ac: replace glc,slc with cache_policy for loads
[mesa.git] / src / amd / vulkan / radv_nir_to_llvm.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "radv_private.h"
29 #include "radv_shader.h"
30 #include "radv_shader_helper.h"
31 #include "nir/nir.h"
32
33 #include <llvm-c/Core.h>
34 #include <llvm-c/TargetMachine.h>
35 #include <llvm-c/Transforms/Scalar.h>
36 #include <llvm-c/Transforms/Utils.h>
37
38 #include "sid.h"
39 #include "ac_binary.h"
40 #include "ac_llvm_util.h"
41 #include "ac_llvm_build.h"
42 #include "ac_shader_abi.h"
43 #include "ac_shader_util.h"
44 #include "ac_exp_param.h"
45
46 #define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1)
47
48 struct radv_shader_context {
49 struct ac_llvm_context ac;
50 const struct radv_nir_compiler_options *options;
51 struct radv_shader_variant_info *shader_info;
52 struct ac_shader_abi abi;
53
54 unsigned max_workgroup_size;
55 LLVMContextRef context;
56 LLVMValueRef main_function;
57
58 LLVMValueRef descriptor_sets[RADV_UD_MAX_SETS];
59 LLVMValueRef ring_offsets;
60
61 LLVMValueRef vertex_buffers;
62 LLVMValueRef rel_auto_id;
63 LLVMValueRef vs_prim_id;
64 LLVMValueRef es2gs_offset;
65
66 LLVMValueRef oc_lds;
67 LLVMValueRef merged_wave_info;
68 LLVMValueRef tess_factor_offset;
69 LLVMValueRef tes_rel_patch_id;
70 LLVMValueRef tes_u;
71 LLVMValueRef tes_v;
72
73 LLVMValueRef gs2vs_offset;
74 LLVMValueRef gs_wave_id;
75 LLVMValueRef gs_vtx_offset[6];
76
77 LLVMValueRef esgs_ring;
78 LLVMValueRef gsvs_ring[4];
79 LLVMValueRef hs_ring_tess_offchip;
80 LLVMValueRef hs_ring_tess_factor;
81
82 LLVMValueRef persp_sample, persp_center, persp_centroid;
83 LLVMValueRef linear_sample, linear_center, linear_centroid;
84
85 /* Streamout */
86 LLVMValueRef streamout_buffers;
87 LLVMValueRef streamout_write_idx;
88 LLVMValueRef streamout_config;
89 LLVMValueRef streamout_offset[4];
90
91 gl_shader_stage stage;
92
93 LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4];
94 uint64_t float16_shaded_mask;
95
96 uint64_t input_mask;
97 uint64_t output_mask;
98
99 bool is_gs_copy_shader;
100 LLVMValueRef gs_next_vertex[4];
101 unsigned gs_max_out_vertices;
102
103 unsigned tes_primitive_mode;
104
105 uint32_t tcs_patch_outputs_read;
106 uint64_t tcs_outputs_read;
107 uint32_t tcs_vertices_per_patch;
108 uint32_t tcs_num_inputs;
109 uint32_t tcs_num_patches;
110 uint32_t max_gsvs_emit_size;
111 uint32_t gsvs_vertex_size;
112 };
113
114 enum radeon_llvm_calling_convention {
115 RADEON_LLVM_AMDGPU_VS = 87,
116 RADEON_LLVM_AMDGPU_GS = 88,
117 RADEON_LLVM_AMDGPU_PS = 89,
118 RADEON_LLVM_AMDGPU_CS = 90,
119 RADEON_LLVM_AMDGPU_HS = 93,
120 };
121
122 static inline struct radv_shader_context *
123 radv_shader_context_from_abi(struct ac_shader_abi *abi)
124 {
125 struct radv_shader_context *ctx = NULL;
126 return container_of(abi, ctx, abi);
127 }
128
129 struct ac_build_if_state
130 {
131 struct radv_shader_context *ctx;
132 LLVMValueRef condition;
133 LLVMBasicBlockRef entry_block;
134 LLVMBasicBlockRef true_block;
135 LLVMBasicBlockRef false_block;
136 LLVMBasicBlockRef merge_block;
137 };
138
139 static LLVMBasicBlockRef
140 ac_build_insert_new_block(struct radv_shader_context *ctx, const char *name)
141 {
142 LLVMBasicBlockRef current_block;
143 LLVMBasicBlockRef next_block;
144 LLVMBasicBlockRef new_block;
145
146 /* get current basic block */
147 current_block = LLVMGetInsertBlock(ctx->ac.builder);
148
149 /* chqeck if there's another block after this one */
150 next_block = LLVMGetNextBasicBlock(current_block);
151 if (next_block) {
152 /* insert the new block before the next block */
153 new_block = LLVMInsertBasicBlockInContext(ctx->context, next_block, name);
154 }
155 else {
156 /* append new block after current block */
157 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
158 new_block = LLVMAppendBasicBlockInContext(ctx->context, function, name);
159 }
160 return new_block;
161 }
162
163 static void
164 ac_nir_build_if(struct ac_build_if_state *ifthen,
165 struct radv_shader_context *ctx,
166 LLVMValueRef condition)
167 {
168 LLVMBasicBlockRef block = LLVMGetInsertBlock(ctx->ac.builder);
169
170 memset(ifthen, 0, sizeof *ifthen);
171 ifthen->ctx = ctx;
172 ifthen->condition = condition;
173 ifthen->entry_block = block;
174
175 /* create endif/merge basic block for the phi functions */
176 ifthen->merge_block = ac_build_insert_new_block(ctx, "endif-block");
177
178 /* create/insert true_block before merge_block */
179 ifthen->true_block =
180 LLVMInsertBasicBlockInContext(ctx->context,
181 ifthen->merge_block,
182 "if-true-block");
183
184 /* successive code goes into the true block */
185 LLVMPositionBuilderAtEnd(ctx->ac.builder, ifthen->true_block);
186 }
187
188 /**
189 * End a conditional.
190 */
191 static void
192 ac_nir_build_endif(struct ac_build_if_state *ifthen)
193 {
194 LLVMBuilderRef builder = ifthen->ctx->ac.builder;
195
196 /* Insert branch to the merge block from current block */
197 LLVMBuildBr(builder, ifthen->merge_block);
198
199 /*
200 * Now patch in the various branch instructions.
201 */
202
203 /* Insert the conditional branch instruction at the end of entry_block */
204 LLVMPositionBuilderAtEnd(builder, ifthen->entry_block);
205 if (ifthen->false_block) {
206 /* we have an else clause */
207 LLVMBuildCondBr(builder, ifthen->condition,
208 ifthen->true_block, ifthen->false_block);
209 }
210 else {
211 /* no else clause */
212 LLVMBuildCondBr(builder, ifthen->condition,
213 ifthen->true_block, ifthen->merge_block);
214 }
215
216 /* Resume building code at end of the ifthen->merge_block */
217 LLVMPositionBuilderAtEnd(builder, ifthen->merge_block);
218 }
219
220
221 static LLVMValueRef get_rel_patch_id(struct radv_shader_context *ctx)
222 {
223 switch (ctx->stage) {
224 case MESA_SHADER_TESS_CTRL:
225 return ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
226 case MESA_SHADER_TESS_EVAL:
227 return ctx->tes_rel_patch_id;
228 break;
229 default:
230 unreachable("Illegal stage");
231 }
232 }
233
234 static unsigned
235 get_tcs_num_patches(struct radv_shader_context *ctx)
236 {
237 unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
238 unsigned num_tcs_output_cp = ctx->tcs_vertices_per_patch;
239 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
240 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
241 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
242 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
243 uint32_t output_vertex_size = num_tcs_outputs * 16;
244 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
245 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
246 unsigned num_patches;
247 unsigned hardware_lds_size;
248
249 /* Ensure that we only need one wave per SIMD so we don't need to check
250 * resource usage. Also ensures that the number of tcs in and out
251 * vertices per threadgroup are at most 256.
252 */
253 num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
254 /* Make sure that the data fits in LDS. This assumes the shaders only
255 * use LDS for the inputs and outputs.
256 */
257 hardware_lds_size = 32768;
258
259 /* Looks like STONEY hangs if we use more than 32 KiB LDS in a single
260 * threadgroup, even though there is more than 32 KiB LDS.
261 *
262 * Test: dEQP-VK.tessellation.shader_input_output.barrier
263 */
264 if (ctx->options->chip_class >= GFX7 && ctx->options->family != CHIP_STONEY)
265 hardware_lds_size = 65536;
266
267 num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size));
268 /* Make sure the output data fits in the offchip buffer */
269 num_patches = MIN2(num_patches, (ctx->options->tess_offchip_block_dw_size * 4) / output_patch_size);
270 /* Not necessary for correctness, but improves performance. The
271 * specific value is taken from the proprietary driver.
272 */
273 num_patches = MIN2(num_patches, 40);
274
275 /* GFX6 bug workaround - limit LS-HS threadgroups to only one wave. */
276 if (ctx->options->chip_class == GFX6) {
277 unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp);
278 num_patches = MIN2(num_patches, one_wave);
279 }
280 return num_patches;
281 }
282
283 static unsigned
284 calculate_tess_lds_size(struct radv_shader_context *ctx)
285 {
286 unsigned num_tcs_input_cp = ctx->options->key.tcs.input_vertices;
287 unsigned num_tcs_output_cp;
288 unsigned num_tcs_outputs, num_tcs_patch_outputs;
289 unsigned input_vertex_size, output_vertex_size;
290 unsigned input_patch_size, output_patch_size;
291 unsigned pervertex_output_patch_size;
292 unsigned output_patch0_offset;
293 unsigned num_patches;
294 unsigned lds_size;
295
296 num_tcs_output_cp = ctx->tcs_vertices_per_patch;
297 num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
298 num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
299
300 input_vertex_size = ctx->tcs_num_inputs * 16;
301 output_vertex_size = num_tcs_outputs * 16;
302
303 input_patch_size = num_tcs_input_cp * input_vertex_size;
304
305 pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
306 output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
307
308 num_patches = ctx->tcs_num_patches;
309 output_patch0_offset = input_patch_size * num_patches;
310
311 lds_size = output_patch0_offset + output_patch_size * num_patches;
312 return lds_size;
313 }
314
315 /* Tessellation shaders pass outputs to the next shader using LDS.
316 *
317 * LS outputs = TCS inputs
318 * TCS outputs = TES inputs
319 *
320 * The LDS layout is:
321 * - TCS inputs for patch 0
322 * - TCS inputs for patch 1
323 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
324 * - ...
325 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
326 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
327 * - TCS outputs for patch 1
328 * - Per-patch TCS outputs for patch 1
329 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
330 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
331 * - ...
332 *
333 * All three shaders VS(LS), TCS, TES share the same LDS space.
334 */
335 static LLVMValueRef
336 get_tcs_in_patch_stride(struct radv_shader_context *ctx)
337 {
338 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
339 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
340 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
341
342 input_patch_size /= 4;
343 return LLVMConstInt(ctx->ac.i32, input_patch_size, false);
344 }
345
346 static LLVMValueRef
347 get_tcs_out_patch_stride(struct radv_shader_context *ctx)
348 {
349 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
350 uint32_t num_tcs_patch_outputs = util_last_bit64(ctx->shader_info->info.tcs.patch_outputs_written);
351 uint32_t output_vertex_size = num_tcs_outputs * 16;
352 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
353 uint32_t output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
354 output_patch_size /= 4;
355 return LLVMConstInt(ctx->ac.i32, output_patch_size, false);
356 }
357
358 static LLVMValueRef
359 get_tcs_out_vertex_stride(struct radv_shader_context *ctx)
360 {
361 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
362 uint32_t output_vertex_size = num_tcs_outputs * 16;
363 output_vertex_size /= 4;
364 return LLVMConstInt(ctx->ac.i32, output_vertex_size, false);
365 }
366
367 static LLVMValueRef
368 get_tcs_out_patch0_offset(struct radv_shader_context *ctx)
369 {
370 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
371 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
372 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
373 uint32_t output_patch0_offset = input_patch_size;
374 unsigned num_patches = ctx->tcs_num_patches;
375
376 output_patch0_offset *= num_patches;
377 output_patch0_offset /= 4;
378 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
379 }
380
381 static LLVMValueRef
382 get_tcs_out_patch0_patch_data_offset(struct radv_shader_context *ctx)
383 {
384 assert (ctx->stage == MESA_SHADER_TESS_CTRL);
385 uint32_t input_vertex_size = ctx->tcs_num_inputs * 16;
386 uint32_t input_patch_size = ctx->options->key.tcs.input_vertices * input_vertex_size;
387 uint32_t output_patch0_offset = input_patch_size;
388
389 uint32_t num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
390 uint32_t output_vertex_size = num_tcs_outputs * 16;
391 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
392 unsigned num_patches = ctx->tcs_num_patches;
393
394 output_patch0_offset *= num_patches;
395 output_patch0_offset += pervertex_output_patch_size;
396 output_patch0_offset /= 4;
397 return LLVMConstInt(ctx->ac.i32, output_patch0_offset, false);
398 }
399
400 static LLVMValueRef
401 get_tcs_in_current_patch_offset(struct radv_shader_context *ctx)
402 {
403 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
404 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
405
406 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
407 }
408
409 static LLVMValueRef
410 get_tcs_out_current_patch_offset(struct radv_shader_context *ctx)
411 {
412 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
413 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
414 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
415
416 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
417 patch0_offset);
418 }
419
420 static LLVMValueRef
421 get_tcs_out_current_patch_data_offset(struct radv_shader_context *ctx)
422 {
423 LLVMValueRef patch0_patch_data_offset =
424 get_tcs_out_patch0_patch_data_offset(ctx);
425 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
426 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
427
428 return ac_build_imad(&ctx->ac, patch_stride, rel_patch_id,
429 patch0_patch_data_offset);
430 }
431
432 #define MAX_ARGS 64
433 struct arg_info {
434 LLVMTypeRef types[MAX_ARGS];
435 LLVMValueRef *assign[MAX_ARGS];
436 uint8_t count;
437 uint8_t sgpr_count;
438 uint8_t num_sgprs_used;
439 uint8_t num_vgprs_used;
440 };
441
442 enum ac_arg_regfile {
443 ARG_SGPR,
444 ARG_VGPR,
445 };
446
447 static void
448 add_arg(struct arg_info *info, enum ac_arg_regfile regfile, LLVMTypeRef type,
449 LLVMValueRef *param_ptr)
450 {
451 assert(info->count < MAX_ARGS);
452
453 info->assign[info->count] = param_ptr;
454 info->types[info->count] = type;
455 info->count++;
456
457 if (regfile == ARG_SGPR) {
458 info->num_sgprs_used += ac_get_type_size(type) / 4;
459 info->sgpr_count++;
460 } else {
461 assert(regfile == ARG_VGPR);
462 info->num_vgprs_used += ac_get_type_size(type) / 4;
463 }
464 }
465
466 static void assign_arguments(LLVMValueRef main_function,
467 struct arg_info *info)
468 {
469 unsigned i;
470 for (i = 0; i < info->count; i++) {
471 if (info->assign[i])
472 *info->assign[i] = LLVMGetParam(main_function, i);
473 }
474 }
475
476 static LLVMValueRef
477 create_llvm_function(LLVMContextRef ctx, LLVMModuleRef module,
478 LLVMBuilderRef builder, LLVMTypeRef *return_types,
479 unsigned num_return_elems,
480 struct arg_info *args,
481 unsigned max_workgroup_size,
482 const struct radv_nir_compiler_options *options)
483 {
484 LLVMTypeRef main_function_type, ret_type;
485 LLVMBasicBlockRef main_function_body;
486
487 if (num_return_elems)
488 ret_type = LLVMStructTypeInContext(ctx, return_types,
489 num_return_elems, true);
490 else
491 ret_type = LLVMVoidTypeInContext(ctx);
492
493 /* Setup the function */
494 main_function_type =
495 LLVMFunctionType(ret_type, args->types, args->count, 0);
496 LLVMValueRef main_function =
497 LLVMAddFunction(module, "main", main_function_type);
498 main_function_body =
499 LLVMAppendBasicBlockInContext(ctx, main_function, "main_body");
500 LLVMPositionBuilderAtEnd(builder, main_function_body);
501
502 LLVMSetFunctionCallConv(main_function, RADEON_LLVM_AMDGPU_CS);
503 for (unsigned i = 0; i < args->sgpr_count; ++i) {
504 LLVMValueRef P = LLVMGetParam(main_function, i);
505
506 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_INREG);
507
508 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
509 ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_NOALIAS);
510 ac_add_attr_dereferenceable(P, UINT64_MAX);
511 }
512 }
513
514 if (options->address32_hi) {
515 ac_llvm_add_target_dep_function_attr(main_function,
516 "amdgpu-32bit-address-high-bits",
517 options->address32_hi);
518 }
519
520 ac_llvm_set_workgroup_size(main_function, max_workgroup_size);
521
522 if (options->unsafe_math) {
523 /* These were copied from some LLVM test. */
524 LLVMAddTargetDependentFunctionAttr(main_function,
525 "less-precise-fpmad",
526 "true");
527 LLVMAddTargetDependentFunctionAttr(main_function,
528 "no-infs-fp-math",
529 "true");
530 LLVMAddTargetDependentFunctionAttr(main_function,
531 "no-nans-fp-math",
532 "true");
533 LLVMAddTargetDependentFunctionAttr(main_function,
534 "unsafe-fp-math",
535 "true");
536 LLVMAddTargetDependentFunctionAttr(main_function,
537 "no-signed-zeros-fp-math",
538 "true");
539 }
540 return main_function;
541 }
542
543
544 static void
545 set_loc(struct radv_userdata_info *ud_info, uint8_t *sgpr_idx,
546 uint8_t num_sgprs)
547 {
548 ud_info->sgpr_idx = *sgpr_idx;
549 ud_info->num_sgprs = num_sgprs;
550 *sgpr_idx += num_sgprs;
551 }
552
553 static void
554 set_loc_shader(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx,
555 uint8_t num_sgprs)
556 {
557 struct radv_userdata_info *ud_info =
558 &ctx->shader_info->user_sgprs_locs.shader_data[idx];
559 assert(ud_info);
560
561 set_loc(ud_info, sgpr_idx, num_sgprs);
562 }
563
564 static void
565 set_loc_shader_ptr(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx)
566 {
567 bool use_32bit_pointers = idx != AC_UD_SCRATCH_RING_OFFSETS;
568
569 set_loc_shader(ctx, idx, sgpr_idx, use_32bit_pointers ? 1 : 2);
570 }
571
572 static void
573 set_loc_desc(struct radv_shader_context *ctx, int idx, uint8_t *sgpr_idx)
574 {
575 struct radv_userdata_locations *locs =
576 &ctx->shader_info->user_sgprs_locs;
577 struct radv_userdata_info *ud_info = &locs->descriptor_sets[idx];
578 assert(ud_info);
579
580 set_loc(ud_info, sgpr_idx, 1);
581
582 locs->descriptor_sets_enabled |= 1 << idx;
583 }
584
585 struct user_sgpr_info {
586 bool need_ring_offsets;
587 bool indirect_all_descriptor_sets;
588 uint8_t remaining_sgprs;
589 };
590
591 static bool needs_view_index_sgpr(struct radv_shader_context *ctx,
592 gl_shader_stage stage)
593 {
594 switch (stage) {
595 case MESA_SHADER_VERTEX:
596 if (ctx->shader_info->info.needs_multiview_view_index ||
597 (!ctx->options->key.vs.as_es && !ctx->options->key.vs.as_ls && ctx->options->key.has_multiview_view_index))
598 return true;
599 break;
600 case MESA_SHADER_TESS_EVAL:
601 if (ctx->shader_info->info.needs_multiview_view_index || (!ctx->options->key.tes.as_es && ctx->options->key.has_multiview_view_index))
602 return true;
603 break;
604 case MESA_SHADER_GEOMETRY:
605 case MESA_SHADER_TESS_CTRL:
606 if (ctx->shader_info->info.needs_multiview_view_index)
607 return true;
608 break;
609 default:
610 break;
611 }
612 return false;
613 }
614
615 static uint8_t
616 count_vs_user_sgprs(struct radv_shader_context *ctx)
617 {
618 uint8_t count = 0;
619
620 if (ctx->shader_info->info.vs.has_vertex_buffers)
621 count++;
622 count += ctx->shader_info->info.vs.needs_draw_id ? 3 : 2;
623
624 return count;
625 }
626
627 static void allocate_inline_push_consts(struct radv_shader_context *ctx,
628 struct user_sgpr_info *user_sgpr_info)
629 {
630 uint8_t remaining_sgprs = user_sgpr_info->remaining_sgprs;
631
632 /* Only supported if shaders use push constants. */
633 if (ctx->shader_info->info.min_push_constant_used == UINT8_MAX)
634 return;
635
636 /* Only supported if shaders don't have indirect push constants. */
637 if (ctx->shader_info->info.has_indirect_push_constants)
638 return;
639
640 /* Only supported for 32-bit push constants. */
641 if (!ctx->shader_info->info.has_only_32bit_push_constants)
642 return;
643
644 uint8_t num_push_consts =
645 (ctx->shader_info->info.max_push_constant_used -
646 ctx->shader_info->info.min_push_constant_used) / 4;
647
648 /* Check if the number of user SGPRs is large enough. */
649 if (num_push_consts < remaining_sgprs) {
650 ctx->shader_info->info.num_inline_push_consts = num_push_consts;
651 } else {
652 ctx->shader_info->info.num_inline_push_consts = remaining_sgprs;
653 }
654
655 /* Clamp to the maximum number of allowed inlined push constants. */
656 if (ctx->shader_info->info.num_inline_push_consts > AC_MAX_INLINE_PUSH_CONSTS)
657 ctx->shader_info->info.num_inline_push_consts = AC_MAX_INLINE_PUSH_CONSTS;
658
659 if (ctx->shader_info->info.num_inline_push_consts == num_push_consts &&
660 !ctx->shader_info->info.loads_dynamic_offsets) {
661 /* Disable the default push constants path if all constants are
662 * inlined and if shaders don't use dynamic descriptors.
663 */
664 ctx->shader_info->info.loads_push_constants = false;
665 }
666
667 ctx->shader_info->info.base_inline_push_consts =
668 ctx->shader_info->info.min_push_constant_used / 4;
669 }
670
671 static void allocate_user_sgprs(struct radv_shader_context *ctx,
672 gl_shader_stage stage,
673 bool has_previous_stage,
674 gl_shader_stage previous_stage,
675 bool needs_view_index,
676 struct user_sgpr_info *user_sgpr_info)
677 {
678 uint8_t user_sgpr_count = 0;
679
680 memset(user_sgpr_info, 0, sizeof(struct user_sgpr_info));
681
682 /* until we sort out scratch/global buffers always assign ring offsets for gs/vs/es */
683 if (stage == MESA_SHADER_GEOMETRY ||
684 stage == MESA_SHADER_VERTEX ||
685 stage == MESA_SHADER_TESS_CTRL ||
686 stage == MESA_SHADER_TESS_EVAL ||
687 ctx->is_gs_copy_shader)
688 user_sgpr_info->need_ring_offsets = true;
689
690 if (stage == MESA_SHADER_FRAGMENT &&
691 ctx->shader_info->info.ps.needs_sample_positions)
692 user_sgpr_info->need_ring_offsets = true;
693
694 /* 2 user sgprs will nearly always be allocated for scratch/rings */
695 if (ctx->options->supports_spill || user_sgpr_info->need_ring_offsets) {
696 user_sgpr_count += 2;
697 }
698
699 switch (stage) {
700 case MESA_SHADER_COMPUTE:
701 if (ctx->shader_info->info.cs.uses_grid_size)
702 user_sgpr_count += 3;
703 break;
704 case MESA_SHADER_FRAGMENT:
705 user_sgpr_count += ctx->shader_info->info.ps.needs_sample_positions;
706 break;
707 case MESA_SHADER_VERTEX:
708 if (!ctx->is_gs_copy_shader)
709 user_sgpr_count += count_vs_user_sgprs(ctx);
710 break;
711 case MESA_SHADER_TESS_CTRL:
712 if (has_previous_stage) {
713 if (previous_stage == MESA_SHADER_VERTEX)
714 user_sgpr_count += count_vs_user_sgprs(ctx);
715 }
716 break;
717 case MESA_SHADER_TESS_EVAL:
718 break;
719 case MESA_SHADER_GEOMETRY:
720 if (has_previous_stage) {
721 if (previous_stage == MESA_SHADER_VERTEX) {
722 user_sgpr_count += count_vs_user_sgprs(ctx);
723 }
724 }
725 break;
726 default:
727 break;
728 }
729
730 if (needs_view_index)
731 user_sgpr_count++;
732
733 if (ctx->shader_info->info.loads_push_constants)
734 user_sgpr_count++;
735
736 if (ctx->streamout_buffers)
737 user_sgpr_count++;
738
739 uint32_t available_sgprs = ctx->options->chip_class >= GFX9 && stage != MESA_SHADER_COMPUTE ? 32 : 16;
740 uint32_t remaining_sgprs = available_sgprs - user_sgpr_count;
741 uint32_t num_desc_set =
742 util_bitcount(ctx->shader_info->info.desc_set_used_mask);
743
744 if (remaining_sgprs < num_desc_set) {
745 user_sgpr_info->indirect_all_descriptor_sets = true;
746 user_sgpr_info->remaining_sgprs = remaining_sgprs - 1;
747 } else {
748 user_sgpr_info->remaining_sgprs = remaining_sgprs - num_desc_set;
749 }
750
751 allocate_inline_push_consts(ctx, user_sgpr_info);
752 }
753
754 static void
755 declare_global_input_sgprs(struct radv_shader_context *ctx,
756 const struct user_sgpr_info *user_sgpr_info,
757 struct arg_info *args,
758 LLVMValueRef *desc_sets)
759 {
760 LLVMTypeRef type = ac_array_in_const32_addr_space(ctx->ac.i8);
761
762 /* 1 for each descriptor set */
763 if (!user_sgpr_info->indirect_all_descriptor_sets) {
764 uint32_t mask = ctx->shader_info->info.desc_set_used_mask;
765
766 while (mask) {
767 int i = u_bit_scan(&mask);
768
769 add_arg(args, ARG_SGPR, type, &ctx->descriptor_sets[i]);
770 }
771 } else {
772 add_arg(args, ARG_SGPR, ac_array_in_const32_addr_space(type),
773 desc_sets);
774 }
775
776 if (ctx->shader_info->info.loads_push_constants) {
777 /* 1 for push constants and dynamic descriptors */
778 add_arg(args, ARG_SGPR, type, &ctx->abi.push_constants);
779 }
780
781 for (unsigned i = 0; i < ctx->shader_info->info.num_inline_push_consts; i++) {
782 add_arg(args, ARG_SGPR, ctx->ac.i32,
783 &ctx->abi.inline_push_consts[i]);
784 }
785 ctx->abi.num_inline_push_consts = ctx->shader_info->info.num_inline_push_consts;
786 ctx->abi.base_inline_push_consts = ctx->shader_info->info.base_inline_push_consts;
787
788 if (ctx->shader_info->info.so.num_outputs) {
789 add_arg(args, ARG_SGPR,
790 ac_array_in_const32_addr_space(ctx->ac.v4i32),
791 &ctx->streamout_buffers);
792 }
793 }
794
795 static void
796 declare_vs_specific_input_sgprs(struct radv_shader_context *ctx,
797 gl_shader_stage stage,
798 bool has_previous_stage,
799 gl_shader_stage previous_stage,
800 struct arg_info *args)
801 {
802 if (!ctx->is_gs_copy_shader &&
803 (stage == MESA_SHADER_VERTEX ||
804 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
805 if (ctx->shader_info->info.vs.has_vertex_buffers) {
806 add_arg(args, ARG_SGPR,
807 ac_array_in_const32_addr_space(ctx->ac.v4i32),
808 &ctx->vertex_buffers);
809 }
810 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.base_vertex);
811 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.start_instance);
812 if (ctx->shader_info->info.vs.needs_draw_id) {
813 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->abi.draw_id);
814 }
815 }
816 }
817
818 static void
819 declare_vs_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
820 {
821 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.vertex_id);
822 if (!ctx->is_gs_copy_shader) {
823 if (ctx->options->key.vs.as_ls) {
824 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->rel_auto_id);
825 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
826 } else {
827 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.instance_id);
828 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->vs_prim_id);
829 }
830 add_arg(args, ARG_VGPR, ctx->ac.i32, NULL); /* unused */
831 }
832 }
833
834 static void
835 declare_streamout_sgprs(struct radv_shader_context *ctx, gl_shader_stage stage,
836 struct arg_info *args)
837 {
838 int i;
839
840 /* Streamout SGPRs. */
841 if (ctx->shader_info->info.so.num_outputs) {
842 assert(stage == MESA_SHADER_VERTEX ||
843 stage == MESA_SHADER_TESS_EVAL);
844
845 if (stage != MESA_SHADER_TESS_EVAL) {
846 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_config);
847 } else {
848 args->assign[args->count - 1] = &ctx->streamout_config;
849 args->types[args->count - 1] = ctx->ac.i32;
850 }
851
852 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_write_idx);
853 }
854
855 /* A streamout buffer offset is loaded if the stride is non-zero. */
856 for (i = 0; i < 4; i++) {
857 if (!ctx->shader_info->info.so.strides[i])
858 continue;
859
860 add_arg(args, ARG_SGPR, ctx->ac.i32, &ctx->streamout_offset[i]);
861 }
862 }
863
864 static void
865 declare_tes_input_vgprs(struct radv_shader_context *ctx, struct arg_info *args)
866 {
867 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_u);
868 add_arg(args, ARG_VGPR, ctx->ac.f32, &ctx->tes_v);
869 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->tes_rel_patch_id);
870 add_arg(args, ARG_VGPR, ctx->ac.i32, &ctx->abi.tes_patch_id);
871 }
872
873 static void
874 set_global_input_locs(struct radv_shader_context *ctx,
875 const struct user_sgpr_info *user_sgpr_info,
876 LLVMValueRef desc_sets, uint8_t *user_sgpr_idx)
877 {
878 uint32_t mask = ctx->shader_info->info.desc_set_used_mask;
879
880 if (!user_sgpr_info->indirect_all_descriptor_sets) {
881 while (mask) {
882 int i = u_bit_scan(&mask);
883
884 set_loc_desc(ctx, i, user_sgpr_idx);
885 }
886 } else {
887 set_loc_shader_ptr(ctx, AC_UD_INDIRECT_DESCRIPTOR_SETS,
888 user_sgpr_idx);
889
890 while (mask) {
891 int i = u_bit_scan(&mask);
892
893 ctx->descriptor_sets[i] =
894 ac_build_load_to_sgpr(&ctx->ac, desc_sets,
895 LLVMConstInt(ctx->ac.i32, i, false));
896
897 }
898
899 ctx->shader_info->need_indirect_descriptor_sets = true;
900 }
901
902 if (ctx->shader_info->info.loads_push_constants) {
903 set_loc_shader_ptr(ctx, AC_UD_PUSH_CONSTANTS, user_sgpr_idx);
904 }
905
906 if (ctx->shader_info->info.num_inline_push_consts) {
907 set_loc_shader(ctx, AC_UD_INLINE_PUSH_CONSTANTS, user_sgpr_idx,
908 ctx->shader_info->info.num_inline_push_consts);
909 }
910
911 if (ctx->streamout_buffers) {
912 set_loc_shader_ptr(ctx, AC_UD_STREAMOUT_BUFFERS,
913 user_sgpr_idx);
914 }
915 }
916
917 static void
918 set_vs_specific_input_locs(struct radv_shader_context *ctx,
919 gl_shader_stage stage, bool has_previous_stage,
920 gl_shader_stage previous_stage,
921 uint8_t *user_sgpr_idx)
922 {
923 if (!ctx->is_gs_copy_shader &&
924 (stage == MESA_SHADER_VERTEX ||
925 (has_previous_stage && previous_stage == MESA_SHADER_VERTEX))) {
926 if (ctx->shader_info->info.vs.has_vertex_buffers) {
927 set_loc_shader_ptr(ctx, AC_UD_VS_VERTEX_BUFFERS,
928 user_sgpr_idx);
929 }
930
931 unsigned vs_num = 2;
932 if (ctx->shader_info->info.vs.needs_draw_id)
933 vs_num++;
934
935 set_loc_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE,
936 user_sgpr_idx, vs_num);
937 }
938 }
939
940 static void set_llvm_calling_convention(LLVMValueRef func,
941 gl_shader_stage stage)
942 {
943 enum radeon_llvm_calling_convention calling_conv;
944
945 switch (stage) {
946 case MESA_SHADER_VERTEX:
947 case MESA_SHADER_TESS_EVAL:
948 calling_conv = RADEON_LLVM_AMDGPU_VS;
949 break;
950 case MESA_SHADER_GEOMETRY:
951 calling_conv = RADEON_LLVM_AMDGPU_GS;
952 break;
953 case MESA_SHADER_TESS_CTRL:
954 calling_conv = RADEON_LLVM_AMDGPU_HS;
955 break;
956 case MESA_SHADER_FRAGMENT:
957 calling_conv = RADEON_LLVM_AMDGPU_PS;
958 break;
959 case MESA_SHADER_COMPUTE:
960 calling_conv = RADEON_LLVM_AMDGPU_CS;
961 break;
962 default:
963 unreachable("Unhandle shader type");
964 }
965
966 LLVMSetFunctionCallConv(func, calling_conv);
967 }
968
969 static void create_function(struct radv_shader_context *ctx,
970 gl_shader_stage stage,
971 bool has_previous_stage,
972 gl_shader_stage previous_stage)
973 {
974 uint8_t user_sgpr_idx;
975 struct user_sgpr_info user_sgpr_info;
976 struct arg_info args = {};
977 LLVMValueRef desc_sets;
978 bool needs_view_index = needs_view_index_sgpr(ctx, stage);
979 allocate_user_sgprs(ctx, stage, has_previous_stage,
980 previous_stage, needs_view_index, &user_sgpr_info);
981
982 if (user_sgpr_info.need_ring_offsets && !ctx->options->supports_spill) {
983 add_arg(&args, ARG_SGPR, ac_array_in_const_addr_space(ctx->ac.v4i32),
984 &ctx->ring_offsets);
985 }
986
987 switch (stage) {
988 case MESA_SHADER_COMPUTE:
989 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
990 &desc_sets);
991
992 if (ctx->shader_info->info.cs.uses_grid_size) {
993 add_arg(&args, ARG_SGPR, ctx->ac.v3i32,
994 &ctx->abi.num_work_groups);
995 }
996
997 for (int i = 0; i < 3; i++) {
998 ctx->abi.workgroup_ids[i] = NULL;
999 if (ctx->shader_info->info.cs.uses_block_id[i]) {
1000 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1001 &ctx->abi.workgroup_ids[i]);
1002 }
1003 }
1004
1005 if (ctx->shader_info->info.cs.uses_local_invocation_idx)
1006 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.tg_size);
1007 add_arg(&args, ARG_VGPR, ctx->ac.v3i32,
1008 &ctx->abi.local_invocation_ids);
1009 break;
1010 case MESA_SHADER_VERTEX:
1011 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1012 &desc_sets);
1013
1014 declare_vs_specific_input_sgprs(ctx, stage, has_previous_stage,
1015 previous_stage, &args);
1016
1017 if (needs_view_index)
1018 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1019 &ctx->abi.view_index);
1020 if (ctx->options->key.vs.as_es) {
1021 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1022 &ctx->es2gs_offset);
1023 } else if (ctx->options->key.vs.as_ls) {
1024 /* no extra parameters */
1025 } else {
1026 declare_streamout_sgprs(ctx, stage, &args);
1027 }
1028
1029 declare_vs_input_vgprs(ctx, &args);
1030 break;
1031 case MESA_SHADER_TESS_CTRL:
1032 if (has_previous_stage) {
1033 // First 6 system regs
1034 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1035 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1036 &ctx->merged_wave_info);
1037 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1038 &ctx->tess_factor_offset);
1039
1040 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
1041 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1042 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1043
1044 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1045 &desc_sets);
1046
1047 declare_vs_specific_input_sgprs(ctx, stage,
1048 has_previous_stage,
1049 previous_stage, &args);
1050
1051 if (needs_view_index)
1052 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1053 &ctx->abi.view_index);
1054
1055 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1056 &ctx->abi.tcs_patch_id);
1057 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1058 &ctx->abi.tcs_rel_ids);
1059
1060 declare_vs_input_vgprs(ctx, &args);
1061 } else {
1062 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1063 &desc_sets);
1064
1065 if (needs_view_index)
1066 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1067 &ctx->abi.view_index);
1068
1069 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1070 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1071 &ctx->tess_factor_offset);
1072 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1073 &ctx->abi.tcs_patch_id);
1074 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1075 &ctx->abi.tcs_rel_ids);
1076 }
1077 break;
1078 case MESA_SHADER_TESS_EVAL:
1079 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1080 &desc_sets);
1081
1082 if (needs_view_index)
1083 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1084 &ctx->abi.view_index);
1085
1086 if (ctx->options->key.tes.as_es) {
1087 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1088 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
1089 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1090 &ctx->es2gs_offset);
1091 } else {
1092 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL);
1093 declare_streamout_sgprs(ctx, stage, &args);
1094 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1095 }
1096 declare_tes_input_vgprs(ctx, &args);
1097 break;
1098 case MESA_SHADER_GEOMETRY:
1099 if (has_previous_stage) {
1100 // First 6 system regs
1101 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1102 &ctx->gs2vs_offset);
1103 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1104 &ctx->merged_wave_info);
1105 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->oc_lds);
1106
1107 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // scratch offset
1108 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1109 add_arg(&args, ARG_SGPR, ctx->ac.i32, NULL); // unknown
1110
1111 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1112 &desc_sets);
1113
1114 if (previous_stage != MESA_SHADER_TESS_EVAL) {
1115 declare_vs_specific_input_sgprs(ctx, stage,
1116 has_previous_stage,
1117 previous_stage,
1118 &args);
1119 }
1120
1121 if (needs_view_index)
1122 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1123 &ctx->abi.view_index);
1124
1125 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1126 &ctx->gs_vtx_offset[0]);
1127 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1128 &ctx->gs_vtx_offset[2]);
1129 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1130 &ctx->abi.gs_prim_id);
1131 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1132 &ctx->abi.gs_invocation_id);
1133 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1134 &ctx->gs_vtx_offset[4]);
1135
1136 if (previous_stage == MESA_SHADER_VERTEX) {
1137 declare_vs_input_vgprs(ctx, &args);
1138 } else {
1139 declare_tes_input_vgprs(ctx, &args);
1140 }
1141 } else {
1142 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1143 &desc_sets);
1144
1145 if (needs_view_index)
1146 add_arg(&args, ARG_SGPR, ctx->ac.i32,
1147 &ctx->abi.view_index);
1148
1149 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs2vs_offset);
1150 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->gs_wave_id);
1151 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1152 &ctx->gs_vtx_offset[0]);
1153 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1154 &ctx->gs_vtx_offset[1]);
1155 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1156 &ctx->abi.gs_prim_id);
1157 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1158 &ctx->gs_vtx_offset[2]);
1159 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1160 &ctx->gs_vtx_offset[3]);
1161 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1162 &ctx->gs_vtx_offset[4]);
1163 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1164 &ctx->gs_vtx_offset[5]);
1165 add_arg(&args, ARG_VGPR, ctx->ac.i32,
1166 &ctx->abi.gs_invocation_id);
1167 }
1168 break;
1169 case MESA_SHADER_FRAGMENT:
1170 declare_global_input_sgprs(ctx, &user_sgpr_info, &args,
1171 &desc_sets);
1172
1173 add_arg(&args, ARG_SGPR, ctx->ac.i32, &ctx->abi.prim_mask);
1174 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_sample);
1175 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_center);
1176 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->persp_centroid);
1177 add_arg(&args, ARG_VGPR, ctx->ac.v3i32, NULL); /* persp pull model */
1178 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_sample);
1179 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_center);
1180 add_arg(&args, ARG_VGPR, ctx->ac.v2i32, &ctx->linear_centroid);
1181 add_arg(&args, ARG_VGPR, ctx->ac.f32, NULL); /* line stipple tex */
1182 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[0]);
1183 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[1]);
1184 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[2]);
1185 add_arg(&args, ARG_VGPR, ctx->ac.f32, &ctx->abi.frag_pos[3]);
1186 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.front_face);
1187 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.ancillary);
1188 add_arg(&args, ARG_VGPR, ctx->ac.i32, &ctx->abi.sample_coverage);
1189 add_arg(&args, ARG_VGPR, ctx->ac.i32, NULL); /* fixed pt */
1190 break;
1191 default:
1192 unreachable("Shader stage not implemented");
1193 }
1194
1195 ctx->main_function = create_llvm_function(
1196 ctx->context, ctx->ac.module, ctx->ac.builder, NULL, 0, &args,
1197 ctx->max_workgroup_size, ctx->options);
1198 set_llvm_calling_convention(ctx->main_function, stage);
1199
1200
1201 ctx->shader_info->num_input_vgprs = 0;
1202 ctx->shader_info->num_input_sgprs = ctx->options->supports_spill ? 2 : 0;
1203
1204 ctx->shader_info->num_input_sgprs += args.num_sgprs_used;
1205
1206 if (ctx->stage != MESA_SHADER_FRAGMENT)
1207 ctx->shader_info->num_input_vgprs = args.num_vgprs_used;
1208
1209 assign_arguments(ctx->main_function, &args);
1210
1211 user_sgpr_idx = 0;
1212
1213 if (ctx->options->supports_spill || user_sgpr_info.need_ring_offsets) {
1214 set_loc_shader_ptr(ctx, AC_UD_SCRATCH_RING_OFFSETS,
1215 &user_sgpr_idx);
1216 if (ctx->options->supports_spill) {
1217 ctx->ring_offsets = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.implicit.buffer.ptr",
1218 LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_CONST),
1219 NULL, 0, AC_FUNC_ATTR_READNONE);
1220 ctx->ring_offsets = LLVMBuildBitCast(ctx->ac.builder, ctx->ring_offsets,
1221 ac_array_in_const_addr_space(ctx->ac.v4i32), "");
1222 }
1223 }
1224
1225 /* For merged shaders the user SGPRs start at 8, with 8 system SGPRs in front (including
1226 * the rw_buffers at s0/s1. With user SGPR0 = s8, lets restart the count from 0 */
1227 if (has_previous_stage)
1228 user_sgpr_idx = 0;
1229
1230 set_global_input_locs(ctx, &user_sgpr_info, desc_sets, &user_sgpr_idx);
1231
1232 switch (stage) {
1233 case MESA_SHADER_COMPUTE:
1234 if (ctx->shader_info->info.cs.uses_grid_size) {
1235 set_loc_shader(ctx, AC_UD_CS_GRID_SIZE,
1236 &user_sgpr_idx, 3);
1237 }
1238 break;
1239 case MESA_SHADER_VERTEX:
1240 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1241 previous_stage, &user_sgpr_idx);
1242 if (ctx->abi.view_index)
1243 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1244 break;
1245 case MESA_SHADER_TESS_CTRL:
1246 set_vs_specific_input_locs(ctx, stage, has_previous_stage,
1247 previous_stage, &user_sgpr_idx);
1248 if (ctx->abi.view_index)
1249 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1250 break;
1251 case MESA_SHADER_TESS_EVAL:
1252 if (ctx->abi.view_index)
1253 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1254 break;
1255 case MESA_SHADER_GEOMETRY:
1256 if (has_previous_stage) {
1257 if (previous_stage == MESA_SHADER_VERTEX)
1258 set_vs_specific_input_locs(ctx, stage,
1259 has_previous_stage,
1260 previous_stage,
1261 &user_sgpr_idx);
1262 }
1263 if (ctx->abi.view_index)
1264 set_loc_shader(ctx, AC_UD_VIEW_INDEX, &user_sgpr_idx, 1);
1265 break;
1266 case MESA_SHADER_FRAGMENT:
1267 break;
1268 default:
1269 unreachable("Shader stage not implemented");
1270 }
1271
1272 if (stage == MESA_SHADER_TESS_CTRL ||
1273 (stage == MESA_SHADER_VERTEX && ctx->options->key.vs.as_ls) ||
1274 /* GFX9 has the ESGS ring buffer in LDS. */
1275 (stage == MESA_SHADER_GEOMETRY && has_previous_stage)) {
1276 ac_declare_lds_as_pointer(&ctx->ac);
1277 }
1278
1279 ctx->shader_info->num_user_sgprs = user_sgpr_idx;
1280 }
1281
1282
1283 static LLVMValueRef
1284 radv_load_resource(struct ac_shader_abi *abi, LLVMValueRef index,
1285 unsigned desc_set, unsigned binding)
1286 {
1287 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1288 LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set];
1289 struct radv_pipeline_layout *pipeline_layout = ctx->options->layout;
1290 struct radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout;
1291 unsigned base_offset = layout->binding[binding].offset;
1292 LLVMValueRef offset, stride;
1293
1294 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
1295 layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) {
1296 unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start +
1297 layout->binding[binding].dynamic_offset_offset;
1298 desc_ptr = ctx->abi.push_constants;
1299 base_offset = pipeline_layout->push_constant_size + 16 * idx;
1300 stride = LLVMConstInt(ctx->ac.i32, 16, false);
1301 } else
1302 stride = LLVMConstInt(ctx->ac.i32, layout->binding[binding].size, false);
1303
1304 offset = LLVMConstInt(ctx->ac.i32, base_offset, false);
1305
1306 if (layout->binding[binding].type != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
1307 offset = ac_build_imad(&ctx->ac, index, stride, offset);
1308 }
1309
1310 desc_ptr = LLVMBuildGEP(ctx->ac.builder, desc_ptr, &offset, 1, "");
1311 desc_ptr = ac_cast_ptr(&ctx->ac, desc_ptr, ctx->ac.v4i32);
1312 LLVMSetMetadata(desc_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1313
1314 if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) {
1315 uint32_t desc_type = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1316 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1317 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1318 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
1319 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1320 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
1321
1322 LLVMValueRef desc_components[4] = {
1323 LLVMBuildPtrToInt(ctx->ac.builder, desc_ptr, ctx->ac.intptr, ""),
1324 LLVMConstInt(ctx->ac.i32, S_008F04_BASE_ADDRESS_HI(ctx->options->address32_hi), false),
1325 /* High limit to support variable sizes. */
1326 LLVMConstInt(ctx->ac.i32, 0xffffffff, false),
1327 LLVMConstInt(ctx->ac.i32, desc_type, false),
1328 };
1329
1330 return ac_build_gather_values(&ctx->ac, desc_components, 4);
1331 }
1332
1333 return desc_ptr;
1334 }
1335
1336
1337 /* The offchip buffer layout for TCS->TES is
1338 *
1339 * - attribute 0 of patch 0 vertex 0
1340 * - attribute 0 of patch 0 vertex 1
1341 * - attribute 0 of patch 0 vertex 2
1342 * ...
1343 * - attribute 0 of patch 1 vertex 0
1344 * - attribute 0 of patch 1 vertex 1
1345 * ...
1346 * - attribute 1 of patch 0 vertex 0
1347 * - attribute 1 of patch 0 vertex 1
1348 * ...
1349 * - per patch attribute 0 of patch 0
1350 * - per patch attribute 0 of patch 1
1351 * ...
1352 *
1353 * Note that every attribute has 4 components.
1354 */
1355 static LLVMValueRef get_non_vertex_index_offset(struct radv_shader_context *ctx)
1356 {
1357 uint32_t num_patches = ctx->tcs_num_patches;
1358 uint32_t num_tcs_outputs;
1359 if (ctx->stage == MESA_SHADER_TESS_CTRL)
1360 num_tcs_outputs = util_last_bit64(ctx->shader_info->info.tcs.outputs_written);
1361 else
1362 num_tcs_outputs = ctx->options->key.tes.tcs_num_outputs;
1363
1364 uint32_t output_vertex_size = num_tcs_outputs * 16;
1365 uint32_t pervertex_output_patch_size = ctx->tcs_vertices_per_patch * output_vertex_size;
1366
1367 return LLVMConstInt(ctx->ac.i32, pervertex_output_patch_size * num_patches, false);
1368 }
1369
1370 static LLVMValueRef calc_param_stride(struct radv_shader_context *ctx,
1371 LLVMValueRef vertex_index)
1372 {
1373 LLVMValueRef param_stride;
1374 if (vertex_index)
1375 param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_vertices_per_patch * ctx->tcs_num_patches, false);
1376 else
1377 param_stride = LLVMConstInt(ctx->ac.i32, ctx->tcs_num_patches, false);
1378 return param_stride;
1379 }
1380
1381 static LLVMValueRef get_tcs_tes_buffer_address(struct radv_shader_context *ctx,
1382 LLVMValueRef vertex_index,
1383 LLVMValueRef param_index)
1384 {
1385 LLVMValueRef base_addr;
1386 LLVMValueRef param_stride, constant16;
1387 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
1388 LLVMValueRef vertices_per_patch = LLVMConstInt(ctx->ac.i32, ctx->tcs_vertices_per_patch, false);
1389 constant16 = LLVMConstInt(ctx->ac.i32, 16, false);
1390 param_stride = calc_param_stride(ctx, vertex_index);
1391 if (vertex_index) {
1392 base_addr = ac_build_imad(&ctx->ac, rel_patch_id,
1393 vertices_per_patch, vertex_index);
1394 } else {
1395 base_addr = rel_patch_id;
1396 }
1397
1398 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1399 LLVMBuildMul(ctx->ac.builder, param_index,
1400 param_stride, ""), "");
1401
1402 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
1403
1404 if (!vertex_index) {
1405 LLVMValueRef patch_data_offset = get_non_vertex_index_offset(ctx);
1406
1407 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1408 patch_data_offset, "");
1409 }
1410 return base_addr;
1411 }
1412
1413 static LLVMValueRef get_tcs_tes_buffer_address_params(struct radv_shader_context *ctx,
1414 unsigned param,
1415 unsigned const_index,
1416 bool is_compact,
1417 LLVMValueRef vertex_index,
1418 LLVMValueRef indir_index)
1419 {
1420 LLVMValueRef param_index;
1421
1422 if (indir_index)
1423 param_index = LLVMBuildAdd(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, param, false),
1424 indir_index, "");
1425 else {
1426 if (const_index && !is_compact)
1427 param += const_index;
1428 param_index = LLVMConstInt(ctx->ac.i32, param, false);
1429 }
1430 return get_tcs_tes_buffer_address(ctx, vertex_index, param_index);
1431 }
1432
1433 static LLVMValueRef
1434 get_dw_address(struct radv_shader_context *ctx,
1435 LLVMValueRef dw_addr,
1436 unsigned param,
1437 unsigned const_index,
1438 bool compact_const_index,
1439 LLVMValueRef vertex_index,
1440 LLVMValueRef stride,
1441 LLVMValueRef indir_index)
1442
1443 {
1444
1445 if (vertex_index) {
1446 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1447 LLVMBuildMul(ctx->ac.builder,
1448 vertex_index,
1449 stride, ""), "");
1450 }
1451
1452 if (indir_index)
1453 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1454 LLVMBuildMul(ctx->ac.builder, indir_index,
1455 LLVMConstInt(ctx->ac.i32, 4, false), ""), "");
1456 else if (const_index && !compact_const_index)
1457 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1458 LLVMConstInt(ctx->ac.i32, const_index * 4, false), "");
1459
1460 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1461 LLVMConstInt(ctx->ac.i32, param * 4, false), "");
1462
1463 if (const_index && compact_const_index)
1464 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1465 LLVMConstInt(ctx->ac.i32, const_index, false), "");
1466 return dw_addr;
1467 }
1468
1469 static LLVMValueRef
1470 load_tcs_varyings(struct ac_shader_abi *abi,
1471 LLVMTypeRef type,
1472 LLVMValueRef vertex_index,
1473 LLVMValueRef indir_index,
1474 unsigned const_index,
1475 unsigned location,
1476 unsigned driver_location,
1477 unsigned component,
1478 unsigned num_components,
1479 bool is_patch,
1480 bool is_compact,
1481 bool load_input)
1482 {
1483 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1484 LLVMValueRef dw_addr, stride;
1485 LLVMValueRef value[4], result;
1486 unsigned param = shader_io_get_unique_index(location);
1487
1488 if (load_input) {
1489 uint32_t input_vertex_size = (ctx->tcs_num_inputs * 16) / 4;
1490 stride = LLVMConstInt(ctx->ac.i32, input_vertex_size, false);
1491 dw_addr = get_tcs_in_current_patch_offset(ctx);
1492 } else {
1493 if (!is_patch) {
1494 stride = get_tcs_out_vertex_stride(ctx);
1495 dw_addr = get_tcs_out_current_patch_offset(ctx);
1496 } else {
1497 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1498 stride = NULL;
1499 }
1500 }
1501
1502 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
1503 indir_index);
1504
1505 for (unsigned i = 0; i < num_components + component; i++) {
1506 value[i] = ac_lds_load(&ctx->ac, dw_addr);
1507 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1508 ctx->ac.i32_1, "");
1509 }
1510 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1511 return result;
1512 }
1513
1514 static void
1515 store_tcs_output(struct ac_shader_abi *abi,
1516 const nir_variable *var,
1517 LLVMValueRef vertex_index,
1518 LLVMValueRef param_index,
1519 unsigned const_index,
1520 LLVMValueRef src,
1521 unsigned writemask)
1522 {
1523 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1524 const unsigned location = var->data.location;
1525 unsigned component = var->data.location_frac;
1526 const bool is_patch = var->data.patch;
1527 const bool is_compact = var->data.compact;
1528 LLVMValueRef dw_addr;
1529 LLVMValueRef stride = NULL;
1530 LLVMValueRef buf_addr = NULL;
1531 unsigned param;
1532 bool store_lds = true;
1533
1534 if (is_patch) {
1535 if (!(ctx->tcs_patch_outputs_read & (1U << (location - VARYING_SLOT_PATCH0))))
1536 store_lds = false;
1537 } else {
1538 if (!(ctx->tcs_outputs_read & (1ULL << location)))
1539 store_lds = false;
1540 }
1541
1542 param = shader_io_get_unique_index(location);
1543 if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && is_compact) {
1544 const_index += component;
1545 component = 0;
1546
1547 if (const_index >= 4) {
1548 const_index -= 4;
1549 param++;
1550 }
1551 }
1552
1553 if (!is_patch) {
1554 stride = get_tcs_out_vertex_stride(ctx);
1555 dw_addr = get_tcs_out_current_patch_offset(ctx);
1556 } else {
1557 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1558 }
1559
1560 dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride,
1561 param_index);
1562 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact,
1563 vertex_index, param_index);
1564
1565 bool is_tess_factor = false;
1566 if (location == VARYING_SLOT_TESS_LEVEL_INNER ||
1567 location == VARYING_SLOT_TESS_LEVEL_OUTER)
1568 is_tess_factor = true;
1569
1570 unsigned base = is_compact ? const_index : 0;
1571 for (unsigned chan = 0; chan < 8; chan++) {
1572 if (!(writemask & (1 << chan)))
1573 continue;
1574 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1575 value = ac_to_integer(&ctx->ac, value);
1576 value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
1577
1578 if (store_lds || is_tess_factor) {
1579 LLVMValueRef dw_addr_chan =
1580 LLVMBuildAdd(ctx->ac.builder, dw_addr,
1581 LLVMConstInt(ctx->ac.i32, chan, false), "");
1582 ac_lds_store(&ctx->ac, dw_addr_chan, value);
1583 }
1584
1585 if (!is_tess_factor && writemask != 0xF)
1586 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, value, 1,
1587 buf_addr, ctx->oc_lds,
1588 4 * (base + chan), ac_glc, false);
1589 }
1590
1591 if (writemask == 0xF) {
1592 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, src, 4,
1593 buf_addr, ctx->oc_lds,
1594 (base * 4), ac_glc, false);
1595 }
1596 }
1597
1598 static LLVMValueRef
1599 load_tes_input(struct ac_shader_abi *abi,
1600 LLVMTypeRef type,
1601 LLVMValueRef vertex_index,
1602 LLVMValueRef param_index,
1603 unsigned const_index,
1604 unsigned location,
1605 unsigned driver_location,
1606 unsigned component,
1607 unsigned num_components,
1608 bool is_patch,
1609 bool is_compact,
1610 bool load_input)
1611 {
1612 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1613 LLVMValueRef buf_addr;
1614 LLVMValueRef result;
1615 unsigned param = shader_io_get_unique_index(location);
1616
1617 if ((location == VARYING_SLOT_CLIP_DIST0 || location == VARYING_SLOT_CLIP_DIST1) && is_compact) {
1618 const_index += component;
1619 component = 0;
1620 if (const_index >= 4) {
1621 const_index -= 4;
1622 param++;
1623 }
1624 }
1625
1626 buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index,
1627 is_compact, vertex_index, param_index);
1628
1629 LLVMValueRef comp_offset = LLVMConstInt(ctx->ac.i32, component * 4, false);
1630 buf_addr = LLVMBuildAdd(ctx->ac.builder, buf_addr, comp_offset, "");
1631
1632 result = ac_build_buffer_load(&ctx->ac, ctx->hs_ring_tess_offchip, num_components, NULL,
1633 buf_addr, ctx->oc_lds, is_compact ? (4 * const_index) : 0, ac_glc, true, false);
1634 result = ac_trim_vector(&ctx->ac, result, num_components);
1635 return result;
1636 }
1637
1638 static LLVMValueRef
1639 load_gs_input(struct ac_shader_abi *abi,
1640 unsigned location,
1641 unsigned driver_location,
1642 unsigned component,
1643 unsigned num_components,
1644 unsigned vertex_index,
1645 unsigned const_index,
1646 LLVMTypeRef type)
1647 {
1648 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1649 LLVMValueRef vtx_offset;
1650 unsigned param, vtx_offset_param;
1651 LLVMValueRef value[4], result;
1652
1653 vtx_offset_param = vertex_index;
1654 assert(vtx_offset_param < 6);
1655 vtx_offset = LLVMBuildMul(ctx->ac.builder, ctx->gs_vtx_offset[vtx_offset_param],
1656 LLVMConstInt(ctx->ac.i32, 4, false), "");
1657
1658 param = shader_io_get_unique_index(location);
1659
1660 for (unsigned i = component; i < num_components + component; i++) {
1661 if (ctx->ac.chip_class >= GFX9) {
1662 LLVMValueRef dw_addr = ctx->gs_vtx_offset[vtx_offset_param];
1663 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1664 LLVMConstInt(ctx->ac.i32, param * 4 + i + const_index, 0), "");
1665 value[i] = ac_lds_load(&ctx->ac, dw_addr);
1666 } else {
1667 LLVMValueRef soffset =
1668 LLVMConstInt(ctx->ac.i32,
1669 (param * 4 + i + const_index) * 256,
1670 false);
1671
1672 value[i] = ac_build_buffer_load(&ctx->ac,
1673 ctx->esgs_ring, 1,
1674 ctx->ac.i32_0,
1675 vtx_offset, soffset,
1676 0, ac_glc, true, false);
1677 }
1678
1679 if (ac_get_type_size(type) == 2) {
1680 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], ctx->ac.i32, "");
1681 value[i] = LLVMBuildTrunc(ctx->ac.builder, value[i], ctx->ac.i16, "");
1682 }
1683 value[i] = LLVMBuildBitCast(ctx->ac.builder, value[i], type, "");
1684 }
1685 result = ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1686 result = ac_to_integer(&ctx->ac, result);
1687 return result;
1688 }
1689
1690
1691 static void radv_emit_kill(struct ac_shader_abi *abi, LLVMValueRef visible)
1692 {
1693 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1694 ac_build_kill_if_false(&ctx->ac, visible);
1695 }
1696
1697 static LLVMValueRef lookup_interp_param(struct ac_shader_abi *abi,
1698 enum glsl_interp_mode interp, unsigned location)
1699 {
1700 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1701
1702 switch (interp) {
1703 case INTERP_MODE_FLAT:
1704 default:
1705 return NULL;
1706 case INTERP_MODE_SMOOTH:
1707 case INTERP_MODE_NONE:
1708 if (location == INTERP_CENTER)
1709 return ctx->persp_center;
1710 else if (location == INTERP_CENTROID)
1711 return ctx->persp_centroid;
1712 else if (location == INTERP_SAMPLE)
1713 return ctx->persp_sample;
1714 break;
1715 case INTERP_MODE_NOPERSPECTIVE:
1716 if (location == INTERP_CENTER)
1717 return ctx->linear_center;
1718 else if (location == INTERP_CENTROID)
1719 return ctx->linear_centroid;
1720 else if (location == INTERP_SAMPLE)
1721 return ctx->linear_sample;
1722 break;
1723 }
1724 return NULL;
1725 }
1726
1727 static uint32_t
1728 radv_get_sample_pos_offset(uint32_t num_samples)
1729 {
1730 uint32_t sample_pos_offset = 0;
1731
1732 switch (num_samples) {
1733 case 2:
1734 sample_pos_offset = 1;
1735 break;
1736 case 4:
1737 sample_pos_offset = 3;
1738 break;
1739 case 8:
1740 sample_pos_offset = 7;
1741 break;
1742 default:
1743 break;
1744 }
1745 return sample_pos_offset;
1746 }
1747
1748 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi,
1749 LLVMValueRef sample_id)
1750 {
1751 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1752
1753 LLVMValueRef result;
1754 LLVMValueRef index = LLVMConstInt(ctx->ac.i32, RING_PS_SAMPLE_POSITIONS, false);
1755 LLVMValueRef ptr = LLVMBuildGEP(ctx->ac.builder, ctx->ring_offsets, &index, 1, "");
1756
1757 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr,
1758 ac_array_in_const_addr_space(ctx->ac.v2f32), "");
1759
1760 uint32_t sample_pos_offset =
1761 radv_get_sample_pos_offset(ctx->options->key.fs.num_samples);
1762
1763 sample_id =
1764 LLVMBuildAdd(ctx->ac.builder, sample_id,
1765 LLVMConstInt(ctx->ac.i32, sample_pos_offset, false), "");
1766 result = ac_build_load_invariant(&ctx->ac, ptr, sample_id);
1767
1768 return result;
1769 }
1770
1771
1772 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
1773 {
1774 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1775 uint8_t log2_ps_iter_samples;
1776
1777 if (ctx->shader_info->info.ps.force_persample) {
1778 log2_ps_iter_samples =
1779 util_logbase2(ctx->options->key.fs.num_samples);
1780 } else {
1781 log2_ps_iter_samples = ctx->options->key.fs.log2_ps_iter_samples;
1782 }
1783
1784 /* The bit pattern matches that used by fixed function fragment
1785 * processing. */
1786 static const uint16_t ps_iter_masks[] = {
1787 0xffff, /* not used */
1788 0x5555,
1789 0x1111,
1790 0x0101,
1791 0x0001,
1792 };
1793 assert(log2_ps_iter_samples < ARRAY_SIZE(ps_iter_masks));
1794
1795 uint32_t ps_iter_mask = ps_iter_masks[log2_ps_iter_samples];
1796
1797 LLVMValueRef result, sample_id;
1798 sample_id = ac_unpack_param(&ctx->ac, abi->ancillary, 8, 4);
1799 sample_id = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->ac.i32, ps_iter_mask, false), sample_id, "");
1800 result = LLVMBuildAnd(ctx->ac.builder, sample_id, abi->sample_coverage, "");
1801 return result;
1802 }
1803
1804
1805 static void
1806 visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
1807 {
1808 LLVMValueRef gs_next_vertex;
1809 LLVMValueRef can_emit;
1810 unsigned offset = 0;
1811 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1812
1813 /* Write vertex attribute values to GSVS ring */
1814 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
1815 ctx->gs_next_vertex[stream],
1816 "");
1817
1818 /* If this thread has already emitted the declared maximum number of
1819 * vertices, kill it: excessive vertex emissions are not supposed to
1820 * have any effect, and GS threads have no externally observable
1821 * effects other than emitting vertices.
1822 */
1823 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
1824 LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
1825 ac_build_kill_if_false(&ctx->ac, can_emit);
1826
1827 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
1828 unsigned output_usage_mask =
1829 ctx->shader_info->info.gs.output_usage_mask[i];
1830 uint8_t output_stream =
1831 ctx->shader_info->info.gs.output_streams[i];
1832 LLVMValueRef *out_ptr = &addrs[i * 4];
1833 int length = util_last_bit(output_usage_mask);
1834
1835 if (!(ctx->output_mask & (1ull << i)) ||
1836 output_stream != stream)
1837 continue;
1838
1839 for (unsigned j = 0; j < length; j++) {
1840 if (!(output_usage_mask & (1 << j)))
1841 continue;
1842
1843 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
1844 out_ptr[j], "");
1845 LLVMValueRef voffset =
1846 LLVMConstInt(ctx->ac.i32, offset *
1847 ctx->gs_max_out_vertices, false);
1848
1849 offset++;
1850
1851 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
1852 voffset = LLVMBuildMul(ctx->ac.builder, voffset, LLVMConstInt(ctx->ac.i32, 4, false), "");
1853
1854 out_val = ac_to_integer(&ctx->ac, out_val);
1855 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
1856
1857 ac_build_buffer_store_dword(&ctx->ac,
1858 ctx->gsvs_ring[stream],
1859 out_val, 1,
1860 voffset, ctx->gs2vs_offset, 0,
1861 ac_glc | ac_slc, true);
1862 }
1863 }
1864
1865 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex,
1866 ctx->ac.i32_1, "");
1867 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
1868
1869 ac_build_sendmsg(&ctx->ac,
1870 AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
1871 ctx->gs_wave_id);
1872 }
1873
1874 static void
1875 visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
1876 {
1877 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1878 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
1879 }
1880
1881 static LLVMValueRef
1882 load_tess_coord(struct ac_shader_abi *abi)
1883 {
1884 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1885
1886 LLVMValueRef coord[4] = {
1887 ctx->tes_u,
1888 ctx->tes_v,
1889 ctx->ac.f32_0,
1890 ctx->ac.f32_0,
1891 };
1892
1893 if (ctx->tes_primitive_mode == GL_TRIANGLES)
1894 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
1895 LLVMBuildFAdd(ctx->ac.builder, coord[0], coord[1], ""), "");
1896
1897 return ac_build_gather_values(&ctx->ac, coord, 3);
1898 }
1899
1900 static LLVMValueRef
1901 load_patch_vertices_in(struct ac_shader_abi *abi)
1902 {
1903 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1904 return LLVMConstInt(ctx->ac.i32, ctx->options->key.tcs.input_vertices, false);
1905 }
1906
1907
1908 static LLVMValueRef radv_load_base_vertex(struct ac_shader_abi *abi)
1909 {
1910 return abi->base_vertex;
1911 }
1912
1913 static LLVMValueRef radv_load_ssbo(struct ac_shader_abi *abi,
1914 LLVMValueRef buffer_ptr, bool write)
1915 {
1916 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1917 LLVMValueRef result;
1918
1919 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1920
1921 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1922 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1923
1924 return result;
1925 }
1926
1927 static LLVMValueRef radv_load_ubo(struct ac_shader_abi *abi, LLVMValueRef buffer_ptr)
1928 {
1929 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1930 LLVMValueRef result;
1931
1932 if (LLVMGetTypeKind(LLVMTypeOf(buffer_ptr)) != LLVMPointerTypeKind) {
1933 /* Do not load the descriptor for inlined uniform blocks. */
1934 return buffer_ptr;
1935 }
1936
1937 LLVMSetMetadata(buffer_ptr, ctx->ac.uniform_md_kind, ctx->ac.empty_md);
1938
1939 result = LLVMBuildLoad(ctx->ac.builder, buffer_ptr, "");
1940 LLVMSetMetadata(result, ctx->ac.invariant_load_md_kind, ctx->ac.empty_md);
1941
1942 return result;
1943 }
1944
1945 static LLVMValueRef radv_get_sampler_desc(struct ac_shader_abi *abi,
1946 unsigned descriptor_set,
1947 unsigned base_index,
1948 unsigned constant_index,
1949 LLVMValueRef index,
1950 enum ac_descriptor_type desc_type,
1951 bool image, bool write,
1952 bool bindless)
1953 {
1954 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
1955 LLVMValueRef list = ctx->descriptor_sets[descriptor_set];
1956 struct radv_descriptor_set_layout *layout = ctx->options->layout->set[descriptor_set].layout;
1957 struct radv_descriptor_set_binding_layout *binding = layout->binding + base_index;
1958 unsigned offset = binding->offset;
1959 unsigned stride = binding->size;
1960 unsigned type_size;
1961 LLVMBuilderRef builder = ctx->ac.builder;
1962 LLVMTypeRef type;
1963
1964 assert(base_index < layout->binding_count);
1965
1966 switch (desc_type) {
1967 case AC_DESC_IMAGE:
1968 type = ctx->ac.v8i32;
1969 type_size = 32;
1970 break;
1971 case AC_DESC_FMASK:
1972 type = ctx->ac.v8i32;
1973 offset += 32;
1974 type_size = 32;
1975 break;
1976 case AC_DESC_SAMPLER:
1977 type = ctx->ac.v4i32;
1978 if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) {
1979 offset += radv_combined_image_descriptor_sampler_offset(binding);
1980 }
1981
1982 type_size = 16;
1983 break;
1984 case AC_DESC_BUFFER:
1985 type = ctx->ac.v4i32;
1986 type_size = 16;
1987 break;
1988 case AC_DESC_PLANE_0:
1989 case AC_DESC_PLANE_1:
1990 case AC_DESC_PLANE_2:
1991 type = ctx->ac.v8i32;
1992 type_size = 32;
1993 offset += 32 * (desc_type - AC_DESC_PLANE_0);
1994 break;
1995 default:
1996 unreachable("invalid desc_type\n");
1997 }
1998
1999 offset += constant_index * stride;
2000
2001 if (desc_type == AC_DESC_SAMPLER && binding->immutable_samplers_offset &&
2002 (!index || binding->immutable_samplers_equal)) {
2003 if (binding->immutable_samplers_equal)
2004 constant_index = 0;
2005
2006 const uint32_t *samplers = radv_immutable_samplers(layout, binding);
2007
2008 LLVMValueRef constants[] = {
2009 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 0], 0),
2010 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 1], 0),
2011 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 2], 0),
2012 LLVMConstInt(ctx->ac.i32, samplers[constant_index * 4 + 3], 0),
2013 };
2014 return ac_build_gather_values(&ctx->ac, constants, 4);
2015 }
2016
2017 assert(stride % type_size == 0);
2018
2019 LLVMValueRef adjusted_index = index;
2020 if (!adjusted_index)
2021 adjusted_index = ctx->ac.i32_0;
2022
2023 adjusted_index = LLVMBuildMul(builder, adjusted_index, LLVMConstInt(ctx->ac.i32, stride / type_size, 0), "");
2024
2025 LLVMValueRef val_offset = LLVMConstInt(ctx->ac.i32, offset, 0);
2026 list = LLVMBuildGEP(builder, list, &val_offset, 1, "");
2027 list = LLVMBuildPointerCast(builder, list,
2028 ac_array_in_const32_addr_space(type), "");
2029
2030 LLVMValueRef descriptor = ac_build_load_to_sgpr(&ctx->ac, list, adjusted_index);
2031
2032 /* 3 plane formats always have same size and format for plane 1 & 2, so
2033 * use the tail from plane 1 so that we can store only the first 16 bytes
2034 * of the last plane. */
2035 if (desc_type == AC_DESC_PLANE_2) {
2036 LLVMValueRef descriptor2 = radv_get_sampler_desc(abi, descriptor_set, base_index, constant_index, index, AC_DESC_PLANE_1,image, write, bindless);
2037
2038 LLVMValueRef components[8];
2039 for (unsigned i = 0; i < 4; ++i)
2040 components[i] = ac_llvm_extract_elem(&ctx->ac, descriptor, i);
2041
2042 for (unsigned i = 4; i < 8; ++i)
2043 components[i] = ac_llvm_extract_elem(&ctx->ac, descriptor2, i);
2044 descriptor = ac_build_gather_values(&ctx->ac, components, 8);
2045 }
2046
2047 return descriptor;
2048 }
2049
2050 /* For 2_10_10_10 formats the alpha is handled as unsigned by pre-vega HW.
2051 * so we may need to fix it up. */
2052 static LLVMValueRef
2053 adjust_vertex_fetch_alpha(struct radv_shader_context *ctx,
2054 unsigned adjustment,
2055 LLVMValueRef alpha)
2056 {
2057 if (adjustment == RADV_ALPHA_ADJUST_NONE)
2058 return alpha;
2059
2060 LLVMValueRef c30 = LLVMConstInt(ctx->ac.i32, 30, 0);
2061
2062 alpha = LLVMBuildBitCast(ctx->ac.builder, alpha, ctx->ac.f32, "");
2063
2064 if (adjustment == RADV_ALPHA_ADJUST_SSCALED)
2065 alpha = LLVMBuildFPToUI(ctx->ac.builder, alpha, ctx->ac.i32, "");
2066 else
2067 alpha = ac_to_integer(&ctx->ac, alpha);
2068
2069 /* For the integer-like cases, do a natural sign extension.
2070 *
2071 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
2072 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
2073 * exponent.
2074 */
2075 alpha = LLVMBuildShl(ctx->ac.builder, alpha,
2076 adjustment == RADV_ALPHA_ADJUST_SNORM ?
2077 LLVMConstInt(ctx->ac.i32, 7, 0) : c30, "");
2078 alpha = LLVMBuildAShr(ctx->ac.builder, alpha, c30, "");
2079
2080 /* Convert back to the right type. */
2081 if (adjustment == RADV_ALPHA_ADJUST_SNORM) {
2082 LLVMValueRef clamp;
2083 LLVMValueRef neg_one = LLVMConstReal(ctx->ac.f32, -1.0);
2084 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
2085 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, alpha, neg_one, "");
2086 alpha = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, alpha, "");
2087 } else if (adjustment == RADV_ALPHA_ADJUST_SSCALED) {
2088 alpha = LLVMBuildSIToFP(ctx->ac.builder, alpha, ctx->ac.f32, "");
2089 }
2090
2091 return LLVMBuildBitCast(ctx->ac.builder, alpha, ctx->ac.i32, "");
2092 }
2093
2094 static unsigned
2095 get_num_channels_from_data_format(unsigned data_format)
2096 {
2097 switch (data_format) {
2098 case V_008F0C_BUF_DATA_FORMAT_8:
2099 case V_008F0C_BUF_DATA_FORMAT_16:
2100 case V_008F0C_BUF_DATA_FORMAT_32:
2101 return 1;
2102 case V_008F0C_BUF_DATA_FORMAT_8_8:
2103 case V_008F0C_BUF_DATA_FORMAT_16_16:
2104 case V_008F0C_BUF_DATA_FORMAT_32_32:
2105 return 2;
2106 case V_008F0C_BUF_DATA_FORMAT_10_11_11:
2107 case V_008F0C_BUF_DATA_FORMAT_11_11_10:
2108 case V_008F0C_BUF_DATA_FORMAT_32_32_32:
2109 return 3;
2110 case V_008F0C_BUF_DATA_FORMAT_8_8_8_8:
2111 case V_008F0C_BUF_DATA_FORMAT_10_10_10_2:
2112 case V_008F0C_BUF_DATA_FORMAT_2_10_10_10:
2113 case V_008F0C_BUF_DATA_FORMAT_16_16_16_16:
2114 case V_008F0C_BUF_DATA_FORMAT_32_32_32_32:
2115 return 4;
2116 default:
2117 break;
2118 }
2119
2120 return 4;
2121 }
2122
2123 static LLVMValueRef
2124 radv_fixup_vertex_input_fetches(struct radv_shader_context *ctx,
2125 LLVMValueRef value,
2126 unsigned num_channels,
2127 bool is_float)
2128 {
2129 LLVMValueRef zero = is_float ? ctx->ac.f32_0 : ctx->ac.i32_0;
2130 LLVMValueRef one = is_float ? ctx->ac.f32_1 : ctx->ac.i32_1;
2131 LLVMValueRef chan[4];
2132
2133 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMVectorTypeKind) {
2134 unsigned vec_size = LLVMGetVectorSize(LLVMTypeOf(value));
2135
2136 if (num_channels == 4 && num_channels == vec_size)
2137 return value;
2138
2139 num_channels = MIN2(num_channels, vec_size);
2140
2141 for (unsigned i = 0; i < num_channels; i++)
2142 chan[i] = ac_llvm_extract_elem(&ctx->ac, value, i);
2143 } else {
2144 if (num_channels) {
2145 assert(num_channels == 1);
2146 chan[0] = value;
2147 }
2148 }
2149
2150 for (unsigned i = num_channels; i < 4; i++) {
2151 chan[i] = i == 3 ? one : zero;
2152 chan[i] = ac_to_integer(&ctx->ac, chan[i]);
2153 }
2154
2155 return ac_build_gather_values(&ctx->ac, chan, 4);
2156 }
2157
2158 static void
2159 handle_vs_input_decl(struct radv_shader_context *ctx,
2160 struct nir_variable *variable)
2161 {
2162 LLVMValueRef t_list_ptr = ctx->vertex_buffers;
2163 LLVMValueRef t_offset;
2164 LLVMValueRef t_list;
2165 LLVMValueRef input;
2166 LLVMValueRef buffer_index;
2167 unsigned attrib_count = glsl_count_attribute_slots(variable->type, true);
2168 uint8_t input_usage_mask =
2169 ctx->shader_info->info.vs.input_usage_mask[variable->data.location];
2170 unsigned num_input_channels = util_last_bit(input_usage_mask);
2171
2172 variable->data.driver_location = variable->data.location * 4;
2173
2174 enum glsl_base_type type = glsl_get_base_type(variable->type);
2175 for (unsigned i = 0; i < attrib_count; ++i) {
2176 LLVMValueRef output[4];
2177 unsigned attrib_index = variable->data.location + i - VERT_ATTRIB_GENERIC0;
2178 unsigned attrib_format = ctx->options->key.vs.vertex_attribute_formats[attrib_index];
2179 unsigned data_format = attrib_format & 0x0f;
2180 unsigned num_format = (attrib_format >> 4) & 0x07;
2181 bool is_float = num_format != V_008F0C_BUF_NUM_FORMAT_UINT &&
2182 num_format != V_008F0C_BUF_NUM_FORMAT_SINT;
2183
2184 if (ctx->options->key.vs.instance_rate_inputs & (1u << attrib_index)) {
2185 uint32_t divisor = ctx->options->key.vs.instance_rate_divisors[attrib_index];
2186
2187 if (divisor) {
2188 buffer_index = ctx->abi.instance_id;
2189
2190 if (divisor != 1) {
2191 buffer_index = LLVMBuildUDiv(ctx->ac.builder, buffer_index,
2192 LLVMConstInt(ctx->ac.i32, divisor, 0), "");
2193 }
2194 } else {
2195 buffer_index = ctx->ac.i32_0;
2196 }
2197
2198 buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.start_instance, buffer_index, "");
2199 } else
2200 buffer_index = LLVMBuildAdd(ctx->ac.builder, ctx->abi.vertex_id,
2201 ctx->abi.base_vertex, "");
2202
2203 /* Adjust the number of channels to load based on the vertex
2204 * attribute format.
2205 */
2206 unsigned num_format_channels = get_num_channels_from_data_format(data_format);
2207 unsigned num_channels = MIN2(num_input_channels, num_format_channels);
2208 unsigned attrib_binding = ctx->options->key.vs.vertex_attribute_bindings[attrib_index];
2209 unsigned attrib_offset = ctx->options->key.vs.vertex_attribute_offsets[attrib_index];
2210 unsigned attrib_stride = ctx->options->key.vs.vertex_attribute_strides[attrib_index];
2211
2212 if (ctx->options->key.vs.post_shuffle & (1 << attrib_index)) {
2213 /* Always load, at least, 3 channels for formats that
2214 * need to be shuffled because X<->Z.
2215 */
2216 num_channels = MAX2(num_channels, 3);
2217 }
2218
2219 if (attrib_stride != 0 && attrib_offset > attrib_stride) {
2220 LLVMValueRef buffer_offset =
2221 LLVMConstInt(ctx->ac.i32,
2222 attrib_offset / attrib_stride, false);
2223
2224 buffer_index = LLVMBuildAdd(ctx->ac.builder,
2225 buffer_index,
2226 buffer_offset, "");
2227
2228 attrib_offset = attrib_offset % attrib_stride;
2229 }
2230
2231 t_offset = LLVMConstInt(ctx->ac.i32, attrib_binding, false);
2232 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
2233
2234 input = ac_build_struct_tbuffer_load(&ctx->ac, t_list,
2235 buffer_index,
2236 LLVMConstInt(ctx->ac.i32, attrib_offset, false),
2237 ctx->ac.i32_0, ctx->ac.i32_0,
2238 num_channels,
2239 data_format, num_format, 0, true);
2240
2241 if (ctx->options->key.vs.post_shuffle & (1 << attrib_index)) {
2242 LLVMValueRef c[4];
2243 c[0] = ac_llvm_extract_elem(&ctx->ac, input, 2);
2244 c[1] = ac_llvm_extract_elem(&ctx->ac, input, 1);
2245 c[2] = ac_llvm_extract_elem(&ctx->ac, input, 0);
2246 c[3] = ac_llvm_extract_elem(&ctx->ac, input, 3);
2247
2248 input = ac_build_gather_values(&ctx->ac, c, 4);
2249 }
2250
2251 input = radv_fixup_vertex_input_fetches(ctx, input, num_channels,
2252 is_float);
2253
2254 for (unsigned chan = 0; chan < 4; chan++) {
2255 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
2256 output[chan] = LLVMBuildExtractElement(ctx->ac.builder, input, llvm_chan, "");
2257 if (type == GLSL_TYPE_FLOAT16) {
2258 output[chan] = LLVMBuildBitCast(ctx->ac.builder, output[chan], ctx->ac.f32, "");
2259 output[chan] = LLVMBuildFPTrunc(ctx->ac.builder, output[chan], ctx->ac.f16, "");
2260 }
2261 }
2262
2263 unsigned alpha_adjust = (ctx->options->key.vs.alpha_adjust >> (attrib_index * 2)) & 3;
2264 output[3] = adjust_vertex_fetch_alpha(ctx, alpha_adjust, output[3]);
2265
2266 for (unsigned chan = 0; chan < 4; chan++) {
2267 output[chan] = ac_to_integer(&ctx->ac, output[chan]);
2268 if (type == GLSL_TYPE_UINT16 || type == GLSL_TYPE_INT16)
2269 output[chan] = LLVMBuildTrunc(ctx->ac.builder, output[chan], ctx->ac.i16, "");
2270
2271 ctx->inputs[ac_llvm_reg_index_soa(variable->data.location + i, chan)] = output[chan];
2272 }
2273 }
2274 }
2275
2276 static void interp_fs_input(struct radv_shader_context *ctx,
2277 unsigned attr,
2278 LLVMValueRef interp_param,
2279 LLVMValueRef prim_mask,
2280 bool float16,
2281 LLVMValueRef result[4])
2282 {
2283 LLVMValueRef attr_number;
2284 unsigned chan;
2285 LLVMValueRef i, j;
2286 bool interp = !LLVMIsUndef(interp_param);
2287
2288 attr_number = LLVMConstInt(ctx->ac.i32, attr, false);
2289
2290 /* fs.constant returns the param from the middle vertex, so it's not
2291 * really useful for flat shading. It's meant to be used for custom
2292 * interpolation (but the intrinsic can't fetch from the other two
2293 * vertices).
2294 *
2295 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
2296 * to do the right thing. The only reason we use fs.constant is that
2297 * fs.interp cannot be used on integers, because they can be equal
2298 * to NaN.
2299 */
2300 if (interp) {
2301 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
2302 ctx->ac.v2f32, "");
2303
2304 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
2305 ctx->ac.i32_0, "");
2306 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
2307 ctx->ac.i32_1, "");
2308 }
2309
2310 for (chan = 0; chan < 4; chan++) {
2311 LLVMValueRef llvm_chan = LLVMConstInt(ctx->ac.i32, chan, false);
2312
2313 if (interp && float16) {
2314 result[chan] = ac_build_fs_interp_f16(&ctx->ac,
2315 llvm_chan,
2316 attr_number,
2317 prim_mask, i, j);
2318 } else if (interp) {
2319 result[chan] = ac_build_fs_interp(&ctx->ac,
2320 llvm_chan,
2321 attr_number,
2322 prim_mask, i, j);
2323 } else {
2324 result[chan] = ac_build_fs_interp_mov(&ctx->ac,
2325 LLVMConstInt(ctx->ac.i32, 2, false),
2326 llvm_chan,
2327 attr_number,
2328 prim_mask);
2329 result[chan] = LLVMBuildBitCast(ctx->ac.builder, result[chan], ctx->ac.i32, "");
2330 result[chan] = LLVMBuildTruncOrBitCast(ctx->ac.builder, result[chan], float16 ? ctx->ac.i16 : ctx->ac.i32, "");
2331 }
2332 }
2333 }
2334
2335 static void mark_16bit_fs_input(struct radv_shader_context *ctx,
2336 const struct glsl_type *type,
2337 int location)
2338 {
2339 if (glsl_type_is_scalar(type) || glsl_type_is_vector(type) || glsl_type_is_matrix(type)) {
2340 unsigned attrib_count = glsl_count_attribute_slots(type, false);
2341 if (glsl_type_is_16bit(type)) {
2342 ctx->float16_shaded_mask |= ((1ull << attrib_count) - 1) << location;
2343 }
2344 } else if (glsl_type_is_array(type)) {
2345 unsigned stride = glsl_count_attribute_slots(glsl_get_array_element(type), false);
2346 for (unsigned i = 0; i < glsl_get_length(type); ++i) {
2347 mark_16bit_fs_input(ctx, glsl_get_array_element(type), location + i * stride);
2348 }
2349 } else {
2350 assert(glsl_type_is_struct_or_ifc(type));
2351 for (unsigned i = 0; i < glsl_get_length(type); i++) {
2352 mark_16bit_fs_input(ctx, glsl_get_struct_field(type, i), location);
2353 location += glsl_count_attribute_slots(glsl_get_struct_field(type, i), false);
2354 }
2355 }
2356 }
2357
2358 static void
2359 handle_fs_input_decl(struct radv_shader_context *ctx,
2360 struct nir_variable *variable)
2361 {
2362 int idx = variable->data.location;
2363 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
2364 LLVMValueRef interp = NULL;
2365 uint64_t mask;
2366
2367 variable->data.driver_location = idx * 4;
2368
2369
2370 if (variable->data.compact) {
2371 unsigned component_count = variable->data.location_frac +
2372 glsl_get_length(variable->type);
2373 attrib_count = (component_count + 3) / 4;
2374 } else
2375 mark_16bit_fs_input(ctx, variable->type, idx);
2376
2377 mask = ((1ull << attrib_count) - 1) << variable->data.location;
2378
2379 if (glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_FLOAT ||
2380 glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_FLOAT16 ||
2381 glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_STRUCT) {
2382 unsigned interp_type;
2383 if (variable->data.sample)
2384 interp_type = INTERP_SAMPLE;
2385 else if (variable->data.centroid)
2386 interp_type = INTERP_CENTROID;
2387 else
2388 interp_type = INTERP_CENTER;
2389
2390 interp = lookup_interp_param(&ctx->abi, variable->data.interpolation, interp_type);
2391 }
2392 if (interp == NULL)
2393 interp = LLVMGetUndef(ctx->ac.i32);
2394
2395 for (unsigned i = 0; i < attrib_count; ++i)
2396 ctx->inputs[ac_llvm_reg_index_soa(idx + i, 0)] = interp;
2397
2398 ctx->input_mask |= mask;
2399 }
2400
2401 static void
2402 handle_vs_inputs(struct radv_shader_context *ctx,
2403 struct nir_shader *nir) {
2404 nir_foreach_variable(variable, &nir->inputs)
2405 handle_vs_input_decl(ctx, variable);
2406 }
2407
2408 static void
2409 prepare_interp_optimize(struct radv_shader_context *ctx,
2410 struct nir_shader *nir)
2411 {
2412 bool uses_center = false;
2413 bool uses_centroid = false;
2414 nir_foreach_variable(variable, &nir->inputs) {
2415 if (glsl_get_base_type(glsl_without_array(variable->type)) != GLSL_TYPE_FLOAT ||
2416 variable->data.sample)
2417 continue;
2418
2419 if (variable->data.centroid)
2420 uses_centroid = true;
2421 else
2422 uses_center = true;
2423 }
2424
2425 if (uses_center && uses_centroid) {
2426 LLVMValueRef sel = LLVMBuildICmp(ctx->ac.builder, LLVMIntSLT, ctx->abi.prim_mask, ctx->ac.i32_0, "");
2427 ctx->persp_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->persp_center, ctx->persp_centroid, "");
2428 ctx->linear_centroid = LLVMBuildSelect(ctx->ac.builder, sel, ctx->linear_center, ctx->linear_centroid, "");
2429 }
2430 }
2431
2432 static void
2433 handle_fs_inputs(struct radv_shader_context *ctx,
2434 struct nir_shader *nir)
2435 {
2436 prepare_interp_optimize(ctx, nir);
2437
2438 nir_foreach_variable(variable, &nir->inputs)
2439 handle_fs_input_decl(ctx, variable);
2440
2441 unsigned index = 0;
2442
2443 if (ctx->shader_info->info.ps.uses_input_attachments ||
2444 ctx->shader_info->info.needs_multiview_view_index) {
2445 ctx->input_mask |= 1ull << VARYING_SLOT_LAYER;
2446 ctx->inputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)] = LLVMGetUndef(ctx->ac.i32);
2447 }
2448
2449 for (unsigned i = 0; i < RADEON_LLVM_MAX_INPUTS; ++i) {
2450 LLVMValueRef interp_param;
2451 LLVMValueRef *inputs = ctx->inputs +ac_llvm_reg_index_soa(i, 0);
2452
2453 if (!(ctx->input_mask & (1ull << i)))
2454 continue;
2455
2456 if (i >= VARYING_SLOT_VAR0 || i == VARYING_SLOT_PNTC ||
2457 i == VARYING_SLOT_PRIMITIVE_ID || i == VARYING_SLOT_LAYER) {
2458 interp_param = *inputs;
2459 bool float16 = (ctx->float16_shaded_mask >> i) & 1;
2460 interp_fs_input(ctx, index, interp_param, ctx->abi.prim_mask, float16,
2461 inputs);
2462
2463 if (LLVMIsUndef(interp_param))
2464 ctx->shader_info->fs.flat_shaded_mask |= 1u << index;
2465 if (float16)
2466 ctx->shader_info->fs.float16_shaded_mask |= 1u << index;
2467 if (i >= VARYING_SLOT_VAR0)
2468 ctx->abi.fs_input_attr_indices[i - VARYING_SLOT_VAR0] = index;
2469 ++index;
2470 } else if (i == VARYING_SLOT_CLIP_DIST0) {
2471 int length = ctx->shader_info->info.ps.num_input_clips_culls;
2472
2473 for (unsigned j = 0; j < length; j += 4) {
2474 inputs = ctx->inputs + ac_llvm_reg_index_soa(i, j);
2475
2476 interp_param = *inputs;
2477 interp_fs_input(ctx, index, interp_param,
2478 ctx->abi.prim_mask, false, inputs);
2479 ++index;
2480 }
2481 } else if (i == VARYING_SLOT_POS) {
2482 for(int i = 0; i < 3; ++i)
2483 inputs[i] = ctx->abi.frag_pos[i];
2484
2485 inputs[3] = ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
2486 ctx->abi.frag_pos[3]);
2487 }
2488 }
2489 ctx->shader_info->fs.num_interp = index;
2490 ctx->shader_info->fs.input_mask = ctx->input_mask >> VARYING_SLOT_VAR0;
2491
2492 if (ctx->shader_info->info.needs_multiview_view_index)
2493 ctx->abi.view_index = ctx->inputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
2494 }
2495
2496 static void
2497 scan_shader_output_decl(struct radv_shader_context *ctx,
2498 struct nir_variable *variable,
2499 struct nir_shader *shader,
2500 gl_shader_stage stage)
2501 {
2502 int idx = variable->data.location + variable->data.index;
2503 unsigned attrib_count = glsl_count_attribute_slots(variable->type, false);
2504 uint64_t mask_attribs;
2505
2506 variable->data.driver_location = idx * 4;
2507
2508 /* tess ctrl has it's own load/store paths for outputs */
2509 if (stage == MESA_SHADER_TESS_CTRL)
2510 return;
2511
2512 if (variable->data.compact) {
2513 unsigned component_count = variable->data.location_frac +
2514 glsl_get_length(variable->type);
2515 attrib_count = (component_count + 3) / 4;
2516 }
2517
2518 mask_attribs = ((1ull << attrib_count) - 1) << idx;
2519 if (stage == MESA_SHADER_VERTEX ||
2520 stage == MESA_SHADER_TESS_EVAL ||
2521 stage == MESA_SHADER_GEOMETRY) {
2522 if (idx == VARYING_SLOT_CLIP_DIST0) {
2523 if (stage == MESA_SHADER_VERTEX) {
2524 ctx->shader_info->vs.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
2525 ctx->shader_info->vs.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
2526 ctx->shader_info->vs.outinfo.cull_dist_mask <<= shader->info.clip_distance_array_size;
2527 }
2528 if (stage == MESA_SHADER_TESS_EVAL) {
2529 ctx->shader_info->tes.outinfo.clip_dist_mask = (1 << shader->info.clip_distance_array_size) - 1;
2530 ctx->shader_info->tes.outinfo.cull_dist_mask = (1 << shader->info.cull_distance_array_size) - 1;
2531 ctx->shader_info->tes.outinfo.cull_dist_mask <<= shader->info.clip_distance_array_size;
2532 }
2533 }
2534 }
2535
2536 ctx->output_mask |= mask_attribs;
2537 }
2538
2539
2540 /* Initialize arguments for the shader export intrinsic */
2541 static void
2542 si_llvm_init_export_args(struct radv_shader_context *ctx,
2543 LLVMValueRef *values,
2544 unsigned enabled_channels,
2545 unsigned target,
2546 struct ac_export_args *args)
2547 {
2548 /* Specify the channels that are enabled. */
2549 args->enabled_channels = enabled_channels;
2550
2551 /* Specify whether the EXEC mask represents the valid mask */
2552 args->valid_mask = 0;
2553
2554 /* Specify whether this is the last export */
2555 args->done = 0;
2556
2557 /* Specify the target we are exporting */
2558 args->target = target;
2559
2560 args->compr = false;
2561 args->out[0] = LLVMGetUndef(ctx->ac.f32);
2562 args->out[1] = LLVMGetUndef(ctx->ac.f32);
2563 args->out[2] = LLVMGetUndef(ctx->ac.f32);
2564 args->out[3] = LLVMGetUndef(ctx->ac.f32);
2565
2566 if (!values)
2567 return;
2568
2569 bool is_16bit = ac_get_type_size(LLVMTypeOf(values[0])) == 2;
2570 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2571 unsigned index = target - V_008DFC_SQ_EXP_MRT;
2572 unsigned col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf;
2573 bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1;
2574 bool is_int10 = (ctx->options->key.fs.is_int10 >> index) & 1;
2575 unsigned chan;
2576
2577 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2578 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2579 unsigned bits, bool hi) = NULL;
2580
2581 switch(col_format) {
2582 case V_028714_SPI_SHADER_ZERO:
2583 args->enabled_channels = 0; /* writemask */
2584 args->target = V_008DFC_SQ_EXP_NULL;
2585 break;
2586
2587 case V_028714_SPI_SHADER_32_R:
2588 args->enabled_channels = 1;
2589 args->out[0] = values[0];
2590 break;
2591
2592 case V_028714_SPI_SHADER_32_GR:
2593 args->enabled_channels = 0x3;
2594 args->out[0] = values[0];
2595 args->out[1] = values[1];
2596 break;
2597
2598 case V_028714_SPI_SHADER_32_AR:
2599 args->enabled_channels = 0x9;
2600 args->out[0] = values[0];
2601 args->out[3] = values[3];
2602 break;
2603
2604 case V_028714_SPI_SHADER_FP16_ABGR:
2605 args->enabled_channels = 0x5;
2606 packf = ac_build_cvt_pkrtz_f16;
2607 if (is_16bit) {
2608 for (unsigned chan = 0; chan < 4; chan++)
2609 values[chan] = LLVMBuildFPExt(ctx->ac.builder,
2610 values[chan],
2611 ctx->ac.f32, "");
2612 }
2613 break;
2614
2615 case V_028714_SPI_SHADER_UNORM16_ABGR:
2616 args->enabled_channels = 0x5;
2617 packf = ac_build_cvt_pknorm_u16;
2618 break;
2619
2620 case V_028714_SPI_SHADER_SNORM16_ABGR:
2621 args->enabled_channels = 0x5;
2622 packf = ac_build_cvt_pknorm_i16;
2623 break;
2624
2625 case V_028714_SPI_SHADER_UINT16_ABGR:
2626 args->enabled_channels = 0x5;
2627 packi = ac_build_cvt_pk_u16;
2628 if (is_16bit) {
2629 for (unsigned chan = 0; chan < 4; chan++)
2630 values[chan] = LLVMBuildZExt(ctx->ac.builder,
2631 ac_to_integer(&ctx->ac, values[chan]),
2632 ctx->ac.i32, "");
2633 }
2634 break;
2635
2636 case V_028714_SPI_SHADER_SINT16_ABGR:
2637 args->enabled_channels = 0x5;
2638 packi = ac_build_cvt_pk_i16;
2639 if (is_16bit) {
2640 for (unsigned chan = 0; chan < 4; chan++)
2641 values[chan] = LLVMBuildSExt(ctx->ac.builder,
2642 ac_to_integer(&ctx->ac, values[chan]),
2643 ctx->ac.i32, "");
2644 }
2645 break;
2646
2647 default:
2648 case V_028714_SPI_SHADER_32_ABGR:
2649 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2650 break;
2651 }
2652
2653 /* Pack f16 or norm_i16/u16. */
2654 if (packf) {
2655 for (chan = 0; chan < 2; chan++) {
2656 LLVMValueRef pack_args[2] = {
2657 values[2 * chan],
2658 values[2 * chan + 1]
2659 };
2660 LLVMValueRef packed;
2661
2662 packed = packf(&ctx->ac, pack_args);
2663 args->out[chan] = ac_to_float(&ctx->ac, packed);
2664 }
2665 args->compr = 1; /* COMPR flag */
2666 }
2667
2668 /* Pack i16/u16. */
2669 if (packi) {
2670 for (chan = 0; chan < 2; chan++) {
2671 LLVMValueRef pack_args[2] = {
2672 ac_to_integer(&ctx->ac, values[2 * chan]),
2673 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2674 };
2675 LLVMValueRef packed;
2676
2677 packed = packi(&ctx->ac, pack_args,
2678 is_int8 ? 8 : is_int10 ? 10 : 16,
2679 chan == 1);
2680 args->out[chan] = ac_to_float(&ctx->ac, packed);
2681 }
2682 args->compr = 1; /* COMPR flag */
2683 }
2684 return;
2685 }
2686
2687 if (is_16bit) {
2688 for (unsigned chan = 0; chan < 4; chan++) {
2689 values[chan] = LLVMBuildBitCast(ctx->ac.builder, values[chan], ctx->ac.i16, "");
2690 args->out[chan] = LLVMBuildZExt(ctx->ac.builder, values[chan], ctx->ac.i32, "");
2691 }
2692 } else
2693 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2694
2695 for (unsigned i = 0; i < 4; ++i)
2696 args->out[i] = ac_to_float(&ctx->ac, args->out[i]);
2697 }
2698
2699 static void
2700 radv_export_param(struct radv_shader_context *ctx, unsigned index,
2701 LLVMValueRef *values, unsigned enabled_channels)
2702 {
2703 struct ac_export_args args;
2704
2705 si_llvm_init_export_args(ctx, values, enabled_channels,
2706 V_008DFC_SQ_EXP_PARAM + index, &args);
2707 ac_build_export(&ctx->ac, &args);
2708 }
2709
2710 static LLVMValueRef
2711 radv_load_output(struct radv_shader_context *ctx, unsigned index, unsigned chan)
2712 {
2713 LLVMValueRef output =
2714 ctx->abi.outputs[ac_llvm_reg_index_soa(index, chan)];
2715
2716 return LLVMBuildLoad(ctx->ac.builder, output, "");
2717 }
2718
2719 static void
2720 radv_emit_stream_output(struct radv_shader_context *ctx,
2721 LLVMValueRef const *so_buffers,
2722 LLVMValueRef const *so_write_offsets,
2723 const struct radv_stream_output *output)
2724 {
2725 unsigned num_comps = util_bitcount(output->component_mask);
2726 unsigned loc = output->location;
2727 unsigned buf = output->buffer;
2728 unsigned offset = output->offset;
2729 unsigned start;
2730 LLVMValueRef out[4];
2731
2732 assert(num_comps && num_comps <= 4);
2733 if (!num_comps || num_comps > 4)
2734 return;
2735
2736 /* Get the first component. */
2737 start = ffs(output->component_mask) - 1;
2738
2739 /* Load the output as int. */
2740 for (int i = 0; i < num_comps; i++) {
2741 out[i] = ac_to_integer(&ctx->ac,
2742 radv_load_output(ctx, loc, start + i));
2743 }
2744
2745 /* Pack the output. */
2746 LLVMValueRef vdata = NULL;
2747
2748 switch (num_comps) {
2749 case 1: /* as i32 */
2750 vdata = out[0];
2751 break;
2752 case 2: /* as v2i32 */
2753 case 3: /* as v4i32 (aligned to 4) */
2754 out[3] = LLVMGetUndef(ctx->ac.i32);
2755 /* fall through */
2756 case 4: /* as v4i32 */
2757 vdata = ac_build_gather_values(&ctx->ac, out,
2758 !ac_has_vec3_support(ctx->ac.chip_class, false) ?
2759 util_next_power_of_two(num_comps) :
2760 num_comps);
2761 break;
2762 }
2763
2764 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf],
2765 vdata, num_comps, so_write_offsets[buf],
2766 ctx->ac.i32_0, offset,
2767 ac_glc | ac_slc, false);
2768 }
2769
2770 static void
2771 radv_emit_streamout(struct radv_shader_context *ctx, unsigned stream)
2772 {
2773 struct ac_build_if_state if_ctx;
2774 int i;
2775
2776 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2777 assert(ctx->streamout_config);
2778 LLVMValueRef so_vtx_count =
2779 ac_build_bfe(&ctx->ac, ctx->streamout_config,
2780 LLVMConstInt(ctx->ac.i32, 16, false),
2781 LLVMConstInt(ctx->ac.i32, 7, false), false);
2782
2783 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2784
2785 /* can_emit = tid < so_vtx_count; */
2786 LLVMValueRef can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
2787 tid, so_vtx_count, "");
2788
2789 /* Emit the streamout code conditionally. This actually avoids
2790 * out-of-bounds buffer access. The hw tells us via the SGPR
2791 * (so_vtx_count) which threads are allowed to emit streamout data.
2792 */
2793 ac_nir_build_if(&if_ctx, ctx, can_emit);
2794 {
2795 /* The buffer offset is computed as follows:
2796 * ByteOffset = streamout_offset[buffer_id]*4 +
2797 * (streamout_write_index + thread_id)*stride[buffer_id] +
2798 * attrib_offset
2799 */
2800 LLVMValueRef so_write_index = ctx->streamout_write_idx;
2801
2802 /* Compute (streamout_write_index + thread_id). */
2803 so_write_index =
2804 LLVMBuildAdd(ctx->ac.builder, so_write_index, tid, "");
2805
2806 /* Load the descriptor and compute the write offset for each
2807 * enabled buffer.
2808 */
2809 LLVMValueRef so_write_offset[4] = {};
2810 LLVMValueRef so_buffers[4] = {};
2811 LLVMValueRef buf_ptr = ctx->streamout_buffers;
2812
2813 for (i = 0; i < 4; i++) {
2814 uint16_t stride = ctx->shader_info->info.so.strides[i];
2815
2816 if (!stride)
2817 continue;
2818
2819 LLVMValueRef offset =
2820 LLVMConstInt(ctx->ac.i32, i, false);
2821
2822 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac,
2823 buf_ptr, offset);
2824
2825 LLVMValueRef so_offset = ctx->streamout_offset[i];
2826
2827 so_offset = LLVMBuildMul(ctx->ac.builder, so_offset,
2828 LLVMConstInt(ctx->ac.i32, 4, false), "");
2829
2830 so_write_offset[i] =
2831 ac_build_imad(&ctx->ac, so_write_index,
2832 LLVMConstInt(ctx->ac.i32,
2833 stride * 4, false),
2834 so_offset);
2835 }
2836
2837 /* Write streamout data. */
2838 for (i = 0; i < ctx->shader_info->info.so.num_outputs; i++) {
2839 struct radv_stream_output *output =
2840 &ctx->shader_info->info.so.outputs[i];
2841
2842 if (stream != output->stream)
2843 continue;
2844
2845 radv_emit_stream_output(ctx, so_buffers,
2846 so_write_offset, output);
2847 }
2848 }
2849 ac_nir_build_endif(&if_ctx);
2850 }
2851
2852 static void
2853 handle_vs_outputs_post(struct radv_shader_context *ctx,
2854 bool export_prim_id, bool export_layer_id,
2855 bool export_clip_dists,
2856 struct radv_vs_output_info *outinfo)
2857 {
2858 uint32_t param_count = 0;
2859 unsigned target;
2860 unsigned pos_idx, num_pos_exports = 0;
2861 struct ac_export_args args, pos_args[4] = {};
2862 LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2863 int i;
2864
2865 if (ctx->options->key.has_multiview_view_index) {
2866 LLVMValueRef* tmp_out = &ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, 0)];
2867 if(!*tmp_out) {
2868 for(unsigned i = 0; i < 4; ++i)
2869 ctx->abi.outputs[ac_llvm_reg_index_soa(VARYING_SLOT_LAYER, i)] =
2870 ac_build_alloca_undef(&ctx->ac, ctx->ac.f32, "");
2871 }
2872
2873 LLVMBuildStore(ctx->ac.builder, ac_to_float(&ctx->ac, ctx->abi.view_index), *tmp_out);
2874 ctx->output_mask |= 1ull << VARYING_SLOT_LAYER;
2875 }
2876
2877 memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
2878 sizeof(outinfo->vs_output_param_offset));
2879
2880 for(unsigned location = VARYING_SLOT_CLIP_DIST0; location <= VARYING_SLOT_CLIP_DIST1; ++location) {
2881 if (ctx->output_mask & (1ull << location)) {
2882 unsigned output_usage_mask, length;
2883 LLVMValueRef slots[4];
2884 unsigned j;
2885
2886 if (ctx->stage == MESA_SHADER_VERTEX &&
2887 !ctx->is_gs_copy_shader) {
2888 output_usage_mask =
2889 ctx->shader_info->info.vs.output_usage_mask[location];
2890 } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
2891 output_usage_mask =
2892 ctx->shader_info->info.tes.output_usage_mask[location];
2893 } else {
2894 assert(ctx->is_gs_copy_shader);
2895 output_usage_mask =
2896 ctx->shader_info->info.gs.output_usage_mask[location];
2897 }
2898
2899 length = util_last_bit(output_usage_mask);
2900
2901 for (j = 0; j < length; j++)
2902 slots[j] = ac_to_float(&ctx->ac, radv_load_output(ctx, location, j));
2903
2904 for (i = length; i < 4; i++)
2905 slots[i] = LLVMGetUndef(ctx->ac.f32);
2906
2907 target = V_008DFC_SQ_EXP_POS + 2 + (location - VARYING_SLOT_CLIP_DIST0);
2908 si_llvm_init_export_args(ctx, &slots[0], 0xf, target, &args);
2909 memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS],
2910 &args, sizeof(args));
2911
2912 if (export_clip_dists) {
2913 /* Export the clip/cull distances values to the next stage. */
2914 radv_export_param(ctx, param_count, &slots[0], 0xf);
2915 outinfo->vs_output_param_offset[location] = param_count++;
2916 }
2917 }
2918 }
2919
2920 LLVMValueRef pos_values[4] = {ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_0, ctx->ac.f32_1};
2921 if (ctx->output_mask & (1ull << VARYING_SLOT_POS)) {
2922 for (unsigned j = 0; j < 4; j++)
2923 pos_values[j] = radv_load_output(ctx, VARYING_SLOT_POS, j);
2924 }
2925 si_llvm_init_export_args(ctx, pos_values, 0xf, V_008DFC_SQ_EXP_POS, &pos_args[0]);
2926
2927 if (ctx->output_mask & (1ull << VARYING_SLOT_PSIZ)) {
2928 outinfo->writes_pointsize = true;
2929 psize_value = radv_load_output(ctx, VARYING_SLOT_PSIZ, 0);
2930 }
2931
2932 if (ctx->output_mask & (1ull << VARYING_SLOT_LAYER)) {
2933 outinfo->writes_layer = true;
2934 layer_value = radv_load_output(ctx, VARYING_SLOT_LAYER, 0);
2935 }
2936
2937 if (ctx->output_mask & (1ull << VARYING_SLOT_VIEWPORT)) {
2938 outinfo->writes_viewport_index = true;
2939 viewport_index_value = radv_load_output(ctx, VARYING_SLOT_VIEWPORT, 0);
2940 }
2941
2942 if (ctx->shader_info->info.so.num_outputs &&
2943 !ctx->is_gs_copy_shader) {
2944 /* The GS copy shader emission already emits streamout. */
2945 radv_emit_streamout(ctx, 0);
2946 }
2947
2948 if (outinfo->writes_pointsize ||
2949 outinfo->writes_layer ||
2950 outinfo->writes_viewport_index) {
2951 pos_args[1].enabled_channels = ((outinfo->writes_pointsize == true ? 1 : 0) |
2952 (outinfo->writes_layer == true ? 4 : 0));
2953 pos_args[1].valid_mask = 0;
2954 pos_args[1].done = 0;
2955 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2956 pos_args[1].compr = 0;
2957 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2958 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2959 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2960 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2961
2962 if (outinfo->writes_pointsize == true)
2963 pos_args[1].out[0] = psize_value;
2964 if (outinfo->writes_layer == true)
2965 pos_args[1].out[2] = layer_value;
2966 if (outinfo->writes_viewport_index == true) {
2967 if (ctx->options->chip_class >= GFX9) {
2968 /* GFX9 has the layer in out.z[10:0] and the viewport
2969 * index in out.z[19:16].
2970 */
2971 LLVMValueRef v = viewport_index_value;
2972 v = ac_to_integer(&ctx->ac, v);
2973 v = LLVMBuildShl(ctx->ac.builder, v,
2974 LLVMConstInt(ctx->ac.i32, 16, false),
2975 "");
2976 v = LLVMBuildOr(ctx->ac.builder, v,
2977 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
2978
2979 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
2980 pos_args[1].enabled_channels |= 1 << 2;
2981 } else {
2982 pos_args[1].out[3] = viewport_index_value;
2983 pos_args[1].enabled_channels |= 1 << 3;
2984 }
2985 }
2986 }
2987 for (i = 0; i < 4; i++) {
2988 if (pos_args[i].out[0])
2989 num_pos_exports++;
2990 }
2991
2992 pos_idx = 0;
2993 for (i = 0; i < 4; i++) {
2994 if (!pos_args[i].out[0])
2995 continue;
2996
2997 /* Specify the target we are exporting */
2998 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
2999 if (pos_idx == num_pos_exports)
3000 pos_args[i].done = 1;
3001 ac_build_export(&ctx->ac, &pos_args[i]);
3002 }
3003
3004 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3005 LLVMValueRef values[4];
3006 if (!(ctx->output_mask & (1ull << i)))
3007 continue;
3008
3009 if (i != VARYING_SLOT_LAYER &&
3010 i != VARYING_SLOT_PRIMITIVE_ID &&
3011 i < VARYING_SLOT_VAR0)
3012 continue;
3013
3014 for (unsigned j = 0; j < 4; j++)
3015 values[j] = ac_to_float(&ctx->ac, radv_load_output(ctx, i, j));
3016
3017 unsigned output_usage_mask;
3018
3019 if (ctx->stage == MESA_SHADER_VERTEX &&
3020 !ctx->is_gs_copy_shader) {
3021 output_usage_mask =
3022 ctx->shader_info->info.vs.output_usage_mask[i];
3023 } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
3024 output_usage_mask =
3025 ctx->shader_info->info.tes.output_usage_mask[i];
3026 } else {
3027 assert(ctx->is_gs_copy_shader);
3028 output_usage_mask =
3029 ctx->shader_info->info.gs.output_usage_mask[i];
3030 }
3031
3032 radv_export_param(ctx, param_count, values, output_usage_mask);
3033
3034 outinfo->vs_output_param_offset[i] = param_count++;
3035 }
3036
3037 if (export_prim_id) {
3038 LLVMValueRef values[4];
3039
3040 values[0] = ctx->vs_prim_id;
3041 for (unsigned j = 1; j < 4; j++)
3042 values[j] = ctx->ac.f32_0;
3043
3044 radv_export_param(ctx, param_count, values, 0x1);
3045
3046 outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count++;
3047 outinfo->export_prim_id = true;
3048 }
3049
3050 if (export_layer_id && layer_value) {
3051 LLVMValueRef values[4];
3052
3053 values[0] = layer_value;
3054 for (unsigned j = 1; j < 4; j++)
3055 values[j] = ctx->ac.f32_0;
3056
3057 radv_export_param(ctx, param_count, values, 0x1);
3058
3059 outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = param_count++;
3060 }
3061
3062 outinfo->pos_exports = num_pos_exports;
3063 outinfo->param_exports = param_count;
3064 }
3065
3066 static void
3067 handle_es_outputs_post(struct radv_shader_context *ctx,
3068 struct radv_es_output_info *outinfo)
3069 {
3070 int j;
3071 uint64_t max_output_written = 0;
3072 LLVMValueRef lds_base = NULL;
3073
3074 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3075 int param_index;
3076
3077 if (!(ctx->output_mask & (1ull << i)))
3078 continue;
3079
3080 param_index = shader_io_get_unique_index(i);
3081
3082 max_output_written = MAX2(param_index, max_output_written);
3083 }
3084
3085 outinfo->esgs_itemsize = (max_output_written + 1) * 16;
3086
3087 if (ctx->ac.chip_class >= GFX9) {
3088 unsigned itemsize_dw = outinfo->esgs_itemsize / 4;
3089 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3090 LLVMValueRef wave_idx = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 24, 4);
3091 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3092 LLVMBuildMul(ctx->ac.builder, wave_idx,
3093 LLVMConstInt(ctx->ac.i32, 64, false), ""), "");
3094 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3095 LLVMConstInt(ctx->ac.i32, itemsize_dw, 0), "");
3096 }
3097
3098 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3099 LLVMValueRef dw_addr = NULL;
3100 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
3101 unsigned output_usage_mask;
3102 int param_index;
3103
3104 if (!(ctx->output_mask & (1ull << i)))
3105 continue;
3106
3107 if (ctx->stage == MESA_SHADER_VERTEX) {
3108 output_usage_mask =
3109 ctx->shader_info->info.vs.output_usage_mask[i];
3110 } else {
3111 assert(ctx->stage == MESA_SHADER_TESS_EVAL);
3112 output_usage_mask =
3113 ctx->shader_info->info.tes.output_usage_mask[i];
3114 }
3115
3116 param_index = shader_io_get_unique_index(i);
3117
3118 if (lds_base) {
3119 dw_addr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3120 LLVMConstInt(ctx->ac.i32, param_index * 4, false),
3121 "");
3122 }
3123
3124 for (j = 0; j < 4; j++) {
3125 if (!(output_usage_mask & (1 << j)))
3126 continue;
3127
3128 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
3129 out_val = ac_to_integer(&ctx->ac, out_val);
3130 out_val = LLVMBuildZExtOrBitCast(ctx->ac.builder, out_val, ctx->ac.i32, "");
3131
3132 if (ctx->ac.chip_class >= GFX9) {
3133 LLVMValueRef dw_addr_offset =
3134 LLVMBuildAdd(ctx->ac.builder, dw_addr,
3135 LLVMConstInt(ctx->ac.i32,
3136 j, false), "");
3137
3138 ac_lds_store(&ctx->ac, dw_addr_offset, out_val);
3139 } else {
3140 ac_build_buffer_store_dword(&ctx->ac,
3141 ctx->esgs_ring,
3142 out_val, 1,
3143 NULL, ctx->es2gs_offset,
3144 (4 * param_index + j) * 4,
3145 ac_glc | ac_slc, true);
3146 }
3147 }
3148 }
3149 }
3150
3151 static void
3152 handle_ls_outputs_post(struct radv_shader_context *ctx)
3153 {
3154 LLVMValueRef vertex_id = ctx->rel_auto_id;
3155 uint32_t num_tcs_inputs = util_last_bit64(ctx->shader_info->info.vs.ls_outputs_written);
3156 LLVMValueRef vertex_dw_stride = LLVMConstInt(ctx->ac.i32, num_tcs_inputs * 4, false);
3157 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3158 vertex_dw_stride, "");
3159
3160 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3161 LLVMValueRef *out_ptr = &ctx->abi.outputs[i * 4];
3162
3163 if (!(ctx->output_mask & (1ull << i)))
3164 continue;
3165
3166 int param = shader_io_get_unique_index(i);
3167 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3168 LLVMConstInt(ctx->ac.i32, param * 4, false),
3169 "");
3170 for (unsigned j = 0; j < 4; j++) {
3171 LLVMValueRef value = LLVMBuildLoad(ctx->ac.builder, out_ptr[j], "");
3172 value = ac_to_integer(&ctx->ac, value);
3173 value = LLVMBuildZExtOrBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
3174 ac_lds_store(&ctx->ac, dw_addr, value);
3175 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr, ctx->ac.i32_1, "");
3176 }
3177 }
3178 }
3179
3180 static void
3181 write_tess_factors(struct radv_shader_context *ctx)
3182 {
3183 unsigned stride, outer_comps, inner_comps;
3184 struct ac_build_if_state if_ctx, inner_if_ctx;
3185 LLVMValueRef invocation_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 8, 5);
3186 LLVMValueRef rel_patch_id = ac_unpack_param(&ctx->ac, ctx->abi.tcs_rel_ids, 0, 8);
3187 unsigned tess_inner_index = 0, tess_outer_index;
3188 LLVMValueRef lds_base, lds_inner = NULL, lds_outer, byteoffset, buffer;
3189 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3190 int i;
3191 ac_emit_barrier(&ctx->ac, ctx->stage);
3192
3193 switch (ctx->options->key.tcs.primitive_mode) {
3194 case GL_ISOLINES:
3195 stride = 2;
3196 outer_comps = 2;
3197 inner_comps = 0;
3198 break;
3199 case GL_TRIANGLES:
3200 stride = 4;
3201 outer_comps = 3;
3202 inner_comps = 1;
3203 break;
3204 case GL_QUADS:
3205 stride = 6;
3206 outer_comps = 4;
3207 inner_comps = 2;
3208 break;
3209 default:
3210 return;
3211 }
3212
3213 ac_nir_build_if(&if_ctx, ctx,
3214 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3215 invocation_id, ctx->ac.i32_0, ""));
3216
3217 lds_base = get_tcs_out_current_patch_data_offset(ctx);
3218
3219 if (inner_comps) {
3220 tess_inner_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3221 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3222 LLVMConstInt(ctx->ac.i32, tess_inner_index * 4, false), "");
3223 }
3224
3225 tess_outer_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3226 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3227 LLVMConstInt(ctx->ac.i32, tess_outer_index * 4, false), "");
3228
3229 for (i = 0; i < 4; i++) {
3230 inner[i] = LLVMGetUndef(ctx->ac.i32);
3231 outer[i] = LLVMGetUndef(ctx->ac.i32);
3232 }
3233
3234 // LINES reversal
3235 if (ctx->options->key.tcs.primitive_mode == GL_ISOLINES) {
3236 outer[0] = out[1] = ac_lds_load(&ctx->ac, lds_outer);
3237 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
3238 ctx->ac.i32_1, "");
3239 outer[1] = out[0] = ac_lds_load(&ctx->ac, lds_outer);
3240 } else {
3241 for (i = 0; i < outer_comps; i++) {
3242 outer[i] = out[i] =
3243 ac_lds_load(&ctx->ac, lds_outer);
3244 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_outer,
3245 ctx->ac.i32_1, "");
3246 }
3247 for (i = 0; i < inner_comps; i++) {
3248 inner[i] = out[outer_comps+i] =
3249 ac_lds_load(&ctx->ac, lds_inner);
3250 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_inner,
3251 ctx->ac.i32_1, "");
3252 }
3253 }
3254
3255 /* Convert the outputs to vectors for stores. */
3256 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3257 vec1 = NULL;
3258
3259 if (stride > 4)
3260 vec1 = ac_build_gather_values(&ctx->ac, out + 4, stride - 4);
3261
3262
3263 buffer = ctx->hs_ring_tess_factor;
3264 tf_base = ctx->tess_factor_offset;
3265 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3266 LLVMConstInt(ctx->ac.i32, 4 * stride, false), "");
3267 unsigned tf_offset = 0;
3268
3269 if (ctx->options->chip_class <= GFX8) {
3270 ac_nir_build_if(&inner_if_ctx, ctx,
3271 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3272 rel_patch_id, ctx->ac.i32_0, ""));
3273
3274 /* Store the dynamic HS control word. */
3275 ac_build_buffer_store_dword(&ctx->ac, buffer,
3276 LLVMConstInt(ctx->ac.i32, 0x80000000, false),
3277 1, ctx->ac.i32_0, tf_base,
3278 0, ac_glc, false);
3279 tf_offset += 4;
3280
3281 ac_nir_build_endif(&inner_if_ctx);
3282 }
3283
3284 /* Store the tessellation factors. */
3285 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3286 MIN2(stride, 4), byteoffset, tf_base,
3287 tf_offset, ac_glc, false);
3288 if (vec1)
3289 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3290 stride - 4, byteoffset, tf_base,
3291 16 + tf_offset, ac_glc, false);
3292
3293 //store to offchip for TES to read - only if TES reads them
3294 if (ctx->options->key.tcs.tes_reads_tess_factors) {
3295 LLVMValueRef inner_vec, outer_vec, tf_outer_offset;
3296 LLVMValueRef tf_inner_offset;
3297 unsigned param_outer, param_inner;
3298
3299 param_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER);
3300 tf_outer_offset = get_tcs_tes_buffer_address(ctx, NULL,
3301 LLVMConstInt(ctx->ac.i32, param_outer, 0));
3302
3303 outer_vec = ac_build_gather_values(&ctx->ac, outer,
3304 util_next_power_of_two(outer_comps));
3305
3306 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, outer_vec,
3307 outer_comps, tf_outer_offset,
3308 ctx->oc_lds, 0, ac_glc, false);
3309 if (inner_comps) {
3310 param_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER);
3311 tf_inner_offset = get_tcs_tes_buffer_address(ctx, NULL,
3312 LLVMConstInt(ctx->ac.i32, param_inner, 0));
3313
3314 inner_vec = inner_comps == 1 ? inner[0] :
3315 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3316 ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, inner_vec,
3317 inner_comps, tf_inner_offset,
3318 ctx->oc_lds, 0, ac_glc, false);
3319 }
3320 }
3321 ac_nir_build_endif(&if_ctx);
3322 }
3323
3324 static void
3325 handle_tcs_outputs_post(struct radv_shader_context *ctx)
3326 {
3327 write_tess_factors(ctx);
3328 }
3329
3330 static bool
3331 si_export_mrt_color(struct radv_shader_context *ctx,
3332 LLVMValueRef *color, unsigned index,
3333 struct ac_export_args *args)
3334 {
3335 /* Export */
3336 si_llvm_init_export_args(ctx, color, 0xf,
3337 V_008DFC_SQ_EXP_MRT + index, args);
3338 if (!args->enabled_channels)
3339 return false; /* unnecessary NULL export */
3340
3341 return true;
3342 }
3343
3344 static void
3345 radv_export_mrt_z(struct radv_shader_context *ctx,
3346 LLVMValueRef depth, LLVMValueRef stencil,
3347 LLVMValueRef samplemask)
3348 {
3349 struct ac_export_args args;
3350
3351 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3352
3353 ac_build_export(&ctx->ac, &args);
3354 }
3355
3356 static void
3357 handle_fs_outputs_post(struct radv_shader_context *ctx)
3358 {
3359 unsigned index = 0;
3360 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3361 struct ac_export_args color_args[8];
3362
3363 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
3364 LLVMValueRef values[4];
3365
3366 if (!(ctx->output_mask & (1ull << i)))
3367 continue;
3368
3369 if (i < FRAG_RESULT_DATA0)
3370 continue;
3371
3372 for (unsigned j = 0; j < 4; j++)
3373 values[j] = ac_to_float(&ctx->ac,
3374 radv_load_output(ctx, i, j));
3375
3376 bool ret = si_export_mrt_color(ctx, values,
3377 i - FRAG_RESULT_DATA0,
3378 &color_args[index]);
3379 if (ret)
3380 index++;
3381 }
3382
3383 /* Process depth, stencil, samplemask. */
3384 if (ctx->shader_info->info.ps.writes_z) {
3385 depth = ac_to_float(&ctx->ac,
3386 radv_load_output(ctx, FRAG_RESULT_DEPTH, 0));
3387 }
3388 if (ctx->shader_info->info.ps.writes_stencil) {
3389 stencil = ac_to_float(&ctx->ac,
3390 radv_load_output(ctx, FRAG_RESULT_STENCIL, 0));
3391 }
3392 if (ctx->shader_info->info.ps.writes_sample_mask) {
3393 samplemask = ac_to_float(&ctx->ac,
3394 radv_load_output(ctx, FRAG_RESULT_SAMPLE_MASK, 0));
3395 }
3396
3397 /* Set the DONE bit on last non-null color export only if Z isn't
3398 * exported.
3399 */
3400 if (index > 0 &&
3401 !ctx->shader_info->info.ps.writes_z &&
3402 !ctx->shader_info->info.ps.writes_stencil &&
3403 !ctx->shader_info->info.ps.writes_sample_mask) {
3404 unsigned last = index - 1;
3405
3406 color_args[last].valid_mask = 1; /* whether the EXEC mask is valid */
3407 color_args[last].done = 1; /* DONE bit */
3408 }
3409
3410 /* Export PS outputs. */
3411 for (unsigned i = 0; i < index; i++)
3412 ac_build_export(&ctx->ac, &color_args[i]);
3413
3414 if (depth || stencil || samplemask)
3415 radv_export_mrt_z(ctx, depth, stencil, samplemask);
3416 else if (!index)
3417 ac_build_export_null(&ctx->ac);
3418 }
3419
3420 static void
3421 emit_gs_epilogue(struct radv_shader_context *ctx)
3422 {
3423 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
3424 }
3425
3426 static void
3427 handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
3428 LLVMValueRef *addrs)
3429 {
3430 struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
3431
3432 switch (ctx->stage) {
3433 case MESA_SHADER_VERTEX:
3434 if (ctx->options->key.vs.as_ls)
3435 handle_ls_outputs_post(ctx);
3436 else if (ctx->options->key.vs.as_es)
3437 handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info);
3438 else
3439 handle_vs_outputs_post(ctx, ctx->options->key.vs.export_prim_id,
3440 ctx->options->key.vs.export_layer_id,
3441 ctx->options->key.vs.export_clip_dists,
3442 &ctx->shader_info->vs.outinfo);
3443 break;
3444 case MESA_SHADER_FRAGMENT:
3445 handle_fs_outputs_post(ctx);
3446 break;
3447 case MESA_SHADER_GEOMETRY:
3448 emit_gs_epilogue(ctx);
3449 break;
3450 case MESA_SHADER_TESS_CTRL:
3451 handle_tcs_outputs_post(ctx);
3452 break;
3453 case MESA_SHADER_TESS_EVAL:
3454 if (ctx->options->key.tes.as_es)
3455 handle_es_outputs_post(ctx, &ctx->shader_info->tes.es_info);
3456 else
3457 handle_vs_outputs_post(ctx, ctx->options->key.tes.export_prim_id,
3458 ctx->options->key.tes.export_layer_id,
3459 ctx->options->key.tes.export_clip_dists,
3460 &ctx->shader_info->tes.outinfo);
3461 break;
3462 default:
3463 break;
3464 }
3465 }
3466
3467 static void ac_llvm_finalize_module(struct radv_shader_context *ctx,
3468 LLVMPassManagerRef passmgr,
3469 const struct radv_nir_compiler_options *options)
3470 {
3471 LLVMRunPassManager(passmgr, ctx->ac.module);
3472 LLVMDisposeBuilder(ctx->ac.builder);
3473
3474 ac_llvm_context_dispose(&ctx->ac);
3475 }
3476
3477 static void
3478 ac_nir_eliminate_const_vs_outputs(struct radv_shader_context *ctx)
3479 {
3480 struct radv_vs_output_info *outinfo;
3481
3482 switch (ctx->stage) {
3483 case MESA_SHADER_FRAGMENT:
3484 case MESA_SHADER_COMPUTE:
3485 case MESA_SHADER_TESS_CTRL:
3486 case MESA_SHADER_GEOMETRY:
3487 return;
3488 case MESA_SHADER_VERTEX:
3489 if (ctx->options->key.vs.as_ls ||
3490 ctx->options->key.vs.as_es)
3491 return;
3492 outinfo = &ctx->shader_info->vs.outinfo;
3493 break;
3494 case MESA_SHADER_TESS_EVAL:
3495 if (ctx->options->key.vs.as_es)
3496 return;
3497 outinfo = &ctx->shader_info->tes.outinfo;
3498 break;
3499 default:
3500 unreachable("Unhandled shader type");
3501 }
3502
3503 ac_optimize_vs_outputs(&ctx->ac,
3504 ctx->main_function,
3505 outinfo->vs_output_param_offset,
3506 VARYING_SLOT_MAX,
3507 &outinfo->param_exports);
3508 }
3509
3510 static void
3511 ac_setup_rings(struct radv_shader_context *ctx)
3512 {
3513 if (ctx->options->chip_class <= GFX8 &&
3514 (ctx->stage == MESA_SHADER_GEOMETRY ||
3515 ctx->options->key.vs.as_es || ctx->options->key.tes.as_es)) {
3516 unsigned ring = ctx->stage == MESA_SHADER_GEOMETRY ? RING_ESGS_GS
3517 : RING_ESGS_VS;
3518 LLVMValueRef offset = LLVMConstInt(ctx->ac.i32, ring, false);
3519
3520 ctx->esgs_ring = ac_build_load_to_sgpr(&ctx->ac,
3521 ctx->ring_offsets,
3522 offset);
3523 }
3524
3525 if (ctx->is_gs_copy_shader) {
3526 ctx->gsvs_ring[0] =
3527 ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
3528 LLVMConstInt(ctx->ac.i32,
3529 RING_GSVS_VS, false));
3530 }
3531
3532 if (ctx->stage == MESA_SHADER_GEOMETRY) {
3533 /* The conceptual layout of the GSVS ring is
3534 * v0c0 .. vLv0 v0c1 .. vLc1 ..
3535 * but the real memory layout is swizzled across
3536 * threads:
3537 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
3538 * t16v0c0 ..
3539 * Override the buffer descriptor accordingly.
3540 */
3541 LLVMTypeRef v2i64 = LLVMVectorType(ctx->ac.i64, 2);
3542 uint64_t stream_offset = 0;
3543 unsigned num_records = 64;
3544 LLVMValueRef base_ring;
3545
3546 base_ring =
3547 ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets,
3548 LLVMConstInt(ctx->ac.i32,
3549 RING_GSVS_GS, false));
3550
3551 for (unsigned stream = 0; stream < 4; stream++) {
3552 unsigned num_components, stride;
3553 LLVMValueRef ring, tmp;
3554
3555 num_components =
3556 ctx->shader_info->info.gs.num_stream_output_components[stream];
3557
3558 if (!num_components)
3559 continue;
3560
3561 stride = 4 * num_components * ctx->gs_max_out_vertices;
3562
3563 /* Limit on the stride field for <= GFX7. */
3564 assert(stride < (1 << 14));
3565
3566 ring = LLVMBuildBitCast(ctx->ac.builder,
3567 base_ring, v2i64, "");
3568 tmp = LLVMBuildExtractElement(ctx->ac.builder,
3569 ring, ctx->ac.i32_0, "");
3570 tmp = LLVMBuildAdd(ctx->ac.builder, tmp,
3571 LLVMConstInt(ctx->ac.i64,
3572 stream_offset, 0), "");
3573 ring = LLVMBuildInsertElement(ctx->ac.builder,
3574 ring, tmp, ctx->ac.i32_0, "");
3575
3576 stream_offset += stride * 64;
3577
3578 ring = LLVMBuildBitCast(ctx->ac.builder, ring,
3579 ctx->ac.v4i32, "");
3580
3581 tmp = LLVMBuildExtractElement(ctx->ac.builder, ring,
3582 ctx->ac.i32_1, "");
3583 tmp = LLVMBuildOr(ctx->ac.builder, tmp,
3584 LLVMConstInt(ctx->ac.i32,
3585 S_008F04_STRIDE(stride), false), "");
3586 ring = LLVMBuildInsertElement(ctx->ac.builder, ring, tmp,
3587 ctx->ac.i32_1, "");
3588
3589 ring = LLVMBuildInsertElement(ctx->ac.builder, ring,
3590 LLVMConstInt(ctx->ac.i32,
3591 num_records, false),
3592 LLVMConstInt(ctx->ac.i32, 2, false), "");
3593
3594 ctx->gsvs_ring[stream] = ring;
3595 }
3596 }
3597
3598 if (ctx->stage == MESA_SHADER_TESS_CTRL ||
3599 ctx->stage == MESA_SHADER_TESS_EVAL) {
3600 ctx->hs_ring_tess_offchip = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_OFFCHIP, false));
3601 ctx->hs_ring_tess_factor = ac_build_load_to_sgpr(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->ac.i32, RING_HS_TESS_FACTOR, false));
3602 }
3603 }
3604
3605 unsigned
3606 radv_nir_get_max_workgroup_size(enum chip_class chip_class,
3607 const struct nir_shader *nir)
3608 {
3609 switch (nir->info.stage) {
3610 case MESA_SHADER_TESS_CTRL:
3611 return chip_class >= GFX7 ? 128 : 64;
3612 case MESA_SHADER_GEOMETRY:
3613 return chip_class >= GFX9 ? 128 : 64;
3614 case MESA_SHADER_COMPUTE:
3615 break;
3616 default:
3617 return 0;
3618 }
3619
3620 unsigned max_workgroup_size = nir->info.cs.local_size[0] *
3621 nir->info.cs.local_size[1] *
3622 nir->info.cs.local_size[2];
3623 return max_workgroup_size;
3624 }
3625
3626 /* Fixup the HW not emitting the TCS regs if there are no HS threads. */
3627 static void ac_nir_fixup_ls_hs_input_vgprs(struct radv_shader_context *ctx)
3628 {
3629 LLVMValueRef count = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 8, 8);
3630 LLVMValueRef hs_empty = LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ, count,
3631 ctx->ac.i32_0, "");
3632 ctx->abi.instance_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->rel_auto_id, ctx->abi.instance_id, "");
3633 ctx->rel_auto_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_rel_ids, ctx->rel_auto_id, "");
3634 ctx->abi.vertex_id = LLVMBuildSelect(ctx->ac.builder, hs_empty, ctx->abi.tcs_patch_id, ctx->abi.vertex_id, "");
3635 }
3636
3637 static void prepare_gs_input_vgprs(struct radv_shader_context *ctx)
3638 {
3639 for(int i = 5; i >= 0; --i) {
3640 ctx->gs_vtx_offset[i] = ac_unpack_param(&ctx->ac, ctx->gs_vtx_offset[i & ~1],
3641 (i & 1) * 16, 16);
3642 }
3643
3644 ctx->gs_wave_id = ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 16, 8);
3645 }
3646
3647
3648 static
3649 LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
3650 struct nir_shader *const *shaders,
3651 int shader_count,
3652 struct radv_shader_variant_info *shader_info,
3653 const struct radv_nir_compiler_options *options)
3654 {
3655 struct radv_shader_context ctx = {0};
3656 unsigned i;
3657 ctx.options = options;
3658 ctx.shader_info = shader_info;
3659
3660 ac_llvm_context_init(&ctx.ac, options->chip_class, options->family);
3661 ctx.context = ctx.ac.context;
3662 ctx.ac.module = ac_create_module(ac_llvm->tm, ctx.context);
3663
3664 enum ac_float_mode float_mode =
3665 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
3666 AC_FLOAT_MODE_DEFAULT;
3667
3668 ctx.ac.builder = ac_create_builder(ctx.context, float_mode);
3669
3670 memset(shader_info, 0, sizeof(*shader_info));
3671
3672 radv_nir_shader_info_init(&shader_info->info);
3673
3674 for(int i = 0; i < shader_count; ++i)
3675 radv_nir_shader_info_pass(shaders[i], options, &shader_info->info);
3676
3677 for (i = 0; i < RADV_UD_MAX_SETS; i++)
3678 shader_info->user_sgprs_locs.descriptor_sets[i].sgpr_idx = -1;
3679 for (i = 0; i < AC_UD_MAX_UD; i++)
3680 shader_info->user_sgprs_locs.shader_data[i].sgpr_idx = -1;
3681
3682 ctx.max_workgroup_size = 0;
3683 for (int i = 0; i < shader_count; ++i) {
3684 ctx.max_workgroup_size = MAX2(ctx.max_workgroup_size,
3685 radv_nir_get_max_workgroup_size(ctx.options->chip_class,
3686 shaders[i]));
3687 }
3688
3689 create_function(&ctx, shaders[shader_count - 1]->info.stage, shader_count >= 2,
3690 shader_count >= 2 ? shaders[shader_count - 2]->info.stage : MESA_SHADER_VERTEX);
3691
3692 ctx.abi.inputs = &ctx.inputs[0];
3693 ctx.abi.emit_outputs = handle_shader_outputs_post;
3694 ctx.abi.emit_vertex = visit_emit_vertex;
3695 ctx.abi.load_ubo = radv_load_ubo;
3696 ctx.abi.load_ssbo = radv_load_ssbo;
3697 ctx.abi.load_sampler_desc = radv_get_sampler_desc;
3698 ctx.abi.load_resource = radv_load_resource;
3699 ctx.abi.clamp_shadow_reference = false;
3700 ctx.abi.gfx9_stride_size_workaround = ctx.ac.chip_class == GFX9 && HAVE_LLVM < 0x800;
3701
3702 /* Because the new raw/struct atomic intrinsics are buggy with LLVM 8,
3703 * we fallback to the old intrinsics for atomic buffer image operations
3704 * and thus we need to apply the indexing workaround...
3705 */
3706 ctx.abi.gfx9_stride_size_workaround_for_atomic = ctx.ac.chip_class == GFX9 && HAVE_LLVM < 0x900;
3707
3708 if (shader_count >= 2)
3709 ac_init_exec_full_mask(&ctx.ac);
3710
3711 if ((ctx.ac.family == CHIP_VEGA10 ||
3712 ctx.ac.family == CHIP_RAVEN) &&
3713 shaders[shader_count - 1]->info.stage == MESA_SHADER_TESS_CTRL)
3714 ac_nir_fixup_ls_hs_input_vgprs(&ctx);
3715
3716 for(int i = 0; i < shader_count; ++i) {
3717 ctx.stage = shaders[i]->info.stage;
3718 ctx.output_mask = 0;
3719
3720 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
3721 for (int i = 0; i < 4; i++) {
3722 ctx.gs_next_vertex[i] =
3723 ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
3724 }
3725 ctx.gs_max_out_vertices = shaders[i]->info.gs.vertices_out;
3726 ctx.abi.load_inputs = load_gs_input;
3727 ctx.abi.emit_primitive = visit_end_primitive;
3728 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
3729 ctx.tcs_outputs_read = shaders[i]->info.outputs_read;
3730 ctx.tcs_patch_outputs_read = shaders[i]->info.patch_outputs_read;
3731 ctx.abi.load_tess_varyings = load_tcs_varyings;
3732 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
3733 ctx.abi.store_tcs_outputs = store_tcs_output;
3734 ctx.tcs_vertices_per_patch = shaders[i]->info.tess.tcs_vertices_out;
3735 if (shader_count == 1)
3736 ctx.tcs_num_inputs = ctx.options->key.tcs.num_inputs;
3737 else
3738 ctx.tcs_num_inputs = util_last_bit64(shader_info->info.vs.ls_outputs_written);
3739 ctx.tcs_num_patches = get_tcs_num_patches(&ctx);
3740 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_EVAL) {
3741 ctx.tes_primitive_mode = shaders[i]->info.tess.primitive_mode;
3742 ctx.abi.load_tess_varyings = load_tes_input;
3743 ctx.abi.load_tess_coord = load_tess_coord;
3744 ctx.abi.load_patch_vertices_in = load_patch_vertices_in;
3745 ctx.tcs_vertices_per_patch = shaders[i]->info.tess.tcs_vertices_out;
3746 ctx.tcs_num_patches = ctx.options->key.tes.num_patches;
3747 } else if (shaders[i]->info.stage == MESA_SHADER_VERTEX) {
3748 ctx.abi.load_base_vertex = radv_load_base_vertex;
3749 } else if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT) {
3750 shader_info->fs.can_discard = shaders[i]->info.fs.uses_discard;
3751 ctx.abi.lookup_interp_param = lookup_interp_param;
3752 ctx.abi.load_sample_position = load_sample_position;
3753 ctx.abi.load_sample_mask_in = load_sample_mask_in;
3754 ctx.abi.emit_kill = radv_emit_kill;
3755 }
3756
3757 if (i)
3758 ac_emit_barrier(&ctx.ac, ctx.stage);
3759
3760 nir_foreach_variable(variable, &shaders[i]->outputs)
3761 scan_shader_output_decl(&ctx, variable, shaders[i], shaders[i]->info.stage);
3762
3763 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
3764 unsigned addclip = shaders[i]->info.clip_distance_array_size +
3765 shaders[i]->info.cull_distance_array_size > 4;
3766 ctx.gsvs_vertex_size = (util_bitcount64(ctx.output_mask) + addclip) * 16;
3767 ctx.max_gsvs_emit_size = ctx.gsvs_vertex_size *
3768 shaders[i]->info.gs.vertices_out;
3769 }
3770
3771 ac_setup_rings(&ctx);
3772
3773 LLVMBasicBlockRef merge_block;
3774 if (shader_count >= 2) {
3775 LLVMValueRef fn = LLVMGetBasicBlockParent(LLVMGetInsertBlock(ctx.ac.builder));
3776 LLVMBasicBlockRef then_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
3777 merge_block = LLVMAppendBasicBlockInContext(ctx.ac.context, fn, "");
3778
3779 LLVMValueRef count = ac_unpack_param(&ctx.ac, ctx.merged_wave_info, 8 * i, 8);
3780 LLVMValueRef thread_id = ac_get_thread_id(&ctx.ac);
3781 LLVMValueRef cond = LLVMBuildICmp(ctx.ac.builder, LLVMIntULT,
3782 thread_id, count, "");
3783 LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);
3784
3785 LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
3786 }
3787
3788 if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
3789 handle_fs_inputs(&ctx, shaders[i]);
3790 else if(shaders[i]->info.stage == MESA_SHADER_VERTEX)
3791 handle_vs_inputs(&ctx, shaders[i]);
3792 else if(shader_count >= 2 && shaders[i]->info.stage == MESA_SHADER_GEOMETRY)
3793 prepare_gs_input_vgprs(&ctx);
3794
3795 ac_nir_translate(&ctx.ac, &ctx.abi, shaders[i]);
3796
3797 if (shader_count >= 2) {
3798 LLVMBuildBr(ctx.ac.builder, merge_block);
3799 LLVMPositionBuilderAtEnd(ctx.ac.builder, merge_block);
3800 }
3801
3802 if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
3803 shader_info->gs.gsvs_vertex_size = ctx.gsvs_vertex_size;
3804 shader_info->gs.max_gsvs_emit_size = ctx.max_gsvs_emit_size;
3805 } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
3806 shader_info->tcs.num_patches = ctx.tcs_num_patches;
3807 shader_info->tcs.lds_size = calculate_tess_lds_size(&ctx);
3808 }
3809 }
3810
3811 LLVMBuildRetVoid(ctx.ac.builder);
3812
3813 if (options->dump_preoptir)
3814 ac_dump_module(ctx.ac.module);
3815
3816 ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, options);
3817
3818 if (shader_count == 1)
3819 ac_nir_eliminate_const_vs_outputs(&ctx);
3820
3821 if (options->dump_shader) {
3822 ctx.shader_info->private_mem_vgprs =
3823 ac_count_scratch_private_memory(ctx.main_function);
3824 }
3825
3826 return ctx.ac.module;
3827 }
3828
3829 static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
3830 {
3831 unsigned *retval = (unsigned *)context;
3832 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
3833 char *description = LLVMGetDiagInfoDescription(di);
3834
3835 if (severity == LLVMDSError) {
3836 *retval = 1;
3837 fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n",
3838 description);
3839 }
3840
3841 LLVMDisposeMessage(description);
3842 }
3843
3844 static unsigned radv_llvm_compile(LLVMModuleRef M,
3845 char **pelf_buffer, size_t *pelf_size,
3846 struct ac_llvm_compiler *ac_llvm)
3847 {
3848 unsigned retval = 0;
3849 LLVMContextRef llvm_ctx;
3850
3851 /* Setup Diagnostic Handler*/
3852 llvm_ctx = LLVMGetModuleContext(M);
3853
3854 LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler,
3855 &retval);
3856
3857 /* Compile IR*/
3858 if (!radv_compile_to_elf(ac_llvm, M, pelf_buffer, pelf_size))
3859 retval = 1;
3860 return retval;
3861 }
3862
3863 static void ac_compile_llvm_module(struct ac_llvm_compiler *ac_llvm,
3864 LLVMModuleRef llvm_module,
3865 struct radv_shader_binary **rbinary,
3866 struct radv_shader_variant_info *shader_info,
3867 gl_shader_stage stage,
3868 const struct radv_nir_compiler_options *options)
3869 {
3870 char *elf_buffer = NULL;
3871 size_t elf_size = 0;
3872 char *llvm_ir_string = NULL;
3873 if (options->dump_shader)
3874 ac_dump_module(llvm_module);
3875
3876 if (options->record_llvm_ir) {
3877 char *llvm_ir = LLVMPrintModuleToString(llvm_module);
3878 llvm_ir_string = strdup(llvm_ir);
3879 LLVMDisposeMessage(llvm_ir);
3880 }
3881
3882 int v = radv_llvm_compile(llvm_module, &elf_buffer, &elf_size, ac_llvm);
3883 if (v) {
3884 fprintf(stderr, "compile failed\n");
3885 }
3886
3887 LLVMContextRef ctx = LLVMGetModuleContext(llvm_module);
3888 LLVMDisposeModule(llvm_module);
3889 LLVMContextDispose(ctx);
3890
3891 size_t llvm_ir_size = llvm_ir_string ? strlen(llvm_ir_string) : 0;
3892 size_t alloc_size = sizeof(struct radv_shader_binary_rtld) + elf_size + llvm_ir_size + 1;
3893 struct radv_shader_binary_rtld *rbin = calloc(1, alloc_size);
3894 memcpy(rbin->data, elf_buffer, elf_size);
3895 if (llvm_ir_string)
3896 memcpy(rbin->data + elf_size, llvm_ir_string, llvm_ir_size + 1);
3897
3898 rbin->base.type = RADV_BINARY_TYPE_RTLD;
3899 rbin->base.stage = stage;
3900 rbin->base.total_size = alloc_size;
3901 rbin->elf_size = elf_size;
3902 rbin->llvm_ir_size = llvm_ir_size;
3903 *rbinary = &rbin->base;
3904
3905 free(llvm_ir_string);
3906 free(elf_buffer);
3907 }
3908
3909 static void
3910 ac_fill_shader_info(struct radv_shader_variant_info *shader_info, struct nir_shader *nir, const struct radv_nir_compiler_options *options)
3911 {
3912 switch (nir->info.stage) {
3913 case MESA_SHADER_COMPUTE:
3914 for (int i = 0; i < 3; ++i)
3915 shader_info->cs.block_size[i] = nir->info.cs.local_size[i];
3916 break;
3917 case MESA_SHADER_FRAGMENT:
3918 shader_info->fs.early_fragment_test = nir->info.fs.early_fragment_tests;
3919 break;
3920 case MESA_SHADER_GEOMETRY:
3921 shader_info->gs.vertices_in = nir->info.gs.vertices_in;
3922 shader_info->gs.vertices_out = nir->info.gs.vertices_out;
3923 shader_info->gs.output_prim = nir->info.gs.output_primitive;
3924 shader_info->gs.invocations = nir->info.gs.invocations;
3925 break;
3926 case MESA_SHADER_TESS_EVAL:
3927 shader_info->tes.primitive_mode = nir->info.tess.primitive_mode;
3928 shader_info->tes.spacing = nir->info.tess.spacing;
3929 shader_info->tes.ccw = nir->info.tess.ccw;
3930 shader_info->tes.point_mode = nir->info.tess.point_mode;
3931 shader_info->tes.as_es = options->key.tes.as_es;
3932 shader_info->tes.export_prim_id = options->key.tes.export_prim_id;
3933 break;
3934 case MESA_SHADER_TESS_CTRL:
3935 shader_info->tcs.tcs_vertices_out = nir->info.tess.tcs_vertices_out;
3936 break;
3937 case MESA_SHADER_VERTEX:
3938 shader_info->vs.as_es = options->key.vs.as_es;
3939 shader_info->vs.as_ls = options->key.vs.as_ls;
3940 shader_info->vs.export_prim_id = options->key.vs.export_prim_id;
3941 break;
3942 default:
3943 break;
3944 }
3945 }
3946
3947 void
3948 radv_compile_nir_shader(struct ac_llvm_compiler *ac_llvm,
3949 struct radv_shader_binary **rbinary,
3950 struct radv_shader_variant_info *shader_info,
3951 struct nir_shader *const *nir,
3952 int nir_count,
3953 const struct radv_nir_compiler_options *options)
3954 {
3955
3956 LLVMModuleRef llvm_module;
3957
3958 llvm_module = ac_translate_nir_to_llvm(ac_llvm, nir, nir_count, shader_info,
3959 options);
3960
3961 ac_compile_llvm_module(ac_llvm, llvm_module, rbinary, shader_info,
3962 nir[nir_count - 1]->info.stage, options);
3963
3964 for (int i = 0; i < nir_count; ++i)
3965 ac_fill_shader_info(shader_info, nir[i], options);
3966
3967 /* Determine the ES type (VS or TES) for the GS on GFX9. */
3968 if (options->chip_class == GFX9) {
3969 if (nir_count == 2 &&
3970 nir[1]->info.stage == MESA_SHADER_GEOMETRY) {
3971 shader_info->gs.es_type = nir[0]->info.stage;
3972 }
3973 }
3974 }
3975
3976 static void
3977 ac_gs_copy_shader_emit(struct radv_shader_context *ctx)
3978 {
3979 LLVMValueRef vtx_offset =
3980 LLVMBuildMul(ctx->ac.builder, ctx->abi.vertex_id,
3981 LLVMConstInt(ctx->ac.i32, 4, false), "");
3982 LLVMValueRef stream_id;
3983
3984 /* Fetch the vertex stream ID. */
3985 if (ctx->shader_info->info.so.num_outputs) {
3986 stream_id =
3987 ac_unpack_param(&ctx->ac, ctx->streamout_config, 24, 2);
3988 } else {
3989 stream_id = ctx->ac.i32_0;
3990 }
3991
3992 LLVMBasicBlockRef end_bb;
3993 LLVMValueRef switch_inst;
3994
3995 end_bb = LLVMAppendBasicBlockInContext(ctx->ac.context,
3996 ctx->main_function, "end");
3997 switch_inst = LLVMBuildSwitch(ctx->ac.builder, stream_id, end_bb, 4);
3998
3999 for (unsigned stream = 0; stream < 4; stream++) {
4000 unsigned num_components =
4001 ctx->shader_info->info.gs.num_stream_output_components[stream];
4002 LLVMBasicBlockRef bb;
4003 unsigned offset;
4004
4005 if (!num_components)
4006 continue;
4007
4008 if (stream > 0 && !ctx->shader_info->info.so.num_outputs)
4009 continue;
4010
4011 bb = LLVMInsertBasicBlockInContext(ctx->ac.context, end_bb, "out");
4012 LLVMAddCase(switch_inst, LLVMConstInt(ctx->ac.i32, stream, 0), bb);
4013 LLVMPositionBuilderAtEnd(ctx->ac.builder, bb);
4014
4015 offset = 0;
4016 for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
4017 unsigned output_usage_mask =
4018 ctx->shader_info->info.gs.output_usage_mask[i];
4019 unsigned output_stream =
4020 ctx->shader_info->info.gs.output_streams[i];
4021 int length = util_last_bit(output_usage_mask);
4022
4023 if (!(ctx->output_mask & (1ull << i)) ||
4024 output_stream != stream)
4025 continue;
4026
4027 for (unsigned j = 0; j < length; j++) {
4028 LLVMValueRef value, soffset;
4029
4030 if (!(output_usage_mask & (1 << j)))
4031 continue;
4032
4033 soffset = LLVMConstInt(ctx->ac.i32,
4034 offset *
4035 ctx->gs_max_out_vertices * 16 * 4, false);
4036
4037 offset++;
4038
4039 value = ac_build_buffer_load(&ctx->ac,
4040 ctx->gsvs_ring[0],
4041 1, ctx->ac.i32_0,
4042 vtx_offset, soffset,
4043 0, ac_glc | ac_slc, true, false);
4044
4045 LLVMTypeRef type = LLVMGetAllocatedType(ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
4046 if (ac_get_type_size(type) == 2) {
4047 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->ac.i32, "");
4048 value = LLVMBuildTrunc(ctx->ac.builder, value, ctx->ac.i16, "");
4049 }
4050
4051 LLVMBuildStore(ctx->ac.builder,
4052 ac_to_float(&ctx->ac, value), ctx->abi.outputs[ac_llvm_reg_index_soa(i, j)]);
4053 }
4054 }
4055
4056 if (ctx->shader_info->info.so.num_outputs)
4057 radv_emit_streamout(ctx, stream);
4058
4059 if (stream == 0) {
4060 handle_vs_outputs_post(ctx, false, false, true,
4061 &ctx->shader_info->vs.outinfo);
4062 }
4063
4064 LLVMBuildBr(ctx->ac.builder, end_bb);
4065 }
4066
4067 LLVMPositionBuilderAtEnd(ctx->ac.builder, end_bb);
4068 }
4069
4070 void
4071 radv_compile_gs_copy_shader(struct ac_llvm_compiler *ac_llvm,
4072 struct nir_shader *geom_shader,
4073 struct radv_shader_binary **rbinary,
4074 struct radv_shader_variant_info *shader_info,
4075 const struct radv_nir_compiler_options *options)
4076 {
4077 struct radv_shader_context ctx = {0};
4078 ctx.options = options;
4079 ctx.shader_info = shader_info;
4080
4081 ac_llvm_context_init(&ctx.ac, options->chip_class, options->family);
4082 ctx.context = ctx.ac.context;
4083 ctx.ac.module = ac_create_module(ac_llvm->tm, ctx.context);
4084
4085 ctx.is_gs_copy_shader = true;
4086
4087 enum ac_float_mode float_mode =
4088 options->unsafe_math ? AC_FLOAT_MODE_UNSAFE_FP_MATH :
4089 AC_FLOAT_MODE_DEFAULT;
4090
4091 ctx.ac.builder = ac_create_builder(ctx.context, float_mode);
4092 ctx.stage = MESA_SHADER_VERTEX;
4093
4094 radv_nir_shader_info_pass(geom_shader, options, &shader_info->info);
4095
4096 create_function(&ctx, MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX);
4097
4098 ctx.gs_max_out_vertices = geom_shader->info.gs.vertices_out;
4099 ac_setup_rings(&ctx);
4100
4101 nir_foreach_variable(variable, &geom_shader->outputs) {
4102 scan_shader_output_decl(&ctx, variable, geom_shader, MESA_SHADER_VERTEX);
4103 ac_handle_shader_output_decl(&ctx.ac, &ctx.abi, geom_shader,
4104 variable, MESA_SHADER_VERTEX);
4105 }
4106
4107 ac_gs_copy_shader_emit(&ctx);
4108
4109 LLVMBuildRetVoid(ctx.ac.builder);
4110
4111 ac_llvm_finalize_module(&ctx, ac_llvm->passmgr, options);
4112
4113 ac_compile_llvm_module(ac_llvm, ctx.ac.module, rbinary, shader_info,
4114 MESA_SHADER_VERTEX, options);
4115 (*rbinary)->is_gs_copy_shader = true;
4116
4117 }