ac: add ac_build_{struct,raw}_tbuffer_load() helpers
[mesa.git] / src / amd / vulkan / radv_nir_to_llvm.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "radv_private.h"
29 #include "radv_shader.h"
30 #include "radv_shader_helper.h"
31 #include "nir/nir.h"
32
33 #include <llvm-c/Core.h>
34 #include <llvm-c/TargetMachine.h>
35 #include <llvm-c/Transforms/Scalar.h>
36 #include <llvm-c/Transforms/Utils.h>
37
38 #include "sid.h"
39 #include "gfx9d.h"
40 #include "ac_binary.h"
41 #include "ac_llvm_util.h"
42 #include "ac_llvm_build.h"
43 #include "ac_shader_abi.h"
44 #include "ac_shader_util.h"
45 #include "ac_exp_param.h"
46
47 #define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)
48
49 struct radv_shader_context {
50 struct ac_llvm_context ac;
51 const struct radv_nir_compiler_options *options;
52 struct radv_shader_variant_info *shader_info;
53 struct ac_shader_abi abi;
54
55 unsigned max_workgroup_size;
56 LLVMContextRef context;
57 LLVMValueRef main_function;
58
59 LLVMValueRef descriptor_sets[RADV_UD_MAX_SETS];
60 LLVMValueRef ring_offsets;
61
62 LLVMValueRef vertex_buffers;
63 LLVMValueRef rel_auto_id;
64 LLVMValueRef vs_prim_id;
65 LLVMValueRef es2gs_offset;
66
67 LLVMValueRef oc_lds;
68 LLVMValueRef merged_wave_info;
69 LLVMValueRef tess_factor_offset;
70 LLVMValueRef tes_rel_patch_id;
71 LLVMValueRef tes_u;
72 LLVMValueRef tes_v;
73
74 LLVMValueRef gs2vs_offset;
75 LLVMValueRef gs_wave_id;
76 LLVMValueRef gs_vtx_offset[6];
77
78 LLVMValueRef esgs_ring;
79 LLVMValueRef gsvs_ring[4];
80 LLVMValueRef hs_ring_tess_offchip;
81 LLVMValueRef hs_ring_tess_factor;
82
83 LLVMValueRef persp_sample, persp_center, persp_centroid;
84 LLVMValueRef linear_sample, linear_center, linear_centroid;
85
86 /* Streamout */
87 LLVMValueRef streamout_buffers;
88 LLVMValueRef streamout_write_idx;
89 LLVMValueRef streamout_config;
90 LLVMValueRef streamout_offset[4];
91
92 gl_shader_stage stage;
93
94 LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];
95 uint64_t float16_shaded_mask;
96
97 uint64_t input_mask;
98 uint64_t output_mask;
99
100 bool is_gs_copy_shader;
101 LLVMValueRef gs_next_vertex[4];
102 unsigned gs_max_out_vertices;
103
104 unsigned tes_primitive_mode;
105
106 uint32_t tcs_patch_outputs_read;
107 uint64_t tcs_outputs_read;
108 uint32_t tcs_vertices_per_patch;
109 uint32_t tcs_num_inputs;
110 uint32_t tcs_num_patches;
111 uint32_t max_gsvs_emit_size;
112 uint32_t gsvs_vertex_size;
113 };
114
115 enum radeon_llvm_calling_convention {
116 RADEON_LLVM_AMDGPU_VS = 87,
117 RADEON_LLVM_AMDGPU_GS = 88,
118 RADEON_LLVM_AMDGPU_PS = 89,
119 RADEON_LLVM_AMDGPU_CS = 90,
120 RADEON_LLVM_AMDGPU_HS = 93,
121 };
122
123 static inline struct radv_shader_context *
124 radv_shader_context_from_abi(struct ac_shader_abi *abi)
125 {
126 struct radv_shader_context *ctx = NULL;
127 return container_of(abi, ctx, abi);
128 }
129
130 struct ac_build_if_state
131 {
132 struct radv_shader_context *ctx;
133 LLVMValueRef condition;
134 LLVMBasicBlockRef entry_block;
135 LLVMBasicBlockRef true_block;
136 LLVMBasicBlockRef false_block;
137 LLVMBasicBlockRef merge_block;
138 };
139
140 static LLVMBasicBlockRef
141 ac_build_insert_new_block(struct radv_shader_context *ctx, const char *name)
142 {
143 LLVMBasicBlockRef current_block;
144 LLVMBasicBlockRef next_block;
145 LLVMBasicBlockRef new_block;
146
147 /* get current basic block */
148 current_block = LLVMGetInsertBlock(ctx->ac.builder);
149
150 /* chqeck if there's another block after this one */
151 next_block = LLVMGetNextBasicBlock(current_block);
152 if (next_block) {
153 /* insert the new block before the next block */
154 new_block = LLVMInsertBasicBlockInContext(ctx->context, next_block, name);
155 }
156 else {
157 /* append new block after current block */
158 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
159 new_block = LLVMAppendBasicBlockInContext(ctx->context, function, name);
160 }
161 return new_block;
162 }
163
164 static void
165 ac_nir_build_if(struct ac_build_if_state *ifthen,
166 struct radv_shader_context *ctx,
167 LLVMValueRef condition)
168 {
169 LLVMBasicBlockRef block = LLVMGetInsertBlock(ctx->ac.builder);
170
171 memset(ifthen, 0, sizeof *ifthen);
172 ifthen->ctx = ctx;
173 ifthen->condition = condition;
174 ifthen->entry_block = block;
175
176 /* create endif/merge basic block for the phi functions */
177 ifthen->merge_block = ac_build_insert_new_block(ctx, "endif-block");
178
179 /* create/insert true_block before merge_block */
180 ifthen->true_block =
181 LLVMInsertBasicBlockInContext(ctx->context,
182 ifthen->merge_block,
183 "if-true-block");
184
185 /* successive code goes into the true block */
186 LLVMPositionBuilderAtEnd(ctx->ac.builder, ifthen->true_block);
187 }
188
189 /**
190 * End a conditional.
191 */
192 static void
193 ac_nir_build_endif(struct ac_build_if_state *ifthen)
194 {
195 LLVMBuilderRef builder = ifthen->ctx->ac.builder;
196
197 /* Insert branch to the merge block from current block */
198 LLVMBuildBr(builder, ifthen->merge_block);
199
200 /*
201 * Now patch in the various branch instructions.
202 */
203
204 /* Insert the conditional branch instruction at the end of entry_block */
205 LLVMPositionBuilderAtEnd(builder, ifthen->entry_block);
206 if (ifthen->false_block) {
207 /* we have an else clause */
208 LLVMBuildCondBr(builder, ifthen->condition,
209 ifthen->true_block, ifthen->false_block);
210 }
211 else {
212 /* no else clause */
213 LLVMBuildCondBr(builder, ifthen->condition,
214 ifthen->true_block, ifthen->merge_block);
215 }
216
217 /* Resume building code at end of the ifthen->merge_block */
218 LLVMPositionBuilderAtEnd(builder, ifthen->merge_block);
219 }
220
221
222 static LLVMValueRef get_rel_patch_id(struct radv_shader_context *ctx)
223 {
224 switch (ctx->stage) {
225 case MESA_SHADER_TESS_CTRL:
226 return ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
227 case MESA_SHADER_TESS_EVAL:
228 return ctx->tes_rel_patch_id;
229 break;
230 default:
231 unreachable("Illegal stage");
232 }
233 }
234
235 static unsigned
236 get_tcs_num_patches(struct radv_shader_context *ctx)
237 {
238 unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
239 unsigned num_tcs_output_cp = ctx->tcs_vertices_per_patch;
240 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
241 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
242 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
243 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
244 uint32_t output_vertex_size = num_tcs_outputs * 16;
245 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
246 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
247 unsigned num_patches;
248 unsigned hardware_lds_size;
249
250 /* Ensure that we only need one wave per SIMD so we don't need to check
251 * resource usage. Also ensures that the number of tcs in and out
252 * vertices per threadgroup are at most 256.
253 */
254 num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
255 /* Make sure that the data fits in LDS. This assumes the shaders only
256 * use LDS for the inputs and outputs.
257 */
258 hardware_lds_size = 32768;
259
260 /* Looks like STONEY hangs if we use more than 32 KiB LDS in a single
261 * threadgroup, even though there is more than 32 KiB LDS.
262 *
263 * Test: dEQP-VK.tessellation.shader_input_output.barrier
264 */
265 if (ctx->options->chip_class >= CIK && ctx->options->family != CHIP_STONEY)
266 hardware_lds_size = 65536;
267
268 num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size));
269 /* Make sure the output data fits in the offchip buffer */
270 num_patches = MIN2(num_patches, (ctx->options->tess_offchip_block_dw_size * 4) / output_patch_size);
271 /* Not necessary for correctness, but improves performance. The
272 * specific value is taken from the proprietary driver.
273 */
274 num_patches = MIN2(num_patches, 40);
275
276 /* SI bug workaround - limit LS-HS threadgroups to only one wave. */
277 if (ctx->options->chip_class == SI) {
278 unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp);
279 num_patches = MIN2(num_patches, one_wave);
280 }
281 return num_patches;
282 }
283
284 static unsigned
285 calculate_tess_lds_size(struct radv_shader_context *ctx)
286 {
287 unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
288 unsigned num_tcs_output_cp;
289 unsigned num_tcs_outputs, num_tcs_patch_outputs;
290 unsigned input_vertex_size, output_vertex_size;
291 unsigned input_patch_size, output_patch_size;
292 unsigned pervertex_output_patch_size;
293 unsigned output_patch0_offset;
294 unsigned num_patches;
295 unsigned lds_size;
296
297 num_tcs_output_cp = ctx->tcs_vertices_per_patch;
298 num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
299 num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
300
301 input_vertex_size = ctx->tcs_num_inputs * 16;
302 output_vertex_size = num_tcs_outputs * 16;
303
304 input_patch_size = num_tcs_input_cp * input_vertex_size;
305
306 pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
307 output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
308
309 num_patches = ctx->tcs_num_patches;
310 output_patch0_offset = input_patch_size * num_patches;
311
312 lds_size = output_patch0_offset + output_patch_size * num_patches;
313 return lds_size;
314 }
315
316 /* Tessellation shaders pass outputs to the next shader using LDS.
317 *
318 * LS outputs = TCS inputs
319 * TCS outputs = TES inputs
320 *
321 * The LDS layout is:
322 * - TCS inputs for patch 0
323 * - TCS inputs for patch 1
324 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
325 * - ...
326 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
327 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
328 * - TCS outputs for patch 1
329 * - Per-patch TCS outputs for patch 1
330 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
331 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
332 * - ...
333 *
334 * All three shaders VS(LS), TCS, TES share the same LDS space.
335 */
336 static LLVMValueRef
337 get_tcs_in_patch_stride(struct radv_shader_context *ctx)
338 {
339 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
340 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
341 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
342
343 input_patch_size /= 4;
344 return LLVMConstInt(ctx->ac.i32, input_patch_size, false);
345 }
346
347 static LLVMValueRef
348 get_tcs_out_patch_stride(struct radv_shader_context *ctx)
349 {
350 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
351 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
352 uint32_t output_vertex_size = num_tcs_outputs * 16;
353 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
354 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
355 output_patch_size /= 4;
356 return LLVMConstInt(ctx->ac.i32, output_patch_size, false);
357 }
358
359 static LLVMValueRef
360 get_tcs_out_vertex_stride(struct radv_shader_context *ctx)
361 {
362 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
363 uint32_t output_vertex_size = num_tcs_outputs * 16;
364 output_vertex_size /= 4;
365 return LLVMConstInt(ctx->ac.i32, output_vertex_size, false);
366 }
367
368 static LLVMValueRef
369 get_tcs_out_patch0_offset(struct radv_shader_context *ctx)
370 {
371 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
372 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
373 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
374 uint32_t output_patch0_offset = input_patch_size;
375 unsigned num_patches = ctx->tcs_num_patches;
376
377 output_patch0_offset *= num_patches;
378 output_patch0_offset /= 4;
379 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
380 }
381
382 static LLVMValueRef
383 get_tcs_out_patch0_patch_data_offset(struct radv_shader_context *ctx)
384 {
385 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
386 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
387 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
388 uint32_t output_patch0_offset = input_patch_size;
389
390 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
391 uint32_t output_vertex_size = num_tcs_outputs * 16;
392 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
393 unsigned num_patches = ctx->tcs_num_patches;
394
395 output_patch0_offset *= num_patches;
396 output_patch0_offset += pervertex_output_patch_size;
397 output_patch0_offset /= 4;
398 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
399 }
400
401 static LLVMValueRef
402 get_tcs_in_current_patch_offset(struct radv_shader_context *ctx)
403 {
404 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
405 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
406
407 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
408 }
409
410 static LLVMValueRef
411 get_tcs_out_current_patch_offset(struct radv_shader_context *ctx)
412 {
413 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
414 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
415 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
416
417 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
418 patch0_offset);
419 }
420
421 static LLVMValueRef
422 get_tcs_out_current_patch_data_offset(struct radv_shader_context *ctx)
423 {
424 LLVMValueRef patch0_patch_data_offset =
425 get_tcs_out_patch0_patch_data_offset(ctx);
426 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
427 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
428
429 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
430 patch0_patch_data_offset);
431 }
432
433 #define MAX_ARGS 64
434 struct arg_info {
435 LLVMTypeRef types[MAX_ARGS];
436 LLVMValueRef *assign[MAX_ARGS];
437 uint8_t count;
438 uint8_t sgpr_count;
439 uint8_t num_sgprs_used;
440 uint8_t num_vgprs_used;
441 };
442
443 enum ac_arg_regfile {
444 ARG_SGPR,
445 ARG_VGPR,
446 };
447
448 static void
449 add_arg(struct arg_info *info, enum ac_arg_regfile regfile, LLVMTypeRef type,
450 LLVMValueRef *param_ptr)
451 {
452 assert(info->count < MAX_ARGS);
453
454 info->assign[info->count] = param_ptr;
455 info->types[info->count] = type;
456 info->count++;
457
458 if (regfile == ARG_SGPR) {
459 info->num_sgprs_used += ac_get_type_size(type) / 4;
460 info->sgpr_count++;
461 } else {
462 assert(regfile == ARG_VGPR);
463 info->num_vgprs_used += ac_get_type_size(type) / 4;
464 }
465 }
466
467 static void assign_arguments(LLVMValueRef main_function,
468 struct arg_info *info)
469 {
470 unsigned i;
471 for (i = 0; i < info->count; i++) {
472 if (info->assign[i])
473 *info->assign[i] = LLVMGetParam(main_function, i);
474 }
475 }
476
477 static LLVMValueRef
478 create_llvm_function(LLVMContextRef ctx, LLVMModuleRef module,
479 LLVMBuilderRef builder, LLVMTypeRef *return_types,
480 unsigned num_return_elems,
481 struct arg_info *args,
482 unsigned max_workgroup_size,
483 const struct radv_nir_compiler_options *options)
484 {
485 LLVMTypeRef main_function_type, ret_type;
486 LLVMBasicBlockRef main_function_body;
487
488 if (num_return_elems)
489 ret_type = LLVMStructTypeInContext(ctx, return_types,
490 num_return_elems, true);
491 else
492 ret_type = LLVMVoidTypeInContext(ctx);
493
494 /* Setup the function */
495 main_function_type =
496 LLVMFunctionType(ret_type, args->types, args->count, 0);
497 LLVMValueRef main_function =
498 LLVMAddFunction(module, "main", main_function_type);
499 main_function_body =
500 LLVMAppendBasicBlockInContext(ctx, main_function, "main_body");
501 LLVMPositionBuilderAtEnd(builder, main_function_body);
502
503 LLVMSetFunctionCallConv(main_function, RADEON_LLVM_AMDGPU_CS);
504 for (unsigned i = 0; i < args->sgpr_count; ++i) {
505 LLVMValueRef P = LLVMGetParam(main_function, i);
506
507 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_INREG);
508
509 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
510 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_NOALIAS);
511 ac_add_attr_dereferenceable(P, UINT64_MAX);
512 }
513 }
514
515 if (options->address32_hi) {
516 ac_llvm_add_target_dep_function_attr(main_function,
517 "amdgpu-32bit-address-high-bits",
518 options->address32_hi);
519 }
520
521 if (max_workgroup_size) {
522 ac_llvm_add_target_dep_function_attr(main_function,
523 "amdgpu-max-work-group-size",
524 max_workgroup_size);
525 }
526 if (options->unsafe_math) {
527 /* These were copied from some LLVM test. */
528 LLVMAddTargetDependentFunctionAttr(main_function,
529 "less-precise-fpmad",
530 "true");
531 LLVMAddTargetDependentFunctionAttr(main_function,
532 "no-infs-fp-math",
533 "true");
534 LLVMAddTargetDependentFunctionAttr(main_function,
535 "no-nans-fp-math",
536 "true");
537 LLVMAddTargetDependentFunctionAttr(main_function,
538 "unsafe-fp-math",
539 "true");
540 LLVMAddTargetDependentFunctionAttr(main_function,
541 "no-signed-zeros-fp-math",
542 "true");
543 }
544 return main_function;
545 }
546
547
548 static void
549 set_loc(struct radv_userdata_info *ud_info, uint8_t *sgpr_idx,
550 uint8_t num_sgprs)
551 {
552 ud_info->sgpr_idx = *sgpr_idx;
553 ud_info->num_sgprs = num_sgprs;
554 *sgpr_idx += num_sgprs;
555 }
556
557 static void
558 set_loc_shader(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx,
559 uint8_t num_sgprs)
560 {
561 struct radv_userdata_info *ud_info =
562 &ctx->shader_info->user_sgprs_locs.shader_data[idx];
563 assert(ud_info);
564
565 set_loc(ud_info, sgpr_idx, num_sgprs);
566 }
567
568 static void
569 set_loc_shader_ptr(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx)
570 {
571 bool use_32bit_pointers = idx != AC_UD_SCRATCH_RING_OFFSETS;
572
573 set_loc_shader(ctx, idx, sgpr_idx, use_32bit_pointers ? 1 : 2);
574 }
575
576 static void
577 set_loc_desc(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx)
578 {
579 struct radv_userdata_locations *locs =
580 &ctx->shader_info->user_sgprs_locs;
581 struct radv_userdata_info *ud_info = &locs->descriptor_sets[idx];
582 assert(ud_info);
583
584 set_loc(ud_info, sgpr_idx, 1);
585
586 locs->descriptor_sets_enabled |= 1 << idx;
587 }
588
589 struct user_sgpr_info {
590 bool need_ring_offsets;
591 bool indirect_all_descriptor_sets;
592 uint8_t remaining_sgprs;
593 };
594
595 static bool needs_view_index_sgpr(struct radv_shader_context *ctx,
596 gl_shader_stage stage)
597 {
598 switch (stage) {
599 case MESA_SHADER_VERTEX:
600 if (ctx->shader_info->info.needs_multiview_view_index ||
601 (!ctx->options->key.vs.as_es && !ctx->options->key.vs.as_ls && ctx->options->key.has_multiview_view_index))
602 return true;
603 break;
604 case MESA_SHADER_TESS_EVAL:
605 if (ctx->shader_info->info.needs_multiview_view_index || (!ctx->options->key.tes.as_es && ctx->options->key.has_multiview_view_index))
606 return true;
607 break;
608 case MESA_SHADER_GEOMETRY:
609 case MESA_SHADER_TESS_CTRL:
610 if (ctx->shader_info->info.needs_multiview_view_index)
611 return true;
612 break;
613 default:
614 break;
615 }
616 return false;
617 }
618
619 static uint8_t
620 count_vs_user_sgprs(struct radv_shader_context *ctx)
621 {
622 uint8_t count = 0;
623
624 if (ctx->shader_info->info.vs.has_vertex_buffers)
625 count++;
626 count += ctx->shader_info->info.vs.needs_draw_id ? 3 : 2;
627
628 return count;
629 }
630
631 static void allocate_inline_push_consts(struct radv_shader_context *ctx,
632 struct user_sgpr_info *user_sgpr_info)
633 {
634 uint8_t remaining_sgprs = user_sgpr_info->remaining_sgprs;
635
636 /* Only supported if shaders use push constants. */
637 if (ctx->shader_info->info.min_push_constant_used == UINT8_MAX)
638 return;
639
640 /* Only supported if shaders don't have indirect push constants. */
641 if (ctx->shader_info->info.has_indirect_push_constants)
642 return;
643
644 /* Only supported for 32-bit push constants. */
645 if (!ctx->shader_info->info.has_only_32bit_push_constants)
646 return;
647
648 uint8_t num_push_consts =
649 (ctx->shader_info->info.max_push_constant_used -
650 ctx->shader_info->info.min_push_constant_used) / 4;
651
652 /* Check if the number of user SGPRs is large enough. */
653 if (num_push_consts < remaining_sgprs) {
654 ctx->shader_info->info.num_inline_push_consts = num_push_consts;
655 } else {
656 ctx->shader_info->info.num_inline_push_consts = remaining_sgprs;
657 }
658
659 /* Clamp to the maximum number of allowed inlined push constants. */
660 if (ctx->shader_info->info.num_inline_push_consts > AC_MAX_INLINE_PUSH_CONSTS)
661 ctx->shader_info->info.num_inline_push_consts = AC_MAX_INLINE_PUSH_CONSTS;
662
663 if (ctx->shader_info->info.num_inline_push_consts == num_push_consts &&
664 !ctx->shader_info->info.loads_dynamic_offsets) {
665 /* Disable the default push constants path if all constants are
666 * inlined and if shaders don't use dynamic descriptors.
667 */
668 ctx->shader_info->info.loads_push_constants = false;
669 }
670
671 ctx->shader_info->info.base_inline_push_consts =
672 ctx->shader_info->info.min_push_constant_used / 4;
673 }
674
675 static void allocate_user_sgprs(struct radv_shader_context *ctx,
676 gl_shader_stage stage,
677 bool has_previous_stage,
678 gl_shader_stage previous_stage,
679 bool needs_view_index,
680 struct user_sgpr_info *user_sgpr_info)
681 {
682 uint8_t user_sgpr_count = 0;
683
684 memset(user_sgpr_info, 0, sizeof(struct user_sgpr_info));
685
686 /* until we sort out scratch/global buffers always assign ring offsets for gs/vs/es */
687 if (stage == MESA_SHADER_GEOMETRY ||
688 stage == MESA_SHADER_VERTEX ||
689 stage == MESA_SHADER_TESS_CTRL ||
690 stage == MESA_SHADER_TESS_EVAL ||
691 ctx->is_gs_copy_shader)
692 user_sgpr_info->need_ring_offsets = true;
693
694 if (stage == MESA_SHADER_FRAGMENT &&
695 ctx->shader_info->info.ps.needs_sample_positions)
696 user_sgpr_info->need_ring_offsets = true;
697
698 /* 2 user sgprs will nearly always be allocated for scratch/rings */
699 if (ctx->options->supports_spill || user_sgpr_info->need_ring_offsets) {
700 user_sgpr_count += 2;
701 }
702
703 switch (stage) {
704 case MESA_SHADER_COMPUTE:
705 if (ctx->shader_info->info.cs.uses_grid_size)
706 user_sgpr_count += 3;
707 break;
708 case MESA_SHADER_FRAGMENT:
709 user_sgpr_count += ctx->shader_info->info.ps.needs_sample_positions;
710 break;
711 case MESA_SHADER_VERTEX:
712 if (!ctx->is_gs_copy_shader)
713 user_sgpr_count += count_vs_user_sgprs(ctx);
714 break;
715 case MESA_SHADER_TESS_CTRL:
716 if (has_previous_stage) {
717 if (previous_stage == MESA_SHADER_VERTEX)
718 user_sgpr_count += count_vs_user_sgprs(ctx);
719 }
720 break;
721 case MESA_SHADER_TESS_EVAL:
722 break;
723 case MESA_SHADER_GEOMETRY:
724 if (has_previous_stage) {
725 if (previous_stage == MESA_SHADER_VERTEX) {
726 user_sgpr_count += count_vs_user_sgprs(ctx);
727 }
728 }
729 break;
730 default:
731 break;
732 }
733
734 if (needs_view_index)
735 user_sgpr_count++;
736
737 if (ctx->shader_info->info.loads_push_constants)
738 user_sgpr_count++;
739
740 if (ctx->streamout_buffers)
741 user_sgpr_count++;
742
743 uint32_t available_sgprs = ctx->options->chip_class >= GFX9 && stage != MESA_SHADER_COMPUTE ? 32 : 16;
744 uint32_t remaining_sgprs = available_sgprs - user_sgpr_count;
745 uint32_t num_desc_set =
746 util_bitcount(ctx->shader_info->info.desc_set_used_mask);
747
748 if (remaining_sgprs < num_desc_set) {
749 user_sgpr_info->indirect_all_descriptor_sets = true;
750 user_sgpr_info->remaining_sgprs = remaining_sgprs - 1;
751 } else {
752 user_sgpr_info->remaining_sgprs = remaining_sgprs - num_desc_set;
753 }
754
755 allocate_inline_push_consts(ctx, user_sgpr_info);
756 }
757
758 static void
759 declare_global_input_sgprs(struct radv_shader_context *ctx,
760 const struct user_sgpr_info *user_sgpr_info,
761 struct arg_info *args,
762 LLVMValueRef *desc_sets)
763 {
764 LLVMTypeRef type = ac_array_in_const32_addr_space(ctx->ac.i8);
765
766 /* 1 for each descriptor set */
767 if (!user_sgpr_info->indirect_all_descriptor_sets) {
768 uint32_t mask = ctx->shader_info->info.desc_set_used_mask;
769
770 while (mask) {
771 int i = u_bit_scan(&mask);
772
773 add_arg(args, ARG_SGPR, type, &ctx->descriptor_sets[i]);
774 }
775 } else {
776 add_arg(args, ARG_SGPR, ac_array_in_const32_addr_space(type),
777 desc_sets);
778 }
779
780 if (ctx->shader_info->info.loads_push_constants) {
781 /* 1 for push constants and dynamic descriptors */
782 add_arg(args, ARG_SGPR, type, &ctx->abi.push_constants);
783 }
784
785 for (unsigned i = 0; i < ctx->shader_info->info.num_inline_push_consts; i++) {
786 add_arg(args, ARG_SGPR, ctx->ac.i32,
787 &ctx->abi.inline_push_consts[i]);
788 }
789 ctx->abi.num_inline_push_consts = ctx->shader_info->info.num_inline_push_consts;
790 ctx->abi.base_inline_push_consts = ctx->shader_info->info.base_inline_push_consts;
791
792 if (ctx->shader_info->info.so.num_outputs) {
793 add_arg(args, ARG_SGPR,
794 ac_array_in_const32_addr_space(ctx->ac.v4i32),
795 &ctx->streamout_buffers);
796 }
797 }
798
799 static void
800 declare_vs_specific_input_sgprs(struct radv_shader_context *ctx,
801 gl_shader_stage stage,
802 bool has_previous_stage,
803 gl_shader_stage previous_stage,
804 struct arg_info *args)
805 {
806 if (!ctx->is_gs_copy_shader &&
807 (stage == MESA_SHADER_VERTEX ||
808 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
809 if (ctx->shader_info->info.vs.has_vertex_buffers) {
810 add_arg(args, ARG_SGPR,
811 ac_array_in_const32_addr_space(ctx->ac.v4i32),
812 &ctx->vertex_buffers);
813 }
814 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.base_vertex);
815 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.start_instance);
816 if (ctx->shader_info->info.vs.needs_draw_id) {
817 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.draw_id);
818 }
819 }
820 }
821
822 static void
823 declare_vs_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
824 {
825 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.vertex_id);
826 if (!ctx->is_gs_copy_shader) {
827 if (ctx->options->key.vs.as_ls) {
828 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->rel_auto_id);
829 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
830 } else {
831 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
832 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->vs_prim_id);
833 }
834 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
835 }
836 }
837
838 static void
839 declare_streamout_sgprs(struct radv_shader_context *ctx, gl_shader_stage stage,
840 struct arg_info *args)
841 {
842 int i;
843
844 /* Streamout SGPRs. */
845 if (ctx->shader_info->info.so.num_outputs) {
846 assert(stage == MESA_SHADER_VERTEX ||
847 stage == MESA_SHADER_TESS_EVAL);
848
849 if (stage != MESA_SHADER_TESS_EVAL) {
850 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_config);
851 } else {
852 args->assign[args->count - 1] = &ctx->streamout_config;
853 args->types[args->count - 1] = ctx->ac.i32;
854 }
855
856 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_write_idx);
857 }
858
859 /* A streamout buffer offset is loaded if the stride is non-zero. */
860 for (i = 0; i < 4; i++) {
861 if (!ctx->shader_info->info.so.strides[i])
862 continue;
863
864 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_offset[i]);
865 }
866 }
867
868 static void
869 declare_tes_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
870 {
871 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_u);
872 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_v);
873 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->tes_rel_patch_id);
874 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.tes_patch_id);
875 }
876
877 static void
878 set_global_input_locs(struct radv_shader_context *ctx,
879 const struct user_sgpr_info *user_sgpr_info,
880 LLVMValueRef desc_sets, uint8_t *user_sgpr_idx)
881 {
882 uint32_t mask = ctx->shader_info->info.desc_set_used_mask;
883
884 if (!user_sgpr_info->indirect_all_descriptor_sets) {
885 while (mask) {
886 int i = u_bit_scan(&mask);
887
888 set_loc_desc(ctx, i, user_sgpr_idx);
889 }
890 } else {
891 set_loc_shader_ptr(ctx, AC_UD_INDIRECT_DESCRIPTOR_SETS,
892 user_sgpr_idx);
893
894 while (mask) {
895 int i = u_bit_scan(&mask);
896
897 ctx->descriptor_sets[i] =
898 ac_build_load_to_sgpr(&ctx->ac, desc_sets,
899 LLVMConstInt(ctx->ac.i32, i, false));
900
901 }
902
903 ctx->shader_info->need_indirect_descriptor_sets = true;
904 }
905
906 if (ctx->shader_info->info.loads_push_constants) {
907 set_loc_shader_ptr(ctx, AC_UD_PUSH_CONSTANTS, user_sgpr_idx);
908 }
909
910 if (ctx->shader_info->info.num_inline_push_consts) {
911 set_loc_shader(ctx, AC_UD_INLINE_PUSH_CONSTANTS, user_sgpr_idx,
912 ctx->shader_info->info.num_inline_push_consts);
913 }
914
915 if (ctx->streamout_buffers) {
916 set_loc_shader_ptr(ctx, AC_UD_STREAMOUT_BUFFERS,
917 user_sgpr_idx);
918 }
919 }
920
921 static void
922 set_vs_specific_input_locs(struct radv_shader_context *ctx,
923 gl_shader_stage stage, bool has_previous_stage,
924 gl_shader_stage previous_stage,
925 uint8_t *user_sgpr_idx)
926 {
927 if (!ctx->is_gs_copy_shader &&
928 (stage == MESA_SHADER_VERTEX ||
929 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
930 if (ctx->shader_info->info.vs.has_vertex_buffers) {
931 set_loc_shader_ptr(ctx, AC_UD_VS_VERTEX_BUFFERS,
932 user_sgpr_idx);
933 }
934
935 unsigned vs_num = 2;
936 if (ctx->shader_info->info.vs.needs_draw_id)
937 vs_num++;
938
939 set_loc_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE,
940 user_sgpr_idx, vs_num);
941 }
942 }
943
944 static void set_llvm_calling_convention(LLVMValueRef func,
945 gl_shader_stage stage)
946 {
947 enum radeon_llvm_calling_convention calling_conv;
948
949 switch (stage) {
950 case MESA_SHADER_VERTEX:
951 case MESA_SHADER_TESS_EVAL:
952 calling_conv = RADEON_LLVM_AMDGPU_VS;
953 break;
954 case MESA_SHADER_GEOMETRY:
955 calling_conv = RADEON_LLVM_AMDGPU_GS;
956 break;
957 case MESA_SHADER_TESS_CTRL:
958 calling_conv = RADEON_LLVM_AMDGPU_HS;
959 break;
960 case MESA_SHADER_FRAGMENT:
961 calling_conv = RADEON_LLVM_AMDGPU_PS;
962 break;
963 case MESA_SHADER_COMPUTE:
964 calling_conv = RADEON_LLVM_AMDGPU_CS;
965 break;
966 default:
967 unreachable("Unhandle shader type");
968 }
969
970 LLVMSetFunctionCallConv(func, calling_conv);
971 }
972
973 static void create_function(struct radv_shader_context *ctx,
974 gl_shader_stage stage,
975 bool has_previous_stage,
976 gl_shader_stage previous_stage)
977 {
978 uint8_t user_sgpr_idx;
979 struct user_sgpr_info user_sgpr_info;
980 struct arg_info args = {};
981 LLVMValueRef desc_sets;
982 bool needs_view_index = needs_view_index_sgpr(ctx, stage);
983 allocate_user_sgprs(ctx, stage, has_previous_stage,
984 previous_stage, needs_view_index, &user_sgpr_info);
985
986 if (user_sgpr_info.need_ring_offsets && !ctx->options->supports_spill) {
987 add_arg(&args, ARG_SGPR, ac_array_in_const_addr_space(ctx->ac.v4i32),
988 &ctx->ring_offsets);
989 }
990
991 switch (stage) {
992 case MESA_SHADER_COMPUTE:
993 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
994 &desc_sets);
995
996 if (ctx->shader_info->info.cs.uses_grid_size) {
997 add_arg(&args, ARG_SGPR, ctx->ac.v3i32,
998 &ctx->abi.num_work_groups);
999 }
1000
1001 for (int i = 0; i < 3; i++) {
1002 ctx->abi.workgroup_ids[i] = NULL;
1003 if (ctx->shader_info->info.cs.uses_block_id[i]) {
1004 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1005 &ctx->abi.workgroup_ids[i]);
1006 }
1007 }
1008
1009 if (ctx->shader_info->info.cs.uses_local_invocation_idx)
1010 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.tg_size);
1011 add_arg(&args, ARG_VGPR, ctx->ac.v3i32,
1012 &ctx->abi.local_invocation_ids);
1013 break;
1014 case MESA_SHADER_VERTEX:
1015 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1016 &desc_sets);
1017
1018 declare_vs_specific_input_sgprs(ctx, stage, has_previous_stage,
1019 previous_stage, &args);
1020
1021 if (needs_view_index)
1022 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1023 &ctx->abi.view_index);
1024 if (ctx->options->key.vs.as_es) {
1025 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1026 &ctx->es2gs_offset);
1027 } else if (ctx->options->key.vs.as_ls) {
1028 /* no extra parameters */
1029 } else {
1030 declare_streamout_sgprs(ctx, stage, &args);
1031 }
1032
1033 declare_vs_input_vgprs(ctx, &args);
1034 break;
1035 case MESA_SHADER_TESS_CTRL:
1036 if (has_previous_stage) {
1037 // First 6 system regs
1038 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1039 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1040 &ctx->merged_wave_info);
1041 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1042 &ctx->tess_factor_offset);
1043
1044 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
1045 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1046 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1047
1048 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1049 &desc_sets);
1050
1051 declare_vs_specific_input_sgprs(ctx, stage,
1052 has_previous_stage,
1053 previous_stage, &args);
1054
1055 if (needs_view_index)
1056 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1057 &ctx->abi.view_index);
1058
1059 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1060 &ctx->abi.tcs_patch_id);
1061 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1062 &ctx->abi.tcs_rel_ids);
1063
1064 declare_vs_input_vgprs(ctx, &args);
1065 } else {
1066 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1067 &desc_sets);
1068
1069 if (needs_view_index)
1070 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1071 &ctx->abi.view_index);
1072
1073 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1074 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1075 &ctx->tess_factor_offset);
1076 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1077 &ctx->abi.tcs_patch_id);
1078 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1079 &ctx->abi.tcs_rel_ids);
1080 }
1081 break;
1082 case MESA_SHADER_TESS_EVAL:
1083 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1084 &desc_sets);
1085
1086 if (needs_view_index)
1087 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1088 &ctx->abi.view_index);
1089
1090 if (ctx->options->key.tes.as_es) {
1091 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1092 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
1093 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1094 &ctx->es2gs_offset);
1095 } else {
1096 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
1097 declare_streamout_sgprs(ctx, stage, &args);
1098 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1099 }
1100 declare_tes_input_vgprs(ctx, &args);
1101 break;
1102 case MESA_SHADER_GEOMETRY:
1103 if (has_previous_stage) {
1104 // First 6 system regs
1105 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1106 &ctx->gs2vs_offset);
1107 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1108 &ctx->merged_wave_info);
1109 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1110
1111 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
1112 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1113 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1114
1115 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1116 &desc_sets);
1117
1118 if (previous_stage != MESA_SHADER_TESS_EVAL) {
1119 declare_vs_specific_input_sgprs(ctx, stage,
1120 has_previous_stage,
1121 previous_stage,
1122 &args);
1123 }
1124
1125 if (needs_view_index)
1126 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1127 &ctx->abi.view_index);
1128
1129 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1130 &ctx->gs_vtx_offset[0]);
1131 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1132 &ctx->gs_vtx_offset[2]);
1133 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1134 &ctx->abi.gs_prim_id);
1135 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1136 &ctx->abi.gs_invocation_id);
1137 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1138 &ctx->gs_vtx_offset[4]);
1139
1140 if (previous_stage == MESA_SHADER_VERTEX) {
1141 declare_vs_input_vgprs(ctx, &args);
1142 } else {
1143 declare_tes_input_vgprs(ctx, &args);
1144 }
1145 } else {
1146 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1147 &desc_sets);
1148
1149 if (needs_view_index)
1150 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1151 &ctx->abi.view_index);
1152
1153 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs2vs_offset);
1154 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs_wave_id);
1155 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1156 &ctx->gs_vtx_offset[0]);
1157 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1158 &ctx->gs_vtx_offset[1]);
1159 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1160 &ctx->abi.gs_prim_id);
1161 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1162 &ctx->gs_vtx_offset[2]);
1163 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1164 &ctx->gs_vtx_offset[3]);
1165 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1166 &ctx->gs_vtx_offset[4]);
1167 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1168 &ctx->gs_vtx_offset[5]);
1169 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1170 &ctx->abi.gs_invocation_id);
1171 }
1172 break;
1173 case MESA_SHADER_FRAGMENT:
1174 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1175 &desc_sets);
1176
1177 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.prim_mask);
1178 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_sample);
1179 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_center);
1180 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_centroid);
1181 add_arg(&args, ARG_VGPR, ctx->ac.v3i32, NULL); /* persp pull model */
1182 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_sample);
1183 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_center);
1184 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_centroid);
1185 add_arg(&args, ARG_VGPR, ctx->ac.f32, NULL); /* line stipple tex */
1186 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[0]);
1187 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[1]);
1188 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[2]);
1189 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[3]);
1190 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.front_face);
1191 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.ancillary);
1192 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.sample_coverage);
1193 add_arg(&args, ARG_VGPR, ctx->ac.i32, NULL); /* fixed pt */
1194 break;
1195 default:
1196 unreachable("Shader stage not implemented");
1197 }
1198
1199 ctx->main_function = create_llvm_function(
1200 ctx->context, ctx->ac.module, ctx->ac.builder, NULL, 0, &args,
1201 ctx->max_workgroup_size, ctx->options);
1202 set_llvm_calling_convention(ctx->main_function, stage);
1203
1204
1205 ctx->shader_info->num_input_vgprs = 0;
1206 ctx->shader_info->num_input_sgprs = ctx->options->supports_spill ? 2 : 0;
1207
1208 ctx->shader_info->num_input_sgprs += args.num_sgprs_used;
1209
1210 if (ctx->stage != MESA_SHADER_FRAGMENT)
1211 ctx->shader_info->num_input_vgprs = args.num_vgprs_used;
1212
1213 assign_arguments(ctx->main_function, &args);
1214
1215 user_sgpr_idx = 0;
1216
1217 if (ctx->options->supports_spill || user_sgpr_info.need_ring_offsets) {
1218 set_loc_shader_ptr(ctx, AC_UD_SCRATCH_RING_OFFSETS,
1219 &user_sgpr_idx);
1220 if (ctx->options->supports_spill) {
1221 ctx->ring_offsets = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.implicit.buffer.ptr",
1222 LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_CONST),
1223 NULL, 0, AC_FUNC_ATTR_READNONE);
1224 ctx->ring_offsets = LLVMBuildBitCast(ctx->ac.builder, ctx->ring_offsets,
1225 ac_array_in_const_addr_space(ctx->ac.v4i32), "");
1226 }
1227 }
1228
1229 /* For merged shaders the user SGPRs start at 8, with 8 system SGPRs in front (including
1230 * the rw_buffers at s0/s1. With user SGPR0 = s8, lets restart the count from 0 */
1231 if (has_previous_stage)
1232 user_sgpr_idx = 0;
1233
1234 set_global_input_locs(ctx, &user_sgpr_info, desc_sets, &user_sgpr_idx);
1235
1236 switch (stage) {
1237 case MESA_SHADER_COMPUTE:
1238 if (ctx->shader_info->info.cs.uses_grid_size) {
1239 set_loc_shader(ctx, AC_UD_CS_GRID_SIZE,
1240 &user_sgpr_idx, 3);
1241 }
1242 break;
1243 case MESA_SHADER_VERTEX:
1244 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1245 previous_stage, &user_sgpr_idx);
1246 if (ctx->abi.view_index)
1247 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1248 break;
1249 case MESA_SHADER_TESS_CTRL:
1250 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1251 previous_stage, &user_sgpr_idx);
1252 if (ctx->abi.view_index)
1253 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1254 break;
1255 case MESA_SHADER_TESS_EVAL:
1256 if (ctx->abi.view_index)
1257 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1258 break;
1259 case MESA_SHADER_GEOMETRY:
1260 if (has_previous_stage) {
1261 if (previous_stage == MESA_SHADER_VERTEX)
1262 set_vs_specific_input_locs(ctx, stage,
1263 has_previous_stage,
1264 previous_stage,
1265 &user_sgpr_idx);
1266 }
1267 if (ctx->abi.view_index)
1268 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1269 break;
1270 case MESA_SHADER_FRAGMENT:
1271 break;
1272 default:
1273 unreachable("Shader stage not implemented");
1274 }
1275
1276 if (stage == MESA_SHADER_TESS_CTRL ||
1277 (stage == MESA_SHADER_VERTEX && ctx->options->key.vs.as_ls) ||
1278 /* GFX9 has the ESGS ring buffer in LDS. */
1279 (stage == MESA_SHADER_GEOMETRY && has_previous_stage)) {
1280 ac_declare_lds_as_pointer(&ctx->ac);
1281 }
1282
1283 ctx->shader_info->num_user_sgprs = user_sgpr_idx;
1284 }
1285
1286
1287 static LLVMValueRef
1288 radv_load_resource(struct ac_shader_abi *abi, LLVMValueRef index,
1289 unsigned desc_set, unsigned binding)
1290 {
1291 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1292 LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
1293 struct radv_pipeline_layout *pipeline_layout = ctx->options->layout;
1294 struct radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
1295 unsigned base_offset = layout->binding[binding].offset;
1296 LLVMValueRef offset, stride;
1297
1298 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1299 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1300 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start +
1301 layout->binding[binding].dynamic_offset_offset;
1302 desc_ptr = ctx->abi.push_constants;
1303 base_offset = pipeline_layout->push_constant_size + 16 * idx;
1304 stride = LLVMConstInt(ctx->ac.i32, 16, false);
1305 } else
1306 stride = LLVMConstInt(ctx->ac.i32, layout->binding[binding].size, false);
1307
1308 offset = ac_build_imad(&ctx->ac, index, stride,
1309 LLVMConstInt(ctx->ac.i32, base_offset, false));
1310
1311 desc_ptr = ac_build_gep0(&ctx->ac, desc_ptr, offset);
1312 desc_ptr = ac_cast_ptr(&ctx->ac, desc_ptr, ctx->ac.v4i32);
1313 LLVMSetMetadata(desc_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1314
1315 return desc_ptr;
1316 }
1317
1318
1319 /* The offchip buffer layout for TCS->TES is
1320 *
1321 * - attribute 0 of patch 0 vertex 0
1322 * - attribute 0 of patch 0 vertex 1
1323 * - attribute 0 of patch 0 vertex 2
1324 * ...
1325 * - attribute 0 of patch 1 vertex 0
1326 * - attribute 0 of patch 1 vertex 1
1327 * ...
1328 * - attribute 1 of patch 0 vertex 0
1329 * - attribute 1 of patch 0 vertex 1
1330 * ...
1331 * - per patch attribute 0 of patch 0
1332 * - per patch attribute 0 of patch 1
1333 * ...
1334 *
1335 * Note that every attribute has 4 components.
1336 */
1337 static LLVMValueRef get_non_vertex_index_offset(struct radv_shader_context *ctx)
1338 {
1339 uint32_t num_patches = ctx->tcs_num_patches;
1340 uint32_t num_tcs_outputs;
1341 if (ctx->stage == MESA_SHADER_TESS_CTRL)
1342 num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
1343 else
1344 num_tcs_outputs = ctx->options->key.tes.tcs_num_outputs;
1345
1346 uint32_t output_vertex_size = num_tcs_outputs * 16;
1347 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
1348
1349 return LLVMConstInt(ctx->ac.i32, pervertex_output_patch_size * num_patches, false);
1350 }
1351
1352 static LLVMValueRef calc_param_stride(struct radv_shader_context *ctx,
1353 LLVMValueRef vertex_index)
1354 {
1355 LLVMValueRef param_stride;
1356 if (vertex_index)
1357 param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_vertices_per_patch * ctx->tcs_num_patches, false);
1358 else
1359 param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_num_patches, false);
1360 return param_stride;
1361 }
1362
1363 static LLVMValueRef get_tcs_tes_buffer_address(struct radv_shader_context *ctx,
1364 LLVMValueRef vertex_index,
1365 LLVMValueRef param_index)
1366 {
1367 LLVMValueRef base_addr;
1368 LLVMValueRef param_stride, constant16;
1369 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
1370 LLVMValueRef vertices_per_patch = LLVMConstInt(ctx->ac.i32, ctx->tcs_vertices_per_patch, false);
1371 constant16 = LLVMConstInt(ctx->ac.i32, 16, false);
1372 param_stride = calc_param_stride(ctx, vertex_index);
1373 if (vertex_index) {
1374 base_addr = ac_build_imad(&ctx->ac, rel_patch_id,
1375 vertices_per_patch, vertex_index);
1376 } else {
1377 base_addr = rel_patch_id;
1378 }
1379
1380 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1381 LLVMBuildMul(ctx->ac.builder, param_index,
1382 param_stride, ""), "");
1383
1384 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
1385
1386 if (!vertex_index) {
1387 LLVMValueRef patch_data_offset = get_non_vertex_index_offset(ctx);
1388
1389 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1390 patch_data_offset, "");
1391 }
1392 return base_addr;
1393 }
1394
1395 static LLVMValueRef get_tcs_tes_buffer_address_params(struct radv_shader_context *ctx,
1396 unsigned param,
1397 unsigned const_index,
1398 bool is_compact,
1399 LLVMValueRef vertex_index,
1400 LLVMValueRef indir_index)
1401 {
1402 LLVMValueRef param_index;
1403
1404 if (indir_index)
1405 param_index = LLVMBuildAdd(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, param, false),
1406 indir_index, "");
1407 else {
1408 if (const_index && !is_compact)
1409 param += const_index;
1410 param_index = LLVMConstInt(ctx->ac.i32, param, false);
1411 }
1412 return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
1413 }
1414
1415 static LLVMValueRef
1416 get_dw_address(struct radv_shader_context *ctx,
1417 LLVMValueRef dw_addr,
1418 unsigned param,
1419 unsigned const_index,
1420 bool compact_const_index,
1421 LLVMValueRef vertex_index,
1422 LLVMValueRef stride,
1423 LLVMValueRef indir_index)
1424
1425 {
1426
1427 if (vertex_index) {
1428 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1429 LLVMBuildMul(ctx->ac.builder,
1430 vertex_index,
1431 stride, ""), "");
1432 }
1433
1434 if (indir_index)
1435 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1436 LLVMBuildMul(ctx->ac.builder, indir_index,
1437 LLVMConstInt(ctx->ac.i32, 4, false), ""), "");
1438 else if (const_index && !compact_const_index)
1439 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1440 LLVMConstInt(ctx->ac.i32, const_index * 4, false), "");
1441
1442 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1443 LLVMConstInt(ctx->ac.i32, param * 4, false), "");
1444
1445 if (const_index && compact_const_index)
1446 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1447 LLVMConstInt(ctx->ac.i32, const_index, false), "");
1448 return dw_addr;
1449 }
1450
1451 static LLVMValueRef
1452 load_tcs_varyings(struct ac_shader_abi *abi,
1453 LLVMTypeRef type,
1454 LLVMValueRef vertex_index,
1455 LLVMValueRef indir_index,
1456 unsigned const_index,
1457 unsigned location,
1458 unsigned driver_location,
1459 unsigned component,
1460 unsigned num_components,
1461 bool is_patch,
1462 bool is_compact,
1463 bool load_input)
1464 {
1465 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1466 LLVMValueRef dw_addr, stride;
1467 LLVMValueRef value[4], result;
1468 unsigned param = shader_io_get_unique_index(location);
1469
1470 if (load_input) {
1471 uint32_t input_vertex_size = (ctx->tcs_num_inputs * 16) / 4;
1472 stride = LLVMConstInt(ctx->ac.i32, input_vertex_size, false);
1473 dw_addr = get_tcs_in_current_patch_offset(ctx);
1474 } else {
1475 if (!is_patch) {
1476 stride = get_tcs_out_vertex_stride(ctx);
1477 dw_addr = get_tcs_out_current_patch_offset(ctx);
1478 } else {
1479 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1480 stride = NULL;
1481 }
1482 }
1483
1484 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
1485 indir_index);
1486
1487 for (unsigned i = 0; i < num_components + component; i++) {
1488 value[i] = ac_lds_load(&ctx->ac, dw_addr);
1489 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1490 ctx->ac.i32_1, "");
1491 }
1492 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1493 return result;
1494 }
1495
1496 static void
1497 store_tcs_output(struct ac_shader_abi *abi,
1498 const nir_variable *var,
1499 LLVMValueRef vertex_index,
1500 LLVMValueRef param_index,
1501 unsigned const_index,
1502 LLVMValueRef src,
1503 unsigned writemask)
1504 {
1505 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1506 const unsigned location = var->data.location;
1507 unsigned component = var->data.location_frac;
1508 const bool is_patch = var->data.patch;
1509 const bool is_compact = var->data.compact;
1510 LLVMValueRef dw_addr;
1511 LLVMValueRef stride = NULL;
1512 LLVMValueRef buf_addr = NULL;
1513 unsigned param;
1514 bool store_lds = true;
1515
1516 if (is_patch) {
1517 if (!(ctx->tcs_patch_outputs_read & (1U << (location - VARYING_SLOT_PATCH0))))
1518 store_lds = false;
1519 } else {
1520 if (!(ctx->tcs_outputs_read & (1ULL << location)))
1521 store_lds = false;
1522 }
1523
1524 param = shader_io_get_unique_index(location);
1525 if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && is_compact) {
1526 const_index += component;
1527 component = 0;
1528
1529 if (const_index >= 4) {
1530 const_index -= 4;
1531 param++;
1532 }
1533 }
1534
1535 if (!is_patch) {
1536 stride = get_tcs_out_vertex_stride(ctx);
1537 dw_addr = get_tcs_out_current_patch_offset(ctx);
1538 } else {
1539 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1540 }
1541
1542 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
1543 param_index);
1544 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact,
1545 vertex_index, param_index);
1546
1547 bool is_tess_factor = false;
1548 if (location == VARYING_SLOT_TESS_LEVEL_INNER ||
1549 location == VARYING_SLOT_TESS_LEVEL_OUTER)
1550 is_tess_factor = true;
1551
1552 unsigned base = is_compact ? const_index : 0;
1553 for (unsigned chan = 0; chan < 8; chan++) {
1554 if (!(writemask & (1 << chan)))
1555 continue;
1556 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1557 value = ac_to_integer(&ctx->ac, value);
1558 value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
1559
1560 if (store_lds || is_tess_factor) {
1561 LLVMValueRef dw_addr_chan =
1562 LLVMBuildAdd(ctx->ac.builder, dw_addr,
1563 LLVMConstInt(ctx->ac.i32, chan, false), "");
1564 ac_lds_store(&ctx->ac, dw_addr_chan, value);
1565 }
1566
1567 if (!is_tess_factor && writemask != 0xF)
1568 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, value, 1,
1569 buf_addr, ctx->oc_lds,
1570 4 * (base + chan), 1, 0, true, false);
1571 }
1572
1573 if (writemask == 0xF) {
1574 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, src, 4,
1575 buf_addr, ctx->oc_lds,
1576 (base * 4), 1, 0, true, false);
1577 }
1578 }
1579
1580 static LLVMValueRef
1581 load_tes_input(struct ac_shader_abi *abi,
1582 LLVMTypeRef type,
1583 LLVMValueRef vertex_index,
1584 LLVMValueRef param_index,
1585 unsigned const_index,
1586 unsigned location,
1587 unsigned driver_location,
1588 unsigned component,
1589 unsigned num_components,
1590 bool is_patch,
1591 bool is_compact,
1592 bool load_input)
1593 {
1594 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1595 LLVMValueRef buf_addr;
1596 LLVMValueRef result;
1597 unsigned param = shader_io_get_unique_index(location);
1598
1599 if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && is_compact) {
1600 const_index += component;
1601 component = 0;
1602 if (const_index >= 4) {
1603 const_index -= 4;
1604 param++;
1605 }
1606 }
1607
1608 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index,
1609 is_compact, vertex_index, param_index);
1610
1611 LLVMValueRef comp_offset = LLVMConstInt(ctx->ac.i32, component * 4, false);
1612 buf_addr = LLVMBuildAdd(ctx->ac.builder, buf_addr, comp_offset, "");
1613
1614 result = ac_build_buffer_load(&ctx->ac, ctx->hs_ring_tess_offchip, num_components, NULL,
1615 buf_addr, ctx->oc_lds, is_compact ? (4 * const_index) : 0, 1, 0, true, false);
1616 result = ac_trim_vector(&ctx->ac, result, num_components);
1617 return result;
1618 }
1619
1620 static LLVMValueRef
1621 load_gs_input(struct ac_shader_abi *abi,
1622 unsigned location,
1623 unsigned driver_location,
1624 unsigned component,
1625 unsigned num_components,
1626 unsigned vertex_index,
1627 unsigned const_index,
1628 LLVMTypeRef type)
1629 {
1630 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1631 LLVMValueRef vtx_offset;
1632 unsigned param, vtx_offset_param;
1633 LLVMValueRef value[4], result;
1634
1635 vtx_offset_param = vertex_index;
1636 assert(vtx_offset_param < 6);
1637 vtx_offset = LLVMBuildMul(ctx->ac.builder, ctx->gs_vtx_offset[vtx_offset_param],
1638 LLVMConstInt(ctx->ac.i32, 4, false), "");
1639
1640 param = shader_io_get_unique_index(location);
1641
1642 for (unsigned i = component; i < num_components + component; i++) {
1643 if (ctx->ac.chip_class >= GFX9) {
1644 LLVMValueRef dw_addr = ctx->gs_vtx_offset[vtx_offset_param];
1645 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1646 LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index, 0), "");
1647 value[i] = ac_lds_load(&ctx->ac, dw_addr);
1648 } else {
1649 LLVMValueRef soffset =
1650 LLVMConstInt(ctx->ac.i32,
1651 (param * 4 + i + const_index) * 256,
1652 false);
1653
1654 value[i] = ac_build_buffer_load(&ctx->ac,
1655 ctx->esgs_ring, 1,
1656 ctx->ac.i32_0,
1657 vtx_offset, soffset,
1658 0, 1, 0, true, false);
1659 }
1660
1661 if (ac_get_type_size(type) == 2) {
1662 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], ctx->ac.i32, "");
1663 value[i] = LLVMBuildTrunc(ctx->ac.builder, value[i], ctx->ac.i16, "");
1664 }
1665 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], type, "");
1666 }
1667 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1668 result = ac_to_integer(&ctx->ac, result);
1669 return result;
1670 }
1671
1672
1673 static void radv_emit_kill(struct ac_shader_abi *abi, LLVMValueRef visible)
1674 {
1675 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1676 ac_build_kill_if_false(&ctx->ac, visible);
1677 }
1678
1679 static LLVMValueRef lookup_interp_param(struct ac_shader_abi *abi,
1680 enum glsl_interp_mode interp, unsigned location)
1681 {
1682 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1683
1684 switch (interp) {
1685 case INTERP_MODE_FLAT:
1686 default:
1687 return NULL;
1688 case INTERP_MODE_SMOOTH:
1689 case INTERP_MODE_NONE:
1690 if (location == INTERP_CENTER)
1691 return ctx->persp_center;
1692 else if (location == INTERP_CENTROID)
1693 return ctx->persp_centroid;
1694 else if (location == INTERP_SAMPLE)
1695 return ctx->persp_sample;
1696 break;
1697 case INTERP_MODE_NOPERSPECTIVE:
1698 if (location == INTERP_CENTER)
1699 return ctx->linear_center;
1700 else if (location == INTERP_CENTROID)
1701 return ctx->linear_centroid;
1702 else if (location == INTERP_SAMPLE)
1703 return ctx->linear_sample;
1704 break;
1705 }
1706 return NULL;
1707 }
1708
1709 static uint32_t
1710 radv_get_sample_pos_offset(uint32_t num_samples)
1711 {
1712 uint32_t sample_pos_offset = 0;
1713
1714 switch (num_samples) {
1715 case 2:
1716 sample_pos_offset = 1;
1717 break;
1718 case 4:
1719 sample_pos_offset = 3;
1720 break;
1721 case 8:
1722 sample_pos_offset = 7;
1723 break;
1724 default:
1725 break;
1726 }
1727 return sample_pos_offset;
1728 }
1729
1730 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi,
1731 LLVMValueRef sample_id)
1732 {
1733 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1734
1735 LLVMValueRef result;
1736 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_PS_SAMPLE_POSITIONS, false));
1737
1738 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
1739 ac_array_in_const_addr_space(ctx->ac.v2f32), "");
1740
1741 uint32_t sample_pos_offset =
1742 radv_get_sample_pos_offset(ctx->options->key.fs.num_samples);
1743
1744 sample_id =
1745 LLVMBuildAdd(ctx->ac.builder, sample_id,
1746 LLVMConstInt(ctx->ac.i32, sample_pos_offset, false), "");
1747 result = ac_build_load_invariant(&ctx->ac, ptr, sample_id);
1748
1749 return result;
1750 }
1751
1752
1753 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
1754 {
1755 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1756 uint8_t log2_ps_iter_samples;
1757
1758 if (ctx->shader_info->info.ps.force_persample) {
1759 log2_ps_iter_samples =
1760 util_logbase2(ctx->options->key.fs.num_samples);
1761 } else {
1762 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
1763 }
1764
1765 /* The bit pattern matches that used by fixed function fragment
1766 * processing. */
1767 static const uint16_t ps_iter_masks[] = {
1768 0xffff, /* not used */
1769 0x5555,
1770 0x1111,
1771 0x0101,
1772 0x0001,
1773 };
1774 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
1775
1776 uint32_t ps_iter_mask = ps_iter_masks[log2_ps_iter_samples];
1777
1778 LLVMValueRef result, sample_id;
1779 sample_id = ac_unpack_param(&ctx->ac, abi->ancillary, 8, 4);
1780 sample_id = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false), sample_id, "");
1781 result = LLVMBuildAnd(ctx->ac.builder, sample_id, abi->sample_coverage, "");
1782 return result;
1783 }
1784
1785
1786 static void
1787 visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
1788 {
1789 LLVMValueRef gs_next_vertex;
1790 LLVMValueRef can_emit;
1791 unsigned offset = 0;
1792 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1793
1794 /* Write vertex attribute values to GSVS ring */
1795 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
1796 ctx->gs_next_vertex[stream],
1797 "");
1798
1799 /* If this thread has already emitted the declared maximum number of
1800 * vertices, kill it: excessive vertex emissions are not supposed to
1801 * have any effect, and GS threads have no externally observable
1802 * effects other than emitting vertices.
1803 */
1804 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
1805 LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
1806 ac_build_kill_if_false(&ctx->ac, can_emit);
1807
1808 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
1809 unsigned output_usage_mask =
1810 ctx->shader_info->info.gs.output_usage_mask[i];
1811 uint8_t output_stream =
1812 ctx->shader_info->info.gs.output_streams[i];
1813 LLVMValueRef *out_ptr = &addrs[i * 4];
1814 int length = util_last_bit(output_usage_mask);
1815
1816 if (!(ctx->output_mask & (1ull << i)) ||
1817 output_stream != stream)
1818 continue;
1819
1820 for (unsigned j = 0; j < length; j++) {
1821 if (!(output_usage_mask & (1 << j)))
1822 continue;
1823
1824 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
1825 out_ptr[j], "");
1826 LLVMValueRef voffset =
1827 LLVMConstInt(ctx->ac.i32, offset *
1828 ctx->gs_max_out_vertices, false);
1829
1830 offset++;
1831
1832 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
1833 voffset = LLVMBuildMul(ctx->ac.builder, voffset, LLVMConstInt(ctx->ac.i32, 4, false), "");
1834
1835 out_val = ac_to_integer(&ctx->ac, out_val);
1836 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
1837
1838 ac_build_buffer_store_dword(&ctx->ac,
1839 ctx->gsvs_ring[stream],
1840 out_val, 1,
1841 voffset, ctx->gs2vs_offset, 0,
1842 1, 1, true, true);
1843 }
1844 }
1845
1846 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex,
1847 ctx->ac.i32_1, "");
1848 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
1849
1850 ac_build_sendmsg(&ctx->ac,
1851 AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
1852 ctx->gs_wave_id);
1853 }
1854
1855 static void
1856 visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
1857 {
1858 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1859 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
1860 }
1861
1862 static LLVMValueRef
1863 load_tess_coord(struct ac_shader_abi *abi)
1864 {
1865 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1866
1867 LLVMValueRef coord[4] = {
1868 ctx->tes_u,
1869 ctx->tes_v,
1870 ctx->ac.f32_0,
1871 ctx->ac.f32_0,
1872 };
1873
1874 if (ctx->tes_primitive_mode == GL_TRIANGLES)
1875 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
1876 LLVMBuildFAdd(ctx->ac.builder, coord[0], coord[1], ""), "");
1877
1878 return ac_build_gather_values(&ctx->ac, coord, 3);
1879 }
1880
1881 static LLVMValueRef
1882 load_patch_vertices_in(struct ac_shader_abi *abi)
1883 {
1884 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1885 return LLVMConstInt(ctx->ac.i32, ctx->options->key.tcs.input_vertices, false);
1886 }
1887
1888
1889 static LLVMValueRef radv_load_base_vertex(struct ac_shader_abi *abi)
1890 {
1891 return abi->base_vertex;
1892 }
1893
1894 static LLVMValueRef radv_load_ssbo(struct ac_shader_abi *abi,
1895 LLVMValueRef buffer_ptr, bool write)
1896 {
1897 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1898 LLVMValueRef result;
1899
1900 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1901
1902 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1903 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1904
1905 return result;
1906 }
1907
1908 static LLVMValueRef radv_load_ubo(struct ac_shader_abi *abi, LLVMValueRef buffer_ptr)
1909 {
1910 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1911 LLVMValueRef result;
1912
1913 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1914
1915 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1916 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1917
1918 return result;
1919 }
1920
1921 static LLVMValueRef radv_get_sampler_desc(struct ac_shader_abi *abi,
1922 unsigned descriptor_set,
1923 unsigned base_index,
1924 unsigned constant_index,
1925 LLVMValueRef index,
1926 enum ac_descriptor_type desc_type,
1927 bool image, bool write,
1928 bool bindless)
1929 {
1930 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1931 LLVMValueRef list = ctx->descriptor_sets[descriptor_set];
1932 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
1933 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
1934 unsigned offset = binding->offset;
1935 unsigned stride = binding->size;
1936 unsigned type_size;
1937 LLVMBuilderRef builder = ctx->ac.builder;
1938 LLVMTypeRef type;
1939
1940 assert(base_index < layout->binding_count);
1941
1942 switch (desc_type) {
1943 case AC_DESC_IMAGE:
1944 type = ctx->ac.v8i32;
1945 type_size = 32;
1946 break;
1947 case AC_DESC_FMASK:
1948 type = ctx->ac.v8i32;
1949 offset += 32;
1950 type_size = 32;
1951 break;
1952 case AC_DESC_SAMPLER:
1953 type = ctx->ac.v4i32;
1954 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
1955 offset += 64;
1956
1957 type_size = 16;
1958 break;
1959 case AC_DESC_BUFFER:
1960 type = ctx->ac.v4i32;
1961 type_size = 16;
1962 break;
1963 default:
1964 unreachable("invalid desc_type\n");
1965 }
1966
1967 offset += constant_index * stride;
1968
1969 if (desc_type == AC_DESC_SAMPLER && binding->immutable_samplers_offset &&
1970 (!index || binding->immutable_samplers_equal)) {
1971 if (binding->immutable_samplers_equal)
1972 constant_index = 0;
1973
1974 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
1975
1976 LLVMValueRef constants[] = {
1977 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 0], 0),
1978 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 1], 0),
1979 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 2], 0),
1980 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 3], 0),
1981 };
1982 return ac_build_gather_values(&ctx->ac, constants, 4);
1983 }
1984
1985 assert(stride % type_size == 0);
1986
1987 if (!index)
1988 index = ctx->ac.i32_0;
1989
1990 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->ac.i32, stride / type_size, 0), "");
1991
1992 list = ac_build_gep0(&ctx->ac, list, LLVMConstInt(ctx->ac.i32, offset, 0));
1993 list = LLVMBuildPointerCast(builder, list,
1994 ac_array_in_const32_addr_space(type), "");
1995
1996 return ac_build_load_to_sgpr(&ctx->ac, list, index);
1997 }
1998
1999 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
2000 * so we may need to fix it up. */
2001 static LLVMValueRef
2002 adjust_vertex_fetch_alpha(struct radv_shader_context *ctx,
2003 unsigned adjustment,
2004 LLVMValueRef alpha)
2005 {
2006 if (adjustment == RADV_ALPHA_ADJUST_NONE)
2007 return alpha;
2008
2009 LLVMValueRef c30 = LLVMConstInt(ctx->ac.i32, 30, 0);
2010
2011 alpha = LLVMBuildBitCast(ctx->ac.builder, alpha, ctx->ac.f32, "");
2012
2013 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
2014 alpha = LLVMBuildFPToUI(ctx->ac.builder, alpha, ctx->ac.i32, "");
2015 else
2016 alpha = ac_to_integer(&ctx->ac, alpha);
2017
2018 /* For the integer-like cases, do a natural sign extension.
2019 *
2020 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
2021 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
2022 * exponent.
2023 */
2024 alpha = LLVMBuildShl(ctx->ac.builder, alpha,
2025 adjustment == RADV_ALPHA_ADJUST_SNORM ?
2026 LLVMConstInt(ctx->ac.i32, 7, 0) : c30, "");
2027 alpha = LLVMBuildAShr(ctx->ac.builder, alpha, c30, "");
2028
2029 /* Convert back to the right type. */
2030 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
2031 LLVMValueRef clamp;
2032 LLVMValueRef neg_one = LLVMConstReal(ctx->ac.f32, -1.0);
2033 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
2034 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, alpha, neg_one, "");
2035 alpha = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, alpha, "");
2036 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
2037 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
2038 }
2039
2040 return LLVMBuildBitCast(ctx->ac.builder, alpha, ctx->ac.i32, "");
2041 }
2042
2043 static unsigned
2044 get_num_channels_from_data_format(unsigned data_format)
2045 {
2046 switch (data_format) {
2047 case V_008F0C_BUF_DATA_FORMAT_8:
2048 case V_008F0C_BUF_DATA_FORMAT_16:
2049 case V_008F0C_BUF_DATA_FORMAT_32:
2050 return 1;
2051 case V_008F0C_BUF_DATA_FORMAT_8_8:
2052 case V_008F0C_BUF_DATA_FORMAT_16_16:
2053 case V_008F0C_BUF_DATA_FORMAT_32_32:
2054 return 2;
2055 case V_008F0C_BUF_DATA_FORMAT_10_11_11:
2056 case V_008F0C_BUF_DATA_FORMAT_11_11_10:
2057 case V_008F0C_BUF_DATA_FORMAT_32_32_32:
2058 return 3;
2059 case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
2060 case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
2061 case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
2062 case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
2063 case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
2064 return 4;
2065 default:
2066 break;
2067 }
2068
2069 return 4;
2070 }
2071
2072 static LLVMValueRef
2073 radv_fixup_vertex_input_fetches(struct radv_shader_context *ctx,
2074 LLVMValueRef value,
2075 unsigned num_channels,
2076 bool is_float)
2077 {
2078 LLVMValueRef zero = is_float ? ctx->ac.f32_0 : ctx->ac.i32_0;
2079 LLVMValueRef one = is_float ? ctx->ac.f32_1 : ctx->ac.i32_1;
2080 LLVMValueRef chan[4];
2081
2082 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMVectorTypeKind) {
2083 unsigned vec_size = LLVMGetVectorSize(LLVMTypeOf(value));
2084
2085 if (num_channels == 4 && num_channels == vec_size)
2086 return value;
2087
2088 num_channels = MIN2(num_channels, vec_size);
2089
2090 for (unsigned i = 0; i < num_channels; i++)
2091 chan[i] = ac_llvm_extract_elem(&ctx->ac, value, i);
2092 } else {
2093 if (num_channels) {
2094 assert(num_channels == 1);
2095 chan[0] = value;
2096 }
2097 }
2098
2099 for (unsigned i = num_channels; i < 4; i++) {
2100 chan[i] = i == 3 ? one : zero;
2101 chan[i] = ac_to_integer(&ctx->ac, chan[i]);
2102 }
2103
2104 return ac_build_gather_values(&ctx->ac, chan, 4);
2105 }
2106
2107 static void
2108 handle_vs_input_decl(struct radv_shader_context *ctx,
2109 struct nir_variable *variable)
2110 {
2111 LLVMValueRef t_list_ptr = ctx->vertex_buffers;
2112 LLVMValueRef t_offset;
2113 LLVMValueRef t_list;
2114 LLVMValueRef input;
2115 LLVMValueRef buffer_index;
2116 unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
2117 uint8_t input_usage_mask =
2118 ctx->shader_info->info.vs.input_usage_mask[variable->data.location];
2119 unsigned num_input_channels = util_last_bit(input_usage_mask);
2120
2121 variable->data.driver_location = variable->data.location * 4;
2122
2123 enum glsl_base_type type = glsl_get_base_type(variable->type);
2124 for (unsigned i = 0; i < attrib_count; ++i) {
2125 LLVMValueRef output[4];
2126 unsigned attrib_index = variable->data.location + i - VERT_ATTRIB_GENERIC0;
2127 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[attrib_index];
2128 unsigned data_format = attrib_format & 0x0f;
2129 unsigned num_format = (attrib_format >> 4) & 0x07;
2130 bool is_float = num_format != V_008F0C_BUF_NUM_FORMAT_UINT &&
2131 num_format != V_008F0C_BUF_NUM_FORMAT_SINT;
2132
2133 if (ctx->options->key.vs.instance_rate_inputs & (1u << attrib_index)) {
2134 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[attrib_index];
2135
2136 if (divisor) {
2137 buffer_index = ctx->abi.instance_id;
2138
2139 if (divisor != 1) {
2140 buffer_index = LLVMBuildUDiv(ctx->ac.builder, buffer_index,
2141 LLVMConstInt(ctx->ac.i32, divisor, 0), "");
2142 }
2143
2144 if (ctx->options->key.vs.as_ls) {
2145 ctx->shader_info->vs.vgpr_comp_cnt =
2146 MAX2(2, ctx->shader_info->vs.vgpr_comp_cnt);
2147 } else {
2148 ctx->shader_info->vs.vgpr_comp_cnt =
2149 MAX2(1, ctx->shader_info->vs.vgpr_comp_cnt);
2150 }
2151 } else {
2152 buffer_index = ctx->ac.i32_0;
2153 }
2154
2155 buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.start_instance, buffer_index, "");
2156 } else
2157 buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.vertex_id,
2158 ctx->abi.base_vertex, "");
2159
2160 /* Adjust the number of channels to load based on the vertex
2161 * attribute format.
2162 */
2163 unsigned num_format_channels = get_num_channels_from_data_format(data_format);
2164 unsigned num_channels = MIN2(num_input_channels, num_format_channels);
2165 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[attrib_index];
2166 unsigned attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[attrib_index];
2167 unsigned attrib_stride = ctx->options->key.vs.vertex_attribute_strides[attrib_index];
2168
2169 if (attrib_stride != 0 && attrib_offset > attrib_stride) {
2170 LLVMValueRef buffer_offset =
2171 LLVMConstInt(ctx->ac.i32,
2172 attrib_offset / attrib_stride, false);
2173
2174 buffer_index = LLVMBuildAdd(ctx->ac.builder,
2175 buffer_index,
2176 buffer_offset, "");
2177
2178 attrib_offset = attrib_offset % attrib_stride;
2179 }
2180
2181 t_offset = LLVMConstInt(ctx->ac.i32, attrib_binding, false);
2182 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
2183
2184 input = ac_build_struct_tbuffer_load(&ctx->ac, t_list,
2185 buffer_index,
2186 LLVMConstInt(ctx->ac.i32, attrib_offset, false),
2187 ctx->ac.i32_0, ctx->ac.i32_0,
2188 num_channels,
2189 data_format, num_format,
2190 false, false, true);
2191
2192 if (ctx->options->key.vs.post_shuffle & (1 << attrib_index)) {
2193 if (num_channels > 1) {
2194 LLVMValueRef c[4];
2195 c[0] = ac_llvm_extract_elem(&ctx->ac, input, 2);
2196 c[1] = ac_llvm_extract_elem(&ctx->ac, input, 1);
2197 c[2] = ac_llvm_extract_elem(&ctx->ac, input, 0);
2198 c[3] = ac_llvm_extract_elem(&ctx->ac, input, 3);
2199
2200 input = ac_build_gather_values(&ctx->ac, c, 4);
2201 }
2202 }
2203
2204 input = radv_fixup_vertex_input_fetches(ctx, input, num_channels,
2205 is_float);
2206
2207 for (unsigned chan = 0; chan < 4; chan++) {
2208 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
2209 output[chan] = LLVMBuildExtractElement(ctx->ac.builder, input, llvm_chan, "");
2210 if (type == GLSL_TYPE_FLOAT16) {
2211 output[chan] = LLVMBuildBitCast(ctx->ac.builder, output[chan], ctx->ac.f32, "");
2212 output[chan] = LLVMBuildFPTrunc(ctx->ac.builder, output[chan], ctx->ac.f16, "");
2213 }
2214 }
2215
2216 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (attrib_index * 2)) & 3;
2217 output[3] = adjust_vertex_fetch_alpha(ctx, alpha_adjust, output[3]);
2218
2219 for (unsigned chan = 0; chan < 4; chan++) {
2220 output[chan] = ac_to_integer(&ctx->ac, output[chan]);
2221 if (type == GLSL_TYPE_UINT16 || type == GLSL_TYPE_INT16)
2222 output[chan] = LLVMBuildTrunc(ctx->ac.builder, output[chan], ctx->ac.i16, "");
2223
2224 ctx->inputs[ac_llvm_reg_index_soa(variable->data.location + i, chan)] = output[chan];
2225 }
2226 }
2227 }
2228
2229 static void interp_fs_input(struct radv_shader_context *ctx,
2230 unsigned attr,
2231 LLVMValueRef interp_param,
2232 LLVMValueRef prim_mask,
2233 bool float16,
2234 LLVMValueRef result[4])
2235 {
2236 LLVMValueRef attr_number;
2237 unsigned chan;
2238 LLVMValueRef i, j;
2239 bool interp = !LLVMIsUndef(interp_param);
2240
2241 attr_number = LLVMConstInt(ctx->ac.i32, attr, false);
2242
2243 /* fs.constant returns the param from the middle vertex, so it's not
2244 * really useful for flat shading. It's meant to be used for custom
2245 * interpolation (but the intrinsic can't fetch from the other two
2246 * vertices).
2247 *
2248 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
2249 * to do the right thing. The only reason we use fs.constant is that
2250 * fs.interp cannot be used on integers, because they can be equal
2251 * to NaN.
2252 */
2253 if (interp) {
2254 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
2255 ctx->ac.v2f32, "");
2256
2257 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
2258 ctx->ac.i32_0, "");
2259 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
2260 ctx->ac.i32_1, "");
2261 }
2262
2263 for (chan = 0; chan < 4; chan++) {
2264 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
2265
2266 if (interp && float16) {
2267 result[chan] = ac_build_fs_interp_f16(&ctx->ac,
2268 llvm_chan,
2269 attr_number,
2270 prim_mask, i, j);
2271 } else if (interp) {
2272 result[chan] = ac_build_fs_interp(&ctx->ac,
2273 llvm_chan,
2274 attr_number,
2275 prim_mask, i, j);
2276 } else {
2277 result[chan] = ac_build_fs_interp_mov(&ctx->ac,
2278 LLVMConstInt(ctx->ac.i32, 2, false),
2279 llvm_chan,
2280 attr_number,
2281 prim_mask);
2282 result[chan] = LLVMBuildBitCast(ctx->ac.builder, result[chan], ctx->ac.i32, "");
2283 result[chan] = LLVMBuildTruncOrBitCast(ctx->ac.builder, result[chan], float16 ? ctx->ac.i16 : ctx->ac.i32, "");
2284 }
2285 }
2286 }
2287
2288 static void mark_16bit_fs_input(struct radv_shader_context *ctx,
2289 const struct glsl_type *type,
2290 int location)
2291 {
2292 if (glsl_type_is_scalar(type) || glsl_type_is_vector(type) || glsl_type_is_matrix(type)) {
2293 unsigned attrib_count = glsl_count_attribute_slots(type, false);
2294 if (glsl_type_is_16bit(type)) {
2295 ctx->float16_shaded_mask |= ((1ull << attrib_count) - 1) << location;
2296 }
2297 } else if (glsl_type_is_array(type)) {
2298 unsigned stride = glsl_count_attribute_slots(glsl_get_array_element(type), false);
2299 for (unsigned i = 0; i < glsl_get_length(type); ++i) {
2300 mark_16bit_fs_input(ctx, glsl_get_array_element(type), location + i * stride);
2301 }
2302 } else {
2303 assert(glsl_type_is_struct_or_ifc(type));
2304 for (unsigned i = 0; i < glsl_get_length(type); i++) {
2305 mark_16bit_fs_input(ctx, glsl_get_struct_field(type, i), location);
2306 location += glsl_count_attribute_slots(glsl_get_struct_field(type, i), false);
2307 }
2308 }
2309 }
2310
2311 static void
2312 handle_fs_input_decl(struct radv_shader_context *ctx,
2313 struct nir_variable *variable)
2314 {
2315 int idx = variable->data.location;
2316 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
2317 LLVMValueRef interp = NULL;
2318 uint64_t mask;
2319
2320 variable->data.driver_location = idx * 4;
2321
2322
2323 if (variable->data.compact) {
2324 unsigned component_count = variable->data.location_frac +
2325 glsl_get_length(variable->type);
2326 attrib_count = (component_count + 3) / 4;
2327 } else
2328 mark_16bit_fs_input(ctx, variable->type, idx);
2329
2330 mask = ((1ull << attrib_count) - 1) << variable->data.location;
2331
2332 if (glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_FLOAT ||
2333 glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_FLOAT16 ||
2334 glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_STRUCT) {
2335 unsigned interp_type;
2336 if (variable->data.sample)
2337 interp_type = INTERP_SAMPLE;
2338 else if (variable->data.centroid)
2339 interp_type = INTERP_CENTROID;
2340 else
2341 interp_type = INTERP_CENTER;
2342
2343 interp = lookup_interp_param(&ctx->abi, variable->data.interpolation, interp_type);
2344 }
2345 if (interp == NULL)
2346 interp = LLVMGetUndef(ctx->ac.i32);
2347
2348 for (unsigned i = 0; i < attrib_count; ++i)
2349 ctx->inputs[ac_llvm_reg_index_soa(idx + i, 0)] = interp;
2350
2351 ctx->input_mask |= mask;
2352 }
2353
2354 static void
2355 handle_vs_inputs(struct radv_shader_context *ctx,
2356 struct nir_shader *nir) {
2357 nir_foreach_variable(variable, &nir->inputs)
2358 handle_vs_input_decl(ctx, variable);
2359 }
2360
2361 static void
2362 prepare_interp_optimize(struct radv_shader_context *ctx,
2363 struct nir_shader *nir)
2364 {
2365 bool uses_center = false;
2366 bool uses_centroid = false;
2367 nir_foreach_variable(variable, &nir->inputs) {
2368 if (glsl_get_base_type(glsl_without_array(variable->type)) != GLSL_TYPE_FLOAT ||
2369 variable->data.sample)
2370 continue;
2371
2372 if (variable->data.centroid)
2373 uses_centroid = true;
2374 else
2375 uses_center = true;
2376 }
2377
2378 if (uses_center && uses_centroid) {
2379 LLVMValueRef sel = LLVMBuildICmp(ctx->ac.builder, LLVMIntSLT, ctx->abi.prim_mask, ctx->ac.i32_0, "");
2380 ctx->persp_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->persp_center, ctx->persp_centroid, "");
2381 ctx->linear_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->linear_center, ctx->linear_centroid, "");
2382 }
2383 }
2384
2385 static void
2386 handle_fs_inputs(struct radv_shader_context *ctx,
2387 struct nir_shader *nir)
2388 {
2389 prepare_interp_optimize(ctx, nir);
2390
2391 nir_foreach_variable(variable, &nir->inputs)
2392 handle_fs_input_decl(ctx, variable);
2393
2394 unsigned index = 0;
2395
2396 if (ctx->shader_info->info.ps.uses_input_attachments ||
2397 ctx->shader_info->info.needs_multiview_view_index) {
2398 ctx->input_mask |= 1ull << VARYING_SLOT_LAYER;
2399 ctx->inputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)] = LLVMGetUndef(ctx->ac.i32);
2400 }
2401
2402 for (unsigned i = 0; i < RADEON_LLVM_MAX_INPUTS; ++i) {
2403 LLVMValueRef interp_param;
2404 LLVMValueRef *inputs = ctx->inputs +ac_llvm_reg_index_soa(i, 0);
2405
2406 if (!(ctx->input_mask & (1ull << i)))
2407 continue;
2408
2409 if (i >= VARYING_SLOT_VAR0 || i == VARYING_SLOT_PNTC ||
2410 i == VARYING_SLOT_PRIMITIVE_ID || i == VARYING_SLOT_LAYER) {
2411 interp_param = *inputs;
2412 bool float16 = (ctx->float16_shaded_mask >> i) & 1;
2413 interp_fs_input(ctx, index, interp_param, ctx->abi.prim_mask, float16,
2414 inputs);
2415
2416 if (LLVMIsUndef(interp_param))
2417 ctx->shader_info->fs.flat_shaded_mask |= 1u << index;
2418 if (float16)
2419 ctx->shader_info->fs.float16_shaded_mask |= 1u << index;
2420 if (i >= VARYING_SLOT_VAR0)
2421 ctx->abi.fs_input_attr_indices[i - VARYING_SLOT_VAR0] = index;
2422 ++index;
2423 } else if (i == VARYING_SLOT_CLIP_DIST0) {
2424 int length = ctx->shader_info->info.ps.num_input_clips_culls;
2425
2426 for (unsigned j = 0; j < length; j += 4) {
2427 inputs = ctx->inputs + ac_llvm_reg_index_soa(i, j);
2428
2429 interp_param = *inputs;
2430 interp_fs_input(ctx, index, interp_param,
2431 ctx->abi.prim_mask, false, inputs);
2432 ++index;
2433 }
2434 } else if (i == VARYING_SLOT_POS) {
2435 for(int i = 0; i < 3; ++i)
2436 inputs[i] = ctx->abi.frag_pos[i];
2437
2438 inputs[3] = ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
2439 ctx->abi.frag_pos[3]);
2440 }
2441 }
2442 ctx->shader_info->fs.num_interp = index;
2443 ctx->shader_info->fs.input_mask = ctx->input_mask >> VARYING_SLOT_VAR0;
2444
2445 if (ctx->shader_info->info.needs_multiview_view_index)
2446 ctx->abi.view_index = ctx->inputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
2447 }
2448
2449 static void
2450 scan_shader_output_decl(struct radv_shader_context *ctx,
2451 struct nir_variable *variable,
2452 struct nir_shader *shader,
2453 gl_shader_stage stage)
2454 {
2455 int idx = variable->data.location + variable->data.index;
2456 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
2457 uint64_t mask_attribs;
2458
2459 variable->data.driver_location = idx * 4;
2460
2461 /* tess ctrl has it's own load/store paths for outputs */
2462 if (stage == MESA_SHADER_TESS_CTRL)
2463 return;
2464
2465 if (variable->data.compact) {
2466 unsigned component_count = variable->data.location_frac +
2467 glsl_get_length(variable->type);
2468 attrib_count = (component_count + 3) / 4;
2469 }
2470
2471 mask_attribs = ((1ull << attrib_count) - 1) << idx;
2472 if (stage == MESA_SHADER_VERTEX ||
2473 stage == MESA_SHADER_TESS_EVAL ||
2474 stage == MESA_SHADER_GEOMETRY) {
2475 if (idx == VARYING_SLOT_CLIP_DIST0) {
2476 if (stage == MESA_SHADER_VERTEX) {
2477 ctx->shader_info->vs.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
2478 ctx->shader_info->vs.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
2479 ctx->shader_info->vs.outinfo.cull_dist_mask <<= shader->info.clip_distance_array_size;
2480 }
2481 if (stage == MESA_SHADER_TESS_EVAL) {
2482 ctx->shader_info->tes.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
2483 ctx->shader_info->tes.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
2484 ctx->shader_info->tes.outinfo.cull_dist_mask <<= shader->info.clip_distance_array_size;
2485 }
2486 }
2487 }
2488
2489 ctx->output_mask |= mask_attribs;
2490 }
2491
2492
2493 /* Initialize arguments for the shader export intrinsic */
2494 static void
2495 si_llvm_init_export_args(struct radv_shader_context *ctx,
2496 LLVMValueRef *values,
2497 unsigned enabled_channels,
2498 unsigned target,
2499 struct ac_export_args *args)
2500 {
2501 /* Specify the channels that are enabled. */
2502 args->enabled_channels = enabled_channels;
2503
2504 /* Specify whether the EXEC mask represents the valid mask */
2505 args->valid_mask = 0;
2506
2507 /* Specify whether this is the last export */
2508 args->done = 0;
2509
2510 /* Specify the target we are exporting */
2511 args->target = target;
2512
2513 args->compr = false;
2514 args->out[0] = LLVMGetUndef(ctx->ac.f32);
2515 args->out[1] = LLVMGetUndef(ctx->ac.f32);
2516 args->out[2] = LLVMGetUndef(ctx->ac.f32);
2517 args->out[3] = LLVMGetUndef(ctx->ac.f32);
2518
2519 if (!values)
2520 return;
2521
2522 bool is_16bit = ac_get_type_size(LLVMTypeOf(values[0])) == 2;
2523 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2524 unsigned index = target - V_008DFC_SQ_EXP_MRT;
2525 unsigned col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
2526 bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
2527 bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
2528 unsigned chan;
2529
2530 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2531 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2532 unsigned bits, bool hi) = NULL;
2533
2534 switch(col_format) {
2535 case V_028714_SPI_SHADER_ZERO:
2536 args->enabled_channels = 0; /* writemask */
2537 args->target = V_008DFC_SQ_EXP_NULL;
2538 break;
2539
2540 case V_028714_SPI_SHADER_32_R:
2541 args->enabled_channels = 1;
2542 args->out[0] = values[0];
2543 break;
2544
2545 case V_028714_SPI_SHADER_32_GR:
2546 args->enabled_channels = 0x3;
2547 args->out[0] = values[0];
2548 args->out[1] = values[1];
2549 break;
2550
2551 case V_028714_SPI_SHADER_32_AR:
2552 args->enabled_channels = 0x9;
2553 args->out[0] = values[0];
2554 args->out[3] = values[3];
2555 break;
2556
2557 case V_028714_SPI_SHADER_FP16_ABGR:
2558 args->enabled_channels = 0x5;
2559 packf = ac_build_cvt_pkrtz_f16;
2560 if (is_16bit) {
2561 for (unsigned chan = 0; chan < 4; chan++)
2562 values[chan] = LLVMBuildFPExt(ctx->ac.builder,
2563 values[chan],
2564 ctx->ac.f32, "");
2565 }
2566 break;
2567
2568 case V_028714_SPI_SHADER_UNORM16_ABGR:
2569 args->enabled_channels = 0x5;
2570 packf = ac_build_cvt_pknorm_u16;
2571 break;
2572
2573 case V_028714_SPI_SHADER_SNORM16_ABGR:
2574 args->enabled_channels = 0x5;
2575 packf = ac_build_cvt_pknorm_i16;
2576 break;
2577
2578 case V_028714_SPI_SHADER_UINT16_ABGR:
2579 args->enabled_channels = 0x5;
2580 packi = ac_build_cvt_pk_u16;
2581 if (is_16bit) {
2582 for (unsigned chan = 0; chan < 4; chan++)
2583 values[chan] = LLVMBuildZExt(ctx->ac.builder,
2584 ac_to_integer(&ctx->ac, values[chan]),
2585 ctx->ac.i32, "");
2586 }
2587 break;
2588
2589 case V_028714_SPI_SHADER_SINT16_ABGR:
2590 args->enabled_channels = 0x5;
2591 packi = ac_build_cvt_pk_i16;
2592 if (is_16bit) {
2593 for (unsigned chan = 0; chan < 4; chan++)
2594 values[chan] = LLVMBuildSExt(ctx->ac.builder,
2595 ac_to_integer(&ctx->ac, values[chan]),
2596 ctx->ac.i32, "");
2597 }
2598 break;
2599
2600 default:
2601 case V_028714_SPI_SHADER_32_ABGR:
2602 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2603 break;
2604 }
2605
2606 /* Pack f16 or norm_i16/u16. */
2607 if (packf) {
2608 for (chan = 0; chan < 2; chan++) {
2609 LLVMValueRef pack_args[2] = {
2610 values[2 * chan],
2611 values[2 * chan + 1]
2612 };
2613 LLVMValueRef packed;
2614
2615 packed = packf(&ctx->ac, pack_args);
2616 args->out[chan] = ac_to_float(&ctx->ac, packed);
2617 }
2618 args->compr = 1; /* COMPR flag */
2619 }
2620
2621 /* Pack i16/u16. */
2622 if (packi) {
2623 for (chan = 0; chan < 2; chan++) {
2624 LLVMValueRef pack_args[2] = {
2625 ac_to_integer(&ctx->ac, values[2 * chan]),
2626 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2627 };
2628 LLVMValueRef packed;
2629
2630 packed = packi(&ctx->ac, pack_args,
2631 is_int8 ? 8 : is_int10 ? 10 : 16,
2632 chan == 1);
2633 args->out[chan] = ac_to_float(&ctx->ac, packed);
2634 }
2635 args->compr = 1; /* COMPR flag */
2636 }
2637 return;
2638 }
2639
2640 if (is_16bit) {
2641 for (unsigned chan = 0; chan < 4; chan++) {
2642 values[chan] = LLVMBuildBitCast(ctx->ac.builder, values[chan], ctx->ac.i16, "");
2643 args->out[chan] = LLVMBuildZExt(ctx->ac.builder, values[chan], ctx->ac.i32, "");
2644 }
2645 } else
2646 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2647
2648 for (unsigned i = 0; i < 4; ++i)
2649 args->out[i] = ac_to_float(&ctx->ac, args->out[i]);
2650 }
2651
2652 static void
2653 radv_export_param(struct radv_shader_context *ctx, unsigned index,
2654 LLVMValueRef *values, unsigned enabled_channels)
2655 {
2656 struct ac_export_args args;
2657
2658 si_llvm_init_export_args(ctx, values, enabled_channels,
2659 V_008DFC_SQ_EXP_PARAM + index, &args);
2660 ac_build_export(&ctx->ac, &args);
2661 }
2662
2663 static LLVMValueRef
2664 radv_load_output(struct radv_shader_context *ctx, unsigned index, unsigned chan)
2665 {
2666 LLVMValueRef output =
2667 ctx->abi.outputs[ac_llvm_reg_index_soa(index, chan)];
2668
2669 return LLVMBuildLoad(ctx->ac.builder, output, "");
2670 }
2671
2672 static void
2673 radv_emit_stream_output(struct radv_shader_context *ctx,
2674 LLVMValueRef const *so_buffers,
2675 LLVMValueRef const *so_write_offsets,
2676 const struct radv_stream_output *output)
2677 {
2678 unsigned num_comps = util_bitcount(output->component_mask);
2679 unsigned loc = output->location;
2680 unsigned buf = output->buffer;
2681 unsigned offset = output->offset;
2682 unsigned start;
2683 LLVMValueRef out[4];
2684
2685 assert(num_comps && num_comps <= 4);
2686 if (!num_comps || num_comps > 4)
2687 return;
2688
2689 /* Get the first component. */
2690 start = ffs(output->component_mask) - 1;
2691
2692 /* Load the output as int. */
2693 for (int i = 0; i < num_comps; i++) {
2694 out[i] = ac_to_integer(&ctx->ac,
2695 radv_load_output(ctx, loc, start + i));
2696 }
2697
2698 /* Pack the output. */
2699 LLVMValueRef vdata = NULL;
2700
2701 switch (num_comps) {
2702 case 1: /* as i32 */
2703 vdata = out[0];
2704 break;
2705 case 2: /* as v2i32 */
2706 case 3: /* as v4i32 (aligned to 4) */
2707 out[3] = LLVMGetUndef(ctx->ac.i32);
2708 /* fall through */
2709 case 4: /* as v4i32 */
2710 vdata = ac_build_gather_values(&ctx->ac, out,
2711 util_next_power_of_two(num_comps));
2712 break;
2713 }
2714
2715 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf],
2716 vdata, num_comps, so_write_offsets[buf],
2717 ctx->ac.i32_0, offset,
2718 1, 1, true, false);
2719 }
2720
2721 static void
2722 radv_emit_streamout(struct radv_shader_context *ctx, unsigned stream)
2723 {
2724 struct ac_build_if_state if_ctx;
2725 int i;
2726
2727 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2728 assert(ctx->streamout_config);
2729 LLVMValueRef so_vtx_count =
2730 ac_build_bfe(&ctx->ac, ctx->streamout_config,
2731 LLVMConstInt(ctx->ac.i32, 16, false),
2732 LLVMConstInt(ctx->ac.i32, 7, false), false);
2733
2734 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2735
2736 /* can_emit = tid < so_vtx_count; */
2737 LLVMValueRef can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
2738 tid, so_vtx_count, "");
2739
2740 /* Emit the streamout code conditionally. This actually avoids
2741 * out-of-bounds buffer access. The hw tells us via the SGPR
2742 * (so_vtx_count) which threads are allowed to emit streamout data.
2743 */
2744 ac_nir_build_if(&if_ctx, ctx, can_emit);
2745 {
2746 /* The buffer offset is computed as follows:
2747 * ByteOffset = streamout_offset[buffer_id]*4 +
2748 * (streamout_write_index + thread_id)*stride[buffer_id] +
2749 * attrib_offset
2750 */
2751 LLVMValueRef so_write_index = ctx->streamout_write_idx;
2752
2753 /* Compute (streamout_write_index + thread_id). */
2754 so_write_index =
2755 LLVMBuildAdd(ctx->ac.builder, so_write_index, tid, "");
2756
2757 /* Load the descriptor and compute the write offset for each
2758 * enabled buffer.
2759 */
2760 LLVMValueRef so_write_offset[4] = {};
2761 LLVMValueRef so_buffers[4] = {};
2762 LLVMValueRef buf_ptr = ctx->streamout_buffers;
2763
2764 for (i = 0; i < 4; i++) {
2765 uint16_t stride = ctx->shader_info->info.so.strides[i];
2766
2767 if (!stride)
2768 continue;
2769
2770 LLVMValueRef offset =
2771 LLVMConstInt(ctx->ac.i32, i, false);
2772
2773 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac,
2774 buf_ptr, offset);
2775
2776 LLVMValueRef so_offset = ctx->streamout_offset[i];
2777
2778 so_offset = LLVMBuildMul(ctx->ac.builder, so_offset,
2779 LLVMConstInt(ctx->ac.i32, 4, false), "");
2780
2781 so_write_offset[i] =
2782 ac_build_imad(&ctx->ac, so_write_index,
2783 LLVMConstInt(ctx->ac.i32,
2784 stride * 4, false),
2785 so_offset);
2786 }
2787
2788 /* Write streamout data. */
2789 for (i = 0; i < ctx->shader_info->info.so.num_outputs; i++) {
2790 struct radv_stream_output *output =
2791 &ctx->shader_info->info.so.outputs[i];
2792
2793 if (stream != output->stream)
2794 continue;
2795
2796 radv_emit_stream_output(ctx, so_buffers,
2797 so_write_offset, output);
2798 }
2799 }
2800 ac_nir_build_endif(&if_ctx);
2801 }
2802
2803 static void
2804 handle_vs_outputs_post(struct radv_shader_context *ctx,
2805 bool export_prim_id, bool export_layer_id,
2806 struct radv_vs_output_info *outinfo)
2807 {
2808 uint32_t param_count = 0;
2809 unsigned target;
2810 unsigned pos_idx, num_pos_exports = 0;
2811 struct ac_export_args args, pos_args[4] = {};
2812 LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2813 int i;
2814
2815 if (ctx->options->key.has_multiview_view_index) {
2816 LLVMValueRef* tmp_out = &ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
2817 if(!*tmp_out) {
2818 for(unsigned i = 0; i < 4; ++i)
2819 ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, i)] =
2820 ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
2821 }
2822
2823 LLVMBuildStore(ctx->ac.builder, ac_to_float(&ctx->ac, ctx->abi.view_index), *tmp_out);
2824 ctx->output_mask |= 1ull << VARYING_SLOT_LAYER;
2825 }
2826
2827 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
2828 sizeof(outinfo->vs_output_param_offset));
2829
2830 for(unsigned location = VARYING_SLOT_CLIP_DIST0; location <= VARYING_SLOT_CLIP_DIST1; ++location) {
2831 if (ctx->output_mask & (1ull << location)) {
2832 unsigned output_usage_mask, length;
2833 LLVMValueRef slots[4];
2834 unsigned j;
2835
2836 if (ctx->stage == MESA_SHADER_VERTEX &&
2837 !ctx->is_gs_copy_shader) {
2838 output_usage_mask =
2839 ctx->shader_info->info.vs.output_usage_mask[location];
2840 } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
2841 output_usage_mask =
2842 ctx->shader_info->info.tes.output_usage_mask[location];
2843 } else {
2844 assert(ctx->is_gs_copy_shader);
2845 output_usage_mask =
2846 ctx->shader_info->info.gs.output_usage_mask[location];
2847 }
2848
2849 length = util_last_bit(output_usage_mask);
2850
2851 for (j = 0; j < length; j++)
2852 slots[j] = ac_to_float(&ctx->ac, radv_load_output(ctx, location, j));
2853
2854 for (i = length; i < 4; i++)
2855 slots[i] = LLVMGetUndef(ctx->ac.f32);
2856
2857 target = V_008DFC_SQ_EXP_POS + 2 + (location - VARYING_SLOT_CLIP_DIST0);
2858 si_llvm_init_export_args(ctx, &slots[0], 0xf, target, &args);
2859 memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
2860 &args, sizeof(args));
2861
2862 /* Export the clip/cull distances values to the next stage. */
2863 radv_export_param(ctx, param_count, &slots[0], 0xf);
2864 outinfo->vs_output_param_offset[location] = param_count++;
2865 }
2866 }
2867
2868 LLVMValueRef pos_values[4] = {ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_1};
2869 if (ctx->output_mask & (1ull << VARYING_SLOT_POS)) {
2870 for (unsigned j = 0; j < 4; j++)
2871 pos_values[j] = radv_load_output(ctx, VARYING_SLOT_POS, j);
2872 }
2873 si_llvm_init_export_args(ctx, pos_values, 0xf, V_008DFC_SQ_EXP_POS, &pos_args[0]);
2874
2875 if (ctx->output_mask & (1ull << VARYING_SLOT_PSIZ)) {
2876 outinfo->writes_pointsize = true;
2877 psize_value = radv_load_output(ctx, VARYING_SLOT_PSIZ, 0);
2878 }
2879
2880 if (ctx->output_mask & (1ull << VARYING_SLOT_LAYER)) {
2881 outinfo->writes_layer = true;
2882 layer_value = radv_load_output(ctx, VARYING_SLOT_LAYER, 0);
2883 }
2884
2885 if (ctx->output_mask & (1ull << VARYING_SLOT_VIEWPORT)) {
2886 outinfo->writes_viewport_index = true;
2887 viewport_index_value = radv_load_output(ctx, VARYING_SLOT_VIEWPORT, 0);
2888 }
2889
2890 if (ctx->shader_info->info.so.num_outputs &&
2891 !ctx->is_gs_copy_shader) {
2892 /* The GS copy shader emission already emits streamout. */
2893 radv_emit_streamout(ctx, 0);
2894 }
2895
2896 if (outinfo->writes_pointsize ||
2897 outinfo->writes_layer ||
2898 outinfo->writes_viewport_index) {
2899 pos_args[1].enabled_channels = ((outinfo->writes_pointsize == true ? 1 : 0) |
2900 (outinfo->writes_layer == true ? 4 : 0));
2901 pos_args[1].valid_mask = 0;
2902 pos_args[1].done = 0;
2903 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2904 pos_args[1].compr = 0;
2905 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2906 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2907 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2908 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2909
2910 if (outinfo->writes_pointsize == true)
2911 pos_args[1].out[0] = psize_value;
2912 if (outinfo->writes_layer == true)
2913 pos_args[1].out[2] = layer_value;
2914 if (outinfo->writes_viewport_index == true) {
2915 if (ctx->options->chip_class >= GFX9) {
2916 /* GFX9 has the layer in out.z[10:0] and the viewport
2917 * index in out.z[19:16].
2918 */
2919 LLVMValueRef v = viewport_index_value;
2920 v = ac_to_integer(&ctx->ac, v);
2921 v = LLVMBuildShl(ctx->ac.builder, v,
2922 LLVMConstInt(ctx->ac.i32, 16, false),
2923 "");
2924 v = LLVMBuildOr(ctx->ac.builder, v,
2925 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
2926
2927 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
2928 pos_args[1].enabled_channels |= 1 << 2;
2929 } else {
2930 pos_args[1].out[3] = viewport_index_value;
2931 pos_args[1].enabled_channels |= 1 << 3;
2932 }
2933 }
2934 }
2935 for (i = 0; i < 4; i++) {
2936 if (pos_args[i].out[0])
2937 num_pos_exports++;
2938 }
2939
2940 pos_idx = 0;
2941 for (i = 0; i < 4; i++) {
2942 if (!pos_args[i].out[0])
2943 continue;
2944
2945 /* Specify the target we are exporting */
2946 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
2947 if (pos_idx == num_pos_exports)
2948 pos_args[i].done = 1;
2949 ac_build_export(&ctx->ac, &pos_args[i]);
2950 }
2951
2952 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2953 LLVMValueRef values[4];
2954 if (!(ctx->output_mask & (1ull << i)))
2955 continue;
2956
2957 if (i != VARYING_SLOT_LAYER &&
2958 i != VARYING_SLOT_PRIMITIVE_ID &&
2959 i < VARYING_SLOT_VAR0)
2960 continue;
2961
2962 for (unsigned j = 0; j < 4; j++)
2963 values[j] = ac_to_float(&ctx->ac, radv_load_output(ctx, i, j));
2964
2965 unsigned output_usage_mask;
2966
2967 if (ctx->stage == MESA_SHADER_VERTEX &&
2968 !ctx->is_gs_copy_shader) {
2969 output_usage_mask =
2970 ctx->shader_info->info.vs.output_usage_mask[i];
2971 } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
2972 output_usage_mask =
2973 ctx->shader_info->info.tes.output_usage_mask[i];
2974 } else {
2975 assert(ctx->is_gs_copy_shader);
2976 output_usage_mask =
2977 ctx->shader_info->info.gs.output_usage_mask[i];
2978 }
2979
2980 radv_export_param(ctx, param_count, values, output_usage_mask);
2981
2982 outinfo->vs_output_param_offset[i] = param_count++;
2983 }
2984
2985 if (export_prim_id) {
2986 LLVMValueRef values[4];
2987
2988 values[0] = ctx->vs_prim_id;
2989 ctx->shader_info->vs.vgpr_comp_cnt = MAX2(2,
2990 ctx->shader_info->vs.vgpr_comp_cnt);
2991 for (unsigned j = 1; j < 4; j++)
2992 values[j] = ctx->ac.f32_0;
2993
2994 radv_export_param(ctx, param_count, values, 0x1);
2995
2996 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count++;
2997 outinfo->export_prim_id = true;
2998 }
2999
3000 if (export_layer_id && layer_value) {
3001 LLVMValueRef values[4];
3002
3003 values[0] = layer_value;
3004 for (unsigned j = 1; j < 4; j++)
3005 values[j] = ctx->ac.f32_0;
3006
3007 radv_export_param(ctx, param_count, values, 0x1);
3008
3009 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = param_count++;
3010 }
3011
3012 outinfo->pos_exports = num_pos_exports;
3013 outinfo->param_exports = param_count;
3014 }
3015
3016 static void
3017 handle_es_outputs_post(struct radv_shader_context *ctx,
3018 struct radv_es_output_info *outinfo)
3019 {
3020 int j;
3021 uint64_t max_output_written = 0;
3022 LLVMValueRef lds_base = NULL;
3023
3024 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3025 int param_index;
3026
3027 if (!(ctx->output_mask & (1ull << i)))
3028 continue;
3029
3030 param_index = shader_io_get_unique_index(i);
3031
3032 max_output_written = MAX2(param_index, max_output_written);
3033 }
3034
3035 outinfo->esgs_itemsize = (max_output_written + 1) * 16;
3036
3037 if (ctx->ac.chip_class >= GFX9) {
3038 unsigned itemsize_dw = outinfo->esgs_itemsize / 4;
3039 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3040 LLVMValueRef wave_idx = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 24, 4);
3041 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3042 LLVMBuildMul(ctx->ac.builder, wave_idx,
3043 LLVMConstInt(ctx->ac.i32, 64, false), ""), "");
3044 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3045 LLVMConstInt(ctx->ac.i32, itemsize_dw, 0), "");
3046 }
3047
3048 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3049 LLVMValueRef dw_addr = NULL;
3050 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
3051 unsigned output_usage_mask;
3052 int param_index;
3053
3054 if (!(ctx->output_mask & (1ull << i)))
3055 continue;
3056
3057 if (ctx->stage == MESA_SHADER_VERTEX) {
3058 output_usage_mask =
3059 ctx->shader_info->info.vs.output_usage_mask[i];
3060 } else {
3061 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
3062 output_usage_mask =
3063 ctx->shader_info->info.tes.output_usage_mask[i];
3064 }
3065
3066 param_index = shader_io_get_unique_index(i);
3067
3068 if (lds_base) {
3069 dw_addr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3070 LLVMConstInt(ctx->ac.i32, param_index * 4, false),
3071 "");
3072 }
3073
3074 for (j = 0; j < 4; j++) {
3075 if (!(output_usage_mask & (1 << j)))
3076 continue;
3077
3078 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
3079 out_val = ac_to_integer(&ctx->ac, out_val);
3080 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
3081
3082 if (ctx->ac.chip_class >= GFX9) {
3083 LLVMValueRef dw_addr_offset =
3084 LLVMBuildAdd(ctx->ac.builder, dw_addr,
3085 LLVMConstInt(ctx->ac.i32,
3086 j, false), "");
3087
3088 ac_lds_store(&ctx->ac, dw_addr_offset, out_val);
3089 } else {
3090 ac_build_buffer_store_dword(&ctx->ac,
3091 ctx->esgs_ring,
3092 out_val, 1,
3093 NULL, ctx->es2gs_offset,
3094 (4 * param_index + j) * 4,
3095 1, 1, true, true);
3096 }
3097 }
3098 }
3099 }
3100
3101 static void
3102 handle_ls_outputs_post(struct radv_shader_context *ctx)
3103 {
3104 LLVMValueRef vertex_id = ctx->rel_auto_id;
3105 uint32_t num_tcs_inputs = util_last_bit64(ctx->shader_info->info.vs.ls_outputs_written);
3106 LLVMValueRef vertex_dw_stride = LLVMConstInt(ctx->ac.i32, num_tcs_inputs * 4, false);
3107 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3108 vertex_dw_stride, "");
3109
3110 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3111 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
3112
3113 if (!(ctx->output_mask & (1ull << i)))
3114 continue;
3115
3116 int param = shader_io_get_unique_index(i);
3117 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3118 LLVMConstInt(ctx->ac.i32, param * 4, false),
3119 "");
3120 for (unsigned j = 0; j < 4; j++) {
3121 LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
3122 value = ac_to_integer(&ctx->ac, value);
3123 value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
3124 ac_lds_store(&ctx->ac, dw_addr, value);
3125 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr, ctx->ac.i32_1, "");
3126 }
3127 }
3128 }
3129
3130 static void
3131 write_tess_factors(struct radv_shader_context *ctx)
3132 {
3133 unsigned stride, outer_comps, inner_comps;
3134 struct ac_build_if_state if_ctx, inner_if_ctx;
3135 LLVMValueRef invocation_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 8, 5);
3136 LLVMValueRef rel_patch_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
3137 unsigned tess_inner_index = 0, tess_outer_index;
3138 LLVMValueRef lds_base, lds_inner = NULL, lds_outer, byteoffset, buffer;
3139 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3140 int i;
3141 ac_emit_barrier(&ctx->ac, ctx->stage);
3142
3143 switch (ctx->options->key.tcs.primitive_mode) {
3144 case GL_ISOLINES:
3145 stride = 2;
3146 outer_comps = 2;
3147 inner_comps = 0;
3148 break;
3149 case GL_TRIANGLES:
3150 stride = 4;
3151 outer_comps = 3;
3152 inner_comps = 1;
3153 break;
3154 case GL_QUADS:
3155 stride = 6;
3156 outer_comps = 4;
3157 inner_comps = 2;
3158 break;
3159 default:
3160 return;
3161 }
3162
3163 ac_nir_build_if(&if_ctx, ctx,
3164 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3165 invocation_id, ctx->ac.i32_0, ""));
3166
3167 lds_base = get_tcs_out_current_patch_data_offset(ctx);
3168
3169 if (inner_comps) {
3170 tess_inner_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3171 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3172 LLVMConstInt(ctx->ac.i32, tess_inner_index * 4, false), "");
3173 }
3174
3175 tess_outer_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3176 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3177 LLVMConstInt(ctx->ac.i32, tess_outer_index * 4, false), "");
3178
3179 for (i = 0; i < 4; i++) {
3180 inner[i] = LLVMGetUndef(ctx->ac.i32);
3181 outer[i] = LLVMGetUndef(ctx->ac.i32);
3182 }
3183
3184 // LINES reversal
3185 if (ctx->options->key.tcs.primitive_mode == GL_ISOLINES) {
3186 outer[0] = out[1] = ac_lds_load(&ctx->ac, lds_outer);
3187 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
3188 ctx->ac.i32_1, "");
3189 outer[1] = out[0] = ac_lds_load(&ctx->ac, lds_outer);
3190 } else {
3191 for (i = 0; i < outer_comps; i++) {
3192 outer[i] = out[i] =
3193 ac_lds_load(&ctx->ac, lds_outer);
3194 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
3195 ctx->ac.i32_1, "");
3196 }
3197 for (i = 0; i < inner_comps; i++) {
3198 inner[i] = out[outer_comps+i] =
3199 ac_lds_load(&ctx->ac, lds_inner);
3200 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_inner,
3201 ctx->ac.i32_1, "");
3202 }
3203 }
3204
3205 /* Convert the outputs to vectors for stores. */
3206 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3207 vec1 = NULL;
3208
3209 if (stride > 4)
3210 vec1 = ac_build_gather_values(&ctx->ac, out + 4, stride - 4);
3211
3212
3213 buffer = ctx->hs_ring_tess_factor;
3214 tf_base = ctx->tess_factor_offset;
3215 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3216 LLVMConstInt(ctx->ac.i32, 4 * stride, false), "");
3217 unsigned tf_offset = 0;
3218
3219 if (ctx->options->chip_class <= VI) {
3220 ac_nir_build_if(&inner_if_ctx, ctx,
3221 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3222 rel_patch_id, ctx->ac.i32_0, ""));
3223
3224 /* Store the dynamic HS control word. */
3225 ac_build_buffer_store_dword(&ctx->ac, buffer,
3226 LLVMConstInt(ctx->ac.i32, 0x80000000, false),
3227 1, ctx->ac.i32_0, tf_base,
3228 0, 1, 0, true, false);
3229 tf_offset += 4;
3230
3231 ac_nir_build_endif(&inner_if_ctx);
3232 }
3233
3234 /* Store the tessellation factors. */
3235 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3236 MIN2(stride, 4), byteoffset, tf_base,
3237 tf_offset, 1, 0, true, false);
3238 if (vec1)
3239 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3240 stride - 4, byteoffset, tf_base,
3241 16 + tf_offset, 1, 0, true, false);
3242
3243 //store to offchip for TES to read - only if TES reads them
3244 if (ctx->options->key.tcs.tes_reads_tess_factors) {
3245 LLVMValueRef inner_vec, outer_vec, tf_outer_offset;
3246 LLVMValueRef tf_inner_offset;
3247 unsigned param_outer, param_inner;
3248
3249 param_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3250 tf_outer_offset = get_tcs_tes_buffer_address(ctx, NULL,
3251 LLVMConstInt(ctx->ac.i32, param_outer, 0));
3252
3253 outer_vec = ac_build_gather_values(&ctx->ac, outer,
3254 util_next_power_of_two(outer_comps));
3255
3256 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, outer_vec,
3257 outer_comps, tf_outer_offset,
3258 ctx->oc_lds, 0, 1, 0, true, false);
3259 if (inner_comps) {
3260 param_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3261 tf_inner_offset = get_tcs_tes_buffer_address(ctx, NULL,
3262 LLVMConstInt(ctx->ac.i32, param_inner, 0));
3263
3264 inner_vec = inner_comps == 1 ? inner[0] :
3265 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3266 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, inner_vec,
3267 inner_comps, tf_inner_offset,
3268 ctx->oc_lds, 0, 1, 0, true, false);
3269 }
3270 }
3271 ac_nir_build_endif(&if_ctx);
3272 }
3273
3274 static void
3275 handle_tcs_outputs_post(struct radv_shader_context *ctx)
3276 {
3277 write_tess_factors(ctx);
3278 }
3279
3280 static bool
3281 si_export_mrt_color(struct radv_shader_context *ctx,
3282 LLVMValueRef *color, unsigned index,
3283 struct ac_export_args *args)
3284 {
3285 /* Export */
3286 si_llvm_init_export_args(ctx, color, 0xf,
3287 V_008DFC_SQ_EXP_MRT + index, args);
3288 if (!args->enabled_channels)
3289 return false; /* unnecessary NULL export */
3290
3291 return true;
3292 }
3293
3294 static void
3295 radv_export_mrt_z(struct radv_shader_context *ctx,
3296 LLVMValueRef depth, LLVMValueRef stencil,
3297 LLVMValueRef samplemask)
3298 {
3299 struct ac_export_args args;
3300
3301 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3302
3303 ac_build_export(&ctx->ac, &args);
3304 }
3305
3306 static void
3307 handle_fs_outputs_post(struct radv_shader_context *ctx)
3308 {
3309 unsigned index = 0;
3310 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3311 struct ac_export_args color_args[8];
3312
3313 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3314 LLVMValueRef values[4];
3315
3316 if (!(ctx->output_mask & (1ull << i)))
3317 continue;
3318
3319 if (i < FRAG_RESULT_DATA0)
3320 continue;
3321
3322 for (unsigned j = 0; j < 4; j++)
3323 values[j] = ac_to_float(&ctx->ac,
3324 radv_load_output(ctx, i, j));
3325
3326 bool ret = si_export_mrt_color(ctx, values,
3327 i - FRAG_RESULT_DATA0,
3328 &color_args[index]);
3329 if (ret)
3330 index++;
3331 }
3332
3333 /* Process depth, stencil, samplemask. */
3334 if (ctx->shader_info->info.ps.writes_z) {
3335 depth = ac_to_float(&ctx->ac,
3336 radv_load_output(ctx, FRAG_RESULT_DEPTH, 0));
3337 }
3338 if (ctx->shader_info->info.ps.writes_stencil) {
3339 stencil = ac_to_float(&ctx->ac,
3340 radv_load_output(ctx, FRAG_RESULT_STENCIL, 0));
3341 }
3342 if (ctx->shader_info->info.ps.writes_sample_mask) {
3343 samplemask = ac_to_float(&ctx->ac,
3344 radv_load_output(ctx, FRAG_RESULT_SAMPLE_MASK, 0));
3345 }
3346
3347 /* Set the DONE bit on last non-null color export only if Z isn't
3348 * exported.
3349 */
3350 if (index > 0 &&
3351 !ctx->shader_info->info.ps.writes_z &&
3352 !ctx->shader_info->info.ps.writes_stencil &&
3353 !ctx->shader_info->info.ps.writes_sample_mask) {
3354 unsigned last = index - 1;
3355
3356 color_args[last].valid_mask = 1; /* whether the EXEC mask is valid */
3357 color_args[last].done = 1; /* DONE bit */
3358 }
3359
3360 /* Export PS outputs. */
3361 for (unsigned i = 0; i < index; i++)
3362 ac_build_export(&ctx->ac, &color_args[i]);
3363
3364 if (depth || stencil || samplemask)
3365 radv_export_mrt_z(ctx, depth, stencil, samplemask);
3366 else if (!index)
3367 ac_build_export_null(&ctx->ac);
3368 }
3369
3370 static void
3371 emit_gs_epilogue(struct radv_shader_context *ctx)
3372 {
3373 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
3374 }
3375
3376 static void
3377 handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
3378 LLVMValueRef *addrs)
3379 {
3380 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
3381
3382 switch (ctx->stage) {
3383 case MESA_SHADER_VERTEX:
3384 if (ctx->options->key.vs.as_ls)
3385 handle_ls_outputs_post(ctx);
3386 else if (ctx->options->key.vs.as_es)
3387 handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info);
3388 else
3389 handle_vs_outputs_post(ctx, ctx->options->key.vs.export_prim_id,
3390 ctx->options->key.vs.export_layer_id,
3391 &ctx->shader_info->vs.outinfo);
3392 break;
3393 case MESA_SHADER_FRAGMENT:
3394 handle_fs_outputs_post(ctx);
3395 break;
3396 case MESA_SHADER_GEOMETRY:
3397 emit_gs_epilogue(ctx);
3398 break;
3399 case MESA_SHADER_TESS_CTRL:
3400 handle_tcs_outputs_post(ctx);
3401 break;
3402 case MESA_SHADER_TESS_EVAL:
3403 if (ctx->options->key.tes.as_es)
3404 handle_es_outputs_post(ctx, &ctx->shader_info->tes.es_info);
3405 else
3406 handle_vs_outputs_post(ctx, ctx->options->key.tes.export_prim_id,
3407 ctx->options->key.tes.export_layer_id,
3408 &ctx->shader_info->tes.outinfo);
3409 break;
3410 default:
3411 break;
3412 }
3413 }
3414
3415 static void ac_llvm_finalize_module(struct radv_shader_context *ctx,
3416 LLVMPassManagerRef passmgr,
3417 const struct radv_nir_compiler_options *options)
3418 {
3419 LLVMRunPassManager(passmgr, ctx->ac.module);
3420 LLVMDisposeBuilder(ctx->ac.builder);
3421
3422 ac_llvm_context_dispose(&ctx->ac);
3423 }
3424
3425 static void
3426 ac_nir_eliminate_const_vs_outputs(struct radv_shader_context *ctx)
3427 {
3428 struct radv_vs_output_info *outinfo;
3429
3430 switch (ctx->stage) {
3431 case MESA_SHADER_FRAGMENT:
3432 case MESA_SHADER_COMPUTE:
3433 case MESA_SHADER_TESS_CTRL:
3434 case MESA_SHADER_GEOMETRY:
3435 return;
3436 case MESA_SHADER_VERTEX:
3437 if (ctx->options->key.vs.as_ls ||
3438 ctx->options->key.vs.as_es)
3439 return;
3440 outinfo = &ctx->shader_info->vs.outinfo;
3441 break;
3442 case MESA_SHADER_TESS_EVAL:
3443 if (ctx->options->key.vs.as_es)
3444 return;
3445 outinfo = &ctx->shader_info->tes.outinfo;
3446 break;
3447 default:
3448 unreachable("Unhandled shader type");
3449 }
3450
3451 ac_optimize_vs_outputs(&ctx->ac,
3452 ctx->main_function,
3453 outinfo->vs_output_param_offset,
3454 VARYING_SLOT_MAX,
3455 &outinfo->param_exports);
3456 }
3457
3458 static void
3459 ac_setup_rings(struct radv_shader_context *ctx)
3460 {
3461 if (ctx->options->chip_class <= VI &&
3462 (ctx->stage == MESA_SHADER_GEOMETRY ||
3463 ctx->options->key.vs.as_es || ctx->options->key.tes.as_es)) {
3464 unsigned ring = ctx->stage == MESA_SHADER_GEOMETRY ? RING_ESGS_GS
3465 : RING_ESGS_VS;
3466 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, ring, false);
3467
3468 ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac,
3469 ctx->ring_offsets,
3470 offset);
3471 }
3472
3473 if (ctx->is_gs_copy_shader) {
3474 ctx->gsvs_ring[0] =
3475 ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
3476 LLVMConstInt(ctx->ac.i32,
3477 RING_GSVS_VS, false));
3478 }
3479
3480 if (ctx->stage == MESA_SHADER_GEOMETRY) {
3481 /* The conceptual layout of the GSVS ring is
3482 * v0c0 .. vLv0 v0c1 .. vLc1 ..
3483 * but the real memory layout is swizzled across
3484 * threads:
3485 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
3486 * t16v0c0 ..
3487 * Override the buffer descriptor accordingly.
3488 */
3489 LLVMTypeRef v2i64 = LLVMVectorType(ctx->ac.i64, 2);
3490 uint64_t stream_offset = 0;
3491 unsigned num_records = 64;
3492 LLVMValueRef base_ring;
3493
3494 base_ring =
3495 ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
3496 LLVMConstInt(ctx->ac.i32,
3497 RING_GSVS_GS, false));
3498
3499 for (unsigned stream = 0; stream < 4; stream++) {
3500 unsigned num_components, stride;
3501 LLVMValueRef ring, tmp;
3502
3503 num_components =
3504 ctx->shader_info->info.gs.num_stream_output_components[stream];
3505
3506 if (!num_components)
3507 continue;
3508
3509 stride = 4 * num_components * ctx->gs_max_out_vertices;
3510
3511 /* Limit on the stride field for <= CIK. */
3512 assert(stride < (1 << 14));
3513
3514 ring = LLVMBuildBitCast(ctx->ac.builder,
3515 base_ring, v2i64, "");
3516 tmp = LLVMBuildExtractElement(ctx->ac.builder,
3517 ring, ctx->ac.i32_0, "");
3518 tmp = LLVMBuildAdd(ctx->ac.builder, tmp,
3519 LLVMConstInt(ctx->ac.i64,
3520 stream_offset, 0), "");
3521 ring = LLVMBuildInsertElement(ctx->ac.builder,
3522 ring, tmp, ctx->ac.i32_0, "");
3523
3524 stream_offset += stride * 64;
3525
3526 ring = LLVMBuildBitCast(ctx->ac.builder, ring,
3527 ctx->ac.v4i32, "");
3528
3529 tmp = LLVMBuildExtractElement(ctx->ac.builder, ring,
3530 ctx->ac.i32_1, "");
3531 tmp = LLVMBuildOr(ctx->ac.builder, tmp,
3532 LLVMConstInt(ctx->ac.i32,
3533 S_008F04_STRIDE(stride), false), "");
3534 ring = LLVMBuildInsertElement(ctx->ac.builder, ring, tmp,
3535 ctx->ac.i32_1, "");
3536
3537 ring = LLVMBuildInsertElement(ctx->ac.builder, ring,
3538 LLVMConstInt(ctx->ac.i32,
3539 num_records, false),
3540 LLVMConstInt(ctx->ac.i32, 2, false), "");
3541
3542 ctx->gsvs_ring[stream] = ring;
3543 }
3544 }
3545
3546 if (ctx->stage == MESA_SHADER_TESS_CTRL ||
3547 ctx->stage == MESA_SHADER_TESS_EVAL) {
3548 ctx->hs_ring_tess_offchip = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_OFFCHIP, false));
3549 ctx->hs_ring_tess_factor = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_FACTOR, false));
3550 }
3551 }
3552
3553 unsigned
3554 radv_nir_get_max_workgroup_size(enum chip_class chip_class,
3555 const struct nir_shader *nir)
3556 {
3557 switch (nir->info.stage) {
3558 case MESA_SHADER_TESS_CTRL:
3559 return chip_class >= CIK ? 128 : 64;
3560 case MESA_SHADER_GEOMETRY:
3561 return chip_class >= GFX9 ? 128 : 64;
3562 case MESA_SHADER_COMPUTE:
3563 break;
3564 default:
3565 return 0;
3566 }
3567
3568 unsigned max_workgroup_size = nir->info.cs.local_size[0] *
3569 nir->info.cs.local_size[1] *
3570 nir->info.cs.local_size[2];
3571 return max_workgroup_size;
3572 }
3573
3574 /* Fixup the HW not emitting the TCS regs if there are no HS threads. */
3575 static void ac_nir_fixup_ls_hs_input_vgprs(struct radv_shader_context *ctx)
3576 {
3577 LLVMValueRef count = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 8, 8);
3578 LLVMValueRef hs_empty = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, count,
3579 ctx->ac.i32_0, "");
3580 ctx->abi.instance_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->rel_auto_id, ctx->abi.instance_id, "");
3581 ctx->rel_auto_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_rel_ids, ctx->rel_auto_id, "");
3582 ctx->abi.vertex_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_patch_id, ctx->abi.vertex_id, "");
3583 }
3584
3585 static void prepare_gs_input_vgprs(struct radv_shader_context *ctx)
3586 {
3587 for(int i = 5; i >= 0; --i) {
3588 ctx->gs_vtx_offset[i] = ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[i & ~1],
3589 (i & 1) * 16, 16);
3590 }
3591
3592 ctx->gs_wave_id = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 16, 8);
3593 }
3594
3595
3596 static
3597 LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
3598 struct nir_shader *const *shaders,
3599 int shader_count,
3600 struct radv_shader_variant_info *shader_info,
3601 const struct radv_nir_compiler_options *options)
3602 {
3603 struct radv_shader_context ctx = {0};
3604 unsigned i;
3605 ctx.options = options;
3606 ctx.shader_info = shader_info;
3607
3608 ac_llvm_context_init(&ctx.ac, options->chip_class, options->family);
3609 ctx.context = ctx.ac.context;
3610 ctx.ac.module = ac_create_module(ac_llvm->tm, ctx.context);
3611
3612 enum ac_float_mode float_mode =
3613 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
3614 AC_FLOAT_MODE_DEFAULT;
3615
3616 ctx.ac.builder = ac_create_builder(ctx.context, float_mode);
3617
3618 memset(shader_info, 0, sizeof(*shader_info));
3619
3620 radv_nir_shader_info_init(&shader_info->info);
3621
3622 for(int i = 0; i < shader_count; ++i)
3623 radv_nir_shader_info_pass(shaders[i], options, &shader_info->info);
3624
3625 for (i = 0; i < RADV_UD_MAX_SETS; i++)
3626 shader_info->user_sgprs_locs.descriptor_sets[i].sgpr_idx = -1;
3627 for (i = 0; i < AC_UD_MAX_UD; i++)
3628 shader_info->user_sgprs_locs.shader_data[i].sgpr_idx = -1;
3629
3630 ctx.max_workgroup_size = 0;
3631 for (int i = 0; i < shader_count; ++i) {
3632 ctx.max_workgroup_size = MAX2(ctx.max_workgroup_size,
3633 radv_nir_get_max_workgroup_size(ctx.options->chip_class,
3634 shaders[i]));
3635 }
3636
3637 create_function(&ctx, shaders[shader_count - 1]->info.stage, shader_count >= 2,
3638 shader_count >= 2 ? shaders[shader_count - 2]->info.stage : MESA_SHADER_VERTEX);
3639
3640 ctx.abi.inputs = &ctx.inputs[0];
3641 ctx.abi.emit_outputs = handle_shader_outputs_post;
3642 ctx.abi.emit_vertex = visit_emit_vertex;
3643 ctx.abi.load_ubo = radv_load_ubo;
3644 ctx.abi.load_ssbo = radv_load_ssbo;
3645 ctx.abi.load_sampler_desc = radv_get_sampler_desc;
3646 ctx.abi.load_resource = radv_load_resource;
3647 ctx.abi.clamp_shadow_reference = false;
3648 ctx.abi.gfx9_stride_size_workaround = ctx.ac.chip_class == GFX9 && HAVE_LLVM < 0x800;
3649
3650 if (shader_count >= 2)
3651 ac_init_exec_full_mask(&ctx.ac);
3652
3653 if (ctx.ac.chip_class == GFX9 &&
3654 shaders[shader_count - 1]->info.stage == MESA_SHADER_TESS_CTRL)
3655 ac_nir_fixup_ls_hs_input_vgprs(&ctx);
3656
3657 for(int i = 0; i < shader_count; ++i) {
3658 ctx.stage = shaders[i]->info.stage;
3659 ctx.output_mask = 0;
3660
3661 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
3662 for (int i = 0; i < 4; i++) {
3663 ctx.gs_next_vertex[i] =
3664 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
3665 }
3666 ctx.gs_max_out_vertices = shaders[i]->info.gs.vertices_out;
3667 ctx.abi.load_inputs = load_gs_input;
3668 ctx.abi.emit_primitive = visit_end_primitive;
3669 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
3670 ctx.tcs_outputs_read = shaders[i]->info.outputs_read;
3671 ctx.tcs_patch_outputs_read = shaders[i]->info.patch_outputs_read;
3672 ctx.abi.load_tess_varyings = load_tcs_varyings;
3673 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
3674 ctx.abi.store_tcs_outputs = store_tcs_output;
3675 ctx.tcs_vertices_per_patch = shaders[i]->info.tess.tcs_vertices_out;
3676 if (shader_count == 1)
3677 ctx.tcs_num_inputs = ctx.options->key.tcs.num_inputs;
3678 else
3679 ctx.tcs_num_inputs = util_last_bit64(shader_info->info.vs.ls_outputs_written);
3680 ctx.tcs_num_patches = get_tcs_num_patches(&ctx);
3681 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_EVAL) {
3682 ctx.tes_primitive_mode = shaders[i]->info.tess.primitive_mode;
3683 ctx.abi.load_tess_varyings = load_tes_input;
3684 ctx.abi.load_tess_coord = load_tess_coord;
3685 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
3686 ctx.tcs_vertices_per_patch = shaders[i]->info.tess.tcs_vertices_out;
3687 ctx.tcs_num_patches = ctx.options->key.tes.num_patches;
3688 } else if (shaders[i]->info.stage == MESA_SHADER_VERTEX) {
3689 if (shader_info->info.vs.needs_instance_id) {
3690 if (ctx.options->key.vs.as_ls) {
3691 ctx.shader_info->vs.vgpr_comp_cnt =
3692 MAX2(2, ctx.shader_info->vs.vgpr_comp_cnt);
3693 } else {
3694 ctx.shader_info->vs.vgpr_comp_cnt =
3695 MAX2(1, ctx.shader_info->vs.vgpr_comp_cnt);
3696 }
3697 }
3698 ctx.abi.load_base_vertex = radv_load_base_vertex;
3699 } else if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT) {
3700 shader_info->fs.can_discard = shaders[i]->info.fs.uses_discard;
3701 ctx.abi.lookup_interp_param = lookup_interp_param;
3702 ctx.abi.load_sample_position = load_sample_position;
3703 ctx.abi.load_sample_mask_in = load_sample_mask_in;
3704 ctx.abi.emit_kill = radv_emit_kill;
3705 }
3706
3707 if (i)
3708 ac_emit_barrier(&ctx.ac, ctx.stage);
3709
3710 nir_foreach_variable(variable, &shaders[i]->outputs)
3711 scan_shader_output_decl(&ctx, variable, shaders[i], shaders[i]->info.stage);
3712
3713 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
3714 unsigned addclip = shaders[i]->info.clip_distance_array_size +
3715 shaders[i]->info.cull_distance_array_size > 4;
3716 ctx.gsvs_vertex_size = (util_bitcount64(ctx.output_mask) + addclip) * 16;
3717 ctx.max_gsvs_emit_size = ctx.gsvs_vertex_size *
3718 shaders[i]->info.gs.vertices_out;
3719 }
3720
3721 ac_setup_rings(&ctx);
3722
3723 LLVMBasicBlockRef merge_block;
3724 if (shader_count >= 2) {
3725 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
3726 LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
3727 merge_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
3728
3729 LLVMValueRef count = ac_unpack_param(&ctx.ac, ctx.merged_wave_info, 8 * i, 8);
3730 LLVMValueRef thread_id = ac_get_thread_id(&ctx.ac);
3731 LLVMValueRef cond = LLVMBuildICmp(ctx.ac.builder, LLVMIntULT,
3732 thread_id, count, "");
3733 LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);
3734
3735 LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
3736 }
3737
3738 if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
3739 handle_fs_inputs(&ctx, shaders[i]);
3740 else if(shaders[i]->info.stage == MESA_SHADER_VERTEX)
3741 handle_vs_inputs(&ctx, shaders[i]);
3742 else if(shader_count >= 2 && shaders[i]->info.stage == MESA_SHADER_GEOMETRY)
3743 prepare_gs_input_vgprs(&ctx);
3744
3745 ac_nir_translate(&ctx.ac, &ctx.abi, shaders[i]);
3746
3747 if (shader_count >= 2) {
3748 LLVMBuildBr(ctx.ac.builder, merge_block);
3749 LLVMPositionBuilderAtEnd(ctx.ac.builder, merge_block);
3750 }
3751
3752 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
3753 shader_info->gs.gsvs_vertex_size = ctx.gsvs_vertex_size;
3754 shader_info->gs.max_gsvs_emit_size = ctx.max_gsvs_emit_size;
3755 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
3756 shader_info->tcs.num_patches = ctx.tcs_num_patches;
3757 shader_info->tcs.lds_size = calculate_tess_lds_size(&ctx);
3758 }
3759 }
3760
3761 LLVMBuildRetVoid(ctx.ac.builder);
3762
3763 if (options->dump_preoptir)
3764 ac_dump_module(ctx.ac.module);
3765
3766 ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, options);
3767
3768 if (shader_count == 1)
3769 ac_nir_eliminate_const_vs_outputs(&ctx);
3770
3771 if (options->dump_shader) {
3772 ctx.shader_info->private_mem_vgprs =
3773 ac_count_scratch_private_memory(ctx.main_function);
3774 }
3775
3776 return ctx.ac.module;
3777 }
3778
3779 static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
3780 {
3781 unsigned *retval = (unsigned *)context;
3782 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
3783 char *description = LLVMGetDiagInfoDescription(di);
3784
3785 if (severity == LLVMDSError) {
3786 *retval = 1;
3787 fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
3788 description);
3789 }
3790
3791 LLVMDisposeMessage(description);
3792 }
3793
3794 static unsigned ac_llvm_compile(LLVMModuleRef M,
3795 struct ac_shader_binary *binary,
3796 struct ac_llvm_compiler *ac_llvm)
3797 {
3798 unsigned retval = 0;
3799 LLVMContextRef llvm_ctx;
3800
3801 /* Setup Diagnostic Handler*/
3802 llvm_ctx = LLVMGetModuleContext(M);
3803
3804 LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
3805 &retval);
3806
3807 /* Compile IR*/
3808 if (!radv_compile_to_binary(ac_llvm, M, binary))
3809 retval = 1;
3810 return retval;
3811 }
3812
3813 static void ac_compile_llvm_module(struct ac_llvm_compiler *ac_llvm,
3814 LLVMModuleRef llvm_module,
3815 struct ac_shader_binary *binary,
3816 struct ac_shader_config *config,
3817 struct radv_shader_variant_info *shader_info,
3818 gl_shader_stage stage,
3819 const struct radv_nir_compiler_options *options)
3820 {
3821 if (options->dump_shader)
3822 ac_dump_module(llvm_module);
3823
3824 memset(binary, 0, sizeof(*binary));
3825
3826 if (options->record_llvm_ir) {
3827 char *llvm_ir = LLVMPrintModuleToString(llvm_module);
3828 binary->llvm_ir_string = strdup(llvm_ir);
3829 LLVMDisposeMessage(llvm_ir);
3830 }
3831
3832 int v = ac_llvm_compile(llvm_module, binary, ac_llvm);
3833 if (v) {
3834 fprintf(stderr, "compile failed\n");
3835 }
3836
3837 if (options->dump_shader)
3838 fprintf(stderr, "disasm:\n%s\n", binary->disasm_string);
3839
3840 ac_shader_binary_read_config(binary, config, 0, options->supports_spill);
3841
3842 LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
3843 LLVMDisposeModule(llvm_module);
3844 LLVMContextDispose(ctx);
3845
3846 if (stage == MESA_SHADER_FRAGMENT) {
3847 shader_info->num_input_vgprs = 0;
3848 if (G_0286CC_PERSP_SAMPLE_ENA(config->spi_ps_input_addr))
3849 shader_info->num_input_vgprs += 2;
3850 if (G_0286CC_PERSP_CENTER_ENA(config->spi_ps_input_addr))
3851 shader_info->num_input_vgprs += 2;
3852 if (G_0286CC_PERSP_CENTROID_ENA(config->spi_ps_input_addr))
3853 shader_info->num_input_vgprs += 2;
3854 if (G_0286CC_PERSP_PULL_MODEL_ENA(config->spi_ps_input_addr))
3855 shader_info->num_input_vgprs += 3;
3856 if (G_0286CC_LINEAR_SAMPLE_ENA(config->spi_ps_input_addr))
3857 shader_info->num_input_vgprs += 2;
3858 if (G_0286CC_LINEAR_CENTER_ENA(config->spi_ps_input_addr))
3859 shader_info->num_input_vgprs += 2;
3860 if (G_0286CC_LINEAR_CENTROID_ENA(config->spi_ps_input_addr))
3861 shader_info->num_input_vgprs += 2;
3862 if (G_0286CC_LINE_STIPPLE_TEX_ENA(config->spi_ps_input_addr))
3863 shader_info->num_input_vgprs += 1;
3864 if (G_0286CC_POS_X_FLOAT_ENA(config->spi_ps_input_addr))
3865 shader_info->num_input_vgprs += 1;
3866 if (G_0286CC_POS_Y_FLOAT_ENA(config->spi_ps_input_addr))
3867 shader_info->num_input_vgprs += 1;
3868 if (G_0286CC_POS_Z_FLOAT_ENA(config->spi_ps_input_addr))
3869 shader_info->num_input_vgprs += 1;
3870 if (G_0286CC_POS_W_FLOAT_ENA(config->spi_ps_input_addr))
3871 shader_info->num_input_vgprs += 1;
3872 if (G_0286CC_FRONT_FACE_ENA(config->spi_ps_input_addr))
3873 shader_info->num_input_vgprs += 1;
3874 if (G_0286CC_ANCILLARY_ENA(config->spi_ps_input_addr))
3875 shader_info->num_input_vgprs += 1;
3876 if (G_0286CC_SAMPLE_COVERAGE_ENA(config->spi_ps_input_addr))
3877 shader_info->num_input_vgprs += 1;
3878 if (G_0286CC_POS_FIXED_PT_ENA(config->spi_ps_input_addr))
3879 shader_info->num_input_vgprs += 1;
3880 }
3881 config->num_vgprs = MAX2(config->num_vgprs, shader_info->num_input_vgprs);
3882
3883 /* +3 for scratch wave offset and VCC */
3884 config->num_sgprs = MAX2(config->num_sgprs,
3885 shader_info->num_input_sgprs + 3);
3886
3887 /* Enable 64-bit and 16-bit denormals, because there is no performance
3888 * cost.
3889 *
3890 * If denormals are enabled, all floating-point output modifiers are
3891 * ignored.
3892 *
3893 * Don't enable denormals for 32-bit floats, because:
3894 * - Floating-point output modifiers would be ignored by the hw.
3895 * - Some opcodes don't support denormals, such as v_mad_f32. We would
3896 * have to stop using those.
3897 * - SI & CI would be very slow.
3898 */
3899 config->float_mode |= V_00B028_FP_64_DENORMS;
3900 }
3901
3902 static void
3903 ac_fill_shader_info(struct radv_shader_variant_info *shader_info, struct nir_shader *nir, const struct radv_nir_compiler_options *options)
3904 {
3905 switch (nir->info.stage) {
3906 case MESA_SHADER_COMPUTE:
3907 for (int i = 0; i < 3; ++i)
3908 shader_info->cs.block_size[i] = nir->info.cs.local_size[i];
3909 break;
3910 case MESA_SHADER_FRAGMENT:
3911 shader_info->fs.early_fragment_test = nir->info.fs.early_fragment_tests;
3912 break;
3913 case MESA_SHADER_GEOMETRY:
3914 shader_info->gs.vertices_in = nir->info.gs.vertices_in;
3915 shader_info->gs.vertices_out = nir->info.gs.vertices_out;
3916 shader_info->gs.output_prim = nir->info.gs.output_primitive;
3917 shader_info->gs.invocations = nir->info.gs.invocations;
3918 break;
3919 case MESA_SHADER_TESS_EVAL:
3920 shader_info->tes.primitive_mode = nir->info.tess.primitive_mode;
3921 shader_info->tes.spacing = nir->info.tess.spacing;
3922 shader_info->tes.ccw = nir->info.tess.ccw;
3923 shader_info->tes.point_mode = nir->info.tess.point_mode;
3924 shader_info->tes.as_es = options->key.tes.as_es;
3925 break;
3926 case MESA_SHADER_TESS_CTRL:
3927 shader_info->tcs.tcs_vertices_out = nir->info.tess.tcs_vertices_out;
3928 break;
3929 case MESA_SHADER_VERTEX:
3930 shader_info->vs.as_es = options->key.vs.as_es;
3931 shader_info->vs.as_ls = options->key.vs.as_ls;
3932 /* in LS mode we need at least 1, invocation id needs 2, handled elsewhere */
3933 if (options->key.vs.as_ls)
3934 shader_info->vs.vgpr_comp_cnt = MAX2(1, shader_info->vs.vgpr_comp_cnt);
3935 break;
3936 default:
3937 break;
3938 }
3939 }
3940
3941 void
3942 radv_compile_nir_shader(struct ac_llvm_compiler *ac_llvm,
3943 struct ac_shader_binary *binary,
3944 struct ac_shader_config *config,
3945 struct radv_shader_variant_info *shader_info,
3946 struct nir_shader *const *nir,
3947 int nir_count,
3948 const struct radv_nir_compiler_options *options)
3949 {
3950
3951 LLVMModuleRef llvm_module;
3952
3953 llvm_module = ac_translate_nir_to_llvm(ac_llvm, nir, nir_count, shader_info,
3954 options);
3955
3956 ac_compile_llvm_module(ac_llvm, llvm_module, binary, config, shader_info,
3957 nir[0]->info.stage, options);
3958
3959 for (int i = 0; i < nir_count; ++i)
3960 ac_fill_shader_info(shader_info, nir[i], options);
3961
3962 /* Determine the ES type (VS or TES) for the GS on GFX9. */
3963 if (options->chip_class == GFX9) {
3964 if (nir_count == 2 &&
3965 nir[1]->info.stage == MESA_SHADER_GEOMETRY) {
3966 shader_info->gs.es_type = nir[0]->info.stage;
3967 }
3968 }
3969 }
3970
3971 static void
3972 ac_gs_copy_shader_emit(struct radv_shader_context *ctx)
3973 {
3974 LLVMValueRef vtx_offset =
3975 LLVMBuildMul(ctx->ac.builder, ctx->abi.vertex_id,
3976 LLVMConstInt(ctx->ac.i32, 4, false), "");
3977 LLVMValueRef stream_id;
3978
3979 /* Fetch the vertex stream ID. */
3980 if (ctx->shader_info->info.so.num_outputs) {
3981 stream_id =
3982 ac_unpack_param(&ctx->ac, ctx->streamout_config, 24, 2);
3983 } else {
3984 stream_id = ctx->ac.i32_0;
3985 }
3986
3987 LLVMBasicBlockRef end_bb;
3988 LLVMValueRef switch_inst;
3989
3990 end_bb = LLVMAppendBasicBlockInContext(ctx->ac.context,
3991 ctx->main_function, "end");
3992 switch_inst = LLVMBuildSwitch(ctx->ac.builder, stream_id, end_bb, 4);
3993
3994 for (unsigned stream = 0; stream < 4; stream++) {
3995 unsigned num_components =
3996 ctx->shader_info->info.gs.num_stream_output_components[stream];
3997 LLVMBasicBlockRef bb;
3998 unsigned offset;
3999
4000 if (!num_components)
4001 continue;
4002
4003 if (stream > 0 && !ctx->shader_info->info.so.num_outputs)
4004 continue;
4005
4006 bb = LLVMInsertBasicBlockInContext(ctx->ac.context, end_bb, "out");
4007 LLVMAddCase(switch_inst, LLVMConstInt(ctx->ac.i32, stream, 0), bb);
4008 LLVMPositionBuilderAtEnd(ctx->ac.builder, bb);
4009
4010 offset = 0;
4011 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
4012 unsigned output_usage_mask =
4013 ctx->shader_info->info.gs.output_usage_mask[i];
4014 unsigned output_stream =
4015 ctx->shader_info->info.gs.output_streams[i];
4016 int length = util_last_bit(output_usage_mask);
4017
4018 if (!(ctx->output_mask & (1ull << i)) ||
4019 output_stream != stream)
4020 continue;
4021
4022 for (unsigned j = 0; j < length; j++) {
4023 LLVMValueRef value, soffset;
4024
4025 if (!(output_usage_mask & (1 << j)))
4026 continue;
4027
4028 soffset = LLVMConstInt(ctx->ac.i32,
4029 offset *
4030 ctx->gs_max_out_vertices * 16 * 4, false);
4031
4032 offset++;
4033
4034 value = ac_build_buffer_load(&ctx->ac,
4035 ctx->gsvs_ring[0],
4036 1, ctx->ac.i32_0,
4037 vtx_offset, soffset,
4038 0, 1, 1, true, false);
4039
4040 LLVMTypeRef type = LLVMGetAllocatedType(ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
4041 if (ac_get_type_size(type) == 2) {
4042 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
4043 value = LLVMBuildTrunc(ctx->ac.builder, value, ctx->ac.i16, "");
4044 }
4045
4046 LLVMBuildStore(ctx->ac.builder,
4047 ac_to_float(&ctx->ac, value), ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
4048 }
4049 }
4050
4051 if (ctx->shader_info->info.so.num_outputs)
4052 radv_emit_streamout(ctx, stream);
4053
4054 if (stream == 0) {
4055 handle_vs_outputs_post(ctx, false, false,
4056 &ctx->shader_info->vs.outinfo);
4057 }
4058
4059 LLVMBuildBr(ctx->ac.builder, end_bb);
4060 }
4061
4062 LLVMPositionBuilderAtEnd(ctx->ac.builder, end_bb);
4063 }
4064
4065 void
4066 radv_compile_gs_copy_shader(struct ac_llvm_compiler *ac_llvm,
4067 struct nir_shader *geom_shader,
4068 struct ac_shader_binary *binary,
4069 struct ac_shader_config *config,
4070 struct radv_shader_variant_info *shader_info,
4071 const struct radv_nir_compiler_options *options)
4072 {
4073 struct radv_shader_context ctx = {0};
4074 ctx.options = options;
4075 ctx.shader_info = shader_info;
4076
4077 ac_llvm_context_init(&ctx.ac, options->chip_class, options->family);
4078 ctx.context = ctx.ac.context;
4079 ctx.ac.module = ac_create_module(ac_llvm->tm, ctx.context);
4080
4081 ctx.is_gs_copy_shader = true;
4082
4083 enum ac_float_mode float_mode =
4084 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
4085 AC_FLOAT_MODE_DEFAULT;
4086
4087 ctx.ac.builder = ac_create_builder(ctx.context, float_mode);
4088 ctx.stage = MESA_SHADER_VERTEX;
4089
4090 radv_nir_shader_info_pass(geom_shader, options, &shader_info->info);
4091
4092 create_function(&ctx, MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX);
4093
4094 ctx.gs_max_out_vertices = geom_shader->info.gs.vertices_out;
4095 ac_setup_rings(&ctx);
4096
4097 nir_foreach_variable(variable, &geom_shader->outputs) {
4098 scan_shader_output_decl(&ctx, variable, geom_shader, MESA_SHADER_VERTEX);
4099 ac_handle_shader_output_decl(&ctx.ac, &ctx.abi, geom_shader,
4100 variable, MESA_SHADER_VERTEX);
4101 }
4102
4103 ac_gs_copy_shader_emit(&ctx);
4104
4105 LLVMBuildRetVoid(ctx.ac.builder);
4106
4107 ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, options);
4108
4109 ac_compile_llvm_module(ac_llvm, ctx.ac.module, binary, config, shader_info,
4110 MESA_SHADER_VERTEX, options);
4111 }