 surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_1D_ARRAY, TYPE);
94 else
95 surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_1D, TYPE);
96 break;
97 case VK_IMAGE_TYPE_2D:
98 if (pCreateInfo->arrayLayers > 1)
99 surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_2D_ARRAY, TYPE);
100 else
101 surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_2D, TYPE);
102 break;
103 case VK_IMAGE_TYPE_3D:
104 surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_3D, TYPE);
105 break;
106 default:
107 unreachable("unhandled image type");
108 }
109
110 if (is_depth) {
111 surface->flags |= RADEON_SURF_ZBUFFER;
112 if (!(pCreateInfo->usage & VK_IMAGE_USAGE_STORAGE_BIT) &&
113 !(pCreateInfo->flags & (VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT |
114 VK_IMAGE_CREATE_EXTENDED_USAGE_BIT_KHR)) &&
115 pCreateInfo->tiling != VK_IMAGE_TILING_LINEAR &&
116 pCreateInfo->mipLevels <= 1 &&
117 device->physical_device->rad_info.chip_class >= VI &&
118 ((pCreateInfo->format == VK_FORMAT_D32_SFLOAT ||
119 pCreateInfo->format == VK_FORMAT_D32_SFLOAT_S8_UINT) ||
120 (device->physical_device->rad_info.chip_class >= GFX9 &&
121 pCreateInfo->format == VK_FORMAT_D16_UNORM)))
122 surface->flags |= RADEON_SURF_TC_COMPATIBLE_HTILE;
123 }
124
125 if (is_stencil)
126 surface->flags |= RADEON_SURF_SBUFFER;
127
128 surface->flags |= RADEON_SURF_OPTIMIZE_FOR_SPACE;
129
130 bool dcc_compatible_formats = !radv_is_colorbuffer_format_supported(pCreateInfo->format, &blendable);
131 if (pCreateInfo->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT) {
132 const struct VkImageFormatListCreateInfoKHR *format_list =
133 (const struct VkImageFormatListCreateInfoKHR *)
134 vk_find_struct_const(pCreateInfo->pNext,
135 IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
136
137 /* We have to ignore the existence of the list if viewFormatCount = 0 */
138 if (format_list && format_list->viewFormatCount) {
139 /* compatibility is transitive, so we only need to check
140 * one format with everything else. */
141 for (unsigned i = 0; i < format_list->viewFormatCount; ++i) {
142 if (!radv_dcc_formats_compatible(pCreateInfo->format,
143 format_list->pViewFormats[i]))
144 dcc_compatible_formats = false;
145 }
146 } else {
147 dcc_compatible_formats = false;
148 }
149 }
150
151 if ((pCreateInfo->usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
152 VK_IMAGE_USAGE_STORAGE_BIT)) ||
153 (pCreateInfo->flags & VK_IMAGE_CREATE_EXTENDED_USAGE_BIT_KHR) ||
154 !dcc_compatible_formats ||
155 (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) ||
156 pCreateInfo->mipLevels > 1 || pCreateInfo->arrayLayers > 1 ||
157 device->physical_device->rad_info.chip_class < VI ||
158 create_info->scanout || (device->instance->debug_flags & RADV_DEBUG_NO_DCC) ||
159 pCreateInfo->samples >= 2)
160 surface->flags |= RADEON_SURF_DISABLE_DCC;
161 if (create_info->scanout)
162 surface->flags |= RADEON_SURF_SCANOUT;
163 return 0;
164 }
165
166 static uint32_t si_get_bo_metadata_word1(struct radv_device *device)
167 {
168 return (ATI_VENDOR_ID << 16) | device->physical_device->rad_info.pci_id;
169 }
170
171 static inline unsigned
172 si_tile_mode_index(const struct radv_image *image, unsigned level, bool stencil)
173 {
174 if (stencil)
175 return image->surface.u.legacy.stencil_tiling_index[level];
176 else
177 return image->surface.u.legacy.tiling_index[level];
178 }
179
180 static unsigned radv_map_swizzle(unsigned swizzle)
181 {
182 switch (swizzle) {
183 case VK_SWIZZLE_Y:
184 return V_008F0C_SQ_SEL_Y;
185 case VK_SWIZZLE_Z:
186 return V_008F0C_SQ_SEL_Z;
187 case VK_SWIZZLE_W:
188 return V_008F0C_SQ_SEL_W;
189 case VK_SWIZZLE_0:
190 return V_008F0C_SQ_SEL_0;
191 case VK_SWIZZLE_1:
192 return V_008F0C_SQ_SEL_1;
193 default: /* VK_SWIZZLE_X */
194 return V_008F0C_SQ_SEL_X;
195 }
196 }
197
198 static void
199 radv_make_buffer_descriptor(struct radv_device *device,
200 struct radv_buffer *buffer,
201 VkFormat vk_format,
202 unsigned offset,
203 unsigned range,
204 uint32_t *state)
205 {
206 const struct vk_format_description *desc;
207 unsigned stride;
208 uint64_t gpu_address = radv_buffer_get_va(buffer->bo);
209 uint64_t va = gpu_address + buffer->offset;
210 unsigned num_format, data_format;
211 int first_non_void;
212 desc = vk_format_description(vk_format);
213 first_non_void = vk_format_get_first_non_void_channel(vk_format);
214 stride = desc->block.bits / 8;
215
216 num_format = radv_translate_buffer_numformat(desc, first_non_void);
217 data_format = radv_translate_buffer_dataformat(desc, first_non_void);
218
219 va += offset;
220 state[0] = va;
221 state[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) |
222 S_008F04_STRIDE(stride);
223
224 if (device->physical_device->rad_info.chip_class != VI && stride) {
225 range /= stride;
226 }
227
228 state[2] = range;
229 state[3] = S_008F0C_DST_SEL_X(radv_map_swizzle(desc->swizzle[0])) |
230 S_008F0C_DST_SEL_Y(radv_map_swizzle(desc->swizzle[1])) |
231 S_008F0C_DST_SEL_Z(radv_map_swizzle(desc->swizzle[2])) |
232 S_008F0C_DST_SEL_W(radv_map_swizzle(desc->swizzle[3])) |
233 S_008F0C_NUM_FORMAT(num_format) |
234 S_008F0C_DATA_FORMAT(data_format);
235 }
236
237 static void
238 si_set_mutable_tex_desc_fields(struct radv_device *device,
239 struct radv_image *image,
240 const struct legacy_surf_level *base_level_info,
241 unsigned base_level, unsigned first_level,
242 unsigned block_width, bool is_stencil,
243 uint32_t *state)
244 {
245 uint64_t gpu_address = image->bo ? radv_buffer_get_va(image->bo) + image->offset : 0;
246 uint64_t va = gpu_address;
247 enum chip_class chip_class = device->physical_device->rad_info.chip_class;
248 uint64_t meta_va = 0;
249 if (chip_class >= GFX9) {
250 if (is_stencil)
251 va += image->surface.u.gfx9.stencil_offset;
252 else
253 va += image->surface.u.gfx9.surf_offset;
254 } else
255 va += base_level_info->offset;
256
257 state[0] = va >> 8;
258 if (chip_class >= GFX9 ||
259 base_level_info->mode == RADEON_SURF_MODE_2D)
260 state[0] |= image->surface.tile_swizzle;
261 state[1] &= C_008F14_BASE_ADDRESS_HI;
262 state[1] |= S_008F14_BASE_ADDRESS_HI(va >> 40);
263
264 if (chip_class >= VI) {
265 state[6] &= C_008F28_COMPRESSION_EN;
266 state[7] = 0;
267 if (radv_vi_dcc_enabled(image, first_level)) {
268 meta_va = gpu_address + image->dcc_offset;
269 if (chip_class <= VI)
270 meta_va += base_level_info->dcc_offset;
271 } else if(image->tc_compatible_htile && image->surface.htile_size) {
272 meta_va = gpu_address + image->htile_offset;
273 }
274
275 if (meta_va) {
276 state[6] |= S_008F28_COMPRESSION_EN(1);
277 state[7] = meta_va >> 8;
278 state[7] |= image->surface.tile_swizzle;
279 }
280 }
281
282 if (chip_class >= GFX9) {
283 state[3] &= C_008F1C_SW_MODE;
284 state[4] &= C_008F20_PITCH_GFX9;
285
286 if (is_stencil) {
287 state[3] |= S_008F1C_SW_MODE(image->surface.u.gfx9.stencil.swizzle_mode);
288 state[4] |= S_008F20_PITCH_GFX9(image->surface.u.gfx9.stencil.epitch);
289 } else {
290 state[3] |= S_008F1C_SW_MODE(image->surface.u.gfx9.surf.swizzle_mode);
291 state[4] |= S_008F20_PITCH_GFX9(image->surface.u.gfx9.surf.epitch);
292 }
293
294 state[5] &= C_008F24_META_DATA_ADDRESS &
295 C_008F24_META_PIPE_ALIGNED &
296 C_008F24_META_RB_ALIGNED;
297 if (meta_va) {
298 struct gfx9_surf_meta_flags meta;
299
300 if (image->dcc_offset)
301 meta = image->surface.u.gfx9.dcc;
302 else
303 meta = image->surface.u.gfx9.htile;
304
305 state[5] |= S_008F24_META_DATA_ADDRESS(meta_va >> 40) |
306 S_008F24_META_PIPE_ALIGNED(meta.pipe_aligned) |
307 S_008F24_META_RB_ALIGNED(meta.rb_aligned);
308 }
309 } else {
310 /* SI-CI-VI */
311 unsigned pitch = base_level_info->nblk_x * block_width;
312 unsigned index = si_tile_mode_index(image, base_level, is_stencil);
313
314 state[3] &= C_008F1C_TILING_INDEX;
315 state[3] |= S_008F1C_TILING_INDEX(index);
316 state[4] &= C_008F20_PITCH_GFX6;
317 state[4] |= S_008F20_PITCH_GFX6(pitch - 1);
318 }
319 }
320
321 static unsigned radv_tex_dim(VkImageType image_type, VkImageViewType view_type,
322 unsigned nr_layers, unsigned nr_samples, bool is_storage_image, bool gfx9)
323 {
324 if (view_type == VK_IMAGE_VIEW_TYPE_CUBE || view_type == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY)
325 return is_storage_image ? V_008F1C_SQ_RSRC_IMG_2D_ARRAY : V_008F1C_SQ_RSRC_IMG_CUBE;
326
327 /* GFX9 allocates 1D textures as 2D. */
328 if (gfx9 && image_type == VK_IMAGE_TYPE_1D)
329 image_type = VK_IMAGE_TYPE_2D;
330 switch (image_type) {
331 case VK_IMAGE_TYPE_1D:
332 return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_1D_ARRAY : V_008F1C_SQ_RSRC_IMG_1D;
333 case VK_IMAGE_TYPE_2D:
334 if (nr_samples > 1)
335 return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY : V_008F1C_SQ_RSRC_IMG_2D_MSAA;
336 else
337 return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_2D_ARRAY : V_008F1C_SQ_RSRC_IMG_2D;
338 case VK_IMAGE_TYPE_3D:
339 if (view_type == VK_IMAGE_VIEW_TYPE_3D)
340 return V_008F1C_SQ_RSRC_IMG_3D;
341 else
342 return V_008F1C_SQ_RSRC_IMG_2D_ARRAY;
343 default:
344 unreachable("illegale image type");
345 }
346 }
347
348 static unsigned gfx9_border_color_swizzle(const unsigned char swizzle[4])
349 {
350 unsigned bc_swizzle = V_008F20_BC_SWIZZLE_XYZW;
351
352 if (swizzle[3] == VK_SWIZZLE_X) {
353 /* For the pre-defined border color values (white, opaque
354 * black, transparent black), the only thing that matters is
355 * that the alpha channel winds up in the correct place
356 * (because the RGB channels are all the same) so either of
357 * these enumerations will work.
358 */
359 if (swizzle[2] == VK_SWIZZLE_Y)
360 bc_swizzle = V_008F20_BC_SWIZZLE_WZYX;
361 else
362 bc_swizzle = V_008F20_BC_SWIZZLE_WXYZ;
363 } else if (swizzle[0] == VK_SWIZZLE_X) {
364 if (swizzle[1] == VK_SWIZZLE_Y)
365 bc_swizzle = V_008F20_BC_SWIZZLE_XYZW;
366 else
367 bc_swizzle = V_008F20_BC_SWIZZLE_XWYZ;
368 } else if (swizzle[1] == VK_SWIZZLE_X) {
369 bc_swizzle = V_008F20_BC_SWIZZLE_YXWZ;
370 } else if (swizzle[2] == VK_SWIZZLE_X) {
371 bc_swizzle = V_008F20_BC_SWIZZLE_ZYXW;
372 }
373
374 return bc_swizzle;
375 }
376
377 /**
378 * Build the sampler view descriptor for a texture.
379 */
380 static void
381 si_make_texture_descriptor(struct radv_device *device,
382 struct radv_image *image,
383 bool is_storage_image,
384 VkImageViewType view_type,
385 VkFormat vk_format,
386 const VkComponentMapping *mapping,
387 unsigned first_level, unsigned last_level,
388 unsigned first_layer, unsigned last_layer,
389 unsigned width, unsigned height, unsigned depth,
390 uint32_t *state,
391 uint32_t *fmask_state)
392 {
393 const struct vk_format_description *desc;
394 enum vk_swizzle swizzle[4];
395 int first_non_void;
396 unsigned num_format, data_format, type;
397
398 desc = vk_format_description(vk_format);
399
400 if (desc->colorspace == VK_FORMAT_COLORSPACE_ZS) {
401 const unsigned char swizzle_xxxx[4] = {0, 0, 0, 0};
402 vk_format_compose_swizzles(mapping, swizzle_xxxx, swizzle);
403 } else {
404 vk_format_compose_swizzles(mapping, desc->swizzle, swizzle);
405 }
406
407 first_non_void = vk_format_get_first_non_void_channel(vk_format);
408
409 num_format = radv_translate_tex_numformat(vk_format, desc, first_non_void);
410 if (num_format == ~0) {
411 num_format = 0;
412 }
413
414 data_format = radv_translate_tex_dataformat(vk_format, desc, first_non_void);
415 if (data_format == ~0) {
416 data_format = 0;
417 }
418
419 type = radv_tex_dim(image->type, view_type, image->info.array_size, image->info.samples,
420 is_storage_image, device->physical_device->rad_info.chip_class >= GFX9);
421 if (type == V_008F1C_SQ_RSRC_IMG_1D_ARRAY) {
422 height = 1;
423 depth = image->info.array_size;
424 } else if (type == V_008F1C_SQ_RSRC_IMG_2D_ARRAY ||
425 type == V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY) {
426 if (view_type != VK_IMAGE_VIEW_TYPE_3D)
427 depth = image->info.array_size;
428 } else if (type == V_008F1C_SQ_RSRC_IMG_CUBE)
429 depth = image->info.array_size / 6;
430
431 state[0] = 0;
432 state[1] = (S_008F14_DATA_FORMAT_GFX6(data_format) |
433 S_008F14_NUM_FORMAT_GFX6(num_format));
434 state[2] = (S_008F18_WIDTH(width - 1) |
435 S_008F18_HEIGHT(height - 1) |
436 S_008F18_PERF_MOD(4));
437 state[3] = (S_008F1C_DST_SEL_X(radv_map_swizzle(swizzle[0])) |
438 S_008F1C_DST_SEL_Y(radv_map_swizzle(swizzle[1])) |
439 S_008F1C_DST_SEL_Z(radv_map_swizzle(swizzle[2])) |
440 S_008F1C_DST_SEL_W(radv_map_swizzle(swizzle[3])) |
441 S_008F1C_BASE_LEVEL(image->info.samples > 1 ?
442 0 : first_level) |
443 S_008F1C_LAST_LEVEL(image->info.samples > 1 ?
444 util_logbase2(image->info.samples) :
445 last_level) |
446 S_008F1C_TYPE(type));
447 state[4] = 0;
448 state[5] = S_008F24_BASE_ARRAY(first_layer);
449 state[6] = 0;
450 state[7] = 0;
451
452 if (device->physical_device->rad_info.chip_class >= GFX9) {
453 unsigned bc_swizzle = gfx9_border_color_swizzle(desc->swizzle);
454
455 /* Depth is the the last accessible layer on Gfx9.
456 * The hw doesn't need to know the total number of layers.
457 */
458 if (type == V_008F1C_SQ_RSRC_IMG_3D)
459 state[4] |= S_008F20_DEPTH(depth - 1);
460 else
461 state[4] |= S_008F20_DEPTH(last_layer);
462
463 state[4] |= S_008F20_BC_SWIZZLE(bc_swizzle);
464 state[5] |= S_008F24_MAX_MIP(image->info.samples > 1 ?
465 util_logbase2(image->info.samples) :
466 image->info.levels - 1);
467 } else {
468 state[3] |= S_008F1C_POW2_PAD(image->info.levels > 1);
469 state[4] |= S_008F20_DEPTH(depth - 1);
470 state[5] |= S_008F24_LAST_ARRAY(last_layer);
471 }
472 if (image->dcc_offset) {
473 unsigned swap = radv_translate_colorswap(vk_format, FALSE);
474
475 state[6] = S_008F28_ALPHA_IS_ON_MSB(swap <= 1);
476 } else {
477 /* The last dword is unused by hw. The shader uses it to clear
478 * bits in the first dword of sampler state.
479 */
480 if (device->physical_device->rad_info.chip_class <= CIK && image->info.samples <= 1) {
481 if (first_level == last_level)
482 state[7] = C_008F30_MAX_ANISO_RATIO;
483 else
484 state[7] = 0xffffffff;
485 }
486 }
487
488 /* Initialize the sampler view for FMASK. */
489 if (image->fmask.size) {
490 uint32_t fmask_format, num_format;
491 uint64_t gpu_address = radv_buffer_get_va(image->bo);
492 uint64_t va;
493
494 va = gpu_address + image->offset + image->fmask.offset;
495
496 if (device->physical_device->rad_info.chip_class >= GFX9) {
497 fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK;
498 switch (image->info.samples) {
499 case 2:
500 num_format = V_008F14_IMG_FMASK_8_2_2;
501 break;
502 case 4:
503 num_format = V_008F14_IMG_FMASK_8_4_4;
504 break;
505 case 8:
506 num_format = V_008F14_IMG_FMASK_32_8_8;
507 break;
508 default:
509 unreachable("invalid nr_samples");
510 }
511 } else {
512 switch (image->info.samples) {
513 case 2:
514 fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S2_F2;
515 break;
516 case 4:
517 fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S4_F4;
518 break;
519 case 8:
520 fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK32_S8_F8;
521 break;
522 default:
523 assert(0);
524 fmask_format = V_008F14_IMG_DATA_FORMAT_INVALID;
525 }
526 num_format = V_008F14_IMG_NUM_FORMAT_UINT;
527 }
528
529 fmask_state[0] = va >> 8;
530 fmask_state[0] |= image->fmask.tile_swizzle;
531 fmask_state[1] = S_008F14_BASE_ADDRESS_HI(va >> 40) |
532 S_008F14_DATA_FORMAT_GFX6(fmask_format) |
533 S_008F14_NUM_FORMAT_GFX6(num_format);
534 fmask_state[2] = S_008F18_WIDTH(width - 1) |
535 S_008F18_HEIGHT(height - 1);
536 fmask_state[3] = S_008F1C_DST_SEL_X(V_008F1C_SQ_SEL_X) |
537 S_008F1C_DST_SEL_Y(V_008F1C_SQ_SEL_X) |
538 S_008F1C_DST_SEL_Z(V_008F1C_SQ_SEL_X) |
539 S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_X) |
540 S_008F1C_TYPE(radv_tex_dim(image->type, view_type, 1, 0, false, false));
541 fmask_state[4] = 0;
542 fmask_state[5] = S_008F24_BASE_ARRAY(first_layer);
543 fmask_state[6] = 0;
544 fmask_state[7] = 0;
545
546 if (device->physical_device->rad_info.chip_class >= GFX9) {
547 fmask_state[3] |= S_008F1C_SW_MODE(image->surface.u.gfx9.fmask.swizzle_mode);
548 fmask_state[4] |= S_008F20_DEPTH(last_layer) |
549 S_008F20_PITCH_GFX9(image->surface.u.gfx9.fmask.epitch);
550 fmask_state[5] |= S_008F24_META_PIPE_ALIGNED(image->surface.u.gfx9.cmask.pipe_aligned) |
551 S_008F24_META_RB_ALIGNED(image->surface.u.gfx9.cmask.rb_aligned);
552 } else {
553 fmask_state[3] |= S_008F1C_TILING_INDEX(image->fmask.tile_mode_index);
554 fmask_state[4] |= S_008F20_DEPTH(depth - 1) |
555 S_008F20_PITCH_GFX6(image->fmask.pitch_in_pixels - 1);
556 fmask_state[5] |= S_008F24_LAST_ARRAY(last_layer);
557 }
558 } else if (fmask_state)
559 memset(fmask_state, 0, 8 * 4);
560 }
561
562 static void
563 radv_query_opaque_metadata(struct radv_device *device,
564 struct radv_image *image,
565 struct radeon_bo_metadata *md)
566 {
567 static const VkComponentMapping fixedmapping;
568 uint32_t desc[8], i;
569
570 /* Metadata image format format version 1:
571 * [0] = 1 (metadata format identifier)
572 * [1] = (VENDOR_ID << 16) | PCI_ID
573 * [2:9] = image descriptor for the whole resource
574 * [2] is always 0, because the base address is cleared
575 * [9] is the DCC offset bits [39:8] from the beginning of
576 * the buffer
577 * [10:10+LAST_LEVEL] = mipmap level offset bits [39:8] for each level
578 */
579 md->metadata[0] = 1; /* metadata image format version 1 */
580
581 /* TILE_MODE_INDEX is ambiguous without a PCI ID. */
582 md->metadata[1] = si_get_bo_metadata_word1(device);
583
584
585 si_make_texture_descriptor(device, image, false,
586 (VkImageViewType)image->type, image->vk_format,
587 &fixedmapping, 0, image->info.levels - 1, 0,
588 image->info.array_size,
589 image->info.width, image->info.height,
590 image->info.depth,
591 desc, NULL);
592
593 si_set_mutable_tex_desc_fields(device, image, &image->surface.u.legacy.level[0], 0, 0,
594 image->surface.blk_w, false, desc);
595
596 /* Clear the base address and set the relative DCC offset. */
597 desc[0] = 0;
598 desc[1] &= C_008F14_BASE_ADDRESS_HI;
599 desc[7] = image->dcc_offset >> 8;
600
601 /* Dwords [2:9] contain the image descriptor. */
602 memcpy(&md->metadata[2], desc, sizeof(desc));
603
604 /* Dwords [10:..] contain the mipmap level offsets. */
605 if (device->physical_device->rad_info.chip_class <= VI) {
606 for (i = 0; i <= image->info.levels - 1; i++)
607 md->metadata[10+i] = image->surface.u.legacy.level[i].offset >> 8;
608 md->size_metadata = (11 + image->info.levels - 1) * 4;
609 }
610 }
611
612 void
613 radv_init_metadata(struct radv_device *device,
614 struct radv_image *image,
615 struct radeon_bo_metadata *metadata)
616 {
617 struct radeon_surf *surface = &image->surface;
618
619 memset(metadata, 0, sizeof(*metadata));
620
621 if (device->physical_device->rad_info.chip_class >= GFX9) {
622 metadata->u.gfx9.swizzle_mode = surface->u.gfx9.surf.swizzle_mode;
623 } else {
624 metadata->u.legacy.microtile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_1D ?
625 RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR;
626 metadata->u.legacy.macrotile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_2D ?
627 RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR;
628 metadata->u.legacy.pipe_config = surface->u.legacy.pipe_config;
629 metadata->u.legacy.bankw = surface->u.legacy.bankw;
630 metadata->u.legacy.bankh = surface->u.legacy.bankh;
631 metadata->u.legacy.tile_split = surface->u.legacy.tile_split;
632 metadata->u.legacy.mtilea = surface->u.legacy.mtilea;
633 metadata->u.legacy.num_banks = surface->u.legacy.num_banks;
634 metadata->u.legacy.stride = surface->u.legacy.level[0].nblk_x * surface->bpe;
635 metadata->u.legacy.scanout = (surface->flags & RADEON_SURF_SCANOUT) != 0;
636 }
637 radv_query_opaque_metadata(device, image, metadata);
638 }
639
640 /* The number of samples can be specified independently of the texture. */
641 static void
642 radv_image_get_fmask_info(struct radv_device *device,
643 struct radv_image *image,
644 unsigned nr_samples,
645 struct radv_fmask_info *out)
646 {
647 /* FMASK is allocated like an ordinary texture. */
648 struct radeon_surf fmask = {};
649 struct ac_surf_info info = image->info;
650 memset(out, 0, sizeof(*out));
651
652 if (device->physical_device->rad_info.chip_class >= GFX9) {
653 out->alignment = image->surface.u.gfx9.fmask_alignment;
654 out->size = image->surface.u.gfx9.fmask_size;
655 return;
656 }
657
658 fmask.blk_w = image->surface.blk_w;
659 fmask.blk_h = image->surface.blk_h;
660 info.samples = 1;
661 fmask.flags = image->surface.flags | RADEON_SURF_FMASK;
662
663 if (!image->shareable)
664 info.surf_index = &device->fmask_mrt_offset_counter;
665
666 /* Force 2D tiling if it wasn't set. This may occur when creating
667 * FMASK for MSAA resolve on R6xx. On R6xx, the single-sample
668 * destination buffer must have an FMASK too. */
669 fmask.flags = RADEON_SURF_CLR(fmask.flags, MODE);
670 fmask.flags |= RADEON_SURF_SET(RADEON_SURF_MODE_2D, MODE);
671
672 switch (nr_samples) {
673 case 2:
674 case 4:
675 fmask.bpe = 1;
676 break;
677 case 8:
678 fmask.bpe = 4;
679 break;
680 default:
681 return;
682 }
683
684 device->ws->surface_init(device->ws, &info, &fmask);
685 assert(fmask.u.legacy.level[0].mode == RADEON_SURF_MODE_2D);
686
687 out->slice_tile_max = (fmask.u.legacy.level[0].nblk_x * fmask.u.legacy.level[0].nblk_y) / 64;
688 if (out->slice_tile_max)
689 out->slice_tile_max -= 1;
690
691 out->tile_mode_index = fmask.u.legacy.tiling_index[0];
692 out->pitch_in_pixels = fmask.u.legacy.level[0].nblk_x;
693 out->bank_height = fmask.u.legacy.bankh;
694 out->tile_swizzle = fmask.tile_swizzle;
695 out->alignment = MAX2(256, fmask.surf_alignment);
696 out->size = fmask.surf_size;
697
698 assert(!out->tile_swizzle || !image->shareable);
699 }
700
701 static void
702 radv_image_alloc_fmask(struct radv_device *device,
703 struct radv_image *image)
704 {
705 radv_image_get_fmask_info(device, image, image->info.samples, &image->fmask);
706
707 image->fmask.offset = align64(image->size, image->fmask.alignment);
708 image->size = image->fmask.offset + image->fmask.size;
709 image->alignment = MAX2(image->alignment, image->fmask.alignment);
710 }
711
712 static void
713 radv_image_get_cmask_info(struct radv_device *device,
714 struct radv_image *image,
715 struct radv_cmask_info *out)
716 {
717 unsigned pipe_interleave_bytes = device->physical_device->rad_info.pipe_interleave_bytes;
718 unsigned num_pipes = device->physical_device->rad_info.num_tile_pipes;
719 unsigned cl_width, cl_height;
720
721 if (device->physical_device->rad_info.chip_class >= GFX9) {
722 out->alignment = image->surface.u.gfx9.cmask_alignment;
723 out->size = image->surface.u.gfx9.cmask_size;
724 return;
725 }
726
727 switch (num_pipes) {
728 case 2:
729 cl_width = 32;
730 cl_height = 16;
731 break;
732 case 4:
733 cl_width = 32;
734 cl_height = 32;
735 break;
736 case 8:
737 cl_width = 64;
738 cl_height = 32;
739 break;
740 case 16: /* Hawaii */
741 cl_width = 64;
742 cl_height = 64;
743 break;
744 default:
745 assert(0);
746 return;
747 }
748
749 unsigned base_align = num_pipes * pipe_interleave_bytes;
750
751 unsigned width = align(image->info.width, cl_width*8);
752 unsigned height = align(image->info.height, cl_height*8);
753 unsigned slice_elements = (width * height) / (8*8);
754
755 /* Each element of CMASK is a nibble. */
756 unsigned slice_bytes = slice_elements / 2;
757
758 out->slice_tile_max = (width * height) / (128*128);
759 if (out->slice_tile_max)
760 out->slice_tile_max -= 1;
761
762 out->alignment = MAX2(256, base_align);
763 out->size = (image->type == VK_IMAGE_TYPE_3D ? image->info.depth : image->info.array_size) *
764 align(slice_bytes, base_align);
765 }
766
767 static void
768 radv_image_alloc_cmask(struct radv_device *device,
769 struct radv_image *image)
770 {
771 uint32_t clear_value_size = 0;
772 radv_image_get_cmask_info(device, image, &image->cmask);
773
774 image->cmask.offset = align64(image->size, image->cmask.alignment);
775 /* + 8 for storing the clear values */
776 if (!image->clear_value_offset) {
777 image->clear_value_offset = image->cmask.offset + image->cmask.size;
778 clear_value_size = 8;
779 }
780 image->size = image->cmask.offset + image->cmask.size + clear_value_size;
781 image->alignment = MAX2(image->alignment, image->cmask.alignment);
782 }
783
784 static void
785 radv_image_alloc_dcc(struct radv_image *image)
786 {
787 image->dcc_offset = align64(image->size, image->surface.dcc_alignment);
788 /* + 16 for storing the clear values + dcc pred */
789 image->clear_value_offset = image->dcc_offset + image->surface.dcc_size;
790 image->dcc_pred_offset = image->clear_value_offset + 8;
791 image->size = image->dcc_offset + image->surface.dcc_size + 16;
792 image->alignment = MAX2(image->alignment, image->surface.dcc_alignment);
793 }
794
795 static void
796 radv_image_alloc_htile(struct radv_image *image)
797 {
798 image->htile_offset = align64(image->size, image->surface.htile_alignment);
799
800 /* + 8 for storing the clear values */
801 image->clear_value_offset = image->htile_offset + image->surface.htile_size;
802 image->size = image->clear_value_offset + 8;
803 image->alignment = align64(image->alignment, image->surface.htile_alignment);
804 }
805
806 static inline bool
807 radv_image_can_enable_dcc_or_cmask(struct radv_image *image)
808 {
809 if (image->info.samples <= 1 &&
810 image->info.width <= 512 && image->info.height <= 512) {
811 /* Do not enable CMASK or DCC for small surfaces where the cost
812 * of the eliminate pass can be higher than the benefit of fast
813 * clear. RadeonSI does this, but the image threshold is
814 * different.
815 */
816 return false;
817 }
818
819 return image->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT &&
820 (image->exclusive || image->queue_family_mask == 1);
821 }
822
823 static inline bool
824 radv_image_can_enable_dcc(struct radv_image *image)
825 {
826 return radv_image_can_enable_dcc_or_cmask(image) &&
827 image->surface.dcc_size;
828 }
829
830 static inline bool
831 radv_image_can_enable_cmask(struct radv_image *image)
832 {
833 if (image->surface.bpe > 8 && image->info.samples == 1) {
834 /* Do not enable CMASK for non-MSAA images (fast color clear)
835 * because 128 bit formats are not supported, but FMASK might
836 * still be used.
837 */
838 return false;
839 }
840
841 return radv_image_can_enable_dcc_or_cmask(image) &&
842 image->info.levels == 1 &&
843 image->info.depth == 1 &&
844 !image->surface.is_linear;
845 }
846
847 static inline bool
848 radv_image_can_enable_fmask(struct radv_image *image)
849 {
850 return image->info.samples > 1 && vk_format_is_color(image->vk_format);
851 }
852
853 static inline bool
854 radv_image_can_enable_htile(struct radv_image *image)
855 {
856 return image->info.levels == 1 && vk_format_is_depth(image->vk_format);
857 }
858
859 VkResult
860 radv_image_create(VkDevice _device,
861 const struct radv_image_create_info *create_info,
862 const VkAllocationCallbacks* alloc,
863 VkImage *pImage)
864 {
865 RADV_FROM_HANDLE(radv_device, device, _device);
866 const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
867 struct radv_image *image = NULL;
868 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
869
870 radv_assert(pCreateInfo->mipLevels > 0);
871 radv_assert(pCreateInfo->arrayLayers > 0);
872 radv_assert(pCreateInfo->samples > 0);
873 radv_assert(pCreateInfo->extent.width > 0);
874 radv_assert(pCreateInfo->extent.height > 0);
875 radv_assert(pCreateInfo->extent.depth > 0);
876
877 image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8,
878 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
879 if (!image)
880 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
881
882 image->type = pCreateInfo->imageType;
883 image->info.width = pCreateInfo->extent.width;
884 image->info.height = pCreateInfo->extent.height;
885 image->info.depth = pCreateInfo->extent.depth;
886 image->info.samples = pCreateInfo->samples;
887 image->info.array_size = pCreateInfo->arrayLayers;
888 image->info.levels = pCreateInfo->mipLevels;
889
890 image->vk_format = pCreateInfo->format;
891 image->tiling = pCreateInfo->tiling;
892 image->usage = pCreateInfo->usage;
893 image->flags = pCreateInfo->flags;
894
895 image->exclusive = pCreateInfo->sharingMode == VK_SHARING_MODE_EXCLUSIVE;
896 if (pCreateInfo->sharingMode == VK_SHARING_MODE_CONCURRENT) {
897 for (uint32_t i = 0; i < pCreateInfo->queueFamilyIndexCount; ++i)
898 if (pCreateInfo->pQueueFamilyIndices[i] == VK_QUEUE_FAMILY_EXTERNAL_KHR)
899 image->queue_family_mask |= (1u << RADV_MAX_QUEUE_FAMILIES) - 1u;
900 else
901 image->queue_family_mask |= 1u << pCreateInfo->pQueueFamilyIndices[i];
902 }
903
904 image->shareable = vk_find_struct_const(pCreateInfo->pNext,
905 EXTERNAL_MEMORY_IMAGE_CREATE_INFO_KHR) != NULL;
906 if (!vk_format_is_depth(pCreateInfo->format) && !create_info->scanout && !image->shareable) {
907 image->info.surf_index = &device->image_mrt_offset_counter;
908 }
909
910 radv_init_surface(device, &image->surface, create_info);
911
912 device->ws->surface_init(device->ws, &image->info, &image->surface);
913
914 image->size = image->surface.surf_size;
915 image->alignment = image->surface.surf_alignment;
916
917 /* Try to enable DCC first. */
918 if (radv_image_can_enable_dcc(image)) {
919 radv_image_alloc_dcc(image);
920 } else {
921 /* When DCC cannot be enabled, try CMASK. */
922 image->surface.dcc_size = 0;
923 if (radv_image_can_enable_cmask(image)) {
924 radv_image_alloc_cmask(device, image);
925 }
926 }
927
928 /* Try to enable FMASK for multisampled images. */
929 if (radv_image_can_enable_fmask(image)) {
930 radv_image_alloc_fmask(device, image);
931 } else {
932 /* Otherwise, try to enable HTILE for depth surfaces. */
933 if (radv_image_can_enable_htile(image) &&
934 !(device->instance->debug_flags & RADV_DEBUG_NO_HIZ)) {
935 radv_image_alloc_htile(image);
936 image->tc_compatible_htile = image->surface.flags & RADEON_SURF_TC_COMPATIBLE_HTILE;
937 } else {
938 image->surface.htile_size = 0;
939 }
940 }
941
942 if (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) {
943 image->alignment = MAX2(image->alignment, 4096);
944 image->size = align64(image->size, image->alignment);
945 image->offset = 0;
946
947 image->bo = device->ws->buffer_create(device->ws, image->size, image->alignment,
948 0, RADEON_FLAG_VIRTUAL);
949 if (!image->bo) {
950 vk_free2(&device->alloc, alloc, image);
951 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
952 }
953 }
954
955 *pImage = radv_image_to_handle(image);
956
957 return VK_SUCCESS;
958 }
959
960 static void
961 radv_image_view_make_descriptor(struct radv_image_view *iview,
962 struct radv_device *device,
963 const VkComponentMapping *components,
964 bool is_storage_image)
965 {
966 struct radv_image *image = iview->image;
967 bool is_stencil = iview->aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT;
968 uint32_t blk_w;
969 uint32_t *descriptor;
970 uint32_t hw_level = 0;
971
972 if (is_storage_image) {
973 descriptor = iview->storage_descriptor;
974 } else {
975 descriptor = iview->descriptor;
976 }
977
978 assert(image->surface.blk_w % vk_format_get_blockwidth(image->vk_format) == 0);
979 blk_w = image->surface.blk_w / vk_format_get_blockwidth(image->vk_format) * vk_format_get_blockwidth(iview->vk_format);
980
981 if (device->physical_device->rad_info.chip_class >= GFX9)
982 hw_level = iview->base_mip;
983 si_make_texture_descriptor(device, image, is_storage_image,
984 iview->type,
985 iview->vk_format,
986 components,
987 hw_level, hw_level + iview->level_count - 1,
988 iview->base_layer,
989 iview->base_layer + iview->layer_count - 1,
990 iview->extent.width,
991 iview->extent.height,
992 iview->extent.depth,
993 descriptor,
994 descriptor + 8);
995
996 const struct legacy_surf_level *base_level_info = NULL;
997 if (device->physical_device->rad_info.chip_class <= GFX9) {
998 if (is_stencil)
999 base_level_info = &image->surface.u.legacy.stencil_level[iview->base_mip];
1000 else
1001 base_level_info = &image->surface.u.legacy.level[iview->base_mip];
1002 }
1003 si_set_mutable_tex_desc_fields(device, image,
1004 base_level_info,
1005 iview->base_mip,
1006 iview->base_mip,
1007 blk_w, is_stencil, descriptor);
1008 }
1009
1010 void
1011 radv_image_view_init(struct radv_image_view *iview,
1012 struct radv_device *device,
1013 const VkImageViewCreateInfo* pCreateInfo)
1014 {
1015 RADV_FROM_HANDLE(radv_image, image, pCreateInfo->image);
1016 const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
1017
1018 switch (image->type) {
1019 case VK_IMAGE_TYPE_1D:
1020 case VK_IMAGE_TYPE_2D:
1021 assert(range->baseArrayLayer + radv_get_layerCount(image, range) - 1 <= image->info.array_size);
1022 break;
1023 case VK_IMAGE_TYPE_3D:
1024 assert(range->baseArrayLayer + radv_get_layerCount(image, range) - 1
1025 <= radv_minify(image->info.depth, range->baseMipLevel));
1026 break;
1027 default:
1028 unreachable("bad VkImageType");
1029 }
1030 iview->image = image;
1031 iview->bo = image->bo;
1032 iview->type = pCreateInfo->viewType;
1033 iview->vk_format = pCreateInfo->format;
1034 iview->aspect_mask = pCreateInfo->subresourceRange.aspectMask;
1035
1036 if (iview->aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT) {
1037 iview->vk_format = vk_format_stencil_only(iview->vk_format);
1038 } else if (iview->aspect_mask == VK_IMAGE_ASPECT_DEPTH_BIT) {
1039 iview->vk_format = vk_format_depth_only(iview->vk_format);
1040 }
1041
1042 if (device->physical_device->rad_info.chip_class >= GFX9) {
1043 iview->extent = (VkExtent3D) {
1044 .width = image->info.width,
1045 .height = image->info.height,
1046 .depth = image->info.depth,
1047 };
1048 } else {
1049 iview->extent = (VkExtent3D) {
1050 .width = radv_minify(image->info.width , range->baseMipLevel),
1051 .height = radv_minify(image->info.height, range->baseMipLevel),
1052 .depth = radv_minify(image->info.depth , range->baseMipLevel),
1053 };
1054 }
1055
1056 if (iview->vk_format != image->vk_format) {
1057 iview->extent.width = round_up_u32(iview->extent.width * vk_format_get_blockwidth(iview->vk_format),
1058 vk_format_get_blockwidth(image->vk_format));
1059 iview->extent.height = round_up_u32(iview->extent.height * vk_format_get_blockheight(iview->vk_format),
1060 vk_format_get_blockheight(image->vk_format));
1061 }
1062
1063 iview->base_layer = range->baseArrayLayer;
1064 iview->layer_count = radv_get_layerCount(image, range);
1065 iview->base_mip = range->baseMipLevel;
1066 iview->level_count = radv_get_levelCount(image, range);
1067
1068 radv_image_view_make_descriptor(iview, device, &pCreateInfo->components, false);
1069 radv_image_view_make_descriptor(iview, device, &pCreateInfo->components, true);
1070 }
1071
1072 bool radv_layout_has_htile(const struct radv_image *image,
1073 VkImageLayout layout,
1074 unsigned queue_mask)
1075 {
1076 if (image->surface.htile_size && image->tc_compatible_htile)
1077 return layout != VK_IMAGE_LAYOUT_GENERAL;
1078
1079 return image->surface.htile_size &&
1080 (layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
1081 layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) &&
1082 queue_mask == (1u << RADV_QUEUE_GENERAL);
1083 }
1084
1085 bool radv_layout_is_htile_compressed(const struct radv_image *image,
1086 VkImageLayout layout,
1087 unsigned queue_mask)
1088 {
1089 if (image->surface.htile_size && image->tc_compatible_htile)
1090 return layout != VK_IMAGE_LAYOUT_GENERAL;
1091
1092 return image->surface.htile_size &&
1093 (layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
1094 layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) &&
1095 queue_mask == (1u << RADV_QUEUE_GENERAL);
1096 }
1097
1098 bool radv_layout_can_fast_clear(const struct radv_image *image,
1099 VkImageLayout layout,
1100 unsigned queue_mask)
1101 {
1102 return layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL &&
1103 queue_mask == (1u << RADV_QUEUE_GENERAL);
1104 }
1105
1106
1107 unsigned radv_image_queue_family_mask(const struct radv_image *image, uint32_t family, uint32_t queue_family)
1108 {
1109 if (!image->exclusive)
1110 return image->queue_family_mask;
1111 if (family == VK_QUEUE_FAMILY_EXTERNAL_KHR)
1112 return (1u << RADV_MAX_QUEUE_FAMILIES) - 1u;
1113 if (family == VK_QUEUE_FAMILY_IGNORED)
1114 return 1u << queue_family;
1115 return 1u << family;
1116 }
1117
1118 VkResult
1119 radv_CreateImage(VkDevice device,
1120 const VkImageCreateInfo *pCreateInfo,
1121 const VkAllocationCallbacks *pAllocator,
1122 VkImage *pImage)
1123 {
1124 const struct wsi_image_create_info *wsi_info =
1125 vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA);
1126 bool scanout = wsi_info && wsi_info->scanout;
1127
1128 return radv_image_create(device,
1129 &(struct radv_image_create_info) {
1130 .vk_info = pCreateInfo,
1131 .scanout = scanout,
1132 },
1133 pAllocator,
1134 pImage);
1135 }
1136
1137 void
1138 radv_DestroyImage(VkDevice _device, VkImage _image,
1139 const VkAllocationCallbacks *pAllocator)
1140 {
1141 RADV_FROM_HANDLE(radv_device, device, _device);
1142 RADV_FROM_HANDLE(radv_image, image, _image);
1143
1144 if (!image)
1145 return;
1146
1147 if (image->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT)
1148 device->ws->buffer_destroy(image->bo);
1149
1150 vk_free2(&device->alloc, pAllocator, image);
1151 }
1152
1153 void radv_GetImageSubresourceLayout(
1154 VkDevice _device,
1155 VkImage _image,
1156 const VkImageSubresource* pSubresource,
1157 VkSubresourceLayout* pLayout)
1158 {
1159 RADV_FROM_HANDLE(radv_image, image, _image);
1160 RADV_FROM_HANDLE(radv_device, device, _device);
1161 int level = pSubresource->mipLevel;
1162 int layer = pSubresource->arrayLayer;
1163 struct radeon_surf *surface = &image->surface;
1164
1165 if (device->physical_device->rad_info.chip_class >= GFX9) {
1166 pLayout->offset = surface->u.gfx9.offset[level] + surface->u.gfx9.surf_slice_size * layer;
1167 pLayout->rowPitch = surface->u.gfx9.surf_pitch * surface->bpe;
1168 pLayout->arrayPitch = surface->u.gfx9.surf_slice_size;
1169 pLayout->depthPitch = surface->u.gfx9.surf_slice_size;
1170 pLayout->size = surface->u.gfx9.surf_slice_size;
1171 if (image->type == VK_IMAGE_TYPE_3D)
1172 pLayout->size *= u_minify(image->info.depth, level);
1173 } else {
1174 pLayout->offset = surface->u.legacy.level[level].offset + (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4 * layer;
1175 pLayout->rowPitch = surface->u.legacy.level[level].nblk_x * surface->bpe;
1176 pLayout->arrayPitch = (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4;
1177 pLayout->depthPitch = (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4;
1178 pLayout->size = (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4;
1179 if (image->type == VK_IMAGE_TYPE_3D)
1180 pLayout->size *= u_minify(image->info.depth, level);
1181 }
1182 }
1183
1184
1185 VkResult
1186 radv_CreateImageView(VkDevice _device,
1187 const VkImageViewCreateInfo *pCreateInfo,
1188 const VkAllocationCallbacks *pAllocator,
1189 VkImageView *pView)
1190 {
1191 RADV_FROM_HANDLE(radv_device, device, _device);
1192 struct radv_image_view *view;
1193
1194 view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
1195 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1196 if (view == NULL)
1197 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1198
1199 radv_image_view_init(view, device, pCreateInfo);
1200
1201 *pView = radv_image_view_to_handle(view);
1202
1203 return VK_SUCCESS;
1204 }
1205
1206 void
1207 radv_DestroyImageView(VkDevice _device, VkImageView _iview,
1208 const VkAllocationCallbacks *pAllocator)
1209 {
1210 RADV_FROM_HANDLE(radv_device, device, _device);
1211 RADV_FROM_HANDLE(radv_image_view, iview, _iview);
1212
1213 if (!iview)
1214 return;
1215 vk_free2(&device->alloc, pAllocator, iview);
1216 }
1217
1218 void radv_buffer_view_init(struct radv_buffer_view *view,
1219 struct radv_device *device,
1220 const VkBufferViewCreateInfo* pCreateInfo)
1221 {
1222 RADV_FROM_HANDLE(radv_buffer, buffer, pCreateInfo->buffer);
1223
1224 view->bo = buffer->bo;
1225 view->range = pCreateInfo->range == VK_WHOLE_SIZE ?
1226 buffer->size - pCreateInfo->offset : pCreateInfo->range;
1227 view->vk_format = pCreateInfo->format;
1228
1229 radv_make_buffer_descriptor(device, buffer, view->vk_format,
1230 pCreateInfo->offset, view->range, view->state);
1231 }
1232
1233 VkResult
1234 radv_CreateBufferView(VkDevice _device,
1235 const VkBufferViewCreateInfo *pCreateInfo,
1236 const VkAllocationCallbacks *pAllocator,
1237 VkBufferView *pView)
1238 {
1239 RADV_FROM_HANDLE(radv_device, device, _device);
1240 struct radv_buffer_view *view;
1241
1242 view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
1243 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1244 if (!view)
1245 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1246
1247 radv_buffer_view_init(view, device, pCreateInfo);
1248
1249 *pView = radv_buffer_view_to_handle(view);
1250
1251 return VK_SUCCESS;
1252 }
1253
1254 void
1255 radv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
1256 const VkAllocationCallbacks *pAllocator)
1257 {
1258 RADV_FROM_HANDLE(radv_device, device, _device);
1259 RADV_FROM_HANDLE(radv_buffer_view, view, bufferView);
1260
1261 if (!view)
1262 return;
1263
1264 vk_free2(&device->alloc, pAllocator, view);
1265 }