radv: add support for push constants inlining when possible
[mesa.git] / src / amd / vulkan / radv_nir_to_llvm.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "radv_private.h"
29 #include "radv_shader.h"
30 #include "radv_shader_helper.h"
31 #include "nir/nir.h"
32
33 #include <llvm-c/Core.h>
34 #include <llvm-c/TargetMachine.h>
35 #include <llvm-c/Transforms/Scalar.h>
36 #include <llvm-c/Transforms/Utils.h>
37
38 #include "sid.h"
39 #include "gfx9d.h"
40 #include "ac_binary.h"
41 #include "ac_llvm_util.h"
42 #include "ac_llvm_build.h"
43 #include "ac_shader_abi.h"
44 #include "ac_shader_util.h"
45 #include "ac_exp_param.h"
46
47 #define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)
48
49 struct radv_shader_context {
50 struct ac_llvm_context ac;
51 const struct radv_nir_compiler_options *options;
52 struct radv_shader_variant_info *shader_info;
53 struct ac_shader_abi abi;
54
55 unsigned max_workgroup_size;
56 LLVMContextRef context;
57 LLVMValueRef main_function;
58
59 LLVMValueRef descriptor_sets[RADV_UD_MAX_SETS];
60 LLVMValueRef ring_offsets;
61
62 LLVMValueRef vertex_buffers;
63 LLVMValueRef rel_auto_id;
64 LLVMValueRef vs_prim_id;
65 LLVMValueRef es2gs_offset;
66
67 LLVMValueRef oc_lds;
68 LLVMValueRef merged_wave_info;
69 LLVMValueRef tess_factor_offset;
70 LLVMValueRef tes_rel_patch_id;
71 LLVMValueRef tes_u;
72 LLVMValueRef tes_v;
73
74 LLVMValueRef gs2vs_offset;
75 LLVMValueRef gs_wave_id;
76 LLVMValueRef gs_vtx_offset[6];
77
78 LLVMValueRef esgs_ring;
79 LLVMValueRef gsvs_ring[4];
80 LLVMValueRef hs_ring_tess_offchip;
81 LLVMValueRef hs_ring_tess_factor;
82
83 LLVMValueRef persp_sample, persp_center, persp_centroid;
84 LLVMValueRef linear_sample, linear_center, linear_centroid;
85
86 /* Streamout */
87 LLVMValueRef streamout_buffers;
88 LLVMValueRef streamout_write_idx;
89 LLVMValueRef streamout_config;
90 LLVMValueRef streamout_offset[4];
91
92 gl_shader_stage stage;
93
94 LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];
95
96 uint64_t input_mask;
97 uint64_t output_mask;
98
99 bool is_gs_copy_shader;
100 LLVMValueRef gs_next_vertex[4];
101 unsigned gs_max_out_vertices;
102
103 unsigned tes_primitive_mode;
104
105 uint32_t tcs_patch_outputs_read;
106 uint64_t tcs_outputs_read;
107 uint32_t tcs_vertices_per_patch;
108 uint32_t tcs_num_inputs;
109 uint32_t tcs_num_patches;
110 uint32_t max_gsvs_emit_size;
111 uint32_t gsvs_vertex_size;
112 };
113
114 enum radeon_llvm_calling_convention {
115 RADEON_LLVM_AMDGPU_VS = 87,
116 RADEON_LLVM_AMDGPU_GS = 88,
117 RADEON_LLVM_AMDGPU_PS = 89,
118 RADEON_LLVM_AMDGPU_CS = 90,
119 RADEON_LLVM_AMDGPU_HS = 93,
120 };
121
122 static inline struct radv_shader_context *
123 radv_shader_context_from_abi(struct ac_shader_abi *abi)
124 {
125 struct radv_shader_context *ctx = NULL;
126 return container_of(abi, ctx, abi);
127 }
128
129 struct ac_build_if_state
130 {
131 struct radv_shader_context *ctx;
132 LLVMValueRef condition;
133 LLVMBasicBlockRef entry_block;
134 LLVMBasicBlockRef true_block;
135 LLVMBasicBlockRef false_block;
136 LLVMBasicBlockRef merge_block;
137 };
138
139 static LLVMBasicBlockRef
140 ac_build_insert_new_block(struct radv_shader_context *ctx, const char *name)
141 {
142 LLVMBasicBlockRef current_block;
143 LLVMBasicBlockRef next_block;
144 LLVMBasicBlockRef new_block;
145
146 /* get current basic block */
147 current_block = LLVMGetInsertBlock(ctx->ac.builder);
148
149 /* chqeck if there's another block after this one */
150 next_block = LLVMGetNextBasicBlock(current_block);
151 if (next_block) {
152 /* insert the new block before the next block */
153 new_block = LLVMInsertBasicBlockInContext(ctx->context, next_block, name);
154 }
155 else {
156 /* append new block after current block */
157 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
158 new_block = LLVMAppendBasicBlockInContext(ctx->context, function, name);
159 }
160 return new_block;
161 }
162
163 static void
164 ac_nir_build_if(struct ac_build_if_state *ifthen,
165 struct radv_shader_context *ctx,
166 LLVMValueRef condition)
167 {
168 LLVMBasicBlockRef block = LLVMGetInsertBlock(ctx->ac.builder);
169
170 memset(ifthen, 0, sizeof *ifthen);
171 ifthen->ctx = ctx;
172 ifthen->condition = condition;
173 ifthen->entry_block = block;
174
175 /* create endif/merge basic block for the phi functions */
176 ifthen->merge_block = ac_build_insert_new_block(ctx, "endif-block");
177
178 /* create/insert true_block before merge_block */
179 ifthen->true_block =
180 LLVMInsertBasicBlockInContext(ctx->context,
181 ifthen->merge_block,
182 "if-true-block");
183
184 /* successive code goes into the true block */
185 LLVMPositionBuilderAtEnd(ctx->ac.builder, ifthen->true_block);
186 }
187
188 /**
189 * End a conditional.
190 */
191 static void
192 ac_nir_build_endif(struct ac_build_if_state *ifthen)
193 {
194 LLVMBuilderRef builder = ifthen->ctx->ac.builder;
195
196 /* Insert branch to the merge block from current block */
197 LLVMBuildBr(builder, ifthen->merge_block);
198
199 /*
200 * Now patch in the various branch instructions.
201 */
202
203 /* Insert the conditional branch instruction at the end of entry_block */
204 LLVMPositionBuilderAtEnd(builder, ifthen->entry_block);
205 if (ifthen->false_block) {
206 /* we have an else clause */
207 LLVMBuildCondBr(builder, ifthen->condition,
208 ifthen->true_block, ifthen->false_block);
209 }
210 else {
211 /* no else clause */
212 LLVMBuildCondBr(builder, ifthen->condition,
213 ifthen->true_block, ifthen->merge_block);
214 }
215
216 /* Resume building code at end of the ifthen->merge_block */
217 LLVMPositionBuilderAtEnd(builder, ifthen->merge_block);
218 }
219
220
221 static LLVMValueRef get_rel_patch_id(struct radv_shader_context *ctx)
222 {
223 switch (ctx->stage) {
224 case MESA_SHADER_TESS_CTRL:
225 return ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
226 case MESA_SHADER_TESS_EVAL:
227 return ctx->tes_rel_patch_id;
228 break;
229 default:
230 unreachable("Illegal stage");
231 }
232 }
233
234 static unsigned
235 get_tcs_num_patches(struct radv_shader_context *ctx)
236 {
237 unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
238 unsigned num_tcs_output_cp = ctx->tcs_vertices_per_patch;
239 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
240 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
241 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
242 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
243 uint32_t output_vertex_size = num_tcs_outputs * 16;
244 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
245 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
246 unsigned num_patches;
247 unsigned hardware_lds_size;
248
249 /* Ensure that we only need one wave per SIMD so we don't need to check
250 * resource usage. Also ensures that the number of tcs in and out
251 * vertices per threadgroup are at most 256.
252 */
253 num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
254 /* Make sure that the data fits in LDS. This assumes the shaders only
255 * use LDS for the inputs and outputs.
256 */
257 hardware_lds_size = 32768;
258
259 /* Looks like STONEY hangs if we use more than 32 KiB LDS in a single
260 * threadgroup, even though there is more than 32 KiB LDS.
261 *
262 * Test: dEQP-VK.tessellation.shader_input_output.barrier
263 */
264 if (ctx->options->chip_class >= CIK && ctx->options->family != CHIP_STONEY)
265 hardware_lds_size = 65536;
266
267 num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size));
268 /* Make sure the output data fits in the offchip buffer */
269 num_patches = MIN2(num_patches, (ctx->options->tess_offchip_block_dw_size * 4) / output_patch_size);
270 /* Not necessary for correctness, but improves performance. The
271 * specific value is taken from the proprietary driver.
272 */
273 num_patches = MIN2(num_patches, 40);
274
275 /* SI bug workaround - limit LS-HS threadgroups to only one wave. */
276 if (ctx->options->chip_class == SI) {
277 unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp);
278 num_patches = MIN2(num_patches, one_wave);
279 }
280 return num_patches;
281 }
282
283 static unsigned
284 calculate_tess_lds_size(struct radv_shader_context *ctx)
285 {
286 unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
287 unsigned num_tcs_output_cp;
288 unsigned num_tcs_outputs, num_tcs_patch_outputs;
289 unsigned input_vertex_size, output_vertex_size;
290 unsigned input_patch_size, output_patch_size;
291 unsigned pervertex_output_patch_size;
292 unsigned output_patch0_offset;
293 unsigned num_patches;
294 unsigned lds_size;
295
296 num_tcs_output_cp = ctx->tcs_vertices_per_patch;
297 num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
298 num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
299
300 input_vertex_size = ctx->tcs_num_inputs * 16;
301 output_vertex_size = num_tcs_outputs * 16;
302
303 input_patch_size = num_tcs_input_cp * input_vertex_size;
304
305 pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
306 output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
307
308 num_patches = ctx->tcs_num_patches;
309 output_patch0_offset = input_patch_size * num_patches;
310
311 lds_size = output_patch0_offset + output_patch_size * num_patches;
312 return lds_size;
313 }
314
315 /* Tessellation shaders pass outputs to the next shader using LDS.
316 *
317 * LS outputs = TCS inputs
318 * TCS outputs = TES inputs
319 *
320 * The LDS layout is:
321 * - TCS inputs for patch 0
322 * - TCS inputs for patch 1
323 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
324 * - ...
325 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
326 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
327 * - TCS outputs for patch 1
328 * - Per-patch TCS outputs for patch 1
329 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
330 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
331 * - ...
332 *
333 * All three shaders VS(LS), TCS, TES share the same LDS space.
334 */
335 static LLVMValueRef
336 get_tcs_in_patch_stride(struct radv_shader_context *ctx)
337 {
338 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
339 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
340 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
341
342 input_patch_size /= 4;
343 return LLVMConstInt(ctx->ac.i32, input_patch_size, false);
344 }
345
346 static LLVMValueRef
347 get_tcs_out_patch_stride(struct radv_shader_context *ctx)
348 {
349 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
350 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
351 uint32_t output_vertex_size = num_tcs_outputs * 16;
352 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
353 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
354 output_patch_size /= 4;
355 return LLVMConstInt(ctx->ac.i32, output_patch_size, false);
356 }
357
358 static LLVMValueRef
359 get_tcs_out_vertex_stride(struct radv_shader_context *ctx)
360 {
361 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
362 uint32_t output_vertex_size = num_tcs_outputs * 16;
363 output_vertex_size /= 4;
364 return LLVMConstInt(ctx->ac.i32, output_vertex_size, false);
365 }
366
367 static LLVMValueRef
368 get_tcs_out_patch0_offset(struct radv_shader_context *ctx)
369 {
370 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
371 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
372 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
373 uint32_t output_patch0_offset = input_patch_size;
374 unsigned num_patches = ctx->tcs_num_patches;
375
376 output_patch0_offset *= num_patches;
377 output_patch0_offset /= 4;
378 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
379 }
380
381 static LLVMValueRef
382 get_tcs_out_patch0_patch_data_offset(struct radv_shader_context *ctx)
383 {
384 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
385 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
386 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
387 uint32_t output_patch0_offset = input_patch_size;
388
389 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
390 uint32_t output_vertex_size = num_tcs_outputs * 16;
391 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
392 unsigned num_patches = ctx->tcs_num_patches;
393
394 output_patch0_offset *= num_patches;
395 output_patch0_offset += pervertex_output_patch_size;
396 output_patch0_offset /= 4;
397 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
398 }
399
400 static LLVMValueRef
401 get_tcs_in_current_patch_offset(struct radv_shader_context *ctx)
402 {
403 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
404 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
405
406 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
407 }
408
409 static LLVMValueRef
410 get_tcs_out_current_patch_offset(struct radv_shader_context *ctx)
411 {
412 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
413 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
414 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
415
416 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
417 patch0_offset);
418 }
419
420 static LLVMValueRef
421 get_tcs_out_current_patch_data_offset(struct radv_shader_context *ctx)
422 {
423 LLVMValueRef patch0_patch_data_offset =
424 get_tcs_out_patch0_patch_data_offset(ctx);
425 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
426 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
427
428 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
429 patch0_patch_data_offset);
430 }
431
432 #define MAX_ARGS 64
433 struct arg_info {
434 LLVMTypeRef types[MAX_ARGS];
435 LLVMValueRef *assign[MAX_ARGS];
436 uint8_t count;
437 uint8_t sgpr_count;
438 uint8_t num_sgprs_used;
439 uint8_t num_vgprs_used;
440 };
441
442 enum ac_arg_regfile {
443 ARG_SGPR,
444 ARG_VGPR,
445 };
446
447 static void
448 add_arg(struct arg_info *info, enum ac_arg_regfile regfile, LLVMTypeRef type,
449 LLVMValueRef *param_ptr)
450 {
451 assert(info->count < MAX_ARGS);
452
453 info->assign[info->count] = param_ptr;
454 info->types[info->count] = type;
455 info->count++;
456
457 if (regfile == ARG_SGPR) {
458 info->num_sgprs_used += ac_get_type_size(type) / 4;
459 info->sgpr_count++;
460 } else {
461 assert(regfile == ARG_VGPR);
462 info->num_vgprs_used += ac_get_type_size(type) / 4;
463 }
464 }
465
466 static void assign_arguments(LLVMValueRef main_function,
467 struct arg_info *info)
468 {
469 unsigned i;
470 for (i = 0; i < info->count; i++) {
471 if (info->assign[i])
472 *info->assign[i] = LLVMGetParam(main_function, i);
473 }
474 }
475
476 static LLVMValueRef
477 create_llvm_function(LLVMContextRef ctx, LLVMModuleRef module,
478 LLVMBuilderRef builder, LLVMTypeRef *return_types,
479 unsigned num_return_elems,
480 struct arg_info *args,
481 unsigned max_workgroup_size,
482 const struct radv_nir_compiler_options *options)
483 {
484 LLVMTypeRef main_function_type, ret_type;
485 LLVMBasicBlockRef main_function_body;
486
487 if (num_return_elems)
488 ret_type = LLVMStructTypeInContext(ctx, return_types,
489 num_return_elems, true);
490 else
491 ret_type = LLVMVoidTypeInContext(ctx);
492
493 /* Setup the function */
494 main_function_type =
495 LLVMFunctionType(ret_type, args->types, args->count, 0);
496 LLVMValueRef main_function =
497 LLVMAddFunction(module, "main", main_function_type);
498 main_function_body =
499 LLVMAppendBasicBlockInContext(ctx, main_function, "main_body");
500 LLVMPositionBuilderAtEnd(builder, main_function_body);
501
502 LLVMSetFunctionCallConv(main_function, RADEON_LLVM_AMDGPU_CS);
503 for (unsigned i = 0; i < args->sgpr_count; ++i) {
504 LLVMValueRef P = LLVMGetParam(main_function, i);
505
506 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_INREG);
507
508 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
509 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_NOALIAS);
510 ac_add_attr_dereferenceable(P, UINT64_MAX);
511 }
512 }
513
514 if (options->address32_hi) {
515 ac_llvm_add_target_dep_function_attr(main_function,
516 "amdgpu-32bit-address-high-bits",
517 options->address32_hi);
518 }
519
520 if (max_workgroup_size) {
521 ac_llvm_add_target_dep_function_attr(main_function,
522 "amdgpu-max-work-group-size",
523 max_workgroup_size);
524 }
525 if (options->unsafe_math) {
526 /* These were copied from some LLVM test. */
527 LLVMAddTargetDependentFunctionAttr(main_function,
528 "less-precise-fpmad",
529 "true");
530 LLVMAddTargetDependentFunctionAttr(main_function,
531 "no-infs-fp-math",
532 "true");
533 LLVMAddTargetDependentFunctionAttr(main_function,
534 "no-nans-fp-math",
535 "true");
536 LLVMAddTargetDependentFunctionAttr(main_function,
537 "unsafe-fp-math",
538 "true");
539 LLVMAddTargetDependentFunctionAttr(main_function,
540 "no-signed-zeros-fp-math",
541 "true");
542 }
543 return main_function;
544 }
545
546
547 static void
548 set_loc(struct radv_userdata_info *ud_info, uint8_t *sgpr_idx,
549 uint8_t num_sgprs)
550 {
551 ud_info->sgpr_idx = *sgpr_idx;
552 ud_info->num_sgprs = num_sgprs;
553 *sgpr_idx += num_sgprs;
554 }
555
556 static void
557 set_loc_shader(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx,
558 uint8_t num_sgprs)
559 {
560 struct radv_userdata_info *ud_info =
561 &ctx->shader_info->user_sgprs_locs.shader_data[idx];
562 assert(ud_info);
563
564 set_loc(ud_info, sgpr_idx, num_sgprs);
565 }
566
567 static void
568 set_loc_shader_ptr(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx)
569 {
570 bool use_32bit_pointers = idx != AC_UD_SCRATCH_RING_OFFSETS;
571
572 set_loc_shader(ctx, idx, sgpr_idx, use_32bit_pointers ? 1 : 2);
573 }
574
575 static void
576 set_loc_desc(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx)
577 {
578 struct radv_userdata_locations *locs =
579 &ctx->shader_info->user_sgprs_locs;
580 struct radv_userdata_info *ud_info = &locs->descriptor_sets[idx];
581 assert(ud_info);
582
583 set_loc(ud_info, sgpr_idx, 1);
584
585 locs->descriptor_sets_enabled |= 1 << idx;
586 }
587
588 struct user_sgpr_info {
589 bool need_ring_offsets;
590 bool indirect_all_descriptor_sets;
591 uint8_t remaining_sgprs;
592 };
593
594 static bool needs_view_index_sgpr(struct radv_shader_context *ctx,
595 gl_shader_stage stage)
596 {
597 switch (stage) {
598 case MESA_SHADER_VERTEX:
599 if (ctx->shader_info->info.needs_multiview_view_index ||
600 (!ctx->options->key.vs.as_es && !ctx->options->key.vs.as_ls && ctx->options->key.has_multiview_view_index))
601 return true;
602 break;
603 case MESA_SHADER_TESS_EVAL:
604 if (ctx->shader_info->info.needs_multiview_view_index || (!ctx->options->key.tes.as_es && ctx->options->key.has_multiview_view_index))
605 return true;
606 break;
607 case MESA_SHADER_GEOMETRY:
608 case MESA_SHADER_TESS_CTRL:
609 if (ctx->shader_info->info.needs_multiview_view_index)
610 return true;
611 break;
612 default:
613 break;
614 }
615 return false;
616 }
617
618 static uint8_t
619 count_vs_user_sgprs(struct radv_shader_context *ctx)
620 {
621 uint8_t count = 0;
622
623 if (ctx->shader_info->info.vs.has_vertex_buffers)
624 count++;
625 count += ctx->shader_info->info.vs.needs_draw_id ? 3 : 2;
626
627 return count;
628 }
629
630 static void allocate_inline_push_consts(struct radv_shader_context *ctx,
631 struct user_sgpr_info *user_sgpr_info)
632 {
633 uint8_t remaining_sgprs = user_sgpr_info->remaining_sgprs;
634
635 /* Only supported if shaders use push constants. */
636 if (ctx->shader_info->info.min_push_constant_used == UINT8_MAX)
637 return;
638
639 /* Only supported if shaders don't have indirect push constants. */
640 if (ctx->shader_info->info.has_indirect_push_constants)
641 return;
642
643 /* Only supported for 32-bit push constants. */
644 if (!ctx->shader_info->info.has_only_32bit_push_constants)
645 return;
646
647 uint8_t num_push_consts =
648 (ctx->shader_info->info.max_push_constant_used -
649 ctx->shader_info->info.min_push_constant_used) / 4;
650
651 /* Check if the number of user SGPRs is large enough. */
652 if (num_push_consts < remaining_sgprs) {
653 ctx->shader_info->info.num_inline_push_consts = num_push_consts;
654 } else {
655 ctx->shader_info->info.num_inline_push_consts = remaining_sgprs;
656 }
657
658 /* Clamp to the maximum number of allowed inlined push constants. */
659 if (ctx->shader_info->info.num_inline_push_consts > AC_MAX_INLINE_PUSH_CONSTS)
660 ctx->shader_info->info.num_inline_push_consts = AC_MAX_INLINE_PUSH_CONSTS;
661
662 if (ctx->shader_info->info.num_inline_push_consts == num_push_consts &&
663 !ctx->shader_info->info.loads_dynamic_offsets) {
664 /* Disable the default push constants path if all constants are
665 * inlined and if shaders don't use dynamic descriptors.
666 */
667 ctx->shader_info->info.loads_push_constants = false;
668 }
669
670 ctx->shader_info->info.base_inline_push_consts =
671 ctx->shader_info->info.min_push_constant_used / 4;
672 }
673
674 static void allocate_user_sgprs(struct radv_shader_context *ctx,
675 gl_shader_stage stage,
676 bool has_previous_stage,
677 gl_shader_stage previous_stage,
678 bool needs_view_index,
679 struct user_sgpr_info *user_sgpr_info)
680 {
681 uint8_t user_sgpr_count = 0;
682
683 memset(user_sgpr_info, 0, sizeof(struct user_sgpr_info));
684
685 /* until we sort out scratch/global buffers always assign ring offsets for gs/vs/es */
686 if (stage == MESA_SHADER_GEOMETRY ||
687 stage == MESA_SHADER_VERTEX ||
688 stage == MESA_SHADER_TESS_CTRL ||
689 stage == MESA_SHADER_TESS_EVAL ||
690 ctx->is_gs_copy_shader)
691 user_sgpr_info->need_ring_offsets = true;
692
693 if (stage == MESA_SHADER_FRAGMENT &&
694 ctx->shader_info->info.ps.needs_sample_positions)
695 user_sgpr_info->need_ring_offsets = true;
696
697 /* 2 user sgprs will nearly always be allocated for scratch/rings */
698 if (ctx->options->supports_spill || user_sgpr_info->need_ring_offsets) {
699 user_sgpr_count += 2;
700 }
701
702 switch (stage) {
703 case MESA_SHADER_COMPUTE:
704 if (ctx->shader_info->info.cs.uses_grid_size)
705 user_sgpr_count += 3;
706 break;
707 case MESA_SHADER_FRAGMENT:
708 user_sgpr_count += ctx->shader_info->info.ps.needs_sample_positions;
709 break;
710 case MESA_SHADER_VERTEX:
711 if (!ctx->is_gs_copy_shader)
712 user_sgpr_count += count_vs_user_sgprs(ctx);
713 break;
714 case MESA_SHADER_TESS_CTRL:
715 if (has_previous_stage) {
716 if (previous_stage == MESA_SHADER_VERTEX)
717 user_sgpr_count += count_vs_user_sgprs(ctx);
718 }
719 break;
720 case MESA_SHADER_TESS_EVAL:
721 break;
722 case MESA_SHADER_GEOMETRY:
723 if (has_previous_stage) {
724 if (previous_stage == MESA_SHADER_VERTEX) {
725 user_sgpr_count += count_vs_user_sgprs(ctx);
726 }
727 }
728 break;
729 default:
730 break;
731 }
732
733 if (needs_view_index)
734 user_sgpr_count++;
735
736 if (ctx->shader_info->info.loads_push_constants)
737 user_sgpr_count++;
738
739 if (ctx->streamout_buffers)
740 user_sgpr_count++;
741
742 uint32_t available_sgprs = ctx->options->chip_class >= GFX9 && stage != MESA_SHADER_COMPUTE ? 32 : 16;
743 uint32_t remaining_sgprs = available_sgprs - user_sgpr_count;
744 uint32_t num_desc_set =
745 util_bitcount(ctx->shader_info->info.desc_set_used_mask);
746
747 if (remaining_sgprs < num_desc_set) {
748 user_sgpr_info->indirect_all_descriptor_sets = true;
749 user_sgpr_info->remaining_sgprs = remaining_sgprs - 1;
750 } else {
751 user_sgpr_info->remaining_sgprs = remaining_sgprs - num_desc_set;
752 }
753
754 allocate_inline_push_consts(ctx, user_sgpr_info);
755 }
756
757 static void
758 declare_global_input_sgprs(struct radv_shader_context *ctx,
759 const struct user_sgpr_info *user_sgpr_info,
760 struct arg_info *args,
761 LLVMValueRef *desc_sets)
762 {
763 LLVMTypeRef type = ac_array_in_const32_addr_space(ctx->ac.i8);
764
765 /* 1 for each descriptor set */
766 if (!user_sgpr_info->indirect_all_descriptor_sets) {
767 uint32_t mask = ctx->shader_info->info.desc_set_used_mask;
768
769 while (mask) {
770 int i = u_bit_scan(&mask);
771
772 add_arg(args, ARG_SGPR, type, &ctx->descriptor_sets[i]);
773 }
774 } else {
775 add_arg(args, ARG_SGPR, ac_array_in_const32_addr_space(type),
776 desc_sets);
777 }
778
779 if (ctx->shader_info->info.loads_push_constants) {
780 /* 1 for push constants and dynamic descriptors */
781 add_arg(args, ARG_SGPR, type, &ctx->abi.push_constants);
782 }
783
784 for (unsigned i = 0; i < ctx->shader_info->info.num_inline_push_consts; i++) {
785 add_arg(args, ARG_SGPR, ctx->ac.i32,
786 &ctx->abi.inline_push_consts[i]);
787 }
788 ctx->abi.num_inline_push_consts = ctx->shader_info->info.num_inline_push_consts;
789 ctx->abi.base_inline_push_consts = ctx->shader_info->info.base_inline_push_consts;
790
791 if (ctx->shader_info->info.so.num_outputs) {
792 add_arg(args, ARG_SGPR,
793 ac_array_in_const32_addr_space(ctx->ac.v4i32),
794 &ctx->streamout_buffers);
795 }
796 }
797
798 static void
799 declare_vs_specific_input_sgprs(struct radv_shader_context *ctx,
800 gl_shader_stage stage,
801 bool has_previous_stage,
802 gl_shader_stage previous_stage,
803 struct arg_info *args)
804 {
805 if (!ctx->is_gs_copy_shader &&
806 (stage == MESA_SHADER_VERTEX ||
807 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
808 if (ctx->shader_info->info.vs.has_vertex_buffers) {
809 add_arg(args, ARG_SGPR,
810 ac_array_in_const32_addr_space(ctx->ac.v4i32),
811 &ctx->vertex_buffers);
812 }
813 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.base_vertex);
814 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.start_instance);
815 if (ctx->shader_info->info.vs.needs_draw_id) {
816 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.draw_id);
817 }
818 }
819 }
820
821 static void
822 declare_vs_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
823 {
824 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.vertex_id);
825 if (!ctx->is_gs_copy_shader) {
826 if (ctx->options->key.vs.as_ls) {
827 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->rel_auto_id);
828 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
829 } else {
830 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
831 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->vs_prim_id);
832 }
833 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
834 }
835 }
836
837 static void
838 declare_streamout_sgprs(struct radv_shader_context *ctx, gl_shader_stage stage,
839 struct arg_info *args)
840 {
841 int i;
842
843 /* Streamout SGPRs. */
844 if (ctx->shader_info->info.so.num_outputs) {
845 assert(stage == MESA_SHADER_VERTEX ||
846 stage == MESA_SHADER_TESS_EVAL);
847
848 if (stage != MESA_SHADER_TESS_EVAL) {
849 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_config);
850 } else {
851 args->assign[args->count - 1] = &ctx->streamout_config;
852 args->types[args->count - 1] = ctx->ac.i32;
853 }
854
855 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_write_idx);
856 }
857
858 /* A streamout buffer offset is loaded if the stride is non-zero. */
859 for (i = 0; i < 4; i++) {
860 if (!ctx->shader_info->info.so.strides[i])
861 continue;
862
863 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_offset[i]);
864 }
865 }
866
867 static void
868 declare_tes_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
869 {
870 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_u);
871 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_v);
872 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->tes_rel_patch_id);
873 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.tes_patch_id);
874 }
875
876 static void
877 set_global_input_locs(struct radv_shader_context *ctx,
878 const struct user_sgpr_info *user_sgpr_info,
879 LLVMValueRef desc_sets, uint8_t *user_sgpr_idx)
880 {
881 uint32_t mask = ctx->shader_info->info.desc_set_used_mask;
882
883 if (!user_sgpr_info->indirect_all_descriptor_sets) {
884 while (mask) {
885 int i = u_bit_scan(&mask);
886
887 set_loc_desc(ctx, i, user_sgpr_idx);
888 }
889 } else {
890 set_loc_shader_ptr(ctx, AC_UD_INDIRECT_DESCRIPTOR_SETS,
891 user_sgpr_idx);
892
893 while (mask) {
894 int i = u_bit_scan(&mask);
895
896 ctx->descriptor_sets[i] =
897 ac_build_load_to_sgpr(&ctx->ac, desc_sets,
898 LLVMConstInt(ctx->ac.i32, i, false));
899
900 }
901
902 ctx->shader_info->need_indirect_descriptor_sets = true;
903 }
904
905 if (ctx->shader_info->info.loads_push_constants) {
906 set_loc_shader_ptr(ctx, AC_UD_PUSH_CONSTANTS, user_sgpr_idx);
907 }
908
909 if (ctx->shader_info->info.num_inline_push_consts) {
910 set_loc_shader(ctx, AC_UD_INLINE_PUSH_CONSTANTS, user_sgpr_idx,
911 ctx->shader_info->info.num_inline_push_consts);
912 }
913
914 if (ctx->streamout_buffers) {
915 set_loc_shader_ptr(ctx, AC_UD_STREAMOUT_BUFFERS,
916 user_sgpr_idx);
917 }
918 }
919
920 static void
921 set_vs_specific_input_locs(struct radv_shader_context *ctx,
922 gl_shader_stage stage, bool has_previous_stage,
923 gl_shader_stage previous_stage,
924 uint8_t *user_sgpr_idx)
925 {
926 if (!ctx->is_gs_copy_shader &&
927 (stage == MESA_SHADER_VERTEX ||
928 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
929 if (ctx->shader_info->info.vs.has_vertex_buffers) {
930 set_loc_shader_ptr(ctx, AC_UD_VS_VERTEX_BUFFERS,
931 user_sgpr_idx);
932 }
933
934 unsigned vs_num = 2;
935 if (ctx->shader_info->info.vs.needs_draw_id)
936 vs_num++;
937
938 set_loc_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE,
939 user_sgpr_idx, vs_num);
940 }
941 }
942
943 static void set_llvm_calling_convention(LLVMValueRef func,
944 gl_shader_stage stage)
945 {
946 enum radeon_llvm_calling_convention calling_conv;
947
948 switch (stage) {
949 case MESA_SHADER_VERTEX:
950 case MESA_SHADER_TESS_EVAL:
951 calling_conv = RADEON_LLVM_AMDGPU_VS;
952 break;
953 case MESA_SHADER_GEOMETRY:
954 calling_conv = RADEON_LLVM_AMDGPU_GS;
955 break;
956 case MESA_SHADER_TESS_CTRL:
957 calling_conv = RADEON_LLVM_AMDGPU_HS;
958 break;
959 case MESA_SHADER_FRAGMENT:
960 calling_conv = RADEON_LLVM_AMDGPU_PS;
961 break;
962 case MESA_SHADER_COMPUTE:
963 calling_conv = RADEON_LLVM_AMDGPU_CS;
964 break;
965 default:
966 unreachable("Unhandle shader type");
967 }
968
969 LLVMSetFunctionCallConv(func, calling_conv);
970 }
971
972 static void create_function(struct radv_shader_context *ctx,
973 gl_shader_stage stage,
974 bool has_previous_stage,
975 gl_shader_stage previous_stage)
976 {
977 uint8_t user_sgpr_idx;
978 struct user_sgpr_info user_sgpr_info;
979 struct arg_info args = {};
980 LLVMValueRef desc_sets;
981 bool needs_view_index = needs_view_index_sgpr(ctx, stage);
982 allocate_user_sgprs(ctx, stage, has_previous_stage,
983 previous_stage, needs_view_index, &user_sgpr_info);
984
985 if (user_sgpr_info.need_ring_offsets && !ctx->options->supports_spill) {
986 add_arg(&args, ARG_SGPR, ac_array_in_const_addr_space(ctx->ac.v4i32),
987 &ctx->ring_offsets);
988 }
989
990 switch (stage) {
991 case MESA_SHADER_COMPUTE:
992 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
993 &desc_sets);
994
995 if (ctx->shader_info->info.cs.uses_grid_size) {
996 add_arg(&args, ARG_SGPR, ctx->ac.v3i32,
997 &ctx->abi.num_work_groups);
998 }
999
1000 for (int i = 0; i < 3; i++) {
1001 ctx->abi.workgroup_ids[i] = NULL;
1002 if (ctx->shader_info->info.cs.uses_block_id[i]) {
1003 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1004 &ctx->abi.workgroup_ids[i]);
1005 }
1006 }
1007
1008 if (ctx->shader_info->info.cs.uses_local_invocation_idx)
1009 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.tg_size);
1010 add_arg(&args, ARG_VGPR, ctx->ac.v3i32,
1011 &ctx->abi.local_invocation_ids);
1012 break;
1013 case MESA_SHADER_VERTEX:
1014 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1015 &desc_sets);
1016
1017 declare_vs_specific_input_sgprs(ctx, stage, has_previous_stage,
1018 previous_stage, &args);
1019
1020 if (needs_view_index)
1021 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1022 &ctx->abi.view_index);
1023 if (ctx->options->key.vs.as_es) {
1024 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1025 &ctx->es2gs_offset);
1026 } else if (ctx->options->key.vs.as_ls) {
1027 /* no extra parameters */
1028 } else {
1029 declare_streamout_sgprs(ctx, stage, &args);
1030 }
1031
1032 declare_vs_input_vgprs(ctx, &args);
1033 break;
1034 case MESA_SHADER_TESS_CTRL:
1035 if (has_previous_stage) {
1036 // First 6 system regs
1037 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1038 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1039 &ctx->merged_wave_info);
1040 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1041 &ctx->tess_factor_offset);
1042
1043 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
1044 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1045 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1046
1047 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1048 &desc_sets);
1049
1050 declare_vs_specific_input_sgprs(ctx, stage,
1051 has_previous_stage,
1052 previous_stage, &args);
1053
1054 if (needs_view_index)
1055 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1056 &ctx->abi.view_index);
1057
1058 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1059 &ctx->abi.tcs_patch_id);
1060 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1061 &ctx->abi.tcs_rel_ids);
1062
1063 declare_vs_input_vgprs(ctx, &args);
1064 } else {
1065 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1066 &desc_sets);
1067
1068 if (needs_view_index)
1069 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1070 &ctx->abi.view_index);
1071
1072 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1073 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1074 &ctx->tess_factor_offset);
1075 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1076 &ctx->abi.tcs_patch_id);
1077 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1078 &ctx->abi.tcs_rel_ids);
1079 }
1080 break;
1081 case MESA_SHADER_TESS_EVAL:
1082 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1083 &desc_sets);
1084
1085 if (needs_view_index)
1086 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1087 &ctx->abi.view_index);
1088
1089 if (ctx->options->key.tes.as_es) {
1090 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1091 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
1092 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1093 &ctx->es2gs_offset);
1094 } else {
1095 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
1096 declare_streamout_sgprs(ctx, stage, &args);
1097 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1098 }
1099 declare_tes_input_vgprs(ctx, &args);
1100 break;
1101 case MESA_SHADER_GEOMETRY:
1102 if (has_previous_stage) {
1103 // First 6 system regs
1104 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1105 &ctx->gs2vs_offset);
1106 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1107 &ctx->merged_wave_info);
1108 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1109
1110 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
1111 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1112 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1113
1114 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1115 &desc_sets);
1116
1117 if (previous_stage != MESA_SHADER_TESS_EVAL) {
1118 declare_vs_specific_input_sgprs(ctx, stage,
1119 has_previous_stage,
1120 previous_stage,
1121 &args);
1122 }
1123
1124 if (needs_view_index)
1125 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1126 &ctx->abi.view_index);
1127
1128 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1129 &ctx->gs_vtx_offset[0]);
1130 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1131 &ctx->gs_vtx_offset[2]);
1132 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1133 &ctx->abi.gs_prim_id);
1134 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1135 &ctx->abi.gs_invocation_id);
1136 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1137 &ctx->gs_vtx_offset[4]);
1138
1139 if (previous_stage == MESA_SHADER_VERTEX) {
1140 declare_vs_input_vgprs(ctx, &args);
1141 } else {
1142 declare_tes_input_vgprs(ctx, &args);
1143 }
1144 } else {
1145 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1146 &desc_sets);
1147
1148 if (needs_view_index)
1149 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1150 &ctx->abi.view_index);
1151
1152 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs2vs_offset);
1153 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs_wave_id);
1154 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1155 &ctx->gs_vtx_offset[0]);
1156 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1157 &ctx->gs_vtx_offset[1]);
1158 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1159 &ctx->abi.gs_prim_id);
1160 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1161 &ctx->gs_vtx_offset[2]);
1162 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1163 &ctx->gs_vtx_offset[3]);
1164 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1165 &ctx->gs_vtx_offset[4]);
1166 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1167 &ctx->gs_vtx_offset[5]);
1168 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1169 &ctx->abi.gs_invocation_id);
1170 }
1171 break;
1172 case MESA_SHADER_FRAGMENT:
1173 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1174 &desc_sets);
1175
1176 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.prim_mask);
1177 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_sample);
1178 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_center);
1179 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_centroid);
1180 add_arg(&args, ARG_VGPR, ctx->ac.v3i32, NULL); /* persp pull model */
1181 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_sample);
1182 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_center);
1183 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_centroid);
1184 add_arg(&args, ARG_VGPR, ctx->ac.f32, NULL); /* line stipple tex */
1185 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[0]);
1186 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[1]);
1187 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[2]);
1188 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[3]);
1189 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.front_face);
1190 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.ancillary);
1191 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.sample_coverage);
1192 add_arg(&args, ARG_VGPR, ctx->ac.i32, NULL); /* fixed pt */
1193 break;
1194 default:
1195 unreachable("Shader stage not implemented");
1196 }
1197
1198 ctx->main_function = create_llvm_function(
1199 ctx->context, ctx->ac.module, ctx->ac.builder, NULL, 0, &args,
1200 ctx->max_workgroup_size, ctx->options);
1201 set_llvm_calling_convention(ctx->main_function, stage);
1202
1203
1204 ctx->shader_info->num_input_vgprs = 0;
1205 ctx->shader_info->num_input_sgprs = ctx->options->supports_spill ? 2 : 0;
1206
1207 ctx->shader_info->num_input_sgprs += args.num_sgprs_used;
1208
1209 if (ctx->stage != MESA_SHADER_FRAGMENT)
1210 ctx->shader_info->num_input_vgprs = args.num_vgprs_used;
1211
1212 assign_arguments(ctx->main_function, &args);
1213
1214 user_sgpr_idx = 0;
1215
1216 if (ctx->options->supports_spill || user_sgpr_info.need_ring_offsets) {
1217 set_loc_shader_ptr(ctx, AC_UD_SCRATCH_RING_OFFSETS,
1218 &user_sgpr_idx);
1219 if (ctx->options->supports_spill) {
1220 ctx->ring_offsets = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.implicit.buffer.ptr",
1221 LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_CONST),
1222 NULL, 0, AC_FUNC_ATTR_READNONE);
1223 ctx->ring_offsets = LLVMBuildBitCast(ctx->ac.builder, ctx->ring_offsets,
1224 ac_array_in_const_addr_space(ctx->ac.v4i32), "");
1225 }
1226 }
1227
1228 /* For merged shaders the user SGPRs start at 8, with 8 system SGPRs in front (including
1229 * the rw_buffers at s0/s1. With user SGPR0 = s8, lets restart the count from 0 */
1230 if (has_previous_stage)
1231 user_sgpr_idx = 0;
1232
1233 set_global_input_locs(ctx, &user_sgpr_info, desc_sets, &user_sgpr_idx);
1234
1235 switch (stage) {
1236 case MESA_SHADER_COMPUTE:
1237 if (ctx->shader_info->info.cs.uses_grid_size) {
1238 set_loc_shader(ctx, AC_UD_CS_GRID_SIZE,
1239 &user_sgpr_idx, 3);
1240 }
1241 break;
1242 case MESA_SHADER_VERTEX:
1243 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1244 previous_stage, &user_sgpr_idx);
1245 if (ctx->abi.view_index)
1246 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1247 break;
1248 case MESA_SHADER_TESS_CTRL:
1249 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1250 previous_stage, &user_sgpr_idx);
1251 if (ctx->abi.view_index)
1252 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1253 break;
1254 case MESA_SHADER_TESS_EVAL:
1255 if (ctx->abi.view_index)
1256 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1257 break;
1258 case MESA_SHADER_GEOMETRY:
1259 if (has_previous_stage) {
1260 if (previous_stage == MESA_SHADER_VERTEX)
1261 set_vs_specific_input_locs(ctx, stage,
1262 has_previous_stage,
1263 previous_stage,
1264 &user_sgpr_idx);
1265 }
1266 if (ctx->abi.view_index)
1267 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1268 break;
1269 case MESA_SHADER_FRAGMENT:
1270 break;
1271 default:
1272 unreachable("Shader stage not implemented");
1273 }
1274
1275 if (stage == MESA_SHADER_TESS_CTRL ||
1276 (stage == MESA_SHADER_VERTEX && ctx->options->key.vs.as_ls) ||
1277 /* GFX9 has the ESGS ring buffer in LDS. */
1278 (stage == MESA_SHADER_GEOMETRY && has_previous_stage)) {
1279 ac_declare_lds_as_pointer(&ctx->ac);
1280 }
1281
1282 ctx->shader_info->num_user_sgprs = user_sgpr_idx;
1283 }
1284
1285
1286 static LLVMValueRef
1287 radv_load_resource(struct ac_shader_abi *abi, LLVMValueRef index,
1288 unsigned desc_set, unsigned binding)
1289 {
1290 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1291 LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
1292 struct radv_pipeline_layout *pipeline_layout = ctx->options->layout;
1293 struct radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
1294 unsigned base_offset = layout->binding[binding].offset;
1295 LLVMValueRef offset, stride;
1296
1297 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1298 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1299 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start +
1300 layout->binding[binding].dynamic_offset_offset;
1301 desc_ptr = ctx->abi.push_constants;
1302 base_offset = pipeline_layout->push_constant_size + 16 * idx;
1303 stride = LLVMConstInt(ctx->ac.i32, 16, false);
1304 } else
1305 stride = LLVMConstInt(ctx->ac.i32, layout->binding[binding].size, false);
1306
1307 offset = ac_build_imad(&ctx->ac, index, stride,
1308 LLVMConstInt(ctx->ac.i32, base_offset, false));
1309
1310 desc_ptr = ac_build_gep0(&ctx->ac, desc_ptr, offset);
1311 desc_ptr = ac_cast_ptr(&ctx->ac, desc_ptr, ctx->ac.v4i32);
1312 LLVMSetMetadata(desc_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1313
1314 return desc_ptr;
1315 }
1316
1317
1318 /* The offchip buffer layout for TCS->TES is
1319 *
1320 * - attribute 0 of patch 0 vertex 0
1321 * - attribute 0 of patch 0 vertex 1
1322 * - attribute 0 of patch 0 vertex 2
1323 * ...
1324 * - attribute 0 of patch 1 vertex 0
1325 * - attribute 0 of patch 1 vertex 1
1326 * ...
1327 * - attribute 1 of patch 0 vertex 0
1328 * - attribute 1 of patch 0 vertex 1
1329 * ...
1330 * - per patch attribute 0 of patch 0
1331 * - per patch attribute 0 of patch 1
1332 * ...
1333 *
1334 * Note that every attribute has 4 components.
1335 */
1336 static LLVMValueRef get_non_vertex_index_offset(struct radv_shader_context *ctx)
1337 {
1338 uint32_t num_patches = ctx->tcs_num_patches;
1339 uint32_t num_tcs_outputs;
1340 if (ctx->stage == MESA_SHADER_TESS_CTRL)
1341 num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
1342 else
1343 num_tcs_outputs = ctx->options->key.tes.tcs_num_outputs;
1344
1345 uint32_t output_vertex_size = num_tcs_outputs * 16;
1346 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
1347
1348 return LLVMConstInt(ctx->ac.i32, pervertex_output_patch_size * num_patches, false);
1349 }
1350
1351 static LLVMValueRef calc_param_stride(struct radv_shader_context *ctx,
1352 LLVMValueRef vertex_index)
1353 {
1354 LLVMValueRef param_stride;
1355 if (vertex_index)
1356 param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_vertices_per_patch * ctx->tcs_num_patches, false);
1357 else
1358 param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_num_patches, false);
1359 return param_stride;
1360 }
1361
1362 static LLVMValueRef get_tcs_tes_buffer_address(struct radv_shader_context *ctx,
1363 LLVMValueRef vertex_index,
1364 LLVMValueRef param_index)
1365 {
1366 LLVMValueRef base_addr;
1367 LLVMValueRef param_stride, constant16;
1368 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
1369 LLVMValueRef vertices_per_patch = LLVMConstInt(ctx->ac.i32, ctx->tcs_vertices_per_patch, false);
1370 constant16 = LLVMConstInt(ctx->ac.i32, 16, false);
1371 param_stride = calc_param_stride(ctx, vertex_index);
1372 if (vertex_index) {
1373 base_addr = ac_build_imad(&ctx->ac, rel_patch_id,
1374 vertices_per_patch, vertex_index);
1375 } else {
1376 base_addr = rel_patch_id;
1377 }
1378
1379 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1380 LLVMBuildMul(ctx->ac.builder, param_index,
1381 param_stride, ""), "");
1382
1383 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
1384
1385 if (!vertex_index) {
1386 LLVMValueRef patch_data_offset = get_non_vertex_index_offset(ctx);
1387
1388 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1389 patch_data_offset, "");
1390 }
1391 return base_addr;
1392 }
1393
1394 static LLVMValueRef get_tcs_tes_buffer_address_params(struct radv_shader_context *ctx,
1395 unsigned param,
1396 unsigned const_index,
1397 bool is_compact,
1398 LLVMValueRef vertex_index,
1399 LLVMValueRef indir_index)
1400 {
1401 LLVMValueRef param_index;
1402
1403 if (indir_index)
1404 param_index = LLVMBuildAdd(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, param, false),
1405 indir_index, "");
1406 else {
1407 if (const_index && !is_compact)
1408 param += const_index;
1409 param_index = LLVMConstInt(ctx->ac.i32, param, false);
1410 }
1411 return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
1412 }
1413
1414 static LLVMValueRef
1415 get_dw_address(struct radv_shader_context *ctx,
1416 LLVMValueRef dw_addr,
1417 unsigned param,
1418 unsigned const_index,
1419 bool compact_const_index,
1420 LLVMValueRef vertex_index,
1421 LLVMValueRef stride,
1422 LLVMValueRef indir_index)
1423
1424 {
1425
1426 if (vertex_index) {
1427 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1428 LLVMBuildMul(ctx->ac.builder,
1429 vertex_index,
1430 stride, ""), "");
1431 }
1432
1433 if (indir_index)
1434 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1435 LLVMBuildMul(ctx->ac.builder, indir_index,
1436 LLVMConstInt(ctx->ac.i32, 4, false), ""), "");
1437 else if (const_index && !compact_const_index)
1438 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1439 LLVMConstInt(ctx->ac.i32, const_index * 4, false), "");
1440
1441 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1442 LLVMConstInt(ctx->ac.i32, param * 4, false), "");
1443
1444 if (const_index && compact_const_index)
1445 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1446 LLVMConstInt(ctx->ac.i32, const_index, false), "");
1447 return dw_addr;
1448 }
1449
1450 static LLVMValueRef
1451 load_tcs_varyings(struct ac_shader_abi *abi,
1452 LLVMTypeRef type,
1453 LLVMValueRef vertex_index,
1454 LLVMValueRef indir_index,
1455 unsigned const_index,
1456 unsigned location,
1457 unsigned driver_location,
1458 unsigned component,
1459 unsigned num_components,
1460 bool is_patch,
1461 bool is_compact,
1462 bool load_input)
1463 {
1464 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1465 LLVMValueRef dw_addr, stride;
1466 LLVMValueRef value[4], result;
1467 unsigned param = shader_io_get_unique_index(location);
1468
1469 if (load_input) {
1470 uint32_t input_vertex_size = (ctx->tcs_num_inputs * 16) / 4;
1471 stride = LLVMConstInt(ctx->ac.i32, input_vertex_size, false);
1472 dw_addr = get_tcs_in_current_patch_offset(ctx);
1473 } else {
1474 if (!is_patch) {
1475 stride = get_tcs_out_vertex_stride(ctx);
1476 dw_addr = get_tcs_out_current_patch_offset(ctx);
1477 } else {
1478 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1479 stride = NULL;
1480 }
1481 }
1482
1483 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
1484 indir_index);
1485
1486 for (unsigned i = 0; i < num_components + component; i++) {
1487 value[i] = ac_lds_load(&ctx->ac, dw_addr);
1488 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1489 ctx->ac.i32_1, "");
1490 }
1491 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1492 return result;
1493 }
1494
1495 static void
1496 store_tcs_output(struct ac_shader_abi *abi,
1497 const nir_variable *var,
1498 LLVMValueRef vertex_index,
1499 LLVMValueRef param_index,
1500 unsigned const_index,
1501 LLVMValueRef src,
1502 unsigned writemask)
1503 {
1504 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1505 const unsigned location = var->data.location;
1506 const unsigned component = var->data.location_frac;
1507 const bool is_patch = var->data.patch;
1508 const bool is_compact = var->data.compact;
1509 LLVMValueRef dw_addr;
1510 LLVMValueRef stride = NULL;
1511 LLVMValueRef buf_addr = NULL;
1512 unsigned param;
1513 bool store_lds = true;
1514
1515 if (is_patch) {
1516 if (!(ctx->tcs_patch_outputs_read & (1U << (location - VARYING_SLOT_PATCH0))))
1517 store_lds = false;
1518 } else {
1519 if (!(ctx->tcs_outputs_read & (1ULL << location)))
1520 store_lds = false;
1521 }
1522
1523 param = shader_io_get_unique_index(location);
1524 if (location == VARYING_SLOT_CLIP_DIST0 &&
1525 is_compact && const_index > 3) {
1526 const_index -= 3;
1527 param++;
1528 }
1529
1530 if (!is_patch) {
1531 stride = get_tcs_out_vertex_stride(ctx);
1532 dw_addr = get_tcs_out_current_patch_offset(ctx);
1533 } else {
1534 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1535 }
1536
1537 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
1538 param_index);
1539 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact,
1540 vertex_index, param_index);
1541
1542 bool is_tess_factor = false;
1543 if (location == VARYING_SLOT_TESS_LEVEL_INNER ||
1544 location == VARYING_SLOT_TESS_LEVEL_OUTER)
1545 is_tess_factor = true;
1546
1547 unsigned base = is_compact ? const_index : 0;
1548 for (unsigned chan = 0; chan < 8; chan++) {
1549 if (!(writemask & (1 << chan)))
1550 continue;
1551 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1552 value = ac_to_integer(&ctx->ac, value);
1553 value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
1554
1555 if (store_lds || is_tess_factor) {
1556 LLVMValueRef dw_addr_chan =
1557 LLVMBuildAdd(ctx->ac.builder, dw_addr,
1558 LLVMConstInt(ctx->ac.i32, chan, false), "");
1559 ac_lds_store(&ctx->ac, dw_addr_chan, value);
1560 }
1561
1562 if (!is_tess_factor && writemask != 0xF)
1563 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, value, 1,
1564 buf_addr, ctx->oc_lds,
1565 4 * (base + chan), 1, 0, true, false);
1566 }
1567
1568 if (writemask == 0xF) {
1569 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, src, 4,
1570 buf_addr, ctx->oc_lds,
1571 (base * 4), 1, 0, true, false);
1572 }
1573 }
1574
1575 static LLVMValueRef
1576 load_tes_input(struct ac_shader_abi *abi,
1577 LLVMTypeRef type,
1578 LLVMValueRef vertex_index,
1579 LLVMValueRef param_index,
1580 unsigned const_index,
1581 unsigned location,
1582 unsigned driver_location,
1583 unsigned component,
1584 unsigned num_components,
1585 bool is_patch,
1586 bool is_compact,
1587 bool load_input)
1588 {
1589 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1590 LLVMValueRef buf_addr;
1591 LLVMValueRef result;
1592 unsigned param = shader_io_get_unique_index(location);
1593
1594 if (location == VARYING_SLOT_CLIP_DIST0 && is_compact && const_index > 3) {
1595 const_index -= 3;
1596 param++;
1597 }
1598
1599 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index,
1600 is_compact, vertex_index, param_index);
1601
1602 LLVMValueRef comp_offset = LLVMConstInt(ctx->ac.i32, component * 4, false);
1603 buf_addr = LLVMBuildAdd(ctx->ac.builder, buf_addr, comp_offset, "");
1604
1605 result = ac_build_buffer_load(&ctx->ac, ctx->hs_ring_tess_offchip, num_components, NULL,
1606 buf_addr, ctx->oc_lds, is_compact ? (4 * const_index) : 0, 1, 0, true, false);
1607 result = ac_trim_vector(&ctx->ac, result, num_components);
1608 return result;
1609 }
1610
1611 static LLVMValueRef
1612 load_gs_input(struct ac_shader_abi *abi,
1613 unsigned location,
1614 unsigned driver_location,
1615 unsigned component,
1616 unsigned num_components,
1617 unsigned vertex_index,
1618 unsigned const_index,
1619 LLVMTypeRef type)
1620 {
1621 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1622 LLVMValueRef vtx_offset;
1623 unsigned param, vtx_offset_param;
1624 LLVMValueRef value[4], result;
1625
1626 vtx_offset_param = vertex_index;
1627 assert(vtx_offset_param < 6);
1628 vtx_offset = LLVMBuildMul(ctx->ac.builder, ctx->gs_vtx_offset[vtx_offset_param],
1629 LLVMConstInt(ctx->ac.i32, 4, false), "");
1630
1631 param = shader_io_get_unique_index(location);
1632
1633 for (unsigned i = component; i < num_components + component; i++) {
1634 if (ctx->ac.chip_class >= GFX9) {
1635 LLVMValueRef dw_addr = ctx->gs_vtx_offset[vtx_offset_param];
1636 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1637 LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index, 0), "");
1638 value[i] = ac_lds_load(&ctx->ac, dw_addr);
1639 } else {
1640 LLVMValueRef soffset =
1641 LLVMConstInt(ctx->ac.i32,
1642 (param * 4 + i + const_index) * 256,
1643 false);
1644
1645 value[i] = ac_build_buffer_load(&ctx->ac,
1646 ctx->esgs_ring, 1,
1647 ctx->ac.i32_0,
1648 vtx_offset, soffset,
1649 0, 1, 0, true, false);
1650 }
1651
1652 if (ac_get_type_size(type) == 2) {
1653 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], ctx->ac.i32, "");
1654 value[i] = LLVMBuildTrunc(ctx->ac.builder, value[i], ctx->ac.i16, "");
1655 }
1656 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], type, "");
1657 }
1658 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1659 result = ac_to_integer(&ctx->ac, result);
1660 return result;
1661 }
1662
1663
1664 static void radv_emit_kill(struct ac_shader_abi *abi, LLVMValueRef visible)
1665 {
1666 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1667 ac_build_kill_if_false(&ctx->ac, visible);
1668 }
1669
1670 static LLVMValueRef lookup_interp_param(struct ac_shader_abi *abi,
1671 enum glsl_interp_mode interp, unsigned location)
1672 {
1673 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1674
1675 switch (interp) {
1676 case INTERP_MODE_FLAT:
1677 default:
1678 return NULL;
1679 case INTERP_MODE_SMOOTH:
1680 case INTERP_MODE_NONE:
1681 if (location == INTERP_CENTER)
1682 return ctx->persp_center;
1683 else if (location == INTERP_CENTROID)
1684 return ctx->persp_centroid;
1685 else if (location == INTERP_SAMPLE)
1686 return ctx->persp_sample;
1687 break;
1688 case INTERP_MODE_NOPERSPECTIVE:
1689 if (location == INTERP_CENTER)
1690 return ctx->linear_center;
1691 else if (location == INTERP_CENTROID)
1692 return ctx->linear_centroid;
1693 else if (location == INTERP_SAMPLE)
1694 return ctx->linear_sample;
1695 break;
1696 }
1697 return NULL;
1698 }
1699
1700 static uint32_t
1701 radv_get_sample_pos_offset(uint32_t num_samples)
1702 {
1703 uint32_t sample_pos_offset = 0;
1704
1705 switch (num_samples) {
1706 case 2:
1707 sample_pos_offset = 1;
1708 break;
1709 case 4:
1710 sample_pos_offset = 3;
1711 break;
1712 case 8:
1713 sample_pos_offset = 7;
1714 break;
1715 default:
1716 break;
1717 }
1718 return sample_pos_offset;
1719 }
1720
1721 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi,
1722 LLVMValueRef sample_id)
1723 {
1724 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1725
1726 LLVMValueRef result;
1727 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_PS_SAMPLE_POSITIONS, false));
1728
1729 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
1730 ac_array_in_const_addr_space(ctx->ac.v2f32), "");
1731
1732 uint32_t sample_pos_offset =
1733 radv_get_sample_pos_offset(ctx->options->key.fs.num_samples);
1734
1735 sample_id =
1736 LLVMBuildAdd(ctx->ac.builder, sample_id,
1737 LLVMConstInt(ctx->ac.i32, sample_pos_offset, false), "");
1738 result = ac_build_load_invariant(&ctx->ac, ptr, sample_id);
1739
1740 return result;
1741 }
1742
1743
1744 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
1745 {
1746 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1747 uint8_t log2_ps_iter_samples;
1748
1749 if (ctx->shader_info->info.ps.force_persample) {
1750 log2_ps_iter_samples =
1751 util_logbase2(ctx->options->key.fs.num_samples);
1752 } else {
1753 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
1754 }
1755
1756 /* The bit pattern matches that used by fixed function fragment
1757 * processing. */
1758 static const uint16_t ps_iter_masks[] = {
1759 0xffff, /* not used */
1760 0x5555,
1761 0x1111,
1762 0x0101,
1763 0x0001,
1764 };
1765 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
1766
1767 uint32_t ps_iter_mask = ps_iter_masks[log2_ps_iter_samples];
1768
1769 LLVMValueRef result, sample_id;
1770 sample_id = ac_unpack_param(&ctx->ac, abi->ancillary, 8, 4);
1771 sample_id = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false), sample_id, "");
1772 result = LLVMBuildAnd(ctx->ac.builder, sample_id, abi->sample_coverage, "");
1773 return result;
1774 }
1775
1776
1777 static void
1778 visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
1779 {
1780 LLVMValueRef gs_next_vertex;
1781 LLVMValueRef can_emit;
1782 unsigned offset = 0;
1783 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1784
1785 /* Write vertex attribute values to GSVS ring */
1786 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
1787 ctx->gs_next_vertex[stream],
1788 "");
1789
1790 /* If this thread has already emitted the declared maximum number of
1791 * vertices, kill it: excessive vertex emissions are not supposed to
1792 * have any effect, and GS threads have no externally observable
1793 * effects other than emitting vertices.
1794 */
1795 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
1796 LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
1797 ac_build_kill_if_false(&ctx->ac, can_emit);
1798
1799 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
1800 unsigned output_usage_mask =
1801 ctx->shader_info->info.gs.output_usage_mask[i];
1802 uint8_t output_stream =
1803 ctx->shader_info->info.gs.output_streams[i];
1804 LLVMValueRef *out_ptr = &addrs[i * 4];
1805 int length = util_last_bit(output_usage_mask);
1806
1807 if (!(ctx->output_mask & (1ull << i)) ||
1808 output_stream != stream)
1809 continue;
1810
1811 for (unsigned j = 0; j < length; j++) {
1812 if (!(output_usage_mask & (1 << j)))
1813 continue;
1814
1815 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
1816 out_ptr[j], "");
1817 LLVMValueRef voffset =
1818 LLVMConstInt(ctx->ac.i32, offset *
1819 ctx->gs_max_out_vertices, false);
1820
1821 offset++;
1822
1823 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
1824 voffset = LLVMBuildMul(ctx->ac.builder, voffset, LLVMConstInt(ctx->ac.i32, 4, false), "");
1825
1826 out_val = ac_to_integer(&ctx->ac, out_val);
1827 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
1828
1829 ac_build_buffer_store_dword(&ctx->ac,
1830 ctx->gsvs_ring[stream],
1831 out_val, 1,
1832 voffset, ctx->gs2vs_offset, 0,
1833 1, 1, true, true);
1834 }
1835 }
1836
1837 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex,
1838 ctx->ac.i32_1, "");
1839 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
1840
1841 ac_build_sendmsg(&ctx->ac,
1842 AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
1843 ctx->gs_wave_id);
1844 }
1845
1846 static void
1847 visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
1848 {
1849 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1850 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
1851 }
1852
1853 static LLVMValueRef
1854 load_tess_coord(struct ac_shader_abi *abi)
1855 {
1856 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1857
1858 LLVMValueRef coord[4] = {
1859 ctx->tes_u,
1860 ctx->tes_v,
1861 ctx->ac.f32_0,
1862 ctx->ac.f32_0,
1863 };
1864
1865 if (ctx->tes_primitive_mode == GL_TRIANGLES)
1866 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
1867 LLVMBuildFAdd(ctx->ac.builder, coord[0], coord[1], ""), "");
1868
1869 return ac_build_gather_values(&ctx->ac, coord, 3);
1870 }
1871
1872 static LLVMValueRef
1873 load_patch_vertices_in(struct ac_shader_abi *abi)
1874 {
1875 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1876 return LLVMConstInt(ctx->ac.i32, ctx->options->key.tcs.input_vertices, false);
1877 }
1878
1879
1880 static LLVMValueRef radv_load_base_vertex(struct ac_shader_abi *abi)
1881 {
1882 return abi->base_vertex;
1883 }
1884
1885 static LLVMValueRef radv_load_ssbo(struct ac_shader_abi *abi,
1886 LLVMValueRef buffer_ptr, bool write)
1887 {
1888 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1889 LLVMValueRef result;
1890
1891 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1892
1893 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1894 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1895
1896 return result;
1897 }
1898
1899 static LLVMValueRef radv_load_ubo(struct ac_shader_abi *abi, LLVMValueRef buffer_ptr)
1900 {
1901 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1902 LLVMValueRef result;
1903
1904 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1905
1906 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1907 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1908
1909 return result;
1910 }
1911
1912 static LLVMValueRef radv_get_sampler_desc(struct ac_shader_abi *abi,
1913 unsigned descriptor_set,
1914 unsigned base_index,
1915 unsigned constant_index,
1916 LLVMValueRef index,
1917 enum ac_descriptor_type desc_type,
1918 bool image, bool write,
1919 bool bindless)
1920 {
1921 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1922 LLVMValueRef list = ctx->descriptor_sets[descriptor_set];
1923 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
1924 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
1925 unsigned offset = binding->offset;
1926 unsigned stride = binding->size;
1927 unsigned type_size;
1928 LLVMBuilderRef builder = ctx->ac.builder;
1929 LLVMTypeRef type;
1930
1931 assert(base_index < layout->binding_count);
1932
1933 switch (desc_type) {
1934 case AC_DESC_IMAGE:
1935 type = ctx->ac.v8i32;
1936 type_size = 32;
1937 break;
1938 case AC_DESC_FMASK:
1939 type = ctx->ac.v8i32;
1940 offset += 32;
1941 type_size = 32;
1942 break;
1943 case AC_DESC_SAMPLER:
1944 type = ctx->ac.v4i32;
1945 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
1946 offset += 64;
1947
1948 type_size = 16;
1949 break;
1950 case AC_DESC_BUFFER:
1951 type = ctx->ac.v4i32;
1952 type_size = 16;
1953 break;
1954 default:
1955 unreachable("invalid desc_type\n");
1956 }
1957
1958 offset += constant_index * stride;
1959
1960 if (desc_type == AC_DESC_SAMPLER && binding->immutable_samplers_offset &&
1961 (!index || binding->immutable_samplers_equal)) {
1962 if (binding->immutable_samplers_equal)
1963 constant_index = 0;
1964
1965 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
1966
1967 LLVMValueRef constants[] = {
1968 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 0], 0),
1969 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 1], 0),
1970 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 2], 0),
1971 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 3], 0),
1972 };
1973 return ac_build_gather_values(&ctx->ac, constants, 4);
1974 }
1975
1976 assert(stride % type_size == 0);
1977
1978 if (!index)
1979 index = ctx->ac.i32_0;
1980
1981 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->ac.i32, stride / type_size, 0), "");
1982
1983 list = ac_build_gep0(&ctx->ac, list, LLVMConstInt(ctx->ac.i32, offset, 0));
1984 list = LLVMBuildPointerCast(builder, list,
1985 ac_array_in_const32_addr_space(type), "");
1986
1987 return ac_build_load_to_sgpr(&ctx->ac, list, index);
1988 }
1989
1990 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
1991 * so we may need to fix it up. */
1992 static LLVMValueRef
1993 adjust_vertex_fetch_alpha(struct radv_shader_context *ctx,
1994 unsigned adjustment,
1995 LLVMValueRef alpha)
1996 {
1997 if (adjustment == RADV_ALPHA_ADJUST_NONE)
1998 return alpha;
1999
2000 LLVMValueRef c30 = LLVMConstInt(ctx->ac.i32, 30, 0);
2001
2002 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
2003 alpha = LLVMBuildFPToUI(ctx->ac.builder, alpha, ctx->ac.i32, "");
2004 else
2005 alpha = ac_to_integer(&ctx->ac, alpha);
2006
2007 /* For the integer-like cases, do a natural sign extension.
2008 *
2009 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
2010 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
2011 * exponent.
2012 */
2013 alpha = LLVMBuildShl(ctx->ac.builder, alpha,
2014 adjustment == RADV_ALPHA_ADJUST_SNORM ?
2015 LLVMConstInt(ctx->ac.i32, 7, 0) : c30, "");
2016 alpha = LLVMBuildAShr(ctx->ac.builder, alpha, c30, "");
2017
2018 /* Convert back to the right type. */
2019 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
2020 LLVMValueRef clamp;
2021 LLVMValueRef neg_one = LLVMConstReal(ctx->ac.f32, -1.0);
2022 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
2023 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, alpha, neg_one, "");
2024 alpha = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, alpha, "");
2025 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
2026 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
2027 }
2028
2029 return alpha;
2030 }
2031
2032 static void
2033 handle_vs_input_decl(struct radv_shader_context *ctx,
2034 struct nir_variable *variable)
2035 {
2036 LLVMValueRef t_list_ptr = ctx->vertex_buffers;
2037 LLVMValueRef t_offset;
2038 LLVMValueRef t_list;
2039 LLVMValueRef input;
2040 LLVMValueRef buffer_index;
2041 unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
2042 uint8_t input_usage_mask =
2043 ctx->shader_info->info.vs.input_usage_mask[variable->data.location];
2044 unsigned num_channels = util_last_bit(input_usage_mask);
2045
2046 variable->data.driver_location = variable->data.location * 4;
2047
2048 enum glsl_base_type type = glsl_get_base_type(variable->type);
2049 for (unsigned i = 0; i < attrib_count; ++i) {
2050 LLVMValueRef output[4];
2051 unsigned attrib_index = variable->data.location + i - VERT_ATTRIB_GENERIC0;
2052
2053 if (ctx->options->key.vs.instance_rate_inputs & (1u << attrib_index)) {
2054 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[attrib_index];
2055
2056 if (divisor) {
2057 buffer_index = ctx->abi.instance_id;
2058
2059 if (divisor != 1) {
2060 buffer_index = LLVMBuildUDiv(ctx->ac.builder, buffer_index,
2061 LLVMConstInt(ctx->ac.i32, divisor, 0), "");
2062 }
2063
2064 if (ctx->options->key.vs.as_ls) {
2065 ctx->shader_info->vs.vgpr_comp_cnt =
2066 MAX2(2, ctx->shader_info->vs.vgpr_comp_cnt);
2067 } else {
2068 ctx->shader_info->vs.vgpr_comp_cnt =
2069 MAX2(1, ctx->shader_info->vs.vgpr_comp_cnt);
2070 }
2071 } else {
2072 buffer_index = ctx->ac.i32_0;
2073 }
2074
2075 buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.start_instance, buffer_index, "");
2076 } else
2077 buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.vertex_id,
2078 ctx->abi.base_vertex, "");
2079 t_offset = LLVMConstInt(ctx->ac.i32, attrib_index, false);
2080
2081 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
2082
2083 input = ac_build_buffer_load_format(&ctx->ac, t_list,
2084 buffer_index,
2085 ctx->ac.i32_0,
2086 num_channels, false, true);
2087
2088 input = ac_build_expand_to_vec4(&ctx->ac, input, num_channels);
2089
2090 for (unsigned chan = 0; chan < 4; chan++) {
2091 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
2092 output[chan] = LLVMBuildExtractElement(ctx->ac.builder, input, llvm_chan, "");
2093 if (type == GLSL_TYPE_FLOAT16) {
2094 output[chan] = LLVMBuildBitCast(ctx->ac.builder, output[chan], ctx->ac.f32, "");
2095 output[chan] = LLVMBuildFPTrunc(ctx->ac.builder, output[chan], ctx->ac.f16, "");
2096 }
2097 }
2098
2099 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (attrib_index * 2)) & 3;
2100 output[3] = adjust_vertex_fetch_alpha(ctx, alpha_adjust, output[3]);
2101
2102 for (unsigned chan = 0; chan < 4; chan++) {
2103 output[chan] = ac_to_integer(&ctx->ac, output[chan]);
2104 if (type == GLSL_TYPE_UINT16 || type == GLSL_TYPE_INT16)
2105 output[chan] = LLVMBuildTrunc(ctx->ac.builder, output[chan], ctx->ac.i16, "");
2106
2107 ctx->inputs[ac_llvm_reg_index_soa(variable->data.location + i, chan)] = output[chan];
2108 }
2109 }
2110 }
2111
2112 static void interp_fs_input(struct radv_shader_context *ctx,
2113 unsigned attr,
2114 LLVMValueRef interp_param,
2115 LLVMValueRef prim_mask,
2116 LLVMValueRef result[4])
2117 {
2118 LLVMValueRef attr_number;
2119 unsigned chan;
2120 LLVMValueRef i, j;
2121 bool interp = !LLVMIsUndef(interp_param);
2122
2123 attr_number = LLVMConstInt(ctx->ac.i32, attr, false);
2124
2125 /* fs.constant returns the param from the middle vertex, so it's not
2126 * really useful for flat shading. It's meant to be used for custom
2127 * interpolation (but the intrinsic can't fetch from the other two
2128 * vertices).
2129 *
2130 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
2131 * to do the right thing. The only reason we use fs.constant is that
2132 * fs.interp cannot be used on integers, because they can be equal
2133 * to NaN.
2134 */
2135 if (interp) {
2136 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
2137 ctx->ac.v2f32, "");
2138
2139 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
2140 ctx->ac.i32_0, "");
2141 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
2142 ctx->ac.i32_1, "");
2143 }
2144
2145 for (chan = 0; chan < 4; chan++) {
2146 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
2147
2148 if (interp) {
2149 result[chan] = ac_build_fs_interp(&ctx->ac,
2150 llvm_chan,
2151 attr_number,
2152 prim_mask, i, j);
2153 } else {
2154 result[chan] = ac_build_fs_interp_mov(&ctx->ac,
2155 LLVMConstInt(ctx->ac.i32, 2, false),
2156 llvm_chan,
2157 attr_number,
2158 prim_mask);
2159 result[chan] = LLVMBuildBitCast(ctx->ac.builder, result[chan], ctx->ac.i32, "");
2160 result[chan] = LLVMBuildTruncOrBitCast(ctx->ac.builder, result[chan], LLVMTypeOf(interp_param), "");
2161 }
2162 }
2163 }
2164
2165 static void
2166 handle_fs_input_decl(struct radv_shader_context *ctx,
2167 struct nir_variable *variable)
2168 {
2169 int idx = variable->data.location;
2170 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
2171 LLVMValueRef interp = NULL;
2172 uint64_t mask;
2173
2174 variable->data.driver_location = idx * 4;
2175 mask = ((1ull << attrib_count) - 1) << variable->data.location;
2176
2177 if (glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_FLOAT) {
2178 unsigned interp_type;
2179 if (variable->data.sample)
2180 interp_type = INTERP_SAMPLE;
2181 else if (variable->data.centroid)
2182 interp_type = INTERP_CENTROID;
2183 else
2184 interp_type = INTERP_CENTER;
2185
2186 interp = lookup_interp_param(&ctx->abi, variable->data.interpolation, interp_type);
2187 }
2188 bool is_16bit = glsl_type_is_16bit(glsl_without_array(variable->type));
2189 LLVMTypeRef type = is_16bit ? ctx->ac.i16 : ctx->ac.i32;
2190 if (interp == NULL)
2191 interp = LLVMGetUndef(type);
2192
2193 for (unsigned i = 0; i < attrib_count; ++i)
2194 ctx->inputs[ac_llvm_reg_index_soa(idx + i, 0)] = interp;
2195
2196 if (idx == VARYING_SLOT_CLIP_DIST0) {
2197 /* Do not account for the number of components inside the array
2198 * of clip/cull distances because this might wrongly set other
2199 * bits like primitive ID or layer.
2200 */
2201 mask = 1ull << VARYING_SLOT_CLIP_DIST0;
2202 }
2203
2204 ctx->input_mask |= mask;
2205 }
2206
2207 static void
2208 handle_vs_inputs(struct radv_shader_context *ctx,
2209 struct nir_shader *nir) {
2210 nir_foreach_variable(variable, &nir->inputs)
2211 handle_vs_input_decl(ctx, variable);
2212 }
2213
2214 static void
2215 prepare_interp_optimize(struct radv_shader_context *ctx,
2216 struct nir_shader *nir)
2217 {
2218 bool uses_center = false;
2219 bool uses_centroid = false;
2220 nir_foreach_variable(variable, &nir->inputs) {
2221 if (glsl_get_base_type(glsl_without_array(variable->type)) != GLSL_TYPE_FLOAT ||
2222 variable->data.sample)
2223 continue;
2224
2225 if (variable->data.centroid)
2226 uses_centroid = true;
2227 else
2228 uses_center = true;
2229 }
2230
2231 if (uses_center && uses_centroid) {
2232 LLVMValueRef sel = LLVMBuildICmp(ctx->ac.builder, LLVMIntSLT, ctx->abi.prim_mask, ctx->ac.i32_0, "");
2233 ctx->persp_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->persp_center, ctx->persp_centroid, "");
2234 ctx->linear_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->linear_center, ctx->linear_centroid, "");
2235 }
2236 }
2237
2238 static void
2239 handle_fs_inputs(struct radv_shader_context *ctx,
2240 struct nir_shader *nir)
2241 {
2242 prepare_interp_optimize(ctx, nir);
2243
2244 nir_foreach_variable(variable, &nir->inputs)
2245 handle_fs_input_decl(ctx, variable);
2246
2247 unsigned index = 0;
2248
2249 if (ctx->shader_info->info.ps.uses_input_attachments ||
2250 ctx->shader_info->info.needs_multiview_view_index) {
2251 ctx->input_mask |= 1ull << VARYING_SLOT_LAYER;
2252 ctx->inputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)] = LLVMGetUndef(ctx->ac.i32);
2253 }
2254
2255 for (unsigned i = 0; i < RADEON_LLVM_MAX_INPUTS; ++i) {
2256 LLVMValueRef interp_param;
2257 LLVMValueRef *inputs = ctx->inputs +ac_llvm_reg_index_soa(i, 0);
2258
2259 if (!(ctx->input_mask & (1ull << i)))
2260 continue;
2261
2262 if (i >= VARYING_SLOT_VAR0 || i == VARYING_SLOT_PNTC ||
2263 i == VARYING_SLOT_PRIMITIVE_ID || i == VARYING_SLOT_LAYER) {
2264 interp_param = *inputs;
2265 interp_fs_input(ctx, index, interp_param, ctx->abi.prim_mask,
2266 inputs);
2267
2268 if (LLVMIsUndef(interp_param))
2269 ctx->shader_info->fs.flat_shaded_mask |= 1u << index;
2270 if (i >= VARYING_SLOT_VAR0)
2271 ctx->abi.fs_input_attr_indices[i - VARYING_SLOT_VAR0] = index;
2272 ++index;
2273 } else if (i == VARYING_SLOT_CLIP_DIST0) {
2274 int length = ctx->shader_info->info.ps.num_input_clips_culls;
2275
2276 for (unsigned j = 0; j < length; j += 4) {
2277 inputs = ctx->inputs + ac_llvm_reg_index_soa(i, j);
2278
2279 interp_param = *inputs;
2280 interp_fs_input(ctx, index, interp_param,
2281 ctx->abi.prim_mask, inputs);
2282 ++index;
2283 }
2284 } else if (i == VARYING_SLOT_POS) {
2285 for(int i = 0; i < 3; ++i)
2286 inputs[i] = ctx->abi.frag_pos[i];
2287
2288 inputs[3] = ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
2289 ctx->abi.frag_pos[3]);
2290 }
2291 }
2292 ctx->shader_info->fs.num_interp = index;
2293 ctx->shader_info->fs.input_mask = ctx->input_mask >> VARYING_SLOT_VAR0;
2294
2295 if (ctx->shader_info->info.needs_multiview_view_index)
2296 ctx->abi.view_index = ctx->inputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
2297 }
2298
2299 static void
2300 scan_shader_output_decl(struct radv_shader_context *ctx,
2301 struct nir_variable *variable,
2302 struct nir_shader *shader,
2303 gl_shader_stage stage)
2304 {
2305 int idx = variable->data.location + variable->data.index;
2306 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
2307 uint64_t mask_attribs;
2308
2309 variable->data.driver_location = idx * 4;
2310
2311 /* tess ctrl has it's own load/store paths for outputs */
2312 if (stage == MESA_SHADER_TESS_CTRL)
2313 return;
2314
2315 mask_attribs = ((1ull << attrib_count) - 1) << idx;
2316 if (stage == MESA_SHADER_VERTEX ||
2317 stage == MESA_SHADER_TESS_EVAL ||
2318 stage == MESA_SHADER_GEOMETRY) {
2319 if (idx == VARYING_SLOT_CLIP_DIST0) {
2320 if (stage == MESA_SHADER_VERTEX) {
2321 ctx->shader_info->vs.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
2322 ctx->shader_info->vs.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
2323 ctx->shader_info->vs.outinfo.cull_dist_mask <<= shader->info.clip_distance_array_size;
2324 }
2325 if (stage == MESA_SHADER_TESS_EVAL) {
2326 ctx->shader_info->tes.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
2327 ctx->shader_info->tes.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
2328 ctx->shader_info->tes.outinfo.cull_dist_mask <<= shader->info.clip_distance_array_size;
2329 }
2330
2331 mask_attribs = 1ull << idx;
2332 }
2333 }
2334
2335 ctx->output_mask |= mask_attribs;
2336 }
2337
2338
2339 /* Initialize arguments for the shader export intrinsic */
2340 static void
2341 si_llvm_init_export_args(struct radv_shader_context *ctx,
2342 LLVMValueRef *values,
2343 unsigned enabled_channels,
2344 unsigned target,
2345 struct ac_export_args *args)
2346 {
2347 /* Specify the channels that are enabled. */
2348 args->enabled_channels = enabled_channels;
2349
2350 /* Specify whether the EXEC mask represents the valid mask */
2351 args->valid_mask = 0;
2352
2353 /* Specify whether this is the last export */
2354 args->done = 0;
2355
2356 /* Specify the target we are exporting */
2357 args->target = target;
2358
2359 args->compr = false;
2360 args->out[0] = LLVMGetUndef(ctx->ac.f32);
2361 args->out[1] = LLVMGetUndef(ctx->ac.f32);
2362 args->out[2] = LLVMGetUndef(ctx->ac.f32);
2363 args->out[3] = LLVMGetUndef(ctx->ac.f32);
2364
2365 if (!values)
2366 return;
2367
2368 bool is_16bit = ac_get_type_size(LLVMTypeOf(values[0])) == 2;
2369 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2370 unsigned index = target - V_008DFC_SQ_EXP_MRT;
2371 unsigned col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
2372 bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
2373 bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
2374 unsigned chan;
2375
2376 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2377 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2378 unsigned bits, bool hi) = NULL;
2379
2380 switch(col_format) {
2381 case V_028714_SPI_SHADER_ZERO:
2382 args->enabled_channels = 0; /* writemask */
2383 args->target = V_008DFC_SQ_EXP_NULL;
2384 break;
2385
2386 case V_028714_SPI_SHADER_32_R:
2387 args->enabled_channels = 1;
2388 args->out[0] = values[0];
2389 break;
2390
2391 case V_028714_SPI_SHADER_32_GR:
2392 args->enabled_channels = 0x3;
2393 args->out[0] = values[0];
2394 args->out[1] = values[1];
2395 break;
2396
2397 case V_028714_SPI_SHADER_32_AR:
2398 args->enabled_channels = 0x9;
2399 args->out[0] = values[0];
2400 args->out[3] = values[3];
2401 break;
2402
2403 case V_028714_SPI_SHADER_FP16_ABGR:
2404 args->enabled_channels = 0x5;
2405 packf = ac_build_cvt_pkrtz_f16;
2406 if (is_16bit) {
2407 for (unsigned chan = 0; chan < 4; chan++)
2408 values[chan] = LLVMBuildFPExt(ctx->ac.builder,
2409 values[chan],
2410 ctx->ac.f32, "");
2411 }
2412 break;
2413
2414 case V_028714_SPI_SHADER_UNORM16_ABGR:
2415 args->enabled_channels = 0x5;
2416 packf = ac_build_cvt_pknorm_u16;
2417 break;
2418
2419 case V_028714_SPI_SHADER_SNORM16_ABGR:
2420 args->enabled_channels = 0x5;
2421 packf = ac_build_cvt_pknorm_i16;
2422 break;
2423
2424 case V_028714_SPI_SHADER_UINT16_ABGR:
2425 args->enabled_channels = 0x5;
2426 packi = ac_build_cvt_pk_u16;
2427 if (is_16bit) {
2428 for (unsigned chan = 0; chan < 4; chan++)
2429 values[chan] = LLVMBuildZExt(ctx->ac.builder,
2430 values[chan],
2431 ctx->ac.i32, "");
2432 }
2433 break;
2434
2435 case V_028714_SPI_SHADER_SINT16_ABGR:
2436 args->enabled_channels = 0x5;
2437 packi = ac_build_cvt_pk_i16;
2438 if (is_16bit) {
2439 for (unsigned chan = 0; chan < 4; chan++)
2440 values[chan] = LLVMBuildSExt(ctx->ac.builder,
2441 values[chan],
2442 ctx->ac.i32, "");
2443 }
2444 break;
2445
2446 default:
2447 case V_028714_SPI_SHADER_32_ABGR:
2448 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2449 break;
2450 }
2451
2452 /* Pack f16 or norm_i16/u16. */
2453 if (packf) {
2454 for (chan = 0; chan < 2; chan++) {
2455 LLVMValueRef pack_args[2] = {
2456 values[2 * chan],
2457 values[2 * chan + 1]
2458 };
2459 LLVMValueRef packed;
2460
2461 packed = packf(&ctx->ac, pack_args);
2462 args->out[chan] = ac_to_float(&ctx->ac, packed);
2463 }
2464 args->compr = 1; /* COMPR flag */
2465 }
2466
2467 /* Pack i16/u16. */
2468 if (packi) {
2469 for (chan = 0; chan < 2; chan++) {
2470 LLVMValueRef pack_args[2] = {
2471 ac_to_integer(&ctx->ac, values[2 * chan]),
2472 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2473 };
2474 LLVMValueRef packed;
2475
2476 packed = packi(&ctx->ac, pack_args,
2477 is_int8 ? 8 : is_int10 ? 10 : 16,
2478 chan == 1);
2479 args->out[chan] = ac_to_float(&ctx->ac, packed);
2480 }
2481 args->compr = 1; /* COMPR flag */
2482 }
2483 return;
2484 }
2485
2486 if (is_16bit) {
2487 for (unsigned chan = 0; chan < 4; chan++) {
2488 values[chan] = LLVMBuildBitCast(ctx->ac.builder, values[chan], ctx->ac.i16, "");
2489 args->out[chan] = LLVMBuildZExt(ctx->ac.builder, values[chan], ctx->ac.i32, "");
2490 }
2491 } else
2492 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2493
2494 for (unsigned i = 0; i < 4; ++i) {
2495 if (!(args->enabled_channels & (1 << i)))
2496 continue;
2497
2498 args->out[i] = ac_to_float(&ctx->ac, args->out[i]);
2499 }
2500 }
2501
2502 static void
2503 radv_export_param(struct radv_shader_context *ctx, unsigned index,
2504 LLVMValueRef *values, unsigned enabled_channels)
2505 {
2506 struct ac_export_args args;
2507
2508 si_llvm_init_export_args(ctx, values, enabled_channels,
2509 V_008DFC_SQ_EXP_PARAM + index, &args);
2510 ac_build_export(&ctx->ac, &args);
2511 }
2512
2513 static LLVMValueRef
2514 radv_load_output(struct radv_shader_context *ctx, unsigned index, unsigned chan)
2515 {
2516 LLVMValueRef output =
2517 ctx->abi.outputs[ac_llvm_reg_index_soa(index, chan)];
2518
2519 return LLVMBuildLoad(ctx->ac.builder, output, "");
2520 }
2521
2522 static void
2523 radv_emit_stream_output(struct radv_shader_context *ctx,
2524 LLVMValueRef const *so_buffers,
2525 LLVMValueRef const *so_write_offsets,
2526 const struct radv_stream_output *output)
2527 {
2528 unsigned num_comps = util_bitcount(output->component_mask);
2529 unsigned loc = output->location;
2530 unsigned buf = output->buffer;
2531 unsigned offset = output->offset;
2532 unsigned start;
2533 LLVMValueRef out[4];
2534
2535 assert(num_comps && num_comps <= 4);
2536 if (!num_comps || num_comps > 4)
2537 return;
2538
2539 /* Get the first component. */
2540 start = ffs(output->component_mask) - 1;
2541
2542 /* Load the output as int. */
2543 for (int i = 0; i < num_comps; i++) {
2544 out[i] = ac_to_integer(&ctx->ac,
2545 radv_load_output(ctx, loc, start + i));
2546 }
2547
2548 /* Pack the output. */
2549 LLVMValueRef vdata = NULL;
2550
2551 switch (num_comps) {
2552 case 1: /* as i32 */
2553 vdata = out[0];
2554 break;
2555 case 2: /* as v2i32 */
2556 case 3: /* as v4i32 (aligned to 4) */
2557 out[3] = LLVMGetUndef(ctx->ac.i32);
2558 /* fall through */
2559 case 4: /* as v4i32 */
2560 vdata = ac_build_gather_values(&ctx->ac, out,
2561 util_next_power_of_two(num_comps));
2562 break;
2563 }
2564
2565 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf],
2566 vdata, num_comps, so_write_offsets[buf],
2567 ctx->ac.i32_0, offset,
2568 1, 1, true, false);
2569 }
2570
2571 static void
2572 radv_emit_streamout(struct radv_shader_context *ctx, unsigned stream)
2573 {
2574 struct ac_build_if_state if_ctx;
2575 int i;
2576
2577 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2578 assert(ctx->streamout_config);
2579 LLVMValueRef so_vtx_count =
2580 ac_build_bfe(&ctx->ac, ctx->streamout_config,
2581 LLVMConstInt(ctx->ac.i32, 16, false),
2582 LLVMConstInt(ctx->ac.i32, 7, false), false);
2583
2584 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2585
2586 /* can_emit = tid < so_vtx_count; */
2587 LLVMValueRef can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
2588 tid, so_vtx_count, "");
2589
2590 /* Emit the streamout code conditionally. This actually avoids
2591 * out-of-bounds buffer access. The hw tells us via the SGPR
2592 * (so_vtx_count) which threads are allowed to emit streamout data.
2593 */
2594 ac_nir_build_if(&if_ctx, ctx, can_emit);
2595 {
2596 /* The buffer offset is computed as follows:
2597 * ByteOffset = streamout_offset[buffer_id]*4 +
2598 * (streamout_write_index + thread_id)*stride[buffer_id] +
2599 * attrib_offset
2600 */
2601 LLVMValueRef so_write_index = ctx->streamout_write_idx;
2602
2603 /* Compute (streamout_write_index + thread_id). */
2604 so_write_index =
2605 LLVMBuildAdd(ctx->ac.builder, so_write_index, tid, "");
2606
2607 /* Load the descriptor and compute the write offset for each
2608 * enabled buffer.
2609 */
2610 LLVMValueRef so_write_offset[4] = {};
2611 LLVMValueRef so_buffers[4] = {};
2612 LLVMValueRef buf_ptr = ctx->streamout_buffers;
2613
2614 for (i = 0; i < 4; i++) {
2615 uint16_t stride = ctx->shader_info->info.so.strides[i];
2616
2617 if (!stride)
2618 continue;
2619
2620 LLVMValueRef offset =
2621 LLVMConstInt(ctx->ac.i32, i, false);
2622
2623 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac,
2624 buf_ptr, offset);
2625
2626 LLVMValueRef so_offset = ctx->streamout_offset[i];
2627
2628 so_offset = LLVMBuildMul(ctx->ac.builder, so_offset,
2629 LLVMConstInt(ctx->ac.i32, 4, false), "");
2630
2631 so_write_offset[i] =
2632 ac_build_imad(&ctx->ac, so_write_index,
2633 LLVMConstInt(ctx->ac.i32,
2634 stride * 4, false),
2635 so_offset);
2636 }
2637
2638 /* Write streamout data. */
2639 for (i = 0; i < ctx->shader_info->info.so.num_outputs; i++) {
2640 struct radv_stream_output *output =
2641 &ctx->shader_info->info.so.outputs[i];
2642
2643 if (stream != output->stream)
2644 continue;
2645
2646 radv_emit_stream_output(ctx, so_buffers,
2647 so_write_offset, output);
2648 }
2649 }
2650 ac_nir_build_endif(&if_ctx);
2651 }
2652
2653 static void
2654 handle_vs_outputs_post(struct radv_shader_context *ctx,
2655 bool export_prim_id, bool export_layer_id,
2656 struct radv_vs_output_info *outinfo)
2657 {
2658 uint32_t param_count = 0;
2659 unsigned target;
2660 unsigned pos_idx, num_pos_exports = 0;
2661 struct ac_export_args args, pos_args[4] = {};
2662 LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2663 int i;
2664
2665 if (ctx->options->key.has_multiview_view_index) {
2666 LLVMValueRef* tmp_out = &ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
2667 if(!*tmp_out) {
2668 for(unsigned i = 0; i < 4; ++i)
2669 ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, i)] =
2670 ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
2671 }
2672
2673 LLVMBuildStore(ctx->ac.builder, ac_to_float(&ctx->ac, ctx->abi.view_index), *tmp_out);
2674 ctx->output_mask |= 1ull << VARYING_SLOT_LAYER;
2675 }
2676
2677 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
2678 sizeof(outinfo->vs_output_param_offset));
2679
2680 if (ctx->output_mask & (1ull << VARYING_SLOT_CLIP_DIST0)) {
2681 unsigned output_usage_mask, length;
2682 LLVMValueRef slots[8];
2683 unsigned j;
2684
2685 if (ctx->stage == MESA_SHADER_VERTEX &&
2686 !ctx->is_gs_copy_shader) {
2687 output_usage_mask =
2688 ctx->shader_info->info.vs.output_usage_mask[VARYING_SLOT_CLIP_DIST0];
2689 } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
2690 output_usage_mask =
2691 ctx->shader_info->info.tes.output_usage_mask[VARYING_SLOT_CLIP_DIST0];
2692 } else {
2693 assert(ctx->is_gs_copy_shader);
2694 output_usage_mask =
2695 ctx->shader_info->info.gs.output_usage_mask[VARYING_SLOT_CLIP_DIST0];
2696 }
2697
2698 length = util_last_bit(output_usage_mask);
2699
2700 i = VARYING_SLOT_CLIP_DIST0;
2701 for (j = 0; j < length; j++)
2702 slots[j] = ac_to_float(&ctx->ac, radv_load_output(ctx, i, j));
2703
2704 for (i = length; i < 8; i++)
2705 slots[i] = LLVMGetUndef(ctx->ac.f32);
2706
2707 if (length > 4) {
2708 target = V_008DFC_SQ_EXP_POS + 3;
2709 si_llvm_init_export_args(ctx, &slots[4], 0xf, target, &args);
2710 memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
2711 &args, sizeof(args));
2712 }
2713
2714 target = V_008DFC_SQ_EXP_POS + 2;
2715 si_llvm_init_export_args(ctx, &slots[0], 0xf, target, &args);
2716 memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
2717 &args, sizeof(args));
2718
2719 /* Export the clip/cull distances values to the next stage. */
2720 radv_export_param(ctx, param_count, &slots[0], 0xf);
2721 outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0] = param_count++;
2722 if (length > 4) {
2723 radv_export_param(ctx, param_count, &slots[4], 0xf);
2724 outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1] = param_count++;
2725 }
2726 }
2727
2728 LLVMValueRef pos_values[4] = {ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_1};
2729 if (ctx->output_mask & (1ull << VARYING_SLOT_POS)) {
2730 for (unsigned j = 0; j < 4; j++)
2731 pos_values[j] = radv_load_output(ctx, VARYING_SLOT_POS, j);
2732 }
2733 si_llvm_init_export_args(ctx, pos_values, 0xf, V_008DFC_SQ_EXP_POS, &pos_args[0]);
2734
2735 if (ctx->output_mask & (1ull << VARYING_SLOT_PSIZ)) {
2736 outinfo->writes_pointsize = true;
2737 psize_value = radv_load_output(ctx, VARYING_SLOT_PSIZ, 0);
2738 }
2739
2740 if (ctx->output_mask & (1ull << VARYING_SLOT_LAYER)) {
2741 outinfo->writes_layer = true;
2742 layer_value = radv_load_output(ctx, VARYING_SLOT_LAYER, 0);
2743 }
2744
2745 if (ctx->output_mask & (1ull << VARYING_SLOT_VIEWPORT)) {
2746 outinfo->writes_viewport_index = true;
2747 viewport_index_value = radv_load_output(ctx, VARYING_SLOT_VIEWPORT, 0);
2748 }
2749
2750 if (ctx->shader_info->info.so.num_outputs &&
2751 !ctx->is_gs_copy_shader) {
2752 /* The GS copy shader emission already emits streamout. */
2753 radv_emit_streamout(ctx, 0);
2754 }
2755
2756 if (outinfo->writes_pointsize ||
2757 outinfo->writes_layer ||
2758 outinfo->writes_viewport_index) {
2759 pos_args[1].enabled_channels = ((outinfo->writes_pointsize == true ? 1 : 0) |
2760 (outinfo->writes_layer == true ? 4 : 0));
2761 pos_args[1].valid_mask = 0;
2762 pos_args[1].done = 0;
2763 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2764 pos_args[1].compr = 0;
2765 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2766 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2767 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2768 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2769
2770 if (outinfo->writes_pointsize == true)
2771 pos_args[1].out[0] = psize_value;
2772 if (outinfo->writes_layer == true)
2773 pos_args[1].out[2] = layer_value;
2774 if (outinfo->writes_viewport_index == true) {
2775 if (ctx->options->chip_class >= GFX9) {
2776 /* GFX9 has the layer in out.z[10:0] and the viewport
2777 * index in out.z[19:16].
2778 */
2779 LLVMValueRef v = viewport_index_value;
2780 v = ac_to_integer(&ctx->ac, v);
2781 v = LLVMBuildShl(ctx->ac.builder, v,
2782 LLVMConstInt(ctx->ac.i32, 16, false),
2783 "");
2784 v = LLVMBuildOr(ctx->ac.builder, v,
2785 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
2786
2787 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
2788 pos_args[1].enabled_channels |= 1 << 2;
2789 } else {
2790 pos_args[1].out[3] = viewport_index_value;
2791 pos_args[1].enabled_channels |= 1 << 3;
2792 }
2793 }
2794 }
2795 for (i = 0; i < 4; i++) {
2796 if (pos_args[i].out[0])
2797 num_pos_exports++;
2798 }
2799
2800 pos_idx = 0;
2801 for (i = 0; i < 4; i++) {
2802 if (!pos_args[i].out[0])
2803 continue;
2804
2805 /* Specify the target we are exporting */
2806 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
2807 if (pos_idx == num_pos_exports)
2808 pos_args[i].done = 1;
2809 ac_build_export(&ctx->ac, &pos_args[i]);
2810 }
2811
2812 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2813 LLVMValueRef values[4];
2814 if (!(ctx->output_mask & (1ull << i)))
2815 continue;
2816
2817 if (i != VARYING_SLOT_LAYER &&
2818 i != VARYING_SLOT_PRIMITIVE_ID &&
2819 i < VARYING_SLOT_VAR0)
2820 continue;
2821
2822 for (unsigned j = 0; j < 4; j++)
2823 values[j] = ac_to_float(&ctx->ac, radv_load_output(ctx, i, j));
2824
2825 unsigned output_usage_mask;
2826
2827 if (ctx->stage == MESA_SHADER_VERTEX &&
2828 !ctx->is_gs_copy_shader) {
2829 output_usage_mask =
2830 ctx->shader_info->info.vs.output_usage_mask[i];
2831 } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
2832 output_usage_mask =
2833 ctx->shader_info->info.tes.output_usage_mask[i];
2834 } else {
2835 assert(ctx->is_gs_copy_shader);
2836 output_usage_mask =
2837 ctx->shader_info->info.gs.output_usage_mask[i];
2838 }
2839
2840 radv_export_param(ctx, param_count, values, output_usage_mask);
2841
2842 outinfo->vs_output_param_offset[i] = param_count++;
2843 }
2844
2845 if (export_prim_id) {
2846 LLVMValueRef values[4];
2847
2848 values[0] = ctx->vs_prim_id;
2849 ctx->shader_info->vs.vgpr_comp_cnt = MAX2(2,
2850 ctx->shader_info->vs.vgpr_comp_cnt);
2851 for (unsigned j = 1; j < 4; j++)
2852 values[j] = ctx->ac.f32_0;
2853
2854 radv_export_param(ctx, param_count, values, 0x1);
2855
2856 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count++;
2857 outinfo->export_prim_id = true;
2858 }
2859
2860 if (export_layer_id && layer_value) {
2861 LLVMValueRef values[4];
2862
2863 values[0] = layer_value;
2864 for (unsigned j = 1; j < 4; j++)
2865 values[j] = ctx->ac.f32_0;
2866
2867 radv_export_param(ctx, param_count, values, 0x1);
2868
2869 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = param_count++;
2870 }
2871
2872 outinfo->pos_exports = num_pos_exports;
2873 outinfo->param_exports = param_count;
2874 }
2875
2876 static void
2877 handle_es_outputs_post(struct radv_shader_context *ctx,
2878 struct radv_es_output_info *outinfo)
2879 {
2880 int j;
2881 uint64_t max_output_written = 0;
2882 LLVMValueRef lds_base = NULL;
2883
2884 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2885 unsigned output_usage_mask;
2886 int param_index;
2887 int length = 4;
2888
2889 if (!(ctx->output_mask & (1ull << i)))
2890 continue;
2891
2892 if (ctx->stage == MESA_SHADER_VERTEX) {
2893 output_usage_mask =
2894 ctx->shader_info->info.vs.output_usage_mask[i];
2895 } else {
2896 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
2897 output_usage_mask =
2898 ctx->shader_info->info.tes.output_usage_mask[i];
2899 }
2900
2901 if (i == VARYING_SLOT_CLIP_DIST0)
2902 length = util_last_bit(output_usage_mask);
2903
2904 param_index = shader_io_get_unique_index(i);
2905
2906 max_output_written = MAX2(param_index + (length > 4), max_output_written);
2907 }
2908
2909 outinfo->esgs_itemsize = (max_output_written + 1) * 16;
2910
2911 if (ctx->ac.chip_class >= GFX9) {
2912 unsigned itemsize_dw = outinfo->esgs_itemsize / 4;
2913 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
2914 LLVMValueRef wave_idx = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 24, 4);
2915 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
2916 LLVMBuildMul(ctx->ac.builder, wave_idx,
2917 LLVMConstInt(ctx->ac.i32, 64, false), ""), "");
2918 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
2919 LLVMConstInt(ctx->ac.i32, itemsize_dw, 0), "");
2920 }
2921
2922 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2923 LLVMValueRef dw_addr = NULL;
2924 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
2925 unsigned output_usage_mask;
2926 int param_index;
2927 int length = 4;
2928
2929 if (!(ctx->output_mask & (1ull << i)))
2930 continue;
2931
2932 if (ctx->stage == MESA_SHADER_VERTEX) {
2933 output_usage_mask =
2934 ctx->shader_info->info.vs.output_usage_mask[i];
2935 } else {
2936 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
2937 output_usage_mask =
2938 ctx->shader_info->info.tes.output_usage_mask[i];
2939 }
2940
2941 if (i == VARYING_SLOT_CLIP_DIST0)
2942 length = util_last_bit(output_usage_mask);
2943
2944 param_index = shader_io_get_unique_index(i);
2945
2946 if (lds_base) {
2947 dw_addr = LLVMBuildAdd(ctx->ac.builder, lds_base,
2948 LLVMConstInt(ctx->ac.i32, param_index * 4, false),
2949 "");
2950 }
2951
2952 for (j = 0; j < length; j++) {
2953 if (!(output_usage_mask & (1 << j)))
2954 continue;
2955
2956 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
2957 out_val = ac_to_integer(&ctx->ac, out_val);
2958 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
2959
2960 if (ctx->ac.chip_class >= GFX9) {
2961 LLVMValueRef dw_addr_offset =
2962 LLVMBuildAdd(ctx->ac.builder, dw_addr,
2963 LLVMConstInt(ctx->ac.i32,
2964 j, false), "");
2965
2966 ac_lds_store(&ctx->ac, dw_addr_offset, out_val);
2967 } else {
2968 ac_build_buffer_store_dword(&ctx->ac,
2969 ctx->esgs_ring,
2970 out_val, 1,
2971 NULL, ctx->es2gs_offset,
2972 (4 * param_index + j) * 4,
2973 1, 1, true, true);
2974 }
2975 }
2976 }
2977 }
2978
2979 static void
2980 handle_ls_outputs_post(struct radv_shader_context *ctx)
2981 {
2982 LLVMValueRef vertex_id = ctx->rel_auto_id;
2983 uint32_t num_tcs_inputs = util_last_bit64(ctx->shader_info->info.vs.ls_outputs_written);
2984 LLVMValueRef vertex_dw_stride = LLVMConstInt(ctx->ac.i32, num_tcs_inputs * 4, false);
2985 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
2986 vertex_dw_stride, "");
2987
2988 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2989 unsigned output_usage_mask =
2990 ctx->shader_info->info.vs.output_usage_mask[i];
2991 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
2992 int length = 4;
2993
2994 if (!(ctx->output_mask & (1ull << i)))
2995 continue;
2996
2997 if (i == VARYING_SLOT_CLIP_DIST0)
2998 length = util_last_bit(output_usage_mask);
2999
3000 int param = shader_io_get_unique_index(i);
3001 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3002 LLVMConstInt(ctx->ac.i32, param * 4, false),
3003 "");
3004 for (unsigned j = 0; j < length; j++) {
3005 LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
3006 value = ac_to_integer(&ctx->ac, value);
3007 value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
3008 ac_lds_store(&ctx->ac, dw_addr, value);
3009 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr, ctx->ac.i32_1, "");
3010 }
3011 }
3012 }
3013
3014 static void
3015 write_tess_factors(struct radv_shader_context *ctx)
3016 {
3017 unsigned stride, outer_comps, inner_comps;
3018 struct ac_build_if_state if_ctx, inner_if_ctx;
3019 LLVMValueRef invocation_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 8, 5);
3020 LLVMValueRef rel_patch_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
3021 unsigned tess_inner_index = 0, tess_outer_index;
3022 LLVMValueRef lds_base, lds_inner = NULL, lds_outer, byteoffset, buffer;
3023 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3024 int i;
3025 ac_emit_barrier(&ctx->ac, ctx->stage);
3026
3027 switch (ctx->options->key.tcs.primitive_mode) {
3028 case GL_ISOLINES:
3029 stride = 2;
3030 outer_comps = 2;
3031 inner_comps = 0;
3032 break;
3033 case GL_TRIANGLES:
3034 stride = 4;
3035 outer_comps = 3;
3036 inner_comps = 1;
3037 break;
3038 case GL_QUADS:
3039 stride = 6;
3040 outer_comps = 4;
3041 inner_comps = 2;
3042 break;
3043 default:
3044 return;
3045 }
3046
3047 ac_nir_build_if(&if_ctx, ctx,
3048 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3049 invocation_id, ctx->ac.i32_0, ""));
3050
3051 lds_base = get_tcs_out_current_patch_data_offset(ctx);
3052
3053 if (inner_comps) {
3054 tess_inner_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3055 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3056 LLVMConstInt(ctx->ac.i32, tess_inner_index * 4, false), "");
3057 }
3058
3059 tess_outer_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3060 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3061 LLVMConstInt(ctx->ac.i32, tess_outer_index * 4, false), "");
3062
3063 for (i = 0; i < 4; i++) {
3064 inner[i] = LLVMGetUndef(ctx->ac.i32);
3065 outer[i] = LLVMGetUndef(ctx->ac.i32);
3066 }
3067
3068 // LINES reversal
3069 if (ctx->options->key.tcs.primitive_mode == GL_ISOLINES) {
3070 outer[0] = out[1] = ac_lds_load(&ctx->ac, lds_outer);
3071 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
3072 ctx->ac.i32_1, "");
3073 outer[1] = out[0] = ac_lds_load(&ctx->ac, lds_outer);
3074 } else {
3075 for (i = 0; i < outer_comps; i++) {
3076 outer[i] = out[i] =
3077 ac_lds_load(&ctx->ac, lds_outer);
3078 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
3079 ctx->ac.i32_1, "");
3080 }
3081 for (i = 0; i < inner_comps; i++) {
3082 inner[i] = out[outer_comps+i] =
3083 ac_lds_load(&ctx->ac, lds_inner);
3084 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_inner,
3085 ctx->ac.i32_1, "");
3086 }
3087 }
3088
3089 /* Convert the outputs to vectors for stores. */
3090 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3091 vec1 = NULL;
3092
3093 if (stride > 4)
3094 vec1 = ac_build_gather_values(&ctx->ac, out + 4, stride - 4);
3095
3096
3097 buffer = ctx->hs_ring_tess_factor;
3098 tf_base = ctx->tess_factor_offset;
3099 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3100 LLVMConstInt(ctx->ac.i32, 4 * stride, false), "");
3101 unsigned tf_offset = 0;
3102
3103 if (ctx->options->chip_class <= VI) {
3104 ac_nir_build_if(&inner_if_ctx, ctx,
3105 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3106 rel_patch_id, ctx->ac.i32_0, ""));
3107
3108 /* Store the dynamic HS control word. */
3109 ac_build_buffer_store_dword(&ctx->ac, buffer,
3110 LLVMConstInt(ctx->ac.i32, 0x80000000, false),
3111 1, ctx->ac.i32_0, tf_base,
3112 0, 1, 0, true, false);
3113 tf_offset += 4;
3114
3115 ac_nir_build_endif(&inner_if_ctx);
3116 }
3117
3118 /* Store the tessellation factors. */
3119 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3120 MIN2(stride, 4), byteoffset, tf_base,
3121 tf_offset, 1, 0, true, false);
3122 if (vec1)
3123 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3124 stride - 4, byteoffset, tf_base,
3125 16 + tf_offset, 1, 0, true, false);
3126
3127 //store to offchip for TES to read - only if TES reads them
3128 if (ctx->options->key.tcs.tes_reads_tess_factors) {
3129 LLVMValueRef inner_vec, outer_vec, tf_outer_offset;
3130 LLVMValueRef tf_inner_offset;
3131 unsigned param_outer, param_inner;
3132
3133 param_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3134 tf_outer_offset = get_tcs_tes_buffer_address(ctx, NULL,
3135 LLVMConstInt(ctx->ac.i32, param_outer, 0));
3136
3137 outer_vec = ac_build_gather_values(&ctx->ac, outer,
3138 util_next_power_of_two(outer_comps));
3139
3140 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, outer_vec,
3141 outer_comps, tf_outer_offset,
3142 ctx->oc_lds, 0, 1, 0, true, false);
3143 if (inner_comps) {
3144 param_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3145 tf_inner_offset = get_tcs_tes_buffer_address(ctx, NULL,
3146 LLVMConstInt(ctx->ac.i32, param_inner, 0));
3147
3148 inner_vec = inner_comps == 1 ? inner[0] :
3149 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3150 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, inner_vec,
3151 inner_comps, tf_inner_offset,
3152 ctx->oc_lds, 0, 1, 0, true, false);
3153 }
3154 }
3155 ac_nir_build_endif(&if_ctx);
3156 }
3157
3158 static void
3159 handle_tcs_outputs_post(struct radv_shader_context *ctx)
3160 {
3161 write_tess_factors(ctx);
3162 }
3163
3164 static bool
3165 si_export_mrt_color(struct radv_shader_context *ctx,
3166 LLVMValueRef *color, unsigned index,
3167 struct ac_export_args *args)
3168 {
3169 /* Export */
3170 si_llvm_init_export_args(ctx, color, 0xf,
3171 V_008DFC_SQ_EXP_MRT + index, args);
3172 if (!args->enabled_channels)
3173 return false; /* unnecessary NULL export */
3174
3175 return true;
3176 }
3177
3178 static void
3179 radv_export_mrt_z(struct radv_shader_context *ctx,
3180 LLVMValueRef depth, LLVMValueRef stencil,
3181 LLVMValueRef samplemask)
3182 {
3183 struct ac_export_args args;
3184
3185 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3186
3187 ac_build_export(&ctx->ac, &args);
3188 }
3189
3190 static void
3191 handle_fs_outputs_post(struct radv_shader_context *ctx)
3192 {
3193 unsigned index = 0;
3194 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3195 struct ac_export_args color_args[8];
3196
3197 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3198 LLVMValueRef values[4];
3199
3200 if (!(ctx->output_mask & (1ull << i)))
3201 continue;
3202
3203 if (i < FRAG_RESULT_DATA0)
3204 continue;
3205
3206 for (unsigned j = 0; j < 4; j++)
3207 values[j] = ac_to_float(&ctx->ac,
3208 radv_load_output(ctx, i, j));
3209
3210 bool ret = si_export_mrt_color(ctx, values,
3211 i - FRAG_RESULT_DATA0,
3212 &color_args[index]);
3213 if (ret)
3214 index++;
3215 }
3216
3217 /* Process depth, stencil, samplemask. */
3218 if (ctx->shader_info->info.ps.writes_z) {
3219 depth = ac_to_float(&ctx->ac,
3220 radv_load_output(ctx, FRAG_RESULT_DEPTH, 0));
3221 }
3222 if (ctx->shader_info->info.ps.writes_stencil) {
3223 stencil = ac_to_float(&ctx->ac,
3224 radv_load_output(ctx, FRAG_RESULT_STENCIL, 0));
3225 }
3226 if (ctx->shader_info->info.ps.writes_sample_mask) {
3227 samplemask = ac_to_float(&ctx->ac,
3228 radv_load_output(ctx, FRAG_RESULT_SAMPLE_MASK, 0));
3229 }
3230
3231 /* Set the DONE bit on last non-null color export only if Z isn't
3232 * exported.
3233 */
3234 if (index > 0 &&
3235 !ctx->shader_info->info.ps.writes_z &&
3236 !ctx->shader_info->info.ps.writes_stencil &&
3237 !ctx->shader_info->info.ps.writes_sample_mask) {
3238 unsigned last = index - 1;
3239
3240 color_args[last].valid_mask = 1; /* whether the EXEC mask is valid */
3241 color_args[last].done = 1; /* DONE bit */
3242 }
3243
3244 /* Export PS outputs. */
3245 for (unsigned i = 0; i < index; i++)
3246 ac_build_export(&ctx->ac, &color_args[i]);
3247
3248 if (depth || stencil || samplemask)
3249 radv_export_mrt_z(ctx, depth, stencil, samplemask);
3250 else if (!index)
3251 ac_build_export_null(&ctx->ac);
3252 }
3253
3254 static void
3255 emit_gs_epilogue(struct radv_shader_context *ctx)
3256 {
3257 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
3258 }
3259
3260 static void
3261 handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
3262 LLVMValueRef *addrs)
3263 {
3264 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
3265
3266 switch (ctx->stage) {
3267 case MESA_SHADER_VERTEX:
3268 if (ctx->options->key.vs.as_ls)
3269 handle_ls_outputs_post(ctx);
3270 else if (ctx->options->key.vs.as_es)
3271 handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info);
3272 else
3273 handle_vs_outputs_post(ctx, ctx->options->key.vs.export_prim_id,
3274 ctx->options->key.vs.export_layer_id,
3275 &ctx->shader_info->vs.outinfo);
3276 break;
3277 case MESA_SHADER_FRAGMENT:
3278 handle_fs_outputs_post(ctx);
3279 break;
3280 case MESA_SHADER_GEOMETRY:
3281 emit_gs_epilogue(ctx);
3282 break;
3283 case MESA_SHADER_TESS_CTRL:
3284 handle_tcs_outputs_post(ctx);
3285 break;
3286 case MESA_SHADER_TESS_EVAL:
3287 if (ctx->options->key.tes.as_es)
3288 handle_es_outputs_post(ctx, &ctx->shader_info->tes.es_info);
3289 else
3290 handle_vs_outputs_post(ctx, ctx->options->key.tes.export_prim_id,
3291 ctx->options->key.tes.export_layer_id,
3292 &ctx->shader_info->tes.outinfo);
3293 break;
3294 default:
3295 break;
3296 }
3297 }
3298
3299 static void ac_llvm_finalize_module(struct radv_shader_context *ctx,
3300 LLVMPassManagerRef passmgr,
3301 const struct radv_nir_compiler_options *options)
3302 {
3303 LLVMRunPassManager(passmgr, ctx->ac.module);
3304 LLVMDisposeBuilder(ctx->ac.builder);
3305
3306 ac_llvm_context_dispose(&ctx->ac);
3307 }
3308
3309 static void
3310 ac_nir_eliminate_const_vs_outputs(struct radv_shader_context *ctx)
3311 {
3312 struct radv_vs_output_info *outinfo;
3313
3314 switch (ctx->stage) {
3315 case MESA_SHADER_FRAGMENT:
3316 case MESA_SHADER_COMPUTE:
3317 case MESA_SHADER_TESS_CTRL:
3318 case MESA_SHADER_GEOMETRY:
3319 return;
3320 case MESA_SHADER_VERTEX:
3321 if (ctx->options->key.vs.as_ls ||
3322 ctx->options->key.vs.as_es)
3323 return;
3324 outinfo = &ctx->shader_info->vs.outinfo;
3325 break;
3326 case MESA_SHADER_TESS_EVAL:
3327 if (ctx->options->key.vs.as_es)
3328 return;
3329 outinfo = &ctx->shader_info->tes.outinfo;
3330 break;
3331 default:
3332 unreachable("Unhandled shader type");
3333 }
3334
3335 ac_optimize_vs_outputs(&ctx->ac,
3336 ctx->main_function,
3337 outinfo->vs_output_param_offset,
3338 VARYING_SLOT_MAX,
3339 &outinfo->param_exports);
3340 }
3341
3342 static void
3343 ac_setup_rings(struct radv_shader_context *ctx)
3344 {
3345 if (ctx->options->chip_class <= VI &&
3346 (ctx->stage == MESA_SHADER_GEOMETRY ||
3347 ctx->options->key.vs.as_es || ctx->options->key.tes.as_es)) {
3348 unsigned ring = ctx->stage == MESA_SHADER_GEOMETRY ? RING_ESGS_GS
3349 : RING_ESGS_VS;
3350 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, ring, false);
3351
3352 ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac,
3353 ctx->ring_offsets,
3354 offset);
3355 }
3356
3357 if (ctx->is_gs_copy_shader) {
3358 ctx->gsvs_ring[0] =
3359 ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
3360 LLVMConstInt(ctx->ac.i32,
3361 RING_GSVS_VS, false));
3362 }
3363
3364 if (ctx->stage == MESA_SHADER_GEOMETRY) {
3365 /* The conceptual layout of the GSVS ring is
3366 * v0c0 .. vLv0 v0c1 .. vLc1 ..
3367 * but the real memory layout is swizzled across
3368 * threads:
3369 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
3370 * t16v0c0 ..
3371 * Override the buffer descriptor accordingly.
3372 */
3373 LLVMTypeRef v2i64 = LLVMVectorType(ctx->ac.i64, 2);
3374 uint64_t stream_offset = 0;
3375 unsigned num_records = 64;
3376 LLVMValueRef base_ring;
3377
3378 base_ring =
3379 ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
3380 LLVMConstInt(ctx->ac.i32,
3381 RING_GSVS_GS, false));
3382
3383 for (unsigned stream = 0; stream < 4; stream++) {
3384 unsigned num_components, stride;
3385 LLVMValueRef ring, tmp;
3386
3387 num_components =
3388 ctx->shader_info->info.gs.num_stream_output_components[stream];
3389
3390 if (!num_components)
3391 continue;
3392
3393 stride = 4 * num_components * ctx->gs_max_out_vertices;
3394
3395 /* Limit on the stride field for <= CIK. */
3396 assert(stride < (1 << 14));
3397
3398 ring = LLVMBuildBitCast(ctx->ac.builder,
3399 base_ring, v2i64, "");
3400 tmp = LLVMBuildExtractElement(ctx->ac.builder,
3401 ring, ctx->ac.i32_0, "");
3402 tmp = LLVMBuildAdd(ctx->ac.builder, tmp,
3403 LLVMConstInt(ctx->ac.i64,
3404 stream_offset, 0), "");
3405 ring = LLVMBuildInsertElement(ctx->ac.builder,
3406 ring, tmp, ctx->ac.i32_0, "");
3407
3408 stream_offset += stride * 64;
3409
3410 ring = LLVMBuildBitCast(ctx->ac.builder, ring,
3411 ctx->ac.v4i32, "");
3412
3413 tmp = LLVMBuildExtractElement(ctx->ac.builder, ring,
3414 ctx->ac.i32_1, "");
3415 tmp = LLVMBuildOr(ctx->ac.builder, tmp,
3416 LLVMConstInt(ctx->ac.i32,
3417 S_008F04_STRIDE(stride), false), "");
3418 ring = LLVMBuildInsertElement(ctx->ac.builder, ring, tmp,
3419 ctx->ac.i32_1, "");
3420
3421 ring = LLVMBuildInsertElement(ctx->ac.builder, ring,
3422 LLVMConstInt(ctx->ac.i32,
3423 num_records, false),
3424 LLVMConstInt(ctx->ac.i32, 2, false), "");
3425
3426 ctx->gsvs_ring[stream] = ring;
3427 }
3428 }
3429
3430 if (ctx->stage == MESA_SHADER_TESS_CTRL ||
3431 ctx->stage == MESA_SHADER_TESS_EVAL) {
3432 ctx->hs_ring_tess_offchip = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_OFFCHIP, false));
3433 ctx->hs_ring_tess_factor = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_FACTOR, false));
3434 }
3435 }
3436
3437 unsigned
3438 radv_nir_get_max_workgroup_size(enum chip_class chip_class,
3439 const struct nir_shader *nir)
3440 {
3441 switch (nir->info.stage) {
3442 case MESA_SHADER_TESS_CTRL:
3443 return chip_class >= CIK ? 128 : 64;
3444 case MESA_SHADER_GEOMETRY:
3445 return chip_class >= GFX9 ? 128 : 64;
3446 case MESA_SHADER_COMPUTE:
3447 break;
3448 default:
3449 return 0;
3450 }
3451
3452 unsigned max_workgroup_size = nir->info.cs.local_size[0] *
3453 nir->info.cs.local_size[1] *
3454 nir->info.cs.local_size[2];
3455 return max_workgroup_size;
3456 }
3457
3458 /* Fixup the HW not emitting the TCS regs if there are no HS threads. */
3459 static void ac_nir_fixup_ls_hs_input_vgprs(struct radv_shader_context *ctx)
3460 {
3461 LLVMValueRef count = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 8, 8);
3462 LLVMValueRef hs_empty = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, count,
3463 ctx->ac.i32_0, "");
3464 ctx->abi.instance_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->rel_auto_id, ctx->abi.instance_id, "");
3465 ctx->rel_auto_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_rel_ids, ctx->rel_auto_id, "");
3466 ctx->abi.vertex_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_patch_id, ctx->abi.vertex_id, "");
3467 }
3468
3469 static void prepare_gs_input_vgprs(struct radv_shader_context *ctx)
3470 {
3471 for(int i = 5; i >= 0; --i) {
3472 ctx->gs_vtx_offset[i] = ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[i & ~1],
3473 (i & 1) * 16, 16);
3474 }
3475
3476 ctx->gs_wave_id = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 16, 8);
3477 }
3478
3479
3480 static
3481 LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
3482 struct nir_shader *const *shaders,
3483 int shader_count,
3484 struct radv_shader_variant_info *shader_info,
3485 const struct radv_nir_compiler_options *options)
3486 {
3487 struct radv_shader_context ctx = {0};
3488 unsigned i;
3489 ctx.options = options;
3490 ctx.shader_info = shader_info;
3491
3492 ac_llvm_context_init(&ctx.ac, options->chip_class, options->family);
3493 ctx.context = ctx.ac.context;
3494 ctx.ac.module = ac_create_module(ac_llvm->tm, ctx.context);
3495
3496 enum ac_float_mode float_mode =
3497 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
3498 AC_FLOAT_MODE_DEFAULT;
3499
3500 ctx.ac.builder = ac_create_builder(ctx.context, float_mode);
3501
3502 memset(shader_info, 0, sizeof(*shader_info));
3503
3504 radv_nir_shader_info_init(&shader_info->info);
3505
3506 for(int i = 0; i < shader_count; ++i)
3507 radv_nir_shader_info_pass(shaders[i], options, &shader_info->info);
3508
3509 for (i = 0; i < RADV_UD_MAX_SETS; i++)
3510 shader_info->user_sgprs_locs.descriptor_sets[i].sgpr_idx = -1;
3511 for (i = 0; i < AC_UD_MAX_UD; i++)
3512 shader_info->user_sgprs_locs.shader_data[i].sgpr_idx = -1;
3513
3514 ctx.max_workgroup_size = 0;
3515 for (int i = 0; i < shader_count; ++i) {
3516 ctx.max_workgroup_size = MAX2(ctx.max_workgroup_size,
3517 radv_nir_get_max_workgroup_size(ctx.options->chip_class,
3518 shaders[i]));
3519 }
3520
3521 create_function(&ctx, shaders[shader_count - 1]->info.stage, shader_count >= 2,
3522 shader_count >= 2 ? shaders[shader_count - 2]->info.stage : MESA_SHADER_VERTEX);
3523
3524 ctx.abi.inputs = &ctx.inputs[0];
3525 ctx.abi.emit_outputs = handle_shader_outputs_post;
3526 ctx.abi.emit_vertex = visit_emit_vertex;
3527 ctx.abi.load_ubo = radv_load_ubo;
3528 ctx.abi.load_ssbo = radv_load_ssbo;
3529 ctx.abi.load_sampler_desc = radv_get_sampler_desc;
3530 ctx.abi.load_resource = radv_load_resource;
3531 ctx.abi.clamp_shadow_reference = false;
3532 ctx.abi.gfx9_stride_size_workaround = ctx.ac.chip_class == GFX9 && HAVE_LLVM < 0x800;
3533
3534 if (shader_count >= 2)
3535 ac_init_exec_full_mask(&ctx.ac);
3536
3537 if (ctx.ac.chip_class == GFX9 &&
3538 shaders[shader_count - 1]->info.stage == MESA_SHADER_TESS_CTRL)
3539 ac_nir_fixup_ls_hs_input_vgprs(&ctx);
3540
3541 for(int i = 0; i < shader_count; ++i) {
3542 ctx.stage = shaders[i]->info.stage;
3543 ctx.output_mask = 0;
3544
3545 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
3546 for (int i = 0; i < 4; i++) {
3547 ctx.gs_next_vertex[i] =
3548 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
3549 }
3550 ctx.gs_max_out_vertices = shaders[i]->info.gs.vertices_out;
3551 ctx.abi.load_inputs = load_gs_input;
3552 ctx.abi.emit_primitive = visit_end_primitive;
3553 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
3554 ctx.tcs_outputs_read = shaders[i]->info.outputs_read;
3555 ctx.tcs_patch_outputs_read = shaders[i]->info.patch_outputs_read;
3556 ctx.abi.load_tess_varyings = load_tcs_varyings;
3557 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
3558 ctx.abi.store_tcs_outputs = store_tcs_output;
3559 ctx.tcs_vertices_per_patch = shaders[i]->info.tess.tcs_vertices_out;
3560 if (shader_count == 1)
3561 ctx.tcs_num_inputs = ctx.options->key.tcs.num_inputs;
3562 else
3563 ctx.tcs_num_inputs = util_last_bit64(shader_info->info.vs.ls_outputs_written);
3564 ctx.tcs_num_patches = get_tcs_num_patches(&ctx);
3565 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_EVAL) {
3566 ctx.tes_primitive_mode = shaders[i]->info.tess.primitive_mode;
3567 ctx.abi.load_tess_varyings = load_tes_input;
3568 ctx.abi.load_tess_coord = load_tess_coord;
3569 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
3570 ctx.tcs_vertices_per_patch = shaders[i]->info.tess.tcs_vertices_out;
3571 ctx.tcs_num_patches = ctx.options->key.tes.num_patches;
3572 } else if (shaders[i]->info.stage == MESA_SHADER_VERTEX) {
3573 if (shader_info->info.vs.needs_instance_id) {
3574 if (ctx.options->key.vs.as_ls) {
3575 ctx.shader_info->vs.vgpr_comp_cnt =
3576 MAX2(2, ctx.shader_info->vs.vgpr_comp_cnt);
3577 } else {
3578 ctx.shader_info->vs.vgpr_comp_cnt =
3579 MAX2(1, ctx.shader_info->vs.vgpr_comp_cnt);
3580 }
3581 }
3582 ctx.abi.load_base_vertex = radv_load_base_vertex;
3583 } else if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT) {
3584 shader_info->fs.can_discard = shaders[i]->info.fs.uses_discard;
3585 ctx.abi.lookup_interp_param = lookup_interp_param;
3586 ctx.abi.load_sample_position = load_sample_position;
3587 ctx.abi.load_sample_mask_in = load_sample_mask_in;
3588 ctx.abi.emit_kill = radv_emit_kill;
3589 }
3590
3591 if (i)
3592 ac_emit_barrier(&ctx.ac, ctx.stage);
3593
3594 nir_foreach_variable(variable, &shaders[i]->outputs)
3595 scan_shader_output_decl(&ctx, variable, shaders[i], shaders[i]->info.stage);
3596
3597 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
3598 unsigned addclip = shaders[i]->info.clip_distance_array_size +
3599 shaders[i]->info.cull_distance_array_size > 4;
3600 ctx.gsvs_vertex_size = (util_bitcount64(ctx.output_mask) + addclip) * 16;
3601 ctx.max_gsvs_emit_size = ctx.gsvs_vertex_size *
3602 shaders[i]->info.gs.vertices_out;
3603 }
3604
3605 ac_setup_rings(&ctx);
3606
3607 LLVMBasicBlockRef merge_block;
3608 if (shader_count >= 2) {
3609 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
3610 LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
3611 merge_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
3612
3613 LLVMValueRef count = ac_unpack_param(&ctx.ac, ctx.merged_wave_info, 8 * i, 8);
3614 LLVMValueRef thread_id = ac_get_thread_id(&ctx.ac);
3615 LLVMValueRef cond = LLVMBuildICmp(ctx.ac.builder, LLVMIntULT,
3616 thread_id, count, "");
3617 LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);
3618
3619 LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
3620 }
3621
3622 if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
3623 handle_fs_inputs(&ctx, shaders[i]);
3624 else if(shaders[i]->info.stage == MESA_SHADER_VERTEX)
3625 handle_vs_inputs(&ctx, shaders[i]);
3626 else if(shader_count >= 2 && shaders[i]->info.stage == MESA_SHADER_GEOMETRY)
3627 prepare_gs_input_vgprs(&ctx);
3628
3629 ac_nir_translate(&ctx.ac, &ctx.abi, shaders[i]);
3630
3631 if (shader_count >= 2) {
3632 LLVMBuildBr(ctx.ac.builder, merge_block);
3633 LLVMPositionBuilderAtEnd(ctx.ac.builder, merge_block);
3634 }
3635
3636 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
3637 shader_info->gs.gsvs_vertex_size = ctx.gsvs_vertex_size;
3638 shader_info->gs.max_gsvs_emit_size = ctx.max_gsvs_emit_size;
3639 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
3640 shader_info->tcs.num_patches = ctx.tcs_num_patches;
3641 shader_info->tcs.lds_size = calculate_tess_lds_size(&ctx);
3642 }
3643 }
3644
3645 LLVMBuildRetVoid(ctx.ac.builder);
3646
3647 if (options->dump_preoptir)
3648 ac_dump_module(ctx.ac.module);
3649
3650 ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, options);
3651
3652 if (shader_count == 1)
3653 ac_nir_eliminate_const_vs_outputs(&ctx);
3654
3655 if (options->dump_shader) {
3656 ctx.shader_info->private_mem_vgprs =
3657 ac_count_scratch_private_memory(ctx.main_function);
3658 }
3659
3660 return ctx.ac.module;
3661 }
3662
3663 static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
3664 {
3665 unsigned *retval = (unsigned *)context;
3666 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
3667 char *description = LLVMGetDiagInfoDescription(di);
3668
3669 if (severity == LLVMDSError) {
3670 *retval = 1;
3671 fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
3672 description);
3673 }
3674
3675 LLVMDisposeMessage(description);
3676 }
3677
3678 static unsigned ac_llvm_compile(LLVMModuleRef M,
3679 struct ac_shader_binary *binary,
3680 struct ac_llvm_compiler *ac_llvm)
3681 {
3682 unsigned retval = 0;
3683 LLVMContextRef llvm_ctx;
3684
3685 /* Setup Diagnostic Handler*/
3686 llvm_ctx = LLVMGetModuleContext(M);
3687
3688 LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
3689 &retval);
3690
3691 /* Compile IR*/
3692 if (!radv_compile_to_binary(ac_llvm, M, binary))
3693 retval = 1;
3694 return retval;
3695 }
3696
3697 static void ac_compile_llvm_module(struct ac_llvm_compiler *ac_llvm,
3698 LLVMModuleRef llvm_module,
3699 struct ac_shader_binary *binary,
3700 struct ac_shader_config *config,
3701 struct radv_shader_variant_info *shader_info,
3702 gl_shader_stage stage,
3703 const struct radv_nir_compiler_options *options)
3704 {
3705 if (options->dump_shader)
3706 ac_dump_module(llvm_module);
3707
3708 memset(binary, 0, sizeof(*binary));
3709
3710 if (options->record_llvm_ir) {
3711 char *llvm_ir = LLVMPrintModuleToString(llvm_module);
3712 binary->llvm_ir_string = strdup(llvm_ir);
3713 LLVMDisposeMessage(llvm_ir);
3714 }
3715
3716 int v = ac_llvm_compile(llvm_module, binary, ac_llvm);
3717 if (v) {
3718 fprintf(stderr, "compile failed\n");
3719 }
3720
3721 if (options->dump_shader)
3722 fprintf(stderr, "disasm:\n%s\n", binary->disasm_string);
3723
3724 ac_shader_binary_read_config(binary, config, 0, options->supports_spill);
3725
3726 LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
3727 LLVMDisposeModule(llvm_module);
3728 LLVMContextDispose(ctx);
3729
3730 if (stage == MESA_SHADER_FRAGMENT) {
3731 shader_info->num_input_vgprs = 0;
3732 if (G_0286CC_PERSP_SAMPLE_ENA(config->spi_ps_input_addr))
3733 shader_info->num_input_vgprs += 2;
3734 if (G_0286CC_PERSP_CENTER_ENA(config->spi_ps_input_addr))
3735 shader_info->num_input_vgprs += 2;
3736 if (G_0286CC_PERSP_CENTROID_ENA(config->spi_ps_input_addr))
3737 shader_info->num_input_vgprs += 2;
3738 if (G_0286CC_PERSP_PULL_MODEL_ENA(config->spi_ps_input_addr))
3739 shader_info->num_input_vgprs += 3;
3740 if (G_0286CC_LINEAR_SAMPLE_ENA(config->spi_ps_input_addr))
3741 shader_info->num_input_vgprs += 2;
3742 if (G_0286CC_LINEAR_CENTER_ENA(config->spi_ps_input_addr))
3743 shader_info->num_input_vgprs += 2;
3744 if (G_0286CC_LINEAR_CENTROID_ENA(config->spi_ps_input_addr))
3745 shader_info->num_input_vgprs += 2;
3746 if (G_0286CC_LINE_STIPPLE_TEX_ENA(config->spi_ps_input_addr))
3747 shader_info->num_input_vgprs += 1;
3748 if (G_0286CC_POS_X_FLOAT_ENA(config->spi_ps_input_addr))
3749 shader_info->num_input_vgprs += 1;
3750 if (G_0286CC_POS_Y_FLOAT_ENA(config->spi_ps_input_addr))
3751 shader_info->num_input_vgprs += 1;
3752 if (G_0286CC_POS_Z_FLOAT_ENA(config->spi_ps_input_addr))
3753 shader_info->num_input_vgprs += 1;
3754 if (G_0286CC_POS_W_FLOAT_ENA(config->spi_ps_input_addr))
3755 shader_info->num_input_vgprs += 1;
3756 if (G_0286CC_FRONT_FACE_ENA(config->spi_ps_input_addr))
3757 shader_info->num_input_vgprs += 1;
3758 if (G_0286CC_ANCILLARY_ENA(config->spi_ps_input_addr))
3759 shader_info->num_input_vgprs += 1;
3760 if (G_0286CC_SAMPLE_COVERAGE_ENA(config->spi_ps_input_addr))
3761 shader_info->num_input_vgprs += 1;
3762 if (G_0286CC_POS_FIXED_PT_ENA(config->spi_ps_input_addr))
3763 shader_info->num_input_vgprs += 1;
3764 }
3765 config->num_vgprs = MAX2(config->num_vgprs, shader_info->num_input_vgprs);
3766
3767 /* +3 for scratch wave offset and VCC */
3768 config->num_sgprs = MAX2(config->num_sgprs,
3769 shader_info->num_input_sgprs + 3);
3770
3771 /* Enable 64-bit and 16-bit denormals, because there is no performance
3772 * cost.
3773 *
3774 * If denormals are enabled, all floating-point output modifiers are
3775 * ignored.
3776 *
3777 * Don't enable denormals for 32-bit floats, because:
3778 * - Floating-point output modifiers would be ignored by the hw.
3779 * - Some opcodes don't support denormals, such as v_mad_f32. We would
3780 * have to stop using those.
3781 * - SI & CI would be very slow.
3782 */
3783 config->float_mode |= V_00B028_FP_64_DENORMS;
3784 }
3785
3786 static void
3787 ac_fill_shader_info(struct radv_shader_variant_info *shader_info, struct nir_shader *nir, const struct radv_nir_compiler_options *options)
3788 {
3789 switch (nir->info.stage) {
3790 case MESA_SHADER_COMPUTE:
3791 for (int i = 0; i < 3; ++i)
3792 shader_info->cs.block_size[i] = nir->info.cs.local_size[i];
3793 break;
3794 case MESA_SHADER_FRAGMENT:
3795 shader_info->fs.early_fragment_test = nir->info.fs.early_fragment_tests;
3796 break;
3797 case MESA_SHADER_GEOMETRY:
3798 shader_info->gs.vertices_in = nir->info.gs.vertices_in;
3799 shader_info->gs.vertices_out = nir->info.gs.vertices_out;
3800 shader_info->gs.output_prim = nir->info.gs.output_primitive;
3801 shader_info->gs.invocations = nir->info.gs.invocations;
3802 break;
3803 case MESA_SHADER_TESS_EVAL:
3804 shader_info->tes.primitive_mode = nir->info.tess.primitive_mode;
3805 shader_info->tes.spacing = nir->info.tess.spacing;
3806 shader_info->tes.ccw = nir->info.tess.ccw;
3807 shader_info->tes.point_mode = nir->info.tess.point_mode;
3808 shader_info->tes.as_es = options->key.tes.as_es;
3809 break;
3810 case MESA_SHADER_TESS_CTRL:
3811 shader_info->tcs.tcs_vertices_out = nir->info.tess.tcs_vertices_out;
3812 break;
3813 case MESA_SHADER_VERTEX:
3814 shader_info->vs.as_es = options->key.vs.as_es;
3815 shader_info->vs.as_ls = options->key.vs.as_ls;
3816 /* in LS mode we need at least 1, invocation id needs 2, handled elsewhere */
3817 if (options->key.vs.as_ls)
3818 shader_info->vs.vgpr_comp_cnt = MAX2(1, shader_info->vs.vgpr_comp_cnt);
3819 break;
3820 default:
3821 break;
3822 }
3823 }
3824
3825 void
3826 radv_compile_nir_shader(struct ac_llvm_compiler *ac_llvm,
3827 struct ac_shader_binary *binary,
3828 struct ac_shader_config *config,
3829 struct radv_shader_variant_info *shader_info,
3830 struct nir_shader *const *nir,
3831 int nir_count,
3832 const struct radv_nir_compiler_options *options)
3833 {
3834
3835 LLVMModuleRef llvm_module;
3836
3837 llvm_module = ac_translate_nir_to_llvm(ac_llvm, nir, nir_count, shader_info,
3838 options);
3839
3840 ac_compile_llvm_module(ac_llvm, llvm_module, binary, config, shader_info,
3841 nir[0]->info.stage, options);
3842
3843 for (int i = 0; i < nir_count; ++i)
3844 ac_fill_shader_info(shader_info, nir[i], options);
3845
3846 /* Determine the ES type (VS or TES) for the GS on GFX9. */
3847 if (options->chip_class == GFX9) {
3848 if (nir_count == 2 &&
3849 nir[1]->info.stage == MESA_SHADER_GEOMETRY) {
3850 shader_info->gs.es_type = nir[0]->info.stage;
3851 }
3852 }
3853 }
3854
3855 static void
3856 ac_gs_copy_shader_emit(struct radv_shader_context *ctx)
3857 {
3858 LLVMValueRef vtx_offset =
3859 LLVMBuildMul(ctx->ac.builder, ctx->abi.vertex_id,
3860 LLVMConstInt(ctx->ac.i32, 4, false), "");
3861 LLVMValueRef stream_id;
3862
3863 /* Fetch the vertex stream ID. */
3864 if (ctx->shader_info->info.so.num_outputs) {
3865 stream_id =
3866 ac_unpack_param(&ctx->ac, ctx->streamout_config, 24, 2);
3867 } else {
3868 stream_id = ctx->ac.i32_0;
3869 }
3870
3871 LLVMBasicBlockRef end_bb;
3872 LLVMValueRef switch_inst;
3873
3874 end_bb = LLVMAppendBasicBlockInContext(ctx->ac.context,
3875 ctx->main_function, "end");
3876 switch_inst = LLVMBuildSwitch(ctx->ac.builder, stream_id, end_bb, 4);
3877
3878 for (unsigned stream = 0; stream < 4; stream++) {
3879 unsigned num_components =
3880 ctx->shader_info->info.gs.num_stream_output_components[stream];
3881 LLVMBasicBlockRef bb;
3882 unsigned offset;
3883
3884 if (!num_components)
3885 continue;
3886
3887 if (stream > 0 && !ctx->shader_info->info.so.num_outputs)
3888 continue;
3889
3890 bb = LLVMInsertBasicBlockInContext(ctx->ac.context, end_bb, "out");
3891 LLVMAddCase(switch_inst, LLVMConstInt(ctx->ac.i32, stream, 0), bb);
3892 LLVMPositionBuilderAtEnd(ctx->ac.builder, bb);
3893
3894 offset = 0;
3895 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3896 unsigned output_usage_mask =
3897 ctx->shader_info->info.gs.output_usage_mask[i];
3898 unsigned output_stream =
3899 ctx->shader_info->info.gs.output_streams[i];
3900 int length = util_last_bit(output_usage_mask);
3901
3902 if (!(ctx->output_mask & (1ull << i)) ||
3903 output_stream != stream)
3904 continue;
3905
3906 for (unsigned j = 0; j < length; j++) {
3907 LLVMValueRef value, soffset;
3908
3909 if (!(output_usage_mask & (1 << j)))
3910 continue;
3911
3912 soffset = LLVMConstInt(ctx->ac.i32,
3913 offset *
3914 ctx->gs_max_out_vertices * 16 * 4, false);
3915
3916 offset++;
3917
3918 value = ac_build_buffer_load(&ctx->ac,
3919 ctx->gsvs_ring[0],
3920 1, ctx->ac.i32_0,
3921 vtx_offset, soffset,
3922 0, 1, 1, true, false);
3923
3924 LLVMTypeRef type = LLVMGetAllocatedType(ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
3925 if (ac_get_type_size(type) == 2) {
3926 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
3927 value = LLVMBuildTrunc(ctx->ac.builder, value, ctx->ac.i16, "");
3928 }
3929
3930 LLVMBuildStore(ctx->ac.builder,
3931 ac_to_float(&ctx->ac, value), ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
3932 }
3933 }
3934
3935 if (ctx->shader_info->info.so.num_outputs)
3936 radv_emit_streamout(ctx, stream);
3937
3938 if (stream == 0) {
3939 handle_vs_outputs_post(ctx, false, false,
3940 &ctx->shader_info->vs.outinfo);
3941 }
3942
3943 LLVMBuildBr(ctx->ac.builder, end_bb);
3944 }
3945
3946 LLVMPositionBuilderAtEnd(ctx->ac.builder, end_bb);
3947 }
3948
3949 void
3950 radv_compile_gs_copy_shader(struct ac_llvm_compiler *ac_llvm,
3951 struct nir_shader *geom_shader,
3952 struct ac_shader_binary *binary,
3953 struct ac_shader_config *config,
3954 struct radv_shader_variant_info *shader_info,
3955 const struct radv_nir_compiler_options *options)
3956 {
3957 struct radv_shader_context ctx = {0};
3958 ctx.options = options;
3959 ctx.shader_info = shader_info;
3960
3961 ac_llvm_context_init(&ctx.ac, options->chip_class, options->family);
3962 ctx.context = ctx.ac.context;
3963 ctx.ac.module = ac_create_module(ac_llvm->tm, ctx.context);
3964
3965 ctx.is_gs_copy_shader = true;
3966
3967 enum ac_float_mode float_mode =
3968 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
3969 AC_FLOAT_MODE_DEFAULT;
3970
3971 ctx.ac.builder = ac_create_builder(ctx.context, float_mode);
3972 ctx.stage = MESA_SHADER_VERTEX;
3973
3974 radv_nir_shader_info_pass(geom_shader, options, &shader_info->info);
3975
3976 create_function(&ctx, MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX);
3977
3978 ctx.gs_max_out_vertices = geom_shader->info.gs.vertices_out;
3979 ac_setup_rings(&ctx);
3980
3981 nir_foreach_variable(variable, &geom_shader->outputs) {
3982 scan_shader_output_decl(&ctx, variable, geom_shader, MESA_SHADER_VERTEX);
3983 ac_handle_shader_output_decl(&ctx.ac, &ctx.abi, geom_shader,
3984 variable, MESA_SHADER_VERTEX);
3985 }
3986
3987 ac_gs_copy_shader_emit(&ctx);
3988
3989 LLVMBuildRetVoid(ctx.ac.builder);
3990
3991 ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, options);
3992
3993 ac_compile_llvm_module(ac_llvm, ctx.ac.module, binary, config, shader_info,
3994 MESA_SHADER_VERTEX, options);
3995 }