ac: drop now useless lookup_interp_param from ABI
[mesa.git] / src / amd / vulkan / radv_nir_to_llvm.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "radv_private.h"
29 #include "radv_shader.h"
30 #include "radv_shader_helper.h"
31 #include "nir/nir.h"
32
33 #include <llvm-c/Core.h>
34 #include <llvm-c/TargetMachine.h>
35 #include <llvm-c/Transforms/Scalar.h>
36 #include <llvm-c/Transforms/Utils.h>
37
38 #include "sid.h"
39 #include "ac_binary.h"
40 #include "ac_llvm_util.h"
41 #include "ac_llvm_build.h"
42 #include "ac_shader_abi.h"
43 #include "ac_shader_util.h"
44 #include "ac_exp_param.h"
45
46 #define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)
47
48 struct radv_shader_context {
49 struct ac_llvm_context ac;
50 const struct radv_nir_compiler_options *options;
51 struct radv_shader_variant_info *shader_info;
52 struct ac_shader_abi abi;
53
54 unsigned max_workgroup_size;
55 LLVMContextRef context;
56 LLVMValueRef main_function;
57
58 LLVMValueRef descriptor_sets[MAX_SETS];
59 LLVMValueRef ring_offsets;
60
61 LLVMValueRef vertex_buffers;
62 LLVMValueRef rel_auto_id;
63 LLVMValueRef vs_prim_id;
64 LLVMValueRef es2gs_offset;
65
66 LLVMValueRef oc_lds;
67 LLVMValueRef merged_wave_info;
68 LLVMValueRef tess_factor_offset;
69 LLVMValueRef tes_rel_patch_id;
70 LLVMValueRef tes_u;
71 LLVMValueRef tes_v;
72
73 /* HW GS */
74 /* On gfx10:
75 * - bits 0..10: ordered_wave_id
76 * - bits 12..20: number of vertices in group
77 * - bits 22..30: number of primitives in group
78 */
79 LLVMValueRef gs_tg_info;
80 LLVMValueRef gs2vs_offset;
81 LLVMValueRef gs_wave_id;
82 LLVMValueRef gs_vtx_offset[6];
83
84 LLVMValueRef esgs_ring;
85 LLVMValueRef gsvs_ring[4];
86 LLVMValueRef hs_ring_tess_offchip;
87 LLVMValueRef hs_ring_tess_factor;
88
89 /* Streamout */
90 LLVMValueRef streamout_buffers;
91 LLVMValueRef streamout_write_idx;
92 LLVMValueRef streamout_config;
93 LLVMValueRef streamout_offset[4];
94
95 gl_shader_stage stage;
96
97 LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];
98 uint64_t float16_shaded_mask;
99
100 uint64_t input_mask;
101 uint64_t output_mask;
102
103 bool is_gs_copy_shader;
104 LLVMValueRef gs_next_vertex[4];
105 LLVMValueRef gs_curprim_verts[4];
106 LLVMValueRef gs_generated_prims[4];
107 LLVMValueRef gs_ngg_emit;
108 LLVMValueRef gs_ngg_scratch;
109 unsigned gs_max_out_vertices;
110 unsigned gs_output_prim;
111
112 unsigned tes_primitive_mode;
113
114 uint32_t tcs_patch_outputs_read;
115 uint64_t tcs_outputs_read;
116 uint32_t tcs_vertices_per_patch;
117 uint32_t tcs_num_inputs;
118 uint32_t tcs_num_patches;
119 uint32_t max_gsvs_emit_size;
120 uint32_t gsvs_vertex_size;
121
122 LLVMValueRef vertexptr; /* GFX10 only */
123 };
124
125 struct radv_shader_output_values {
126 LLVMValueRef values[4];
127 unsigned slot_name;
128 unsigned slot_index;
129 unsigned usage_mask;
130 };
131
132 enum radeon_llvm_calling_convention {
133 RADEON_LLVM_AMDGPU_VS = 87,
134 RADEON_LLVM_AMDGPU_GS = 88,
135 RADEON_LLVM_AMDGPU_PS = 89,
136 RADEON_LLVM_AMDGPU_CS = 90,
137 RADEON_LLVM_AMDGPU_HS = 93,
138 };
139
140 static inline struct radv_shader_context *
141 radv_shader_context_from_abi(struct ac_shader_abi *abi)
142 {
143 struct radv_shader_context *ctx = NULL;
144 return container_of(abi, ctx, abi);
145 }
146
147 struct ac_build_if_state
148 {
149 struct radv_shader_context *ctx;
150 LLVMValueRef condition;
151 LLVMBasicBlockRef entry_block;
152 LLVMBasicBlockRef true_block;
153 LLVMBasicBlockRef false_block;
154 LLVMBasicBlockRef merge_block;
155 };
156
157 static LLVMBasicBlockRef
158 ac_build_insert_new_block(struct radv_shader_context *ctx, const char *name)
159 {
160 LLVMBasicBlockRef current_block;
161 LLVMBasicBlockRef next_block;
162 LLVMBasicBlockRef new_block;
163
164 /* get current basic block */
165 current_block = LLVMGetInsertBlock(ctx->ac.builder);
166
167 /* chqeck if there's another block after this one */
168 next_block = LLVMGetNextBasicBlock(current_block);
169 if (next_block) {
170 /* insert the new block before the next block */
171 new_block = LLVMInsertBasicBlockInContext(ctx->context, next_block, name);
172 }
173 else {
174 /* append new block after current block */
175 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
176 new_block = LLVMAppendBasicBlockInContext(ctx->context, function, name);
177 }
178 return new_block;
179 }
180
181 static void
182 ac_nir_build_if(struct ac_build_if_state *ifthen,
183 struct radv_shader_context *ctx,
184 LLVMValueRef condition)
185 {
186 LLVMBasicBlockRef block = LLVMGetInsertBlock(ctx->ac.builder);
187
188 memset(ifthen, 0, sizeof *ifthen);
189 ifthen->ctx = ctx;
190 ifthen->condition = condition;
191 ifthen->entry_block = block;
192
193 /* create endif/merge basic block for the phi functions */
194 ifthen->merge_block = ac_build_insert_new_block(ctx, "endif-block");
195
196 /* create/insert true_block before merge_block */
197 ifthen->true_block =
198 LLVMInsertBasicBlockInContext(ctx->context,
199 ifthen->merge_block,
200 "if-true-block");
201
202 /* successive code goes into the true block */
203 LLVMPositionBuilderAtEnd(ctx->ac.builder, ifthen->true_block);
204 }
205
206 /**
207 * End a conditional.
208 */
209 static void
210 ac_nir_build_endif(struct ac_build_if_state *ifthen)
211 {
212 LLVMBuilderRef builder = ifthen->ctx->ac.builder;
213
214 /* Insert branch to the merge block from current block */
215 LLVMBuildBr(builder, ifthen->merge_block);
216
217 /*
218 * Now patch in the various branch instructions.
219 */
220
221 /* Insert the conditional branch instruction at the end of entry_block */
222 LLVMPositionBuilderAtEnd(builder, ifthen->entry_block);
223 if (ifthen->false_block) {
224 /* we have an else clause */
225 LLVMBuildCondBr(builder, ifthen->condition,
226 ifthen->true_block, ifthen->false_block);
227 }
228 else {
229 /* no else clause */
230 LLVMBuildCondBr(builder, ifthen->condition,
231 ifthen->true_block, ifthen->merge_block);
232 }
233
234 /* Resume building code at end of the ifthen->merge_block */
235 LLVMPositionBuilderAtEnd(builder, ifthen->merge_block);
236 }
237
238
239 static LLVMValueRef get_rel_patch_id(struct radv_shader_context *ctx)
240 {
241 switch (ctx->stage) {
242 case MESA_SHADER_TESS_CTRL:
243 return ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
244 case MESA_SHADER_TESS_EVAL:
245 return ctx->tes_rel_patch_id;
246 break;
247 default:
248 unreachable("Illegal stage");
249 }
250 }
251
252 static unsigned
253 get_tcs_num_patches(struct radv_shader_context *ctx)
254 {
255 unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
256 unsigned num_tcs_output_cp = ctx->tcs_vertices_per_patch;
257 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
258 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
259 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
260 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
261 uint32_t output_vertex_size = num_tcs_outputs * 16;
262 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
263 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
264 unsigned num_patches;
265 unsigned hardware_lds_size;
266
267 /* Ensure that we only need one wave per SIMD so we don't need to check
268 * resource usage. Also ensures that the number of tcs in and out
269 * vertices per threadgroup are at most 256.
270 */
271 num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
272 /* Make sure that the data fits in LDS. This assumes the shaders only
273 * use LDS for the inputs and outputs.
274 */
275 hardware_lds_size = 32768;
276
277 /* Looks like STONEY hangs if we use more than 32 KiB LDS in a single
278 * threadgroup, even though there is more than 32 KiB LDS.
279 *
280 * Test: dEQP-VK.tessellation.shader_input_output.barrier
281 */
282 if (ctx->options->chip_class >= GFX7 && ctx->options->family != CHIP_STONEY)
283 hardware_lds_size = 65536;
284
285 num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size));
286 /* Make sure the output data fits in the offchip buffer */
287 num_patches = MIN2(num_patches, (ctx->options->tess_offchip_block_dw_size * 4) / output_patch_size);
288 /* Not necessary for correctness, but improves performance. The
289 * specific value is taken from the proprietary driver.
290 */
291 num_patches = MIN2(num_patches, 40);
292
293 /* GFX6 bug workaround - limit LS-HS threadgroups to only one wave. */
294 if (ctx->options->chip_class == GFX6) {
295 unsigned one_wave = ctx->options->wave_size / MAX2(num_tcs_input_cp, num_tcs_output_cp);
296 num_patches = MIN2(num_patches, one_wave);
297 }
298 return num_patches;
299 }
300
301 static unsigned
302 calculate_tess_lds_size(struct radv_shader_context *ctx)
303 {
304 unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
305 unsigned num_tcs_output_cp;
306 unsigned num_tcs_outputs, num_tcs_patch_outputs;
307 unsigned input_vertex_size, output_vertex_size;
308 unsigned input_patch_size, output_patch_size;
309 unsigned pervertex_output_patch_size;
310 unsigned output_patch0_offset;
311 unsigned num_patches;
312 unsigned lds_size;
313
314 num_tcs_output_cp = ctx->tcs_vertices_per_patch;
315 num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
316 num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
317
318 input_vertex_size = ctx->tcs_num_inputs * 16;
319 output_vertex_size = num_tcs_outputs * 16;
320
321 input_patch_size = num_tcs_input_cp * input_vertex_size;
322
323 pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
324 output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
325
326 num_patches = ctx->tcs_num_patches;
327 output_patch0_offset = input_patch_size * num_patches;
328
329 lds_size = output_patch0_offset + output_patch_size * num_patches;
330 return lds_size;
331 }
332
333 /* Tessellation shaders pass outputs to the next shader using LDS.
334 *
335 * LS outputs = TCS inputs
336 * TCS outputs = TES inputs
337 *
338 * The LDS layout is:
339 * - TCS inputs for patch 0
340 * - TCS inputs for patch 1
341 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
342 * - ...
343 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
344 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
345 * - TCS outputs for patch 1
346 * - Per-patch TCS outputs for patch 1
347 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
348 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
349 * - ...
350 *
351 * All three shaders VS(LS), TCS, TES share the same LDS space.
352 */
353 static LLVMValueRef
354 get_tcs_in_patch_stride(struct radv_shader_context *ctx)
355 {
356 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
357 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
358 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
359
360 input_patch_size /= 4;
361 return LLVMConstInt(ctx->ac.i32, input_patch_size, false);
362 }
363
364 static LLVMValueRef
365 get_tcs_out_patch_stride(struct radv_shader_context *ctx)
366 {
367 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
368 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
369 uint32_t output_vertex_size = num_tcs_outputs * 16;
370 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
371 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
372 output_patch_size /= 4;
373 return LLVMConstInt(ctx->ac.i32, output_patch_size, false);
374 }
375
376 static LLVMValueRef
377 get_tcs_out_vertex_stride(struct radv_shader_context *ctx)
378 {
379 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
380 uint32_t output_vertex_size = num_tcs_outputs * 16;
381 output_vertex_size /= 4;
382 return LLVMConstInt(ctx->ac.i32, output_vertex_size, false);
383 }
384
385 static LLVMValueRef
386 get_tcs_out_patch0_offset(struct radv_shader_context *ctx)
387 {
388 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
389 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
390 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
391 uint32_t output_patch0_offset = input_patch_size;
392 unsigned num_patches = ctx->tcs_num_patches;
393
394 output_patch0_offset *= num_patches;
395 output_patch0_offset /= 4;
396 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
397 }
398
399 static LLVMValueRef
400 get_tcs_out_patch0_patch_data_offset(struct radv_shader_context *ctx)
401 {
402 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
403 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
404 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
405 uint32_t output_patch0_offset = input_patch_size;
406
407 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
408 uint32_t output_vertex_size = num_tcs_outputs * 16;
409 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
410 unsigned num_patches = ctx->tcs_num_patches;
411
412 output_patch0_offset *= num_patches;
413 output_patch0_offset += pervertex_output_patch_size;
414 output_patch0_offset /= 4;
415 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
416 }
417
418 static LLVMValueRef
419 get_tcs_in_current_patch_offset(struct radv_shader_context *ctx)
420 {
421 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
422 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
423
424 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
425 }
426
427 static LLVMValueRef
428 get_tcs_out_current_patch_offset(struct radv_shader_context *ctx)
429 {
430 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
431 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
432 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
433
434 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
435 patch0_offset);
436 }
437
438 static LLVMValueRef
439 get_tcs_out_current_patch_data_offset(struct radv_shader_context *ctx)
440 {
441 LLVMValueRef patch0_patch_data_offset =
442 get_tcs_out_patch0_patch_data_offset(ctx);
443 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
444 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
445
446 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
447 patch0_patch_data_offset);
448 }
449
450 #define MAX_ARGS 64
451 struct arg_info {
452 LLVMTypeRef types[MAX_ARGS];
453 LLVMValueRef *assign[MAX_ARGS];
454 uint8_t count;
455 uint8_t sgpr_count;
456 uint8_t num_sgprs_used;
457 uint8_t num_vgprs_used;
458 };
459
460 enum ac_arg_regfile {
461 ARG_SGPR,
462 ARG_VGPR,
463 };
464
465 static void
466 add_arg(struct arg_info *info, enum ac_arg_regfile regfile, LLVMTypeRef type,
467 LLVMValueRef *param_ptr)
468 {
469 assert(info->count < MAX_ARGS);
470
471 info->assign[info->count] = param_ptr;
472 info->types[info->count] = type;
473 info->count++;
474
475 if (regfile == ARG_SGPR) {
476 info->num_sgprs_used += ac_get_type_size(type) / 4;
477 info->sgpr_count++;
478 } else {
479 assert(regfile == ARG_VGPR);
480 info->num_vgprs_used += ac_get_type_size(type) / 4;
481 }
482 }
483
484 static void assign_arguments(LLVMValueRef main_function,
485 struct arg_info *info)
486 {
487 unsigned i;
488 for (i = 0; i < info->count; i++) {
489 if (info->assign[i])
490 *info->assign[i] = LLVMGetParam(main_function, i);
491 }
492 }
493
494 static LLVMValueRef
495 create_llvm_function(LLVMContextRef ctx, LLVMModuleRef module,
496 LLVMBuilderRef builder, LLVMTypeRef *return_types,
497 unsigned num_return_elems,
498 struct arg_info *args,
499 unsigned max_workgroup_size,
500 const struct radv_nir_compiler_options *options)
501 {
502 LLVMTypeRef main_function_type, ret_type;
503 LLVMBasicBlockRef main_function_body;
504
505 if (num_return_elems)
506 ret_type = LLVMStructTypeInContext(ctx, return_types,
507 num_return_elems, true);
508 else
509 ret_type = LLVMVoidTypeInContext(ctx);
510
511 /* Setup the function */
512 main_function_type =
513 LLVMFunctionType(ret_type, args->types, args->count, 0);
514 LLVMValueRef main_function =
515 LLVMAddFunction(module, "main", main_function_type);
516 main_function_body =
517 LLVMAppendBasicBlockInContext(ctx, main_function, "main_body");
518 LLVMPositionBuilderAtEnd(builder, main_function_body);
519
520 LLVMSetFunctionCallConv(main_function, RADEON_LLVM_AMDGPU_CS);
521 for (unsigned i = 0; i < args->sgpr_count; ++i) {
522 LLVMValueRef P = LLVMGetParam(main_function, i);
523
524 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_INREG);
525
526 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
527 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_NOALIAS);
528 ac_add_attr_dereferenceable(P, UINT64_MAX);
529 }
530 }
531
532 if (options->address32_hi) {
533 ac_llvm_add_target_dep_function_attr(main_function,
534 "amdgpu-32bit-address-high-bits",
535 options->address32_hi);
536 }
537
538 ac_llvm_set_workgroup_size(main_function, max_workgroup_size);
539
540 if (options->unsafe_math) {
541 /* These were copied from some LLVM test. */
542 LLVMAddTargetDependentFunctionAttr(main_function,
543 "less-precise-fpmad",
544 "true");
545 LLVMAddTargetDependentFunctionAttr(main_function,
546 "no-infs-fp-math",
547 "true");
548 LLVMAddTargetDependentFunctionAttr(main_function,
549 "no-nans-fp-math",
550 "true");
551 LLVMAddTargetDependentFunctionAttr(main_function,
552 "unsafe-fp-math",
553 "true");
554 LLVMAddTargetDependentFunctionAttr(main_function,
555 "no-signed-zeros-fp-math",
556 "true");
557 }
558 return main_function;
559 }
560
561
562 static void
563 set_loc(struct radv_userdata_info *ud_info, uint8_t *sgpr_idx,
564 uint8_t num_sgprs)
565 {
566 ud_info->sgpr_idx = *sgpr_idx;
567 ud_info->num_sgprs = num_sgprs;
568 *sgpr_idx += num_sgprs;
569 }
570
571 static void
572 set_loc_shader(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx,
573 uint8_t num_sgprs)
574 {
575 struct radv_userdata_info *ud_info =
576 &ctx->shader_info->user_sgprs_locs.shader_data[idx];
577 assert(ud_info);
578
579 set_loc(ud_info, sgpr_idx, num_sgprs);
580 }
581
582 static void
583 set_loc_shader_ptr(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx)
584 {
585 bool use_32bit_pointers = idx != AC_UD_SCRATCH_RING_OFFSETS;
586
587 set_loc_shader(ctx, idx, sgpr_idx, use_32bit_pointers ? 1 : 2);
588 }
589
590 static void
591 set_loc_desc(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx)
592 {
593 struct radv_userdata_locations *locs =
594 &ctx->shader_info->user_sgprs_locs;
595 struct radv_userdata_info *ud_info = &locs->descriptor_sets[idx];
596 assert(ud_info);
597
598 set_loc(ud_info, sgpr_idx, 1);
599
600 locs->descriptor_sets_enabled |= 1 << idx;
601 }
602
603 struct user_sgpr_info {
604 bool need_ring_offsets;
605 bool indirect_all_descriptor_sets;
606 uint8_t remaining_sgprs;
607 };
608
609 static bool needs_view_index_sgpr(struct radv_shader_context *ctx,
610 gl_shader_stage stage)
611 {
612 switch (stage) {
613 case MESA_SHADER_VERTEX:
614 if (ctx->shader_info->info.needs_multiview_view_index ||
615 (!ctx->options->key.vs_common_out.as_es && !ctx->options->key.vs_common_out.as_ls && ctx->options->key.has_multiview_view_index))
616 return true;
617 break;
618 case MESA_SHADER_TESS_EVAL:
619 if (ctx->shader_info->info.needs_multiview_view_index || (!ctx->options->key.vs_common_out.as_es && ctx->options->key.has_multiview_view_index))
620 return true;
621 break;
622 case MESA_SHADER_GEOMETRY:
623 case MESA_SHADER_TESS_CTRL:
624 if (ctx->shader_info->info.needs_multiview_view_index)
625 return true;
626 break;
627 default:
628 break;
629 }
630 return false;
631 }
632
633 static uint8_t
634 count_vs_user_sgprs(struct radv_shader_context *ctx)
635 {
636 uint8_t count = 0;
637
638 if (ctx->shader_info->info.vs.has_vertex_buffers)
639 count++;
640 count += ctx->shader_info->info.vs.needs_draw_id ? 3 : 2;
641
642 return count;
643 }
644
645 static void allocate_inline_push_consts(struct radv_shader_context *ctx,
646 struct user_sgpr_info *user_sgpr_info)
647 {
648 uint8_t remaining_sgprs = user_sgpr_info->remaining_sgprs;
649
650 /* Only supported if shaders use push constants. */
651 if (ctx->shader_info->info.min_push_constant_used == UINT8_MAX)
652 return;
653
654 /* Only supported if shaders don't have indirect push constants. */
655 if (ctx->shader_info->info.has_indirect_push_constants)
656 return;
657
658 /* Only supported for 32-bit push constants. */
659 if (!ctx->shader_info->info.has_only_32bit_push_constants)
660 return;
661
662 uint8_t num_push_consts =
663 (ctx->shader_info->info.max_push_constant_used -
664 ctx->shader_info->info.min_push_constant_used) / 4;
665
666 /* Check if the number of user SGPRs is large enough. */
667 if (num_push_consts < remaining_sgprs) {
668 ctx->shader_info->info.num_inline_push_consts = num_push_consts;
669 } else {
670 ctx->shader_info->info.num_inline_push_consts = remaining_sgprs;
671 }
672
673 /* Clamp to the maximum number of allowed inlined push constants. */
674 if (ctx->shader_info->info.num_inline_push_consts > AC_MAX_INLINE_PUSH_CONSTS)
675 ctx->shader_info->info.num_inline_push_consts = AC_MAX_INLINE_PUSH_CONSTS;
676
677 if (ctx->shader_info->info.num_inline_push_consts == num_push_consts &&
678 !ctx->shader_info->info.loads_dynamic_offsets) {
679 /* Disable the default push constants path if all constants are
680 * inlined and if shaders don't use dynamic descriptors.
681 */
682 ctx->shader_info->info.loads_push_constants = false;
683 }
684
685 ctx->shader_info->info.base_inline_push_consts =
686 ctx->shader_info->info.min_push_constant_used / 4;
687 }
688
689 static void allocate_user_sgprs(struct radv_shader_context *ctx,
690 gl_shader_stage stage,
691 bool has_previous_stage,
692 gl_shader_stage previous_stage,
693 bool needs_view_index,
694 struct user_sgpr_info *user_sgpr_info)
695 {
696 uint8_t user_sgpr_count = 0;
697
698 memset(user_sgpr_info, 0, sizeof(struct user_sgpr_info));
699
700 /* until we sort out scratch/global buffers always assign ring offsets for gs/vs/es */
701 if (stage == MESA_SHADER_GEOMETRY ||
702 stage == MESA_SHADER_VERTEX ||
703 stage == MESA_SHADER_TESS_CTRL ||
704 stage == MESA_SHADER_TESS_EVAL ||
705 ctx->is_gs_copy_shader)
706 user_sgpr_info->need_ring_offsets = true;
707
708 if (stage == MESA_SHADER_FRAGMENT &&
709 ctx->shader_info->info.ps.needs_sample_positions)
710 user_sgpr_info->need_ring_offsets = true;
711
712 /* 2 user sgprs will nearly always be allocated for scratch/rings */
713 if (ctx->options->supports_spill || user_sgpr_info->need_ring_offsets) {
714 user_sgpr_count += 2;
715 }
716
717 switch (stage) {
718 case MESA_SHADER_COMPUTE:
719 if (ctx->shader_info->info.cs.uses_grid_size)
720 user_sgpr_count += 3;
721 break;
722 case MESA_SHADER_FRAGMENT:
723 user_sgpr_count += ctx->shader_info->info.ps.needs_sample_positions;
724 break;
725 case MESA_SHADER_VERTEX:
726 if (!ctx->is_gs_copy_shader)
727 user_sgpr_count += count_vs_user_sgprs(ctx);
728 break;
729 case MESA_SHADER_TESS_CTRL:
730 if (has_previous_stage) {
731 if (previous_stage == MESA_SHADER_VERTEX)
732 user_sgpr_count += count_vs_user_sgprs(ctx);
733 }
734 break;
735 case MESA_SHADER_TESS_EVAL:
736 break;
737 case MESA_SHADER_GEOMETRY:
738 if (has_previous_stage) {
739 if (previous_stage == MESA_SHADER_VERTEX) {
740 user_sgpr_count += count_vs_user_sgprs(ctx);
741 }
742 }
743 break;
744 default:
745 break;
746 }
747
748 if (needs_view_index)
749 user_sgpr_count++;
750
751 if (ctx->shader_info->info.loads_push_constants)
752 user_sgpr_count++;
753
754 if (ctx->streamout_buffers)
755 user_sgpr_count++;
756
757 uint32_t available_sgprs = ctx->options->chip_class >= GFX9 && stage != MESA_SHADER_COMPUTE ? 32 : 16;
758 uint32_t remaining_sgprs = available_sgprs - user_sgpr_count;
759 uint32_t num_desc_set =
760 util_bitcount(ctx->shader_info->info.desc_set_used_mask);
761
762 if (remaining_sgprs < num_desc_set) {
763 user_sgpr_info->indirect_all_descriptor_sets = true;
764 user_sgpr_info->remaining_sgprs = remaining_sgprs - 1;
765 } else {
766 user_sgpr_info->remaining_sgprs = remaining_sgprs - num_desc_set;
767 }
768
769 allocate_inline_push_consts(ctx, user_sgpr_info);
770 }
771
772 static void
773 declare_global_input_sgprs(struct radv_shader_context *ctx,
774 const struct user_sgpr_info *user_sgpr_info,
775 struct arg_info *args,
776 LLVMValueRef *desc_sets)
777 {
778 LLVMTypeRef type = ac_array_in_const32_addr_space(ctx->ac.i8);
779
780 /* 1 for each descriptor set */
781 if (!user_sgpr_info->indirect_all_descriptor_sets) {
782 uint32_t mask = ctx->shader_info->info.desc_set_used_mask;
783
784 while (mask) {
785 int i = u_bit_scan(&mask);
786
787 add_arg(args, ARG_SGPR, type, &ctx->descriptor_sets[i]);
788 }
789 } else {
790 add_arg(args, ARG_SGPR, ac_array_in_const32_addr_space(type),
791 desc_sets);
792 }
793
794 if (ctx->shader_info->info.loads_push_constants) {
795 /* 1 for push constants and dynamic descriptors */
796 add_arg(args, ARG_SGPR, type, &ctx->abi.push_constants);
797 }
798
799 for (unsigned i = 0; i < ctx->shader_info->info.num_inline_push_consts; i++) {
800 add_arg(args, ARG_SGPR, ctx->ac.i32,
801 &ctx->abi.inline_push_consts[i]);
802 }
803 ctx->abi.num_inline_push_consts = ctx->shader_info->info.num_inline_push_consts;
804 ctx->abi.base_inline_push_consts = ctx->shader_info->info.base_inline_push_consts;
805
806 if (ctx->shader_info->info.so.num_outputs) {
807 add_arg(args, ARG_SGPR,
808 ac_array_in_const32_addr_space(ctx->ac.v4i32),
809 &ctx->streamout_buffers);
810 }
811 }
812
813 static void
814 declare_vs_specific_input_sgprs(struct radv_shader_context *ctx,
815 gl_shader_stage stage,
816 bool has_previous_stage,
817 gl_shader_stage previous_stage,
818 struct arg_info *args)
819 {
820 if (!ctx->is_gs_copy_shader &&
821 (stage == MESA_SHADER_VERTEX ||
822 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
823 if (ctx->shader_info->info.vs.has_vertex_buffers) {
824 add_arg(args, ARG_SGPR,
825 ac_array_in_const32_addr_space(ctx->ac.v4i32),
826 &ctx->vertex_buffers);
827 }
828 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.base_vertex);
829 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.start_instance);
830 if (ctx->shader_info->info.vs.needs_draw_id) {
831 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.draw_id);
832 }
833 }
834 }
835
836 static void
837 declare_vs_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
838 {
839 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.vertex_id);
840 if (!ctx->is_gs_copy_shader) {
841 if (ctx->options->key.vs_common_out.as_ls) {
842 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->rel_auto_id);
843 if (ctx->ac.chip_class >= GFX10) {
844 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* user vgpr */
845 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
846 } else {
847 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
848 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
849 }
850 } else {
851 if (ctx->ac.chip_class >= GFX10) {
852 if (ctx->options->key.vs_common_out.as_ngg) {
853 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* user vgpr */
854 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* user vgpr */
855 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
856 } else {
857 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
858 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->vs_prim_id);
859 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
860 }
861 } else {
862 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
863 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->vs_prim_id);
864 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
865 }
866 }
867 }
868 }
869
870 static void
871 declare_streamout_sgprs(struct radv_shader_context *ctx, gl_shader_stage stage,
872 struct arg_info *args)
873 {
874 int i;
875
876 /* Streamout SGPRs. */
877 if (ctx->shader_info->info.so.num_outputs) {
878 assert(stage == MESA_SHADER_VERTEX ||
879 stage == MESA_SHADER_TESS_EVAL);
880
881 if (stage != MESA_SHADER_TESS_EVAL) {
882 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_config);
883 } else {
884 args->assign[args->count - 1] = &ctx->streamout_config;
885 args->types[args->count - 1] = ctx->ac.i32;
886 }
887
888 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_write_idx);
889 }
890
891 /* A streamout buffer offset is loaded if the stride is non-zero. */
892 for (i = 0; i < 4; i++) {
893 if (!ctx->shader_info->info.so.strides[i])
894 continue;
895
896 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_offset[i]);
897 }
898 }
899
900 static void
901 declare_tes_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
902 {
903 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_u);
904 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_v);
905 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->tes_rel_patch_id);
906 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.tes_patch_id);
907 }
908
909 static void
910 set_global_input_locs(struct radv_shader_context *ctx,
911 const struct user_sgpr_info *user_sgpr_info,
912 LLVMValueRef desc_sets, uint8_t *user_sgpr_idx)
913 {
914 uint32_t mask = ctx->shader_info->info.desc_set_used_mask;
915
916 if (!user_sgpr_info->indirect_all_descriptor_sets) {
917 while (mask) {
918 int i = u_bit_scan(&mask);
919
920 set_loc_desc(ctx, i, user_sgpr_idx);
921 }
922 } else {
923 set_loc_shader_ptr(ctx, AC_UD_INDIRECT_DESCRIPTOR_SETS,
924 user_sgpr_idx);
925
926 while (mask) {
927 int i = u_bit_scan(&mask);
928
929 ctx->descriptor_sets[i] =
930 ac_build_load_to_sgpr(&ctx->ac, desc_sets,
931 LLVMConstInt(ctx->ac.i32, i, false));
932
933 }
934
935 ctx->shader_info->need_indirect_descriptor_sets = true;
936 }
937
938 if (ctx->shader_info->info.loads_push_constants) {
939 set_loc_shader_ptr(ctx, AC_UD_PUSH_CONSTANTS, user_sgpr_idx);
940 }
941
942 if (ctx->shader_info->info.num_inline_push_consts) {
943 set_loc_shader(ctx, AC_UD_INLINE_PUSH_CONSTANTS, user_sgpr_idx,
944 ctx->shader_info->info.num_inline_push_consts);
945 }
946
947 if (ctx->streamout_buffers) {
948 set_loc_shader_ptr(ctx, AC_UD_STREAMOUT_BUFFERS,
949 user_sgpr_idx);
950 }
951 }
952
953 static void
954 set_vs_specific_input_locs(struct radv_shader_context *ctx,
955 gl_shader_stage stage, bool has_previous_stage,
956 gl_shader_stage previous_stage,
957 uint8_t *user_sgpr_idx)
958 {
959 if (!ctx->is_gs_copy_shader &&
960 (stage == MESA_SHADER_VERTEX ||
961 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
962 if (ctx->shader_info->info.vs.has_vertex_buffers) {
963 set_loc_shader_ptr(ctx, AC_UD_VS_VERTEX_BUFFERS,
964 user_sgpr_idx);
965 }
966
967 unsigned vs_num = 2;
968 if (ctx->shader_info->info.vs.needs_draw_id)
969 vs_num++;
970
971 set_loc_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE,
972 user_sgpr_idx, vs_num);
973 }
974 }
975
976 static void set_llvm_calling_convention(LLVMValueRef func,
977 gl_shader_stage stage)
978 {
979 enum radeon_llvm_calling_convention calling_conv;
980
981 switch (stage) {
982 case MESA_SHADER_VERTEX:
983 case MESA_SHADER_TESS_EVAL:
984 calling_conv = RADEON_LLVM_AMDGPU_VS;
985 break;
986 case MESA_SHADER_GEOMETRY:
987 calling_conv = RADEON_LLVM_AMDGPU_GS;
988 break;
989 case MESA_SHADER_TESS_CTRL:
990 calling_conv = RADEON_LLVM_AMDGPU_HS;
991 break;
992 case MESA_SHADER_FRAGMENT:
993 calling_conv = RADEON_LLVM_AMDGPU_PS;
994 break;
995 case MESA_SHADER_COMPUTE:
996 calling_conv = RADEON_LLVM_AMDGPU_CS;
997 break;
998 default:
999 unreachable("Unhandle shader type");
1000 }
1001
1002 LLVMSetFunctionCallConv(func, calling_conv);
1003 }
1004
1005 /* Returns whether the stage is a stage that can be directly before the GS */
1006 static bool is_pre_gs_stage(gl_shader_stage stage)
1007 {
1008 return stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL;
1009 }
1010
1011 static void create_function(struct radv_shader_context *ctx,
1012 gl_shader_stage stage,
1013 bool has_previous_stage,
1014 gl_shader_stage previous_stage)
1015 {
1016 uint8_t user_sgpr_idx;
1017 struct user_sgpr_info user_sgpr_info;
1018 struct arg_info args = {};
1019 LLVMValueRef desc_sets;
1020 bool needs_view_index = needs_view_index_sgpr(ctx, stage);
1021
1022 if (ctx->ac.chip_class >= GFX10) {
1023 if (is_pre_gs_stage(stage) && ctx->options->key.vs_common_out.as_ngg) {
1024 /* On GFX10, VS is merged into GS for NGG. */
1025 previous_stage = stage;
1026 stage = MESA_SHADER_GEOMETRY;
1027 has_previous_stage = true;
1028 }
1029 }
1030
1031 allocate_user_sgprs(ctx, stage, has_previous_stage,
1032 previous_stage, needs_view_index, &user_sgpr_info);
1033
1034 if (user_sgpr_info.need_ring_offsets && !ctx->options->supports_spill) {
1035 add_arg(&args, ARG_SGPR, ac_array_in_const_addr_space(ctx->ac.v4i32),
1036 &ctx->ring_offsets);
1037 }
1038
1039 switch (stage) {
1040 case MESA_SHADER_COMPUTE:
1041 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1042 &desc_sets);
1043
1044 if (ctx->shader_info->info.cs.uses_grid_size) {
1045 add_arg(&args, ARG_SGPR, ctx->ac.v3i32,
1046 &ctx->abi.num_work_groups);
1047 }
1048
1049 for (int i = 0; i < 3; i++) {
1050 ctx->abi.workgroup_ids[i] = NULL;
1051 if (ctx->shader_info->info.cs.uses_block_id[i]) {
1052 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1053 &ctx->abi.workgroup_ids[i]);
1054 }
1055 }
1056
1057 if (ctx->shader_info->info.cs.uses_local_invocation_idx)
1058 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.tg_size);
1059 add_arg(&args, ARG_VGPR, ctx->ac.v3i32,
1060 &ctx->abi.local_invocation_ids);
1061 break;
1062 case MESA_SHADER_VERTEX:
1063 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1064 &desc_sets);
1065
1066 declare_vs_specific_input_sgprs(ctx, stage, has_previous_stage,
1067 previous_stage, &args);
1068
1069 if (needs_view_index)
1070 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1071 &ctx->abi.view_index);
1072 if (ctx->options->key.vs_common_out.as_es) {
1073 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1074 &ctx->es2gs_offset);
1075 } else if (ctx->options->key.vs_common_out.as_ls) {
1076 /* no extra parameters */
1077 } else {
1078 declare_streamout_sgprs(ctx, stage, &args);
1079 }
1080
1081 declare_vs_input_vgprs(ctx, &args);
1082 break;
1083 case MESA_SHADER_TESS_CTRL:
1084 if (has_previous_stage) {
1085 // First 6 system regs
1086 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1087 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1088 &ctx->merged_wave_info);
1089 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1090 &ctx->tess_factor_offset);
1091
1092 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
1093 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1094 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1095
1096 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1097 &desc_sets);
1098
1099 declare_vs_specific_input_sgprs(ctx, stage,
1100 has_previous_stage,
1101 previous_stage, &args);
1102
1103 if (needs_view_index)
1104 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1105 &ctx->abi.view_index);
1106
1107 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1108 &ctx->abi.tcs_patch_id);
1109 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1110 &ctx->abi.tcs_rel_ids);
1111
1112 declare_vs_input_vgprs(ctx, &args);
1113 } else {
1114 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1115 &desc_sets);
1116
1117 if (needs_view_index)
1118 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1119 &ctx->abi.view_index);
1120
1121 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1122 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1123 &ctx->tess_factor_offset);
1124 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1125 &ctx->abi.tcs_patch_id);
1126 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1127 &ctx->abi.tcs_rel_ids);
1128 }
1129 break;
1130 case MESA_SHADER_TESS_EVAL:
1131 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1132 &desc_sets);
1133
1134 if (needs_view_index)
1135 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1136 &ctx->abi.view_index);
1137
1138 if (ctx->options->key.vs_common_out.as_es) {
1139 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1140 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
1141 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1142 &ctx->es2gs_offset);
1143 } else {
1144 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
1145 declare_streamout_sgprs(ctx, stage, &args);
1146 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1147 }
1148 declare_tes_input_vgprs(ctx, &args);
1149 break;
1150 case MESA_SHADER_GEOMETRY:
1151 if (has_previous_stage) {
1152 // First 6 system regs
1153 if (ctx->options->key.vs_common_out.as_ngg) {
1154 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1155 &ctx->gs_tg_info);
1156 } else {
1157 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1158 &ctx->gs2vs_offset);
1159 }
1160
1161 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1162 &ctx->merged_wave_info);
1163 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1164
1165 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
1166 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1167 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1168
1169 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1170 &desc_sets);
1171
1172 if (previous_stage != MESA_SHADER_TESS_EVAL) {
1173 declare_vs_specific_input_sgprs(ctx, stage,
1174 has_previous_stage,
1175 previous_stage,
1176 &args);
1177 }
1178
1179 if (needs_view_index)
1180 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1181 &ctx->abi.view_index);
1182
1183 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1184 &ctx->gs_vtx_offset[0]);
1185 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1186 &ctx->gs_vtx_offset[2]);
1187 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1188 &ctx->abi.gs_prim_id);
1189 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1190 &ctx->abi.gs_invocation_id);
1191 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1192 &ctx->gs_vtx_offset[4]);
1193
1194 if (previous_stage == MESA_SHADER_VERTEX) {
1195 declare_vs_input_vgprs(ctx, &args);
1196 } else {
1197 declare_tes_input_vgprs(ctx, &args);
1198 }
1199 } else {
1200 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1201 &desc_sets);
1202
1203 if (needs_view_index)
1204 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1205 &ctx->abi.view_index);
1206
1207 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs2vs_offset);
1208 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs_wave_id);
1209 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1210 &ctx->gs_vtx_offset[0]);
1211 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1212 &ctx->gs_vtx_offset[1]);
1213 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1214 &ctx->abi.gs_prim_id);
1215 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1216 &ctx->gs_vtx_offset[2]);
1217 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1218 &ctx->gs_vtx_offset[3]);
1219 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1220 &ctx->gs_vtx_offset[4]);
1221 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1222 &ctx->gs_vtx_offset[5]);
1223 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1224 &ctx->abi.gs_invocation_id);
1225 }
1226 break;
1227 case MESA_SHADER_FRAGMENT:
1228 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1229 &desc_sets);
1230
1231 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.prim_mask);
1232 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.persp_sample);
1233 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.persp_center);
1234 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.persp_centroid);
1235 add_arg(&args, ARG_VGPR, ctx->ac.v3i32, NULL); /* persp pull model */
1236 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.linear_sample);
1237 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.linear_center);
1238 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->abi.linear_centroid);
1239 add_arg(&args, ARG_VGPR, ctx->ac.f32, NULL); /* line stipple tex */
1240 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[0]);
1241 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[1]);
1242 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[2]);
1243 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[3]);
1244 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.front_face);
1245 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.ancillary);
1246 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.sample_coverage);
1247 add_arg(&args, ARG_VGPR, ctx->ac.i32, NULL); /* fixed pt */
1248 break;
1249 default:
1250 unreachable("Shader stage not implemented");
1251 }
1252
1253 ctx->main_function = create_llvm_function(
1254 ctx->context, ctx->ac.module, ctx->ac.builder, NULL, 0, &args,
1255 ctx->max_workgroup_size, ctx->options);
1256 set_llvm_calling_convention(ctx->main_function, stage);
1257
1258
1259 ctx->shader_info->num_input_vgprs = 0;
1260 ctx->shader_info->num_input_sgprs = ctx->options->supports_spill ? 2 : 0;
1261
1262 ctx->shader_info->num_input_sgprs += args.num_sgprs_used;
1263
1264 if (ctx->stage != MESA_SHADER_FRAGMENT)
1265 ctx->shader_info->num_input_vgprs = args.num_vgprs_used;
1266
1267 assign_arguments(ctx->main_function, &args);
1268
1269 user_sgpr_idx = 0;
1270
1271 if (ctx->options->supports_spill || user_sgpr_info.need_ring_offsets) {
1272 set_loc_shader_ptr(ctx, AC_UD_SCRATCH_RING_OFFSETS,
1273 &user_sgpr_idx);
1274 if (ctx->options->supports_spill) {
1275 ctx->ring_offsets = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.implicit.buffer.ptr",
1276 LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_CONST),
1277 NULL, 0, AC_FUNC_ATTR_READNONE);
1278 ctx->ring_offsets = LLVMBuildBitCast(ctx->ac.builder, ctx->ring_offsets,
1279 ac_array_in_const_addr_space(ctx->ac.v4i32), "");
1280 }
1281 }
1282
1283 /* For merged shaders the user SGPRs start at 8, with 8 system SGPRs in front (including
1284 * the rw_buffers at s0/s1. With user SGPR0 = s8, lets restart the count from 0 */
1285 if (has_previous_stage)
1286 user_sgpr_idx = 0;
1287
1288 set_global_input_locs(ctx, &user_sgpr_info, desc_sets, &user_sgpr_idx);
1289
1290 switch (stage) {
1291 case MESA_SHADER_COMPUTE:
1292 if (ctx->shader_info->info.cs.uses_grid_size) {
1293 set_loc_shader(ctx, AC_UD_CS_GRID_SIZE,
1294 &user_sgpr_idx, 3);
1295 }
1296 break;
1297 case MESA_SHADER_VERTEX:
1298 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1299 previous_stage, &user_sgpr_idx);
1300 if (ctx->abi.view_index)
1301 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1302 break;
1303 case MESA_SHADER_TESS_CTRL:
1304 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1305 previous_stage, &user_sgpr_idx);
1306 if (ctx->abi.view_index)
1307 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1308 break;
1309 case MESA_SHADER_TESS_EVAL:
1310 if (ctx->abi.view_index)
1311 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1312 break;
1313 case MESA_SHADER_GEOMETRY:
1314 if (has_previous_stage) {
1315 if (previous_stage == MESA_SHADER_VERTEX)
1316 set_vs_specific_input_locs(ctx, stage,
1317 has_previous_stage,
1318 previous_stage,
1319 &user_sgpr_idx);
1320 }
1321 if (ctx->abi.view_index)
1322 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1323 break;
1324 case MESA_SHADER_FRAGMENT:
1325 break;
1326 default:
1327 unreachable("Shader stage not implemented");
1328 }
1329
1330 if (stage == MESA_SHADER_TESS_CTRL ||
1331 (stage == MESA_SHADER_VERTEX && ctx->options->key.vs_common_out.as_ls) ||
1332 /* GFX9 has the ESGS ring buffer in LDS. */
1333 (stage == MESA_SHADER_GEOMETRY && has_previous_stage)) {
1334 ac_declare_lds_as_pointer(&ctx->ac);
1335 }
1336
1337 ctx->shader_info->num_user_sgprs = user_sgpr_idx;
1338 }
1339
1340
1341 static LLVMValueRef
1342 radv_load_resource(struct ac_shader_abi *abi, LLVMValueRef index,
1343 unsigned desc_set, unsigned binding)
1344 {
1345 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1346 LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
1347 struct radv_pipeline_layout *pipeline_layout = ctx->options->layout;
1348 struct radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
1349 unsigned base_offset = layout->binding[binding].offset;
1350 LLVMValueRef offset, stride;
1351
1352 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1353 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1354 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start +
1355 layout->binding[binding].dynamic_offset_offset;
1356 desc_ptr = ctx->abi.push_constants;
1357 base_offset = pipeline_layout->push_constant_size + 16 * idx;
1358 stride = LLVMConstInt(ctx->ac.i32, 16, false);
1359 } else
1360 stride = LLVMConstInt(ctx->ac.i32, layout->binding[binding].size, false);
1361
1362 offset = LLVMConstInt(ctx->ac.i32, base_offset, false);
1363
1364 if (layout->binding[binding].type != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
1365 offset = ac_build_imad(&ctx->ac, index, stride, offset);
1366 }
1367
1368 desc_ptr = LLVMBuildGEP(ctx->ac.builder, desc_ptr, &offset, 1, "");
1369 desc_ptr = ac_cast_ptr(&ctx->ac, desc_ptr, ctx->ac.v4i32);
1370 LLVMSetMetadata(desc_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1371
1372 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
1373 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1374 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1375 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1376 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
1377
1378 if (ctx->ac.chip_class >= GFX10) {
1379 desc_type |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) |
1380 S_008F0C_OOB_SELECT(3) |
1381 S_008F0C_RESOURCE_LEVEL(1);
1382 } else {
1383 desc_type |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1384 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
1385 }
1386
1387 LLVMValueRef desc_components[4] = {
1388 LLVMBuildPtrToInt(ctx->ac.builder, desc_ptr, ctx->ac.intptr, ""),
1389 LLVMConstInt(ctx->ac.i32, S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi), false),
1390 /* High limit to support variable sizes. */
1391 LLVMConstInt(ctx->ac.i32, 0xffffffff, false),
1392 LLVMConstInt(ctx->ac.i32, desc_type, false),
1393 };
1394
1395 return ac_build_gather_values(&ctx->ac, desc_components, 4);
1396 }
1397
1398 return desc_ptr;
1399 }
1400
1401
1402 /* The offchip buffer layout for TCS->TES is
1403 *
1404 * - attribute 0 of patch 0 vertex 0
1405 * - attribute 0 of patch 0 vertex 1
1406 * - attribute 0 of patch 0 vertex 2
1407 * ...
1408 * - attribute 0 of patch 1 vertex 0
1409 * - attribute 0 of patch 1 vertex 1
1410 * ...
1411 * - attribute 1 of patch 0 vertex 0
1412 * - attribute 1 of patch 0 vertex 1
1413 * ...
1414 * - per patch attribute 0 of patch 0
1415 * - per patch attribute 0 of patch 1
1416 * ...
1417 *
1418 * Note that every attribute has 4 components.
1419 */
1420 static LLVMValueRef get_non_vertex_index_offset(struct radv_shader_context *ctx)
1421 {
1422 uint32_t num_patches = ctx->tcs_num_patches;
1423 uint32_t num_tcs_outputs;
1424 if (ctx->stage == MESA_SHADER_TESS_CTRL)
1425 num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
1426 else
1427 num_tcs_outputs = ctx->options->key.tes.tcs_num_outputs;
1428
1429 uint32_t output_vertex_size = num_tcs_outputs * 16;
1430 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
1431
1432 return LLVMConstInt(ctx->ac.i32, pervertex_output_patch_size * num_patches, false);
1433 }
1434
1435 static LLVMValueRef calc_param_stride(struct radv_shader_context *ctx,
1436 LLVMValueRef vertex_index)
1437 {
1438 LLVMValueRef param_stride;
1439 if (vertex_index)
1440 param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_vertices_per_patch * ctx->tcs_num_patches, false);
1441 else
1442 param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_num_patches, false);
1443 return param_stride;
1444 }
1445
1446 static LLVMValueRef get_tcs_tes_buffer_address(struct radv_shader_context *ctx,
1447 LLVMValueRef vertex_index,
1448 LLVMValueRef param_index)
1449 {
1450 LLVMValueRef base_addr;
1451 LLVMValueRef param_stride, constant16;
1452 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
1453 LLVMValueRef vertices_per_patch = LLVMConstInt(ctx->ac.i32, ctx->tcs_vertices_per_patch, false);
1454 constant16 = LLVMConstInt(ctx->ac.i32, 16, false);
1455 param_stride = calc_param_stride(ctx, vertex_index);
1456 if (vertex_index) {
1457 base_addr = ac_build_imad(&ctx->ac, rel_patch_id,
1458 vertices_per_patch, vertex_index);
1459 } else {
1460 base_addr = rel_patch_id;
1461 }
1462
1463 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1464 LLVMBuildMul(ctx->ac.builder, param_index,
1465 param_stride, ""), "");
1466
1467 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
1468
1469 if (!vertex_index) {
1470 LLVMValueRef patch_data_offset = get_non_vertex_index_offset(ctx);
1471
1472 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1473 patch_data_offset, "");
1474 }
1475 return base_addr;
1476 }
1477
1478 static LLVMValueRef get_tcs_tes_buffer_address_params(struct radv_shader_context *ctx,
1479 unsigned param,
1480 unsigned const_index,
1481 bool is_compact,
1482 LLVMValueRef vertex_index,
1483 LLVMValueRef indir_index)
1484 {
1485 LLVMValueRef param_index;
1486
1487 if (indir_index)
1488 param_index = LLVMBuildAdd(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, param, false),
1489 indir_index, "");
1490 else {
1491 if (const_index && !is_compact)
1492 param += const_index;
1493 param_index = LLVMConstInt(ctx->ac.i32, param, false);
1494 }
1495 return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
1496 }
1497
1498 static LLVMValueRef
1499 get_dw_address(struct radv_shader_context *ctx,
1500 LLVMValueRef dw_addr,
1501 unsigned param,
1502 unsigned const_index,
1503 bool compact_const_index,
1504 LLVMValueRef vertex_index,
1505 LLVMValueRef stride,
1506 LLVMValueRef indir_index)
1507
1508 {
1509
1510 if (vertex_index) {
1511 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1512 LLVMBuildMul(ctx->ac.builder,
1513 vertex_index,
1514 stride, ""), "");
1515 }
1516
1517 if (indir_index)
1518 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1519 LLVMBuildMul(ctx->ac.builder, indir_index,
1520 LLVMConstInt(ctx->ac.i32, 4, false), ""), "");
1521 else if (const_index && !compact_const_index)
1522 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1523 LLVMConstInt(ctx->ac.i32, const_index * 4, false), "");
1524
1525 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1526 LLVMConstInt(ctx->ac.i32, param * 4, false), "");
1527
1528 if (const_index && compact_const_index)
1529 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1530 LLVMConstInt(ctx->ac.i32, const_index, false), "");
1531 return dw_addr;
1532 }
1533
1534 static LLVMValueRef
1535 load_tcs_varyings(struct ac_shader_abi *abi,
1536 LLVMTypeRef type,
1537 LLVMValueRef vertex_index,
1538 LLVMValueRef indir_index,
1539 unsigned const_index,
1540 unsigned location,
1541 unsigned driver_location,
1542 unsigned component,
1543 unsigned num_components,
1544 bool is_patch,
1545 bool is_compact,
1546 bool load_input)
1547 {
1548 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1549 LLVMValueRef dw_addr, stride;
1550 LLVMValueRef value[4], result;
1551 unsigned param = shader_io_get_unique_index(location);
1552
1553 if (load_input) {
1554 uint32_t input_vertex_size = (ctx->tcs_num_inputs * 16) / 4;
1555 stride = LLVMConstInt(ctx->ac.i32, input_vertex_size, false);
1556 dw_addr = get_tcs_in_current_patch_offset(ctx);
1557 } else {
1558 if (!is_patch) {
1559 stride = get_tcs_out_vertex_stride(ctx);
1560 dw_addr = get_tcs_out_current_patch_offset(ctx);
1561 } else {
1562 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1563 stride = NULL;
1564 }
1565 }
1566
1567 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
1568 indir_index);
1569
1570 for (unsigned i = 0; i < num_components + component; i++) {
1571 value[i] = ac_lds_load(&ctx->ac, dw_addr);
1572 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1573 ctx->ac.i32_1, "");
1574 }
1575 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1576 return result;
1577 }
1578
1579 static void
1580 store_tcs_output(struct ac_shader_abi *abi,
1581 const nir_variable *var,
1582 LLVMValueRef vertex_index,
1583 LLVMValueRef param_index,
1584 unsigned const_index,
1585 LLVMValueRef src,
1586 unsigned writemask)
1587 {
1588 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1589 const unsigned location = var->data.location;
1590 unsigned component = var->data.location_frac;
1591 const bool is_patch = var->data.patch;
1592 const bool is_compact = var->data.compact;
1593 LLVMValueRef dw_addr;
1594 LLVMValueRef stride = NULL;
1595 LLVMValueRef buf_addr = NULL;
1596 unsigned param;
1597 bool store_lds = true;
1598
1599 if (is_patch) {
1600 if (!(ctx->tcs_patch_outputs_read & (1U << (location - VARYING_SLOT_PATCH0))))
1601 store_lds = false;
1602 } else {
1603 if (!(ctx->tcs_outputs_read & (1ULL << location)))
1604 store_lds = false;
1605 }
1606
1607 param = shader_io_get_unique_index(location);
1608 if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && is_compact) {
1609 const_index += component;
1610 component = 0;
1611
1612 if (const_index >= 4) {
1613 const_index -= 4;
1614 param++;
1615 }
1616 }
1617
1618 if (!is_patch) {
1619 stride = get_tcs_out_vertex_stride(ctx);
1620 dw_addr = get_tcs_out_current_patch_offset(ctx);
1621 } else {
1622 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1623 }
1624
1625 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
1626 param_index);
1627 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact,
1628 vertex_index, param_index);
1629
1630 bool is_tess_factor = false;
1631 if (location == VARYING_SLOT_TESS_LEVEL_INNER ||
1632 location == VARYING_SLOT_TESS_LEVEL_OUTER)
1633 is_tess_factor = true;
1634
1635 unsigned base = is_compact ? const_index : 0;
1636 for (unsigned chan = 0; chan < 8; chan++) {
1637 if (!(writemask & (1 << chan)))
1638 continue;
1639 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1640 value = ac_to_integer(&ctx->ac, value);
1641 value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
1642
1643 if (store_lds || is_tess_factor) {
1644 LLVMValueRef dw_addr_chan =
1645 LLVMBuildAdd(ctx->ac.builder, dw_addr,
1646 LLVMConstInt(ctx->ac.i32, chan, false), "");
1647 ac_lds_store(&ctx->ac, dw_addr_chan, value);
1648 }
1649
1650 if (!is_tess_factor && writemask != 0xF)
1651 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, value, 1,
1652 buf_addr, ctx->oc_lds,
1653 4 * (base + chan), ac_glc, false);
1654 }
1655
1656 if (writemask == 0xF) {
1657 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, src, 4,
1658 buf_addr, ctx->oc_lds,
1659 (base * 4), ac_glc, false);
1660 }
1661 }
1662
1663 static LLVMValueRef
1664 load_tes_input(struct ac_shader_abi *abi,
1665 LLVMTypeRef type,
1666 LLVMValueRef vertex_index,
1667 LLVMValueRef param_index,
1668 unsigned const_index,
1669 unsigned location,
1670 unsigned driver_location,
1671 unsigned component,
1672 unsigned num_components,
1673 bool is_patch,
1674 bool is_compact,
1675 bool load_input)
1676 {
1677 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1678 LLVMValueRef buf_addr;
1679 LLVMValueRef result;
1680 unsigned param = shader_io_get_unique_index(location);
1681
1682 if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && is_compact) {
1683 const_index += component;
1684 component = 0;
1685 if (const_index >= 4) {
1686 const_index -= 4;
1687 param++;
1688 }
1689 }
1690
1691 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index,
1692 is_compact, vertex_index, param_index);
1693
1694 LLVMValueRef comp_offset = LLVMConstInt(ctx->ac.i32, component * 4, false);
1695 buf_addr = LLVMBuildAdd(ctx->ac.builder, buf_addr, comp_offset, "");
1696
1697 result = ac_build_buffer_load(&ctx->ac, ctx->hs_ring_tess_offchip, num_components, NULL,
1698 buf_addr, ctx->oc_lds, is_compact ? (4 * const_index) : 0, ac_glc, true, false);
1699 result = ac_trim_vector(&ctx->ac, result, num_components);
1700 return result;
1701 }
1702
1703 static LLVMValueRef
1704 load_gs_input(struct ac_shader_abi *abi,
1705 unsigned location,
1706 unsigned driver_location,
1707 unsigned component,
1708 unsigned num_components,
1709 unsigned vertex_index,
1710 unsigned const_index,
1711 LLVMTypeRef type)
1712 {
1713 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1714 LLVMValueRef vtx_offset;
1715 unsigned param, vtx_offset_param;
1716 LLVMValueRef value[4], result;
1717
1718 vtx_offset_param = vertex_index;
1719 assert(vtx_offset_param < 6);
1720 vtx_offset = LLVMBuildMul(ctx->ac.builder, ctx->gs_vtx_offset[vtx_offset_param],
1721 LLVMConstInt(ctx->ac.i32, 4, false), "");
1722
1723 param = shader_io_get_unique_index(location);
1724
1725 for (unsigned i = component; i < num_components + component; i++) {
1726 if (ctx->ac.chip_class >= GFX9) {
1727 LLVMValueRef dw_addr = ctx->gs_vtx_offset[vtx_offset_param];
1728 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1729 LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index, 0), "");
1730 value[i] = ac_lds_load(&ctx->ac, dw_addr);
1731 } else {
1732 LLVMValueRef soffset =
1733 LLVMConstInt(ctx->ac.i32,
1734 (param * 4 + i + const_index) * 256,
1735 false);
1736
1737 value[i] = ac_build_buffer_load(&ctx->ac,
1738 ctx->esgs_ring, 1,
1739 ctx->ac.i32_0,
1740 vtx_offset, soffset,
1741 0, ac_glc, true, false);
1742 }
1743
1744 if (ac_get_type_size(type) == 2) {
1745 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], ctx->ac.i32, "");
1746 value[i] = LLVMBuildTrunc(ctx->ac.builder, value[i], ctx->ac.i16, "");
1747 }
1748 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], type, "");
1749 }
1750 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1751 result = ac_to_integer(&ctx->ac, result);
1752 return result;
1753 }
1754
1755
1756 static void radv_emit_kill(struct ac_shader_abi *abi, LLVMValueRef visible)
1757 {
1758 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1759 ac_build_kill_if_false(&ctx->ac, visible);
1760 }
1761
1762 static uint32_t
1763 radv_get_sample_pos_offset(uint32_t num_samples)
1764 {
1765 uint32_t sample_pos_offset = 0;
1766
1767 switch (num_samples) {
1768 case 2:
1769 sample_pos_offset = 1;
1770 break;
1771 case 4:
1772 sample_pos_offset = 3;
1773 break;
1774 case 8:
1775 sample_pos_offset = 7;
1776 break;
1777 default:
1778 break;
1779 }
1780 return sample_pos_offset;
1781 }
1782
1783 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi,
1784 LLVMValueRef sample_id)
1785 {
1786 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1787
1788 LLVMValueRef result;
1789 LLVMValueRef index = LLVMConstInt(ctx->ac.i32, RING_PS_SAMPLE_POSITIONS, false);
1790 LLVMValueRef ptr = LLVMBuildGEP(ctx->ac.builder, ctx->ring_offsets, &index, 1, "");
1791
1792 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
1793 ac_array_in_const_addr_space(ctx->ac.v2f32), "");
1794
1795 uint32_t sample_pos_offset =
1796 radv_get_sample_pos_offset(ctx->options->key.fs.num_samples);
1797
1798 sample_id =
1799 LLVMBuildAdd(ctx->ac.builder, sample_id,
1800 LLVMConstInt(ctx->ac.i32, sample_pos_offset, false), "");
1801 result = ac_build_load_invariant(&ctx->ac, ptr, sample_id);
1802
1803 return result;
1804 }
1805
1806
1807 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
1808 {
1809 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1810 uint8_t log2_ps_iter_samples;
1811
1812 if (ctx->shader_info->info.ps.force_persample) {
1813 log2_ps_iter_samples =
1814 util_logbase2(ctx->options->key.fs.num_samples);
1815 } else {
1816 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
1817 }
1818
1819 /* The bit pattern matches that used by fixed function fragment
1820 * processing. */
1821 static const uint16_t ps_iter_masks[] = {
1822 0xffff, /* not used */
1823 0x5555,
1824 0x1111,
1825 0x0101,
1826 0x0001,
1827 };
1828 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
1829
1830 uint32_t ps_iter_mask = ps_iter_masks[log2_ps_iter_samples];
1831
1832 LLVMValueRef result, sample_id;
1833 sample_id = ac_unpack_param(&ctx->ac, abi->ancillary, 8, 4);
1834 sample_id = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false), sample_id, "");
1835 result = LLVMBuildAnd(ctx->ac.builder, sample_id, abi->sample_coverage, "");
1836 return result;
1837 }
1838
1839
1840 static void gfx10_ngg_gs_emit_vertex(struct radv_shader_context *ctx,
1841 unsigned stream,
1842 LLVMValueRef *addrs);
1843
1844 static void
1845 visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
1846 {
1847 LLVMValueRef gs_next_vertex;
1848 LLVMValueRef can_emit;
1849 unsigned offset = 0;
1850 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1851
1852 if (ctx->options->key.vs_common_out.as_ngg) {
1853 gfx10_ngg_gs_emit_vertex(ctx, stream, addrs);
1854 return;
1855 }
1856
1857 /* Write vertex attribute values to GSVS ring */
1858 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
1859 ctx->gs_next_vertex[stream],
1860 "");
1861
1862 /* If this thread has already emitted the declared maximum number of
1863 * vertices, kill it: excessive vertex emissions are not supposed to
1864 * have any effect, and GS threads have no externally observable
1865 * effects other than emitting vertices.
1866 */
1867 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
1868 LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
1869 ac_build_kill_if_false(&ctx->ac, can_emit);
1870
1871 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
1872 unsigned output_usage_mask =
1873 ctx->shader_info->info.gs.output_usage_mask[i];
1874 uint8_t output_stream =
1875 ctx->shader_info->info.gs.output_streams[i];
1876 LLVMValueRef *out_ptr = &addrs[i * 4];
1877 int length = util_last_bit(output_usage_mask);
1878
1879 if (!(ctx->output_mask & (1ull << i)) ||
1880 output_stream != stream)
1881 continue;
1882
1883 for (unsigned j = 0; j < length; j++) {
1884 if (!(output_usage_mask & (1 << j)))
1885 continue;
1886
1887 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
1888 out_ptr[j], "");
1889 LLVMValueRef voffset =
1890 LLVMConstInt(ctx->ac.i32, offset *
1891 ctx->gs_max_out_vertices, false);
1892
1893 offset++;
1894
1895 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
1896 voffset = LLVMBuildMul(ctx->ac.builder, voffset, LLVMConstInt(ctx->ac.i32, 4, false), "");
1897
1898 out_val = ac_to_integer(&ctx->ac, out_val);
1899 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
1900
1901 ac_build_buffer_store_dword(&ctx->ac,
1902 ctx->gsvs_ring[stream],
1903 out_val, 1,
1904 voffset, ctx->gs2vs_offset, 0,
1905 ac_glc | ac_slc, true);
1906 }
1907 }
1908
1909 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex,
1910 ctx->ac.i32_1, "");
1911 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
1912
1913 ac_build_sendmsg(&ctx->ac,
1914 AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
1915 ctx->gs_wave_id);
1916 }
1917
1918 static void
1919 visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
1920 {
1921 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1922
1923 if (ctx->options->key.vs_common_out.as_ngg) {
1924 LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]);
1925 return;
1926 }
1927
1928 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
1929 }
1930
1931 static LLVMValueRef
1932 load_tess_coord(struct ac_shader_abi *abi)
1933 {
1934 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1935
1936 LLVMValueRef coord[4] = {
1937 ctx->tes_u,
1938 ctx->tes_v,
1939 ctx->ac.f32_0,
1940 ctx->ac.f32_0,
1941 };
1942
1943 if (ctx->tes_primitive_mode == GL_TRIANGLES)
1944 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
1945 LLVMBuildFAdd(ctx->ac.builder, coord[0], coord[1], ""), "");
1946
1947 return ac_build_gather_values(&ctx->ac, coord, 3);
1948 }
1949
1950 static LLVMValueRef
1951 load_patch_vertices_in(struct ac_shader_abi *abi)
1952 {
1953 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1954 return LLVMConstInt(ctx->ac.i32, ctx->options->key.tcs.input_vertices, false);
1955 }
1956
1957
1958 static LLVMValueRef radv_load_base_vertex(struct ac_shader_abi *abi)
1959 {
1960 return abi->base_vertex;
1961 }
1962
1963 static LLVMValueRef radv_load_ssbo(struct ac_shader_abi *abi,
1964 LLVMValueRef buffer_ptr, bool write)
1965 {
1966 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1967 LLVMValueRef result;
1968
1969 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1970
1971 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1972 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1973
1974 return result;
1975 }
1976
1977 static LLVMValueRef radv_load_ubo(struct ac_shader_abi *abi, LLVMValueRef buffer_ptr)
1978 {
1979 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1980 LLVMValueRef result;
1981
1982 if (LLVMGetTypeKind(LLVMTypeOf(buffer_ptr)) != LLVMPointerTypeKind) {
1983 /* Do not load the descriptor for inlined uniform blocks. */
1984 return buffer_ptr;
1985 }
1986
1987 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1988
1989 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1990 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1991
1992 return result;
1993 }
1994
1995 static LLVMValueRef radv_get_sampler_desc(struct ac_shader_abi *abi,
1996 unsigned descriptor_set,
1997 unsigned base_index,
1998 unsigned constant_index,
1999 LLVMValueRef index,
2000 enum ac_descriptor_type desc_type,
2001 bool image, bool write,
2002 bool bindless)
2003 {
2004 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
2005 LLVMValueRef list = ctx->descriptor_sets[descriptor_set];
2006 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
2007 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
2008 unsigned offset = binding->offset;
2009 unsigned stride = binding->size;
2010 unsigned type_size;
2011 LLVMBuilderRef builder = ctx->ac.builder;
2012 LLVMTypeRef type;
2013
2014 assert(base_index < layout->binding_count);
2015
2016 switch (desc_type) {
2017 case AC_DESC_IMAGE:
2018 type = ctx->ac.v8i32;
2019 type_size = 32;
2020 break;
2021 case AC_DESC_FMASK:
2022 type = ctx->ac.v8i32;
2023 offset += 32;
2024 type_size = 32;
2025 break;
2026 case AC_DESC_SAMPLER:
2027 type = ctx->ac.v4i32;
2028 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) {
2029 offset += radv_combined_image_descriptor_sampler_offset(binding);
2030 }
2031
2032 type_size = 16;
2033 break;
2034 case AC_DESC_BUFFER:
2035 type = ctx->ac.v4i32;
2036 type_size = 16;
2037 break;
2038 case AC_DESC_PLANE_0:
2039 case AC_DESC_PLANE_1:
2040 case AC_DESC_PLANE_2:
2041 type = ctx->ac.v8i32;
2042 type_size = 32;
2043 offset += 32 * (desc_type - AC_DESC_PLANE_0);
2044 break;
2045 default:
2046 unreachable("invalid desc_type\n");
2047 }
2048
2049 offset += constant_index * stride;
2050
2051 if (desc_type == AC_DESC_SAMPLER && binding->immutable_samplers_offset &&
2052 (!index || binding->immutable_samplers_equal)) {
2053 if (binding->immutable_samplers_equal)
2054 constant_index = 0;
2055
2056 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
2057
2058 LLVMValueRef constants[] = {
2059 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 0], 0),
2060 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 1], 0),
2061 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 2], 0),
2062 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 3], 0),
2063 };
2064 return ac_build_gather_values(&ctx->ac, constants, 4);
2065 }
2066
2067 assert(stride % type_size == 0);
2068
2069 LLVMValueRef adjusted_index = index;
2070 if (!adjusted_index)
2071 adjusted_index = ctx->ac.i32_0;
2072
2073 adjusted_index = LLVMBuildMul(builder, adjusted_index, LLVMConstInt(ctx->ac.i32, stride / type_size, 0), "");
2074
2075 LLVMValueRef val_offset = LLVMConstInt(ctx->ac.i32, offset, 0);
2076 list = LLVMBuildGEP(builder, list, &val_offset, 1, "");
2077 list = LLVMBuildPointerCast(builder, list,
2078 ac_array_in_const32_addr_space(type), "");
2079
2080 LLVMValueRef descriptor = ac_build_load_to_sgpr(&ctx->ac, list, adjusted_index);
2081
2082 /* 3 plane formats always have same size and format for plane 1 & 2, so
2083 * use the tail from plane 1 so that we can store only the first 16 bytes
2084 * of the last plane. */
2085 if (desc_type == AC_DESC_PLANE_2) {
2086 LLVMValueRef descriptor2 = radv_get_sampler_desc(abi, descriptor_set, base_index, constant_index, index, AC_DESC_PLANE_1,image, write, bindless);
2087
2088 LLVMValueRef components[8];
2089 for (unsigned i = 0; i < 4; ++i)
2090 components[i] = ac_llvm_extract_elem(&ctx->ac, descriptor, i);
2091
2092 for (unsigned i = 4; i < 8; ++i)
2093 components[i] = ac_llvm_extract_elem(&ctx->ac, descriptor2, i);
2094 descriptor = ac_build_gather_values(&ctx->ac, components, 8);
2095 }
2096
2097 return descriptor;
2098 }
2099
2100 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
2101 * so we may need to fix it up. */
2102 static LLVMValueRef
2103 adjust_vertex_fetch_alpha(struct radv_shader_context *ctx,
2104 unsigned adjustment,
2105 LLVMValueRef alpha)
2106 {
2107 if (adjustment == RADV_ALPHA_ADJUST_NONE)
2108 return alpha;
2109
2110 LLVMValueRef c30 = LLVMConstInt(ctx->ac.i32, 30, 0);
2111
2112 alpha = LLVMBuildBitCast(ctx->ac.builder, alpha, ctx->ac.f32, "");
2113
2114 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
2115 alpha = LLVMBuildFPToUI(ctx->ac.builder, alpha, ctx->ac.i32, "");
2116 else
2117 alpha = ac_to_integer(&ctx->ac, alpha);
2118
2119 /* For the integer-like cases, do a natural sign extension.
2120 *
2121 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
2122 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
2123 * exponent.
2124 */
2125 alpha = LLVMBuildShl(ctx->ac.builder, alpha,
2126 adjustment == RADV_ALPHA_ADJUST_SNORM ?
2127 LLVMConstInt(ctx->ac.i32, 7, 0) : c30, "");
2128 alpha = LLVMBuildAShr(ctx->ac.builder, alpha, c30, "");
2129
2130 /* Convert back to the right type. */
2131 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
2132 LLVMValueRef clamp;
2133 LLVMValueRef neg_one = LLVMConstReal(ctx->ac.f32, -1.0);
2134 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
2135 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, alpha, neg_one, "");
2136 alpha = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, alpha, "");
2137 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
2138 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
2139 }
2140
2141 return LLVMBuildBitCast(ctx->ac.builder, alpha, ctx->ac.i32, "");
2142 }
2143
2144 static unsigned
2145 get_num_channels_from_data_format(unsigned data_format)
2146 {
2147 switch (data_format) {
2148 case V_008F0C_BUF_DATA_FORMAT_8:
2149 case V_008F0C_BUF_DATA_FORMAT_16:
2150 case V_008F0C_BUF_DATA_FORMAT_32:
2151 return 1;
2152 case V_008F0C_BUF_DATA_FORMAT_8_8:
2153 case V_008F0C_BUF_DATA_FORMAT_16_16:
2154 case V_008F0C_BUF_DATA_FORMAT_32_32:
2155 return 2;
2156 case V_008F0C_BUF_DATA_FORMAT_10_11_11:
2157 case V_008F0C_BUF_DATA_FORMAT_11_11_10:
2158 case V_008F0C_BUF_DATA_FORMAT_32_32_32:
2159 return 3;
2160 case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
2161 case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
2162 case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
2163 case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
2164 case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
2165 return 4;
2166 default:
2167 break;
2168 }
2169
2170 return 4;
2171 }
2172
2173 static LLVMValueRef
2174 radv_fixup_vertex_input_fetches(struct radv_shader_context *ctx,
2175 LLVMValueRef value,
2176 unsigned num_channels,
2177 bool is_float)
2178 {
2179 LLVMValueRef zero = is_float ? ctx->ac.f32_0 : ctx->ac.i32_0;
2180 LLVMValueRef one = is_float ? ctx->ac.f32_1 : ctx->ac.i32_1;
2181 LLVMValueRef chan[4];
2182
2183 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMVectorTypeKind) {
2184 unsigned vec_size = LLVMGetVectorSize(LLVMTypeOf(value));
2185
2186 if (num_channels == 4 && num_channels == vec_size)
2187 return value;
2188
2189 num_channels = MIN2(num_channels, vec_size);
2190
2191 for (unsigned i = 0; i < num_channels; i++)
2192 chan[i] = ac_llvm_extract_elem(&ctx->ac, value, i);
2193 } else {
2194 if (num_channels) {
2195 assert(num_channels == 1);
2196 chan[0] = value;
2197 }
2198 }
2199
2200 for (unsigned i = num_channels; i < 4; i++) {
2201 chan[i] = i == 3 ? one : zero;
2202 chan[i] = ac_to_integer(&ctx->ac, chan[i]);
2203 }
2204
2205 return ac_build_gather_values(&ctx->ac, chan, 4);
2206 }
2207
2208 static void
2209 handle_vs_input_decl(struct radv_shader_context *ctx,
2210 struct nir_variable *variable)
2211 {
2212 LLVMValueRef t_list_ptr = ctx->vertex_buffers;
2213 LLVMValueRef t_offset;
2214 LLVMValueRef t_list;
2215 LLVMValueRef input;
2216 LLVMValueRef buffer_index;
2217 unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
2218 uint8_t input_usage_mask =
2219 ctx->shader_info->info.vs.input_usage_mask[variable->data.location];
2220 unsigned num_input_channels = util_last_bit(input_usage_mask);
2221
2222 variable->data.driver_location = variable->data.location * 4;
2223
2224 enum glsl_base_type type = glsl_get_base_type(variable->type);
2225 for (unsigned i = 0; i < attrib_count; ++i) {
2226 LLVMValueRef output[4];
2227 unsigned attrib_index = variable->data.location + i - VERT_ATTRIB_GENERIC0;
2228 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[attrib_index];
2229 unsigned data_format = attrib_format & 0x0f;
2230 unsigned num_format = (attrib_format >> 4) & 0x07;
2231 bool is_float = num_format != V_008F0C_BUF_NUM_FORMAT_UINT &&
2232 num_format != V_008F0C_BUF_NUM_FORMAT_SINT;
2233
2234 if (ctx->options->key.vs.instance_rate_inputs & (1u << attrib_index)) {
2235 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[attrib_index];
2236
2237 if (divisor) {
2238 buffer_index = ctx->abi.instance_id;
2239
2240 if (divisor != 1) {
2241 buffer_index = LLVMBuildUDiv(ctx->ac.builder, buffer_index,
2242 LLVMConstInt(ctx->ac.i32, divisor, 0), "");
2243 }
2244 } else {
2245 buffer_index = ctx->ac.i32_0;
2246 }
2247
2248 buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.start_instance, buffer_index, "");
2249 } else
2250 buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.vertex_id,
2251 ctx->abi.base_vertex, "");
2252
2253 /* Adjust the number of channels to load based on the vertex
2254 * attribute format.
2255 */
2256 unsigned num_format_channels = get_num_channels_from_data_format(data_format);
2257 unsigned num_channels = MIN2(num_input_channels, num_format_channels);
2258 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[attrib_index];
2259 unsigned attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[attrib_index];
2260 unsigned attrib_stride = ctx->options->key.vs.vertex_attribute_strides[attrib_index];
2261
2262 if (ctx->options->key.vs.post_shuffle & (1 << attrib_index)) {
2263 /* Always load, at least, 3 channels for formats that
2264 * need to be shuffled because X<->Z.
2265 */
2266 num_channels = MAX2(num_channels, 3);
2267 }
2268
2269 if (attrib_stride != 0 && attrib_offset > attrib_stride) {
2270 LLVMValueRef buffer_offset =
2271 LLVMConstInt(ctx->ac.i32,
2272 attrib_offset / attrib_stride, false);
2273
2274 buffer_index = LLVMBuildAdd(ctx->ac.builder,
2275 buffer_index,
2276 buffer_offset, "");
2277
2278 attrib_offset = attrib_offset % attrib_stride;
2279 }
2280
2281 t_offset = LLVMConstInt(ctx->ac.i32, attrib_binding, false);
2282 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
2283
2284 input = ac_build_struct_tbuffer_load(&ctx->ac, t_list,
2285 buffer_index,
2286 LLVMConstInt(ctx->ac.i32, attrib_offset, false),
2287 ctx->ac.i32_0, ctx->ac.i32_0,
2288 num_channels,
2289 data_format, num_format, 0, true);
2290
2291 if (ctx->options->key.vs.post_shuffle & (1 << attrib_index)) {
2292 LLVMValueRef c[4];
2293 c[0] = ac_llvm_extract_elem(&ctx->ac, input, 2);
2294 c[1] = ac_llvm_extract_elem(&ctx->ac, input, 1);
2295 c[2] = ac_llvm_extract_elem(&ctx->ac, input, 0);
2296 c[3] = ac_llvm_extract_elem(&ctx->ac, input, 3);
2297
2298 input = ac_build_gather_values(&ctx->ac, c, 4);
2299 }
2300
2301 input = radv_fixup_vertex_input_fetches(ctx, input, num_channels,
2302 is_float);
2303
2304 for (unsigned chan = 0; chan < 4; chan++) {
2305 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
2306 output[chan] = LLVMBuildExtractElement(ctx->ac.builder, input, llvm_chan, "");
2307 if (type == GLSL_TYPE_FLOAT16) {
2308 output[chan] = LLVMBuildBitCast(ctx->ac.builder, output[chan], ctx->ac.f32, "");
2309 output[chan] = LLVMBuildFPTrunc(ctx->ac.builder, output[chan], ctx->ac.f16, "");
2310 }
2311 }
2312
2313 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (attrib_index * 2)) & 3;
2314 output[3] = adjust_vertex_fetch_alpha(ctx, alpha_adjust, output[3]);
2315
2316 for (unsigned chan = 0; chan < 4; chan++) {
2317 output[chan] = ac_to_integer(&ctx->ac, output[chan]);
2318 if (type == GLSL_TYPE_UINT16 || type == GLSL_TYPE_INT16)
2319 output[chan] = LLVMBuildTrunc(ctx->ac.builder, output[chan], ctx->ac.i16, "");
2320
2321 ctx->inputs[ac_llvm_reg_index_soa(variable->data.location + i, chan)] = output[chan];
2322 }
2323 }
2324 }
2325
2326 static void
2327 handle_vs_inputs(struct radv_shader_context *ctx,
2328 struct nir_shader *nir) {
2329 nir_foreach_variable(variable, &nir->inputs)
2330 handle_vs_input_decl(ctx, variable);
2331 }
2332
2333 static void
2334 prepare_interp_optimize(struct radv_shader_context *ctx,
2335 struct nir_shader *nir)
2336 {
2337 bool uses_center = false;
2338 bool uses_centroid = false;
2339 nir_foreach_variable(variable, &nir->inputs) {
2340 if (glsl_get_base_type(glsl_without_array(variable->type)) != GLSL_TYPE_FLOAT ||
2341 variable->data.sample)
2342 continue;
2343
2344 if (variable->data.centroid)
2345 uses_centroid = true;
2346 else
2347 uses_center = true;
2348 }
2349
2350 if (uses_center && uses_centroid) {
2351 LLVMValueRef sel = LLVMBuildICmp(ctx->ac.builder, LLVMIntSLT, ctx->abi.prim_mask, ctx->ac.i32_0, "");
2352 ctx->abi.persp_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->abi.persp_center, ctx->abi.persp_centroid, "");
2353 ctx->abi.linear_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->abi.linear_center, ctx->abi.linear_centroid, "");
2354 }
2355 }
2356
2357 static void
2358 scan_shader_output_decl(struct radv_shader_context *ctx,
2359 struct nir_variable *variable,
2360 struct nir_shader *shader,
2361 gl_shader_stage stage)
2362 {
2363 int idx = variable->data.location + variable->data.index;
2364 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
2365 uint64_t mask_attribs;
2366
2367 variable->data.driver_location = idx * 4;
2368
2369 /* tess ctrl has it's own load/store paths for outputs */
2370 if (stage == MESA_SHADER_TESS_CTRL)
2371 return;
2372
2373 if (variable->data.compact) {
2374 unsigned component_count = variable->data.location_frac +
2375 glsl_get_length(variable->type);
2376 attrib_count = (component_count + 3) / 4;
2377 }
2378
2379 mask_attribs = ((1ull << attrib_count) - 1) << idx;
2380 if (stage == MESA_SHADER_VERTEX ||
2381 stage == MESA_SHADER_TESS_EVAL ||
2382 stage == MESA_SHADER_GEOMETRY) {
2383 if (idx == VARYING_SLOT_CLIP_DIST0) {
2384 if (stage == MESA_SHADER_VERTEX) {
2385 ctx->shader_info->vs.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
2386 ctx->shader_info->vs.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
2387 ctx->shader_info->vs.outinfo.cull_dist_mask <<= shader->info.clip_distance_array_size;
2388 }
2389 if (stage == MESA_SHADER_TESS_EVAL) {
2390 ctx->shader_info->tes.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
2391 ctx->shader_info->tes.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
2392 ctx->shader_info->tes.outinfo.cull_dist_mask <<= shader->info.clip_distance_array_size;
2393 }
2394 if (stage == MESA_SHADER_GEOMETRY) {
2395 ctx->shader_info->vs.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
2396 ctx->shader_info->vs.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
2397 ctx->shader_info->vs.outinfo.cull_dist_mask <<= shader->info.clip_distance_array_size;
2398 }
2399 }
2400 }
2401
2402 ctx->output_mask |= mask_attribs;
2403 }
2404
2405
2406 /* Initialize arguments for the shader export intrinsic */
2407 static void
2408 si_llvm_init_export_args(struct radv_shader_context *ctx,
2409 LLVMValueRef *values,
2410 unsigned enabled_channels,
2411 unsigned target,
2412 struct ac_export_args *args)
2413 {
2414 /* Specify the channels that are enabled. */
2415 args->enabled_channels = enabled_channels;
2416
2417 /* Specify whether the EXEC mask represents the valid mask */
2418 args->valid_mask = 0;
2419
2420 /* Specify whether this is the last export */
2421 args->done = 0;
2422
2423 /* Specify the target we are exporting */
2424 args->target = target;
2425
2426 args->compr = false;
2427 args->out[0] = LLVMGetUndef(ctx->ac.f32);
2428 args->out[1] = LLVMGetUndef(ctx->ac.f32);
2429 args->out[2] = LLVMGetUndef(ctx->ac.f32);
2430 args->out[3] = LLVMGetUndef(ctx->ac.f32);
2431
2432 if (!values)
2433 return;
2434
2435 bool is_16bit = ac_get_type_size(LLVMTypeOf(values[0])) == 2;
2436 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2437 unsigned index = target - V_008DFC_SQ_EXP_MRT;
2438 unsigned col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
2439 bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
2440 bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
2441 unsigned chan;
2442
2443 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2444 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2445 unsigned bits, bool hi) = NULL;
2446
2447 switch(col_format) {
2448 case V_028714_SPI_SHADER_ZERO:
2449 args->enabled_channels = 0; /* writemask */
2450 args->target = V_008DFC_SQ_EXP_NULL;
2451 break;
2452
2453 case V_028714_SPI_SHADER_32_R:
2454 args->enabled_channels = 1;
2455 args->out[0] = values[0];
2456 break;
2457
2458 case V_028714_SPI_SHADER_32_GR:
2459 args->enabled_channels = 0x3;
2460 args->out[0] = values[0];
2461 args->out[1] = values[1];
2462 break;
2463
2464 case V_028714_SPI_SHADER_32_AR:
2465 if (ctx->ac.chip_class >= GFX10) {
2466 args->enabled_channels = 0x3;
2467 args->out[0] = values[0];
2468 args->out[1] = values[3];
2469 } else {
2470 args->enabled_channels = 0x9;
2471 args->out[0] = values[0];
2472 args->out[3] = values[3];
2473 }
2474 break;
2475
2476 case V_028714_SPI_SHADER_FP16_ABGR:
2477 args->enabled_channels = 0x5;
2478 packf = ac_build_cvt_pkrtz_f16;
2479 if (is_16bit) {
2480 for (unsigned chan = 0; chan < 4; chan++)
2481 values[chan] = LLVMBuildFPExt(ctx->ac.builder,
2482 values[chan],
2483 ctx->ac.f32, "");
2484 }
2485 break;
2486
2487 case V_028714_SPI_SHADER_UNORM16_ABGR:
2488 args->enabled_channels = 0x5;
2489 packf = ac_build_cvt_pknorm_u16;
2490 break;
2491
2492 case V_028714_SPI_SHADER_SNORM16_ABGR:
2493 args->enabled_channels = 0x5;
2494 packf = ac_build_cvt_pknorm_i16;
2495 break;
2496
2497 case V_028714_SPI_SHADER_UINT16_ABGR:
2498 args->enabled_channels = 0x5;
2499 packi = ac_build_cvt_pk_u16;
2500 if (is_16bit) {
2501 for (unsigned chan = 0; chan < 4; chan++)
2502 values[chan] = LLVMBuildZExt(ctx->ac.builder,
2503 ac_to_integer(&ctx->ac, values[chan]),
2504 ctx->ac.i32, "");
2505 }
2506 break;
2507
2508 case V_028714_SPI_SHADER_SINT16_ABGR:
2509 args->enabled_channels = 0x5;
2510 packi = ac_build_cvt_pk_i16;
2511 if (is_16bit) {
2512 for (unsigned chan = 0; chan < 4; chan++)
2513 values[chan] = LLVMBuildSExt(ctx->ac.builder,
2514 ac_to_integer(&ctx->ac, values[chan]),
2515 ctx->ac.i32, "");
2516 }
2517 break;
2518
2519 default:
2520 case V_028714_SPI_SHADER_32_ABGR:
2521 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2522 break;
2523 }
2524
2525 /* Pack f16 or norm_i16/u16. */
2526 if (packf) {
2527 for (chan = 0; chan < 2; chan++) {
2528 LLVMValueRef pack_args[2] = {
2529 values[2 * chan],
2530 values[2 * chan + 1]
2531 };
2532 LLVMValueRef packed;
2533
2534 packed = packf(&ctx->ac, pack_args);
2535 args->out[chan] = ac_to_float(&ctx->ac, packed);
2536 }
2537 args->compr = 1; /* COMPR flag */
2538 }
2539
2540 /* Pack i16/u16. */
2541 if (packi) {
2542 for (chan = 0; chan < 2; chan++) {
2543 LLVMValueRef pack_args[2] = {
2544 ac_to_integer(&ctx->ac, values[2 * chan]),
2545 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2546 };
2547 LLVMValueRef packed;
2548
2549 packed = packi(&ctx->ac, pack_args,
2550 is_int8 ? 8 : is_int10 ? 10 : 16,
2551 chan == 1);
2552 args->out[chan] = ac_to_float(&ctx->ac, packed);
2553 }
2554 args->compr = 1; /* COMPR flag */
2555 }
2556 return;
2557 }
2558
2559 if (is_16bit) {
2560 for (unsigned chan = 0; chan < 4; chan++) {
2561 values[chan] = LLVMBuildBitCast(ctx->ac.builder, values[chan], ctx->ac.i16, "");
2562 args->out[chan] = LLVMBuildZExt(ctx->ac.builder, values[chan], ctx->ac.i32, "");
2563 }
2564 } else
2565 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2566
2567 for (unsigned i = 0; i < 4; ++i)
2568 args->out[i] = ac_to_float(&ctx->ac, args->out[i]);
2569 }
2570
2571 static void
2572 radv_export_param(struct radv_shader_context *ctx, unsigned index,
2573 LLVMValueRef *values, unsigned enabled_channels)
2574 {
2575 struct ac_export_args args;
2576
2577 si_llvm_init_export_args(ctx, values, enabled_channels,
2578 V_008DFC_SQ_EXP_PARAM + index, &args);
2579 ac_build_export(&ctx->ac, &args);
2580 }
2581
2582 static LLVMValueRef
2583 radv_load_output(struct radv_shader_context *ctx, unsigned index, unsigned chan)
2584 {
2585 LLVMValueRef output = ctx->abi.outputs[ac_llvm_reg_index_soa(index, chan)];
2586 return LLVMBuildLoad(ctx->ac.builder, output, "");
2587 }
2588
2589 static void
2590 radv_emit_stream_output(struct radv_shader_context *ctx,
2591 LLVMValueRef const *so_buffers,
2592 LLVMValueRef const *so_write_offsets,
2593 const struct radv_stream_output *output,
2594 struct radv_shader_output_values *shader_out)
2595 {
2596 unsigned num_comps = util_bitcount(output->component_mask);
2597 unsigned buf = output->buffer;
2598 unsigned offset = output->offset;
2599 unsigned start;
2600 LLVMValueRef out[4];
2601
2602 assert(num_comps && num_comps <= 4);
2603 if (!num_comps || num_comps > 4)
2604 return;
2605
2606 /* Get the first component. */
2607 start = ffs(output->component_mask) - 1;
2608
2609 /* Load the output as int. */
2610 for (int i = 0; i < num_comps; i++) {
2611 out[i] = ac_to_integer(&ctx->ac, shader_out->values[start + i]);
2612 }
2613
2614 /* Pack the output. */
2615 LLVMValueRef vdata = NULL;
2616
2617 switch (num_comps) {
2618 case 1: /* as i32 */
2619 vdata = out[0];
2620 break;
2621 case 2: /* as v2i32 */
2622 case 3: /* as v4i32 (aligned to 4) */
2623 out[3] = LLVMGetUndef(ctx->ac.i32);
2624 /* fall through */
2625 case 4: /* as v4i32 */
2626 vdata = ac_build_gather_values(&ctx->ac, out,
2627 !ac_has_vec3_support(ctx->ac.chip_class, false) ?
2628 util_next_power_of_two(num_comps) :
2629 num_comps);
2630 break;
2631 }
2632
2633 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf],
2634 vdata, num_comps, so_write_offsets[buf],
2635 ctx->ac.i32_0, offset,
2636 ac_glc | ac_slc, false);
2637 }
2638
2639 static void
2640 radv_emit_streamout(struct radv_shader_context *ctx, unsigned stream)
2641 {
2642 struct ac_build_if_state if_ctx;
2643 int i;
2644
2645 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2646 assert(ctx->streamout_config);
2647 LLVMValueRef so_vtx_count =
2648 ac_build_bfe(&ctx->ac, ctx->streamout_config,
2649 LLVMConstInt(ctx->ac.i32, 16, false),
2650 LLVMConstInt(ctx->ac.i32, 7, false), false);
2651
2652 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2653
2654 /* can_emit = tid < so_vtx_count; */
2655 LLVMValueRef can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
2656 tid, so_vtx_count, "");
2657
2658 /* Emit the streamout code conditionally. This actually avoids
2659 * out-of-bounds buffer access. The hw tells us via the SGPR
2660 * (so_vtx_count) which threads are allowed to emit streamout data.
2661 */
2662 ac_nir_build_if(&if_ctx, ctx, can_emit);
2663 {
2664 /* The buffer offset is computed as follows:
2665 * ByteOffset = streamout_offset[buffer_id]*4 +
2666 * (streamout_write_index + thread_id)*stride[buffer_id] +
2667 * attrib_offset
2668 */
2669 LLVMValueRef so_write_index = ctx->streamout_write_idx;
2670
2671 /* Compute (streamout_write_index + thread_id). */
2672 so_write_index =
2673 LLVMBuildAdd(ctx->ac.builder, so_write_index, tid, "");
2674
2675 /* Load the descriptor and compute the write offset for each
2676 * enabled buffer.
2677 */
2678 LLVMValueRef so_write_offset[4] = {};
2679 LLVMValueRef so_buffers[4] = {};
2680 LLVMValueRef buf_ptr = ctx->streamout_buffers;
2681
2682 for (i = 0; i < 4; i++) {
2683 uint16_t stride = ctx->shader_info->info.so.strides[i];
2684
2685 if (!stride)
2686 continue;
2687
2688 LLVMValueRef offset =
2689 LLVMConstInt(ctx->ac.i32, i, false);
2690
2691 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac,
2692 buf_ptr, offset);
2693
2694 LLVMValueRef so_offset = ctx->streamout_offset[i];
2695
2696 so_offset = LLVMBuildMul(ctx->ac.builder, so_offset,
2697 LLVMConstInt(ctx->ac.i32, 4, false), "");
2698
2699 so_write_offset[i] =
2700 ac_build_imad(&ctx->ac, so_write_index,
2701 LLVMConstInt(ctx->ac.i32,
2702 stride * 4, false),
2703 so_offset);
2704 }
2705
2706 /* Write streamout data. */
2707 for (i = 0; i < ctx->shader_info->info.so.num_outputs; i++) {
2708 struct radv_shader_output_values shader_out = {};
2709 struct radv_stream_output *output =
2710 &ctx->shader_info->info.so.outputs[i];
2711
2712 if (stream != output->stream)
2713 continue;
2714
2715 for (int j = 0; j < 4; j++) {
2716 shader_out.values[j] =
2717 radv_load_output(ctx, output->location, j);
2718 }
2719
2720 radv_emit_stream_output(ctx, so_buffers,so_write_offset,
2721 output, &shader_out);
2722 }
2723 }
2724 ac_nir_build_endif(&if_ctx);
2725 }
2726
2727 static void
2728 radv_build_param_exports(struct radv_shader_context *ctx,
2729 struct radv_shader_output_values *outputs,
2730 unsigned noutput,
2731 struct radv_vs_output_info *outinfo,
2732 bool export_clip_dists)
2733 {
2734 unsigned param_count = 0;
2735
2736 for (unsigned i = 0; i < noutput; i++) {
2737 unsigned slot_name = outputs[i].slot_name;
2738 unsigned usage_mask = outputs[i].usage_mask;
2739
2740 if (slot_name != VARYING_SLOT_LAYER &&
2741 slot_name != VARYING_SLOT_PRIMITIVE_ID &&
2742 slot_name != VARYING_SLOT_CLIP_DIST0 &&
2743 slot_name != VARYING_SLOT_CLIP_DIST1 &&
2744 slot_name < VARYING_SLOT_VAR0)
2745 continue;
2746
2747 if ((slot_name == VARYING_SLOT_CLIP_DIST0 ||
2748 slot_name == VARYING_SLOT_CLIP_DIST1) && !export_clip_dists)
2749 continue;
2750
2751 radv_export_param(ctx, param_count, outputs[i].values, usage_mask);
2752
2753 assert(i < ARRAY_SIZE(outinfo->vs_output_param_offset));
2754 outinfo->vs_output_param_offset[slot_name] = param_count++;
2755 }
2756
2757 outinfo->param_exports = param_count;
2758 }
2759
2760 /* Generate export instructions for hardware VS shader stage or NGG GS stage
2761 * (position and parameter data only).
2762 */
2763 static void
2764 radv_llvm_export_vs(struct radv_shader_context *ctx,
2765 struct radv_shader_output_values *outputs,
2766 unsigned noutput,
2767 struct radv_vs_output_info *outinfo,
2768 bool export_clip_dists)
2769 {
2770 LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_value = NULL;
2771 struct ac_export_args pos_args[4] = {};
2772 unsigned pos_idx, index;
2773 int i;
2774
2775 /* Build position exports */
2776 for (i = 0; i < noutput; i++) {
2777 switch (outputs[i].slot_name) {
2778 case VARYING_SLOT_POS:
2779 si_llvm_init_export_args(ctx, outputs[i].values, 0xf,
2780 V_008DFC_SQ_EXP_POS, &pos_args[0]);
2781 break;
2782 case VARYING_SLOT_PSIZ:
2783 psize_value = outputs[i].values[0];
2784 break;
2785 case VARYING_SLOT_LAYER:
2786 layer_value = outputs[i].values[0];
2787 break;
2788 case VARYING_SLOT_VIEWPORT:
2789 viewport_value = outputs[i].values[0];
2790 break;
2791 case VARYING_SLOT_CLIP_DIST0:
2792 case VARYING_SLOT_CLIP_DIST1:
2793 index = 2 + outputs[i].slot_index;
2794 si_llvm_init_export_args(ctx, outputs[i].values, 0xf,
2795 V_008DFC_SQ_EXP_POS + index,
2796 &pos_args[index]);
2797 break;
2798 default:
2799 break;
2800 }
2801 }
2802
2803 /* We need to add the position output manually if it's missing. */
2804 if (!pos_args[0].out[0]) {
2805 pos_args[0].enabled_channels = 0xf; /* writemask */
2806 pos_args[0].valid_mask = 0; /* EXEC mask */
2807 pos_args[0].done = 0; /* last export? */
2808 pos_args[0].target = V_008DFC_SQ_EXP_POS;
2809 pos_args[0].compr = 0; /* COMPR flag */
2810 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
2811 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
2812 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
2813 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
2814 }
2815
2816 if (outinfo->writes_pointsize ||
2817 outinfo->writes_layer ||
2818 outinfo->writes_viewport_index) {
2819 pos_args[1].enabled_channels = ((outinfo->writes_pointsize == true ? 1 : 0) |
2820 (outinfo->writes_layer == true ? 4 : 0));
2821 pos_args[1].valid_mask = 0;
2822 pos_args[1].done = 0;
2823 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2824 pos_args[1].compr = 0;
2825 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2826 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2827 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2828 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2829
2830 if (outinfo->writes_pointsize == true)
2831 pos_args[1].out[0] = psize_value;
2832 if (outinfo->writes_layer == true)
2833 pos_args[1].out[2] = layer_value;
2834 if (outinfo->writes_viewport_index == true) {
2835 if (ctx->options->chip_class >= GFX9) {
2836 /* GFX9 has the layer in out.z[10:0] and the viewport
2837 * index in out.z[19:16].
2838 */
2839 LLVMValueRef v = viewport_value;
2840 v = ac_to_integer(&ctx->ac, v);
2841 v = LLVMBuildShl(ctx->ac.builder, v,
2842 LLVMConstInt(ctx->ac.i32, 16, false),
2843 "");
2844 v = LLVMBuildOr(ctx->ac.builder, v,
2845 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
2846
2847 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
2848 pos_args[1].enabled_channels |= 1 << 2;
2849 } else {
2850 pos_args[1].out[3] = viewport_value;
2851 pos_args[1].enabled_channels |= 1 << 3;
2852 }
2853 }
2854 }
2855
2856 for (i = 0; i < 4; i++) {
2857 if (pos_args[i].out[0])
2858 outinfo->pos_exports++;
2859 }
2860
2861 /* Navi10-14 skip POS0 exports if EXEC=0 and DONE=0, causing a hang.
2862 * Setting valid_mask=1 prevents it and has no other effect.
2863 */
2864 if (ctx->ac.family == CHIP_NAVI10 ||
2865 ctx->ac.family == CHIP_NAVI12 ||
2866 ctx->ac.family == CHIP_NAVI14)
2867 pos_args[0].valid_mask = 1;
2868
2869 pos_idx = 0;
2870 for (i = 0; i < 4; i++) {
2871 if (!pos_args[i].out[0])
2872 continue;
2873
2874 /* Specify the target we are exporting */
2875 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
2876
2877 if (pos_idx == outinfo->pos_exports)
2878 /* Specify that this is the last export */
2879 pos_args[i].done = 1;
2880
2881 ac_build_export(&ctx->ac, &pos_args[i]);
2882 }
2883
2884 /* Build parameter exports */
2885 radv_build_param_exports(ctx, outputs, noutput, outinfo, export_clip_dists);
2886 }
2887
2888 static void
2889 handle_vs_outputs_post(struct radv_shader_context *ctx,
2890 bool export_prim_id,
2891 bool export_clip_dists,
2892 struct radv_vs_output_info *outinfo)
2893 {
2894 struct radv_shader_output_values *outputs;
2895 unsigned noutput = 0;
2896
2897 if (ctx->options->key.has_multiview_view_index) {
2898 LLVMValueRef* tmp_out = &ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
2899 if(!*tmp_out) {
2900 for(unsigned i = 0; i < 4; ++i)
2901 ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, i)] =
2902 ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
2903 }
2904
2905 LLVMBuildStore(ctx->ac.builder, ac_to_float(&ctx->ac, ctx->abi.view_index), *tmp_out);
2906 ctx->output_mask |= 1ull << VARYING_SLOT_LAYER;
2907 }
2908
2909 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
2910 sizeof(outinfo->vs_output_param_offset));
2911 outinfo->pos_exports = 0;
2912
2913 if (ctx->output_mask & (1ull << VARYING_SLOT_PSIZ)) {
2914 outinfo->writes_pointsize = true;
2915 }
2916
2917 if (ctx->output_mask & (1ull << VARYING_SLOT_LAYER)) {
2918 outinfo->writes_layer = true;
2919 }
2920
2921 if (ctx->output_mask & (1ull << VARYING_SLOT_VIEWPORT)) {
2922 outinfo->writes_viewport_index = true;
2923 }
2924
2925 if (ctx->shader_info->info.so.num_outputs &&
2926 !ctx->is_gs_copy_shader) {
2927 /* The GS copy shader emission already emits streamout. */
2928 radv_emit_streamout(ctx, 0);
2929 }
2930
2931 /* Allocate a temporary array for the output values. */
2932 unsigned num_outputs = util_bitcount64(ctx->output_mask) + export_prim_id;
2933 outputs = malloc(num_outputs * sizeof(outputs[0]));
2934
2935 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2936 if (!(ctx->output_mask & (1ull << i)))
2937 continue;
2938
2939 outputs[noutput].slot_name = i;
2940 outputs[noutput].slot_index = i == VARYING_SLOT_CLIP_DIST1;
2941
2942 if (ctx->stage == MESA_SHADER_VERTEX &&
2943 !ctx->is_gs_copy_shader) {
2944 outputs[noutput].usage_mask =
2945 ctx->shader_info->info.vs.output_usage_mask[i];
2946 } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
2947 outputs[noutput].usage_mask =
2948 ctx->shader_info->info.tes.output_usage_mask[i];
2949 } else {
2950 assert(ctx->is_gs_copy_shader);
2951 outputs[noutput].usage_mask =
2952 ctx->shader_info->info.gs.output_usage_mask[i];
2953 }
2954
2955 for (unsigned j = 0; j < 4; j++) {
2956 outputs[noutput].values[j] =
2957 ac_to_float(&ctx->ac, radv_load_output(ctx, i, j));
2958 }
2959
2960 noutput++;
2961 }
2962
2963 /* Export PrimitiveID. */
2964 if (export_prim_id) {
2965 outinfo->export_prim_id = true;
2966
2967 outputs[noutput].slot_name = VARYING_SLOT_PRIMITIVE_ID;
2968 outputs[noutput].slot_index = 0;
2969 outputs[noutput].usage_mask = 0x1;
2970 outputs[noutput].values[0] = ctx->vs_prim_id;
2971 for (unsigned j = 1; j < 4; j++)
2972 outputs[noutput].values[j] = ctx->ac.f32_0;
2973 noutput++;
2974 }
2975
2976 radv_llvm_export_vs(ctx, outputs, noutput, outinfo, export_clip_dists);
2977
2978 free(outputs);
2979 }
2980
2981 static void
2982 handle_es_outputs_post(struct radv_shader_context *ctx,
2983 struct radv_es_output_info *outinfo)
2984 {
2985 int j;
2986 uint64_t max_output_written = 0;
2987 LLVMValueRef lds_base = NULL;
2988
2989 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2990 int param_index;
2991
2992 if (!(ctx->output_mask & (1ull << i)))
2993 continue;
2994
2995 param_index = shader_io_get_unique_index(i);
2996
2997 max_output_written = MAX2(param_index, max_output_written);
2998 }
2999
3000 outinfo->esgs_itemsize = (max_output_written + 1) * 16;
3001
3002 if (ctx->ac.chip_class >= GFX9) {
3003 unsigned itemsize_dw = outinfo->esgs_itemsize / 4;
3004 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3005 LLVMValueRef wave_idx = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 24, 4);
3006 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3007 LLVMBuildMul(ctx->ac.builder, wave_idx,
3008 LLVMConstInt(ctx->ac.i32,
3009 ctx->ac.wave_size, false), ""), "");
3010 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3011 LLVMConstInt(ctx->ac.i32, itemsize_dw, 0), "");
3012 }
3013
3014 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3015 LLVMValueRef dw_addr = NULL;
3016 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
3017 unsigned output_usage_mask;
3018 int param_index;
3019
3020 if (!(ctx->output_mask & (1ull << i)))
3021 continue;
3022
3023 if (ctx->stage == MESA_SHADER_VERTEX) {
3024 output_usage_mask =
3025 ctx->shader_info->info.vs.output_usage_mask[i];
3026 } else {
3027 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
3028 output_usage_mask =
3029 ctx->shader_info->info.tes.output_usage_mask[i];
3030 }
3031
3032 param_index = shader_io_get_unique_index(i);
3033
3034 if (lds_base) {
3035 dw_addr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3036 LLVMConstInt(ctx->ac.i32, param_index * 4, false),
3037 "");
3038 }
3039
3040 for (j = 0; j < 4; j++) {
3041 if (!(output_usage_mask & (1 << j)))
3042 continue;
3043
3044 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
3045 out_val = ac_to_integer(&ctx->ac, out_val);
3046 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
3047
3048 if (ctx->ac.chip_class >= GFX9) {
3049 LLVMValueRef dw_addr_offset =
3050 LLVMBuildAdd(ctx->ac.builder, dw_addr,
3051 LLVMConstInt(ctx->ac.i32,
3052 j, false), "");
3053
3054 ac_lds_store(&ctx->ac, dw_addr_offset, out_val);
3055 } else {
3056 ac_build_buffer_store_dword(&ctx->ac,
3057 ctx->esgs_ring,
3058 out_val, 1,
3059 NULL, ctx->es2gs_offset,
3060 (4 * param_index + j) * 4,
3061 ac_glc | ac_slc, true);
3062 }
3063 }
3064 }
3065 }
3066
3067 static void
3068 handle_ls_outputs_post(struct radv_shader_context *ctx)
3069 {
3070 LLVMValueRef vertex_id = ctx->rel_auto_id;
3071 uint32_t num_tcs_inputs = util_last_bit64(ctx->shader_info->info.vs.ls_outputs_written);
3072 LLVMValueRef vertex_dw_stride = LLVMConstInt(ctx->ac.i32, num_tcs_inputs * 4, false);
3073 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3074 vertex_dw_stride, "");
3075
3076 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3077 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
3078
3079 if (!(ctx->output_mask & (1ull << i)))
3080 continue;
3081
3082 int param = shader_io_get_unique_index(i);
3083 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3084 LLVMConstInt(ctx->ac.i32, param * 4, false),
3085 "");
3086 for (unsigned j = 0; j < 4; j++) {
3087 LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
3088 value = ac_to_integer(&ctx->ac, value);
3089 value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
3090 ac_lds_store(&ctx->ac, dw_addr, value);
3091 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr, ctx->ac.i32_1, "");
3092 }
3093 }
3094 }
3095
3096 static LLVMValueRef get_wave_id_in_tg(struct radv_shader_context *ctx)
3097 {
3098 return ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 24, 4);
3099 }
3100
3101 static LLVMValueRef get_tgsize(struct radv_shader_context *ctx)
3102 {
3103 return ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 28, 4);
3104 }
3105
3106 static LLVMValueRef get_thread_id_in_tg(struct radv_shader_context *ctx)
3107 {
3108 LLVMBuilderRef builder = ctx->ac.builder;
3109 LLVMValueRef tmp;
3110 tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
3111 LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
3112 return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
3113 }
3114
3115 static LLVMValueRef ngg_get_vtx_cnt(struct radv_shader_context *ctx)
3116 {
3117 return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
3118 LLVMConstInt(ctx->ac.i32, 12, false),
3119 LLVMConstInt(ctx->ac.i32, 9, false),
3120 false);
3121 }
3122
3123 static LLVMValueRef ngg_get_prim_cnt(struct radv_shader_context *ctx)
3124 {
3125 return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
3126 LLVMConstInt(ctx->ac.i32, 22, false),
3127 LLVMConstInt(ctx->ac.i32, 9, false),
3128 false);
3129 }
3130
3131 static LLVMValueRef
3132 ngg_gs_get_vertex_storage(struct radv_shader_context *ctx)
3133 {
3134 unsigned num_outputs = util_bitcount64(ctx->output_mask);
3135
3136 LLVMTypeRef elements[2] = {
3137 LLVMArrayType(ctx->ac.i32, 4 * num_outputs),
3138 LLVMArrayType(ctx->ac.i8, 4),
3139 };
3140 LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
3141 type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
3142 return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
3143 }
3144
3145 /**
3146 * Return a pointer to the LDS storage reserved for the N'th vertex, where N
3147 * is in emit order; that is:
3148 * - during the epilogue, N is the threadidx (relative to the entire threadgroup)
3149 * - during vertex emit, i.e. while the API GS shader invocation is running,
3150 * N = threadidx * gs_max_out_vertices + emitidx
3151 *
3152 * Goals of the LDS memory layout:
3153 * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
3154 * in uniform control flow
3155 * 2. Eliminate bank conflicts on read for export if, additionally, there is no
3156 * culling
3157 * 3. Agnostic to the number of waves (since we don't know it before compiling)
3158 * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
3159 * 5. Avoid wasting memory.
3160 *
3161 * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
3162 * layout, elimination of bank conflicts requires that each vertex occupy an
3163 * odd number of dwords. We use the additional dword to store the output stream
3164 * index as well as a flag to indicate whether this vertex ends a primitive
3165 * for rasterization.
3166 *
3167 * Swizzling is required to satisfy points 1 and 2 simultaneously.
3168 *
3169 * Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
3170 * Indices are swizzled in groups of 32, which ensures point 1 without
3171 * disturbing point 2.
3172 *
3173 * \return an LDS pointer to type {[N x i32], [4 x i8]}
3174 */
3175 static LLVMValueRef
3176 ngg_gs_vertex_ptr(struct radv_shader_context *ctx, LLVMValueRef vertexidx)
3177 {
3178 LLVMBuilderRef builder = ctx->ac.builder;
3179 LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
3180
3181 /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
3182 unsigned write_stride_2exp = ffs(ctx->gs_max_out_vertices) - 1;
3183 if (write_stride_2exp) {
3184 LLVMValueRef row =
3185 LLVMBuildLShr(builder, vertexidx,
3186 LLVMConstInt(ctx->ac.i32, 5, false), "");
3187 LLVMValueRef swizzle =
3188 LLVMBuildAnd(builder, row,
3189 LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1,
3190 false), "");
3191 vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
3192 }
3193
3194 return ac_build_gep0(&ctx->ac, storage, vertexidx);
3195 }
3196
3197 static LLVMValueRef
3198 ngg_gs_emit_vertex_ptr(struct radv_shader_context *ctx, LLVMValueRef gsthread,
3199 LLVMValueRef emitidx)
3200 {
3201 LLVMBuilderRef builder = ctx->ac.builder;
3202 LLVMValueRef tmp;
3203
3204 tmp = LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false);
3205 tmp = LLVMBuildMul(builder, tmp, gsthread, "");
3206 const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
3207 return ngg_gs_vertex_ptr(ctx, vertexidx);
3208 }
3209
3210 /* Send GS Alloc Req message from the first wave of the group to SPI.
3211 * Message payload is:
3212 * - bits 0..10: vertices in group
3213 * - bits 12..22: primitives in group
3214 */
3215 static void build_sendmsg_gs_alloc_req(struct radv_shader_context *ctx,
3216 LLVMValueRef vtx_cnt,
3217 LLVMValueRef prim_cnt)
3218 {
3219 LLVMBuilderRef builder = ctx->ac.builder;
3220 LLVMValueRef tmp;
3221
3222 tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
3223 ac_build_ifcc(&ctx->ac, tmp, 5020);
3224
3225 tmp = LLVMBuildShl(builder, prim_cnt, LLVMConstInt(ctx->ac.i32, 12, false),"");
3226 tmp = LLVMBuildOr(builder, tmp, vtx_cnt, "");
3227 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_ALLOC_REQ, tmp);
3228
3229 ac_build_endif(&ctx->ac, 5020);
3230 }
3231
3232 struct ngg_prim {
3233 unsigned num_vertices;
3234 LLVMValueRef isnull;
3235 LLVMValueRef index[3];
3236 LLVMValueRef edgeflag[3];
3237 };
3238
3239 static void build_export_prim(struct radv_shader_context *ctx,
3240 const struct ngg_prim *prim)
3241 {
3242 LLVMBuilderRef builder = ctx->ac.builder;
3243 struct ac_export_args args;
3244 LLVMValueRef tmp;
3245
3246 tmp = LLVMBuildZExt(builder, prim->isnull, ctx->ac.i32, "");
3247 args.out[0] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 31, false), "");
3248
3249 for (unsigned i = 0; i < prim->num_vertices; ++i) {
3250 tmp = LLVMBuildShl(builder, prim->index[i],
3251 LLVMConstInt(ctx->ac.i32, 10 * i, false), "");
3252 args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
3253 tmp = LLVMBuildZExt(builder, prim->edgeflag[i], ctx->ac.i32, "");
3254 tmp = LLVMBuildShl(builder, tmp,
3255 LLVMConstInt(ctx->ac.i32, 10 * i + 9, false), "");
3256 args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
3257 }
3258
3259 args.out[0] = LLVMBuildBitCast(builder, args.out[0], ctx->ac.f32, "");
3260 args.out[1] = LLVMGetUndef(ctx->ac.f32);
3261 args.out[2] = LLVMGetUndef(ctx->ac.f32);
3262 args.out[3] = LLVMGetUndef(ctx->ac.f32);
3263
3264 args.target = V_008DFC_SQ_EXP_PRIM;
3265 args.enabled_channels = 1;
3266 args.done = true;
3267 args.valid_mask = false;
3268 args.compr = false;
3269
3270 ac_build_export(&ctx->ac, &args);
3271 }
3272
3273 static void
3274 handle_ngg_outputs_post(struct radv_shader_context *ctx)
3275 {
3276 LLVMBuilderRef builder = ctx->ac.builder;
3277 struct ac_build_if_state if_state;
3278 unsigned num_vertices = 3;
3279 LLVMValueRef tmp;
3280
3281 assert((ctx->stage == MESA_SHADER_VERTEX ||
3282 ctx->stage == MESA_SHADER_TESS_EVAL) && !ctx->is_gs_copy_shader);
3283
3284 LLVMValueRef prims_in_wave = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 8, 8);
3285 LLVMValueRef vtx_in_wave = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 0, 8);
3286 LLVMValueRef is_gs_thread = LLVMBuildICmp(builder, LLVMIntULT,
3287 ac_get_thread_id(&ctx->ac), prims_in_wave, "");
3288 LLVMValueRef is_es_thread = LLVMBuildICmp(builder, LLVMIntULT,
3289 ac_get_thread_id(&ctx->ac), vtx_in_wave, "");
3290 LLVMValueRef vtxindex[] = {
3291 ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[0], 0, 16),
3292 ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[0], 16, 16),
3293 ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[2], 0, 16),
3294 };
3295
3296 /* TODO: streamout */
3297
3298 /* Copy Primitive IDs from GS threads to the LDS address corresponding
3299 * to the ES thread of the provoking vertex.
3300 */
3301 if (ctx->stage == MESA_SHADER_VERTEX &&
3302 ctx->options->key.vs_common_out.export_prim_id) {
3303 /* TODO: streamout */
3304
3305 ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
3306 /* Extract the PROVOKING_VTX_INDEX field. */
3307 LLVMValueRef provoking_vtx_in_prim =
3308 LLVMConstInt(ctx->ac.i32, 0, false);
3309
3310 /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
3311 LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
3312 LLVMValueRef provoking_vtx_index =
3313 LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
3314
3315 LLVMBuildStore(builder, ctx->abi.gs_prim_id,
3316 ac_build_gep0(&ctx->ac, ctx->esgs_ring, provoking_vtx_index));
3317 ac_build_endif(&ctx->ac, 5400);
3318 }
3319
3320 /* TODO: primitive culling */
3321
3322 build_sendmsg_gs_alloc_req(ctx, ngg_get_vtx_cnt(ctx), ngg_get_prim_cnt(ctx));
3323
3324 /* TODO: streamout queries */
3325 /* Export primitive data to the index buffer. Format is:
3326 * - bits 0..8: index 0
3327 * - bit 9: edge flag 0
3328 * - bits 10..18: index 1
3329 * - bit 19: edge flag 1
3330 * - bits 20..28: index 2
3331 * - bit 29: edge flag 2
3332 * - bit 31: null primitive (skip)
3333 *
3334 * For the first version, we will always build up all three indices
3335 * independent of the primitive type. The additional garbage data
3336 * shouldn't hurt.
3337 *
3338 * TODO: culling depends on the primitive type, so can have some
3339 * interaction here.
3340 */
3341 ac_nir_build_if(&if_state, ctx, is_gs_thread);
3342 {
3343 struct ngg_prim prim = {};
3344
3345 prim.num_vertices = num_vertices;
3346 prim.isnull = ctx->ac.i1false;
3347 memcpy(prim.index, vtxindex, sizeof(vtxindex[0]) * 3);
3348
3349 for (unsigned i = 0; i < num_vertices; ++i) {
3350 tmp = LLVMBuildLShr(builder, ctx->abi.gs_invocation_id,
3351 LLVMConstInt(ctx->ac.i32, 8 + i, false), "");
3352 prim.edgeflag[i] = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
3353 }
3354
3355 build_export_prim(ctx, &prim);
3356 }
3357 ac_nir_build_endif(&if_state);
3358
3359 /* Export per-vertex data (positions and parameters). */
3360 ac_nir_build_if(&if_state, ctx, is_es_thread);
3361 {
3362 struct radv_vs_output_info *outinfo =
3363 ctx->stage == MESA_SHADER_TESS_EVAL ? &ctx->shader_info->tes.outinfo : &ctx->shader_info->vs.outinfo;
3364
3365 /* Exporting the primitive ID is handled below. */
3366 /* TODO: use the new VS export path */
3367 handle_vs_outputs_post(ctx, false,
3368 ctx->options->key.vs_common_out.export_clip_dists,
3369 outinfo);
3370
3371 if (ctx->options->key.vs_common_out.export_prim_id) {
3372 unsigned param_count = outinfo->param_exports;
3373 LLVMValueRef values[4];
3374
3375 if (ctx->stage == MESA_SHADER_VERTEX) {
3376 /* Wait for GS stores to finish. */
3377 ac_build_s_barrier(&ctx->ac);
3378
3379 tmp = ac_build_gep0(&ctx->ac, ctx->esgs_ring,
3380 get_thread_id_in_tg(ctx));
3381 values[0] = LLVMBuildLoad(builder, tmp, "");
3382 } else {
3383 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
3384 values[0] = ctx->abi.tes_patch_id;
3385 }
3386
3387 values[0] = ac_to_float(&ctx->ac, values[0]);
3388 for (unsigned j = 1; j < 4; j++)
3389 values[j] = ctx->ac.f32_0;
3390
3391 radv_export_param(ctx, param_count, values, 0x1);
3392
3393 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count++;
3394 outinfo->export_prim_id = true;
3395 outinfo->param_exports = param_count;
3396 }
3397 }
3398 ac_nir_build_endif(&if_state);
3399 }
3400
3401 static void gfx10_ngg_gs_emit_prologue(struct radv_shader_context *ctx)
3402 {
3403 /* Zero out the part of LDS scratch that is used to accumulate the
3404 * per-stream generated primitive count.
3405 */
3406 LLVMBuilderRef builder = ctx->ac.builder;
3407 LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
3408 LLVMValueRef tid = get_thread_id_in_tg(ctx);
3409 LLVMBasicBlockRef merge_block;
3410 LLVMValueRef cond;
3411
3412 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx->ac.builder));
3413 LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
3414 merge_block = LLVMAppendBasicBlockInContext(ctx->ac.context, fn, "");
3415
3416 cond = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
3417 LLVMBuildCondBr(ctx->ac.builder, cond, then_block, merge_block);
3418 LLVMPositionBuilderAtEnd(ctx->ac.builder, then_block);
3419
3420 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
3421 LLVMBuildStore(builder, ctx->ac.i32_0, ptr);
3422
3423 LLVMBuildBr(ctx->ac.builder, merge_block);
3424 LLVMPositionBuilderAtEnd(ctx->ac.builder, merge_block);
3425
3426 ac_build_s_barrier(&ctx->ac);
3427 }
3428
3429 static void gfx10_ngg_gs_emit_epilogue_1(struct radv_shader_context *ctx)
3430 {
3431 LLVMBuilderRef builder = ctx->ac.builder;
3432 LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
3433 LLVMValueRef tmp;
3434
3435 /* Zero out remaining (non-emitted) primitive flags.
3436 *
3437 * Note: Alternatively, we could pass the relevant gs_next_vertex to
3438 * the emit threads via LDS. This is likely worse in the expected
3439 * typical case where each GS thread emits the full set of
3440 * vertices.
3441 */
3442 for (unsigned stream = 0; stream < 4; ++stream) {
3443 unsigned num_components;
3444
3445 num_components =
3446 ctx->shader_info->info.gs.num_stream_output_components[stream];
3447 if (!num_components)
3448 continue;
3449
3450 const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
3451
3452 ac_build_bgnloop(&ctx->ac, 5100);
3453
3454 const LLVMValueRef vertexidx =
3455 LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
3456 tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
3457 LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
3458 ac_build_ifcc(&ctx->ac, tmp, 5101);
3459 ac_build_break(&ctx->ac);
3460 ac_build_endif(&ctx->ac, 5101);
3461
3462 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
3463 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
3464
3465 tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
3466 LLVMValueRef gep_idx[3] = {
3467 ctx->ac.i32_0, /* implied C-style array */
3468 ctx->ac.i32_1, /* second entry of struct */
3469 LLVMConstInt(ctx->ac.i32, stream, false),
3470 };
3471 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3472 LLVMBuildStore(builder, i8_0, tmp);
3473
3474 ac_build_endloop(&ctx->ac, 5100);
3475 }
3476 }
3477
3478 static void gfx10_ngg_gs_emit_epilogue_2(struct radv_shader_context *ctx)
3479 {
3480 const unsigned verts_per_prim = si_conv_gl_prim_to_vertices(ctx->gs_output_prim);
3481 LLVMBuilderRef builder = ctx->ac.builder;
3482 LLVMValueRef tmp, tmp2;
3483
3484 ac_build_s_barrier(&ctx->ac);
3485
3486 const LLVMValueRef tid = get_thread_id_in_tg(ctx);
3487 LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
3488
3489 /* TODO: streamout */
3490
3491 /* TODO: culling */
3492
3493 /* Determine vertex liveness. */
3494 LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
3495
3496 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
3497 ac_build_ifcc(&ctx->ac, tmp, 5120);
3498 {
3499 for (unsigned i = 0; i < verts_per_prim; ++i) {
3500 const LLVMValueRef primidx =
3501 LLVMBuildAdd(builder, tid,
3502 LLVMConstInt(ctx->ac.i32, i, false), "");
3503
3504 if (i > 0) {
3505 tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
3506 ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
3507 }
3508
3509 /* Load primitive liveness */
3510 tmp = ngg_gs_vertex_ptr(ctx, primidx);
3511 LLVMValueRef gep_idx[3] = {
3512 ctx->ac.i32_0, /* implicit C-style array */
3513 ctx->ac.i32_1, /* second value of struct */
3514 ctx->ac.i32_0, /* stream 0 */
3515 };
3516 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3517 tmp = LLVMBuildLoad(builder, tmp, "");
3518 const LLVMValueRef primlive =
3519 LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
3520
3521 tmp = LLVMBuildLoad(builder, vertliveptr, "");
3522 tmp = LLVMBuildOr(builder, tmp, primlive, ""),
3523 LLVMBuildStore(builder, tmp, vertliveptr);
3524
3525 if (i > 0)
3526 ac_build_endif(&ctx->ac, 5121 + i);
3527 }
3528 }
3529 ac_build_endif(&ctx->ac, 5120);
3530
3531 /* Inclusive scan addition across the current wave. */
3532 LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
3533 struct ac_wg_scan vertlive_scan = {};
3534 vertlive_scan.op = nir_op_iadd;
3535 vertlive_scan.enable_reduce = true;
3536 vertlive_scan.enable_exclusive = true;
3537 vertlive_scan.src = vertlive;
3538 vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
3539 vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
3540 vertlive_scan.numwaves = get_tgsize(ctx);
3541 vertlive_scan.maxwaves = 8;
3542
3543 ac_build_wg_scan(&ctx->ac, &vertlive_scan);
3544
3545 /* Skip all exports (including index exports) when possible. At least on
3546 * early gfx10 revisions this is also to avoid hangs.
3547 */
3548 LLVMValueRef have_exports =
3549 LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
3550 num_emit_threads =
3551 LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
3552
3553 /* Allocate export space. Send this message as early as possible, to
3554 * hide the latency of the SQ <-> SPI roundtrip.
3555 *
3556 * Note: We could consider compacting primitives for export as well.
3557 * PA processes 1 non-null prim / clock, but it fetches 4 DW of
3558 * prim data per clock and skips null primitives at no additional
3559 * cost. So compacting primitives can only be beneficial when
3560 * there are 4 or more contiguous null primitives in the export
3561 * (in the common case of single-dword prim exports).
3562 */
3563 build_sendmsg_gs_alloc_req(ctx, vertlive_scan.result_reduce, num_emit_threads);
3564
3565 /* Setup the reverse vertex compaction permutation. We re-use stream 1
3566 * of the primitive liveness flags, relying on the fact that each
3567 * threadgroup can have at most 256 threads. */
3568 ac_build_ifcc(&ctx->ac, vertlive, 5130);
3569 {
3570 tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
3571 LLVMValueRef gep_idx[3] = {
3572 ctx->ac.i32_0, /* implicit C-style array */
3573 ctx->ac.i32_1, /* second value of struct */
3574 ctx->ac.i32_1, /* stream 1 */
3575 };
3576 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3577 tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
3578 LLVMBuildStore(builder, tmp2, tmp);
3579 }
3580 ac_build_endif(&ctx->ac, 5130);
3581
3582 ac_build_s_barrier(&ctx->ac);
3583
3584 /* Export primitive data */
3585 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
3586 ac_build_ifcc(&ctx->ac, tmp, 5140);
3587 {
3588 struct ngg_prim prim = {};
3589 prim.num_vertices = verts_per_prim;
3590
3591 tmp = ngg_gs_vertex_ptr(ctx, tid);
3592 LLVMValueRef gep_idx[3] = {
3593 ctx->ac.i32_0, /* implicit C-style array */
3594 ctx->ac.i32_1, /* second value of struct */
3595 ctx->ac.i32_0, /* primflag */
3596 };
3597 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3598 tmp = LLVMBuildLoad(builder, tmp, "");
3599 prim.isnull = LLVMBuildICmp(builder, LLVMIntEQ, tmp,
3600 LLVMConstInt(ctx->ac.i8, 0, false), "");
3601
3602 for (unsigned i = 0; i < verts_per_prim; ++i) {
3603 prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
3604 LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
3605 prim.edgeflag[i] = ctx->ac.i1false;
3606 }
3607
3608 build_export_prim(ctx, &prim);
3609 }
3610 ac_build_endif(&ctx->ac, 5140);
3611
3612 /* Export position and parameter data */
3613 tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
3614 ac_build_ifcc(&ctx->ac, tmp, 5145);
3615 {
3616 struct radv_vs_output_info *outinfo = &ctx->shader_info->vs.outinfo;
3617 bool export_view_index = ctx->options->key.has_multiview_view_index;
3618 struct radv_shader_output_values *outputs;
3619 unsigned noutput = 0;
3620
3621 /* Allocate a temporary array for the output values. */
3622 unsigned num_outputs = util_bitcount64(ctx->output_mask) + export_view_index;
3623 outputs = calloc(num_outputs, sizeof(outputs[0]));
3624
3625 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
3626 sizeof(outinfo->vs_output_param_offset));
3627 outinfo->pos_exports = 0;
3628
3629 tmp = ngg_gs_vertex_ptr(ctx, tid);
3630 LLVMValueRef gep_idx[3] = {
3631 ctx->ac.i32_0, /* implicit C-style array */
3632 ctx->ac.i32_1, /* second value of struct */
3633 ctx->ac.i32_1, /* stream 1: source data index */
3634 };
3635 tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
3636 tmp = LLVMBuildLoad(builder, tmp, "");
3637 tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
3638 const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
3639
3640 if (ctx->output_mask & (1ull << VARYING_SLOT_PSIZ)) {
3641 outinfo->writes_pointsize = true;
3642 }
3643
3644 if (ctx->output_mask & (1ull << VARYING_SLOT_LAYER)) {
3645 outinfo->writes_layer = true;
3646 }
3647
3648 if (ctx->output_mask & (1ull << VARYING_SLOT_VIEWPORT)) {
3649 outinfo->writes_viewport_index = true;
3650 }
3651
3652 unsigned out_idx = 0;
3653 gep_idx[1] = ctx->ac.i32_0;
3654 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3655 if (!(ctx->output_mask & (1ull << i)))
3656 continue;
3657
3658 outputs[noutput].slot_name = i;
3659 outputs[noutput].slot_index = i == VARYING_SLOT_CLIP_DIST1;
3660
3661 outputs[noutput].usage_mask = ctx->shader_info->info.gs.output_usage_mask[i];
3662 int length = util_last_bit(outputs[noutput].usage_mask);
3663
3664 for (unsigned j = 0; j < length; j++, out_idx++) {
3665 gep_idx[2] = LLVMConstInt(ctx->ac.i32, out_idx, false);
3666 tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
3667 tmp = LLVMBuildLoad(builder, tmp, "");
3668
3669 LLVMTypeRef type = LLVMGetAllocatedType(ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
3670 if (ac_get_type_size(type) == 2) {
3671 tmp = ac_to_integer(&ctx->ac, tmp);
3672 tmp = LLVMBuildTrunc(ctx->ac.builder, tmp, ctx->ac.i16, "");
3673 }
3674
3675 outputs[noutput].values[j] = ac_to_float(&ctx->ac, tmp);
3676 }
3677
3678 for (unsigned j = length; j < 4; j++)
3679 outputs[noutput].values[j] = LLVMGetUndef(ctx->ac.f32);
3680
3681 noutput++;
3682 }
3683
3684 /* Export ViewIndex. */
3685 if (export_view_index) {
3686 outinfo->writes_layer = true;
3687
3688 outputs[noutput].slot_name = VARYING_SLOT_LAYER;
3689 outputs[noutput].slot_index = 0;
3690 outputs[noutput].usage_mask = 0x1;
3691 outputs[noutput].values[0] = ac_to_float(&ctx->ac, ctx->abi.view_index);
3692 for (unsigned j = 1; j < 4; j++)
3693 outputs[noutput].values[j] = ctx->ac.f32_0;
3694 noutput++;
3695 }
3696
3697 radv_llvm_export_vs(ctx, outputs, noutput, outinfo,
3698 ctx->options->key.vs_common_out.export_clip_dists);
3699 FREE(outputs);
3700 }
3701 ac_build_endif(&ctx->ac, 5145);
3702 }
3703
3704 static void gfx10_ngg_gs_emit_vertex(struct radv_shader_context *ctx,
3705 unsigned stream,
3706 LLVMValueRef *addrs)
3707 {
3708 LLVMBuilderRef builder = ctx->ac.builder;
3709 LLVMValueRef tmp;
3710 const LLVMValueRef vertexidx =
3711 LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
3712
3713 /* If this thread has already emitted the declared maximum number of
3714 * vertices, skip the write: excessive vertex emissions are not
3715 * supposed to have any effect.
3716 */
3717 const LLVMValueRef can_emit =
3718 LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
3719 LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
3720 ac_build_kill_if_false(&ctx->ac, can_emit);
3721
3722 tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
3723 tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
3724 LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
3725
3726 const LLVMValueRef vertexptr =
3727 ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
3728 unsigned out_idx = 0;
3729 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3730 unsigned output_usage_mask =
3731 ctx->shader_info->info.gs.output_usage_mask[i];
3732 uint8_t output_stream =
3733 ctx->shader_info->info.gs.output_streams[i];
3734 LLVMValueRef *out_ptr = &addrs[i * 4];
3735 int length = util_last_bit(output_usage_mask);
3736
3737 if (!(ctx->output_mask & (1ull << i)) ||
3738 output_stream != stream)
3739 continue;
3740
3741 for (unsigned j = 0; j < length; j++, out_idx++) {
3742 if (!(output_usage_mask & (1 << j)))
3743 continue;
3744
3745 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
3746 out_ptr[j], "");
3747 LLVMValueRef gep_idx[3] = {
3748 ctx->ac.i32_0, /* implied C-style array */
3749 ctx->ac.i32_0, /* first entry of struct */
3750 LLVMConstInt(ctx->ac.i32, out_idx, false),
3751 };
3752 LLVMValueRef ptr = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
3753
3754 out_val = ac_to_integer(&ctx->ac, out_val);
3755 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
3756
3757 LLVMBuildStore(builder, out_val, ptr);
3758 }
3759 }
3760 assert(out_idx * 4 <= ctx->gsvs_vertex_size);
3761
3762 /* Determine and store whether this vertex completed a primitive. */
3763 const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
3764
3765 tmp = LLVMConstInt(ctx->ac.i32, si_conv_gl_prim_to_vertices(ctx->gs_output_prim) - 1, false);
3766 const LLVMValueRef iscompleteprim =
3767 LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
3768
3769 tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
3770 LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
3771
3772 LLVMValueRef gep_idx[3] = {
3773 ctx->ac.i32_0, /* implied C-style array */
3774 ctx->ac.i32_1, /* second struct entry */
3775 LLVMConstInt(ctx->ac.i32, stream, false),
3776 };
3777 const LLVMValueRef primflagptr =
3778 LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
3779
3780 tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
3781 LLVMBuildStore(builder, tmp, primflagptr);
3782
3783 tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
3784 tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
3785 LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
3786 }
3787
3788 static void
3789 write_tess_factors(struct radv_shader_context *ctx)
3790 {
3791 unsigned stride, outer_comps, inner_comps;
3792 struct ac_build_if_state if_ctx, inner_if_ctx;
3793 LLVMValueRef invocation_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 8, 5);
3794 LLVMValueRef rel_patch_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
3795 unsigned tess_inner_index = 0, tess_outer_index;
3796 LLVMValueRef lds_base, lds_inner = NULL, lds_outer, byteoffset, buffer;
3797 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3798 int i;
3799 ac_emit_barrier(&ctx->ac, ctx->stage);
3800
3801 switch (ctx->options->key.tcs.primitive_mode) {
3802 case GL_ISOLINES:
3803 stride = 2;
3804 outer_comps = 2;
3805 inner_comps = 0;
3806 break;
3807 case GL_TRIANGLES:
3808 stride = 4;
3809 outer_comps = 3;
3810 inner_comps = 1;
3811 break;
3812 case GL_QUADS:
3813 stride = 6;
3814 outer_comps = 4;
3815 inner_comps = 2;
3816 break;
3817 default:
3818 return;
3819 }
3820
3821 ac_nir_build_if(&if_ctx, ctx,
3822 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3823 invocation_id, ctx->ac.i32_0, ""));
3824
3825 lds_base = get_tcs_out_current_patch_data_offset(ctx);
3826
3827 if (inner_comps) {
3828 tess_inner_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3829 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3830 LLVMConstInt(ctx->ac.i32, tess_inner_index * 4, false), "");
3831 }
3832
3833 tess_outer_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3834 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3835 LLVMConstInt(ctx->ac.i32, tess_outer_index * 4, false), "");
3836
3837 for (i = 0; i < 4; i++) {
3838 inner[i] = LLVMGetUndef(ctx->ac.i32);
3839 outer[i] = LLVMGetUndef(ctx->ac.i32);
3840 }
3841
3842 // LINES reversal
3843 if (ctx->options->key.tcs.primitive_mode == GL_ISOLINES) {
3844 outer[0] = out[1] = ac_lds_load(&ctx->ac, lds_outer);
3845 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
3846 ctx->ac.i32_1, "");
3847 outer[1] = out[0] = ac_lds_load(&ctx->ac, lds_outer);
3848 } else {
3849 for (i = 0; i < outer_comps; i++) {
3850 outer[i] = out[i] =
3851 ac_lds_load(&ctx->ac, lds_outer);
3852 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
3853 ctx->ac.i32_1, "");
3854 }
3855 for (i = 0; i < inner_comps; i++) {
3856 inner[i] = out[outer_comps+i] =
3857 ac_lds_load(&ctx->ac, lds_inner);
3858 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_inner,
3859 ctx->ac.i32_1, "");
3860 }
3861 }
3862
3863 /* Convert the outputs to vectors for stores. */
3864 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3865 vec1 = NULL;
3866
3867 if (stride > 4)
3868 vec1 = ac_build_gather_values(&ctx->ac, out + 4, stride - 4);
3869
3870
3871 buffer = ctx->hs_ring_tess_factor;
3872 tf_base = ctx->tess_factor_offset;
3873 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3874 LLVMConstInt(ctx->ac.i32, 4 * stride, false), "");
3875 unsigned tf_offset = 0;
3876
3877 if (ctx->options->chip_class <= GFX8) {
3878 ac_nir_build_if(&inner_if_ctx, ctx,
3879 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3880 rel_patch_id, ctx->ac.i32_0, ""));
3881
3882 /* Store the dynamic HS control word. */
3883 ac_build_buffer_store_dword(&ctx->ac, buffer,
3884 LLVMConstInt(ctx->ac.i32, 0x80000000, false),
3885 1, ctx->ac.i32_0, tf_base,
3886 0, ac_glc, false);
3887 tf_offset += 4;
3888
3889 ac_nir_build_endif(&inner_if_ctx);
3890 }
3891
3892 /* Store the tessellation factors. */
3893 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3894 MIN2(stride, 4), byteoffset, tf_base,
3895 tf_offset, ac_glc, false);
3896 if (vec1)
3897 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3898 stride - 4, byteoffset, tf_base,
3899 16 + tf_offset, ac_glc, false);
3900
3901 //store to offchip for TES to read - only if TES reads them
3902 if (ctx->options->key.tcs.tes_reads_tess_factors) {
3903 LLVMValueRef inner_vec, outer_vec, tf_outer_offset;
3904 LLVMValueRef tf_inner_offset;
3905 unsigned param_outer, param_inner;
3906
3907 param_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3908 tf_outer_offset = get_tcs_tes_buffer_address(ctx, NULL,
3909 LLVMConstInt(ctx->ac.i32, param_outer, 0));
3910
3911 outer_vec = ac_build_gather_values(&ctx->ac, outer,
3912 util_next_power_of_two(outer_comps));
3913
3914 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, outer_vec,
3915 outer_comps, tf_outer_offset,
3916 ctx->oc_lds, 0, ac_glc, false);
3917 if (inner_comps) {
3918 param_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3919 tf_inner_offset = get_tcs_tes_buffer_address(ctx, NULL,
3920 LLVMConstInt(ctx->ac.i32, param_inner, 0));
3921
3922 inner_vec = inner_comps == 1 ? inner[0] :
3923 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3924 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, inner_vec,
3925 inner_comps, tf_inner_offset,
3926 ctx->oc_lds, 0, ac_glc, false);
3927 }
3928 }
3929 ac_nir_build_endif(&if_ctx);
3930 }
3931
3932 static void
3933 handle_tcs_outputs_post(struct radv_shader_context *ctx)
3934 {
3935 write_tess_factors(ctx);
3936 }
3937
3938 static bool
3939 si_export_mrt_color(struct radv_shader_context *ctx,
3940 LLVMValueRef *color, unsigned index,
3941 struct ac_export_args *args)
3942 {
3943 /* Export */
3944 si_llvm_init_export_args(ctx, color, 0xf,
3945 V_008DFC_SQ_EXP_MRT + index, args);
3946 if (!args->enabled_channels)
3947 return false; /* unnecessary NULL export */
3948
3949 return true;
3950 }
3951
3952 static void
3953 radv_export_mrt_z(struct radv_shader_context *ctx,
3954 LLVMValueRef depth, LLVMValueRef stencil,
3955 LLVMValueRef samplemask)
3956 {
3957 struct ac_export_args args;
3958
3959 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3960
3961 ac_build_export(&ctx->ac, &args);
3962 }
3963
3964 static void
3965 handle_fs_outputs_post(struct radv_shader_context *ctx)
3966 {
3967 unsigned index = 0;
3968 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3969 struct ac_export_args color_args[8];
3970
3971 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3972 LLVMValueRef values[4];
3973
3974 if (!(ctx->output_mask & (1ull << i)))
3975 continue;
3976
3977 if (i < FRAG_RESULT_DATA0)
3978 continue;
3979
3980 for (unsigned j = 0; j < 4; j++)
3981 values[j] = ac_to_float(&ctx->ac,
3982 radv_load_output(ctx, i, j));
3983
3984 bool ret = si_export_mrt_color(ctx, values,
3985 i - FRAG_RESULT_DATA0,
3986 &color_args[index]);
3987 if (ret)
3988 index++;
3989 }
3990
3991 /* Process depth, stencil, samplemask. */
3992 if (ctx->shader_info->info.ps.writes_z) {
3993 depth = ac_to_float(&ctx->ac,
3994 radv_load_output(ctx, FRAG_RESULT_DEPTH, 0));
3995 }
3996 if (ctx->shader_info->info.ps.writes_stencil) {
3997 stencil = ac_to_float(&ctx->ac,
3998 radv_load_output(ctx, FRAG_RESULT_STENCIL, 0));
3999 }
4000 if (ctx->shader_info->info.ps.writes_sample_mask) {
4001 samplemask = ac_to_float(&ctx->ac,
4002 radv_load_output(ctx, FRAG_RESULT_SAMPLE_MASK, 0));
4003 }
4004
4005 /* Set the DONE bit on last non-null color export only if Z isn't
4006 * exported.
4007 */
4008 if (index > 0 &&
4009 !ctx->shader_info->info.ps.writes_z &&
4010 !ctx->shader_info->info.ps.writes_stencil &&
4011 !ctx->shader_info->info.ps.writes_sample_mask) {
4012 unsigned last = index - 1;
4013
4014 color_args[last].valid_mask = 1; /* whether the EXEC mask is valid */
4015 color_args[last].done = 1; /* DONE bit */
4016 }
4017
4018 /* Export PS outputs. */
4019 for (unsigned i = 0; i < index; i++)
4020 ac_build_export(&ctx->ac, &color_args[i]);
4021
4022 if (depth || stencil || samplemask)
4023 radv_export_mrt_z(ctx, depth, stencil, samplemask);
4024 else if (!index)
4025 ac_build_export_null(&ctx->ac);
4026 }
4027
4028 static void
4029 emit_gs_epilogue(struct radv_shader_context *ctx)
4030 {
4031 if (ctx->options->key.vs_common_out.as_ngg) {
4032 gfx10_ngg_gs_emit_epilogue_1(ctx);
4033 return;
4034 }
4035
4036 if (ctx->ac.chip_class >= GFX10)
4037 LLVMBuildFence(ctx->ac.builder, LLVMAtomicOrderingRelease, false, "");
4038
4039 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
4040 }
4041
4042 static void
4043 handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
4044 LLVMValueRef *addrs)
4045 {
4046 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
4047
4048 switch (ctx->stage) {
4049 case MESA_SHADER_VERTEX:
4050 if (ctx->options->key.vs_common_out.as_ls)
4051 handle_ls_outputs_post(ctx);
4052 else if (ctx->options->key.vs_common_out.as_es)
4053 handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info);
4054 else if (ctx->options->key.vs_common_out.as_ngg)
4055 break; /* handled outside of the shader body */
4056 else
4057 handle_vs_outputs_post(ctx, ctx->options->key.vs_common_out.export_prim_id,
4058 ctx->options->key.vs_common_out.export_clip_dists,
4059 &ctx->shader_info->vs.outinfo);
4060 break;
4061 case MESA_SHADER_FRAGMENT:
4062 handle_fs_outputs_post(ctx);
4063 break;
4064 case MESA_SHADER_GEOMETRY:
4065 emit_gs_epilogue(ctx);
4066 break;
4067 case MESA_SHADER_TESS_CTRL:
4068 handle_tcs_outputs_post(ctx);
4069 break;
4070 case MESA_SHADER_TESS_EVAL:
4071 if (ctx->options->key.vs_common_out.as_es)
4072 handle_es_outputs_post(ctx, &ctx->shader_info->tes.es_info);
4073 else if (ctx->options->key.vs_common_out.as_ngg)
4074 break; /* handled outside of the shader body */
4075 else
4076 handle_vs_outputs_post(ctx, ctx->options->key.vs_common_out.export_prim_id,
4077 ctx->options->key.vs_common_out.export_clip_dists,
4078 &ctx->shader_info->tes.outinfo);
4079 break;
4080 default:
4081 break;
4082 }
4083 }
4084
4085 static void ac_llvm_finalize_module(struct radv_shader_context *ctx,
4086 LLVMPassManagerRef passmgr,
4087 const struct radv_nir_compiler_options *options)
4088 {
4089 LLVMRunPassManager(passmgr, ctx->ac.module);
4090 LLVMDisposeBuilder(ctx->ac.builder);
4091
4092 ac_llvm_context_dispose(&ctx->ac);
4093 }
4094
4095 static void
4096 ac_nir_eliminate_const_vs_outputs(struct radv_shader_context *ctx)
4097 {
4098 struct radv_vs_output_info *outinfo;
4099
4100 switch (ctx->stage) {
4101 case MESA_SHADER_FRAGMENT:
4102 case MESA_SHADER_COMPUTE:
4103 case MESA_SHADER_TESS_CTRL:
4104 case MESA_SHADER_GEOMETRY:
4105 return;
4106 case MESA_SHADER_VERTEX:
4107 if (ctx->options->key.vs_common_out.as_ls ||
4108 ctx->options->key.vs_common_out.as_es)
4109 return;
4110 outinfo = &ctx->shader_info->vs.outinfo;
4111 break;
4112 case MESA_SHADER_TESS_EVAL:
4113 if (ctx->options->key.vs_common_out.as_es)
4114 return;
4115 outinfo = &ctx->shader_info->tes.outinfo;
4116 break;
4117 default:
4118 unreachable("Unhandled shader type");
4119 }
4120
4121 ac_optimize_vs_outputs(&ctx->ac,
4122 ctx->main_function,
4123 outinfo->vs_output_param_offset,
4124 VARYING_SLOT_MAX,
4125 &outinfo->param_exports);
4126 }
4127
4128 static void
4129 ac_setup_rings(struct radv_shader_context *ctx)
4130 {
4131 if (ctx->options->chip_class <= GFX8 &&
4132 (ctx->stage == MESA_SHADER_GEOMETRY ||
4133 ctx->options->key.vs_common_out.as_es || ctx->options->key.vs_common_out.as_es)) {
4134 unsigned ring = ctx->stage == MESA_SHADER_GEOMETRY ? RING_ESGS_GS
4135 : RING_ESGS_VS;
4136 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, ring, false);
4137
4138 ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac,
4139 ctx->ring_offsets,
4140 offset);
4141 }
4142
4143 if (ctx->is_gs_copy_shader) {
4144 ctx->gsvs_ring[0] =
4145 ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
4146 LLVMConstInt(ctx->ac.i32,
4147 RING_GSVS_VS, false));
4148 }
4149
4150 if (ctx->stage == MESA_SHADER_GEOMETRY) {
4151 /* The conceptual layout of the GSVS ring is
4152 * v0c0 .. vLv0 v0c1 .. vLc1 ..
4153 * but the real memory layout is swizzled across
4154 * threads:
4155 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
4156 * t16v0c0 ..
4157 * Override the buffer descriptor accordingly.
4158 */
4159 LLVMTypeRef v2i64 = LLVMVectorType(ctx->ac.i64, 2);
4160 uint64_t stream_offset = 0;
4161 unsigned num_records = ctx->ac.wave_size;
4162 LLVMValueRef base_ring;
4163
4164 base_ring =
4165 ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
4166 LLVMConstInt(ctx->ac.i32,
4167 RING_GSVS_GS, false));
4168
4169 for (unsigned stream = 0; stream < 4; stream++) {
4170 unsigned num_components, stride;
4171 LLVMValueRef ring, tmp;
4172
4173 num_components =
4174 ctx->shader_info->info.gs.num_stream_output_components[stream];
4175
4176 if (!num_components)
4177 continue;
4178
4179 stride = 4 * num_components * ctx->gs_max_out_vertices;
4180
4181 /* Limit on the stride field for <= GFX7. */
4182 assert(stride < (1 << 14));
4183
4184 ring = LLVMBuildBitCast(ctx->ac.builder,
4185 base_ring, v2i64, "");
4186 tmp = LLVMBuildExtractElement(ctx->ac.builder,
4187 ring, ctx->ac.i32_0, "");
4188 tmp = LLVMBuildAdd(ctx->ac.builder, tmp,
4189 LLVMConstInt(ctx->ac.i64,
4190 stream_offset, 0), "");
4191 ring = LLVMBuildInsertElement(ctx->ac.builder,
4192 ring, tmp, ctx->ac.i32_0, "");
4193
4194 stream_offset += stride * ctx->ac.wave_size;
4195
4196 ring = LLVMBuildBitCast(ctx->ac.builder, ring,
4197 ctx->ac.v4i32, "");
4198
4199 tmp = LLVMBuildExtractElement(ctx->ac.builder, ring,
4200 ctx->ac.i32_1, "");
4201 tmp = LLVMBuildOr(ctx->ac.builder, tmp,
4202 LLVMConstInt(ctx->ac.i32,
4203 S_008F04_STRIDE(stride), false), "");
4204 ring = LLVMBuildInsertElement(ctx->ac.builder, ring, tmp,
4205 ctx->ac.i32_1, "");
4206
4207 ring = LLVMBuildInsertElement(ctx->ac.builder, ring,
4208 LLVMConstInt(ctx->ac.i32,
4209 num_records, false),
4210 LLVMConstInt(ctx->ac.i32, 2, false), "");
4211
4212 ctx->gsvs_ring[stream] = ring;
4213 }
4214 }
4215
4216 if (ctx->stage == MESA_SHADER_TESS_CTRL ||
4217 ctx->stage == MESA_SHADER_TESS_EVAL) {
4218 ctx->hs_ring_tess_offchip = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_OFFCHIP, false));
4219 ctx->hs_ring_tess_factor = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_FACTOR, false));
4220 }
4221 }
4222
4223 unsigned
4224 radv_nir_get_max_workgroup_size(enum chip_class chip_class,
4225 gl_shader_stage stage,
4226 const struct nir_shader *nir)
4227 {
4228 const unsigned backup_sizes[] = {chip_class >= GFX9 ? 128 : 64, 1, 1};
4229 return radv_get_max_workgroup_size(chip_class, stage, nir ? nir->info.cs.local_size : backup_sizes);
4230 }
4231
4232 /* Fixup the HW not emitting the TCS regs if there are no HS threads. */
4233 static void ac_nir_fixup_ls_hs_input_vgprs(struct radv_shader_context *ctx)
4234 {
4235 LLVMValueRef count = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 8, 8);
4236 LLVMValueRef hs_empty = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, count,
4237 ctx->ac.i32_0, "");
4238 ctx->abi.instance_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->rel_auto_id, ctx->abi.instance_id, "");
4239 ctx->rel_auto_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_rel_ids, ctx->rel_auto_id, "");
4240 ctx->abi.vertex_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_patch_id, ctx->abi.vertex_id, "");
4241 }
4242
4243 static void prepare_gs_input_vgprs(struct radv_shader_context *ctx)
4244 {
4245 for(int i = 5; i >= 0; --i) {
4246 ctx->gs_vtx_offset[i] = ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[i & ~1],
4247 (i & 1) * 16, 16);
4248 }
4249
4250 ctx->gs_wave_id = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 16, 8);
4251 }
4252
4253 /* Ensure that the esgs ring is declared.
4254 *
4255 * We declare it with 64KB alignment as a hint that the
4256 * pointer value will always be 0.
4257 */
4258 static void declare_esgs_ring(struct radv_shader_context *ctx)
4259 {
4260 if (ctx->esgs_ring)
4261 return;
4262
4263 assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
4264
4265 ctx->esgs_ring = LLVMAddGlobalInAddressSpace(
4266 ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
4267 "esgs_ring",
4268 AC_ADDR_SPACE_LDS);
4269 LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage);
4270 LLVMSetAlignment(ctx->esgs_ring, 64 * 1024);
4271 }
4272
4273 static
4274 LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
4275 struct nir_shader *const *shaders,
4276 int shader_count,
4277 struct radv_shader_variant_info *shader_info,
4278 const struct radv_nir_compiler_options *options)
4279 {
4280 struct radv_shader_context ctx = {0};
4281 unsigned i;
4282 ctx.options = options;
4283 ctx.shader_info = shader_info;
4284
4285 enum ac_float_mode float_mode =
4286 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
4287 AC_FLOAT_MODE_DEFAULT;
4288
4289 ac_llvm_context_init(&ctx.ac, ac_llvm, options->chip_class,
4290 options->family, float_mode, options->wave_size,
4291 options->wave_size);
4292 ctx.context = ctx.ac.context;
4293
4294 radv_nir_shader_info_init(&shader_info->info);
4295
4296 for(int i = 0; i < shader_count; ++i)
4297 radv_nir_shader_info_pass(shaders[i], options, &shader_info->info);
4298
4299 for (i = 0; i < MAX_SETS; i++)
4300 shader_info->user_sgprs_locs.descriptor_sets[i].sgpr_idx = -1;
4301 for (i = 0; i < AC_UD_MAX_UD; i++)
4302 shader_info->user_sgprs_locs.shader_data[i].sgpr_idx = -1;
4303
4304 ctx.max_workgroup_size = 0;
4305 for (int i = 0; i < shader_count; ++i) {
4306 ctx.max_workgroup_size = MAX2(ctx.max_workgroup_size,
4307 radv_nir_get_max_workgroup_size(ctx.options->chip_class,
4308 shaders[i]->info.stage,
4309 shaders[i]));
4310 }
4311
4312 if (ctx.ac.chip_class >= GFX10) {
4313 if (is_pre_gs_stage(shaders[0]->info.stage) &&
4314 options->key.vs_common_out.as_ngg) {
4315 ctx.max_workgroup_size = 128;
4316 }
4317 }
4318
4319 create_function(&ctx, shaders[shader_count - 1]->info.stage, shader_count >= 2,
4320 shader_count >= 2 ? shaders[shader_count - 2]->info.stage : MESA_SHADER_VERTEX);
4321
4322 ctx.abi.inputs = &ctx.inputs[0];
4323 ctx.abi.emit_outputs = handle_shader_outputs_post;
4324 ctx.abi.emit_vertex = visit_emit_vertex;
4325 ctx.abi.load_ubo = radv_load_ubo;
4326 ctx.abi.load_ssbo = radv_load_ssbo;
4327 ctx.abi.load_sampler_desc = radv_get_sampler_desc;
4328 ctx.abi.load_resource = radv_load_resource;
4329 ctx.abi.clamp_shadow_reference = false;
4330 ctx.abi.robust_buffer_access = options->robust_buffer_access;
4331
4332 bool is_ngg = is_pre_gs_stage(shaders[0]->info.stage) && ctx.options->key.vs_common_out.as_ngg;
4333 if (shader_count >= 2 || is_ngg)
4334 ac_init_exec_full_mask(&ctx.ac);
4335
4336 if (options->has_ls_vgpr_init_bug &&
4337 shaders[shader_count - 1]->info.stage == MESA_SHADER_TESS_CTRL)
4338 ac_nir_fixup_ls_hs_input_vgprs(&ctx);
4339
4340 for(int i = 0; i < shader_count; ++i) {
4341 ctx.stage = shaders[i]->info.stage;
4342 ctx.output_mask = 0;
4343
4344 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
4345 for (int i = 0; i < 4; i++) {
4346 ctx.gs_next_vertex[i] =
4347 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
4348 }
4349 if (ctx.options->key.vs_common_out.as_ngg) {
4350 for (unsigned i = 0; i < 4; ++i) {
4351 ctx.gs_curprim_verts[i] =
4352 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
4353 ctx.gs_generated_prims[i] =
4354 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
4355 }
4356
4357 /* TODO: streamout */
4358
4359 LLVMTypeRef ai32 = LLVMArrayType(ctx.ac.i32, 8);
4360 ctx.gs_ngg_scratch =
4361 LLVMAddGlobalInAddressSpace(ctx.ac.module,
4362 ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
4363 LLVMSetInitializer(ctx.gs_ngg_scratch, LLVMGetUndef(ai32));
4364 LLVMSetAlignment(ctx.gs_ngg_scratch, 4);
4365
4366 ctx.gs_ngg_emit = LLVMBuildIntToPtr(ctx.ac.builder, ctx.ac.i32_0,
4367 LLVMPointerType(LLVMArrayType(ctx.ac.i32, 0), AC_ADDR_SPACE_LDS),
4368 "ngg_emit");
4369 }
4370
4371 ctx.gs_max_out_vertices = shaders[i]->info.gs.vertices_out;
4372 ctx.gs_output_prim = shaders[i]->info.gs.output_primitive;
4373 ctx.abi.load_inputs = load_gs_input;
4374 ctx.abi.emit_primitive = visit_end_primitive;
4375 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
4376 ctx.tcs_outputs_read = shaders[i]->info.outputs_read;
4377 ctx.tcs_patch_outputs_read = shaders[i]->info.patch_outputs_read;
4378 ctx.abi.load_tess_varyings = load_tcs_varyings;
4379 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
4380 ctx.abi.store_tcs_outputs = store_tcs_output;
4381 ctx.tcs_vertices_per_patch = shaders[i]->info.tess.tcs_vertices_out;
4382 if (shader_count == 1)
4383 ctx.tcs_num_inputs = ctx.options->key.tcs.num_inputs;
4384 else
4385 ctx.tcs_num_inputs = util_last_bit64(shader_info->info.vs.ls_outputs_written);
4386 ctx.tcs_num_patches = get_tcs_num_patches(&ctx);
4387 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_EVAL) {
4388 ctx.tes_primitive_mode = shaders[i]->info.tess.primitive_mode;
4389 ctx.abi.load_tess_varyings = load_tes_input;
4390 ctx.abi.load_tess_coord = load_tess_coord;
4391 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
4392 ctx.tcs_vertices_per_patch = shaders[i]->info.tess.tcs_vertices_out;
4393 ctx.tcs_num_patches = ctx.options->key.tes.num_patches;
4394 } else if (shaders[i]->info.stage == MESA_SHADER_VERTEX) {
4395 ctx.abi.load_base_vertex = radv_load_base_vertex;
4396 } else if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT) {
4397 shader_info->fs.can_discard = shaders[i]->info.fs.uses_discard;
4398 ctx.abi.load_sample_position = load_sample_position;
4399 ctx.abi.load_sample_mask_in = load_sample_mask_in;
4400 ctx.abi.emit_kill = radv_emit_kill;
4401 }
4402
4403 if (shaders[i]->info.stage == MESA_SHADER_VERTEX &&
4404 ctx.options->key.vs_common_out.as_ngg &&
4405 ctx.options->key.vs_common_out.export_prim_id) {
4406 declare_esgs_ring(&ctx);
4407 }
4408
4409 bool nested_barrier = false;
4410
4411 if (i) {
4412 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
4413 ctx.options->key.vs_common_out.as_ngg) {
4414 gfx10_ngg_gs_emit_prologue(&ctx);
4415 nested_barrier = false;
4416 } else {
4417 nested_barrier = true;
4418 }
4419 }
4420
4421 if (nested_barrier) {
4422 /* Execute a barrier before the second shader in
4423 * a merged shader.
4424 *
4425 * Execute the barrier inside the conditional block,
4426 * so that empty waves can jump directly to s_endpgm,
4427 * which will also signal the barrier.
4428 *
4429 * This is possible in gfx9, because an empty wave
4430 * for the second shader does not participate in
4431 * the epilogue. With NGG, empty waves may still
4432 * be required to export data (e.g. GS output vertices),
4433 * so we cannot let them exit early.
4434 *
4435 * If the shader is TCS and the TCS epilog is present
4436 * and contains a barrier, it will wait there and then
4437 * reach s_endpgm.
4438 */
4439 ac_emit_barrier(&ctx.ac, ctx.stage);
4440 }
4441
4442 nir_foreach_variable(variable, &shaders[i]->outputs)
4443 scan_shader_output_decl(&ctx, variable, shaders[i], shaders[i]->info.stage);
4444
4445 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
4446 unsigned addclip = shaders[i]->info.clip_distance_array_size +
4447 shaders[i]->info.cull_distance_array_size > 4;
4448 ctx.gsvs_vertex_size = (util_bitcount64(ctx.output_mask) + addclip) * 16;
4449 ctx.max_gsvs_emit_size = ctx.gsvs_vertex_size *
4450 shaders[i]->info.gs.vertices_out;
4451 }
4452
4453 ac_setup_rings(&ctx);
4454
4455 LLVMBasicBlockRef merge_block;
4456 if (shader_count >= 2 || is_ngg) {
4457 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
4458 LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
4459 merge_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
4460
4461 LLVMValueRef count = ac_unpack_param(&ctx.ac, ctx.merged_wave_info, 8 * i, 8);
4462 LLVMValueRef thread_id = ac_get_thread_id(&ctx.ac);
4463 LLVMValueRef cond = LLVMBuildICmp(ctx.ac.builder, LLVMIntULT,
4464 thread_id, count, "");
4465 LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);
4466
4467 LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
4468 }
4469
4470 if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
4471 prepare_interp_optimize(&ctx, shaders[i]);
4472 else if(shaders[i]->info.stage == MESA_SHADER_VERTEX)
4473 handle_vs_inputs(&ctx, shaders[i]);
4474 else if(shader_count >= 2 && shaders[i]->info.stage == MESA_SHADER_GEOMETRY)
4475 prepare_gs_input_vgprs(&ctx);
4476
4477 ac_nir_translate(&ctx.ac, &ctx.abi, shaders[i]);
4478
4479 if (shader_count >= 2 || is_ngg) {
4480 LLVMBuildBr(ctx.ac.builder, merge_block);
4481 LLVMPositionBuilderAtEnd(ctx.ac.builder, merge_block);
4482 }
4483
4484 /* This needs to be outside the if wrapping the shader body, as sometimes
4485 * the HW generates waves with 0 es/vs threads. */
4486 if (is_pre_gs_stage(shaders[i]->info.stage) &&
4487 ctx.options->key.vs_common_out.as_ngg &&
4488 i == shader_count - 1) {
4489 handle_ngg_outputs_post(&ctx);
4490 } else if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
4491 ctx.options->key.vs_common_out.as_ngg) {
4492 gfx10_ngg_gs_emit_epilogue_2(&ctx);
4493 }
4494
4495 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
4496 shader_info->gs.gsvs_vertex_size = ctx.gsvs_vertex_size;
4497 shader_info->gs.max_gsvs_emit_size = ctx.max_gsvs_emit_size;
4498 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
4499 shader_info->tcs.num_patches = ctx.tcs_num_patches;
4500 shader_info->tcs.lds_size = calculate_tess_lds_size(&ctx);
4501 }
4502 }
4503
4504 LLVMBuildRetVoid(ctx.ac.builder);
4505
4506 if (options->dump_preoptir) {
4507 fprintf(stderr, "%s LLVM IR:\n\n",
4508 radv_get_shader_name(shader_info,
4509 shaders[shader_count - 1]->info.stage));
4510 ac_dump_module(ctx.ac.module);
4511 fprintf(stderr, "\n");
4512 }
4513
4514 ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, options);
4515
4516 if (shader_count == 1)
4517 ac_nir_eliminate_const_vs_outputs(&ctx);
4518
4519 if (options->dump_shader) {
4520 ctx.shader_info->private_mem_vgprs =
4521 ac_count_scratch_private_memory(ctx.main_function);
4522 }
4523
4524 return ctx.ac.module;
4525 }
4526
4527 static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
4528 {
4529 unsigned *retval = (unsigned *)context;
4530 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
4531 char *description = LLVMGetDiagInfoDescription(di);
4532
4533 if (severity == LLVMDSError) {
4534 *retval = 1;
4535 fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
4536 description);
4537 }
4538
4539 LLVMDisposeMessage(description);
4540 }
4541
4542 static unsigned radv_llvm_compile(LLVMModuleRef M,
4543 char **pelf_buffer, size_t *pelf_size,
4544 struct ac_llvm_compiler *ac_llvm)
4545 {
4546 unsigned retval = 0;
4547 LLVMContextRef llvm_ctx;
4548
4549 /* Setup Diagnostic Handler*/
4550 llvm_ctx = LLVMGetModuleContext(M);
4551
4552 LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
4553 &retval);
4554
4555 /* Compile IR*/
4556 if (!radv_compile_to_elf(ac_llvm, M, pelf_buffer, pelf_size))
4557 retval = 1;
4558 return retval;
4559 }
4560
4561 static void ac_compile_llvm_module(struct ac_llvm_compiler *ac_llvm,
4562 LLVMModuleRef llvm_module,
4563 struct radv_shader_binary **rbinary,
4564 struct radv_shader_variant_info *shader_info,
4565 gl_shader_stage stage,
4566 const char *name,
4567 const struct radv_nir_compiler_options *options)
4568 {
4569 char *elf_buffer = NULL;
4570 size_t elf_size = 0;
4571 char *llvm_ir_string = NULL;
4572
4573 if (options->dump_shader) {
4574 fprintf(stderr, "%s LLVM IR:\n\n", name);
4575 ac_dump_module(llvm_module);
4576 fprintf(stderr, "\n");
4577 }
4578
4579 if (options->record_llvm_ir) {
4580 char *llvm_ir = LLVMPrintModuleToString(llvm_module);
4581 llvm_ir_string = strdup(llvm_ir);
4582 LLVMDisposeMessage(llvm_ir);
4583 }
4584
4585 int v = radv_llvm_compile(llvm_module, &elf_buffer, &elf_size, ac_llvm);
4586 if (v) {
4587 fprintf(stderr, "compile failed\n");
4588 }
4589
4590 LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
4591 LLVMDisposeModule(llvm_module);
4592 LLVMContextDispose(ctx);
4593
4594 size_t llvm_ir_size = llvm_ir_string ? strlen(llvm_ir_string) : 0;
4595 size_t alloc_size = sizeof(struct radv_shader_binary_rtld) + elf_size + llvm_ir_size + 1;
4596 struct radv_shader_binary_rtld *rbin = calloc(1, alloc_size);
4597 memcpy(rbin->data, elf_buffer, elf_size);
4598 if (llvm_ir_string)
4599 memcpy(rbin->data + elf_size, llvm_ir_string, llvm_ir_size + 1);
4600
4601 rbin->base.type = RADV_BINARY_TYPE_RTLD;
4602 rbin->base.stage = stage;
4603 rbin->base.total_size = alloc_size;
4604 rbin->elf_size = elf_size;
4605 rbin->llvm_ir_size = llvm_ir_size;
4606 *rbinary = &rbin->base;
4607
4608 free(llvm_ir_string);
4609 free(elf_buffer);
4610 }
4611
4612 static void
4613 ac_fill_shader_info(struct radv_shader_variant_info *shader_info, struct nir_shader *nir, const struct radv_nir_compiler_options *options)
4614 {
4615 switch (nir->info.stage) {
4616 case MESA_SHADER_COMPUTE:
4617 for (int i = 0; i < 3; ++i)
4618 shader_info->cs.block_size[i] = nir->info.cs.local_size[i];
4619 break;
4620 case MESA_SHADER_FRAGMENT:
4621 shader_info->fs.early_fragment_test = nir->info.fs.early_fragment_tests;
4622 shader_info->fs.post_depth_coverage = nir->info.fs.post_depth_coverage;
4623 break;
4624 case MESA_SHADER_GEOMETRY:
4625 shader_info->gs.vertices_in = nir->info.gs.vertices_in;
4626 shader_info->gs.vertices_out = nir->info.gs.vertices_out;
4627 shader_info->gs.output_prim = nir->info.gs.output_primitive;
4628 shader_info->gs.invocations = nir->info.gs.invocations;
4629 break;
4630 case MESA_SHADER_TESS_EVAL:
4631 shader_info->tes.primitive_mode = nir->info.tess.primitive_mode;
4632 shader_info->tes.spacing = nir->info.tess.spacing;
4633 shader_info->tes.ccw = nir->info.tess.ccw;
4634 shader_info->tes.point_mode = nir->info.tess.point_mode;
4635 shader_info->tes.as_es = options->key.vs_common_out.as_es;
4636 shader_info->tes.export_prim_id = options->key.vs_common_out.export_prim_id;
4637 shader_info->is_ngg = options->key.vs_common_out.as_ngg;
4638 break;
4639 case MESA_SHADER_TESS_CTRL:
4640 shader_info->tcs.tcs_vertices_out = nir->info.tess.tcs_vertices_out;
4641 break;
4642 case MESA_SHADER_VERTEX:
4643 shader_info->vs.as_es = options->key.vs_common_out.as_es;
4644 shader_info->vs.as_ls = options->key.vs_common_out.as_ls;
4645 shader_info->vs.export_prim_id = options->key.vs_common_out.export_prim_id;
4646 shader_info->is_ngg = options->key.vs_common_out.as_ngg;
4647 break;
4648 default:
4649 break;
4650 }
4651 }
4652
4653 void
4654 radv_compile_nir_shader(struct ac_llvm_compiler *ac_llvm,
4655 struct radv_shader_binary **rbinary,
4656 struct radv_shader_variant_info *shader_info,
4657 struct nir_shader *const *nir,
4658 int nir_count,
4659 const struct radv_nir_compiler_options *options)
4660 {
4661
4662 LLVMModuleRef llvm_module;
4663
4664 llvm_module = ac_translate_nir_to_llvm(ac_llvm, nir, nir_count, shader_info,
4665 options);
4666
4667 ac_compile_llvm_module(ac_llvm, llvm_module, rbinary, shader_info,
4668 nir[nir_count - 1]->info.stage,
4669 radv_get_shader_name(shader_info,
4670 nir[nir_count - 1]->info.stage),
4671 options);
4672
4673 for (int i = 0; i < nir_count; ++i)
4674 ac_fill_shader_info(shader_info, nir[i], options);
4675
4676 /* Determine the ES type (VS or TES) for the GS on GFX9. */
4677 if (options->chip_class >= GFX9) {
4678 if (nir_count == 2 &&
4679 nir[1]->info.stage == MESA_SHADER_GEOMETRY) {
4680 shader_info->gs.es_type = nir[0]->info.stage;
4681 }
4682 }
4683 shader_info->info.wave_size = options->wave_size;
4684 }
4685
4686 static void
4687 ac_gs_copy_shader_emit(struct radv_shader_context *ctx)
4688 {
4689 LLVMValueRef vtx_offset =
4690 LLVMBuildMul(ctx->ac.builder, ctx->abi.vertex_id,
4691 LLVMConstInt(ctx->ac.i32, 4, false), "");
4692 LLVMValueRef stream_id;
4693
4694 /* Fetch the vertex stream ID. */
4695 if (ctx->shader_info->info.so.num_outputs) {
4696 stream_id =
4697 ac_unpack_param(&ctx->ac, ctx->streamout_config, 24, 2);
4698 } else {
4699 stream_id = ctx->ac.i32_0;
4700 }
4701
4702 LLVMBasicBlockRef end_bb;
4703 LLVMValueRef switch_inst;
4704
4705 end_bb = LLVMAppendBasicBlockInContext(ctx->ac.context,
4706 ctx->main_function, "end");
4707 switch_inst = LLVMBuildSwitch(ctx->ac.builder, stream_id, end_bb, 4);
4708
4709 for (unsigned stream = 0; stream < 4; stream++) {
4710 unsigned num_components =
4711 ctx->shader_info->info.gs.num_stream_output_components[stream];
4712 LLVMBasicBlockRef bb;
4713 unsigned offset;
4714
4715 if (!num_components)
4716 continue;
4717
4718 if (stream > 0 && !ctx->shader_info->info.so.num_outputs)
4719 continue;
4720
4721 bb = LLVMInsertBasicBlockInContext(ctx->ac.context, end_bb, "out");
4722 LLVMAddCase(switch_inst, LLVMConstInt(ctx->ac.i32, stream, 0), bb);
4723 LLVMPositionBuilderAtEnd(ctx->ac.builder, bb);
4724
4725 offset = 0;
4726 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
4727 unsigned output_usage_mask =
4728 ctx->shader_info->info.gs.output_usage_mask[i];
4729 unsigned output_stream =
4730 ctx->shader_info->info.gs.output_streams[i];
4731 int length = util_last_bit(output_usage_mask);
4732
4733 if (!(ctx->output_mask & (1ull << i)) ||
4734 output_stream != stream)
4735 continue;
4736
4737 for (unsigned j = 0; j < length; j++) {
4738 LLVMValueRef value, soffset;
4739
4740 if (!(output_usage_mask & (1 << j)))
4741 continue;
4742
4743 soffset = LLVMConstInt(ctx->ac.i32,
4744 offset *
4745 ctx->gs_max_out_vertices * 16 * 4, false);
4746
4747 offset++;
4748
4749 value = ac_build_buffer_load(&ctx->ac,
4750 ctx->gsvs_ring[0],
4751 1, ctx->ac.i32_0,
4752 vtx_offset, soffset,
4753 0, ac_glc | ac_slc, true, false);
4754
4755 LLVMTypeRef type = LLVMGetAllocatedType(ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
4756 if (ac_get_type_size(type) == 2) {
4757 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
4758 value = LLVMBuildTrunc(ctx->ac.builder, value, ctx->ac.i16, "");
4759 }
4760
4761 LLVMBuildStore(ctx->ac.builder,
4762 ac_to_float(&ctx->ac, value), ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
4763 }
4764 }
4765
4766 if (ctx->shader_info->info.so.num_outputs)
4767 radv_emit_streamout(ctx, stream);
4768
4769 if (stream == 0) {
4770 handle_vs_outputs_post(ctx, false, true,
4771 &ctx->shader_info->vs.outinfo);
4772 }
4773
4774 LLVMBuildBr(ctx->ac.builder, end_bb);
4775 }
4776
4777 LLVMPositionBuilderAtEnd(ctx->ac.builder, end_bb);
4778 }
4779
4780 void
4781 radv_compile_gs_copy_shader(struct ac_llvm_compiler *ac_llvm,
4782 struct nir_shader *geom_shader,
4783 struct radv_shader_binary **rbinary,
4784 struct radv_shader_variant_info *shader_info,
4785 const struct radv_nir_compiler_options *options)
4786 {
4787 struct radv_shader_context ctx = {0};
4788 ctx.options = options;
4789 ctx.shader_info = shader_info;
4790
4791 enum ac_float_mode float_mode =
4792 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
4793 AC_FLOAT_MODE_DEFAULT;
4794
4795 ac_llvm_context_init(&ctx.ac, ac_llvm, options->chip_class,
4796 options->family, float_mode, 64, 64);
4797 ctx.context = ctx.ac.context;
4798
4799 ctx.is_gs_copy_shader = true;
4800 ctx.stage = MESA_SHADER_VERTEX;
4801
4802 radv_nir_shader_info_pass(geom_shader, options, &shader_info->info);
4803
4804 create_function(&ctx, MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX);
4805
4806 ctx.gs_max_out_vertices = geom_shader->info.gs.vertices_out;
4807 ac_setup_rings(&ctx);
4808
4809 nir_foreach_variable(variable, &geom_shader->outputs) {
4810 scan_shader_output_decl(&ctx, variable, geom_shader, MESA_SHADER_VERTEX);
4811 ac_handle_shader_output_decl(&ctx.ac, &ctx.abi, geom_shader,
4812 variable, MESA_SHADER_VERTEX);
4813 }
4814
4815 ac_gs_copy_shader_emit(&ctx);
4816
4817 LLVMBuildRetVoid(ctx.ac.builder);
4818
4819 ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, options);
4820
4821 ac_compile_llvm_module(ac_llvm, ctx.ac.module, rbinary, shader_info,
4822 MESA_SHADER_VERTEX, "GS Copy Shader", options);
4823 (*rbinary)->is_gs_copy_shader = true;
4824
4825 }