radv: Fix up 2_10_10_10 alpha sign.
[mesa.git] / src / amd / vulkan / radv_nir_to_llvm.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "radv_private.h"
29 #include "radv_shader.h"
30 #include "nir/nir.h"
31
32 #include <llvm-c/Core.h>
33 #include <llvm-c/TargetMachine.h>
34 #include <llvm-c/Transforms/Scalar.h>
35 #if HAVE_LLVM >= 0x0700
36 #include <llvm-c/Transforms/Utils.h>
37 #endif
38
39 #include "sid.h"
40 #include "gfx9d.h"
41 #include "ac_binary.h"
42 #include "ac_llvm_util.h"
43 #include "ac_llvm_build.h"
44 #include "ac_shader_abi.h"
45 #include "ac_shader_util.h"
46 #include "ac_exp_param.h"
47
48 #define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)
49
50 struct radv_shader_context {
51 struct ac_llvm_context ac;
52 const struct radv_nir_compiler_options *options;
53 struct radv_shader_variant_info *shader_info;
54 struct ac_shader_abi abi;
55
56 unsigned max_workgroup_size;
57 LLVMContextRef context;
58 LLVMValueRef main_function;
59
60 LLVMValueRef descriptor_sets[RADV_UD_MAX_SETS];
61 LLVMValueRef ring_offsets;
62
63 LLVMValueRef vertex_buffers;
64 LLVMValueRef rel_auto_id;
65 LLVMValueRef vs_prim_id;
66 LLVMValueRef es2gs_offset;
67
68 LLVMValueRef oc_lds;
69 LLVMValueRef merged_wave_info;
70 LLVMValueRef tess_factor_offset;
71 LLVMValueRef tes_rel_patch_id;
72 LLVMValueRef tes_u;
73 LLVMValueRef tes_v;
74
75 LLVMValueRef gs2vs_offset;
76 LLVMValueRef gs_wave_id;
77 LLVMValueRef gs_vtx_offset[6];
78
79 LLVMValueRef esgs_ring;
80 LLVMValueRef gsvs_ring;
81 LLVMValueRef hs_ring_tess_offchip;
82 LLVMValueRef hs_ring_tess_factor;
83
84 LLVMValueRef sample_pos_offset;
85 LLVMValueRef persp_sample, persp_center, persp_centroid;
86 LLVMValueRef linear_sample, linear_center, linear_centroid;
87
88 gl_shader_stage stage;
89
90 LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];
91
92 uint64_t input_mask;
93 uint64_t output_mask;
94 uint8_t num_output_clips;
95 uint8_t num_output_culls;
96
97 bool is_gs_copy_shader;
98 LLVMValueRef gs_next_vertex;
99 unsigned gs_max_out_vertices;
100
101 unsigned tes_primitive_mode;
102
103 uint32_t tcs_patch_outputs_read;
104 uint64_t tcs_outputs_read;
105 uint32_t tcs_vertices_per_patch;
106 uint32_t tcs_num_inputs;
107 uint32_t tcs_num_patches;
108 uint32_t max_gsvs_emit_size;
109 uint32_t gsvs_vertex_size;
110 };
111
112 enum radeon_llvm_calling_convention {
113 RADEON_LLVM_AMDGPU_VS = 87,
114 RADEON_LLVM_AMDGPU_GS = 88,
115 RADEON_LLVM_AMDGPU_PS = 89,
116 RADEON_LLVM_AMDGPU_CS = 90,
117 RADEON_LLVM_AMDGPU_HS = 93,
118 };
119
120 static inline struct radv_shader_context *
121 radv_shader_context_from_abi(struct ac_shader_abi *abi)
122 {
123 struct radv_shader_context *ctx = NULL;
124 return container_of(abi, ctx, abi);
125 }
126
127 struct ac_build_if_state
128 {
129 struct radv_shader_context *ctx;
130 LLVMValueRef condition;
131 LLVMBasicBlockRef entry_block;
132 LLVMBasicBlockRef true_block;
133 LLVMBasicBlockRef false_block;
134 LLVMBasicBlockRef merge_block;
135 };
136
137 static LLVMBasicBlockRef
138 ac_build_insert_new_block(struct radv_shader_context *ctx, const char *name)
139 {
140 LLVMBasicBlockRef current_block;
141 LLVMBasicBlockRef next_block;
142 LLVMBasicBlockRef new_block;
143
144 /* get current basic block */
145 current_block = LLVMGetInsertBlock(ctx->ac.builder);
146
147 /* chqeck if there's another block after this one */
148 next_block = LLVMGetNextBasicBlock(current_block);
149 if (next_block) {
150 /* insert the new block before the next block */
151 new_block = LLVMInsertBasicBlockInContext(ctx->context, next_block, name);
152 }
153 else {
154 /* append new block after current block */
155 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
156 new_block = LLVMAppendBasicBlockInContext(ctx->context, function, name);
157 }
158 return new_block;
159 }
160
161 static void
162 ac_nir_build_if(struct ac_build_if_state *ifthen,
163 struct radv_shader_context *ctx,
164 LLVMValueRef condition)
165 {
166 LLVMBasicBlockRef block = LLVMGetInsertBlock(ctx->ac.builder);
167
168 memset(ifthen, 0, sizeof *ifthen);
169 ifthen->ctx = ctx;
170 ifthen->condition = condition;
171 ifthen->entry_block = block;
172
173 /* create endif/merge basic block for the phi functions */
174 ifthen->merge_block = ac_build_insert_new_block(ctx, "endif-block");
175
176 /* create/insert true_block before merge_block */
177 ifthen->true_block =
178 LLVMInsertBasicBlockInContext(ctx->context,
179 ifthen->merge_block,
180 "if-true-block");
181
182 /* successive code goes into the true block */
183 LLVMPositionBuilderAtEnd(ctx->ac.builder, ifthen->true_block);
184 }
185
186 /**
187 * End a conditional.
188 */
189 static void
190 ac_nir_build_endif(struct ac_build_if_state *ifthen)
191 {
192 LLVMBuilderRef builder = ifthen->ctx->ac.builder;
193
194 /* Insert branch to the merge block from current block */
195 LLVMBuildBr(builder, ifthen->merge_block);
196
197 /*
198 * Now patch in the various branch instructions.
199 */
200
201 /* Insert the conditional branch instruction at the end of entry_block */
202 LLVMPositionBuilderAtEnd(builder, ifthen->entry_block);
203 if (ifthen->false_block) {
204 /* we have an else clause */
205 LLVMBuildCondBr(builder, ifthen->condition,
206 ifthen->true_block, ifthen->false_block);
207 }
208 else {
209 /* no else clause */
210 LLVMBuildCondBr(builder, ifthen->condition,
211 ifthen->true_block, ifthen->merge_block);
212 }
213
214 /* Resume building code at end of the ifthen->merge_block */
215 LLVMPositionBuilderAtEnd(builder, ifthen->merge_block);
216 }
217
218
219 static LLVMValueRef get_rel_patch_id(struct radv_shader_context *ctx)
220 {
221 switch (ctx->stage) {
222 case MESA_SHADER_TESS_CTRL:
223 return ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
224 case MESA_SHADER_TESS_EVAL:
225 return ctx->tes_rel_patch_id;
226 break;
227 default:
228 unreachable("Illegal stage");
229 }
230 }
231
232 static unsigned
233 get_tcs_num_patches(struct radv_shader_context *ctx)
234 {
235 unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
236 unsigned num_tcs_output_cp = ctx->tcs_vertices_per_patch;
237 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
238 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
239 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
240 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
241 uint32_t output_vertex_size = num_tcs_outputs * 16;
242 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
243 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
244 unsigned num_patches;
245 unsigned hardware_lds_size;
246
247 /* Ensure that we only need one wave per SIMD so we don't need to check
248 * resource usage. Also ensures that the number of tcs in and out
249 * vertices per threadgroup are at most 256.
250 */
251 num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
252 /* Make sure that the data fits in LDS. This assumes the shaders only
253 * use LDS for the inputs and outputs.
254 */
255 hardware_lds_size = ctx->options->chip_class >= CIK ? 65536 : 32768;
256 num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size));
257 /* Make sure the output data fits in the offchip buffer */
258 num_patches = MIN2(num_patches, (ctx->options->tess_offchip_block_dw_size * 4) / output_patch_size);
259 /* Not necessary for correctness, but improves performance. The
260 * specific value is taken from the proprietary driver.
261 */
262 num_patches = MIN2(num_patches, 40);
263
264 /* SI bug workaround - limit LS-HS threadgroups to only one wave. */
265 if (ctx->options->chip_class == SI) {
266 unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp);
267 num_patches = MIN2(num_patches, one_wave);
268 }
269 return num_patches;
270 }
271
272 static unsigned
273 calculate_tess_lds_size(struct radv_shader_context *ctx)
274 {
275 unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
276 unsigned num_tcs_output_cp;
277 unsigned num_tcs_outputs, num_tcs_patch_outputs;
278 unsigned input_vertex_size, output_vertex_size;
279 unsigned input_patch_size, output_patch_size;
280 unsigned pervertex_output_patch_size;
281 unsigned output_patch0_offset;
282 unsigned num_patches;
283 unsigned lds_size;
284
285 num_tcs_output_cp = ctx->tcs_vertices_per_patch;
286 num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
287 num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
288
289 input_vertex_size = ctx->tcs_num_inputs * 16;
290 output_vertex_size = num_tcs_outputs * 16;
291
292 input_patch_size = num_tcs_input_cp * input_vertex_size;
293
294 pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
295 output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
296
297 num_patches = ctx->tcs_num_patches;
298 output_patch0_offset = input_patch_size * num_patches;
299
300 lds_size = output_patch0_offset + output_patch_size * num_patches;
301 return lds_size;
302 }
303
304 /* Tessellation shaders pass outputs to the next shader using LDS.
305 *
306 * LS outputs = TCS inputs
307 * TCS outputs = TES inputs
308 *
309 * The LDS layout is:
310 * - TCS inputs for patch 0
311 * - TCS inputs for patch 1
312 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
313 * - ...
314 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
315 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
316 * - TCS outputs for patch 1
317 * - Per-patch TCS outputs for patch 1
318 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
319 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
320 * - ...
321 *
322 * All three shaders VS(LS), TCS, TES share the same LDS space.
323 */
324 static LLVMValueRef
325 get_tcs_in_patch_stride(struct radv_shader_context *ctx)
326 {
327 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
328 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
329 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
330
331 input_patch_size /= 4;
332 return LLVMConstInt(ctx->ac.i32, input_patch_size, false);
333 }
334
335 static LLVMValueRef
336 get_tcs_out_patch_stride(struct radv_shader_context *ctx)
337 {
338 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
339 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
340 uint32_t output_vertex_size = num_tcs_outputs * 16;
341 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
342 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
343 output_patch_size /= 4;
344 return LLVMConstInt(ctx->ac.i32, output_patch_size, false);
345 }
346
347 static LLVMValueRef
348 get_tcs_out_vertex_stride(struct radv_shader_context *ctx)
349 {
350 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
351 uint32_t output_vertex_size = num_tcs_outputs * 16;
352 output_vertex_size /= 4;
353 return LLVMConstInt(ctx->ac.i32, output_vertex_size, false);
354 }
355
356 static LLVMValueRef
357 get_tcs_out_patch0_offset(struct radv_shader_context *ctx)
358 {
359 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
360 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
361 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
362 uint32_t output_patch0_offset = input_patch_size;
363 unsigned num_patches = ctx->tcs_num_patches;
364
365 output_patch0_offset *= num_patches;
366 output_patch0_offset /= 4;
367 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
368 }
369
370 static LLVMValueRef
371 get_tcs_out_patch0_patch_data_offset(struct radv_shader_context *ctx)
372 {
373 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
374 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
375 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
376 uint32_t output_patch0_offset = input_patch_size;
377
378 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
379 uint32_t output_vertex_size = num_tcs_outputs * 16;
380 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
381 unsigned num_patches = ctx->tcs_num_patches;
382
383 output_patch0_offset *= num_patches;
384 output_patch0_offset += pervertex_output_patch_size;
385 output_patch0_offset /= 4;
386 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
387 }
388
389 static LLVMValueRef
390 get_tcs_in_current_patch_offset(struct radv_shader_context *ctx)
391 {
392 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
393 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
394
395 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
396 }
397
398 static LLVMValueRef
399 get_tcs_out_current_patch_offset(struct radv_shader_context *ctx)
400 {
401 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
402 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
403 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
404
405 return LLVMBuildAdd(ctx->ac.builder, patch0_offset,
406 LLVMBuildMul(ctx->ac.builder, patch_stride,
407 rel_patch_id, ""),
408 "");
409 }
410
411 static LLVMValueRef
412 get_tcs_out_current_patch_data_offset(struct radv_shader_context *ctx)
413 {
414 LLVMValueRef patch0_patch_data_offset =
415 get_tcs_out_patch0_patch_data_offset(ctx);
416 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
417 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
418
419 return LLVMBuildAdd(ctx->ac.builder, patch0_patch_data_offset,
420 LLVMBuildMul(ctx->ac.builder, patch_stride,
421 rel_patch_id, ""),
422 "");
423 }
424
425 #define MAX_ARGS 23
426 struct arg_info {
427 LLVMTypeRef types[MAX_ARGS];
428 LLVMValueRef *assign[MAX_ARGS];
429 unsigned array_params_mask;
430 uint8_t count;
431 uint8_t sgpr_count;
432 uint8_t num_sgprs_used;
433 uint8_t num_vgprs_used;
434 };
435
436 enum ac_arg_regfile {
437 ARG_SGPR,
438 ARG_VGPR,
439 };
440
441 static void
442 add_arg(struct arg_info *info, enum ac_arg_regfile regfile, LLVMTypeRef type,
443 LLVMValueRef *param_ptr)
444 {
445 assert(info->count < MAX_ARGS);
446
447 info->assign[info->count] = param_ptr;
448 info->types[info->count] = type;
449 info->count++;
450
451 if (regfile == ARG_SGPR) {
452 info->num_sgprs_used += ac_get_type_size(type) / 4;
453 info->sgpr_count++;
454 } else {
455 assert(regfile == ARG_VGPR);
456 info->num_vgprs_used += ac_get_type_size(type) / 4;
457 }
458 }
459
460 static inline void
461 add_array_arg(struct arg_info *info, LLVMTypeRef type, LLVMValueRef *param_ptr)
462 {
463 info->array_params_mask |= (1 << info->count);
464 add_arg(info, ARG_SGPR, type, param_ptr);
465 }
466
467 static void assign_arguments(LLVMValueRef main_function,
468 struct arg_info *info)
469 {
470 unsigned i;
471 for (i = 0; i < info->count; i++) {
472 if (info->assign[i])
473 *info->assign[i] = LLVMGetParam(main_function, i);
474 }
475 }
476
477 static LLVMValueRef
478 create_llvm_function(LLVMContextRef ctx, LLVMModuleRef module,
479 LLVMBuilderRef builder, LLVMTypeRef *return_types,
480 unsigned num_return_elems,
481 struct arg_info *args,
482 unsigned max_workgroup_size,
483 bool unsafe_math)
484 {
485 LLVMTypeRef main_function_type, ret_type;
486 LLVMBasicBlockRef main_function_body;
487
488 if (num_return_elems)
489 ret_type = LLVMStructTypeInContext(ctx, return_types,
490 num_return_elems, true);
491 else
492 ret_type = LLVMVoidTypeInContext(ctx);
493
494 /* Setup the function */
495 main_function_type =
496 LLVMFunctionType(ret_type, args->types, args->count, 0);
497 LLVMValueRef main_function =
498 LLVMAddFunction(module, "main", main_function_type);
499 main_function_body =
500 LLVMAppendBasicBlockInContext(ctx, main_function, "main_body");
501 LLVMPositionBuilderAtEnd(builder, main_function_body);
502
503 LLVMSetFunctionCallConv(main_function, RADEON_LLVM_AMDGPU_CS);
504 for (unsigned i = 0; i < args->sgpr_count; ++i) {
505 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_INREG);
506
507 if (args->array_params_mask & (1 << i)) {
508 LLVMValueRef P = LLVMGetParam(main_function, i);
509 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_NOALIAS);
510 ac_add_attr_dereferenceable(P, UINT64_MAX);
511 }
512 }
513
514 if (max_workgroup_size) {
515 ac_llvm_add_target_dep_function_attr(main_function,
516 "amdgpu-max-work-group-size",
517 max_workgroup_size);
518 }
519 if (unsafe_math) {
520 /* These were copied from some LLVM test. */
521 LLVMAddTargetDependentFunctionAttr(main_function,
522 "less-precise-fpmad",
523 "true");
524 LLVMAddTargetDependentFunctionAttr(main_function,
525 "no-infs-fp-math",
526 "true");
527 LLVMAddTargetDependentFunctionAttr(main_function,
528 "no-nans-fp-math",
529 "true");
530 LLVMAddTargetDependentFunctionAttr(main_function,
531 "unsafe-fp-math",
532 "true");
533 LLVMAddTargetDependentFunctionAttr(main_function,
534 "no-signed-zeros-fp-math",
535 "true");
536 }
537 return main_function;
538 }
539
540
541 static void
542 set_loc(struct radv_userdata_info *ud_info, uint8_t *sgpr_idx, uint8_t num_sgprs,
543 uint32_t indirect_offset)
544 {
545 ud_info->sgpr_idx = *sgpr_idx;
546 ud_info->num_sgprs = num_sgprs;
547 ud_info->indirect = indirect_offset > 0;
548 ud_info->indirect_offset = indirect_offset;
549 *sgpr_idx += num_sgprs;
550 }
551
552 static void
553 set_loc_shader(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx,
554 uint8_t num_sgprs)
555 {
556 struct radv_userdata_info *ud_info =
557 &ctx->shader_info->user_sgprs_locs.shader_data[idx];
558 assert(ud_info);
559
560 set_loc(ud_info, sgpr_idx, num_sgprs, 0);
561 }
562
563 static void
564 set_loc_desc(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx,
565 uint32_t indirect_offset)
566 {
567 struct radv_userdata_info *ud_info =
568 &ctx->shader_info->user_sgprs_locs.descriptor_sets[idx];
569 assert(ud_info);
570
571 set_loc(ud_info, sgpr_idx, 2, indirect_offset);
572 }
573
574 struct user_sgpr_info {
575 bool need_ring_offsets;
576 uint8_t sgpr_count;
577 bool indirect_all_descriptor_sets;
578 };
579
580 static bool needs_view_index_sgpr(struct radv_shader_context *ctx,
581 gl_shader_stage stage)
582 {
583 switch (stage) {
584 case MESA_SHADER_VERTEX:
585 if (ctx->shader_info->info.needs_multiview_view_index ||
586 (!ctx->options->key.vs.as_es && !ctx->options->key.vs.as_ls && ctx->options->key.has_multiview_view_index))
587 return true;
588 break;
589 case MESA_SHADER_TESS_EVAL:
590 if (ctx->shader_info->info.needs_multiview_view_index || (!ctx->options->key.tes.as_es && ctx->options->key.has_multiview_view_index))
591 return true;
592 break;
593 case MESA_SHADER_GEOMETRY:
594 case MESA_SHADER_TESS_CTRL:
595 if (ctx->shader_info->info.needs_multiview_view_index)
596 return true;
597 break;
598 default:
599 break;
600 }
601 return false;
602 }
603
604 static uint8_t
605 count_vs_user_sgprs(struct radv_shader_context *ctx)
606 {
607 uint8_t count = 0;
608
609 count += ctx->shader_info->info.vs.has_vertex_buffers ? 2 : 0;
610 count += ctx->shader_info->info.vs.needs_draw_id ? 3 : 2;
611
612 return count;
613 }
614
615 static void allocate_user_sgprs(struct radv_shader_context *ctx,
616 gl_shader_stage stage,
617 bool has_previous_stage,
618 gl_shader_stage previous_stage,
619 bool needs_view_index,
620 struct user_sgpr_info *user_sgpr_info)
621 {
622 memset(user_sgpr_info, 0, sizeof(struct user_sgpr_info));
623
624 /* until we sort out scratch/global buffers always assign ring offsets for gs/vs/es */
625 if (stage == MESA_SHADER_GEOMETRY ||
626 stage == MESA_SHADER_VERTEX ||
627 stage == MESA_SHADER_TESS_CTRL ||
628 stage == MESA_SHADER_TESS_EVAL ||
629 ctx->is_gs_copy_shader)
630 user_sgpr_info->need_ring_offsets = true;
631
632 if (stage == MESA_SHADER_FRAGMENT &&
633 ctx->shader_info->info.ps.needs_sample_positions)
634 user_sgpr_info->need_ring_offsets = true;
635
636 /* 2 user sgprs will nearly always be allocated for scratch/rings */
637 if (ctx->options->supports_spill || user_sgpr_info->need_ring_offsets) {
638 user_sgpr_info->sgpr_count += 2;
639 }
640
641 switch (stage) {
642 case MESA_SHADER_COMPUTE:
643 if (ctx->shader_info->info.cs.uses_grid_size)
644 user_sgpr_info->sgpr_count += 3;
645 break;
646 case MESA_SHADER_FRAGMENT:
647 user_sgpr_info->sgpr_count += ctx->shader_info->info.ps.needs_sample_positions;
648 break;
649 case MESA_SHADER_VERTEX:
650 if (!ctx->is_gs_copy_shader)
651 user_sgpr_info->sgpr_count += count_vs_user_sgprs(ctx);
652 break;
653 case MESA_SHADER_TESS_CTRL:
654 if (has_previous_stage) {
655 if (previous_stage == MESA_SHADER_VERTEX)
656 user_sgpr_info->sgpr_count += count_vs_user_sgprs(ctx);
657 }
658 break;
659 case MESA_SHADER_TESS_EVAL:
660 break;
661 case MESA_SHADER_GEOMETRY:
662 if (has_previous_stage) {
663 if (previous_stage == MESA_SHADER_VERTEX) {
664 user_sgpr_info->sgpr_count += count_vs_user_sgprs(ctx);
665 }
666 }
667 break;
668 default:
669 break;
670 }
671
672 if (needs_view_index)
673 user_sgpr_info->sgpr_count++;
674
675 if (ctx->shader_info->info.loads_push_constants)
676 user_sgpr_info->sgpr_count += 2;
677
678 uint32_t available_sgprs = ctx->options->chip_class >= GFX9 ? 32 : 16;
679 uint32_t remaining_sgprs = available_sgprs - user_sgpr_info->sgpr_count;
680
681 if (remaining_sgprs / 2 < util_bitcount(ctx->shader_info->info.desc_set_used_mask)) {
682 user_sgpr_info->sgpr_count += 2;
683 user_sgpr_info->indirect_all_descriptor_sets = true;
684 } else {
685 user_sgpr_info->sgpr_count += util_bitcount(ctx->shader_info->info.desc_set_used_mask) * 2;
686 }
687 }
688
689 static void
690 declare_global_input_sgprs(struct radv_shader_context *ctx,
691 gl_shader_stage stage,
692 bool has_previous_stage,
693 gl_shader_stage previous_stage,
694 const struct user_sgpr_info *user_sgpr_info,
695 struct arg_info *args,
696 LLVMValueRef *desc_sets)
697 {
698 LLVMTypeRef type = ac_array_in_const_addr_space(ctx->ac.i8);
699 unsigned num_sets = ctx->options->layout ?
700 ctx->options->layout->num_sets : 0;
701 unsigned stage_mask = 1 << stage;
702
703 if (has_previous_stage)
704 stage_mask |= 1 << previous_stage;
705
706 /* 1 for each descriptor set */
707 if (!user_sgpr_info->indirect_all_descriptor_sets) {
708 for (unsigned i = 0; i < num_sets; ++i) {
709 if ((ctx->shader_info->info.desc_set_used_mask & (1 << i)) &&
710 ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
711 add_array_arg(args, type,
712 &ctx->descriptor_sets[i]);
713 }
714 }
715 } else {
716 add_array_arg(args, ac_array_in_const_addr_space(type), desc_sets);
717 }
718
719 if (ctx->shader_info->info.loads_push_constants) {
720 /* 1 for push constants and dynamic descriptors */
721 add_array_arg(args, type, &ctx->abi.push_constants);
722 }
723 }
724
725 static void
726 declare_vs_specific_input_sgprs(struct radv_shader_context *ctx,
727 gl_shader_stage stage,
728 bool has_previous_stage,
729 gl_shader_stage previous_stage,
730 struct arg_info *args)
731 {
732 if (!ctx->is_gs_copy_shader &&
733 (stage == MESA_SHADER_VERTEX ||
734 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
735 if (ctx->shader_info->info.vs.has_vertex_buffers) {
736 add_arg(args, ARG_SGPR, ac_array_in_const_addr_space(ctx->ac.v4i32),
737 &ctx->vertex_buffers);
738 }
739 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.base_vertex);
740 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.start_instance);
741 if (ctx->shader_info->info.vs.needs_draw_id) {
742 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.draw_id);
743 }
744 }
745 }
746
747 static void
748 declare_vs_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
749 {
750 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.vertex_id);
751 if (!ctx->is_gs_copy_shader) {
752 if (ctx->options->key.vs.as_ls) {
753 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->rel_auto_id);
754 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
755 } else {
756 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
757 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->vs_prim_id);
758 }
759 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
760 }
761 }
762
763 static void
764 declare_tes_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
765 {
766 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_u);
767 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_v);
768 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->tes_rel_patch_id);
769 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.tes_patch_id);
770 }
771
772 static void
773 set_global_input_locs(struct radv_shader_context *ctx, gl_shader_stage stage,
774 bool has_previous_stage, gl_shader_stage previous_stage,
775 const struct user_sgpr_info *user_sgpr_info,
776 LLVMValueRef desc_sets, uint8_t *user_sgpr_idx)
777 {
778 unsigned num_sets = ctx->options->layout ?
779 ctx->options->layout->num_sets : 0;
780 unsigned stage_mask = 1 << stage;
781
782 if (has_previous_stage)
783 stage_mask |= 1 << previous_stage;
784
785 if (!user_sgpr_info->indirect_all_descriptor_sets) {
786 for (unsigned i = 0; i < num_sets; ++i) {
787 if ((ctx->shader_info->info.desc_set_used_mask & (1 << i)) &&
788 ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
789 set_loc_desc(ctx, i, user_sgpr_idx, 0);
790 } else
791 ctx->descriptor_sets[i] = NULL;
792 }
793 } else {
794 set_loc_shader(ctx, AC_UD_INDIRECT_DESCRIPTOR_SETS,
795 user_sgpr_idx, 2);
796
797 for (unsigned i = 0; i < num_sets; ++i) {
798 if ((ctx->shader_info->info.desc_set_used_mask & (1 << i)) &&
799 ctx->options->layout->set[i].layout->shader_stages & stage_mask) {
800 set_loc_desc(ctx, i, user_sgpr_idx, i * 8);
801 ctx->descriptor_sets[i] =
802 ac_build_load_to_sgpr(&ctx->ac,
803 desc_sets,
804 LLVMConstInt(ctx->ac.i32, i, false));
805
806 } else
807 ctx->descriptor_sets[i] = NULL;
808 }
809 ctx->shader_info->need_indirect_descriptor_sets = true;
810 }
811
812 if (ctx->shader_info->info.loads_push_constants) {
813 set_loc_shader(ctx, AC_UD_PUSH_CONSTANTS, user_sgpr_idx, 2);
814 }
815 }
816
817 static void
818 set_vs_specific_input_locs(struct radv_shader_context *ctx,
819 gl_shader_stage stage, bool has_previous_stage,
820 gl_shader_stage previous_stage,
821 uint8_t *user_sgpr_idx)
822 {
823 if (!ctx->is_gs_copy_shader &&
824 (stage == MESA_SHADER_VERTEX ||
825 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
826 if (ctx->shader_info->info.vs.has_vertex_buffers) {
827 set_loc_shader(ctx, AC_UD_VS_VERTEX_BUFFERS,
828 user_sgpr_idx, 2);
829 }
830
831 unsigned vs_num = 2;
832 if (ctx->shader_info->info.vs.needs_draw_id)
833 vs_num++;
834
835 set_loc_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE,
836 user_sgpr_idx, vs_num);
837 }
838 }
839
840 static void set_llvm_calling_convention(LLVMValueRef func,
841 gl_shader_stage stage)
842 {
843 enum radeon_llvm_calling_convention calling_conv;
844
845 switch (stage) {
846 case MESA_SHADER_VERTEX:
847 case MESA_SHADER_TESS_EVAL:
848 calling_conv = RADEON_LLVM_AMDGPU_VS;
849 break;
850 case MESA_SHADER_GEOMETRY:
851 calling_conv = RADEON_LLVM_AMDGPU_GS;
852 break;
853 case MESA_SHADER_TESS_CTRL:
854 calling_conv = HAVE_LLVM >= 0x0500 ? RADEON_LLVM_AMDGPU_HS : RADEON_LLVM_AMDGPU_VS;
855 break;
856 case MESA_SHADER_FRAGMENT:
857 calling_conv = RADEON_LLVM_AMDGPU_PS;
858 break;
859 case MESA_SHADER_COMPUTE:
860 calling_conv = RADEON_LLVM_AMDGPU_CS;
861 break;
862 default:
863 unreachable("Unhandle shader type");
864 }
865
866 LLVMSetFunctionCallConv(func, calling_conv);
867 }
868
869 static void create_function(struct radv_shader_context *ctx,
870 gl_shader_stage stage,
871 bool has_previous_stage,
872 gl_shader_stage previous_stage)
873 {
874 uint8_t user_sgpr_idx;
875 struct user_sgpr_info user_sgpr_info;
876 struct arg_info args = {};
877 LLVMValueRef desc_sets;
878 bool needs_view_index = needs_view_index_sgpr(ctx, stage);
879 allocate_user_sgprs(ctx, stage, has_previous_stage,
880 previous_stage, needs_view_index, &user_sgpr_info);
881
882 if (user_sgpr_info.need_ring_offsets && !ctx->options->supports_spill) {
883 add_arg(&args, ARG_SGPR, ac_array_in_const_addr_space(ctx->ac.v4i32),
884 &ctx->ring_offsets);
885 }
886
887 switch (stage) {
888 case MESA_SHADER_COMPUTE:
889 declare_global_input_sgprs(ctx, stage, has_previous_stage,
890 previous_stage, &user_sgpr_info,
891 &args, &desc_sets);
892
893 if (ctx->shader_info->info.cs.uses_grid_size) {
894 add_arg(&args, ARG_SGPR, ctx->ac.v3i32,
895 &ctx->abi.num_work_groups);
896 }
897
898 for (int i = 0; i < 3; i++) {
899 ctx->abi.workgroup_ids[i] = NULL;
900 if (ctx->shader_info->info.cs.uses_block_id[i]) {
901 add_arg(&args, ARG_SGPR, ctx->ac.i32,
902 &ctx->abi.workgroup_ids[i]);
903 }
904 }
905
906 if (ctx->shader_info->info.cs.uses_local_invocation_idx)
907 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.tg_size);
908 add_arg(&args, ARG_VGPR, ctx->ac.v3i32,
909 &ctx->abi.local_invocation_ids);
910 break;
911 case MESA_SHADER_VERTEX:
912 declare_global_input_sgprs(ctx, stage, has_previous_stage,
913 previous_stage, &user_sgpr_info,
914 &args, &desc_sets);
915 declare_vs_specific_input_sgprs(ctx, stage, has_previous_stage,
916 previous_stage, &args);
917
918 if (needs_view_index)
919 add_arg(&args, ARG_SGPR, ctx->ac.i32,
920 &ctx->abi.view_index);
921 if (ctx->options->key.vs.as_es)
922 add_arg(&args, ARG_SGPR, ctx->ac.i32,
923 &ctx->es2gs_offset);
924
925 declare_vs_input_vgprs(ctx, &args);
926 break;
927 case MESA_SHADER_TESS_CTRL:
928 if (has_previous_stage) {
929 // First 6 system regs
930 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
931 add_arg(&args, ARG_SGPR, ctx->ac.i32,
932 &ctx->merged_wave_info);
933 add_arg(&args, ARG_SGPR, ctx->ac.i32,
934 &ctx->tess_factor_offset);
935
936 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
937 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
938 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
939
940 declare_global_input_sgprs(ctx, stage,
941 has_previous_stage,
942 previous_stage,
943 &user_sgpr_info, &args,
944 &desc_sets);
945 declare_vs_specific_input_sgprs(ctx, stage,
946 has_previous_stage,
947 previous_stage, &args);
948
949 if (needs_view_index)
950 add_arg(&args, ARG_SGPR, ctx->ac.i32,
951 &ctx->abi.view_index);
952
953 add_arg(&args, ARG_VGPR, ctx->ac.i32,
954 &ctx->abi.tcs_patch_id);
955 add_arg(&args, ARG_VGPR, ctx->ac.i32,
956 &ctx->abi.tcs_rel_ids);
957
958 declare_vs_input_vgprs(ctx, &args);
959 } else {
960 declare_global_input_sgprs(ctx, stage,
961 has_previous_stage,
962 previous_stage,
963 &user_sgpr_info, &args,
964 &desc_sets);
965
966 if (needs_view_index)
967 add_arg(&args, ARG_SGPR, ctx->ac.i32,
968 &ctx->abi.view_index);
969
970 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
971 add_arg(&args, ARG_SGPR, ctx->ac.i32,
972 &ctx->tess_factor_offset);
973 add_arg(&args, ARG_VGPR, ctx->ac.i32,
974 &ctx->abi.tcs_patch_id);
975 add_arg(&args, ARG_VGPR, ctx->ac.i32,
976 &ctx->abi.tcs_rel_ids);
977 }
978 break;
979 case MESA_SHADER_TESS_EVAL:
980 declare_global_input_sgprs(ctx, stage, has_previous_stage,
981 previous_stage, &user_sgpr_info,
982 &args, &desc_sets);
983
984 if (needs_view_index)
985 add_arg(&args, ARG_SGPR, ctx->ac.i32,
986 &ctx->abi.view_index);
987
988 if (ctx->options->key.tes.as_es) {
989 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
990 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
991 add_arg(&args, ARG_SGPR, ctx->ac.i32,
992 &ctx->es2gs_offset);
993 } else {
994 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
995 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
996 }
997 declare_tes_input_vgprs(ctx, &args);
998 break;
999 case MESA_SHADER_GEOMETRY:
1000 if (has_previous_stage) {
1001 // First 6 system regs
1002 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1003 &ctx->gs2vs_offset);
1004 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1005 &ctx->merged_wave_info);
1006 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1007
1008 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
1009 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1010 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1011
1012 declare_global_input_sgprs(ctx, stage,
1013 has_previous_stage,
1014 previous_stage,
1015 &user_sgpr_info, &args,
1016 &desc_sets);
1017
1018 if (previous_stage != MESA_SHADER_TESS_EVAL) {
1019 declare_vs_specific_input_sgprs(ctx, stage,
1020 has_previous_stage,
1021 previous_stage,
1022 &args);
1023 }
1024
1025 if (needs_view_index)
1026 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1027 &ctx->abi.view_index);
1028
1029 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1030 &ctx->gs_vtx_offset[0]);
1031 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1032 &ctx->gs_vtx_offset[2]);
1033 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1034 &ctx->abi.gs_prim_id);
1035 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1036 &ctx->abi.gs_invocation_id);
1037 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1038 &ctx->gs_vtx_offset[4]);
1039
1040 if (previous_stage == MESA_SHADER_VERTEX) {
1041 declare_vs_input_vgprs(ctx, &args);
1042 } else {
1043 declare_tes_input_vgprs(ctx, &args);
1044 }
1045 } else {
1046 declare_global_input_sgprs(ctx, stage,
1047 has_previous_stage,
1048 previous_stage,
1049 &user_sgpr_info, &args,
1050 &desc_sets);
1051
1052 if (needs_view_index)
1053 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1054 &ctx->abi.view_index);
1055
1056 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs2vs_offset);
1057 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs_wave_id);
1058 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1059 &ctx->gs_vtx_offset[0]);
1060 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1061 &ctx->gs_vtx_offset[1]);
1062 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1063 &ctx->abi.gs_prim_id);
1064 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1065 &ctx->gs_vtx_offset[2]);
1066 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1067 &ctx->gs_vtx_offset[3]);
1068 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1069 &ctx->gs_vtx_offset[4]);
1070 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1071 &ctx->gs_vtx_offset[5]);
1072 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1073 &ctx->abi.gs_invocation_id);
1074 }
1075 break;
1076 case MESA_SHADER_FRAGMENT:
1077 declare_global_input_sgprs(ctx, stage, has_previous_stage,
1078 previous_stage, &user_sgpr_info,
1079 &args, &desc_sets);
1080
1081 if (ctx->shader_info->info.ps.needs_sample_positions)
1082 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1083 &ctx->sample_pos_offset);
1084
1085 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.prim_mask);
1086 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_sample);
1087 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_center);
1088 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_centroid);
1089 add_arg(&args, ARG_VGPR, ctx->ac.v3i32, NULL); /* persp pull model */
1090 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_sample);
1091 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_center);
1092 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_centroid);
1093 add_arg(&args, ARG_VGPR, ctx->ac.f32, NULL); /* line stipple tex */
1094 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[0]);
1095 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[1]);
1096 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[2]);
1097 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[3]);
1098 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.front_face);
1099 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.ancillary);
1100 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.sample_coverage);
1101 add_arg(&args, ARG_VGPR, ctx->ac.i32, NULL); /* fixed pt */
1102 break;
1103 default:
1104 unreachable("Shader stage not implemented");
1105 }
1106
1107 ctx->main_function = create_llvm_function(
1108 ctx->context, ctx->ac.module, ctx->ac.builder, NULL, 0, &args,
1109 ctx->max_workgroup_size,
1110 ctx->options->unsafe_math);
1111 set_llvm_calling_convention(ctx->main_function, stage);
1112
1113
1114 ctx->shader_info->num_input_vgprs = 0;
1115 ctx->shader_info->num_input_sgprs = ctx->options->supports_spill ? 2 : 0;
1116
1117 ctx->shader_info->num_input_sgprs += args.num_sgprs_used;
1118
1119 if (ctx->stage != MESA_SHADER_FRAGMENT)
1120 ctx->shader_info->num_input_vgprs = args.num_vgprs_used;
1121
1122 assign_arguments(ctx->main_function, &args);
1123
1124 user_sgpr_idx = 0;
1125
1126 if (ctx->options->supports_spill || user_sgpr_info.need_ring_offsets) {
1127 set_loc_shader(ctx, AC_UD_SCRATCH_RING_OFFSETS,
1128 &user_sgpr_idx, 2);
1129 if (ctx->options->supports_spill) {
1130 ctx->ring_offsets = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.implicit.buffer.ptr",
1131 LLVMPointerType(ctx->ac.i8, AC_CONST_ADDR_SPACE),
1132 NULL, 0, AC_FUNC_ATTR_READNONE);
1133 ctx->ring_offsets = LLVMBuildBitCast(ctx->ac.builder, ctx->ring_offsets,
1134 ac_array_in_const_addr_space(ctx->ac.v4i32), "");
1135 }
1136 }
1137
1138 /* For merged shaders the user SGPRs start at 8, with 8 system SGPRs in front (including
1139 * the rw_buffers at s0/s1. With user SGPR0 = s8, lets restart the count from 0 */
1140 if (has_previous_stage)
1141 user_sgpr_idx = 0;
1142
1143 set_global_input_locs(ctx, stage, has_previous_stage, previous_stage,
1144 &user_sgpr_info, desc_sets, &user_sgpr_idx);
1145
1146 switch (stage) {
1147 case MESA_SHADER_COMPUTE:
1148 if (ctx->shader_info->info.cs.uses_grid_size) {
1149 set_loc_shader(ctx, AC_UD_CS_GRID_SIZE,
1150 &user_sgpr_idx, 3);
1151 }
1152 break;
1153 case MESA_SHADER_VERTEX:
1154 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1155 previous_stage, &user_sgpr_idx);
1156 if (ctx->abi.view_index)
1157 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1158 break;
1159 case MESA_SHADER_TESS_CTRL:
1160 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1161 previous_stage, &user_sgpr_idx);
1162 if (ctx->abi.view_index)
1163 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1164 break;
1165 case MESA_SHADER_TESS_EVAL:
1166 if (ctx->abi.view_index)
1167 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1168 break;
1169 case MESA_SHADER_GEOMETRY:
1170 if (has_previous_stage) {
1171 if (previous_stage == MESA_SHADER_VERTEX)
1172 set_vs_specific_input_locs(ctx, stage,
1173 has_previous_stage,
1174 previous_stage,
1175 &user_sgpr_idx);
1176 }
1177 if (ctx->abi.view_index)
1178 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1179 break;
1180 case MESA_SHADER_FRAGMENT:
1181 if (ctx->shader_info->info.ps.needs_sample_positions) {
1182 set_loc_shader(ctx, AC_UD_PS_SAMPLE_POS_OFFSET,
1183 &user_sgpr_idx, 1);
1184 }
1185 break;
1186 default:
1187 unreachable("Shader stage not implemented");
1188 }
1189
1190 if (stage == MESA_SHADER_TESS_CTRL ||
1191 (stage == MESA_SHADER_VERTEX && ctx->options->key.vs.as_ls) ||
1192 /* GFX9 has the ESGS ring buffer in LDS. */
1193 (stage == MESA_SHADER_GEOMETRY && has_previous_stage)) {
1194 ac_declare_lds_as_pointer(&ctx->ac);
1195 }
1196
1197 ctx->shader_info->num_user_sgprs = user_sgpr_idx;
1198 }
1199
1200
1201 static LLVMValueRef
1202 radv_load_resource(struct ac_shader_abi *abi, LLVMValueRef index,
1203 unsigned desc_set, unsigned binding)
1204 {
1205 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1206 LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
1207 struct radv_pipeline_layout *pipeline_layout = ctx->options->layout;
1208 struct radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
1209 unsigned base_offset = layout->binding[binding].offset;
1210 LLVMValueRef offset, stride;
1211
1212 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1213 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1214 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start +
1215 layout->binding[binding].dynamic_offset_offset;
1216 desc_ptr = ctx->abi.push_constants;
1217 base_offset = pipeline_layout->push_constant_size + 16 * idx;
1218 stride = LLVMConstInt(ctx->ac.i32, 16, false);
1219 } else
1220 stride = LLVMConstInt(ctx->ac.i32, layout->binding[binding].size, false);
1221
1222 offset = LLVMConstInt(ctx->ac.i32, base_offset, false);
1223 index = LLVMBuildMul(ctx->ac.builder, index, stride, "");
1224 offset = LLVMBuildAdd(ctx->ac.builder, offset, index, "");
1225
1226 desc_ptr = ac_build_gep0(&ctx->ac, desc_ptr, offset);
1227 desc_ptr = ac_cast_ptr(&ctx->ac, desc_ptr, ctx->ac.v4i32);
1228 LLVMSetMetadata(desc_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1229
1230 return desc_ptr;
1231 }
1232
1233
1234 /* The offchip buffer layout for TCS->TES is
1235 *
1236 * - attribute 0 of patch 0 vertex 0
1237 * - attribute 0 of patch 0 vertex 1
1238 * - attribute 0 of patch 0 vertex 2
1239 * ...
1240 * - attribute 0 of patch 1 vertex 0
1241 * - attribute 0 of patch 1 vertex 1
1242 * ...
1243 * - attribute 1 of patch 0 vertex 0
1244 * - attribute 1 of patch 0 vertex 1
1245 * ...
1246 * - per patch attribute 0 of patch 0
1247 * - per patch attribute 0 of patch 1
1248 * ...
1249 *
1250 * Note that every attribute has 4 components.
1251 */
1252 static LLVMValueRef get_non_vertex_index_offset(struct radv_shader_context *ctx)
1253 {
1254 uint32_t num_patches = ctx->tcs_num_patches;
1255 uint32_t num_tcs_outputs;
1256 if (ctx->stage == MESA_SHADER_TESS_CTRL)
1257 num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
1258 else
1259 num_tcs_outputs = ctx->options->key.tes.tcs_num_outputs;
1260
1261 uint32_t output_vertex_size = num_tcs_outputs * 16;
1262 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
1263
1264 return LLVMConstInt(ctx->ac.i32, pervertex_output_patch_size * num_patches, false);
1265 }
1266
1267 static LLVMValueRef calc_param_stride(struct radv_shader_context *ctx,
1268 LLVMValueRef vertex_index)
1269 {
1270 LLVMValueRef param_stride;
1271 if (vertex_index)
1272 param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_vertices_per_patch * ctx->tcs_num_patches, false);
1273 else
1274 param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_num_patches, false);
1275 return param_stride;
1276 }
1277
1278 static LLVMValueRef get_tcs_tes_buffer_address(struct radv_shader_context *ctx,
1279 LLVMValueRef vertex_index,
1280 LLVMValueRef param_index)
1281 {
1282 LLVMValueRef base_addr;
1283 LLVMValueRef param_stride, constant16;
1284 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
1285 LLVMValueRef vertices_per_patch = LLVMConstInt(ctx->ac.i32, ctx->tcs_vertices_per_patch, false);
1286 constant16 = LLVMConstInt(ctx->ac.i32, 16, false);
1287 param_stride = calc_param_stride(ctx, vertex_index);
1288 if (vertex_index) {
1289 base_addr = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
1290 vertices_per_patch, "");
1291
1292 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1293 vertex_index, "");
1294 } else {
1295 base_addr = rel_patch_id;
1296 }
1297
1298 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1299 LLVMBuildMul(ctx->ac.builder, param_index,
1300 param_stride, ""), "");
1301
1302 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
1303
1304 if (!vertex_index) {
1305 LLVMValueRef patch_data_offset = get_non_vertex_index_offset(ctx);
1306
1307 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1308 patch_data_offset, "");
1309 }
1310 return base_addr;
1311 }
1312
1313 static LLVMValueRef get_tcs_tes_buffer_address_params(struct radv_shader_context *ctx,
1314 unsigned param,
1315 unsigned const_index,
1316 bool is_compact,
1317 LLVMValueRef vertex_index,
1318 LLVMValueRef indir_index)
1319 {
1320 LLVMValueRef param_index;
1321
1322 if (indir_index)
1323 param_index = LLVMBuildAdd(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, param, false),
1324 indir_index, "");
1325 else {
1326 if (const_index && !is_compact)
1327 param += const_index;
1328 param_index = LLVMConstInt(ctx->ac.i32, param, false);
1329 }
1330 return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
1331 }
1332
1333 static LLVMValueRef
1334 get_dw_address(struct radv_shader_context *ctx,
1335 LLVMValueRef dw_addr,
1336 unsigned param,
1337 unsigned const_index,
1338 bool compact_const_index,
1339 LLVMValueRef vertex_index,
1340 LLVMValueRef stride,
1341 LLVMValueRef indir_index)
1342
1343 {
1344
1345 if (vertex_index) {
1346 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1347 LLVMBuildMul(ctx->ac.builder,
1348 vertex_index,
1349 stride, ""), "");
1350 }
1351
1352 if (indir_index)
1353 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1354 LLVMBuildMul(ctx->ac.builder, indir_index,
1355 LLVMConstInt(ctx->ac.i32, 4, false), ""), "");
1356 else if (const_index && !compact_const_index)
1357 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1358 LLVMConstInt(ctx->ac.i32, const_index * 4, false), "");
1359
1360 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1361 LLVMConstInt(ctx->ac.i32, param * 4, false), "");
1362
1363 if (const_index && compact_const_index)
1364 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1365 LLVMConstInt(ctx->ac.i32, const_index, false), "");
1366 return dw_addr;
1367 }
1368
1369 static LLVMValueRef
1370 load_tcs_varyings(struct ac_shader_abi *abi,
1371 LLVMTypeRef type,
1372 LLVMValueRef vertex_index,
1373 LLVMValueRef indir_index,
1374 unsigned const_index,
1375 unsigned location,
1376 unsigned driver_location,
1377 unsigned component,
1378 unsigned num_components,
1379 bool is_patch,
1380 bool is_compact,
1381 bool load_input)
1382 {
1383 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1384 LLVMValueRef dw_addr, stride;
1385 LLVMValueRef value[4], result;
1386 unsigned param = shader_io_get_unique_index(location);
1387
1388 if (load_input) {
1389 uint32_t input_vertex_size = (ctx->tcs_num_inputs * 16) / 4;
1390 stride = LLVMConstInt(ctx->ac.i32, input_vertex_size, false);
1391 dw_addr = get_tcs_in_current_patch_offset(ctx);
1392 } else {
1393 if (!is_patch) {
1394 stride = get_tcs_out_vertex_stride(ctx);
1395 dw_addr = get_tcs_out_current_patch_offset(ctx);
1396 } else {
1397 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1398 stride = NULL;
1399 }
1400 }
1401
1402 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
1403 indir_index);
1404
1405 for (unsigned i = 0; i < num_components + component; i++) {
1406 value[i] = ac_lds_load(&ctx->ac, dw_addr);
1407 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1408 ctx->ac.i32_1, "");
1409 }
1410 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1411 return result;
1412 }
1413
1414 static void
1415 store_tcs_output(struct ac_shader_abi *abi,
1416 const nir_variable *var,
1417 LLVMValueRef vertex_index,
1418 LLVMValueRef param_index,
1419 unsigned const_index,
1420 LLVMValueRef src,
1421 unsigned writemask)
1422 {
1423 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1424 const unsigned location = var->data.location;
1425 const unsigned component = var->data.location_frac;
1426 const bool is_patch = var->data.patch;
1427 const bool is_compact = var->data.compact;
1428 LLVMValueRef dw_addr;
1429 LLVMValueRef stride = NULL;
1430 LLVMValueRef buf_addr = NULL;
1431 unsigned param;
1432 bool store_lds = true;
1433
1434 if (is_patch) {
1435 if (!(ctx->tcs_patch_outputs_read & (1U << (location - VARYING_SLOT_PATCH0))))
1436 store_lds = false;
1437 } else {
1438 if (!(ctx->tcs_outputs_read & (1ULL << location)))
1439 store_lds = false;
1440 }
1441
1442 param = shader_io_get_unique_index(location);
1443 if (location == VARYING_SLOT_CLIP_DIST0 &&
1444 is_compact && const_index > 3) {
1445 const_index -= 3;
1446 param++;
1447 }
1448
1449 if (!is_patch) {
1450 stride = get_tcs_out_vertex_stride(ctx);
1451 dw_addr = get_tcs_out_current_patch_offset(ctx);
1452 } else {
1453 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1454 }
1455
1456 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
1457 param_index);
1458 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact,
1459 vertex_index, param_index);
1460
1461 bool is_tess_factor = false;
1462 if (location == VARYING_SLOT_TESS_LEVEL_INNER ||
1463 location == VARYING_SLOT_TESS_LEVEL_OUTER)
1464 is_tess_factor = true;
1465
1466 unsigned base = is_compact ? const_index : 0;
1467 for (unsigned chan = 0; chan < 8; chan++) {
1468 if (!(writemask & (1 << chan)))
1469 continue;
1470 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1471
1472 if (store_lds || is_tess_factor) {
1473 LLVMValueRef dw_addr_chan =
1474 LLVMBuildAdd(ctx->ac.builder, dw_addr,
1475 LLVMConstInt(ctx->ac.i32, chan, false), "");
1476 ac_lds_store(&ctx->ac, dw_addr_chan, value);
1477 }
1478
1479 if (!is_tess_factor && writemask != 0xF)
1480 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, value, 1,
1481 buf_addr, ctx->oc_lds,
1482 4 * (base + chan), 1, 0, true, false);
1483 }
1484
1485 if (writemask == 0xF) {
1486 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, src, 4,
1487 buf_addr, ctx->oc_lds,
1488 (base * 4), 1, 0, true, false);
1489 }
1490 }
1491
1492 static LLVMValueRef
1493 load_tes_input(struct ac_shader_abi *abi,
1494 LLVMTypeRef type,
1495 LLVMValueRef vertex_index,
1496 LLVMValueRef param_index,
1497 unsigned const_index,
1498 unsigned location,
1499 unsigned driver_location,
1500 unsigned component,
1501 unsigned num_components,
1502 bool is_patch,
1503 bool is_compact,
1504 bool load_input)
1505 {
1506 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1507 LLVMValueRef buf_addr;
1508 LLVMValueRef result;
1509 unsigned param = shader_io_get_unique_index(location);
1510
1511 if (location == VARYING_SLOT_CLIP_DIST0 && is_compact && const_index > 3) {
1512 const_index -= 3;
1513 param++;
1514 }
1515
1516 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index,
1517 is_compact, vertex_index, param_index);
1518
1519 LLVMValueRef comp_offset = LLVMConstInt(ctx->ac.i32, component * 4, false);
1520 buf_addr = LLVMBuildAdd(ctx->ac.builder, buf_addr, comp_offset, "");
1521
1522 result = ac_build_buffer_load(&ctx->ac, ctx->hs_ring_tess_offchip, num_components, NULL,
1523 buf_addr, ctx->oc_lds, is_compact ? (4 * const_index) : 0, 1, 0, true, false);
1524 result = ac_trim_vector(&ctx->ac, result, num_components);
1525 return result;
1526 }
1527
1528 static LLVMValueRef
1529 load_gs_input(struct ac_shader_abi *abi,
1530 unsigned location,
1531 unsigned driver_location,
1532 unsigned component,
1533 unsigned num_components,
1534 unsigned vertex_index,
1535 unsigned const_index,
1536 LLVMTypeRef type)
1537 {
1538 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1539 LLVMValueRef vtx_offset;
1540 unsigned param, vtx_offset_param;
1541 LLVMValueRef value[4], result;
1542
1543 vtx_offset_param = vertex_index;
1544 assert(vtx_offset_param < 6);
1545 vtx_offset = LLVMBuildMul(ctx->ac.builder, ctx->gs_vtx_offset[vtx_offset_param],
1546 LLVMConstInt(ctx->ac.i32, 4, false), "");
1547
1548 param = shader_io_get_unique_index(location);
1549
1550 for (unsigned i = component; i < num_components + component; i++) {
1551 if (ctx->ac.chip_class >= GFX9) {
1552 LLVMValueRef dw_addr = ctx->gs_vtx_offset[vtx_offset_param];
1553 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1554 LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index, 0), "");
1555 value[i] = ac_lds_load(&ctx->ac, dw_addr);
1556 } else {
1557 LLVMValueRef soffset =
1558 LLVMConstInt(ctx->ac.i32,
1559 (param * 4 + i + const_index) * 256,
1560 false);
1561
1562 value[i] = ac_build_buffer_load(&ctx->ac,
1563 ctx->esgs_ring, 1,
1564 ctx->ac.i32_0,
1565 vtx_offset, soffset,
1566 0, 1, 0, true, false);
1567
1568 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i],
1569 type, "");
1570 }
1571 }
1572 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1573 result = ac_to_integer(&ctx->ac, result);
1574 return result;
1575 }
1576
1577
1578 static void radv_emit_kill(struct ac_shader_abi *abi, LLVMValueRef visible)
1579 {
1580 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1581 ac_build_kill_if_false(&ctx->ac, visible);
1582 }
1583
1584 static LLVMValueRef lookup_interp_param(struct ac_shader_abi *abi,
1585 enum glsl_interp_mode interp, unsigned location)
1586 {
1587 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1588
1589 switch (interp) {
1590 case INTERP_MODE_FLAT:
1591 default:
1592 return NULL;
1593 case INTERP_MODE_SMOOTH:
1594 case INTERP_MODE_NONE:
1595 if (location == INTERP_CENTER)
1596 return ctx->persp_center;
1597 else if (location == INTERP_CENTROID)
1598 return ctx->persp_centroid;
1599 else if (location == INTERP_SAMPLE)
1600 return ctx->persp_sample;
1601 break;
1602 case INTERP_MODE_NOPERSPECTIVE:
1603 if (location == INTERP_CENTER)
1604 return ctx->linear_center;
1605 else if (location == INTERP_CENTROID)
1606 return ctx->linear_centroid;
1607 else if (location == INTERP_SAMPLE)
1608 return ctx->linear_sample;
1609 break;
1610 }
1611 return NULL;
1612 }
1613
1614 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi,
1615 LLVMValueRef sample_id)
1616 {
1617 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1618
1619 LLVMValueRef result;
1620 LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_PS_SAMPLE_POSITIONS, false));
1621
1622 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
1623 ac_array_in_const_addr_space(ctx->ac.v2f32), "");
1624
1625 sample_id = LLVMBuildAdd(ctx->ac.builder, sample_id, ctx->sample_pos_offset, "");
1626 result = ac_build_load_invariant(&ctx->ac, ptr, sample_id);
1627
1628 return result;
1629 }
1630
1631
1632 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
1633 {
1634 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1635 uint8_t log2_ps_iter_samples = ctx->shader_info->info.ps.force_persample ?
1636 ctx->options->key.fs.log2_num_samples :
1637 ctx->options->key.fs.log2_ps_iter_samples;
1638
1639 /* The bit pattern matches that used by fixed function fragment
1640 * processing. */
1641 static const uint16_t ps_iter_masks[] = {
1642 0xffff, /* not used */
1643 0x5555,
1644 0x1111,
1645 0x0101,
1646 0x0001,
1647 };
1648 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
1649
1650 uint32_t ps_iter_mask = ps_iter_masks[log2_ps_iter_samples];
1651
1652 LLVMValueRef result, sample_id;
1653 sample_id = ac_unpack_param(&ctx->ac, abi->ancillary, 8, 4);
1654 sample_id = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false), sample_id, "");
1655 result = LLVMBuildAnd(ctx->ac.builder, sample_id, abi->sample_coverage, "");
1656 return result;
1657 }
1658
1659
1660 static void
1661 visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
1662 {
1663 LLVMValueRef gs_next_vertex;
1664 LLVMValueRef can_emit;
1665 int idx;
1666 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1667
1668 assert(stream == 0);
1669
1670 /* Write vertex attribute values to GSVS ring */
1671 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
1672 ctx->gs_next_vertex,
1673 "");
1674
1675 /* If this thread has already emitted the declared maximum number of
1676 * vertices, kill it: excessive vertex emissions are not supposed to
1677 * have any effect, and GS threads have no externally observable
1678 * effects other than emitting vertices.
1679 */
1680 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
1681 LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
1682 ac_build_kill_if_false(&ctx->ac, can_emit);
1683
1684 /* loop num outputs */
1685 idx = 0;
1686 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
1687 LLVMValueRef *out_ptr = &addrs[i * 4];
1688 int length = 4;
1689 int slot = idx;
1690 int slot_inc = 1;
1691
1692 if (!(ctx->output_mask & (1ull << i)))
1693 continue;
1694
1695 if (i == VARYING_SLOT_CLIP_DIST0) {
1696 /* pack clip and cull into a single set of slots */
1697 length = ctx->num_output_clips + ctx->num_output_culls;
1698 if (length > 4)
1699 slot_inc = 2;
1700 }
1701 for (unsigned j = 0; j < length; j++) {
1702 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
1703 out_ptr[j], "");
1704 LLVMValueRef voffset = LLVMConstInt(ctx->ac.i32, (slot * 4 + j) * ctx->gs_max_out_vertices, false);
1705 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
1706 voffset = LLVMBuildMul(ctx->ac.builder, voffset, LLVMConstInt(ctx->ac.i32, 4, false), "");
1707
1708 out_val = LLVMBuildBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
1709
1710 ac_build_buffer_store_dword(&ctx->ac, ctx->gsvs_ring,
1711 out_val, 1,
1712 voffset, ctx->gs2vs_offset, 0,
1713 1, 1, true, true);
1714 }
1715 idx += slot_inc;
1716 }
1717
1718 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex,
1719 ctx->ac.i32_1, "");
1720 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex);
1721
1722 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (0 << 8), ctx->gs_wave_id);
1723 }
1724
1725 static void
1726 visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
1727 {
1728 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1729 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
1730 }
1731
1732 static LLVMValueRef
1733 load_tess_coord(struct ac_shader_abi *abi)
1734 {
1735 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1736
1737 LLVMValueRef coord[4] = {
1738 ctx->tes_u,
1739 ctx->tes_v,
1740 ctx->ac.f32_0,
1741 ctx->ac.f32_0,
1742 };
1743
1744 if (ctx->tes_primitive_mode == GL_TRIANGLES)
1745 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
1746 LLVMBuildFAdd(ctx->ac.builder, coord[0], coord[1], ""), "");
1747
1748 return ac_build_gather_values(&ctx->ac, coord, 3);
1749 }
1750
1751 static LLVMValueRef
1752 load_patch_vertices_in(struct ac_shader_abi *abi)
1753 {
1754 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1755 return LLVMConstInt(ctx->ac.i32, ctx->options->key.tcs.input_vertices, false);
1756 }
1757
1758
1759 static LLVMValueRef radv_load_base_vertex(struct ac_shader_abi *abi)
1760 {
1761 return abi->base_vertex;
1762 }
1763
1764 static LLVMValueRef radv_load_ssbo(struct ac_shader_abi *abi,
1765 LLVMValueRef buffer_ptr, bool write)
1766 {
1767 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1768 LLVMValueRef result;
1769
1770 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1771
1772 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1773 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1774
1775 return result;
1776 }
1777
1778 static LLVMValueRef radv_load_ubo(struct ac_shader_abi *abi, LLVMValueRef buffer_ptr)
1779 {
1780 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1781 LLVMValueRef result;
1782
1783 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1784
1785 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1786 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1787
1788 return result;
1789 }
1790
1791 static LLVMValueRef radv_get_sampler_desc(struct ac_shader_abi *abi,
1792 unsigned descriptor_set,
1793 unsigned base_index,
1794 unsigned constant_index,
1795 LLVMValueRef index,
1796 enum ac_descriptor_type desc_type,
1797 bool image, bool write,
1798 bool bindless)
1799 {
1800 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1801 LLVMValueRef list = ctx->descriptor_sets[descriptor_set];
1802 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
1803 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
1804 unsigned offset = binding->offset;
1805 unsigned stride = binding->size;
1806 unsigned type_size;
1807 LLVMBuilderRef builder = ctx->ac.builder;
1808 LLVMTypeRef type;
1809
1810 assert(base_index < layout->binding_count);
1811
1812 switch (desc_type) {
1813 case AC_DESC_IMAGE:
1814 type = ctx->ac.v8i32;
1815 type_size = 32;
1816 break;
1817 case AC_DESC_FMASK:
1818 type = ctx->ac.v8i32;
1819 offset += 32;
1820 type_size = 32;
1821 break;
1822 case AC_DESC_SAMPLER:
1823 type = ctx->ac.v4i32;
1824 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
1825 offset += 64;
1826
1827 type_size = 16;
1828 break;
1829 case AC_DESC_BUFFER:
1830 type = ctx->ac.v4i32;
1831 type_size = 16;
1832 break;
1833 default:
1834 unreachable("invalid desc_type\n");
1835 }
1836
1837 offset += constant_index * stride;
1838
1839 if (desc_type == AC_DESC_SAMPLER && binding->immutable_samplers_offset &&
1840 (!index || binding->immutable_samplers_equal)) {
1841 if (binding->immutable_samplers_equal)
1842 constant_index = 0;
1843
1844 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
1845
1846 LLVMValueRef constants[] = {
1847 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 0], 0),
1848 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 1], 0),
1849 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 2], 0),
1850 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 3], 0),
1851 };
1852 return ac_build_gather_values(&ctx->ac, constants, 4);
1853 }
1854
1855 assert(stride % type_size == 0);
1856
1857 if (!index)
1858 index = ctx->ac.i32_0;
1859
1860 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->ac.i32, stride / type_size, 0), "");
1861
1862 list = ac_build_gep0(&ctx->ac, list, LLVMConstInt(ctx->ac.i32, offset, 0));
1863 list = LLVMBuildPointerCast(builder, list, ac_array_in_const_addr_space(type), "");
1864
1865 return ac_build_load_to_sgpr(&ctx->ac, list, index);
1866 }
1867
1868 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
1869 * so we may need to fix it up. */
1870 static LLVMValueRef
1871 adjust_vertex_fetch_alpha(struct radv_shader_context *ctx,
1872 unsigned adjustment,
1873 LLVMValueRef alpha)
1874 {
1875 if (adjustment == RADV_ALPHA_ADJUST_NONE)
1876 return alpha;
1877
1878 LLVMValueRef c30 = LLVMConstInt(ctx->ac.i32, 30, 0);
1879
1880 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
1881 alpha = LLVMBuildFPToUI(ctx->ac.builder, alpha, ctx->ac.i32, "");
1882 else
1883 alpha = ac_to_integer(&ctx->ac, alpha);
1884
1885 /* For the integer-like cases, do a natural sign extension.
1886 *
1887 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
1888 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
1889 * exponent.
1890 */
1891 alpha = LLVMBuildShl(ctx->ac.builder, alpha,
1892 adjustment == RADV_ALPHA_ADJUST_SNORM ?
1893 LLVMConstInt(ctx->ac.i32, 7, 0) : c30, "");
1894 alpha = LLVMBuildAShr(ctx->ac.builder, alpha, c30, "");
1895
1896 /* Convert back to the right type. */
1897 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
1898 LLVMValueRef clamp;
1899 LLVMValueRef neg_one = LLVMConstReal(ctx->ac.f32, -1.0);
1900 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
1901 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, alpha, neg_one, "");
1902 alpha = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, alpha, "");
1903 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
1904 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
1905 }
1906
1907 return alpha;
1908 }
1909
1910 static void
1911 handle_vs_input_decl(struct radv_shader_context *ctx,
1912 struct nir_variable *variable)
1913 {
1914 LLVMValueRef t_list_ptr = ctx->vertex_buffers;
1915 LLVMValueRef t_offset;
1916 LLVMValueRef t_list;
1917 LLVMValueRef input;
1918 LLVMValueRef buffer_index;
1919 unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
1920 uint8_t input_usage_mask =
1921 ctx->shader_info->info.vs.input_usage_mask[variable->data.location];
1922 unsigned num_channels = util_last_bit(input_usage_mask);
1923
1924 variable->data.driver_location = variable->data.location * 4;
1925
1926 for (unsigned i = 0; i < attrib_count; ++i) {
1927 LLVMValueRef output[4];
1928 unsigned attrib_index = variable->data.location + i - VERT_ATTRIB_GENERIC0;
1929
1930 if (ctx->options->key.vs.instance_rate_inputs & (1u << attrib_index)) {
1931 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[attrib_index];
1932
1933 if (divisor) {
1934 buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.instance_id,
1935 ctx->abi.start_instance, "");
1936
1937 if (divisor != 1) {
1938 buffer_index = LLVMBuildUDiv(ctx->ac.builder, buffer_index,
1939 LLVMConstInt(ctx->ac.i32, divisor, 0), "");
1940 }
1941
1942 if (ctx->options->key.vs.as_ls) {
1943 ctx->shader_info->vs.vgpr_comp_cnt =
1944 MAX2(2, ctx->shader_info->vs.vgpr_comp_cnt);
1945 } else {
1946 ctx->shader_info->vs.vgpr_comp_cnt =
1947 MAX2(1, ctx->shader_info->vs.vgpr_comp_cnt);
1948 }
1949 } else {
1950 buffer_index = ctx->ac.i32_0;
1951 }
1952 } else
1953 buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.vertex_id,
1954 ctx->abi.base_vertex, "");
1955 t_offset = LLVMConstInt(ctx->ac.i32, attrib_index, false);
1956
1957 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
1958
1959 input = ac_build_buffer_load_format(&ctx->ac, t_list,
1960 buffer_index,
1961 ctx->ac.i32_0,
1962 num_channels, false, true);
1963
1964 input = ac_build_expand_to_vec4(&ctx->ac, input, num_channels);
1965
1966 for (unsigned chan = 0; chan < 4; chan++) {
1967 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
1968 output[chan] = LLVMBuildExtractElement(ctx->ac.builder, input, llvm_chan, "");
1969 }
1970
1971 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (attrib_index * 2)) & 3;
1972 output[3] = adjust_vertex_fetch_alpha(ctx, alpha_adjust, output[3]);
1973
1974 for (unsigned chan = 0; chan < 4; chan++) {
1975 ctx->inputs[ac_llvm_reg_index_soa(variable->data.location + i, chan)] =
1976 ac_to_integer(&ctx->ac, output[chan]);
1977 }
1978 }
1979 }
1980
1981 static void interp_fs_input(struct radv_shader_context *ctx,
1982 unsigned attr,
1983 LLVMValueRef interp_param,
1984 LLVMValueRef prim_mask,
1985 LLVMValueRef result[4])
1986 {
1987 LLVMValueRef attr_number;
1988 unsigned chan;
1989 LLVMValueRef i, j;
1990 bool interp = interp_param != NULL;
1991
1992 attr_number = LLVMConstInt(ctx->ac.i32, attr, false);
1993
1994 /* fs.constant returns the param from the middle vertex, so it's not
1995 * really useful for flat shading. It's meant to be used for custom
1996 * interpolation (but the intrinsic can't fetch from the other two
1997 * vertices).
1998 *
1999 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
2000 * to do the right thing. The only reason we use fs.constant is that
2001 * fs.interp cannot be used on integers, because they can be equal
2002 * to NaN.
2003 */
2004 if (interp) {
2005 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
2006 ctx->ac.v2f32, "");
2007
2008 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
2009 ctx->ac.i32_0, "");
2010 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
2011 ctx->ac.i32_1, "");
2012 }
2013
2014 for (chan = 0; chan < 4; chan++) {
2015 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
2016
2017 if (interp) {
2018 result[chan] = ac_build_fs_interp(&ctx->ac,
2019 llvm_chan,
2020 attr_number,
2021 prim_mask, i, j);
2022 } else {
2023 result[chan] = ac_build_fs_interp_mov(&ctx->ac,
2024 LLVMConstInt(ctx->ac.i32, 2, false),
2025 llvm_chan,
2026 attr_number,
2027 prim_mask);
2028 }
2029 }
2030 }
2031
2032 static void
2033 handle_fs_input_decl(struct radv_shader_context *ctx,
2034 struct nir_variable *variable)
2035 {
2036 int idx = variable->data.location;
2037 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
2038 LLVMValueRef interp;
2039
2040 variable->data.driver_location = idx * 4;
2041 ctx->input_mask |= ((1ull << attrib_count) - 1) << variable->data.location;
2042
2043 if (glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_FLOAT) {
2044 unsigned interp_type;
2045 if (variable->data.sample)
2046 interp_type = INTERP_SAMPLE;
2047 else if (variable->data.centroid)
2048 interp_type = INTERP_CENTROID;
2049 else
2050 interp_type = INTERP_CENTER;
2051
2052 interp = lookup_interp_param(&ctx->abi, variable->data.interpolation, interp_type);
2053 } else
2054 interp = NULL;
2055
2056 for (unsigned i = 0; i < attrib_count; ++i)
2057 ctx->inputs[ac_llvm_reg_index_soa(idx + i, 0)] = interp;
2058
2059 }
2060
2061 static void
2062 handle_vs_inputs(struct radv_shader_context *ctx,
2063 struct nir_shader *nir) {
2064 nir_foreach_variable(variable, &nir->inputs)
2065 handle_vs_input_decl(ctx, variable);
2066 }
2067
2068 static void
2069 prepare_interp_optimize(struct radv_shader_context *ctx,
2070 struct nir_shader *nir)
2071 {
2072 if (!ctx->options->key.fs.multisample)
2073 return;
2074
2075 bool uses_center = false;
2076 bool uses_centroid = false;
2077 nir_foreach_variable(variable, &nir->inputs) {
2078 if (glsl_get_base_type(glsl_without_array(variable->type)) != GLSL_TYPE_FLOAT ||
2079 variable->data.sample)
2080 continue;
2081
2082 if (variable->data.centroid)
2083 uses_centroid = true;
2084 else
2085 uses_center = true;
2086 }
2087
2088 if (uses_center && uses_centroid) {
2089 LLVMValueRef sel = LLVMBuildICmp(ctx->ac.builder, LLVMIntSLT, ctx->abi.prim_mask, ctx->ac.i32_0, "");
2090 ctx->persp_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->persp_center, ctx->persp_centroid, "");
2091 ctx->linear_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->linear_center, ctx->linear_centroid, "");
2092 }
2093 }
2094
2095 static void
2096 handle_fs_inputs(struct radv_shader_context *ctx,
2097 struct nir_shader *nir)
2098 {
2099 prepare_interp_optimize(ctx, nir);
2100
2101 nir_foreach_variable(variable, &nir->inputs)
2102 handle_fs_input_decl(ctx, variable);
2103
2104 unsigned index = 0;
2105
2106 if (ctx->shader_info->info.ps.uses_input_attachments ||
2107 ctx->shader_info->info.needs_multiview_view_index)
2108 ctx->input_mask |= 1ull << VARYING_SLOT_LAYER;
2109
2110 for (unsigned i = 0; i < RADEON_LLVM_MAX_INPUTS; ++i) {
2111 LLVMValueRef interp_param;
2112 LLVMValueRef *inputs = ctx->inputs +ac_llvm_reg_index_soa(i, 0);
2113
2114 if (!(ctx->input_mask & (1ull << i)))
2115 continue;
2116
2117 if (i >= VARYING_SLOT_VAR0 || i == VARYING_SLOT_PNTC ||
2118 i == VARYING_SLOT_PRIMITIVE_ID || i == VARYING_SLOT_LAYER) {
2119 interp_param = *inputs;
2120 interp_fs_input(ctx, index, interp_param, ctx->abi.prim_mask,
2121 inputs);
2122
2123 if (!interp_param)
2124 ctx->shader_info->fs.flat_shaded_mask |= 1u << index;
2125 ++index;
2126 } else if (i == VARYING_SLOT_POS) {
2127 for(int i = 0; i < 3; ++i)
2128 inputs[i] = ctx->abi.frag_pos[i];
2129
2130 inputs[3] = ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
2131 ctx->abi.frag_pos[3]);
2132 }
2133 }
2134 ctx->shader_info->fs.num_interp = index;
2135 ctx->shader_info->fs.input_mask = ctx->input_mask >> VARYING_SLOT_VAR0;
2136
2137 if (ctx->shader_info->info.needs_multiview_view_index)
2138 ctx->abi.view_index = ctx->inputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
2139 }
2140
2141 static void
2142 scan_shader_output_decl(struct radv_shader_context *ctx,
2143 struct nir_variable *variable,
2144 struct nir_shader *shader,
2145 gl_shader_stage stage)
2146 {
2147 int idx = variable->data.location + variable->data.index;
2148 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
2149 uint64_t mask_attribs;
2150
2151 variable->data.driver_location = idx * 4;
2152
2153 /* tess ctrl has it's own load/store paths for outputs */
2154 if (stage == MESA_SHADER_TESS_CTRL)
2155 return;
2156
2157 mask_attribs = ((1ull << attrib_count) - 1) << idx;
2158 if (stage == MESA_SHADER_VERTEX ||
2159 stage == MESA_SHADER_TESS_EVAL ||
2160 stage == MESA_SHADER_GEOMETRY) {
2161 if (idx == VARYING_SLOT_CLIP_DIST0) {
2162 int length = shader->info.clip_distance_array_size +
2163 shader->info.cull_distance_array_size;
2164 if (stage == MESA_SHADER_VERTEX) {
2165 ctx->shader_info->vs.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
2166 ctx->shader_info->vs.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
2167 }
2168 if (stage == MESA_SHADER_TESS_EVAL) {
2169 ctx->shader_info->tes.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
2170 ctx->shader_info->tes.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
2171 }
2172
2173 if (length > 4)
2174 attrib_count = 2;
2175 else
2176 attrib_count = 1;
2177 mask_attribs = 1ull << idx;
2178 }
2179 }
2180
2181 ctx->output_mask |= mask_attribs;
2182 }
2183
2184
2185 /* Initialize arguments for the shader export intrinsic */
2186 static void
2187 si_llvm_init_export_args(struct radv_shader_context *ctx,
2188 LLVMValueRef *values,
2189 unsigned enabled_channels,
2190 unsigned target,
2191 struct ac_export_args *args)
2192 {
2193 /* Specify the channels that are enabled. */
2194 args->enabled_channels = enabled_channels;
2195
2196 /* Specify whether the EXEC mask represents the valid mask */
2197 args->valid_mask = 0;
2198
2199 /* Specify whether this is the last export */
2200 args->done = 0;
2201
2202 /* Specify the target we are exporting */
2203 args->target = target;
2204
2205 args->compr = false;
2206 args->out[0] = LLVMGetUndef(ctx->ac.f32);
2207 args->out[1] = LLVMGetUndef(ctx->ac.f32);
2208 args->out[2] = LLVMGetUndef(ctx->ac.f32);
2209 args->out[3] = LLVMGetUndef(ctx->ac.f32);
2210
2211 if (ctx->stage == MESA_SHADER_FRAGMENT && target >= V_008DFC_SQ_EXP_MRT) {
2212 unsigned index = target - V_008DFC_SQ_EXP_MRT;
2213 unsigned col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
2214 bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
2215 bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
2216 unsigned chan;
2217
2218 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2219 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2220 unsigned bits, bool hi) = NULL;
2221
2222 switch(col_format) {
2223 case V_028714_SPI_SHADER_ZERO:
2224 args->enabled_channels = 0; /* writemask */
2225 args->target = V_008DFC_SQ_EXP_NULL;
2226 break;
2227
2228 case V_028714_SPI_SHADER_32_R:
2229 args->enabled_channels = 1;
2230 args->out[0] = values[0];
2231 break;
2232
2233 case V_028714_SPI_SHADER_32_GR:
2234 args->enabled_channels = 0x3;
2235 args->out[0] = values[0];
2236 args->out[1] = values[1];
2237 break;
2238
2239 case V_028714_SPI_SHADER_32_AR:
2240 args->enabled_channels = 0x9;
2241 args->out[0] = values[0];
2242 args->out[3] = values[3];
2243 break;
2244
2245 case V_028714_SPI_SHADER_FP16_ABGR:
2246 args->enabled_channels = 0x5;
2247 packf = ac_build_cvt_pkrtz_f16;
2248 break;
2249
2250 case V_028714_SPI_SHADER_UNORM16_ABGR:
2251 args->enabled_channels = 0x5;
2252 packf = ac_build_cvt_pknorm_u16;
2253 break;
2254
2255 case V_028714_SPI_SHADER_SNORM16_ABGR:
2256 args->enabled_channels = 0x5;
2257 packf = ac_build_cvt_pknorm_i16;
2258 break;
2259
2260 case V_028714_SPI_SHADER_UINT16_ABGR:
2261 args->enabled_channels = 0x5;
2262 packi = ac_build_cvt_pk_u16;
2263 break;
2264
2265 case V_028714_SPI_SHADER_SINT16_ABGR:
2266 args->enabled_channels = 0x5;
2267 packi = ac_build_cvt_pk_i16;
2268 break;
2269
2270 default:
2271 case V_028714_SPI_SHADER_32_ABGR:
2272 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2273 break;
2274 }
2275
2276 /* Pack f16 or norm_i16/u16. */
2277 if (packf) {
2278 for (chan = 0; chan < 2; chan++) {
2279 LLVMValueRef pack_args[2] = {
2280 values[2 * chan],
2281 values[2 * chan + 1]
2282 };
2283 LLVMValueRef packed;
2284
2285 packed = packf(&ctx->ac, pack_args);
2286 args->out[chan] = ac_to_float(&ctx->ac, packed);
2287 }
2288 args->compr = 1; /* COMPR flag */
2289 }
2290
2291 /* Pack i16/u16. */
2292 if (packi) {
2293 for (chan = 0; chan < 2; chan++) {
2294 LLVMValueRef pack_args[2] = {
2295 ac_to_integer(&ctx->ac, values[2 * chan]),
2296 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2297 };
2298 LLVMValueRef packed;
2299
2300 packed = packi(&ctx->ac, pack_args,
2301 is_int8 ? 8 : is_int10 ? 10 : 16,
2302 chan == 1);
2303 args->out[chan] = ac_to_float(&ctx->ac, packed);
2304 }
2305 args->compr = 1; /* COMPR flag */
2306 }
2307 return;
2308 }
2309
2310 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2311
2312 for (unsigned i = 0; i < 4; ++i) {
2313 if (!(args->enabled_channels & (1 << i)))
2314 continue;
2315
2316 args->out[i] = ac_to_float(&ctx->ac, args->out[i]);
2317 }
2318 }
2319
2320 static void
2321 radv_export_param(struct radv_shader_context *ctx, unsigned index,
2322 LLVMValueRef *values, unsigned enabled_channels)
2323 {
2324 struct ac_export_args args;
2325
2326 si_llvm_init_export_args(ctx, values, enabled_channels,
2327 V_008DFC_SQ_EXP_PARAM + index, &args);
2328 ac_build_export(&ctx->ac, &args);
2329 }
2330
2331 static LLVMValueRef
2332 radv_load_output(struct radv_shader_context *ctx, unsigned index, unsigned chan)
2333 {
2334 LLVMValueRef output =
2335 ctx->abi.outputs[ac_llvm_reg_index_soa(index, chan)];
2336
2337 return LLVMBuildLoad(ctx->ac.builder, output, "");
2338 }
2339
2340 static void
2341 handle_vs_outputs_post(struct radv_shader_context *ctx,
2342 bool export_prim_id, bool export_layer_id,
2343 struct radv_vs_output_info *outinfo)
2344 {
2345 uint32_t param_count = 0;
2346 unsigned target;
2347 unsigned pos_idx, num_pos_exports = 0;
2348 struct ac_export_args args, pos_args[4] = {};
2349 LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2350 int i;
2351
2352 if (ctx->options->key.has_multiview_view_index) {
2353 LLVMValueRef* tmp_out = &ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
2354 if(!*tmp_out) {
2355 for(unsigned i = 0; i < 4; ++i)
2356 ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, i)] =
2357 ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
2358 }
2359
2360 LLVMBuildStore(ctx->ac.builder, ac_to_float(&ctx->ac, ctx->abi.view_index), *tmp_out);
2361 ctx->output_mask |= 1ull << VARYING_SLOT_LAYER;
2362 }
2363
2364 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
2365 sizeof(outinfo->vs_output_param_offset));
2366
2367 if (ctx->output_mask & (1ull << VARYING_SLOT_CLIP_DIST0)) {
2368 LLVMValueRef slots[8];
2369 unsigned j;
2370
2371 if (outinfo->cull_dist_mask)
2372 outinfo->cull_dist_mask <<= ctx->num_output_clips;
2373
2374 i = VARYING_SLOT_CLIP_DIST0;
2375 for (j = 0; j < ctx->num_output_clips + ctx->num_output_culls; j++)
2376 slots[j] = ac_to_float(&ctx->ac, radv_load_output(ctx, i, j));
2377
2378 for (i = ctx->num_output_clips + ctx->num_output_culls; i < 8; i++)
2379 slots[i] = LLVMGetUndef(ctx->ac.f32);
2380
2381 if (ctx->num_output_clips + ctx->num_output_culls > 4) {
2382 target = V_008DFC_SQ_EXP_POS + 3;
2383 si_llvm_init_export_args(ctx, &slots[4], 0xf, target, &args);
2384 memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
2385 &args, sizeof(args));
2386 }
2387
2388 target = V_008DFC_SQ_EXP_POS + 2;
2389 si_llvm_init_export_args(ctx, &slots[0], 0xf, target, &args);
2390 memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
2391 &args, sizeof(args));
2392
2393 }
2394
2395 LLVMValueRef pos_values[4] = {ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_1};
2396 if (ctx->output_mask & (1ull << VARYING_SLOT_POS)) {
2397 for (unsigned j = 0; j < 4; j++)
2398 pos_values[j] = radv_load_output(ctx, VARYING_SLOT_POS, j);
2399 }
2400 si_llvm_init_export_args(ctx, pos_values, 0xf, V_008DFC_SQ_EXP_POS, &pos_args[0]);
2401
2402 if (ctx->output_mask & (1ull << VARYING_SLOT_PSIZ)) {
2403 outinfo->writes_pointsize = true;
2404 psize_value = radv_load_output(ctx, VARYING_SLOT_PSIZ, 0);
2405 }
2406
2407 if (ctx->output_mask & (1ull << VARYING_SLOT_LAYER)) {
2408 outinfo->writes_layer = true;
2409 layer_value = radv_load_output(ctx, VARYING_SLOT_LAYER, 0);
2410 }
2411
2412 if (ctx->output_mask & (1ull << VARYING_SLOT_VIEWPORT)) {
2413 outinfo->writes_viewport_index = true;
2414 viewport_index_value = radv_load_output(ctx, VARYING_SLOT_VIEWPORT, 0);
2415 }
2416
2417 if (outinfo->writes_pointsize ||
2418 outinfo->writes_layer ||
2419 outinfo->writes_viewport_index) {
2420 pos_args[1].enabled_channels = ((outinfo->writes_pointsize == true ? 1 : 0) |
2421 (outinfo->writes_layer == true ? 4 : 0));
2422 pos_args[1].valid_mask = 0;
2423 pos_args[1].done = 0;
2424 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2425 pos_args[1].compr = 0;
2426 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2427 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2428 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2429 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2430
2431 if (outinfo->writes_pointsize == true)
2432 pos_args[1].out[0] = psize_value;
2433 if (outinfo->writes_layer == true)
2434 pos_args[1].out[2] = layer_value;
2435 if (outinfo->writes_viewport_index == true) {
2436 if (ctx->options->chip_class >= GFX9) {
2437 /* GFX9 has the layer in out.z[10:0] and the viewport
2438 * index in out.z[19:16].
2439 */
2440 LLVMValueRef v = viewport_index_value;
2441 v = ac_to_integer(&ctx->ac, v);
2442 v = LLVMBuildShl(ctx->ac.builder, v,
2443 LLVMConstInt(ctx->ac.i32, 16, false),
2444 "");
2445 v = LLVMBuildOr(ctx->ac.builder, v,
2446 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
2447
2448 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
2449 pos_args[1].enabled_channels |= 1 << 2;
2450 } else {
2451 pos_args[1].out[3] = viewport_index_value;
2452 pos_args[1].enabled_channels |= 1 << 3;
2453 }
2454 }
2455 }
2456 for (i = 0; i < 4; i++) {
2457 if (pos_args[i].out[0])
2458 num_pos_exports++;
2459 }
2460
2461 pos_idx = 0;
2462 for (i = 0; i < 4; i++) {
2463 if (!pos_args[i].out[0])
2464 continue;
2465
2466 /* Specify the target we are exporting */
2467 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
2468 if (pos_idx == num_pos_exports)
2469 pos_args[i].done = 1;
2470 ac_build_export(&ctx->ac, &pos_args[i]);
2471 }
2472
2473 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2474 LLVMValueRef values[4];
2475 if (!(ctx->output_mask & (1ull << i)))
2476 continue;
2477
2478 if (i != VARYING_SLOT_LAYER &&
2479 i != VARYING_SLOT_PRIMITIVE_ID &&
2480 i < VARYING_SLOT_VAR0)
2481 continue;
2482
2483 for (unsigned j = 0; j < 4; j++)
2484 values[j] = ac_to_float(&ctx->ac, radv_load_output(ctx, i, j));
2485
2486 unsigned output_usage_mask;
2487
2488 if (ctx->stage == MESA_SHADER_VERTEX &&
2489 !ctx->is_gs_copy_shader) {
2490 output_usage_mask =
2491 ctx->shader_info->info.vs.output_usage_mask[i];
2492 } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
2493 output_usage_mask =
2494 ctx->shader_info->info.tes.output_usage_mask[i];
2495 } else {
2496 /* Enable all channels for the GS copy shader because
2497 * we don't know the output usage mask currently.
2498 */
2499 output_usage_mask = 0xf;
2500 }
2501
2502 radv_export_param(ctx, param_count, values, output_usage_mask);
2503
2504 outinfo->vs_output_param_offset[i] = param_count++;
2505 }
2506
2507 if (export_prim_id) {
2508 LLVMValueRef values[4];
2509
2510 values[0] = ctx->vs_prim_id;
2511 ctx->shader_info->vs.vgpr_comp_cnt = MAX2(2,
2512 ctx->shader_info->vs.vgpr_comp_cnt);
2513 for (unsigned j = 1; j < 4; j++)
2514 values[j] = ctx->ac.f32_0;
2515
2516 radv_export_param(ctx, param_count, values, 0x1);
2517
2518 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count++;
2519 outinfo->export_prim_id = true;
2520 }
2521
2522 if (export_layer_id && layer_value) {
2523 LLVMValueRef values[4];
2524
2525 values[0] = layer_value;
2526 for (unsigned j = 1; j < 4; j++)
2527 values[j] = ctx->ac.f32_0;
2528
2529 radv_export_param(ctx, param_count, values, 0x1);
2530
2531 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = param_count++;
2532 }
2533
2534 outinfo->pos_exports = num_pos_exports;
2535 outinfo->param_exports = param_count;
2536 }
2537
2538 static void
2539 handle_es_outputs_post(struct radv_shader_context *ctx,
2540 struct radv_es_output_info *outinfo)
2541 {
2542 int j;
2543 uint64_t max_output_written = 0;
2544 LLVMValueRef lds_base = NULL;
2545
2546 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2547 int param_index;
2548 int length = 4;
2549
2550 if (!(ctx->output_mask & (1ull << i)))
2551 continue;
2552
2553 if (i == VARYING_SLOT_CLIP_DIST0)
2554 length = ctx->num_output_clips + ctx->num_output_culls;
2555
2556 param_index = shader_io_get_unique_index(i);
2557
2558 max_output_written = MAX2(param_index + (length > 4), max_output_written);
2559 }
2560
2561 outinfo->esgs_itemsize = (max_output_written + 1) * 16;
2562
2563 if (ctx->ac.chip_class >= GFX9) {
2564 unsigned itemsize_dw = outinfo->esgs_itemsize / 4;
2565 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
2566 LLVMValueRef wave_idx = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
2567 LLVMConstInt(ctx->ac.i32, 24, false),
2568 LLVMConstInt(ctx->ac.i32, 4, false), false);
2569 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
2570 LLVMBuildMul(ctx->ac.builder, wave_idx,
2571 LLVMConstInt(ctx->ac.i32, 64, false), ""), "");
2572 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
2573 LLVMConstInt(ctx->ac.i32, itemsize_dw, 0), "");
2574 }
2575
2576 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2577 LLVMValueRef dw_addr = NULL;
2578 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
2579 int param_index;
2580 int length = 4;
2581
2582 if (!(ctx->output_mask & (1ull << i)))
2583 continue;
2584
2585 if (i == VARYING_SLOT_CLIP_DIST0)
2586 length = ctx->num_output_clips + ctx->num_output_culls;
2587
2588 param_index = shader_io_get_unique_index(i);
2589
2590 if (lds_base) {
2591 dw_addr = LLVMBuildAdd(ctx->ac.builder, lds_base,
2592 LLVMConstInt(ctx->ac.i32, param_index * 4, false),
2593 "");
2594 }
2595 for (j = 0; j < length; j++) {
2596 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
2597 out_val = LLVMBuildBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
2598
2599 if (ctx->ac.chip_class >= GFX9) {
2600 ac_lds_store(&ctx->ac, dw_addr,
2601 LLVMBuildLoad(ctx->ac.builder, out_ptr[j], ""));
2602 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr, ctx->ac.i32_1, "");
2603 } else {
2604 ac_build_buffer_store_dword(&ctx->ac,
2605 ctx->esgs_ring,
2606 out_val, 1,
2607 NULL, ctx->es2gs_offset,
2608 (4 * param_index + j) * 4,
2609 1, 1, true, true);
2610 }
2611 }
2612 }
2613 }
2614
2615 static void
2616 handle_ls_outputs_post(struct radv_shader_context *ctx)
2617 {
2618 LLVMValueRef vertex_id = ctx->rel_auto_id;
2619 uint32_t num_tcs_inputs = util_last_bit64(ctx->shader_info->info.vs.ls_outputs_written);
2620 LLVMValueRef vertex_dw_stride = LLVMConstInt(ctx->ac.i32, num_tcs_inputs * 4, false);
2621 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
2622 vertex_dw_stride, "");
2623
2624 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2625 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
2626 int length = 4;
2627
2628 if (!(ctx->output_mask & (1ull << i)))
2629 continue;
2630
2631 if (i == VARYING_SLOT_CLIP_DIST0)
2632 length = ctx->num_output_clips + ctx->num_output_culls;
2633 int param = shader_io_get_unique_index(i);
2634 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
2635 LLVMConstInt(ctx->ac.i32, param * 4, false),
2636 "");
2637 for (unsigned j = 0; j < length; j++) {
2638 ac_lds_store(&ctx->ac, dw_addr,
2639 LLVMBuildLoad(ctx->ac.builder, out_ptr[j], ""));
2640 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr, ctx->ac.i32_1, "");
2641 }
2642 }
2643 }
2644
2645 static void
2646 write_tess_factors(struct radv_shader_context *ctx)
2647 {
2648 unsigned stride, outer_comps, inner_comps;
2649 struct ac_build_if_state if_ctx, inner_if_ctx;
2650 LLVMValueRef invocation_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 8, 5);
2651 LLVMValueRef rel_patch_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
2652 unsigned tess_inner_index = 0, tess_outer_index;
2653 LLVMValueRef lds_base, lds_inner = NULL, lds_outer, byteoffset, buffer;
2654 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
2655 int i;
2656 ac_emit_barrier(&ctx->ac, ctx->stage);
2657
2658 switch (ctx->options->key.tcs.primitive_mode) {
2659 case GL_ISOLINES:
2660 stride = 2;
2661 outer_comps = 2;
2662 inner_comps = 0;
2663 break;
2664 case GL_TRIANGLES:
2665 stride = 4;
2666 outer_comps = 3;
2667 inner_comps = 1;
2668 break;
2669 case GL_QUADS:
2670 stride = 6;
2671 outer_comps = 4;
2672 inner_comps = 2;
2673 break;
2674 default:
2675 return;
2676 }
2677
2678 ac_nir_build_if(&if_ctx, ctx,
2679 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
2680 invocation_id, ctx->ac.i32_0, ""));
2681
2682 lds_base = get_tcs_out_current_patch_data_offset(ctx);
2683
2684 if (inner_comps) {
2685 tess_inner_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
2686 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
2687 LLVMConstInt(ctx->ac.i32, tess_inner_index * 4, false), "");
2688 }
2689
2690 tess_outer_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
2691 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
2692 LLVMConstInt(ctx->ac.i32, tess_outer_index * 4, false), "");
2693
2694 for (i = 0; i < 4; i++) {
2695 inner[i] = LLVMGetUndef(ctx->ac.i32);
2696 outer[i] = LLVMGetUndef(ctx->ac.i32);
2697 }
2698
2699 // LINES reversal
2700 if (ctx->options->key.tcs.primitive_mode == GL_ISOLINES) {
2701 outer[0] = out[1] = ac_lds_load(&ctx->ac, lds_outer);
2702 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
2703 ctx->ac.i32_1, "");
2704 outer[1] = out[0] = ac_lds_load(&ctx->ac, lds_outer);
2705 } else {
2706 for (i = 0; i < outer_comps; i++) {
2707 outer[i] = out[i] =
2708 ac_lds_load(&ctx->ac, lds_outer);
2709 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
2710 ctx->ac.i32_1, "");
2711 }
2712 for (i = 0; i < inner_comps; i++) {
2713 inner[i] = out[outer_comps+i] =
2714 ac_lds_load(&ctx->ac, lds_inner);
2715 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_inner,
2716 ctx->ac.i32_1, "");
2717 }
2718 }
2719
2720 /* Convert the outputs to vectors for stores. */
2721 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
2722 vec1 = NULL;
2723
2724 if (stride > 4)
2725 vec1 = ac_build_gather_values(&ctx->ac, out + 4, stride - 4);
2726
2727
2728 buffer = ctx->hs_ring_tess_factor;
2729 tf_base = ctx->tess_factor_offset;
2730 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
2731 LLVMConstInt(ctx->ac.i32, 4 * stride, false), "");
2732 unsigned tf_offset = 0;
2733
2734 if (ctx->options->chip_class <= VI) {
2735 ac_nir_build_if(&inner_if_ctx, ctx,
2736 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
2737 rel_patch_id, ctx->ac.i32_0, ""));
2738
2739 /* Store the dynamic HS control word. */
2740 ac_build_buffer_store_dword(&ctx->ac, buffer,
2741 LLVMConstInt(ctx->ac.i32, 0x80000000, false),
2742 1, ctx->ac.i32_0, tf_base,
2743 0, 1, 0, true, false);
2744 tf_offset += 4;
2745
2746 ac_nir_build_endif(&inner_if_ctx);
2747 }
2748
2749 /* Store the tessellation factors. */
2750 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
2751 MIN2(stride, 4), byteoffset, tf_base,
2752 tf_offset, 1, 0, true, false);
2753 if (vec1)
2754 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
2755 stride - 4, byteoffset, tf_base,
2756 16 + tf_offset, 1, 0, true, false);
2757
2758 //store to offchip for TES to read - only if TES reads them
2759 if (ctx->options->key.tcs.tes_reads_tess_factors) {
2760 LLVMValueRef inner_vec, outer_vec, tf_outer_offset;
2761 LLVMValueRef tf_inner_offset;
2762 unsigned param_outer, param_inner;
2763
2764 param_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
2765 tf_outer_offset = get_tcs_tes_buffer_address(ctx, NULL,
2766 LLVMConstInt(ctx->ac.i32, param_outer, 0));
2767
2768 outer_vec = ac_build_gather_values(&ctx->ac, outer,
2769 util_next_power_of_two(outer_comps));
2770
2771 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, outer_vec,
2772 outer_comps, tf_outer_offset,
2773 ctx->oc_lds, 0, 1, 0, true, false);
2774 if (inner_comps) {
2775 param_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
2776 tf_inner_offset = get_tcs_tes_buffer_address(ctx, NULL,
2777 LLVMConstInt(ctx->ac.i32, param_inner, 0));
2778
2779 inner_vec = inner_comps == 1 ? inner[0] :
2780 ac_build_gather_values(&ctx->ac, inner, inner_comps);
2781 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, inner_vec,
2782 inner_comps, tf_inner_offset,
2783 ctx->oc_lds, 0, 1, 0, true, false);
2784 }
2785 }
2786 ac_nir_build_endif(&if_ctx);
2787 }
2788
2789 static void
2790 handle_tcs_outputs_post(struct radv_shader_context *ctx)
2791 {
2792 write_tess_factors(ctx);
2793 }
2794
2795 static bool
2796 si_export_mrt_color(struct radv_shader_context *ctx,
2797 LLVMValueRef *color, unsigned index,
2798 struct ac_export_args *args)
2799 {
2800 /* Export */
2801 si_llvm_init_export_args(ctx, color, 0xf,
2802 V_008DFC_SQ_EXP_MRT + index, args);
2803 if (!args->enabled_channels)
2804 return false; /* unnecessary NULL export */
2805
2806 return true;
2807 }
2808
2809 static void
2810 radv_export_mrt_z(struct radv_shader_context *ctx,
2811 LLVMValueRef depth, LLVMValueRef stencil,
2812 LLVMValueRef samplemask)
2813 {
2814 struct ac_export_args args;
2815
2816 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
2817
2818 ac_build_export(&ctx->ac, &args);
2819 }
2820
2821 static void
2822 handle_fs_outputs_post(struct radv_shader_context *ctx)
2823 {
2824 unsigned index = 0;
2825 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
2826 struct ac_export_args color_args[8];
2827
2828 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
2829 LLVMValueRef values[4];
2830
2831 if (!(ctx->output_mask & (1ull << i)))
2832 continue;
2833
2834 if (i < FRAG_RESULT_DATA0)
2835 continue;
2836
2837 for (unsigned j = 0; j < 4; j++)
2838 values[j] = ac_to_float(&ctx->ac,
2839 radv_load_output(ctx, i, j));
2840
2841 bool ret = si_export_mrt_color(ctx, values,
2842 i - FRAG_RESULT_DATA0,
2843 &color_args[index]);
2844 if (ret)
2845 index++;
2846 }
2847
2848 /* Process depth, stencil, samplemask. */
2849 if (ctx->shader_info->info.ps.writes_z) {
2850 depth = ac_to_float(&ctx->ac,
2851 radv_load_output(ctx, FRAG_RESULT_DEPTH, 0));
2852 }
2853 if (ctx->shader_info->info.ps.writes_stencil) {
2854 stencil = ac_to_float(&ctx->ac,
2855 radv_load_output(ctx, FRAG_RESULT_STENCIL, 0));
2856 }
2857 if (ctx->shader_info->info.ps.writes_sample_mask) {
2858 samplemask = ac_to_float(&ctx->ac,
2859 radv_load_output(ctx, FRAG_RESULT_SAMPLE_MASK, 0));
2860 }
2861
2862 /* Set the DONE bit on last non-null color export only if Z isn't
2863 * exported.
2864 */
2865 if (index > 0 &&
2866 !ctx->shader_info->info.ps.writes_z &&
2867 !ctx->shader_info->info.ps.writes_stencil &&
2868 !ctx->shader_info->info.ps.writes_sample_mask) {
2869 unsigned last = index - 1;
2870
2871 color_args[last].valid_mask = 1; /* whether the EXEC mask is valid */
2872 color_args[last].done = 1; /* DONE bit */
2873 }
2874
2875 /* Export PS outputs. */
2876 for (unsigned i = 0; i < index; i++)
2877 ac_build_export(&ctx->ac, &color_args[i]);
2878
2879 if (depth || stencil || samplemask)
2880 radv_export_mrt_z(ctx, depth, stencil, samplemask);
2881 else if (!index)
2882 ac_build_export_null(&ctx->ac);
2883 }
2884
2885 static void
2886 emit_gs_epilogue(struct radv_shader_context *ctx)
2887 {
2888 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
2889 }
2890
2891 static void
2892 handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
2893 LLVMValueRef *addrs)
2894 {
2895 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
2896
2897 switch (ctx->stage) {
2898 case MESA_SHADER_VERTEX:
2899 if (ctx->options->key.vs.as_ls)
2900 handle_ls_outputs_post(ctx);
2901 else if (ctx->options->key.vs.as_es)
2902 handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info);
2903 else
2904 handle_vs_outputs_post(ctx, ctx->options->key.vs.export_prim_id,
2905 ctx->options->key.vs.export_layer_id,
2906 &ctx->shader_info->vs.outinfo);
2907 break;
2908 case MESA_SHADER_FRAGMENT:
2909 handle_fs_outputs_post(ctx);
2910 break;
2911 case MESA_SHADER_GEOMETRY:
2912 emit_gs_epilogue(ctx);
2913 break;
2914 case MESA_SHADER_TESS_CTRL:
2915 handle_tcs_outputs_post(ctx);
2916 break;
2917 case MESA_SHADER_TESS_EVAL:
2918 if (ctx->options->key.tes.as_es)
2919 handle_es_outputs_post(ctx, &ctx->shader_info->tes.es_info);
2920 else
2921 handle_vs_outputs_post(ctx, ctx->options->key.tes.export_prim_id,
2922 ctx->options->key.tes.export_layer_id,
2923 &ctx->shader_info->tes.outinfo);
2924 break;
2925 default:
2926 break;
2927 }
2928 }
2929
2930 static void ac_llvm_finalize_module(struct radv_shader_context *ctx)
2931 {
2932 LLVMPassManagerRef passmgr;
2933 /* Create the pass manager */
2934 passmgr = LLVMCreateFunctionPassManagerForModule(
2935 ctx->ac.module);
2936
2937 /* This pass should eliminate all the load and store instructions */
2938 LLVMAddPromoteMemoryToRegisterPass(passmgr);
2939
2940 /* Add some optimization passes */
2941 LLVMAddScalarReplAggregatesPass(passmgr);
2942 LLVMAddLICMPass(passmgr);
2943 LLVMAddAggressiveDCEPass(passmgr);
2944 LLVMAddCFGSimplificationPass(passmgr);
2945 LLVMAddInstructionCombiningPass(passmgr);
2946
2947 /* Run the pass */
2948 LLVMInitializeFunctionPassManager(passmgr);
2949 LLVMRunFunctionPassManager(passmgr, ctx->main_function);
2950 LLVMFinalizeFunctionPassManager(passmgr);
2951
2952 LLVMDisposeBuilder(ctx->ac.builder);
2953 LLVMDisposePassManager(passmgr);
2954
2955 ac_llvm_context_dispose(&ctx->ac);
2956 }
2957
2958 static void
2959 ac_nir_eliminate_const_vs_outputs(struct radv_shader_context *ctx)
2960 {
2961 struct radv_vs_output_info *outinfo;
2962
2963 switch (ctx->stage) {
2964 case MESA_SHADER_FRAGMENT:
2965 case MESA_SHADER_COMPUTE:
2966 case MESA_SHADER_TESS_CTRL:
2967 case MESA_SHADER_GEOMETRY:
2968 return;
2969 case MESA_SHADER_VERTEX:
2970 if (ctx->options->key.vs.as_ls ||
2971 ctx->options->key.vs.as_es)
2972 return;
2973 outinfo = &ctx->shader_info->vs.outinfo;
2974 break;
2975 case MESA_SHADER_TESS_EVAL:
2976 if (ctx->options->key.vs.as_es)
2977 return;
2978 outinfo = &ctx->shader_info->tes.outinfo;
2979 break;
2980 default:
2981 unreachable("Unhandled shader type");
2982 }
2983
2984 ac_optimize_vs_outputs(&ctx->ac,
2985 ctx->main_function,
2986 outinfo->vs_output_param_offset,
2987 VARYING_SLOT_MAX,
2988 &outinfo->param_exports);
2989 }
2990
2991 static void
2992 ac_setup_rings(struct radv_shader_context *ctx)
2993 {
2994 if ((ctx->stage == MESA_SHADER_VERTEX && ctx->options->key.vs.as_es) ||
2995 (ctx->stage == MESA_SHADER_TESS_EVAL && ctx->options->key.tes.as_es)) {
2996 ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_ESGS_VS, false));
2997 }
2998
2999 if (ctx->is_gs_copy_shader) {
3000 ctx->gsvs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_GSVS_VS, false));
3001 }
3002 if (ctx->stage == MESA_SHADER_GEOMETRY) {
3003 LLVMValueRef tmp;
3004 uint32_t num_entries = 64;
3005 LLVMValueRef gsvs_ring_stride = LLVMConstInt(ctx->ac.i32, ctx->max_gsvs_emit_size, false);
3006 LLVMValueRef gsvs_ring_desc = LLVMConstInt(ctx->ac.i32, ctx->max_gsvs_emit_size << 16, false);
3007 ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_ESGS_GS, false));
3008 ctx->gsvs_ring = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_GSVS_GS, false));
3009
3010 ctx->gsvs_ring = LLVMBuildBitCast(ctx->ac.builder, ctx->gsvs_ring, ctx->ac.v4i32, "");
3011
3012 tmp = LLVMConstInt(ctx->ac.i32, num_entries, false);
3013 if (ctx->options->chip_class >= VI)
3014 tmp = LLVMBuildMul(ctx->ac.builder, gsvs_ring_stride, tmp, "");
3015 ctx->gsvs_ring = LLVMBuildInsertElement(ctx->ac.builder, ctx->gsvs_ring, tmp, LLVMConstInt(ctx->ac.i32, 2, false), "");
3016 tmp = LLVMBuildExtractElement(ctx->ac.builder, ctx->gsvs_ring, ctx->ac.i32_1, "");
3017 tmp = LLVMBuildOr(ctx->ac.builder, tmp, gsvs_ring_desc, "");
3018 ctx->gsvs_ring = LLVMBuildInsertElement(ctx->ac.builder, ctx->gsvs_ring, tmp, ctx->ac.i32_1, "");
3019 }
3020
3021 if (ctx->stage == MESA_SHADER_TESS_CTRL ||
3022 ctx->stage == MESA_SHADER_TESS_EVAL) {
3023 ctx->hs_ring_tess_offchip = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_OFFCHIP, false));
3024 ctx->hs_ring_tess_factor = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_FACTOR, false));
3025 }
3026 }
3027
3028 static unsigned
3029 ac_nir_get_max_workgroup_size(enum chip_class chip_class,
3030 const struct nir_shader *nir)
3031 {
3032 switch (nir->info.stage) {
3033 case MESA_SHADER_TESS_CTRL:
3034 return chip_class >= CIK ? 128 : 64;
3035 case MESA_SHADER_GEOMETRY:
3036 return chip_class >= GFX9 ? 128 : 64;
3037 case MESA_SHADER_COMPUTE:
3038 break;
3039 default:
3040 return 0;
3041 }
3042
3043 unsigned max_workgroup_size = nir->info.cs.local_size[0] *
3044 nir->info.cs.local_size[1] *
3045 nir->info.cs.local_size[2];
3046 return max_workgroup_size;
3047 }
3048
3049 /* Fixup the HW not emitting the TCS regs if there are no HS threads. */
3050 static void ac_nir_fixup_ls_hs_input_vgprs(struct radv_shader_context *ctx)
3051 {
3052 LLVMValueRef count = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
3053 LLVMConstInt(ctx->ac.i32, 8, false),
3054 LLVMConstInt(ctx->ac.i32, 8, false), false);
3055 LLVMValueRef hs_empty = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, count,
3056 ctx->ac.i32_0, "");
3057 ctx->abi.instance_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->rel_auto_id, ctx->abi.instance_id, "");
3058 ctx->vs_prim_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.vertex_id, ctx->vs_prim_id, "");
3059 ctx->rel_auto_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_rel_ids, ctx->rel_auto_id, "");
3060 ctx->abi.vertex_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_patch_id, ctx->abi.vertex_id, "");
3061 }
3062
3063 static void prepare_gs_input_vgprs(struct radv_shader_context *ctx)
3064 {
3065 for(int i = 5; i >= 0; --i) {
3066 ctx->gs_vtx_offset[i] = ac_build_bfe(&ctx->ac, ctx->gs_vtx_offset[i & ~1],
3067 LLVMConstInt(ctx->ac.i32, (i & 1) * 16, false),
3068 LLVMConstInt(ctx->ac.i32, 16, false), false);
3069 }
3070
3071 ctx->gs_wave_id = ac_build_bfe(&ctx->ac, ctx->merged_wave_info,
3072 LLVMConstInt(ctx->ac.i32, 16, false),
3073 LLVMConstInt(ctx->ac.i32, 8, false), false);
3074 }
3075
3076
3077 static
3078 LLVMModuleRef ac_translate_nir_to_llvm(LLVMTargetMachineRef tm,
3079 struct nir_shader *const *shaders,
3080 int shader_count,
3081 struct radv_shader_variant_info *shader_info,
3082 const struct radv_nir_compiler_options *options)
3083 {
3084 struct radv_shader_context ctx = {0};
3085 unsigned i;
3086 ctx.options = options;
3087 ctx.shader_info = shader_info;
3088 ctx.context = LLVMContextCreate();
3089
3090 ac_llvm_context_init(&ctx.ac, ctx.context, options->chip_class,
3091 options->family);
3092 ctx.ac.module = LLVMModuleCreateWithNameInContext("shader", ctx.context);
3093 LLVMSetTarget(ctx.ac.module, options->supports_spill ? "amdgcn-mesa-mesa3d" : "amdgcn--");
3094
3095 LLVMTargetDataRef data_layout = LLVMCreateTargetDataLayout(tm);
3096 char *data_layout_str = LLVMCopyStringRepOfTargetData(data_layout);
3097 LLVMSetDataLayout(ctx.ac.module, data_layout_str);
3098 LLVMDisposeTargetData(data_layout);
3099 LLVMDisposeMessage(data_layout_str);
3100
3101 enum ac_float_mode float_mode =
3102 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
3103 AC_FLOAT_MODE_DEFAULT;
3104
3105 ctx.ac.builder = ac_create_builder(ctx.context, float_mode);
3106
3107 memset(shader_info, 0, sizeof(*shader_info));
3108
3109 for(int i = 0; i < shader_count; ++i)
3110 radv_nir_shader_info_pass(shaders[i], options, &shader_info->info);
3111
3112 for (i = 0; i < RADV_UD_MAX_SETS; i++)
3113 shader_info->user_sgprs_locs.descriptor_sets[i].sgpr_idx = -1;
3114 for (i = 0; i < AC_UD_MAX_UD; i++)
3115 shader_info->user_sgprs_locs.shader_data[i].sgpr_idx = -1;
3116
3117 ctx.max_workgroup_size = 0;
3118 for (int i = 0; i < shader_count; ++i) {
3119 ctx.max_workgroup_size = MAX2(ctx.max_workgroup_size,
3120 ac_nir_get_max_workgroup_size(ctx.options->chip_class,
3121 shaders[i]));
3122 }
3123
3124 create_function(&ctx, shaders[shader_count - 1]->info.stage, shader_count >= 2,
3125 shader_count >= 2 ? shaders[shader_count - 2]->info.stage : MESA_SHADER_VERTEX);
3126
3127 ctx.abi.inputs = &ctx.inputs[0];
3128 ctx.abi.emit_outputs = handle_shader_outputs_post;
3129 ctx.abi.emit_vertex = visit_emit_vertex;
3130 ctx.abi.load_ubo = radv_load_ubo;
3131 ctx.abi.load_ssbo = radv_load_ssbo;
3132 ctx.abi.load_sampler_desc = radv_get_sampler_desc;
3133 ctx.abi.load_resource = radv_load_resource;
3134 ctx.abi.clamp_shadow_reference = false;
3135 ctx.abi.gfx9_stride_size_workaround = ctx.ac.chip_class == GFX9;
3136
3137 if (shader_count >= 2)
3138 ac_init_exec_full_mask(&ctx.ac);
3139
3140 if (ctx.ac.chip_class == GFX9 &&
3141 shaders[shader_count - 1]->info.stage == MESA_SHADER_TESS_CTRL)
3142 ac_nir_fixup_ls_hs_input_vgprs(&ctx);
3143
3144 for(int i = 0; i < shader_count; ++i) {
3145 ctx.stage = shaders[i]->info.stage;
3146 ctx.output_mask = 0;
3147 ctx.num_output_clips = shaders[i]->info.clip_distance_array_size;
3148 ctx.num_output_culls = shaders[i]->info.cull_distance_array_size;
3149
3150 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
3151 ctx.gs_next_vertex = ac_build_alloca(&ctx.ac, ctx.ac.i32, "gs_next_vertex");
3152 ctx.gs_max_out_vertices = shaders[i]->info.gs.vertices_out;
3153 ctx.abi.load_inputs = load_gs_input;
3154 ctx.abi.emit_primitive = visit_end_primitive;
3155 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
3156 ctx.tcs_outputs_read = shaders[i]->info.outputs_read;
3157 ctx.tcs_patch_outputs_read = shaders[i]->info.patch_outputs_read;
3158 ctx.abi.load_tess_varyings = load_tcs_varyings;
3159 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
3160 ctx.abi.store_tcs_outputs = store_tcs_output;
3161 ctx.tcs_vertices_per_patch = shaders[i]->info.tess.tcs_vertices_out;
3162 if (shader_count == 1)
3163 ctx.tcs_num_inputs = ctx.options->key.tcs.num_inputs;
3164 else
3165 ctx.tcs_num_inputs = util_last_bit64(shader_info->info.vs.ls_outputs_written);
3166 ctx.tcs_num_patches = get_tcs_num_patches(&ctx);
3167 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_EVAL) {
3168 ctx.tes_primitive_mode = shaders[i]->info.tess.primitive_mode;
3169 ctx.abi.load_tess_varyings = load_tes_input;
3170 ctx.abi.load_tess_coord = load_tess_coord;
3171 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
3172 ctx.tcs_vertices_per_patch = shaders[i]->info.tess.tcs_vertices_out;
3173 ctx.tcs_num_patches = ctx.options->key.tes.num_patches;
3174 } else if (shaders[i]->info.stage == MESA_SHADER_VERTEX) {
3175 if (shader_info->info.vs.needs_instance_id) {
3176 if (ctx.options->key.vs.as_ls) {
3177 ctx.shader_info->vs.vgpr_comp_cnt =
3178 MAX2(2, ctx.shader_info->vs.vgpr_comp_cnt);
3179 } else {
3180 ctx.shader_info->vs.vgpr_comp_cnt =
3181 MAX2(1, ctx.shader_info->vs.vgpr_comp_cnt);
3182 }
3183 }
3184 ctx.abi.load_base_vertex = radv_load_base_vertex;
3185 } else if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT) {
3186 shader_info->fs.can_discard = shaders[i]->info.fs.uses_discard;
3187 ctx.abi.lookup_interp_param = lookup_interp_param;
3188 ctx.abi.load_sample_position = load_sample_position;
3189 ctx.abi.load_sample_mask_in = load_sample_mask_in;
3190 ctx.abi.emit_kill = radv_emit_kill;
3191 }
3192
3193 if (i)
3194 ac_emit_barrier(&ctx.ac, ctx.stage);
3195
3196 nir_foreach_variable(variable, &shaders[i]->outputs)
3197 scan_shader_output_decl(&ctx, variable, shaders[i], shaders[i]->info.stage);
3198
3199 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
3200 unsigned addclip = shaders[i]->info.clip_distance_array_size +
3201 shaders[i]->info.cull_distance_array_size > 4;
3202 ctx.gsvs_vertex_size = (util_bitcount64(ctx.output_mask) + addclip) * 16;
3203 ctx.max_gsvs_emit_size = ctx.gsvs_vertex_size *
3204 shaders[i]->info.gs.vertices_out;
3205 }
3206
3207 ac_setup_rings(&ctx);
3208
3209 LLVMBasicBlockRef merge_block;
3210 if (shader_count >= 2) {
3211 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
3212 LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
3213 merge_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
3214
3215 LLVMValueRef count = ac_build_bfe(&ctx.ac, ctx.merged_wave_info,
3216 LLVMConstInt(ctx.ac.i32, 8 * i, false),
3217 LLVMConstInt(ctx.ac.i32, 8, false), false);
3218 LLVMValueRef thread_id = ac_get_thread_id(&ctx.ac);
3219 LLVMValueRef cond = LLVMBuildICmp(ctx.ac.builder, LLVMIntULT,
3220 thread_id, count, "");
3221 LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);
3222
3223 LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
3224 }
3225
3226 if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
3227 handle_fs_inputs(&ctx, shaders[i]);
3228 else if(shaders[i]->info.stage == MESA_SHADER_VERTEX)
3229 handle_vs_inputs(&ctx, shaders[i]);
3230 else if(shader_count >= 2 && shaders[i]->info.stage == MESA_SHADER_GEOMETRY)
3231 prepare_gs_input_vgprs(&ctx);
3232
3233 ac_nir_translate(&ctx.ac, &ctx.abi, shaders[i]);
3234
3235 if (shader_count >= 2) {
3236 LLVMBuildBr(ctx.ac.builder, merge_block);
3237 LLVMPositionBuilderAtEnd(ctx.ac.builder, merge_block);
3238 }
3239
3240 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
3241 shader_info->gs.gsvs_vertex_size = ctx.gsvs_vertex_size;
3242 shader_info->gs.max_gsvs_emit_size = ctx.max_gsvs_emit_size;
3243 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
3244 shader_info->tcs.num_patches = ctx.tcs_num_patches;
3245 shader_info->tcs.lds_size = calculate_tess_lds_size(&ctx);
3246 }
3247 }
3248
3249 LLVMBuildRetVoid(ctx.ac.builder);
3250
3251 if (options->dump_preoptir)
3252 ac_dump_module(ctx.ac.module);
3253
3254 ac_llvm_finalize_module(&ctx);
3255
3256 if (shader_count == 1)
3257 ac_nir_eliminate_const_vs_outputs(&ctx);
3258
3259 if (options->dump_shader) {
3260 ctx.shader_info->private_mem_vgprs =
3261 ac_count_scratch_private_memory(ctx.main_function);
3262 }
3263
3264 return ctx.ac.module;
3265 }
3266
3267 static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
3268 {
3269 unsigned *retval = (unsigned *)context;
3270 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
3271 char *description = LLVMGetDiagInfoDescription(di);
3272
3273 if (severity == LLVMDSError) {
3274 *retval = 1;
3275 fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
3276 description);
3277 }
3278
3279 LLVMDisposeMessage(description);
3280 }
3281
3282 static unsigned ac_llvm_compile(LLVMModuleRef M,
3283 struct ac_shader_binary *binary,
3284 LLVMTargetMachineRef tm)
3285 {
3286 unsigned retval = 0;
3287 char *err;
3288 LLVMContextRef llvm_ctx;
3289 LLVMMemoryBufferRef out_buffer;
3290 unsigned buffer_size;
3291 const char *buffer_data;
3292 LLVMBool mem_err;
3293
3294 /* Setup Diagnostic Handler*/
3295 llvm_ctx = LLVMGetModuleContext(M);
3296
3297 LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
3298 &retval);
3299
3300 /* Compile IR*/
3301 mem_err = LLVMTargetMachineEmitToMemoryBuffer(tm, M, LLVMObjectFile,
3302 &err, &out_buffer);
3303
3304 /* Process Errors/Warnings */
3305 if (mem_err) {
3306 fprintf(stderr, "%s: %s", __FUNCTION__, err);
3307 free(err);
3308 retval = 1;
3309 goto out;
3310 }
3311
3312 /* Extract Shader Code*/
3313 buffer_size = LLVMGetBufferSize(out_buffer);
3314 buffer_data = LLVMGetBufferStart(out_buffer);
3315
3316 ac_elf_read(buffer_data, buffer_size, binary);
3317
3318 /* Clean up */
3319 LLVMDisposeMemoryBuffer(out_buffer);
3320
3321 out:
3322 return retval;
3323 }
3324
3325 static void ac_compile_llvm_module(LLVMTargetMachineRef tm,
3326 LLVMModuleRef llvm_module,
3327 struct ac_shader_binary *binary,
3328 struct ac_shader_config *config,
3329 struct radv_shader_variant_info *shader_info,
3330 gl_shader_stage stage,
3331 const struct radv_nir_compiler_options *options)
3332 {
3333 if (options->dump_shader)
3334 ac_dump_module(llvm_module);
3335
3336 memset(binary, 0, sizeof(*binary));
3337
3338 if (options->record_llvm_ir) {
3339 char *llvm_ir = LLVMPrintModuleToString(llvm_module);
3340 binary->llvm_ir_string = strdup(llvm_ir);
3341 LLVMDisposeMessage(llvm_ir);
3342 }
3343
3344 int v = ac_llvm_compile(llvm_module, binary, tm);
3345 if (v) {
3346 fprintf(stderr, "compile failed\n");
3347 }
3348
3349 if (options->dump_shader)
3350 fprintf(stderr, "disasm:\n%s\n", binary->disasm_string);
3351
3352 ac_shader_binary_read_config(binary, config, 0, options->supports_spill);
3353
3354 LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
3355 LLVMDisposeModule(llvm_module);
3356 LLVMContextDispose(ctx);
3357
3358 if (stage == MESA_SHADER_FRAGMENT) {
3359 shader_info->num_input_vgprs = 0;
3360 if (G_0286CC_PERSP_SAMPLE_ENA(config->spi_ps_input_addr))
3361 shader_info->num_input_vgprs += 2;
3362 if (G_0286CC_PERSP_CENTER_ENA(config->spi_ps_input_addr))
3363 shader_info->num_input_vgprs += 2;
3364 if (G_0286CC_PERSP_CENTROID_ENA(config->spi_ps_input_addr))
3365 shader_info->num_input_vgprs += 2;
3366 if (G_0286CC_PERSP_PULL_MODEL_ENA(config->spi_ps_input_addr))
3367 shader_info->num_input_vgprs += 3;
3368 if (G_0286CC_LINEAR_SAMPLE_ENA(config->spi_ps_input_addr))
3369 shader_info->num_input_vgprs += 2;
3370 if (G_0286CC_LINEAR_CENTER_ENA(config->spi_ps_input_addr))
3371 shader_info->num_input_vgprs += 2;
3372 if (G_0286CC_LINEAR_CENTROID_ENA(config->spi_ps_input_addr))
3373 shader_info->num_input_vgprs += 2;
3374 if (G_0286CC_LINE_STIPPLE_TEX_ENA(config->spi_ps_input_addr))
3375 shader_info->num_input_vgprs += 1;
3376 if (G_0286CC_POS_X_FLOAT_ENA(config->spi_ps_input_addr))
3377 shader_info->num_input_vgprs += 1;
3378 if (G_0286CC_POS_Y_FLOAT_ENA(config->spi_ps_input_addr))
3379 shader_info->num_input_vgprs += 1;
3380 if (G_0286CC_POS_Z_FLOAT_ENA(config->spi_ps_input_addr))
3381 shader_info->num_input_vgprs += 1;
3382 if (G_0286CC_POS_W_FLOAT_ENA(config->spi_ps_input_addr))
3383 shader_info->num_input_vgprs += 1;
3384 if (G_0286CC_FRONT_FACE_ENA(config->spi_ps_input_addr))
3385 shader_info->num_input_vgprs += 1;
3386 if (G_0286CC_ANCILLARY_ENA(config->spi_ps_input_addr))
3387 shader_info->num_input_vgprs += 1;
3388 if (G_0286CC_SAMPLE_COVERAGE_ENA(config->spi_ps_input_addr))
3389 shader_info->num_input_vgprs += 1;
3390 if (G_0286CC_POS_FIXED_PT_ENA(config->spi_ps_input_addr))
3391 shader_info->num_input_vgprs += 1;
3392 }
3393 config->num_vgprs = MAX2(config->num_vgprs, shader_info->num_input_vgprs);
3394
3395 /* +3 for scratch wave offset and VCC */
3396 config->num_sgprs = MAX2(config->num_sgprs,
3397 shader_info->num_input_sgprs + 3);
3398
3399 /* Enable 64-bit and 16-bit denormals, because there is no performance
3400 * cost.
3401 *
3402 * If denormals are enabled, all floating-point output modifiers are
3403 * ignored.
3404 *
3405 * Don't enable denormals for 32-bit floats, because:
3406 * - Floating-point output modifiers would be ignored by the hw.
3407 * - Some opcodes don't support denormals, such as v_mad_f32. We would
3408 * have to stop using those.
3409 * - SI & CI would be very slow.
3410 */
3411 config->float_mode |= V_00B028_FP_64_DENORMS;
3412 }
3413
3414 static void
3415 ac_fill_shader_info(struct radv_shader_variant_info *shader_info, struct nir_shader *nir, const struct radv_nir_compiler_options *options)
3416 {
3417 switch (nir->info.stage) {
3418 case MESA_SHADER_COMPUTE:
3419 for (int i = 0; i < 3; ++i)
3420 shader_info->cs.block_size[i] = nir->info.cs.local_size[i];
3421 break;
3422 case MESA_SHADER_FRAGMENT:
3423 shader_info->fs.early_fragment_test = nir->info.fs.early_fragment_tests;
3424 break;
3425 case MESA_SHADER_GEOMETRY:
3426 shader_info->gs.vertices_in = nir->info.gs.vertices_in;
3427 shader_info->gs.vertices_out = nir->info.gs.vertices_out;
3428 shader_info->gs.output_prim = nir->info.gs.output_primitive;
3429 shader_info->gs.invocations = nir->info.gs.invocations;
3430 break;
3431 case MESA_SHADER_TESS_EVAL:
3432 shader_info->tes.primitive_mode = nir->info.tess.primitive_mode;
3433 shader_info->tes.spacing = nir->info.tess.spacing;
3434 shader_info->tes.ccw = nir->info.tess.ccw;
3435 shader_info->tes.point_mode = nir->info.tess.point_mode;
3436 shader_info->tes.as_es = options->key.tes.as_es;
3437 break;
3438 case MESA_SHADER_TESS_CTRL:
3439 shader_info->tcs.tcs_vertices_out = nir->info.tess.tcs_vertices_out;
3440 break;
3441 case MESA_SHADER_VERTEX:
3442 shader_info->vs.as_es = options->key.vs.as_es;
3443 shader_info->vs.as_ls = options->key.vs.as_ls;
3444 /* in LS mode we need at least 1, invocation id needs 2, handled elsewhere */
3445 if (options->key.vs.as_ls)
3446 shader_info->vs.vgpr_comp_cnt = MAX2(1, shader_info->vs.vgpr_comp_cnt);
3447 break;
3448 default:
3449 break;
3450 }
3451 }
3452
3453 void
3454 radv_compile_nir_shader(LLVMTargetMachineRef tm,
3455 struct ac_shader_binary *binary,
3456 struct ac_shader_config *config,
3457 struct radv_shader_variant_info *shader_info,
3458 struct nir_shader *const *nir,
3459 int nir_count,
3460 const struct radv_nir_compiler_options *options)
3461 {
3462
3463 LLVMModuleRef llvm_module;
3464
3465 llvm_module = ac_translate_nir_to_llvm(tm, nir, nir_count, shader_info,
3466 options);
3467
3468 ac_compile_llvm_module(tm, llvm_module, binary, config, shader_info,
3469 nir[0]->info.stage, options);
3470
3471 for (int i = 0; i < nir_count; ++i)
3472 ac_fill_shader_info(shader_info, nir[i], options);
3473
3474 /* Determine the ES type (VS or TES) for the GS on GFX9. */
3475 if (options->chip_class == GFX9) {
3476 if (nir_count == 2 &&
3477 nir[1]->info.stage == MESA_SHADER_GEOMETRY) {
3478 shader_info->gs.es_type = nir[0]->info.stage;
3479 }
3480 }
3481 }
3482
3483 static void
3484 ac_gs_copy_shader_emit(struct radv_shader_context *ctx)
3485 {
3486 LLVMValueRef vtx_offset =
3487 LLVMBuildMul(ctx->ac.builder, ctx->abi.vertex_id,
3488 LLVMConstInt(ctx->ac.i32, 4, false), "");
3489 int idx = 0;
3490
3491 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3492 int length = 4;
3493 int slot = idx;
3494 int slot_inc = 1;
3495 if (!(ctx->output_mask & (1ull << i)))
3496 continue;
3497
3498 if (i == VARYING_SLOT_CLIP_DIST0) {
3499 /* unpack clip and cull from a single set of slots */
3500 length = ctx->num_output_clips + ctx->num_output_culls;
3501 if (length > 4)
3502 slot_inc = 2;
3503 }
3504
3505 for (unsigned j = 0; j < length; j++) {
3506 LLVMValueRef value, soffset;
3507
3508 soffset = LLVMConstInt(ctx->ac.i32,
3509 (slot * 4 + j) *
3510 ctx->gs_max_out_vertices * 16 * 4, false);
3511
3512 value = ac_build_buffer_load(&ctx->ac, ctx->gsvs_ring,
3513 1, ctx->ac.i32_0,
3514 vtx_offset, soffset,
3515 0, 1, 1, true, false);
3516
3517 LLVMBuildStore(ctx->ac.builder,
3518 ac_to_float(&ctx->ac, value), ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
3519 }
3520 idx += slot_inc;
3521 }
3522 handle_vs_outputs_post(ctx, false, false, &ctx->shader_info->vs.outinfo);
3523 }
3524
3525 void
3526 radv_compile_gs_copy_shader(LLVMTargetMachineRef tm,
3527 struct nir_shader *geom_shader,
3528 struct ac_shader_binary *binary,
3529 struct ac_shader_config *config,
3530 struct radv_shader_variant_info *shader_info,
3531 const struct radv_nir_compiler_options *options)
3532 {
3533 struct radv_shader_context ctx = {0};
3534 ctx.context = LLVMContextCreate();
3535 ctx.options = options;
3536 ctx.shader_info = shader_info;
3537
3538 ac_llvm_context_init(&ctx.ac, ctx.context, options->chip_class,
3539 options->family);
3540 ctx.ac.module = LLVMModuleCreateWithNameInContext("shader", ctx.context);
3541
3542 ctx.is_gs_copy_shader = true;
3543 LLVMSetTarget(ctx.ac.module, "amdgcn--");
3544
3545 enum ac_float_mode float_mode =
3546 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
3547 AC_FLOAT_MODE_DEFAULT;
3548
3549 ctx.ac.builder = ac_create_builder(ctx.context, float_mode);
3550 ctx.stage = MESA_SHADER_VERTEX;
3551
3552 create_function(&ctx, MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX);
3553
3554 ctx.gs_max_out_vertices = geom_shader->info.gs.vertices_out;
3555 ac_setup_rings(&ctx);
3556
3557 ctx.num_output_clips = geom_shader->info.clip_distance_array_size;
3558 ctx.num_output_culls = geom_shader->info.cull_distance_array_size;
3559
3560 nir_foreach_variable(variable, &geom_shader->outputs) {
3561 scan_shader_output_decl(&ctx, variable, geom_shader, MESA_SHADER_VERTEX);
3562 ac_handle_shader_output_decl(&ctx.ac, &ctx.abi, geom_shader,
3563 variable, MESA_SHADER_VERTEX);
3564 }
3565
3566 ac_gs_copy_shader_emit(&ctx);
3567
3568 LLVMBuildRetVoid(ctx.ac.builder);
3569
3570 ac_llvm_finalize_module(&ctx);
3571
3572 ac_compile_llvm_module(tm, ctx.ac.module, binary, config, shader_info,
3573 MESA_SHADER_VERTEX, options);
3574 }