radv: add support for dynamic and scissor count
[mesa.git] / src / amd / vulkan / radv_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/disk_cache.h"
29 #include "util/mesa-sha1.h"
30 #include "util/u_atomic.h"
31 #include "radv_debug.h"
32 #include "radv_private.h"
33 #include "radv_cs.h"
34 #include "radv_shader.h"
35 #include "nir/nir.h"
36 #include "nir/nir_builder.h"
37 #include "nir/nir_xfb_info.h"
38 #include "spirv/nir_spirv.h"
39 #include "vk_util.h"
40
41 #include "sid.h"
42 #include "ac_binary.h"
43 #include "ac_llvm_util.h"
44 #include "ac_nir_to_llvm.h"
45 #include "vk_format.h"
46 #include "util/debug.h"
47 #include "ac_exp_param.h"
48 #include "ac_shader_util.h"
49
50 struct radv_blend_state {
51 uint32_t blend_enable_4bit;
52 uint32_t need_src_alpha;
53
54 uint32_t cb_color_control;
55 uint32_t cb_target_mask;
56 uint32_t cb_target_enabled_4bit;
57 uint32_t sx_mrt_blend_opt[8];
58 uint32_t cb_blend_control[8];
59
60 uint32_t spi_shader_col_format;
61 uint32_t col_format_is_int8;
62 uint32_t col_format_is_int10;
63 uint32_t cb_shader_mask;
64 uint32_t db_alpha_to_mask;
65
66 uint32_t commutative_4bit;
67
68 bool single_cb_enable;
69 bool mrt0_is_dual_src;
70 };
71
72 struct radv_dsa_order_invariance {
73 /* Whether the final result in Z/S buffers is guaranteed to be
74 * invariant under changes to the order in which fragments arrive.
75 */
76 bool zs;
77
78 /* Whether the set of fragments that pass the combined Z/S test is
79 * guaranteed to be invariant under changes to the order in which
80 * fragments arrive.
81 */
82 bool pass_set;
83 };
84
85 struct radv_tessellation_state {
86 uint32_t ls_hs_config;
87 unsigned num_patches;
88 unsigned lds_size;
89 uint32_t tf_param;
90 };
91
92 static const VkPipelineMultisampleStateCreateInfo *
93 radv_pipeline_get_multisample_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
94 {
95 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable)
96 return pCreateInfo->pMultisampleState;
97 return NULL;
98 }
99
100 static const VkPipelineTessellationStateCreateInfo *
101 radv_pipeline_get_tessellation_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
102 {
103 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
104 if (pCreateInfo->pStages[i].stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT ||
105 pCreateInfo->pStages[i].stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
106 return pCreateInfo->pTessellationState;
107 }
108 }
109 return NULL;
110 }
111
112 static const VkPipelineDepthStencilStateCreateInfo *
113 radv_pipeline_get_depth_stencil_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
114 {
115 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
116 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
117
118 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
119 subpass->depth_stencil_attachment)
120 return pCreateInfo->pDepthStencilState;
121 return NULL;
122 }
123
124 static const VkPipelineColorBlendStateCreateInfo *
125 radv_pipeline_get_color_blend_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
126 {
127 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
128 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
129
130 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
131 subpass->has_color_att)
132 return pCreateInfo->pColorBlendState;
133 return NULL;
134 }
135
136 bool radv_pipeline_has_ngg(const struct radv_pipeline *pipeline)
137 {
138 struct radv_shader_variant *variant = NULL;
139 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
140 variant = pipeline->shaders[MESA_SHADER_GEOMETRY];
141 else if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
142 variant = pipeline->shaders[MESA_SHADER_TESS_EVAL];
143 else if (pipeline->shaders[MESA_SHADER_VERTEX])
144 variant = pipeline->shaders[MESA_SHADER_VERTEX];
145 else
146 return false;
147 return variant->info.is_ngg;
148 }
149
150 bool radv_pipeline_has_ngg_passthrough(const struct radv_pipeline *pipeline)
151 {
152 assert(radv_pipeline_has_ngg(pipeline));
153
154 struct radv_shader_variant *variant = NULL;
155 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
156 variant = pipeline->shaders[MESA_SHADER_GEOMETRY];
157 else if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
158 variant = pipeline->shaders[MESA_SHADER_TESS_EVAL];
159 else if (pipeline->shaders[MESA_SHADER_VERTEX])
160 variant = pipeline->shaders[MESA_SHADER_VERTEX];
161 else
162 return false;
163 return variant->info.is_ngg_passthrough;
164 }
165
166 bool radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline)
167 {
168 if (!radv_pipeline_has_gs(pipeline))
169 return false;
170
171 /* The GS copy shader is required if the pipeline has GS on GFX6-GFX9.
172 * On GFX10, it might be required in rare cases if it's not possible to
173 * enable NGG.
174 */
175 if (radv_pipeline_has_ngg(pipeline))
176 return false;
177
178 assert(pipeline->gs_copy_shader);
179 return true;
180 }
181
182 static void
183 radv_pipeline_destroy(struct radv_device *device,
184 struct radv_pipeline *pipeline,
185 const VkAllocationCallbacks* allocator)
186 {
187 for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i)
188 if (pipeline->shaders[i])
189 radv_shader_variant_destroy(device, pipeline->shaders[i]);
190
191 if (pipeline->gs_copy_shader)
192 radv_shader_variant_destroy(device, pipeline->gs_copy_shader);
193
194 if(pipeline->cs.buf)
195 free(pipeline->cs.buf);
196
197 vk_object_base_finish(&pipeline->base);
198 vk_free2(&device->vk.alloc, allocator, pipeline);
199 }
200
201 void radv_DestroyPipeline(
202 VkDevice _device,
203 VkPipeline _pipeline,
204 const VkAllocationCallbacks* pAllocator)
205 {
206 RADV_FROM_HANDLE(radv_device, device, _device);
207 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
208
209 if (!_pipeline)
210 return;
211
212 radv_pipeline_destroy(device, pipeline, pAllocator);
213 }
214
215 static uint32_t get_hash_flags(struct radv_device *device)
216 {
217 uint32_t hash_flags = 0;
218
219 if (device->instance->debug_flags & RADV_DEBUG_NO_NGG)
220 hash_flags |= RADV_HASH_SHADER_NO_NGG;
221 if (device->physical_device->cs_wave_size == 32)
222 hash_flags |= RADV_HASH_SHADER_CS_WAVE32;
223 if (device->physical_device->ps_wave_size == 32)
224 hash_flags |= RADV_HASH_SHADER_PS_WAVE32;
225 if (device->physical_device->ge_wave_size == 32)
226 hash_flags |= RADV_HASH_SHADER_GE_WAVE32;
227 if (device->physical_device->use_llvm)
228 hash_flags |= RADV_HASH_SHADER_LLVM;
229 return hash_flags;
230 }
231
232 static VkResult
233 radv_pipeline_scratch_init(struct radv_device *device,
234 struct radv_pipeline *pipeline)
235 {
236 unsigned scratch_bytes_per_wave = 0;
237 unsigned max_waves = 0;
238 unsigned min_waves = 1;
239
240 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
241 if (pipeline->shaders[i] &&
242 pipeline->shaders[i]->config.scratch_bytes_per_wave) {
243 unsigned max_stage_waves = device->scratch_waves;
244
245 scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave,
246 pipeline->shaders[i]->config.scratch_bytes_per_wave);
247
248 max_stage_waves = MIN2(max_stage_waves,
249 4 * device->physical_device->rad_info.num_good_compute_units *
250 (256 / pipeline->shaders[i]->config.num_vgprs));
251 max_waves = MAX2(max_waves, max_stage_waves);
252 }
253 }
254
255 if (pipeline->shaders[MESA_SHADER_COMPUTE]) {
256 unsigned group_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[0] *
257 pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[1] *
258 pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[2];
259 min_waves = MAX2(min_waves, round_up_u32(group_size, 64));
260 }
261
262 pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave;
263 pipeline->max_waves = max_waves;
264 return VK_SUCCESS;
265 }
266
267 static uint32_t si_translate_blend_logic_op(VkLogicOp op)
268 {
269 switch (op) {
270 case VK_LOGIC_OP_CLEAR:
271 return V_028808_ROP3_CLEAR;
272 case VK_LOGIC_OP_AND:
273 return V_028808_ROP3_AND;
274 case VK_LOGIC_OP_AND_REVERSE:
275 return V_028808_ROP3_AND_REVERSE;
276 case VK_LOGIC_OP_COPY:
277 return V_028808_ROP3_COPY;
278 case VK_LOGIC_OP_AND_INVERTED:
279 return V_028808_ROP3_AND_INVERTED;
280 case VK_LOGIC_OP_NO_OP:
281 return V_028808_ROP3_NO_OP;
282 case VK_LOGIC_OP_XOR:
283 return V_028808_ROP3_XOR;
284 case VK_LOGIC_OP_OR:
285 return V_028808_ROP3_OR;
286 case VK_LOGIC_OP_NOR:
287 return V_028808_ROP3_NOR;
288 case VK_LOGIC_OP_EQUIVALENT:
289 return V_028808_ROP3_EQUIVALENT;
290 case VK_LOGIC_OP_INVERT:
291 return V_028808_ROP3_INVERT;
292 case VK_LOGIC_OP_OR_REVERSE:
293 return V_028808_ROP3_OR_REVERSE;
294 case VK_LOGIC_OP_COPY_INVERTED:
295 return V_028808_ROP3_COPY_INVERTED;
296 case VK_LOGIC_OP_OR_INVERTED:
297 return V_028808_ROP3_OR_INVERTED;
298 case VK_LOGIC_OP_NAND:
299 return V_028808_ROP3_NAND;
300 case VK_LOGIC_OP_SET:
301 return V_028808_ROP3_SET;
302 default:
303 unreachable("Unhandled logic op");
304 }
305 }
306
307
308 static uint32_t si_translate_blend_function(VkBlendOp op)
309 {
310 switch (op) {
311 case VK_BLEND_OP_ADD:
312 return V_028780_COMB_DST_PLUS_SRC;
313 case VK_BLEND_OP_SUBTRACT:
314 return V_028780_COMB_SRC_MINUS_DST;
315 case VK_BLEND_OP_REVERSE_SUBTRACT:
316 return V_028780_COMB_DST_MINUS_SRC;
317 case VK_BLEND_OP_MIN:
318 return V_028780_COMB_MIN_DST_SRC;
319 case VK_BLEND_OP_MAX:
320 return V_028780_COMB_MAX_DST_SRC;
321 default:
322 return 0;
323 }
324 }
325
326 static uint32_t si_translate_blend_factor(VkBlendFactor factor)
327 {
328 switch (factor) {
329 case VK_BLEND_FACTOR_ZERO:
330 return V_028780_BLEND_ZERO;
331 case VK_BLEND_FACTOR_ONE:
332 return V_028780_BLEND_ONE;
333 case VK_BLEND_FACTOR_SRC_COLOR:
334 return V_028780_BLEND_SRC_COLOR;
335 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
336 return V_028780_BLEND_ONE_MINUS_SRC_COLOR;
337 case VK_BLEND_FACTOR_DST_COLOR:
338 return V_028780_BLEND_DST_COLOR;
339 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
340 return V_028780_BLEND_ONE_MINUS_DST_COLOR;
341 case VK_BLEND_FACTOR_SRC_ALPHA:
342 return V_028780_BLEND_SRC_ALPHA;
343 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
344 return V_028780_BLEND_ONE_MINUS_SRC_ALPHA;
345 case VK_BLEND_FACTOR_DST_ALPHA:
346 return V_028780_BLEND_DST_ALPHA;
347 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
348 return V_028780_BLEND_ONE_MINUS_DST_ALPHA;
349 case VK_BLEND_FACTOR_CONSTANT_COLOR:
350 return V_028780_BLEND_CONSTANT_COLOR;
351 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
352 return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR;
353 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
354 return V_028780_BLEND_CONSTANT_ALPHA;
355 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
356 return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA;
357 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
358 return V_028780_BLEND_SRC_ALPHA_SATURATE;
359 case VK_BLEND_FACTOR_SRC1_COLOR:
360 return V_028780_BLEND_SRC1_COLOR;
361 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
362 return V_028780_BLEND_INV_SRC1_COLOR;
363 case VK_BLEND_FACTOR_SRC1_ALPHA:
364 return V_028780_BLEND_SRC1_ALPHA;
365 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
366 return V_028780_BLEND_INV_SRC1_ALPHA;
367 default:
368 return 0;
369 }
370 }
371
372 static uint32_t si_translate_blend_opt_function(VkBlendOp op)
373 {
374 switch (op) {
375 case VK_BLEND_OP_ADD:
376 return V_028760_OPT_COMB_ADD;
377 case VK_BLEND_OP_SUBTRACT:
378 return V_028760_OPT_COMB_SUBTRACT;
379 case VK_BLEND_OP_REVERSE_SUBTRACT:
380 return V_028760_OPT_COMB_REVSUBTRACT;
381 case VK_BLEND_OP_MIN:
382 return V_028760_OPT_COMB_MIN;
383 case VK_BLEND_OP_MAX:
384 return V_028760_OPT_COMB_MAX;
385 default:
386 return V_028760_OPT_COMB_BLEND_DISABLED;
387 }
388 }
389
390 static uint32_t si_translate_blend_opt_factor(VkBlendFactor factor, bool is_alpha)
391 {
392 switch (factor) {
393 case VK_BLEND_FACTOR_ZERO:
394 return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL;
395 case VK_BLEND_FACTOR_ONE:
396 return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE;
397 case VK_BLEND_FACTOR_SRC_COLOR:
398 return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0
399 : V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0;
400 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
401 return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1
402 : V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1;
403 case VK_BLEND_FACTOR_SRC_ALPHA:
404 return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0;
405 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
406 return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1;
407 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
408 return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE
409 : V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
410 default:
411 return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
412 }
413 }
414
415 /**
416 * Get rid of DST in the blend factors by commuting the operands:
417 * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
418 */
419 static void si_blend_remove_dst(unsigned *func, unsigned *src_factor,
420 unsigned *dst_factor, unsigned expected_dst,
421 unsigned replacement_src)
422 {
423 if (*src_factor == expected_dst &&
424 *dst_factor == VK_BLEND_FACTOR_ZERO) {
425 *src_factor = VK_BLEND_FACTOR_ZERO;
426 *dst_factor = replacement_src;
427
428 /* Commuting the operands requires reversing subtractions. */
429 if (*func == VK_BLEND_OP_SUBTRACT)
430 *func = VK_BLEND_OP_REVERSE_SUBTRACT;
431 else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT)
432 *func = VK_BLEND_OP_SUBTRACT;
433 }
434 }
435
436 static bool si_blend_factor_uses_dst(unsigned factor)
437 {
438 return factor == VK_BLEND_FACTOR_DST_COLOR ||
439 factor == VK_BLEND_FACTOR_DST_ALPHA ||
440 factor == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
441 factor == VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA ||
442 factor == VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
443 }
444
445 static bool is_dual_src(VkBlendFactor factor)
446 {
447 switch (factor) {
448 case VK_BLEND_FACTOR_SRC1_COLOR:
449 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
450 case VK_BLEND_FACTOR_SRC1_ALPHA:
451 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
452 return true;
453 default:
454 return false;
455 }
456 }
457
458 static unsigned radv_choose_spi_color_format(VkFormat vk_format,
459 bool blend_enable,
460 bool blend_need_alpha)
461 {
462 const struct vk_format_description *desc = vk_format_description(vk_format);
463 struct ac_spi_color_formats formats = {};
464 unsigned format, ntype, swap;
465
466 format = radv_translate_colorformat(vk_format);
467 ntype = radv_translate_color_numformat(vk_format, desc,
468 vk_format_get_first_non_void_channel(vk_format));
469 swap = radv_translate_colorswap(vk_format, false);
470
471 ac_choose_spi_color_formats(format, swap, ntype, false, &formats);
472
473 if (blend_enable && blend_need_alpha)
474 return formats.blend_alpha;
475 else if(blend_need_alpha)
476 return formats.alpha;
477 else if(blend_enable)
478 return formats.blend;
479 else
480 return formats.normal;
481 }
482
483 static bool
484 format_is_int8(VkFormat format)
485 {
486 const struct vk_format_description *desc = vk_format_description(format);
487 int channel = vk_format_get_first_non_void_channel(format);
488
489 return channel >= 0 && desc->channel[channel].pure_integer &&
490 desc->channel[channel].size == 8;
491 }
492
493 static bool
494 format_is_int10(VkFormat format)
495 {
496 const struct vk_format_description *desc = vk_format_description(format);
497
498 if (desc->nr_channels != 4)
499 return false;
500 for (unsigned i = 0; i < 4; i++) {
501 if (desc->channel[i].pure_integer && desc->channel[i].size == 10)
502 return true;
503 }
504 return false;
505 }
506
507 static void
508 radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline,
509 const VkGraphicsPipelineCreateInfo *pCreateInfo,
510 struct radv_blend_state *blend)
511 {
512 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
513 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
514 unsigned col_format = 0, is_int8 = 0, is_int10 = 0;
515 unsigned num_targets;
516
517 for (unsigned i = 0; i < (blend->single_cb_enable ? 1 : subpass->color_count); ++i) {
518 unsigned cf;
519
520 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED ||
521 !(blend->cb_target_mask & (0xfu << (i * 4)))) {
522 cf = V_028714_SPI_SHADER_ZERO;
523 } else {
524 struct radv_render_pass_attachment *attachment = pass->attachments + subpass->color_attachments[i].attachment;
525 bool blend_enable =
526 blend->blend_enable_4bit & (0xfu << (i * 4));
527
528 cf = radv_choose_spi_color_format(attachment->format,
529 blend_enable,
530 blend->need_src_alpha & (1 << i));
531
532 if (format_is_int8(attachment->format))
533 is_int8 |= 1 << i;
534 if (format_is_int10(attachment->format))
535 is_int10 |= 1 << i;
536 }
537
538 col_format |= cf << (4 * i);
539 }
540
541 if (!(col_format & 0xf) && blend->need_src_alpha & (1 << 0)) {
542 /* When a subpass doesn't have any color attachments, write the
543 * alpha channel of MRT0 when alpha coverage is enabled because
544 * the depth attachment needs it.
545 */
546 col_format |= V_028714_SPI_SHADER_32_AR;
547 }
548
549 /* If the i-th target format is set, all previous target formats must
550 * be non-zero to avoid hangs.
551 */
552 num_targets = (util_last_bit(col_format) + 3) / 4;
553 for (unsigned i = 0; i < num_targets; i++) {
554 if (!(col_format & (0xf << (i * 4)))) {
555 col_format |= V_028714_SPI_SHADER_32_R << (i * 4);
556 }
557 }
558
559 /* The output for dual source blending should have the same format as
560 * the first output.
561 */
562 if (blend->mrt0_is_dual_src)
563 col_format |= (col_format & 0xf) << 4;
564
565 blend->spi_shader_col_format = col_format;
566 blend->col_format_is_int8 = is_int8;
567 blend->col_format_is_int10 = is_int10;
568 }
569
570 /*
571 * Ordered so that for each i,
572 * radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i.
573 */
574 const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = {
575 VK_FORMAT_R32_SFLOAT,
576 VK_FORMAT_R32G32_SFLOAT,
577 VK_FORMAT_R8G8B8A8_UNORM,
578 VK_FORMAT_R16G16B16A16_UNORM,
579 VK_FORMAT_R16G16B16A16_SNORM,
580 VK_FORMAT_R16G16B16A16_UINT,
581 VK_FORMAT_R16G16B16A16_SINT,
582 VK_FORMAT_R32G32B32A32_SFLOAT,
583 VK_FORMAT_R8G8B8A8_UINT,
584 VK_FORMAT_R8G8B8A8_SINT,
585 VK_FORMAT_A2R10G10B10_UINT_PACK32,
586 VK_FORMAT_A2R10G10B10_SINT_PACK32,
587 };
588
589 unsigned radv_format_meta_fs_key(VkFormat format)
590 {
591 unsigned col_format = radv_choose_spi_color_format(format, false, false);
592
593 assert(col_format != V_028714_SPI_SHADER_32_AR);
594 if (col_format >= V_028714_SPI_SHADER_32_AR)
595 --col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */
596
597 --col_format; /* Skip V_028714_SPI_SHADER_ZERO */
598 bool is_int8 = format_is_int8(format);
599 bool is_int10 = format_is_int10(format);
600
601 return col_format + (is_int8 ? 3 : is_int10 ? 5 : 0);
602 }
603
604 static void
605 radv_blend_check_commutativity(struct radv_blend_state *blend,
606 VkBlendOp op, VkBlendFactor src,
607 VkBlendFactor dst, unsigned chanmask)
608 {
609 /* Src factor is allowed when it does not depend on Dst. */
610 static const uint32_t src_allowed =
611 (1u << VK_BLEND_FACTOR_ONE) |
612 (1u << VK_BLEND_FACTOR_SRC_COLOR) |
613 (1u << VK_BLEND_FACTOR_SRC_ALPHA) |
614 (1u << VK_BLEND_FACTOR_SRC_ALPHA_SATURATE) |
615 (1u << VK_BLEND_FACTOR_CONSTANT_COLOR) |
616 (1u << VK_BLEND_FACTOR_CONSTANT_ALPHA) |
617 (1u << VK_BLEND_FACTOR_SRC1_COLOR) |
618 (1u << VK_BLEND_FACTOR_SRC1_ALPHA) |
619 (1u << VK_BLEND_FACTOR_ZERO) |
620 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR) |
621 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) |
622 (1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR) |
623 (1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA) |
624 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR) |
625 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA);
626
627 if (dst == VK_BLEND_FACTOR_ONE &&
628 (src_allowed & (1u << src))) {
629 /* Addition is commutative, but floating point addition isn't
630 * associative: subtle changes can be introduced via different
631 * rounding. Be conservative, only enable for min and max.
632 */
633 if (op == VK_BLEND_OP_MAX || op == VK_BLEND_OP_MIN)
634 blend->commutative_4bit |= chanmask;
635 }
636 }
637
638 static struct radv_blend_state
639 radv_pipeline_init_blend_state(struct radv_pipeline *pipeline,
640 const VkGraphicsPipelineCreateInfo *pCreateInfo,
641 const struct radv_graphics_pipeline_create_info *extra)
642 {
643 const VkPipelineColorBlendStateCreateInfo *vkblend = radv_pipeline_get_color_blend_state(pCreateInfo);
644 const VkPipelineMultisampleStateCreateInfo *vkms = radv_pipeline_get_multisample_state(pCreateInfo);
645 struct radv_blend_state blend = {0};
646 unsigned mode = V_028808_CB_NORMAL;
647 int i;
648
649 if (extra && extra->custom_blend_mode) {
650 blend.single_cb_enable = true;
651 mode = extra->custom_blend_mode;
652 }
653
654 blend.cb_color_control = 0;
655 if (vkblend) {
656 if (vkblend->logicOpEnable)
657 blend.cb_color_control |= S_028808_ROP3(si_translate_blend_logic_op(vkblend->logicOp));
658 else
659 blend.cb_color_control |= S_028808_ROP3(V_028808_ROP3_COPY);
660 }
661
662 blend.db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(3) |
663 S_028B70_ALPHA_TO_MASK_OFFSET1(1) |
664 S_028B70_ALPHA_TO_MASK_OFFSET2(0) |
665 S_028B70_ALPHA_TO_MASK_OFFSET3(2) |
666 S_028B70_OFFSET_ROUND(1);
667
668 if (vkms && vkms->alphaToCoverageEnable) {
669 blend.db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1);
670 blend.need_src_alpha |= 0x1;
671 }
672
673 blend.cb_target_mask = 0;
674 if (vkblend) {
675 for (i = 0; i < vkblend->attachmentCount; i++) {
676 const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i];
677 unsigned blend_cntl = 0;
678 unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt;
679 VkBlendOp eqRGB = att->colorBlendOp;
680 VkBlendFactor srcRGB = att->srcColorBlendFactor;
681 VkBlendFactor dstRGB = att->dstColorBlendFactor;
682 VkBlendOp eqA = att->alphaBlendOp;
683 VkBlendFactor srcA = att->srcAlphaBlendFactor;
684 VkBlendFactor dstA = att->dstAlphaBlendFactor;
685
686 blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
687
688 if (!att->colorWriteMask)
689 continue;
690
691 blend.cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i);
692 blend.cb_target_enabled_4bit |= 0xf << (4 * i);
693 if (!att->blendEnable) {
694 blend.cb_blend_control[i] = blend_cntl;
695 continue;
696 }
697
698 if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA))
699 if (i == 0)
700 blend.mrt0_is_dual_src = true;
701
702 if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
703 srcRGB = VK_BLEND_FACTOR_ONE;
704 dstRGB = VK_BLEND_FACTOR_ONE;
705 }
706 if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) {
707 srcA = VK_BLEND_FACTOR_ONE;
708 dstA = VK_BLEND_FACTOR_ONE;
709 }
710
711 radv_blend_check_commutativity(&blend, eqRGB, srcRGB, dstRGB,
712 0x7 << (4 * i));
713 radv_blend_check_commutativity(&blend, eqA, srcA, dstA,
714 0x8 << (4 * i));
715
716 /* Blending optimizations for RB+.
717 * These transformations don't change the behavior.
718 *
719 * First, get rid of DST in the blend factors:
720 * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
721 */
722 si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB,
723 VK_BLEND_FACTOR_DST_COLOR,
724 VK_BLEND_FACTOR_SRC_COLOR);
725
726 si_blend_remove_dst(&eqA, &srcA, &dstA,
727 VK_BLEND_FACTOR_DST_COLOR,
728 VK_BLEND_FACTOR_SRC_COLOR);
729
730 si_blend_remove_dst(&eqA, &srcA, &dstA,
731 VK_BLEND_FACTOR_DST_ALPHA,
732 VK_BLEND_FACTOR_SRC_ALPHA);
733
734 /* Look up the ideal settings from tables. */
735 srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false);
736 dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false);
737 srcA_opt = si_translate_blend_opt_factor(srcA, true);
738 dstA_opt = si_translate_blend_opt_factor(dstA, true);
739
740 /* Handle interdependencies. */
741 if (si_blend_factor_uses_dst(srcRGB))
742 dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
743 if (si_blend_factor_uses_dst(srcA))
744 dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
745
746 if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE &&
747 (dstRGB == VK_BLEND_FACTOR_ZERO ||
748 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
749 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE))
750 dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
751
752 /* Set the final value. */
753 blend.sx_mrt_blend_opt[i] =
754 S_028760_COLOR_SRC_OPT(srcRGB_opt) |
755 S_028760_COLOR_DST_OPT(dstRGB_opt) |
756 S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) |
757 S_028760_ALPHA_SRC_OPT(srcA_opt) |
758 S_028760_ALPHA_DST_OPT(dstA_opt) |
759 S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA));
760 blend_cntl |= S_028780_ENABLE(1);
761
762 blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB));
763 blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB));
764 blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB));
765 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
766 blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
767 blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA));
768 blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA));
769 blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA));
770 }
771 blend.cb_blend_control[i] = blend_cntl;
772
773 blend.blend_enable_4bit |= 0xfu << (i * 4);
774
775 if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
776 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
777 srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
778 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
779 srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA ||
780 dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
781 blend.need_src_alpha |= 1 << i;
782 }
783 for (i = vkblend->attachmentCount; i < 8; i++) {
784 blend.cb_blend_control[i] = 0;
785 blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
786 }
787 }
788
789 if (pipeline->device->physical_device->rad_info.has_rbplus) {
790 /* Disable RB+ blend optimizations for dual source blending. */
791 if (blend.mrt0_is_dual_src) {
792 for (i = 0; i < 8; i++) {
793 blend.sx_mrt_blend_opt[i] =
794 S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) |
795 S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE);
796 }
797 }
798
799 /* RB+ doesn't work with dual source blending, logic op and
800 * RESOLVE.
801 */
802 if (blend.mrt0_is_dual_src ||
803 (vkblend && vkblend->logicOpEnable) ||
804 mode == V_028808_CB_RESOLVE)
805 blend.cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1);
806 }
807
808 if (blend.cb_target_mask)
809 blend.cb_color_control |= S_028808_MODE(mode);
810 else
811 blend.cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
812
813 radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo, &blend);
814 return blend;
815 }
816
817 static uint32_t si_translate_stencil_op(enum VkStencilOp op)
818 {
819 switch (op) {
820 case VK_STENCIL_OP_KEEP:
821 return V_02842C_STENCIL_KEEP;
822 case VK_STENCIL_OP_ZERO:
823 return V_02842C_STENCIL_ZERO;
824 case VK_STENCIL_OP_REPLACE:
825 return V_02842C_STENCIL_REPLACE_TEST;
826 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
827 return V_02842C_STENCIL_ADD_CLAMP;
828 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
829 return V_02842C_STENCIL_SUB_CLAMP;
830 case VK_STENCIL_OP_INVERT:
831 return V_02842C_STENCIL_INVERT;
832 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
833 return V_02842C_STENCIL_ADD_WRAP;
834 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
835 return V_02842C_STENCIL_SUB_WRAP;
836 default:
837 return 0;
838 }
839 }
840
841 static uint32_t si_translate_fill(VkPolygonMode func)
842 {
843 switch(func) {
844 case VK_POLYGON_MODE_FILL:
845 return V_028814_X_DRAW_TRIANGLES;
846 case VK_POLYGON_MODE_LINE:
847 return V_028814_X_DRAW_LINES;
848 case VK_POLYGON_MODE_POINT:
849 return V_028814_X_DRAW_POINTS;
850 default:
851 assert(0);
852 return V_028814_X_DRAW_POINTS;
853 }
854 }
855
856 static uint8_t radv_pipeline_get_ps_iter_samples(const VkGraphicsPipelineCreateInfo *pCreateInfo)
857 {
858 const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState;
859 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
860 struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
861 uint32_t ps_iter_samples = 1;
862 uint32_t num_samples;
863
864 /* From the Vulkan 1.1.129 spec, 26.7. Sample Shading:
865 *
866 * "If the VK_AMD_mixed_attachment_samples extension is enabled and the
867 * subpass uses color attachments, totalSamples is the number of
868 * samples of the color attachments. Otherwise, totalSamples is the
869 * value of VkPipelineMultisampleStateCreateInfo::rasterizationSamples
870 * specified at pipeline creation time."
871 */
872 if (subpass->has_color_att) {
873 num_samples = subpass->color_sample_count;
874 } else {
875 num_samples = vkms->rasterizationSamples;
876 }
877
878 if (vkms->sampleShadingEnable) {
879 ps_iter_samples = ceilf(vkms->minSampleShading * num_samples);
880 ps_iter_samples = util_next_power_of_two(ps_iter_samples);
881 }
882 return ps_iter_samples;
883 }
884
885 static bool
886 radv_is_depth_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
887 {
888 return pCreateInfo->depthTestEnable &&
889 pCreateInfo->depthWriteEnable &&
890 pCreateInfo->depthCompareOp != VK_COMPARE_OP_NEVER;
891 }
892
893 static bool
894 radv_writes_stencil(const VkStencilOpState *state)
895 {
896 return state->writeMask &&
897 (state->failOp != VK_STENCIL_OP_KEEP ||
898 state->passOp != VK_STENCIL_OP_KEEP ||
899 state->depthFailOp != VK_STENCIL_OP_KEEP);
900 }
901
902 static bool
903 radv_is_stencil_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
904 {
905 return pCreateInfo->stencilTestEnable &&
906 (radv_writes_stencil(&pCreateInfo->front) ||
907 radv_writes_stencil(&pCreateInfo->back));
908 }
909
910 static bool
911 radv_is_ds_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
912 {
913 return radv_is_depth_write_enabled(pCreateInfo) ||
914 radv_is_stencil_write_enabled(pCreateInfo);
915 }
916
917 static bool
918 radv_order_invariant_stencil_op(VkStencilOp op)
919 {
920 /* REPLACE is normally order invariant, except when the stencil
921 * reference value is written by the fragment shader. Tracking this
922 * interaction does not seem worth the effort, so be conservative.
923 */
924 return op != VK_STENCIL_OP_INCREMENT_AND_CLAMP &&
925 op != VK_STENCIL_OP_DECREMENT_AND_CLAMP &&
926 op != VK_STENCIL_OP_REPLACE;
927 }
928
929 static bool
930 radv_order_invariant_stencil_state(const VkStencilOpState *state)
931 {
932 /* Compute whether, assuming Z writes are disabled, this stencil state
933 * is order invariant in the sense that the set of passing fragments as
934 * well as the final stencil buffer result does not depend on the order
935 * of fragments.
936 */
937 return !state->writeMask ||
938 /* The following assumes that Z writes are disabled. */
939 (state->compareOp == VK_COMPARE_OP_ALWAYS &&
940 radv_order_invariant_stencil_op(state->passOp) &&
941 radv_order_invariant_stencil_op(state->depthFailOp)) ||
942 (state->compareOp == VK_COMPARE_OP_NEVER &&
943 radv_order_invariant_stencil_op(state->failOp));
944 }
945
946 static bool
947 radv_pipeline_out_of_order_rast(struct radv_pipeline *pipeline,
948 struct radv_blend_state *blend,
949 const VkGraphicsPipelineCreateInfo *pCreateInfo)
950 {
951 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
952 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
953 const VkPipelineDepthStencilStateCreateInfo *vkds = radv_pipeline_get_depth_stencil_state(pCreateInfo);
954 const VkPipelineColorBlendStateCreateInfo *vkblend = radv_pipeline_get_color_blend_state(pCreateInfo);
955 unsigned colormask = blend->cb_target_enabled_4bit;
956
957 if (!pipeline->device->physical_device->out_of_order_rast_allowed)
958 return false;
959
960 /* Be conservative if a logic operation is enabled with color buffers. */
961 if (colormask && vkblend && vkblend->logicOpEnable)
962 return false;
963
964 /* Default depth/stencil invariance when no attachment is bound. */
965 struct radv_dsa_order_invariance dsa_order_invariant = {
966 .zs = true, .pass_set = true
967 };
968
969 if (vkds) {
970 struct radv_render_pass_attachment *attachment =
971 pass->attachments + subpass->depth_stencil_attachment->attachment;
972 bool has_stencil = vk_format_is_stencil(attachment->format);
973 struct radv_dsa_order_invariance order_invariance[2];
974 struct radv_shader_variant *ps =
975 pipeline->shaders[MESA_SHADER_FRAGMENT];
976
977 /* Compute depth/stencil order invariance in order to know if
978 * it's safe to enable out-of-order.
979 */
980 bool zfunc_is_ordered =
981 vkds->depthCompareOp == VK_COMPARE_OP_NEVER ||
982 vkds->depthCompareOp == VK_COMPARE_OP_LESS ||
983 vkds->depthCompareOp == VK_COMPARE_OP_LESS_OR_EQUAL ||
984 vkds->depthCompareOp == VK_COMPARE_OP_GREATER ||
985 vkds->depthCompareOp == VK_COMPARE_OP_GREATER_OR_EQUAL;
986
987 bool nozwrite_and_order_invariant_stencil =
988 !radv_is_ds_write_enabled(vkds) ||
989 (!radv_is_depth_write_enabled(vkds) &&
990 radv_order_invariant_stencil_state(&vkds->front) &&
991 radv_order_invariant_stencil_state(&vkds->back));
992
993 order_invariance[1].zs =
994 nozwrite_and_order_invariant_stencil ||
995 (!radv_is_stencil_write_enabled(vkds) &&
996 zfunc_is_ordered);
997 order_invariance[0].zs =
998 !radv_is_depth_write_enabled(vkds) || zfunc_is_ordered;
999
1000 order_invariance[1].pass_set =
1001 nozwrite_and_order_invariant_stencil ||
1002 (!radv_is_stencil_write_enabled(vkds) &&
1003 (vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS ||
1004 vkds->depthCompareOp == VK_COMPARE_OP_NEVER));
1005 order_invariance[0].pass_set =
1006 !radv_is_depth_write_enabled(vkds) ||
1007 (vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS ||
1008 vkds->depthCompareOp == VK_COMPARE_OP_NEVER);
1009
1010 dsa_order_invariant = order_invariance[has_stencil];
1011 if (!dsa_order_invariant.zs)
1012 return false;
1013
1014 /* The set of PS invocations is always order invariant,
1015 * except when early Z/S tests are requested.
1016 */
1017 if (ps &&
1018 ps->info.ps.writes_memory &&
1019 ps->info.ps.early_fragment_test &&
1020 !dsa_order_invariant.pass_set)
1021 return false;
1022
1023 /* Determine if out-of-order rasterization should be disabled
1024 * when occlusion queries are used.
1025 */
1026 pipeline->graphics.disable_out_of_order_rast_for_occlusion =
1027 !dsa_order_invariant.pass_set;
1028 }
1029
1030 /* No color buffers are enabled for writing. */
1031 if (!colormask)
1032 return true;
1033
1034 unsigned blendmask = colormask & blend->blend_enable_4bit;
1035
1036 if (blendmask) {
1037 /* Only commutative blending. */
1038 if (blendmask & ~blend->commutative_4bit)
1039 return false;
1040
1041 if (!dsa_order_invariant.pass_set)
1042 return false;
1043 }
1044
1045 if (colormask & ~blendmask)
1046 return false;
1047
1048 return true;
1049 }
1050
1051 static void
1052 radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline,
1053 struct radv_blend_state *blend,
1054 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1055 {
1056 const VkPipelineMultisampleStateCreateInfo *vkms = radv_pipeline_get_multisample_state(pCreateInfo);
1057 struct radv_multisample_state *ms = &pipeline->graphics.ms;
1058 unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes;
1059 bool out_of_order_rast = false;
1060 int ps_iter_samples = 1;
1061 uint32_t mask = 0xffff;
1062
1063 if (vkms) {
1064 ms->num_samples = vkms->rasterizationSamples;
1065
1066 /* From the Vulkan 1.1.129 spec, 26.7. Sample Shading:
1067 *
1068 * "Sample shading is enabled for a graphics pipeline:
1069 *
1070 * - If the interface of the fragment shader entry point of the
1071 * graphics pipeline includes an input variable decorated
1072 * with SampleId or SamplePosition. In this case
1073 * minSampleShadingFactor takes the value 1.0.
1074 * - Else if the sampleShadingEnable member of the
1075 * VkPipelineMultisampleStateCreateInfo structure specified
1076 * when creating the graphics pipeline is set to VK_TRUE. In
1077 * this case minSampleShadingFactor takes the value of
1078 * VkPipelineMultisampleStateCreateInfo::minSampleShading.
1079 *
1080 * Otherwise, sample shading is considered disabled."
1081 */
1082 if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.force_persample) {
1083 ps_iter_samples = ms->num_samples;
1084 } else {
1085 ps_iter_samples = radv_pipeline_get_ps_iter_samples(pCreateInfo);
1086 }
1087 } else {
1088 ms->num_samples = 1;
1089 }
1090
1091 const struct VkPipelineRasterizationStateRasterizationOrderAMD *raster_order =
1092 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD);
1093 if (raster_order && raster_order->rasterizationOrder == VK_RASTERIZATION_ORDER_RELAXED_AMD) {
1094 /* Out-of-order rasterization is explicitly enabled by the
1095 * application.
1096 */
1097 out_of_order_rast = true;
1098 } else {
1099 /* Determine if the driver can enable out-of-order
1100 * rasterization internally.
1101 */
1102 out_of_order_rast =
1103 radv_pipeline_out_of_order_rast(pipeline, blend, pCreateInfo);
1104 }
1105
1106 ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1);
1107 ms->pa_sc_aa_config = 0;
1108 ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) |
1109 S_028804_INCOHERENT_EQAA_READS(1) |
1110 S_028804_INTERPOLATE_COMP_Z(1) |
1111 S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
1112 ms->pa_sc_mode_cntl_1 =
1113 S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes
1114 S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) |
1115 S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(out_of_order_rast) |
1116 S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7) |
1117 /* always 1: */
1118 S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) |
1119 S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) |
1120 S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
1121 S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) |
1122 S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
1123 S_028A4C_FORCE_EOV_REZ_ENABLE(1);
1124 ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE(pipeline->device->physical_device->rad_info.chip_class >= GFX9) |
1125 S_028A48_VPORT_SCISSOR_ENABLE(1);
1126
1127 const VkPipelineRasterizationLineStateCreateInfoEXT *rast_line =
1128 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1129 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
1130 if (rast_line) {
1131 ms->pa_sc_mode_cntl_0 |= S_028A48_LINE_STIPPLE_ENABLE(rast_line->stippledLineEnable);
1132 if (rast_line->lineRasterizationMode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT) {
1133 /* From the Vulkan spec 1.1.129:
1134 *
1135 * "When VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT lines
1136 * are being rasterized, sample locations may all be
1137 * treated as being at the pixel center (this may
1138 * affect attribute and depth interpolation)."
1139 */
1140 ms->num_samples = 1;
1141 }
1142 }
1143
1144 if (ms->num_samples > 1) {
1145 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
1146 struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1147 uint32_t z_samples = subpass->depth_stencil_attachment ? subpass->depth_sample_count : ms->num_samples;
1148 unsigned log_samples = util_logbase2(ms->num_samples);
1149 unsigned log_z_samples = util_logbase2(z_samples);
1150 unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples);
1151 ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1);
1152 ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_z_samples) |
1153 S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
1154 S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) |
1155 S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
1156 ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) |
1157 S_028BE0_MAX_SAMPLE_DIST(radv_get_default_max_sample_dist(log_samples)) |
1158 S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples) | /* CM_R_028BE0_PA_SC_AA_CONFIG */
1159 S_028BE0_COVERED_CENTROID_IS_CENTER_GFX103(pipeline->device->physical_device->rad_info.chip_class >= GFX10_3);
1160 ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1);
1161 if (ps_iter_samples > 1)
1162 pipeline->graphics.spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1163 }
1164
1165 if (vkms && vkms->pSampleMask) {
1166 mask = vkms->pSampleMask[0] & 0xffff;
1167 }
1168
1169 ms->pa_sc_aa_mask[0] = mask | (mask << 16);
1170 ms->pa_sc_aa_mask[1] = mask | (mask << 16);
1171 }
1172
1173 static bool
1174 radv_prim_can_use_guardband(enum VkPrimitiveTopology topology)
1175 {
1176 switch (topology) {
1177 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
1178 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
1179 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
1180 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1181 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1182 return false;
1183 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
1184 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
1185 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
1186 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1187 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1188 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
1189 return true;
1190 default:
1191 unreachable("unhandled primitive type");
1192 }
1193 }
1194
1195 static uint32_t
1196 si_conv_gl_prim_to_gs_out(unsigned gl_prim)
1197 {
1198 switch (gl_prim) {
1199 case 0: /* GL_POINTS */
1200 return V_028A6C_OUTPRIM_TYPE_POINTLIST;
1201 case 1: /* GL_LINES */
1202 case 3: /* GL_LINE_STRIP */
1203 case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */
1204 case 0x8E7A: /* GL_ISOLINES */
1205 return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
1206
1207 case 4: /* GL_TRIANGLES */
1208 case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */
1209 case 5: /* GL_TRIANGLE_STRIP */
1210 case 7: /* GL_QUADS */
1211 return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
1212 default:
1213 assert(0);
1214 return 0;
1215 }
1216 }
1217
1218 static uint32_t
1219 si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology)
1220 {
1221 switch (topology) {
1222 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
1223 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
1224 return V_028A6C_OUTPRIM_TYPE_POINTLIST;
1225 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
1226 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
1227 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1228 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1229 return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
1230 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
1231 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
1232 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
1233 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1234 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1235 return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
1236 default:
1237 assert(0);
1238 return 0;
1239 }
1240 }
1241
1242 static unsigned radv_dynamic_state_mask(VkDynamicState state)
1243 {
1244 switch(state) {
1245 case VK_DYNAMIC_STATE_VIEWPORT:
1246 case VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT:
1247 return RADV_DYNAMIC_VIEWPORT;
1248 case VK_DYNAMIC_STATE_SCISSOR:
1249 case VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT_EXT:
1250 return RADV_DYNAMIC_SCISSOR;
1251 case VK_DYNAMIC_STATE_LINE_WIDTH:
1252 return RADV_DYNAMIC_LINE_WIDTH;
1253 case VK_DYNAMIC_STATE_DEPTH_BIAS:
1254 return RADV_DYNAMIC_DEPTH_BIAS;
1255 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
1256 return RADV_DYNAMIC_BLEND_CONSTANTS;
1257 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
1258 return RADV_DYNAMIC_DEPTH_BOUNDS;
1259 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
1260 return RADV_DYNAMIC_STENCIL_COMPARE_MASK;
1261 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
1262 return RADV_DYNAMIC_STENCIL_WRITE_MASK;
1263 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
1264 return RADV_DYNAMIC_STENCIL_REFERENCE;
1265 case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT:
1266 return RADV_DYNAMIC_DISCARD_RECTANGLE;
1267 case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
1268 return RADV_DYNAMIC_SAMPLE_LOCATIONS;
1269 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
1270 return RADV_DYNAMIC_LINE_STIPPLE;
1271 case VK_DYNAMIC_STATE_CULL_MODE_EXT:
1272 return RADV_DYNAMIC_CULL_MODE;
1273 case VK_DYNAMIC_STATE_FRONT_FACE_EXT:
1274 return RADV_DYNAMIC_FRONT_FACE;
1275 case VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY_EXT:
1276 return RADV_DYNAMIC_PRIMITIVE_TOPOLOGY;
1277 default:
1278 unreachable("Unhandled dynamic state");
1279 }
1280 }
1281
1282 static uint32_t radv_pipeline_needed_dynamic_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
1283 {
1284 uint32_t states = RADV_DYNAMIC_ALL;
1285
1286 /* If rasterization is disabled we do not care about any of the
1287 * dynamic states, since they are all rasterization related only,
1288 * except primitive topology.
1289 */
1290 if (pCreateInfo->pRasterizationState->rasterizerDiscardEnable)
1291 return RADV_DYNAMIC_PRIMITIVE_TOPOLOGY;
1292
1293 if (!pCreateInfo->pRasterizationState->depthBiasEnable)
1294 states &= ~RADV_DYNAMIC_DEPTH_BIAS;
1295
1296 if (!pCreateInfo->pDepthStencilState ||
1297 !pCreateInfo->pDepthStencilState->depthBoundsTestEnable)
1298 states &= ~RADV_DYNAMIC_DEPTH_BOUNDS;
1299
1300 if (!pCreateInfo->pDepthStencilState ||
1301 !pCreateInfo->pDepthStencilState->stencilTestEnable)
1302 states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK |
1303 RADV_DYNAMIC_STENCIL_WRITE_MASK |
1304 RADV_DYNAMIC_STENCIL_REFERENCE);
1305
1306 if (!vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT))
1307 states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE;
1308
1309 if (!pCreateInfo->pMultisampleState ||
1310 !vk_find_struct_const(pCreateInfo->pMultisampleState->pNext,
1311 PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT))
1312 states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS;
1313
1314 if (!pCreateInfo->pRasterizationState ||
1315 !vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1316 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT))
1317 states &= ~RADV_DYNAMIC_LINE_STIPPLE;
1318
1319 /* TODO: blend constants & line width. */
1320
1321 return states;
1322 }
1323
1324
1325 static void
1326 radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline,
1327 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1328 const struct radv_graphics_pipeline_create_info *extra)
1329 {
1330 uint32_t needed_states = radv_pipeline_needed_dynamic_state(pCreateInfo);
1331 uint32_t states = needed_states;
1332 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
1333 struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1334
1335 pipeline->dynamic_state = default_dynamic_state;
1336 pipeline->graphics.needed_dynamic_state = needed_states;
1337
1338 if (pCreateInfo->pDynamicState) {
1339 /* Remove all of the states that are marked as dynamic */
1340 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1341 for (uint32_t s = 0; s < count; s++)
1342 states &= ~radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]);
1343 }
1344
1345 struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
1346
1347 if (needed_states & RADV_DYNAMIC_VIEWPORT) {
1348 assert(pCreateInfo->pViewportState);
1349
1350 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1351 if (states & RADV_DYNAMIC_VIEWPORT) {
1352 typed_memcpy(dynamic->viewport.viewports,
1353 pCreateInfo->pViewportState->pViewports,
1354 pCreateInfo->pViewportState->viewportCount);
1355 }
1356 }
1357
1358 if (needed_states & RADV_DYNAMIC_SCISSOR) {
1359 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1360 if (states & RADV_DYNAMIC_SCISSOR) {
1361 typed_memcpy(dynamic->scissor.scissors,
1362 pCreateInfo->pViewportState->pScissors,
1363 pCreateInfo->pViewportState->scissorCount);
1364 }
1365 }
1366
1367 if (states & RADV_DYNAMIC_LINE_WIDTH) {
1368 assert(pCreateInfo->pRasterizationState);
1369 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1370 }
1371
1372 if (states & RADV_DYNAMIC_DEPTH_BIAS) {
1373 assert(pCreateInfo->pRasterizationState);
1374 dynamic->depth_bias.bias =
1375 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1376 dynamic->depth_bias.clamp =
1377 pCreateInfo->pRasterizationState->depthBiasClamp;
1378 dynamic->depth_bias.slope =
1379 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1380 }
1381
1382 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1383 *
1384 * pColorBlendState is [...] NULL if the pipeline has rasterization
1385 * disabled or if the subpass of the render pass the pipeline is
1386 * created against does not use any color attachments.
1387 */
1388 if (subpass->has_color_att && states & RADV_DYNAMIC_BLEND_CONSTANTS) {
1389 assert(pCreateInfo->pColorBlendState);
1390 typed_memcpy(dynamic->blend_constants,
1391 pCreateInfo->pColorBlendState->blendConstants, 4);
1392 }
1393
1394 if (states & RADV_DYNAMIC_CULL_MODE) {
1395 dynamic->cull_mode =
1396 pCreateInfo->pRasterizationState->cullMode;
1397 }
1398
1399 if (states & RADV_DYNAMIC_FRONT_FACE) {
1400 dynamic->front_face =
1401 pCreateInfo->pRasterizationState->frontFace;
1402 }
1403
1404 if (states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) {
1405 dynamic->primitive_topology =
1406 si_translate_prim(pCreateInfo->pInputAssemblyState->topology);
1407 if (extra && extra->use_rectlist) {
1408 dynamic->primitive_topology = V_008958_DI_PT_RECTLIST;
1409 }
1410 }
1411
1412 /* If there is no depthstencil attachment, then don't read
1413 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1414 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1415 * no need to override the depthstencil defaults in
1416 * radv_pipeline::dynamic_state when there is no depthstencil attachment.
1417 *
1418 * Section 9.2 of the Vulkan 1.0.15 spec says:
1419 *
1420 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1421 * disabled or if the subpass of the render pass the pipeline is created
1422 * against does not use a depth/stencil attachment.
1423 */
1424 if (needed_states && subpass->depth_stencil_attachment) {
1425 assert(pCreateInfo->pDepthStencilState);
1426
1427 if (states & RADV_DYNAMIC_DEPTH_BOUNDS) {
1428 dynamic->depth_bounds.min =
1429 pCreateInfo->pDepthStencilState->minDepthBounds;
1430 dynamic->depth_bounds.max =
1431 pCreateInfo->pDepthStencilState->maxDepthBounds;
1432 }
1433
1434 if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) {
1435 dynamic->stencil_compare_mask.front =
1436 pCreateInfo->pDepthStencilState->front.compareMask;
1437 dynamic->stencil_compare_mask.back =
1438 pCreateInfo->pDepthStencilState->back.compareMask;
1439 }
1440
1441 if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) {
1442 dynamic->stencil_write_mask.front =
1443 pCreateInfo->pDepthStencilState->front.writeMask;
1444 dynamic->stencil_write_mask.back =
1445 pCreateInfo->pDepthStencilState->back.writeMask;
1446 }
1447
1448 if (states & RADV_DYNAMIC_STENCIL_REFERENCE) {
1449 dynamic->stencil_reference.front =
1450 pCreateInfo->pDepthStencilState->front.reference;
1451 dynamic->stencil_reference.back =
1452 pCreateInfo->pDepthStencilState->back.reference;
1453 }
1454 }
1455
1456 const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info =
1457 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT);
1458 if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
1459 dynamic->discard_rectangle.count = discard_rectangle_info->discardRectangleCount;
1460 if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
1461 typed_memcpy(dynamic->discard_rectangle.rectangles,
1462 discard_rectangle_info->pDiscardRectangles,
1463 discard_rectangle_info->discardRectangleCount);
1464 }
1465 }
1466
1467 if (needed_states & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
1468 const VkPipelineSampleLocationsStateCreateInfoEXT *sample_location_info =
1469 vk_find_struct_const(pCreateInfo->pMultisampleState->pNext,
1470 PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
1471 /* If sampleLocationsEnable is VK_FALSE, the default sample
1472 * locations are used and the values specified in
1473 * sampleLocationsInfo are ignored.
1474 */
1475 if (sample_location_info->sampleLocationsEnable) {
1476 const VkSampleLocationsInfoEXT *pSampleLocationsInfo =
1477 &sample_location_info->sampleLocationsInfo;
1478
1479 assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS);
1480
1481 dynamic->sample_location.per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel;
1482 dynamic->sample_location.grid_size = pSampleLocationsInfo->sampleLocationGridSize;
1483 dynamic->sample_location.count = pSampleLocationsInfo->sampleLocationsCount;
1484 typed_memcpy(&dynamic->sample_location.locations[0],
1485 pSampleLocationsInfo->pSampleLocations,
1486 pSampleLocationsInfo->sampleLocationsCount);
1487 }
1488 }
1489
1490 const VkPipelineRasterizationLineStateCreateInfoEXT *rast_line_info =
1491 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1492 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
1493 if (needed_states & RADV_DYNAMIC_LINE_STIPPLE) {
1494 dynamic->line_stipple.factor = rast_line_info->lineStippleFactor;
1495 dynamic->line_stipple.pattern = rast_line_info->lineStipplePattern;
1496 }
1497
1498 pipeline->dynamic_state.mask = states;
1499 }
1500
1501 static void
1502 gfx9_get_gs_info(const struct radv_pipeline_key *key,
1503 const struct radv_pipeline *pipeline,
1504 nir_shader **nir,
1505 struct radv_shader_info *infos,
1506 struct gfx9_gs_info *out)
1507 {
1508 struct radv_shader_info *gs_info = &infos[MESA_SHADER_GEOMETRY];
1509 struct radv_es_output_info *es_info;
1510 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9)
1511 es_info = nir[MESA_SHADER_TESS_CTRL] ? &gs_info->tes.es_info : &gs_info->vs.es_info;
1512 else
1513 es_info = nir[MESA_SHADER_TESS_CTRL] ?
1514 &infos[MESA_SHADER_TESS_EVAL].tes.es_info :
1515 &infos[MESA_SHADER_VERTEX].vs.es_info;
1516
1517 unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1);
1518 bool uses_adjacency;
1519 switch(key->topology) {
1520 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1521 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1522 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1523 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1524 uses_adjacency = true;
1525 break;
1526 default:
1527 uses_adjacency = false;
1528 break;
1529 }
1530
1531 /* All these are in dwords: */
1532 /* We can't allow using the whole LDS, because GS waves compete with
1533 * other shader stages for LDS space. */
1534 const unsigned max_lds_size = 8 * 1024;
1535 const unsigned esgs_itemsize = es_info->esgs_itemsize / 4;
1536 unsigned esgs_lds_size;
1537
1538 /* All these are per subgroup: */
1539 const unsigned max_out_prims = 32 * 1024;
1540 const unsigned max_es_verts = 255;
1541 const unsigned ideal_gs_prims = 64;
1542 unsigned max_gs_prims, gs_prims;
1543 unsigned min_es_verts, es_verts, worst_case_es_verts;
1544
1545 if (uses_adjacency || gs_num_invocations > 1)
1546 max_gs_prims = 127 / gs_num_invocations;
1547 else
1548 max_gs_prims = 255;
1549
1550 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
1551 * Make sure we don't go over the maximum value.
1552 */
1553 if (gs_info->gs.vertices_out > 0) {
1554 max_gs_prims = MIN2(max_gs_prims,
1555 max_out_prims /
1556 (gs_info->gs.vertices_out * gs_num_invocations));
1557 }
1558 assert(max_gs_prims > 0);
1559
1560 /* If the primitive has adjacency, halve the number of vertices
1561 * that will be reused in multiple primitives.
1562 */
1563 min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1);
1564
1565 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
1566 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
1567
1568 /* Compute ESGS LDS size based on the worst case number of ES vertices
1569 * needed to create the target number of GS prims per subgroup.
1570 */
1571 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
1572
1573 /* If total LDS usage is too big, refactor partitions based on ratio
1574 * of ESGS item sizes.
1575 */
1576 if (esgs_lds_size > max_lds_size) {
1577 /* Our target GS Prims Per Subgroup was too large. Calculate
1578 * the maximum number of GS Prims Per Subgroup that will fit
1579 * into LDS, capped by the maximum that the hardware can support.
1580 */
1581 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
1582 max_gs_prims);
1583 assert(gs_prims > 0);
1584 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
1585 max_es_verts);
1586
1587 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
1588 assert(esgs_lds_size <= max_lds_size);
1589 }
1590
1591 /* Now calculate remaining ESGS information. */
1592 if (esgs_lds_size)
1593 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
1594 else
1595 es_verts = max_es_verts;
1596
1597 /* Vertices for adjacency primitives are not always reused, so restore
1598 * it for ES_VERTS_PER_SUBGRP.
1599 */
1600 min_es_verts = gs_info->gs.vertices_in;
1601
1602 /* For normal primitives, the VGT only checks if they are past the ES
1603 * verts per subgroup after allocating a full GS primitive and if they
1604 * are, kick off a new subgroup. But if those additional ES verts are
1605 * unique (e.g. not reused) we need to make sure there is enough LDS
1606 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
1607 */
1608 es_verts -= min_es_verts - 1;
1609
1610 uint32_t es_verts_per_subgroup = es_verts;
1611 uint32_t gs_prims_per_subgroup = gs_prims;
1612 uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
1613 uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out;
1614 out->lds_size = align(esgs_lds_size, 128) / 128;
1615 out->vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(es_verts_per_subgroup) |
1616 S_028A44_GS_PRIMS_PER_SUBGRP(gs_prims_per_subgroup) |
1617 S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_inst_prims_in_subgroup);
1618 out->vgt_gs_max_prims_per_subgroup = S_028A94_MAX_PRIMS_PER_SUBGROUP(max_prims_per_subgroup);
1619 out->vgt_esgs_ring_itemsize = esgs_itemsize;
1620 assert(max_prims_per_subgroup <= max_out_prims);
1621 }
1622
1623 static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
1624 unsigned min_verts_per_prim, bool use_adjacency)
1625 {
1626 unsigned max_reuse = max_esverts - min_verts_per_prim;
1627 if (use_adjacency)
1628 max_reuse /= 2;
1629 *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
1630 }
1631
1632 static unsigned
1633 radv_get_num_input_vertices(nir_shader **nir)
1634 {
1635 if (nir[MESA_SHADER_GEOMETRY]) {
1636 nir_shader *gs = nir[MESA_SHADER_GEOMETRY];
1637
1638 return gs->info.gs.vertices_in;
1639 }
1640
1641 if (nir[MESA_SHADER_TESS_CTRL]) {
1642 nir_shader *tes = nir[MESA_SHADER_TESS_EVAL];
1643
1644 if (tes->info.tess.point_mode)
1645 return 1;
1646 if (tes->info.tess.primitive_mode == GL_ISOLINES)
1647 return 2;
1648 return 3;
1649 }
1650
1651 return 3;
1652 }
1653
1654 static void
1655 gfx10_get_ngg_info(const struct radv_pipeline_key *key,
1656 struct radv_pipeline *pipeline,
1657 nir_shader **nir,
1658 struct radv_shader_info *infos,
1659 struct gfx10_ngg_info *ngg)
1660 {
1661 struct radv_shader_info *gs_info = &infos[MESA_SHADER_GEOMETRY];
1662 struct radv_es_output_info *es_info =
1663 nir[MESA_SHADER_TESS_CTRL] ? &gs_info->tes.es_info : &gs_info->vs.es_info;
1664 unsigned gs_type = nir[MESA_SHADER_GEOMETRY] ? MESA_SHADER_GEOMETRY : MESA_SHADER_VERTEX;
1665 unsigned max_verts_per_prim = radv_get_num_input_vertices(nir);
1666 unsigned min_verts_per_prim =
1667 gs_type == MESA_SHADER_GEOMETRY ? max_verts_per_prim : 1;
1668 unsigned gs_num_invocations = nir[MESA_SHADER_GEOMETRY] ? MAX2(gs_info->gs.invocations, 1) : 1;
1669 bool uses_adjacency;
1670 switch(key->topology) {
1671 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1672 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1673 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1674 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1675 uses_adjacency = true;
1676 break;
1677 default:
1678 uses_adjacency = false;
1679 break;
1680 }
1681
1682 /* All these are in dwords: */
1683 /* We can't allow using the whole LDS, because GS waves compete with
1684 * other shader stages for LDS space.
1685 *
1686 * TODO: We should really take the shader's internal LDS use into
1687 * account. The linker will fail if the size is greater than
1688 * 8K dwords.
1689 */
1690 const unsigned max_lds_size = 8 * 1024 - 768;
1691 const unsigned target_lds_size = max_lds_size;
1692 unsigned esvert_lds_size = 0;
1693 unsigned gsprim_lds_size = 0;
1694
1695 /* All these are per subgroup: */
1696 bool max_vert_out_per_gs_instance = false;
1697 unsigned max_esverts_base = 256;
1698 unsigned max_gsprims_base = 128; /* default prim group size clamp */
1699
1700 /* Hardware has the following non-natural restrictions on the value
1701 * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
1702 * the draw:
1703 * - at most 252 for any line input primitive type
1704 * - at most 251 for any quad input primitive type
1705 * - at most 251 for triangle strips with adjacency (this happens to
1706 * be the natural limit for triangle *lists* with adjacency)
1707 */
1708 max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
1709
1710 if (gs_type == MESA_SHADER_GEOMETRY) {
1711 unsigned max_out_verts_per_gsprim =
1712 gs_info->gs.vertices_out * gs_num_invocations;
1713
1714 if (max_out_verts_per_gsprim <= 256) {
1715 if (max_out_verts_per_gsprim) {
1716 max_gsprims_base = MIN2(max_gsprims_base,
1717 256 / max_out_verts_per_gsprim);
1718 }
1719 } else {
1720 /* Use special multi-cycling mode in which each GS
1721 * instance gets its own subgroup. Does not work with
1722 * tessellation. */
1723 max_vert_out_per_gs_instance = true;
1724 max_gsprims_base = 1;
1725 max_out_verts_per_gsprim = gs_info->gs.vertices_out;
1726 }
1727
1728 esvert_lds_size = es_info->esgs_itemsize / 4;
1729 gsprim_lds_size = (gs_info->gs.gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
1730 } else {
1731 /* VS and TES. */
1732 /* LDS size for passing data from GS to ES. */
1733 struct radv_streamout_info *so_info = nir[MESA_SHADER_TESS_CTRL]
1734 ? &infos[MESA_SHADER_TESS_EVAL].so
1735 : &infos[MESA_SHADER_VERTEX].so;
1736
1737 if (so_info->num_outputs)
1738 esvert_lds_size = 4 * so_info->num_outputs + 1;
1739
1740 /* GS stores Primitive IDs (one DWORD) into LDS at the address
1741 * corresponding to the ES thread of the provoking vertex. All
1742 * ES threads load and export PrimitiveID for their thread.
1743 */
1744 if (!nir[MESA_SHADER_TESS_CTRL] &&
1745 infos[MESA_SHADER_VERTEX].vs.outinfo.export_prim_id)
1746 esvert_lds_size = MAX2(esvert_lds_size, 1);
1747 }
1748
1749 unsigned max_gsprims = max_gsprims_base;
1750 unsigned max_esverts = max_esverts_base;
1751
1752 if (esvert_lds_size)
1753 max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
1754 if (gsprim_lds_size)
1755 max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
1756
1757 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1758 clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency);
1759 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1760
1761 if (esvert_lds_size || gsprim_lds_size) {
1762 /* Now that we have a rough proportionality between esverts
1763 * and gsprims based on the primitive type, scale both of them
1764 * down simultaneously based on required LDS space.
1765 *
1766 * We could be smarter about this if we knew how much vertex
1767 * reuse to expect.
1768 */
1769 unsigned lds_total = max_esverts * esvert_lds_size +
1770 max_gsprims * gsprim_lds_size;
1771 if (lds_total > target_lds_size) {
1772 max_esverts = max_esverts * target_lds_size / lds_total;
1773 max_gsprims = max_gsprims * target_lds_size / lds_total;
1774
1775 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1776 clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
1777 min_verts_per_prim, uses_adjacency);
1778 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1779 }
1780 }
1781
1782 /* Round up towards full wave sizes for better ALU utilization. */
1783 if (!max_vert_out_per_gs_instance) {
1784 unsigned orig_max_esverts;
1785 unsigned orig_max_gsprims;
1786 unsigned wavesize;
1787
1788 if (gs_type == MESA_SHADER_GEOMETRY) {
1789 wavesize = gs_info->wave_size;
1790 } else {
1791 wavesize = nir[MESA_SHADER_TESS_CTRL]
1792 ? infos[MESA_SHADER_TESS_EVAL].wave_size
1793 : infos[MESA_SHADER_VERTEX].wave_size;
1794 }
1795
1796 do {
1797 orig_max_esverts = max_esverts;
1798 orig_max_gsprims = max_gsprims;
1799
1800 max_esverts = align(max_esverts, wavesize);
1801 max_esverts = MIN2(max_esverts, max_esverts_base);
1802 if (esvert_lds_size)
1803 max_esverts = MIN2(max_esverts,
1804 (max_lds_size - max_gsprims * gsprim_lds_size) /
1805 esvert_lds_size);
1806 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1807
1808 max_gsprims = align(max_gsprims, wavesize);
1809 max_gsprims = MIN2(max_gsprims, max_gsprims_base);
1810 if (gsprim_lds_size)
1811 max_gsprims = MIN2(max_gsprims,
1812 (max_lds_size - max_esverts * esvert_lds_size) /
1813 gsprim_lds_size);
1814 clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
1815 min_verts_per_prim, uses_adjacency);
1816 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1817 } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
1818 }
1819
1820 /* Hardware restriction: minimum value of max_esverts */
1821 max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim);
1822
1823 unsigned max_out_vertices =
1824 max_vert_out_per_gs_instance ? gs_info->gs.vertices_out :
1825 gs_type == MESA_SHADER_GEOMETRY ?
1826 max_gsprims * gs_num_invocations * gs_info->gs.vertices_out :
1827 max_esverts;
1828 assert(max_out_vertices <= 256);
1829
1830 unsigned prim_amp_factor = 1;
1831 if (gs_type == MESA_SHADER_GEOMETRY) {
1832 /* Number of output primitives per GS input primitive after
1833 * GS instancing. */
1834 prim_amp_factor = gs_info->gs.vertices_out;
1835 }
1836
1837 /* The GE only checks against the maximum number of ES verts after
1838 * allocating a full GS primitive. So we need to ensure that whenever
1839 * this check passes, there is enough space for a full primitive without
1840 * vertex reuse.
1841 */
1842 ngg->hw_max_esverts = max_esverts - max_verts_per_prim + 1;
1843 ngg->max_gsprims = max_gsprims;
1844 ngg->max_out_verts = max_out_vertices;
1845 ngg->prim_amp_factor = prim_amp_factor;
1846 ngg->max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
1847 ngg->ngg_emit_size = max_gsprims * gsprim_lds_size;
1848 ngg->esgs_ring_size = 4 * max_esverts * esvert_lds_size;
1849
1850 if (gs_type == MESA_SHADER_GEOMETRY) {
1851 ngg->vgt_esgs_ring_itemsize = es_info->esgs_itemsize / 4;
1852 } else {
1853 ngg->vgt_esgs_ring_itemsize = 1;
1854 }
1855
1856 pipeline->graphics.esgs_ring_size = ngg->esgs_ring_size;
1857
1858 assert(ngg->hw_max_esverts >= 24); /* HW limitation */
1859 }
1860
1861 static void
1862 calculate_gs_ring_sizes(struct radv_pipeline *pipeline,
1863 const struct gfx9_gs_info *gs)
1864 {
1865 struct radv_device *device = pipeline->device;
1866 unsigned num_se = device->physical_device->rad_info.max_se;
1867 unsigned wave_size = 64;
1868 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
1869 /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
1870 * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
1871 */
1872 unsigned gs_vertex_reuse =
1873 (device->physical_device->rad_info.chip_class >= GFX8 ? 32 : 16) * num_se;
1874 unsigned alignment = 256 * num_se;
1875 /* The maximum size is 63.999 MB per SE. */
1876 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
1877 struct radv_shader_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info;
1878
1879 /* Calculate the minimum size. */
1880 unsigned min_esgs_ring_size = align(gs->vgt_esgs_ring_itemsize * 4 * gs_vertex_reuse *
1881 wave_size, alignment);
1882 /* These are recommended sizes, not minimum sizes. */
1883 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
1884 gs->vgt_esgs_ring_itemsize * 4 * gs_info->gs.vertices_in;
1885 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
1886 gs_info->gs.max_gsvs_emit_size;
1887
1888 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
1889 esgs_ring_size = align(esgs_ring_size, alignment);
1890 gsvs_ring_size = align(gsvs_ring_size, alignment);
1891
1892 if (pipeline->device->physical_device->rad_info.chip_class <= GFX8)
1893 pipeline->graphics.esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
1894
1895 pipeline->graphics.gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
1896 }
1897
1898 static void si_multiwave_lds_size_workaround(struct radv_device *device,
1899 unsigned *lds_size)
1900 {
1901 /* If tessellation is all offchip and on-chip GS isn't used, this
1902 * workaround is not needed.
1903 */
1904 return;
1905
1906 /* SPI barrier management bug:
1907 * Make sure we have at least 4k of LDS in use to avoid the bug.
1908 * It applies to workgroup sizes of more than one wavefront.
1909 */
1910 if (device->physical_device->rad_info.family == CHIP_BONAIRE ||
1911 device->physical_device->rad_info.family == CHIP_KABINI)
1912 *lds_size = MAX2(*lds_size, 8);
1913 }
1914
1915 struct radv_shader_variant *
1916 radv_get_shader(struct radv_pipeline *pipeline,
1917 gl_shader_stage stage)
1918 {
1919 if (stage == MESA_SHADER_VERTEX) {
1920 if (pipeline->shaders[MESA_SHADER_VERTEX])
1921 return pipeline->shaders[MESA_SHADER_VERTEX];
1922 if (pipeline->shaders[MESA_SHADER_TESS_CTRL])
1923 return pipeline->shaders[MESA_SHADER_TESS_CTRL];
1924 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
1925 return pipeline->shaders[MESA_SHADER_GEOMETRY];
1926 } else if (stage == MESA_SHADER_TESS_EVAL) {
1927 if (!radv_pipeline_has_tess(pipeline))
1928 return NULL;
1929 if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
1930 return pipeline->shaders[MESA_SHADER_TESS_EVAL];
1931 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
1932 return pipeline->shaders[MESA_SHADER_GEOMETRY];
1933 }
1934 return pipeline->shaders[stage];
1935 }
1936
1937 static struct radv_tessellation_state
1938 calculate_tess_state(struct radv_pipeline *pipeline,
1939 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1940 {
1941 unsigned num_tcs_input_cp;
1942 unsigned num_tcs_output_cp;
1943 unsigned lds_size;
1944 unsigned num_patches;
1945 struct radv_tessellation_state tess = {0};
1946
1947 num_tcs_input_cp = pCreateInfo->pTessellationState->patchControlPoints;
1948 num_tcs_output_cp = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; //TCS VERTICES OUT
1949 num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
1950
1951 lds_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.lds_size;
1952
1953 if (pipeline->device->physical_device->rad_info.chip_class >= GFX7) {
1954 assert(lds_size <= 65536);
1955 lds_size = align(lds_size, 512) / 512;
1956 } else {
1957 assert(lds_size <= 32768);
1958 lds_size = align(lds_size, 256) / 256;
1959 }
1960 si_multiwave_lds_size_workaround(pipeline->device, &lds_size);
1961
1962 tess.lds_size = lds_size;
1963
1964 tess.ls_hs_config = S_028B58_NUM_PATCHES(num_patches) |
1965 S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
1966 S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
1967 tess.num_patches = num_patches;
1968
1969 struct radv_shader_variant *tes = radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL);
1970 unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0;
1971
1972 switch (tes->info.tes.primitive_mode) {
1973 case GL_TRIANGLES:
1974 type = V_028B6C_TESS_TRIANGLE;
1975 break;
1976 case GL_QUADS:
1977 type = V_028B6C_TESS_QUAD;
1978 break;
1979 case GL_ISOLINES:
1980 type = V_028B6C_TESS_ISOLINE;
1981 break;
1982 }
1983
1984 switch (tes->info.tes.spacing) {
1985 case TESS_SPACING_EQUAL:
1986 partitioning = V_028B6C_PART_INTEGER;
1987 break;
1988 case TESS_SPACING_FRACTIONAL_ODD:
1989 partitioning = V_028B6C_PART_FRAC_ODD;
1990 break;
1991 case TESS_SPACING_FRACTIONAL_EVEN:
1992 partitioning = V_028B6C_PART_FRAC_EVEN;
1993 break;
1994 default:
1995 break;
1996 }
1997
1998 bool ccw = tes->info.tes.ccw;
1999 const VkPipelineTessellationDomainOriginStateCreateInfo *domain_origin_state =
2000 vk_find_struct_const(pCreateInfo->pTessellationState,
2001 PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO);
2002
2003 if (domain_origin_state && domain_origin_state->domainOrigin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT)
2004 ccw = !ccw;
2005
2006 if (tes->info.tes.point_mode)
2007 topology = V_028B6C_OUTPUT_POINT;
2008 else if (tes->info.tes.primitive_mode == GL_ISOLINES)
2009 topology = V_028B6C_OUTPUT_LINE;
2010 else if (ccw)
2011 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
2012 else
2013 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
2014
2015 if (pipeline->device->physical_device->rad_info.has_distributed_tess) {
2016 if (pipeline->device->physical_device->rad_info.family == CHIP_FIJI ||
2017 pipeline->device->physical_device->rad_info.family >= CHIP_POLARIS10)
2018 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
2019 else
2020 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
2021 } else
2022 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
2023
2024 tess.tf_param = S_028B6C_TYPE(type) |
2025 S_028B6C_PARTITIONING(partitioning) |
2026 S_028B6C_TOPOLOGY(topology) |
2027 S_028B6C_DISTRIBUTION_MODE(distribution_mode);
2028
2029 return tess;
2030 }
2031
2032 static const struct radv_vs_output_info *get_vs_output_info(const struct radv_pipeline *pipeline)
2033 {
2034 if (radv_pipeline_has_gs(pipeline))
2035 if (radv_pipeline_has_ngg(pipeline))
2036 return &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.vs.outinfo;
2037 else
2038 return &pipeline->gs_copy_shader->info.vs.outinfo;
2039 else if (radv_pipeline_has_tess(pipeline))
2040 return &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo;
2041 else
2042 return &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.outinfo;
2043 }
2044
2045 static void
2046 radv_link_shaders(struct radv_pipeline *pipeline, nir_shader **shaders)
2047 {
2048 nir_shader* ordered_shaders[MESA_SHADER_STAGES];
2049 int shader_count = 0;
2050
2051 if(shaders[MESA_SHADER_FRAGMENT]) {
2052 ordered_shaders[shader_count++] = shaders[MESA_SHADER_FRAGMENT];
2053 }
2054 if(shaders[MESA_SHADER_GEOMETRY]) {
2055 ordered_shaders[shader_count++] = shaders[MESA_SHADER_GEOMETRY];
2056 }
2057 if(shaders[MESA_SHADER_TESS_EVAL]) {
2058 ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_EVAL];
2059 }
2060 if(shaders[MESA_SHADER_TESS_CTRL]) {
2061 ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_CTRL];
2062 }
2063 if(shaders[MESA_SHADER_VERTEX]) {
2064 ordered_shaders[shader_count++] = shaders[MESA_SHADER_VERTEX];
2065 }
2066
2067 if (shader_count > 1) {
2068 unsigned first = ordered_shaders[shader_count - 1]->info.stage;
2069 unsigned last = ordered_shaders[0]->info.stage;
2070
2071 if (ordered_shaders[0]->info.stage == MESA_SHADER_FRAGMENT &&
2072 ordered_shaders[1]->info.has_transform_feedback_varyings)
2073 nir_link_xfb_varyings(ordered_shaders[1], ordered_shaders[0]);
2074
2075 for (int i = 0; i < shader_count; ++i) {
2076 nir_variable_mode mask = 0;
2077
2078 if (ordered_shaders[i]->info.stage != first)
2079 mask = mask | nir_var_shader_in;
2080
2081 if (ordered_shaders[i]->info.stage != last)
2082 mask = mask | nir_var_shader_out;
2083
2084 nir_lower_io_to_scalar_early(ordered_shaders[i], mask);
2085 radv_optimize_nir(ordered_shaders[i], false, false);
2086 }
2087 }
2088
2089 for (int i = 1; i < shader_count; ++i) {
2090 nir_lower_io_arrays_to_elements(ordered_shaders[i],
2091 ordered_shaders[i - 1]);
2092
2093 if (nir_link_opt_varyings(ordered_shaders[i],
2094 ordered_shaders[i - 1]))
2095 radv_optimize_nir(ordered_shaders[i - 1], false, false);
2096
2097 nir_remove_dead_variables(ordered_shaders[i],
2098 nir_var_shader_out, NULL);
2099 nir_remove_dead_variables(ordered_shaders[i - 1],
2100 nir_var_shader_in, NULL);
2101
2102 bool progress = nir_remove_unused_varyings(ordered_shaders[i],
2103 ordered_shaders[i - 1]);
2104
2105 nir_compact_varyings(ordered_shaders[i],
2106 ordered_shaders[i - 1], true);
2107
2108 if (progress) {
2109 if (nir_lower_global_vars_to_local(ordered_shaders[i])) {
2110 ac_lower_indirect_derefs(ordered_shaders[i],
2111 pipeline->device->physical_device->rad_info.chip_class);
2112 }
2113 radv_optimize_nir(ordered_shaders[i], false, false);
2114
2115 if (nir_lower_global_vars_to_local(ordered_shaders[i - 1])) {
2116 ac_lower_indirect_derefs(ordered_shaders[i - 1],
2117 pipeline->device->physical_device->rad_info.chip_class);
2118 }
2119 radv_optimize_nir(ordered_shaders[i - 1], false, false);
2120 }
2121 }
2122 }
2123
2124 static void
2125 radv_set_linked_driver_locations(struct radv_pipeline *pipeline, nir_shader **shaders,
2126 struct radv_shader_info infos[MESA_SHADER_STAGES])
2127 {
2128 bool has_tess = shaders[MESA_SHADER_TESS_CTRL];
2129 bool has_gs = shaders[MESA_SHADER_GEOMETRY];
2130
2131 if (!has_tess && !has_gs)
2132 return;
2133
2134 unsigned vs_info_idx = MESA_SHADER_VERTEX;
2135 unsigned tes_info_idx = MESA_SHADER_TESS_EVAL;
2136
2137 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) {
2138 /* These are merged into the next stage */
2139 vs_info_idx = has_tess ? MESA_SHADER_TESS_CTRL : MESA_SHADER_GEOMETRY;
2140 tes_info_idx = has_gs ? MESA_SHADER_GEOMETRY : MESA_SHADER_TESS_EVAL;
2141 }
2142
2143 if (has_tess) {
2144 nir_linked_io_var_info vs2tcs =
2145 nir_assign_linked_io_var_locations(shaders[MESA_SHADER_VERTEX], shaders[MESA_SHADER_TESS_CTRL]);
2146 nir_linked_io_var_info tcs2tes =
2147 nir_assign_linked_io_var_locations(shaders[MESA_SHADER_TESS_CTRL], shaders[MESA_SHADER_TESS_EVAL]);
2148
2149 infos[vs_info_idx].vs.num_linked_outputs = vs2tcs.num_linked_io_vars;
2150 infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_inputs = vs2tcs.num_linked_io_vars;
2151 infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_outputs = tcs2tes.num_linked_io_vars;
2152 infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_patch_outputs = tcs2tes.num_linked_patch_io_vars;
2153 infos[tes_info_idx].tes.num_linked_inputs = tcs2tes.num_linked_io_vars;
2154 infos[tes_info_idx].tes.num_linked_patch_inputs = tcs2tes.num_linked_patch_io_vars;
2155
2156 if (has_gs) {
2157 nir_linked_io_var_info tes2gs =
2158 nir_assign_linked_io_var_locations(shaders[MESA_SHADER_TESS_EVAL], shaders[MESA_SHADER_GEOMETRY]);
2159
2160 infos[tes_info_idx].tes.num_linked_outputs = tes2gs.num_linked_io_vars;
2161 infos[MESA_SHADER_GEOMETRY].gs.num_linked_inputs = tes2gs.num_linked_io_vars;
2162 }
2163 } else if (has_gs) {
2164 nir_linked_io_var_info vs2gs =
2165 nir_assign_linked_io_var_locations(shaders[MESA_SHADER_VERTEX], shaders[MESA_SHADER_GEOMETRY]);
2166
2167 infos[vs_info_idx].vs.num_linked_outputs = vs2gs.num_linked_io_vars;
2168 infos[MESA_SHADER_GEOMETRY].gs.num_linked_inputs = vs2gs.num_linked_io_vars;
2169 }
2170 }
2171
2172 static uint32_t
2173 radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *input_state,
2174 uint32_t attrib_binding)
2175 {
2176 for (uint32_t i = 0; i < input_state->vertexBindingDescriptionCount; i++) {
2177 const VkVertexInputBindingDescription *input_binding =
2178 &input_state->pVertexBindingDescriptions[i];
2179
2180 if (input_binding->binding == attrib_binding)
2181 return input_binding->stride;
2182 }
2183
2184 return 0;
2185 }
2186
2187 static struct radv_pipeline_key
2188 radv_generate_graphics_pipeline_key(struct radv_pipeline *pipeline,
2189 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2190 const struct radv_blend_state *blend,
2191 bool has_view_index)
2192 {
2193 const VkPipelineVertexInputStateCreateInfo *input_state =
2194 pCreateInfo->pVertexInputState;
2195 const VkPipelineVertexInputDivisorStateCreateInfoEXT *divisor_state =
2196 vk_find_struct_const(input_state->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
2197
2198 struct radv_pipeline_key key;
2199 memset(&key, 0, sizeof(key));
2200
2201 if (pCreateInfo->flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)
2202 key.optimisations_disabled = 1;
2203
2204 key.has_multiview_view_index = has_view_index;
2205
2206 uint32_t binding_input_rate = 0;
2207 uint32_t instance_rate_divisors[MAX_VERTEX_ATTRIBS];
2208 for (unsigned i = 0; i < input_state->vertexBindingDescriptionCount; ++i) {
2209 if (input_state->pVertexBindingDescriptions[i].inputRate) {
2210 unsigned binding = input_state->pVertexBindingDescriptions[i].binding;
2211 binding_input_rate |= 1u << binding;
2212 instance_rate_divisors[binding] = 1;
2213 }
2214 }
2215 if (divisor_state) {
2216 for (unsigned i = 0; i < divisor_state->vertexBindingDivisorCount; ++i) {
2217 instance_rate_divisors[divisor_state->pVertexBindingDivisors[i].binding] =
2218 divisor_state->pVertexBindingDivisors[i].divisor;
2219 }
2220 }
2221
2222 for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) {
2223 const VkVertexInputAttributeDescription *desc =
2224 &input_state->pVertexAttributeDescriptions[i];
2225 const struct vk_format_description *format_desc;
2226 unsigned location = desc->location;
2227 unsigned binding = desc->binding;
2228 unsigned num_format, data_format;
2229 int first_non_void;
2230
2231 if (binding_input_rate & (1u << binding)) {
2232 key.instance_rate_inputs |= 1u << location;
2233 key.instance_rate_divisors[location] = instance_rate_divisors[binding];
2234 }
2235
2236 format_desc = vk_format_description(desc->format);
2237 first_non_void = vk_format_get_first_non_void_channel(desc->format);
2238
2239 num_format = radv_translate_buffer_numformat(format_desc, first_non_void);
2240 data_format = radv_translate_buffer_dataformat(format_desc, first_non_void);
2241
2242 key.vertex_attribute_formats[location] = data_format | (num_format << 4);
2243 key.vertex_attribute_bindings[location] = desc->binding;
2244 key.vertex_attribute_offsets[location] = desc->offset;
2245 key.vertex_attribute_strides[location] = radv_get_attrib_stride(input_state, desc->binding);
2246
2247 if (pipeline->device->physical_device->rad_info.chip_class <= GFX8 &&
2248 pipeline->device->physical_device->rad_info.family != CHIP_STONEY) {
2249 VkFormat format = input_state->pVertexAttributeDescriptions[i].format;
2250 uint64_t adjust;
2251 switch(format) {
2252 case VK_FORMAT_A2R10G10B10_SNORM_PACK32:
2253 case VK_FORMAT_A2B10G10R10_SNORM_PACK32:
2254 adjust = RADV_ALPHA_ADJUST_SNORM;
2255 break;
2256 case VK_FORMAT_A2R10G10B10_SSCALED_PACK32:
2257 case VK_FORMAT_A2B10G10R10_SSCALED_PACK32:
2258 adjust = RADV_ALPHA_ADJUST_SSCALED;
2259 break;
2260 case VK_FORMAT_A2R10G10B10_SINT_PACK32:
2261 case VK_FORMAT_A2B10G10R10_SINT_PACK32:
2262 adjust = RADV_ALPHA_ADJUST_SINT;
2263 break;
2264 default:
2265 adjust = 0;
2266 break;
2267 }
2268 key.vertex_alpha_adjust |= adjust << (2 * location);
2269 }
2270
2271 switch (desc->format) {
2272 case VK_FORMAT_B8G8R8A8_UNORM:
2273 case VK_FORMAT_B8G8R8A8_SNORM:
2274 case VK_FORMAT_B8G8R8A8_USCALED:
2275 case VK_FORMAT_B8G8R8A8_SSCALED:
2276 case VK_FORMAT_B8G8R8A8_UINT:
2277 case VK_FORMAT_B8G8R8A8_SINT:
2278 case VK_FORMAT_B8G8R8A8_SRGB:
2279 case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
2280 case VK_FORMAT_A2R10G10B10_SNORM_PACK32:
2281 case VK_FORMAT_A2R10G10B10_USCALED_PACK32:
2282 case VK_FORMAT_A2R10G10B10_SSCALED_PACK32:
2283 case VK_FORMAT_A2R10G10B10_UINT_PACK32:
2284 case VK_FORMAT_A2R10G10B10_SINT_PACK32:
2285 key.vertex_post_shuffle |= 1 << location;
2286 break;
2287 default:
2288 break;
2289 }
2290 }
2291
2292 const VkPipelineTessellationStateCreateInfo *tess =
2293 radv_pipeline_get_tessellation_state(pCreateInfo);
2294 if (tess)
2295 key.tess_input_vertices = tess->patchControlPoints;
2296
2297 const VkPipelineMultisampleStateCreateInfo *vkms =
2298 radv_pipeline_get_multisample_state(pCreateInfo);
2299 if (vkms && vkms->rasterizationSamples > 1) {
2300 uint32_t num_samples = vkms->rasterizationSamples;
2301 uint32_t ps_iter_samples = radv_pipeline_get_ps_iter_samples(pCreateInfo);
2302 key.num_samples = num_samples;
2303 key.log2_ps_iter_samples = util_logbase2(ps_iter_samples);
2304 }
2305
2306 key.col_format = blend->spi_shader_col_format;
2307 key.is_dual_src = blend->mrt0_is_dual_src;
2308 if (pipeline->device->physical_device->rad_info.chip_class < GFX8) {
2309 key.is_int8 = blend->col_format_is_int8;
2310 key.is_int10 = blend->col_format_is_int10;
2311 }
2312
2313 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10)
2314 key.topology = pCreateInfo->pInputAssemblyState->topology;
2315
2316 return key;
2317 }
2318
2319 static bool
2320 radv_nir_stage_uses_xfb(const nir_shader *nir)
2321 {
2322 nir_xfb_info *xfb = nir_gather_xfb_info(nir, NULL);
2323 bool uses_xfb = !!xfb;
2324
2325 ralloc_free(xfb);
2326 return uses_xfb;
2327 }
2328
2329 static void
2330 radv_fill_shader_keys(struct radv_device *device,
2331 struct radv_shader_variant_key *keys,
2332 const struct radv_pipeline_key *key,
2333 nir_shader **nir)
2334 {
2335 keys[MESA_SHADER_VERTEX].vs.instance_rate_inputs = key->instance_rate_inputs;
2336 keys[MESA_SHADER_VERTEX].vs.alpha_adjust = key->vertex_alpha_adjust;
2337 keys[MESA_SHADER_VERTEX].vs.post_shuffle = key->vertex_post_shuffle;
2338 for (unsigned i = 0; i < MAX_VERTEX_ATTRIBS; ++i) {
2339 keys[MESA_SHADER_VERTEX].vs.instance_rate_divisors[i] = key->instance_rate_divisors[i];
2340 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_formats[i] = key->vertex_attribute_formats[i];
2341 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_bindings[i] = key->vertex_attribute_bindings[i];
2342 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_offsets[i] = key->vertex_attribute_offsets[i];
2343 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_strides[i] = key->vertex_attribute_strides[i];
2344 }
2345 keys[MESA_SHADER_VERTEX].vs.outprim = si_conv_prim_to_gs_out(key->topology);
2346
2347 if (nir[MESA_SHADER_TESS_CTRL]) {
2348 keys[MESA_SHADER_VERTEX].vs_common_out.as_ls = true;
2349 keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = 0;
2350 keys[MESA_SHADER_TESS_CTRL].tcs.input_vertices = key->tess_input_vertices;
2351 keys[MESA_SHADER_TESS_CTRL].tcs.primitive_mode = nir[MESA_SHADER_TESS_EVAL]->info.tess.primitive_mode;
2352
2353 keys[MESA_SHADER_TESS_CTRL].tcs.tes_reads_tess_factors = !!(nir[MESA_SHADER_TESS_EVAL]->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER));
2354 }
2355
2356 if (nir[MESA_SHADER_GEOMETRY]) {
2357 if (nir[MESA_SHADER_TESS_CTRL])
2358 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_es = true;
2359 else
2360 keys[MESA_SHADER_VERTEX].vs_common_out.as_es = true;
2361 }
2362
2363 if (device->physical_device->use_ngg) {
2364 if (nir[MESA_SHADER_TESS_CTRL]) {
2365 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = true;
2366 } else {
2367 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = true;
2368 }
2369
2370 if (nir[MESA_SHADER_TESS_CTRL] &&
2371 nir[MESA_SHADER_GEOMETRY] &&
2372 nir[MESA_SHADER_GEOMETRY]->info.gs.invocations *
2373 nir[MESA_SHADER_GEOMETRY]->info.gs.vertices_out > 256) {
2374 /* Fallback to the legacy path if tessellation is
2375 * enabled with extreme geometry because
2376 * EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it
2377 * might hang.
2378 */
2379 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false;
2380 }
2381
2382 if (!device->physical_device->use_ngg_gs) {
2383 if (nir[MESA_SHADER_GEOMETRY]) {
2384 if (nir[MESA_SHADER_TESS_CTRL])
2385 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false;
2386 else
2387 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = false;
2388 }
2389 }
2390
2391 gl_shader_stage last_xfb_stage = MESA_SHADER_VERTEX;
2392
2393 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
2394 if (nir[i])
2395 last_xfb_stage = i;
2396 }
2397
2398 bool uses_xfb = nir[last_xfb_stage] &&
2399 radv_nir_stage_uses_xfb(nir[last_xfb_stage]);
2400
2401 if (!device->physical_device->use_ngg_streamout && uses_xfb) {
2402 if (nir[MESA_SHADER_TESS_CTRL])
2403 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false;
2404 else
2405 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = false;
2406 }
2407
2408 /* Determine if the pipeline is eligible for the NGG passthrough
2409 * mode. It can't be enabled for geometry shaders, for NGG
2410 * streamout or for vertex shaders that export the primitive ID
2411 * (this is checked later because we don't have the info here.)
2412 */
2413 if (!nir[MESA_SHADER_GEOMETRY] && !uses_xfb) {
2414 if (nir[MESA_SHADER_TESS_CTRL] &&
2415 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg) {
2416 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg_passthrough = true;
2417 } else if (nir[MESA_SHADER_VERTEX] &&
2418 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg) {
2419 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg_passthrough = true;
2420 }
2421 }
2422 }
2423
2424 for(int i = 0; i < MESA_SHADER_STAGES; ++i)
2425 keys[i].has_multiview_view_index = key->has_multiview_view_index;
2426
2427 keys[MESA_SHADER_FRAGMENT].fs.col_format = key->col_format;
2428 keys[MESA_SHADER_FRAGMENT].fs.is_int8 = key->is_int8;
2429 keys[MESA_SHADER_FRAGMENT].fs.is_int10 = key->is_int10;
2430 keys[MESA_SHADER_FRAGMENT].fs.log2_ps_iter_samples = key->log2_ps_iter_samples;
2431 keys[MESA_SHADER_FRAGMENT].fs.num_samples = key->num_samples;
2432 keys[MESA_SHADER_FRAGMENT].fs.is_dual_src = key->is_dual_src;
2433
2434 if (nir[MESA_SHADER_COMPUTE]) {
2435 keys[MESA_SHADER_COMPUTE].cs.subgroup_size = key->compute_subgroup_size;
2436 }
2437 }
2438
2439 static uint8_t
2440 radv_get_wave_size(struct radv_device *device,
2441 const VkPipelineShaderStageCreateInfo *pStage,
2442 gl_shader_stage stage,
2443 const struct radv_shader_variant_key *key)
2444 {
2445 if (stage == MESA_SHADER_GEOMETRY && !key->vs_common_out.as_ngg)
2446 return 64;
2447 else if (stage == MESA_SHADER_COMPUTE) {
2448 if (key->cs.subgroup_size) {
2449 /* Return the required subgroup size if specified. */
2450 return key->cs.subgroup_size;
2451 }
2452 return device->physical_device->cs_wave_size;
2453 }
2454 else if (stage == MESA_SHADER_FRAGMENT)
2455 return device->physical_device->ps_wave_size;
2456 else
2457 return device->physical_device->ge_wave_size;
2458 }
2459
2460 static uint8_t
2461 radv_get_ballot_bit_size(struct radv_device *device,
2462 const VkPipelineShaderStageCreateInfo *pStage,
2463 gl_shader_stage stage,
2464 const struct radv_shader_variant_key *key)
2465 {
2466 if (stage == MESA_SHADER_COMPUTE && key->cs.subgroup_size)
2467 return key->cs.subgroup_size;
2468 return 64;
2469 }
2470
2471 static void
2472 radv_fill_shader_info(struct radv_pipeline *pipeline,
2473 const VkPipelineShaderStageCreateInfo **pStages,
2474 struct radv_shader_variant_key *keys,
2475 struct radv_shader_info *infos,
2476 nir_shader **nir)
2477 {
2478 unsigned active_stages = 0;
2479 unsigned filled_stages = 0;
2480
2481 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2482 if (nir[i])
2483 active_stages |= (1 << i);
2484 }
2485
2486 if (nir[MESA_SHADER_FRAGMENT]) {
2487 radv_nir_shader_info_init(&infos[MESA_SHADER_FRAGMENT]);
2488 radv_nir_shader_info_pass(nir[MESA_SHADER_FRAGMENT],
2489 pipeline->layout,
2490 &keys[MESA_SHADER_FRAGMENT],
2491 &infos[MESA_SHADER_FRAGMENT],
2492 pipeline->device->physical_device->use_llvm);
2493
2494 /* TODO: These are no longer used as keys we should refactor this */
2495 keys[MESA_SHADER_VERTEX].vs_common_out.export_prim_id =
2496 infos[MESA_SHADER_FRAGMENT].ps.prim_id_input;
2497 keys[MESA_SHADER_VERTEX].vs_common_out.export_layer_id =
2498 infos[MESA_SHADER_FRAGMENT].ps.layer_input;
2499 keys[MESA_SHADER_VERTEX].vs_common_out.export_clip_dists =
2500 !!infos[MESA_SHADER_FRAGMENT].ps.num_input_clips_culls;
2501 keys[MESA_SHADER_VERTEX].vs_common_out.export_viewport_index =
2502 infos[MESA_SHADER_FRAGMENT].ps.viewport_index_input;
2503 keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_prim_id =
2504 infos[MESA_SHADER_FRAGMENT].ps.prim_id_input;
2505 keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_layer_id =
2506 infos[MESA_SHADER_FRAGMENT].ps.layer_input;
2507 keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_clip_dists =
2508 !!infos[MESA_SHADER_FRAGMENT].ps.num_input_clips_culls;
2509 keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_viewport_index =
2510 infos[MESA_SHADER_FRAGMENT].ps.viewport_index_input;
2511
2512 /* NGG passthrough mode can't be enabled for vertex shaders
2513 * that export the primitive ID.
2514 *
2515 * TODO: I should really refactor the keys logic.
2516 */
2517 if (nir[MESA_SHADER_VERTEX] &&
2518 keys[MESA_SHADER_VERTEX].vs_common_out.export_prim_id) {
2519 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg_passthrough = false;
2520 }
2521
2522 filled_stages |= (1 << MESA_SHADER_FRAGMENT);
2523 }
2524
2525 if (nir[MESA_SHADER_TESS_CTRL]) {
2526 infos[MESA_SHADER_TESS_CTRL].tcs.tes_inputs_read =
2527 nir[MESA_SHADER_TESS_EVAL]->info.inputs_read;
2528 infos[MESA_SHADER_TESS_CTRL].tcs.tes_patch_inputs_read =
2529 nir[MESA_SHADER_TESS_EVAL]->info.patch_inputs_read;
2530 }
2531
2532 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9 &&
2533 nir[MESA_SHADER_TESS_CTRL]) {
2534 struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]};
2535 struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL];
2536 key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs;
2537
2538 radv_nir_shader_info_init(&infos[MESA_SHADER_TESS_CTRL]);
2539
2540 for (int i = 0; i < 2; i++) {
2541 radv_nir_shader_info_pass(combined_nir[i],
2542 pipeline->layout, &key,
2543 &infos[MESA_SHADER_TESS_CTRL],
2544 pipeline->device->physical_device->use_llvm);
2545 }
2546
2547 keys[MESA_SHADER_TESS_EVAL].tes.num_patches =
2548 infos[MESA_SHADER_TESS_CTRL].tcs.num_patches;
2549 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs =
2550 util_last_bit64(infos[MESA_SHADER_TESS_CTRL].tcs.outputs_written);
2551
2552 filled_stages |= (1 << MESA_SHADER_VERTEX);
2553 filled_stages |= (1 << MESA_SHADER_TESS_CTRL);
2554 }
2555
2556 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9 &&
2557 nir[MESA_SHADER_GEOMETRY]) {
2558 gl_shader_stage pre_stage = nir[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
2559 struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]};
2560
2561 radv_nir_shader_info_init(&infos[MESA_SHADER_GEOMETRY]);
2562
2563 for (int i = 0; i < 2; i++) {
2564 radv_nir_shader_info_pass(combined_nir[i],
2565 pipeline->layout,
2566 &keys[pre_stage],
2567 &infos[MESA_SHADER_GEOMETRY],
2568 pipeline->device->physical_device->use_llvm);
2569 }
2570
2571 filled_stages |= (1 << pre_stage);
2572 filled_stages |= (1 << MESA_SHADER_GEOMETRY);
2573 }
2574
2575 active_stages ^= filled_stages;
2576 while (active_stages) {
2577 int i = u_bit_scan(&active_stages);
2578
2579 if (i == MESA_SHADER_TESS_CTRL) {
2580 keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs =
2581 util_last_bit64(infos[MESA_SHADER_VERTEX].vs.ls_outputs_written);
2582 }
2583
2584 if (i == MESA_SHADER_TESS_EVAL) {
2585 keys[MESA_SHADER_TESS_EVAL].tes.num_patches =
2586 infos[MESA_SHADER_TESS_CTRL].tcs.num_patches;
2587 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs =
2588 util_last_bit64(infos[MESA_SHADER_TESS_CTRL].tcs.outputs_written);
2589 }
2590
2591 radv_nir_shader_info_init(&infos[i]);
2592 radv_nir_shader_info_pass(nir[i], pipeline->layout,
2593 &keys[i], &infos[i], pipeline->device->physical_device->use_llvm);
2594 }
2595
2596 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2597 if (nir[i]) {
2598 infos[i].wave_size =
2599 radv_get_wave_size(pipeline->device, pStages[i],
2600 i, &keys[i]);
2601 infos[i].ballot_bit_size =
2602 radv_get_ballot_bit_size(pipeline->device,
2603 pStages[i], i,
2604 &keys[i]);
2605 }
2606 }
2607 }
2608
2609 static void
2610 merge_tess_info(struct shader_info *tes_info,
2611 const struct shader_info *tcs_info)
2612 {
2613 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
2614 *
2615 * "PointMode. Controls generation of points rather than triangles
2616 * or lines. This functionality defaults to disabled, and is
2617 * enabled if either shader stage includes the execution mode.
2618 *
2619 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
2620 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
2621 * and OutputVertices, it says:
2622 *
2623 * "One mode must be set in at least one of the tessellation
2624 * shader stages."
2625 *
2626 * So, the fields can be set in either the TCS or TES, but they must
2627 * agree if set in both. Our backend looks at TES, so bitwise-or in
2628 * the values from the TCS.
2629 */
2630 assert(tcs_info->tess.tcs_vertices_out == 0 ||
2631 tes_info->tess.tcs_vertices_out == 0 ||
2632 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
2633 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
2634
2635 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
2636 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
2637 tcs_info->tess.spacing == tes_info->tess.spacing);
2638 tes_info->tess.spacing |= tcs_info->tess.spacing;
2639
2640 assert(tcs_info->tess.primitive_mode == 0 ||
2641 tes_info->tess.primitive_mode == 0 ||
2642 tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
2643 tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
2644 tes_info->tess.ccw |= tcs_info->tess.ccw;
2645 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
2646 }
2647
2648 static
2649 void radv_init_feedback(const VkPipelineCreationFeedbackCreateInfoEXT *ext)
2650 {
2651 if (!ext)
2652 return;
2653
2654 if (ext->pPipelineCreationFeedback) {
2655 ext->pPipelineCreationFeedback->flags = 0;
2656 ext->pPipelineCreationFeedback->duration = 0;
2657 }
2658
2659 for (unsigned i = 0; i < ext->pipelineStageCreationFeedbackCount; ++i) {
2660 ext->pPipelineStageCreationFeedbacks[i].flags = 0;
2661 ext->pPipelineStageCreationFeedbacks[i].duration = 0;
2662 }
2663 }
2664
2665 static
2666 void radv_start_feedback(VkPipelineCreationFeedbackEXT *feedback)
2667 {
2668 if (!feedback)
2669 return;
2670
2671 feedback->duration -= radv_get_current_time();
2672 feedback ->flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
2673 }
2674
2675 static
2676 void radv_stop_feedback(VkPipelineCreationFeedbackEXT *feedback, bool cache_hit)
2677 {
2678 if (!feedback)
2679 return;
2680
2681 feedback->duration += radv_get_current_time();
2682 feedback ->flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT |
2683 (cache_hit ? VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT : 0);
2684 }
2685
2686 VkResult radv_create_shaders(struct radv_pipeline *pipeline,
2687 struct radv_device *device,
2688 struct radv_pipeline_cache *cache,
2689 const struct radv_pipeline_key *key,
2690 const VkPipelineShaderStageCreateInfo **pStages,
2691 const VkPipelineCreateFlags flags,
2692 VkPipelineCreationFeedbackEXT *pipeline_feedback,
2693 VkPipelineCreationFeedbackEXT **stage_feedbacks)
2694 {
2695 struct radv_shader_module fs_m = {0};
2696 struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
2697 nir_shader *nir[MESA_SHADER_STAGES] = {0};
2698 struct radv_shader_binary *binaries[MESA_SHADER_STAGES] = {NULL};
2699 struct radv_shader_variant_key keys[MESA_SHADER_STAGES] = {{{{{0}}}}};
2700 struct radv_shader_info infos[MESA_SHADER_STAGES] = {0};
2701 unsigned char hash[20], gs_copy_hash[20];
2702 bool keep_executable_info = (flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR) || device->keep_shader_info;
2703 bool keep_statistic_info = (flags & VK_PIPELINE_CREATE_CAPTURE_STATISTICS_BIT_KHR) ||
2704 (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) ||
2705 device->keep_shader_info;
2706
2707 radv_start_feedback(pipeline_feedback);
2708
2709 for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
2710 if (pStages[i]) {
2711 modules[i] = radv_shader_module_from_handle(pStages[i]->module);
2712 if (modules[i]->nir)
2713 _mesa_sha1_compute(modules[i]->nir->info.name,
2714 strlen(modules[i]->nir->info.name),
2715 modules[i]->sha1);
2716
2717 pipeline->active_stages |= mesa_to_vk_shader_stage(i);
2718 }
2719 }
2720
2721 radv_hash_shaders(hash, pStages, pipeline->layout, key, get_hash_flags(device));
2722 memcpy(gs_copy_hash, hash, 20);
2723 gs_copy_hash[0] ^= 1;
2724
2725 bool found_in_application_cache = true;
2726 if (modules[MESA_SHADER_GEOMETRY] && !keep_executable_info && !keep_statistic_info) {
2727 struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0};
2728 radv_create_shader_variants_from_pipeline_cache(device, cache, gs_copy_hash, variants,
2729 &found_in_application_cache);
2730 pipeline->gs_copy_shader = variants[MESA_SHADER_GEOMETRY];
2731 }
2732
2733 if (!keep_executable_info && !keep_statistic_info &&
2734 radv_create_shader_variants_from_pipeline_cache(device, cache, hash, pipeline->shaders,
2735 &found_in_application_cache) &&
2736 (!modules[MESA_SHADER_GEOMETRY] || pipeline->gs_copy_shader)) {
2737 radv_stop_feedback(pipeline_feedback, found_in_application_cache);
2738 return VK_SUCCESS;
2739 }
2740
2741 if (flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_EXT) {
2742 radv_stop_feedback(pipeline_feedback, found_in_application_cache);
2743 return VK_PIPELINE_COMPILE_REQUIRED_EXT;
2744 }
2745
2746 if (!modules[MESA_SHADER_FRAGMENT] && !modules[MESA_SHADER_COMPUTE]) {
2747 nir_builder fs_b;
2748 nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL);
2749 fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "noop_fs");
2750 fs_m.nir = fs_b.shader;
2751 modules[MESA_SHADER_FRAGMENT] = &fs_m;
2752 }
2753
2754 for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
2755 const VkPipelineShaderStageCreateInfo *stage = pStages[i];
2756 unsigned subgroup_size = 64, ballot_bit_size = 64;
2757
2758 if (!modules[i])
2759 continue;
2760
2761 radv_start_feedback(stage_feedbacks[i]);
2762
2763 if (key->compute_subgroup_size) {
2764 /* Only compute shaders currently support requiring a
2765 * specific subgroup size.
2766 */
2767 assert(i == MESA_SHADER_COMPUTE);
2768 subgroup_size = key->compute_subgroup_size;
2769 ballot_bit_size = key->compute_subgroup_size;
2770 }
2771
2772 nir[i] = radv_shader_compile_to_nir(device, modules[i],
2773 stage ? stage->pName : "main", i,
2774 stage ? stage->pSpecializationInfo : NULL,
2775 flags, pipeline->layout,
2776 subgroup_size, ballot_bit_size);
2777
2778 /* We don't want to alter meta shaders IR directly so clone it
2779 * first.
2780 */
2781 if (nir[i]->info.name) {
2782 nir[i] = nir_shader_clone(NULL, nir[i]);
2783 }
2784
2785 radv_stop_feedback(stage_feedbacks[i], false);
2786 }
2787
2788 if (nir[MESA_SHADER_TESS_CTRL]) {
2789 nir_lower_patch_vertices(nir[MESA_SHADER_TESS_EVAL], nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out, NULL);
2790 merge_tess_info(&nir[MESA_SHADER_TESS_EVAL]->info, &nir[MESA_SHADER_TESS_CTRL]->info);
2791 }
2792
2793 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
2794 radv_link_shaders(pipeline, nir);
2795
2796 radv_set_linked_driver_locations(pipeline, nir, infos);
2797
2798 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2799 if (nir[i]) {
2800 /* do this again since information such as outputs_read can be out-of-date */
2801 nir_shader_gather_info(nir[i], nir_shader_get_entrypoint(nir[i]));
2802
2803 if (device->physical_device->use_llvm) {
2804 NIR_PASS_V(nir[i], nir_lower_bool_to_int32);
2805 } else {
2806 NIR_PASS_V(nir[i], nir_lower_non_uniform_access,
2807 nir_lower_non_uniform_ubo_access |
2808 nir_lower_non_uniform_ssbo_access |
2809 nir_lower_non_uniform_texture_access |
2810 nir_lower_non_uniform_image_access);
2811 }
2812 }
2813 }
2814
2815 if (nir[MESA_SHADER_FRAGMENT])
2816 radv_lower_fs_io(nir[MESA_SHADER_FRAGMENT]);
2817
2818 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2819 if (radv_can_dump_shader(device, modules[i], false))
2820 nir_print_shader(nir[i], stderr);
2821 }
2822
2823 radv_fill_shader_keys(device, keys, key, nir);
2824
2825 radv_fill_shader_info(pipeline, pStages, keys, infos, nir);
2826
2827 if ((nir[MESA_SHADER_VERTEX] &&
2828 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg) ||
2829 (nir[MESA_SHADER_TESS_EVAL] &&
2830 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg)) {
2831 struct gfx10_ngg_info *ngg_info;
2832
2833 if (nir[MESA_SHADER_GEOMETRY])
2834 ngg_info = &infos[MESA_SHADER_GEOMETRY].ngg_info;
2835 else if (nir[MESA_SHADER_TESS_CTRL])
2836 ngg_info = &infos[MESA_SHADER_TESS_EVAL].ngg_info;
2837 else
2838 ngg_info = &infos[MESA_SHADER_VERTEX].ngg_info;
2839
2840 gfx10_get_ngg_info(key, pipeline, nir, infos, ngg_info);
2841 } else if (nir[MESA_SHADER_GEOMETRY]) {
2842 struct gfx9_gs_info *gs_info =
2843 &infos[MESA_SHADER_GEOMETRY].gs_ring_info;
2844
2845 gfx9_get_gs_info(key, pipeline, nir, infos, gs_info);
2846 }
2847
2848 if(modules[MESA_SHADER_GEOMETRY]) {
2849 struct radv_shader_binary *gs_copy_binary = NULL;
2850 if (!pipeline->gs_copy_shader &&
2851 !radv_pipeline_has_ngg(pipeline)) {
2852 struct radv_shader_info info = {};
2853 struct radv_shader_variant_key key = {};
2854
2855 key.has_multiview_view_index =
2856 keys[MESA_SHADER_GEOMETRY].has_multiview_view_index;
2857
2858 radv_nir_shader_info_pass(nir[MESA_SHADER_GEOMETRY],
2859 pipeline->layout, &key,
2860 &info, pipeline->device->physical_device->use_llvm);
2861 info.wave_size = 64; /* Wave32 not supported. */
2862 info.ballot_bit_size = 64;
2863
2864 pipeline->gs_copy_shader = radv_create_gs_copy_shader(
2865 device, nir[MESA_SHADER_GEOMETRY], &info,
2866 &gs_copy_binary, keep_executable_info, keep_statistic_info,
2867 keys[MESA_SHADER_GEOMETRY].has_multiview_view_index);
2868 }
2869
2870 if (!keep_executable_info && !keep_statistic_info && pipeline->gs_copy_shader) {
2871 struct radv_shader_binary *binaries[MESA_SHADER_STAGES] = {NULL};
2872 struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0};
2873
2874 binaries[MESA_SHADER_GEOMETRY] = gs_copy_binary;
2875 variants[MESA_SHADER_GEOMETRY] = pipeline->gs_copy_shader;
2876
2877 radv_pipeline_cache_insert_shaders(device, cache,
2878 gs_copy_hash,
2879 variants,
2880 binaries);
2881 }
2882 free(gs_copy_binary);
2883 }
2884
2885 if (nir[MESA_SHADER_FRAGMENT]) {
2886 if (!pipeline->shaders[MESA_SHADER_FRAGMENT]) {
2887 radv_start_feedback(stage_feedbacks[MESA_SHADER_FRAGMENT]);
2888
2889 pipeline->shaders[MESA_SHADER_FRAGMENT] =
2890 radv_shader_variant_compile(device, modules[MESA_SHADER_FRAGMENT], &nir[MESA_SHADER_FRAGMENT], 1,
2891 pipeline->layout, keys + MESA_SHADER_FRAGMENT,
2892 infos + MESA_SHADER_FRAGMENT,
2893 keep_executable_info, keep_statistic_info,
2894 &binaries[MESA_SHADER_FRAGMENT]);
2895
2896 radv_stop_feedback(stage_feedbacks[MESA_SHADER_FRAGMENT], false);
2897 }
2898 }
2899
2900 if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_TESS_CTRL]) {
2901 if (!pipeline->shaders[MESA_SHADER_TESS_CTRL]) {
2902 struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]};
2903 struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL];
2904 key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs;
2905
2906 radv_start_feedback(stage_feedbacks[MESA_SHADER_TESS_CTRL]);
2907
2908 pipeline->shaders[MESA_SHADER_TESS_CTRL] = radv_shader_variant_compile(device, modules[MESA_SHADER_TESS_CTRL], combined_nir, 2,
2909 pipeline->layout,
2910 &key, &infos[MESA_SHADER_TESS_CTRL], keep_executable_info,
2911 keep_statistic_info, &binaries[MESA_SHADER_TESS_CTRL]);
2912
2913 radv_stop_feedback(stage_feedbacks[MESA_SHADER_TESS_CTRL], false);
2914 }
2915 modules[MESA_SHADER_VERTEX] = NULL;
2916 keys[MESA_SHADER_TESS_EVAL].tes.num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
2917 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written);
2918 }
2919
2920 if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_GEOMETRY]) {
2921 gl_shader_stage pre_stage = modules[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
2922 if (!pipeline->shaders[MESA_SHADER_GEOMETRY]) {
2923 struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]};
2924
2925 radv_start_feedback(stage_feedbacks[MESA_SHADER_GEOMETRY]);
2926
2927 pipeline->shaders[MESA_SHADER_GEOMETRY] = radv_shader_variant_compile(device, modules[MESA_SHADER_GEOMETRY], combined_nir, 2,
2928 pipeline->layout,
2929 &keys[pre_stage], &infos[MESA_SHADER_GEOMETRY], keep_executable_info,
2930 keep_statistic_info, &binaries[MESA_SHADER_GEOMETRY]);
2931
2932 radv_stop_feedback(stage_feedbacks[MESA_SHADER_GEOMETRY], false);
2933 }
2934 modules[pre_stage] = NULL;
2935 }
2936
2937 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2938 if(modules[i] && !pipeline->shaders[i]) {
2939 if (i == MESA_SHADER_TESS_CTRL) {
2940 keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = util_last_bit64(pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.ls_outputs_written);
2941 }
2942 if (i == MESA_SHADER_TESS_EVAL) {
2943 keys[MESA_SHADER_TESS_EVAL].tes.num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
2944 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written);
2945 }
2946
2947 radv_start_feedback(stage_feedbacks[i]);
2948
2949 pipeline->shaders[i] = radv_shader_variant_compile(device, modules[i], &nir[i], 1,
2950 pipeline->layout,
2951 keys + i, infos + i, keep_executable_info,
2952 keep_statistic_info, &binaries[i]);
2953
2954 radv_stop_feedback(stage_feedbacks[i], false);
2955 }
2956 }
2957
2958 if (!keep_executable_info && !keep_statistic_info) {
2959 radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline->shaders,
2960 binaries);
2961 }
2962
2963 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2964 free(binaries[i]);
2965 if (nir[i]) {
2966 ralloc_free(nir[i]);
2967
2968 if (radv_can_dump_shader_stats(device, modules[i]))
2969 radv_shader_dump_stats(device,
2970 pipeline->shaders[i],
2971 i, stderr);
2972 }
2973 }
2974
2975 if (fs_m.nir)
2976 ralloc_free(fs_m.nir);
2977
2978 radv_stop_feedback(pipeline_feedback, false);
2979 return VK_SUCCESS;
2980 }
2981
2982 static uint32_t
2983 radv_pipeline_stage_to_user_data_0(struct radv_pipeline *pipeline,
2984 gl_shader_stage stage, enum chip_class chip_class)
2985 {
2986 bool has_gs = radv_pipeline_has_gs(pipeline);
2987 bool has_tess = radv_pipeline_has_tess(pipeline);
2988 bool has_ngg = radv_pipeline_has_ngg(pipeline);
2989
2990 switch (stage) {
2991 case MESA_SHADER_FRAGMENT:
2992 return R_00B030_SPI_SHADER_USER_DATA_PS_0;
2993 case MESA_SHADER_VERTEX:
2994 if (has_tess) {
2995 if (chip_class >= GFX10) {
2996 return R_00B430_SPI_SHADER_USER_DATA_HS_0;
2997 } else if (chip_class == GFX9) {
2998 return R_00B430_SPI_SHADER_USER_DATA_LS_0;
2999 } else {
3000 return R_00B530_SPI_SHADER_USER_DATA_LS_0;
3001 }
3002
3003 }
3004
3005 if (has_gs) {
3006 if (chip_class >= GFX10) {
3007 return R_00B230_SPI_SHADER_USER_DATA_GS_0;
3008 } else {
3009 return R_00B330_SPI_SHADER_USER_DATA_ES_0;
3010 }
3011 }
3012
3013 if (has_ngg)
3014 return R_00B230_SPI_SHADER_USER_DATA_GS_0;
3015
3016 return R_00B130_SPI_SHADER_USER_DATA_VS_0;
3017 case MESA_SHADER_GEOMETRY:
3018 return chip_class == GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0 :
3019 R_00B230_SPI_SHADER_USER_DATA_GS_0;
3020 case MESA_SHADER_COMPUTE:
3021 return R_00B900_COMPUTE_USER_DATA_0;
3022 case MESA_SHADER_TESS_CTRL:
3023 return chip_class == GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0 :
3024 R_00B430_SPI_SHADER_USER_DATA_HS_0;
3025 case MESA_SHADER_TESS_EVAL:
3026 if (has_gs) {
3027 return chip_class >= GFX10 ? R_00B230_SPI_SHADER_USER_DATA_GS_0 :
3028 R_00B330_SPI_SHADER_USER_DATA_ES_0;
3029 } else if (has_ngg) {
3030 return R_00B230_SPI_SHADER_USER_DATA_GS_0;
3031 } else {
3032 return R_00B130_SPI_SHADER_USER_DATA_VS_0;
3033 }
3034 default:
3035 unreachable("unknown shader");
3036 }
3037 }
3038
3039 struct radv_bin_size_entry {
3040 unsigned bpp;
3041 VkExtent2D extent;
3042 };
3043
3044 static VkExtent2D
3045 radv_gfx9_compute_bin_size(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo)
3046 {
3047 static const struct radv_bin_size_entry color_size_table[][3][9] = {
3048 {
3049 /* One RB / SE */
3050 {
3051 /* One shader engine */
3052 { 0, {128, 128}},
3053 { 1, { 64, 128}},
3054 { 2, { 32, 128}},
3055 { 3, { 16, 128}},
3056 { 17, { 0, 0}},
3057 { UINT_MAX, { 0, 0}},
3058 },
3059 {
3060 /* Two shader engines */
3061 { 0, {128, 128}},
3062 { 2, { 64, 128}},
3063 { 3, { 32, 128}},
3064 { 5, { 16, 128}},
3065 { 17, { 0, 0}},
3066 { UINT_MAX, { 0, 0}},
3067 },
3068 {
3069 /* Four shader engines */
3070 { 0, {128, 128}},
3071 { 3, { 64, 128}},
3072 { 5, { 16, 128}},
3073 { 17, { 0, 0}},
3074 { UINT_MAX, { 0, 0}},
3075 },
3076 },
3077 {
3078 /* Two RB / SE */
3079 {
3080 /* One shader engine */
3081 { 0, {128, 128}},
3082 { 2, { 64, 128}},
3083 { 3, { 32, 128}},
3084 { 5, { 16, 128}},
3085 { 33, { 0, 0}},
3086 { UINT_MAX, { 0, 0}},
3087 },
3088 {
3089 /* Two shader engines */
3090 { 0, {128, 128}},
3091 { 3, { 64, 128}},
3092 { 5, { 32, 128}},
3093 { 9, { 16, 128}},
3094 { 33, { 0, 0}},
3095 { UINT_MAX, { 0, 0}},
3096 },
3097 {
3098 /* Four shader engines */
3099 { 0, {256, 256}},
3100 { 2, {128, 256}},
3101 { 3, {128, 128}},
3102 { 5, { 64, 128}},
3103 { 9, { 16, 128}},
3104 { 33, { 0, 0}},
3105 { UINT_MAX, { 0, 0}},
3106 },
3107 },
3108 {
3109 /* Four RB / SE */
3110 {
3111 /* One shader engine */
3112 { 0, {128, 256}},
3113 { 2, {128, 128}},
3114 { 3, { 64, 128}},
3115 { 5, { 32, 128}},
3116 { 9, { 16, 128}},
3117 { 33, { 0, 0}},
3118 { UINT_MAX, { 0, 0}},
3119 },
3120 {
3121 /* Two shader engines */
3122 { 0, {256, 256}},
3123 { 2, {128, 256}},
3124 { 3, {128, 128}},
3125 { 5, { 64, 128}},
3126 { 9, { 32, 128}},
3127 { 17, { 16, 128}},
3128 { 33, { 0, 0}},
3129 { UINT_MAX, { 0, 0}},
3130 },
3131 {
3132 /* Four shader engines */
3133 { 0, {256, 512}},
3134 { 2, {256, 256}},
3135 { 3, {128, 256}},
3136 { 5, {128, 128}},
3137 { 9, { 64, 128}},
3138 { 17, { 16, 128}},
3139 { 33, { 0, 0}},
3140 { UINT_MAX, { 0, 0}},
3141 },
3142 },
3143 };
3144 static const struct radv_bin_size_entry ds_size_table[][3][9] = {
3145 {
3146 // One RB / SE
3147 {
3148 // One shader engine
3149 { 0, {128, 256}},
3150 { 2, {128, 128}},
3151 { 4, { 64, 128}},
3152 { 7, { 32, 128}},
3153 { 13, { 16, 128}},
3154 { 49, { 0, 0}},
3155 { UINT_MAX, { 0, 0}},
3156 },
3157 {
3158 // Two shader engines
3159 { 0, {256, 256}},
3160 { 2, {128, 256}},
3161 { 4, {128, 128}},
3162 { 7, { 64, 128}},
3163 { 13, { 32, 128}},
3164 { 25, { 16, 128}},
3165 { 49, { 0, 0}},
3166 { UINT_MAX, { 0, 0}},
3167 },
3168 {
3169 // Four shader engines
3170 { 0, {256, 512}},
3171 { 2, {256, 256}},
3172 { 4, {128, 256}},
3173 { 7, {128, 128}},
3174 { 13, { 64, 128}},
3175 { 25, { 16, 128}},
3176 { 49, { 0, 0}},
3177 { UINT_MAX, { 0, 0}},
3178 },
3179 },
3180 {
3181 // Two RB / SE
3182 {
3183 // One shader engine
3184 { 0, {256, 256}},
3185 { 2, {128, 256}},
3186 { 4, {128, 128}},
3187 { 7, { 64, 128}},
3188 { 13, { 32, 128}},
3189 { 25, { 16, 128}},
3190 { 97, { 0, 0}},
3191 { UINT_MAX, { 0, 0}},
3192 },
3193 {
3194 // Two shader engines
3195 { 0, {256, 512}},
3196 { 2, {256, 256}},
3197 { 4, {128, 256}},
3198 { 7, {128, 128}},
3199 { 13, { 64, 128}},
3200 { 25, { 32, 128}},
3201 { 49, { 16, 128}},
3202 { 97, { 0, 0}},
3203 { UINT_MAX, { 0, 0}},
3204 },
3205 {
3206 // Four shader engines
3207 { 0, {512, 512}},
3208 { 2, {256, 512}},
3209 { 4, {256, 256}},
3210 { 7, {128, 256}},
3211 { 13, {128, 128}},
3212 { 25, { 64, 128}},
3213 { 49, { 16, 128}},
3214 { 97, { 0, 0}},
3215 { UINT_MAX, { 0, 0}},
3216 },
3217 },
3218 {
3219 // Four RB / SE
3220 {
3221 // One shader engine
3222 { 0, {256, 512}},
3223 { 2, {256, 256}},
3224 { 4, {128, 256}},
3225 { 7, {128, 128}},
3226 { 13, { 64, 128}},
3227 { 25, { 32, 128}},
3228 { 49, { 16, 128}},
3229 { UINT_MAX, { 0, 0}},
3230 },
3231 {
3232 // Two shader engines
3233 { 0, {512, 512}},
3234 { 2, {256, 512}},
3235 { 4, {256, 256}},
3236 { 7, {128, 256}},
3237 { 13, {128, 128}},
3238 { 25, { 64, 128}},
3239 { 49, { 32, 128}},
3240 { 97, { 16, 128}},
3241 { UINT_MAX, { 0, 0}},
3242 },
3243 {
3244 // Four shader engines
3245 { 0, {512, 512}},
3246 { 4, {256, 512}},
3247 { 7, {256, 256}},
3248 { 13, {128, 256}},
3249 { 25, {128, 128}},
3250 { 49, { 64, 128}},
3251 { 97, { 16, 128}},
3252 { UINT_MAX, { 0, 0}},
3253 },
3254 },
3255 };
3256
3257 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3258 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3259 VkExtent2D extent = {512, 512};
3260
3261 unsigned log_num_rb_per_se =
3262 util_logbase2_ceil(pipeline->device->physical_device->rad_info.num_render_backends /
3263 pipeline->device->physical_device->rad_info.max_se);
3264 unsigned log_num_se = util_logbase2_ceil(pipeline->device->physical_device->rad_info.max_se);
3265
3266 unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_aa_config);
3267 unsigned ps_iter_samples = 1u << G_028804_PS_ITER_SAMPLES(pipeline->graphics.ms.db_eqaa);
3268 unsigned effective_samples = total_samples;
3269 unsigned color_bytes_per_pixel = 0;
3270
3271 const VkPipelineColorBlendStateCreateInfo *vkblend =
3272 radv_pipeline_get_color_blend_state(pCreateInfo);
3273 if (vkblend) {
3274 for (unsigned i = 0; i < subpass->color_count; i++) {
3275 if (!vkblend->pAttachments[i].colorWriteMask)
3276 continue;
3277
3278 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
3279 continue;
3280
3281 VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
3282 color_bytes_per_pixel += vk_format_get_blocksize(format);
3283 }
3284
3285 /* MSAA images typically don't use all samples all the time. */
3286 if (effective_samples >= 2 && ps_iter_samples <= 1)
3287 effective_samples = 2;
3288 color_bytes_per_pixel *= effective_samples;
3289 }
3290
3291 const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se];
3292 while(color_entry[1].bpp <= color_bytes_per_pixel)
3293 ++color_entry;
3294
3295 extent = color_entry->extent;
3296
3297 if (subpass->depth_stencil_attachment) {
3298 struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
3299
3300 /* Coefficients taken from AMDVLK */
3301 unsigned depth_coeff = vk_format_is_depth(attachment->format) ? 5 : 0;
3302 unsigned stencil_coeff = vk_format_is_stencil(attachment->format) ? 1 : 0;
3303 unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples;
3304
3305 const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se];
3306 while(ds_entry[1].bpp <= ds_bytes_per_pixel)
3307 ++ds_entry;
3308
3309 if (ds_entry->extent.width * ds_entry->extent.height < extent.width * extent.height)
3310 extent = ds_entry->extent;
3311 }
3312
3313 return extent;
3314 }
3315
3316 static VkExtent2D
3317 radv_gfx10_compute_bin_size(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo)
3318 {
3319 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3320 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3321 VkExtent2D extent = {512, 512};
3322
3323 const unsigned db_tag_size = 64;
3324 const unsigned db_tag_count = 312;
3325 const unsigned color_tag_size = 1024;
3326 const unsigned color_tag_count = 31;
3327 const unsigned fmask_tag_size = 256;
3328 const unsigned fmask_tag_count = 44;
3329
3330 const unsigned rb_count = pipeline->device->physical_device->rad_info.num_render_backends;
3331 const unsigned pipe_count = MAX2(rb_count, pipeline->device->physical_device->rad_info.num_sdp_interfaces);
3332
3333 const unsigned db_tag_part = (db_tag_count * rb_count / pipe_count) * db_tag_size * pipe_count;
3334 const unsigned color_tag_part = (color_tag_count * rb_count / pipe_count) * color_tag_size * pipe_count;
3335 const unsigned fmask_tag_part = (fmask_tag_count * rb_count / pipe_count) * fmask_tag_size * pipe_count;
3336
3337 const unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_aa_config);
3338 const unsigned samples_log = util_logbase2_ceil(total_samples);
3339
3340 unsigned color_bytes_per_pixel = 0;
3341 unsigned fmask_bytes_per_pixel = 0;
3342
3343 const VkPipelineColorBlendStateCreateInfo *vkblend =
3344 radv_pipeline_get_color_blend_state(pCreateInfo);
3345 if (vkblend) {
3346 for (unsigned i = 0; i < subpass->color_count; i++) {
3347 if (!vkblend->pAttachments[i].colorWriteMask)
3348 continue;
3349
3350 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
3351 continue;
3352
3353 VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
3354 color_bytes_per_pixel += vk_format_get_blocksize(format);
3355
3356 if (total_samples > 1) {
3357 assert(samples_log <= 3);
3358 const unsigned fmask_array[] = {0, 1, 1, 4};
3359 fmask_bytes_per_pixel += fmask_array[samples_log];
3360 }
3361 }
3362
3363 color_bytes_per_pixel *= total_samples;
3364 }
3365 color_bytes_per_pixel = MAX2(color_bytes_per_pixel, 1);
3366
3367 const unsigned color_pixel_count_log = util_logbase2(color_tag_part / color_bytes_per_pixel);
3368 extent.width = 1ull << ((color_pixel_count_log + 1) / 2);
3369 extent.height = 1ull << (color_pixel_count_log / 2);
3370
3371 if (fmask_bytes_per_pixel) {
3372 const unsigned fmask_pixel_count_log = util_logbase2(fmask_tag_part / fmask_bytes_per_pixel);
3373
3374 const VkExtent2D fmask_extent = (VkExtent2D){
3375 .width = 1ull << ((fmask_pixel_count_log + 1) / 2),
3376 .height = 1ull << (color_pixel_count_log / 2)
3377 };
3378
3379 if (fmask_extent.width * fmask_extent.height < extent.width * extent.height)
3380 extent = fmask_extent;
3381 }
3382
3383 if (subpass->depth_stencil_attachment) {
3384 struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
3385
3386 /* Coefficients taken from AMDVLK */
3387 unsigned depth_coeff = vk_format_is_depth(attachment->format) ? 5 : 0;
3388 unsigned stencil_coeff = vk_format_is_stencil(attachment->format) ? 1 : 0;
3389 unsigned db_bytes_per_pixel = (depth_coeff + stencil_coeff) * total_samples;
3390
3391 const unsigned db_pixel_count_log = util_logbase2(db_tag_part / db_bytes_per_pixel);
3392
3393 const VkExtent2D db_extent = (VkExtent2D){
3394 .width = 1ull << ((db_pixel_count_log + 1) / 2),
3395 .height = 1ull << (color_pixel_count_log / 2)
3396 };
3397
3398 if (db_extent.width * db_extent.height < extent.width * extent.height)
3399 extent = db_extent;
3400 }
3401
3402 extent.width = MAX2(extent.width, 128);
3403 extent.height = MAX2(extent.width, 64);
3404
3405 return extent;
3406 }
3407
3408 static void
3409 radv_pipeline_generate_disabled_binning_state(struct radeon_cmdbuf *ctx_cs,
3410 struct radv_pipeline *pipeline,
3411 const VkGraphicsPipelineCreateInfo *pCreateInfo)
3412 {
3413 uint32_t pa_sc_binner_cntl_0 =
3414 S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) |
3415 S_028C44_DISABLE_START_OF_PRIM(1);
3416 uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF);
3417
3418 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
3419 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3420 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3421 const VkPipelineColorBlendStateCreateInfo *vkblend =
3422 radv_pipeline_get_color_blend_state(pCreateInfo);
3423 unsigned min_bytes_per_pixel = 0;
3424
3425 if (vkblend) {
3426 for (unsigned i = 0; i < subpass->color_count; i++) {
3427 if (!vkblend->pAttachments[i].colorWriteMask)
3428 continue;
3429
3430 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
3431 continue;
3432
3433 VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
3434 unsigned bytes = vk_format_get_blocksize(format);
3435 if (!min_bytes_per_pixel || bytes < min_bytes_per_pixel)
3436 min_bytes_per_pixel = bytes;
3437 }
3438 }
3439
3440 pa_sc_binner_cntl_0 =
3441 S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_NEW_SC) |
3442 S_028C44_BIN_SIZE_X(0) |
3443 S_028C44_BIN_SIZE_Y(0) |
3444 S_028C44_BIN_SIZE_X_EXTEND(2) | /* 128 */
3445 S_028C44_BIN_SIZE_Y_EXTEND(min_bytes_per_pixel <= 4 ? 2 : 1) | /* 128 or 64 */
3446 S_028C44_DISABLE_START_OF_PRIM(1);
3447 }
3448
3449 pipeline->graphics.binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0;
3450 pipeline->graphics.binning.db_dfsm_control = db_dfsm_control;
3451 }
3452
3453 struct radv_binning_settings
3454 radv_get_binning_settings(const struct radv_physical_device *pdev)
3455 {
3456 struct radv_binning_settings settings;
3457 if (pdev->rad_info.has_dedicated_vram) {
3458 if (pdev->rad_info.num_render_backends > 4) {
3459 settings.context_states_per_bin = 1;
3460 settings.persistent_states_per_bin = 1;
3461 } else {
3462 settings.context_states_per_bin = 3;
3463 settings.persistent_states_per_bin = 8;
3464 }
3465 settings.fpovs_per_batch = 63;
3466 } else {
3467 /* The context states are affected by the scissor bug. */
3468 settings.context_states_per_bin = 6;
3469 /* 32 causes hangs for RAVEN. */
3470 settings.persistent_states_per_bin = 16;
3471 settings.fpovs_per_batch = 63;
3472 }
3473
3474 if (pdev->rad_info.has_gfx9_scissor_bug)
3475 settings.context_states_per_bin = 1;
3476
3477 return settings;
3478 }
3479
3480 static void
3481 radv_pipeline_generate_binning_state(struct radeon_cmdbuf *ctx_cs,
3482 struct radv_pipeline *pipeline,
3483 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3484 const struct radv_blend_state *blend)
3485 {
3486 if (pipeline->device->physical_device->rad_info.chip_class < GFX9)
3487 return;
3488
3489 VkExtent2D bin_size;
3490 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
3491 bin_size = radv_gfx10_compute_bin_size(pipeline, pCreateInfo);
3492 } else if (pipeline->device->physical_device->rad_info.chip_class == GFX9) {
3493 bin_size = radv_gfx9_compute_bin_size(pipeline, pCreateInfo);
3494 } else
3495 unreachable("Unhandled generation for binning bin size calculation");
3496
3497 if (pipeline->device->pbb_allowed && bin_size.width && bin_size.height) {
3498 struct radv_binning_settings settings =
3499 radv_get_binning_settings(pipeline->device->physical_device);
3500
3501 bool disable_start_of_prim = true;
3502 uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF);
3503
3504 const struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
3505
3506 if (pipeline->device->dfsm_allowed && ps &&
3507 !ps->info.ps.can_discard &&
3508 !ps->info.ps.writes_memory &&
3509 blend->cb_target_enabled_4bit) {
3510 db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_AUTO);
3511 disable_start_of_prim = (blend->blend_enable_4bit & blend->cb_target_enabled_4bit) != 0;
3512 }
3513
3514 const uint32_t pa_sc_binner_cntl_0 =
3515 S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) |
3516 S_028C44_BIN_SIZE_X(bin_size.width == 16) |
3517 S_028C44_BIN_SIZE_Y(bin_size.height == 16) |
3518 S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) |
3519 S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) |
3520 S_028C44_CONTEXT_STATES_PER_BIN(settings.context_states_per_bin - 1) |
3521 S_028C44_PERSISTENT_STATES_PER_BIN(settings.persistent_states_per_bin - 1) |
3522 S_028C44_DISABLE_START_OF_PRIM(disable_start_of_prim) |
3523 S_028C44_FPOVS_PER_BATCH(settings.fpovs_per_batch) |
3524 S_028C44_OPTIMAL_BIN_SELECTION(1);
3525
3526 pipeline->graphics.binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0;
3527 pipeline->graphics.binning.db_dfsm_control = db_dfsm_control;
3528 } else
3529 radv_pipeline_generate_disabled_binning_state(ctx_cs, pipeline, pCreateInfo);
3530 }
3531
3532
3533 static void
3534 radv_pipeline_generate_depth_stencil_state(struct radeon_cmdbuf *ctx_cs,
3535 struct radv_pipeline *pipeline,
3536 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3537 const struct radv_graphics_pipeline_create_info *extra)
3538 {
3539 const VkPipelineDepthStencilStateCreateInfo *vkds = radv_pipeline_get_depth_stencil_state(pCreateInfo);
3540 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3541 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3542 struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
3543 struct radv_render_pass_attachment *attachment = NULL;
3544 uint32_t db_depth_control = 0, db_stencil_control = 0;
3545 uint32_t db_render_control = 0, db_render_override2 = 0;
3546 uint32_t db_render_override = 0;
3547
3548 if (subpass->depth_stencil_attachment)
3549 attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
3550
3551 bool has_depth_attachment = attachment && vk_format_is_depth(attachment->format);
3552 bool has_stencil_attachment = attachment && vk_format_is_stencil(attachment->format);
3553
3554 if (vkds && has_depth_attachment) {
3555 db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) |
3556 S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) |
3557 S_028800_ZFUNC(vkds->depthCompareOp) |
3558 S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0);
3559
3560 /* from amdvlk: For 4xAA and 8xAA need to decompress on flush for better performance */
3561 db_render_override2 |= S_028010_DECOMPRESS_Z_ON_FLUSH(attachment->samples > 2);
3562
3563 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10_3)
3564 db_render_override2 |= S_028010_CENTROID_COMPUTATION_MODE_GFX103(2);
3565 }
3566
3567 if (has_stencil_attachment && vkds && vkds->stencilTestEnable) {
3568 db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1);
3569 db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp);
3570 db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp));
3571 db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp));
3572 db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp));
3573
3574 db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp);
3575 db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp));
3576 db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp));
3577 db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp));
3578 }
3579
3580 if (attachment && extra) {
3581 db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
3582 db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
3583
3584 db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->resummarize_enable);
3585 db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->depth_compress_disable);
3586 db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->stencil_compress_disable);
3587 db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear);
3588 db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear);
3589 }
3590
3591 db_render_override |= S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
3592 S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE);
3593
3594 if (!pCreateInfo->pRasterizationState->depthClampEnable &&
3595 ps->info.ps.writes_z) {
3596 /* From VK_EXT_depth_range_unrestricted spec:
3597 *
3598 * "The behavior described in Primitive Clipping still applies.
3599 * If depth clamping is disabled the depth values are still
3600 * clipped to 0 ≤ zc ≤ wc before the viewport transform. If
3601 * depth clamping is enabled the above equation is ignored and
3602 * the depth values are instead clamped to the VkViewport
3603 * minDepth and maxDepth values, which in the case of this
3604 * extension can be outside of the 0.0 to 1.0 range."
3605 */
3606 db_render_override |= S_02800C_DISABLE_VIEWPORT_CLAMP(1);
3607 }
3608
3609 radeon_set_context_reg(ctx_cs, R_028800_DB_DEPTH_CONTROL, db_depth_control);
3610 radeon_set_context_reg(ctx_cs, R_02842C_DB_STENCIL_CONTROL, db_stencil_control);
3611
3612 radeon_set_context_reg(ctx_cs, R_028000_DB_RENDER_CONTROL, db_render_control);
3613 radeon_set_context_reg(ctx_cs, R_02800C_DB_RENDER_OVERRIDE, db_render_override);
3614 radeon_set_context_reg(ctx_cs, R_028010_DB_RENDER_OVERRIDE2, db_render_override2);
3615 }
3616
3617 static void
3618 radv_pipeline_generate_blend_state(struct radeon_cmdbuf *ctx_cs,
3619 struct radv_pipeline *pipeline,
3620 const struct radv_blend_state *blend)
3621 {
3622 radeon_set_context_reg_seq(ctx_cs, R_028780_CB_BLEND0_CONTROL, 8);
3623 radeon_emit_array(ctx_cs, blend->cb_blend_control,
3624 8);
3625 radeon_set_context_reg(ctx_cs, R_028808_CB_COLOR_CONTROL, blend->cb_color_control);
3626 radeon_set_context_reg(ctx_cs, R_028B70_DB_ALPHA_TO_MASK, blend->db_alpha_to_mask);
3627
3628 if (pipeline->device->physical_device->rad_info.has_rbplus) {
3629
3630 radeon_set_context_reg_seq(ctx_cs, R_028760_SX_MRT0_BLEND_OPT, 8);
3631 radeon_emit_array(ctx_cs, blend->sx_mrt_blend_opt, 8);
3632 }
3633
3634 radeon_set_context_reg(ctx_cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format);
3635
3636 radeon_set_context_reg(ctx_cs, R_028238_CB_TARGET_MASK, blend->cb_target_mask);
3637 radeon_set_context_reg(ctx_cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask);
3638
3639 pipeline->graphics.col_format = blend->spi_shader_col_format;
3640 pipeline->graphics.cb_target_mask = blend->cb_target_mask;
3641 }
3642
3643 static const VkConservativeRasterizationModeEXT
3644 radv_get_conservative_raster_mode(const VkPipelineRasterizationStateCreateInfo *pCreateInfo)
3645 {
3646 const VkPipelineRasterizationConservativeStateCreateInfoEXT *conservative_raster =
3647 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT);
3648
3649 if (!conservative_raster)
3650 return VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT;
3651 return conservative_raster->conservativeRasterizationMode;
3652 }
3653
3654 static void
3655 radv_pipeline_generate_raster_state(struct radeon_cmdbuf *ctx_cs,
3656 struct radv_pipeline *pipeline,
3657 const VkGraphicsPipelineCreateInfo *pCreateInfo)
3658 {
3659 const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState;
3660 const VkConservativeRasterizationModeEXT mode =
3661 radv_get_conservative_raster_mode(vkraster);
3662 uint32_t pa_sc_conservative_rast = S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1);
3663 bool depth_clip_disable = vkraster->depthClampEnable;
3664
3665 const VkPipelineRasterizationDepthClipStateCreateInfoEXT *depth_clip_state =
3666 vk_find_struct_const(vkraster->pNext, PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
3667 if (depth_clip_state) {
3668 depth_clip_disable = !depth_clip_state->depthClipEnable;
3669 }
3670
3671 radeon_set_context_reg(ctx_cs, R_028810_PA_CL_CLIP_CNTL,
3672 S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions.
3673 S_028810_ZCLIP_NEAR_DISABLE(depth_clip_disable ? 1 : 0) |
3674 S_028810_ZCLIP_FAR_DISABLE(depth_clip_disable ? 1 : 0) |
3675 S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) |
3676 S_028810_DX_LINEAR_ATTR_CLIP_ENA(1));
3677
3678 radeon_set_context_reg(ctx_cs, R_0286D4_SPI_INTERP_CONTROL_0,
3679 S_0286D4_FLAT_SHADE_ENA(1) |
3680 S_0286D4_PNT_SPRITE_ENA(1) |
3681 S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
3682 S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
3683 S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
3684 S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
3685 S_0286D4_PNT_SPRITE_TOP_1(0)); /* vulkan is top to bottom - 1.0 at bottom */
3686
3687 radeon_set_context_reg(ctx_cs, R_028BE4_PA_SU_VTX_CNTL,
3688 S_028BE4_PIX_CENTER(1) | // TODO verify
3689 S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) |
3690 S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH));
3691
3692 pipeline->graphics.pa_su_sc_mode_cntl =
3693 S_028814_FACE(vkraster->frontFace) |
3694 S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) |
3695 S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) |
3696 S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) |
3697 S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) |
3698 S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) |
3699 S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
3700 S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
3701 S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0);
3702
3703 /* Conservative rasterization. */
3704 if (mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) {
3705 struct radv_multisample_state *ms = &pipeline->graphics.ms;
3706
3707 ms->pa_sc_aa_config |= S_028BE0_AA_MASK_CENTROID_DTMN(1);
3708 ms->db_eqaa |= S_028804_ENABLE_POSTZ_OVERRASTERIZATION(1) |
3709 S_028804_OVERRASTERIZATION_AMOUNT(4);
3710
3711 pa_sc_conservative_rast = S_028C4C_PREZ_AA_MASK_ENABLE(1) |
3712 S_028C4C_POSTZ_AA_MASK_ENABLE(1) |
3713 S_028C4C_CENTROID_SAMPLE_OVERRIDE(1);
3714
3715 if (mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT) {
3716 pa_sc_conservative_rast |=
3717 S_028C4C_OVER_RAST_ENABLE(1) |
3718 S_028C4C_OVER_RAST_SAMPLE_SELECT(0) |
3719 S_028C4C_UNDER_RAST_ENABLE(0) |
3720 S_028C4C_UNDER_RAST_SAMPLE_SELECT(1) |
3721 S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(1);
3722 } else {
3723 assert(mode == VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT);
3724 pa_sc_conservative_rast |=
3725 S_028C4C_OVER_RAST_ENABLE(0) |
3726 S_028C4C_OVER_RAST_SAMPLE_SELECT(1) |
3727 S_028C4C_UNDER_RAST_ENABLE(1) |
3728 S_028C4C_UNDER_RAST_SAMPLE_SELECT(0) |
3729 S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(0);
3730 }
3731 }
3732
3733 radeon_set_context_reg(ctx_cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
3734 pa_sc_conservative_rast);
3735 }
3736
3737
3738 static void
3739 radv_pipeline_generate_multisample_state(struct radeon_cmdbuf *ctx_cs,
3740 struct radv_pipeline *pipeline)
3741 {
3742 struct radv_multisample_state *ms = &pipeline->graphics.ms;
3743
3744 radeon_set_context_reg_seq(ctx_cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2);
3745 radeon_emit(ctx_cs, ms->pa_sc_aa_mask[0]);
3746 radeon_emit(ctx_cs, ms->pa_sc_aa_mask[1]);
3747
3748 radeon_set_context_reg(ctx_cs, R_028804_DB_EQAA, ms->db_eqaa);
3749 radeon_set_context_reg(ctx_cs, R_028A48_PA_SC_MODE_CNTL_0, ms->pa_sc_mode_cntl_0);
3750 radeon_set_context_reg(ctx_cs, R_028A4C_PA_SC_MODE_CNTL_1, ms->pa_sc_mode_cntl_1);
3751 radeon_set_context_reg(ctx_cs, R_028BDC_PA_SC_LINE_CNTL, ms->pa_sc_line_cntl);
3752 radeon_set_context_reg(ctx_cs, R_028BE0_PA_SC_AA_CONFIG, ms->pa_sc_aa_config);
3753
3754 /* The exclusion bits can be set to improve rasterization efficiency
3755 * if no sample lies on the pixel boundary (-8 sample offset). It's
3756 * currently always TRUE because the driver doesn't support 16 samples.
3757 */
3758 bool exclusion = pipeline->device->physical_device->rad_info.chip_class >= GFX7;
3759 radeon_set_context_reg(ctx_cs, R_02882C_PA_SU_PRIM_FILTER_CNTL,
3760 S_02882C_XMAX_RIGHT_EXCLUSION(exclusion) |
3761 S_02882C_YMAX_BOTTOM_EXCLUSION(exclusion));
3762
3763 /* GFX9: Flush DFSM when the AA mode changes. */
3764 if (pipeline->device->dfsm_allowed) {
3765 radeon_emit(ctx_cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3766 radeon_emit(ctx_cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0));
3767 }
3768 }
3769
3770 static void
3771 radv_pipeline_generate_vgt_gs_mode(struct radeon_cmdbuf *ctx_cs,
3772 struct radv_pipeline *pipeline)
3773 {
3774 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
3775 const struct radv_shader_variant *vs =
3776 pipeline->shaders[MESA_SHADER_TESS_EVAL] ?
3777 pipeline->shaders[MESA_SHADER_TESS_EVAL] :
3778 pipeline->shaders[MESA_SHADER_VERTEX];
3779 unsigned vgt_primitiveid_en = 0;
3780 uint32_t vgt_gs_mode = 0;
3781
3782 if (radv_pipeline_has_ngg(pipeline))
3783 return;
3784
3785 if (radv_pipeline_has_gs(pipeline)) {
3786 const struct radv_shader_variant *gs =
3787 pipeline->shaders[MESA_SHADER_GEOMETRY];
3788
3789 vgt_gs_mode = ac_vgt_gs_mode(gs->info.gs.vertices_out,
3790 pipeline->device->physical_device->rad_info.chip_class);
3791 } else if (outinfo->export_prim_id || vs->info.uses_prim_id) {
3792 vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A);
3793 vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1);
3794 }
3795
3796 radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, vgt_primitiveid_en);
3797 radeon_set_context_reg(ctx_cs, R_028A40_VGT_GS_MODE, vgt_gs_mode);
3798 }
3799
3800 static void
3801 radv_pipeline_generate_hw_vs(struct radeon_cmdbuf *ctx_cs,
3802 struct radeon_cmdbuf *cs,
3803 struct radv_pipeline *pipeline,
3804 struct radv_shader_variant *shader)
3805 {
3806 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
3807
3808 radeon_set_sh_reg_seq(cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4);
3809 radeon_emit(cs, va >> 8);
3810 radeon_emit(cs, S_00B124_MEM_BASE(va >> 40));
3811 radeon_emit(cs, shader->config.rsrc1);
3812 radeon_emit(cs, shader->config.rsrc2);
3813
3814 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
3815 unsigned clip_dist_mask, cull_dist_mask, total_mask;
3816 clip_dist_mask = outinfo->clip_dist_mask;
3817 cull_dist_mask = outinfo->cull_dist_mask;
3818 total_mask = clip_dist_mask | cull_dist_mask;
3819 bool misc_vec_ena = outinfo->writes_pointsize ||
3820 outinfo->writes_layer ||
3821 outinfo->writes_viewport_index;
3822 unsigned spi_vs_out_config, nparams;
3823
3824 /* VS is required to export at least one param. */
3825 nparams = MAX2(outinfo->param_exports, 1);
3826 spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
3827
3828 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
3829 spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0);
3830 }
3831
3832 radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, spi_vs_out_config);
3833
3834 radeon_set_context_reg(ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
3835 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
3836 S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ?
3837 V_02870C_SPI_SHADER_4COMP :
3838 V_02870C_SPI_SHADER_NONE) |
3839 S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ?
3840 V_02870C_SPI_SHADER_4COMP :
3841 V_02870C_SPI_SHADER_NONE) |
3842 S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ?
3843 V_02870C_SPI_SHADER_4COMP :
3844 V_02870C_SPI_SHADER_NONE));
3845
3846 radeon_set_context_reg(ctx_cs, R_028818_PA_CL_VTE_CNTL,
3847 S_028818_VTX_W0_FMT(1) |
3848 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
3849 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
3850 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
3851
3852 radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
3853 S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
3854 S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
3855 S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
3856 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
3857 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
3858 S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
3859 S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
3860 S_02881C_BYPASS_PRIM_RATE_COMBINER_GFX103(pipeline->device->physical_device->rad_info.chip_class >= GFX10_3) |
3861 cull_dist_mask << 8 |
3862 clip_dist_mask);
3863
3864 if (pipeline->device->physical_device->rad_info.chip_class <= GFX8)
3865 radeon_set_context_reg(ctx_cs, R_028AB4_VGT_REUSE_OFF,
3866 outinfo->writes_viewport_index);
3867 }
3868
3869 static void
3870 radv_pipeline_generate_hw_es(struct radeon_cmdbuf *cs,
3871 struct radv_pipeline *pipeline,
3872 struct radv_shader_variant *shader)
3873 {
3874 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
3875
3876 radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4);
3877 radeon_emit(cs, va >> 8);
3878 radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
3879 radeon_emit(cs, shader->config.rsrc1);
3880 radeon_emit(cs, shader->config.rsrc2);
3881 }
3882
3883 static void
3884 radv_pipeline_generate_hw_ls(struct radeon_cmdbuf *cs,
3885 struct radv_pipeline *pipeline,
3886 struct radv_shader_variant *shader,
3887 const struct radv_tessellation_state *tess)
3888 {
3889 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
3890 uint32_t rsrc2 = shader->config.rsrc2;
3891
3892 radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2);
3893 radeon_emit(cs, va >> 8);
3894 radeon_emit(cs, S_00B524_MEM_BASE(va >> 40));
3895
3896 rsrc2 |= S_00B52C_LDS_SIZE(tess->lds_size);
3897 if (pipeline->device->physical_device->rad_info.chip_class == GFX7 &&
3898 pipeline->device->physical_device->rad_info.family != CHIP_HAWAII)
3899 radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, rsrc2);
3900
3901 radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
3902 radeon_emit(cs, shader->config.rsrc1);
3903 radeon_emit(cs, rsrc2);
3904 }
3905
3906 static void
3907 radv_pipeline_generate_hw_ngg(struct radeon_cmdbuf *ctx_cs,
3908 struct radeon_cmdbuf *cs,
3909 struct radv_pipeline *pipeline,
3910 struct radv_shader_variant *shader)
3911 {
3912 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
3913 gl_shader_stage es_type =
3914 radv_pipeline_has_tess(pipeline) ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
3915 struct radv_shader_variant *es =
3916 es_type == MESA_SHADER_TESS_EVAL ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX];
3917 const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info;
3918
3919 radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 2);
3920 radeon_emit(cs, va >> 8);
3921 radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
3922 radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
3923 radeon_emit(cs, shader->config.rsrc1);
3924 radeon_emit(cs, shader->config.rsrc2);
3925
3926 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
3927 unsigned clip_dist_mask, cull_dist_mask, total_mask;
3928 clip_dist_mask = outinfo->clip_dist_mask;
3929 cull_dist_mask = outinfo->cull_dist_mask;
3930 total_mask = clip_dist_mask | cull_dist_mask;
3931 bool misc_vec_ena = outinfo->writes_pointsize ||
3932 outinfo->writes_layer ||
3933 outinfo->writes_viewport_index;
3934 bool es_enable_prim_id = outinfo->export_prim_id ||
3935 (es && es->info.uses_prim_id);
3936 bool break_wave_at_eoi = false;
3937 unsigned ge_cntl;
3938 unsigned nparams;
3939
3940 if (es_type == MESA_SHADER_TESS_EVAL) {
3941 struct radv_shader_variant *gs =
3942 pipeline->shaders[MESA_SHADER_GEOMETRY];
3943
3944 if (es_enable_prim_id || (gs && gs->info.uses_prim_id))
3945 break_wave_at_eoi = true;
3946 }
3947
3948 nparams = MAX2(outinfo->param_exports, 1);
3949 radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG,
3950 S_0286C4_VS_EXPORT_COUNT(nparams - 1) |
3951 S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0));
3952
3953 radeon_set_context_reg(ctx_cs, R_028708_SPI_SHADER_IDX_FORMAT,
3954 S_028708_IDX0_EXPORT_FORMAT(V_028708_SPI_SHADER_1COMP));
3955 radeon_set_context_reg(ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
3956 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
3957 S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ?
3958 V_02870C_SPI_SHADER_4COMP :
3959 V_02870C_SPI_SHADER_NONE) |
3960 S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ?
3961 V_02870C_SPI_SHADER_4COMP :
3962 V_02870C_SPI_SHADER_NONE) |
3963 S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ?
3964 V_02870C_SPI_SHADER_4COMP :
3965 V_02870C_SPI_SHADER_NONE));
3966
3967 radeon_set_context_reg(ctx_cs, R_028818_PA_CL_VTE_CNTL,
3968 S_028818_VTX_W0_FMT(1) |
3969 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
3970 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
3971 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
3972 radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
3973 S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
3974 S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
3975 S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
3976 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
3977 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
3978 S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
3979 S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
3980 S_02881C_BYPASS_PRIM_RATE_COMBINER_GFX103(pipeline->device->physical_device->rad_info.chip_class >= GFX10_3) |
3981 cull_dist_mask << 8 |
3982 clip_dist_mask);
3983
3984 radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN,
3985 S_028A84_PRIMITIVEID_EN(es_enable_prim_id) |
3986 S_028A84_NGG_DISABLE_PROVOK_REUSE(outinfo->export_prim_id));
3987
3988 radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
3989 ngg_state->vgt_esgs_ring_itemsize);
3990
3991 /* NGG specific registers. */
3992 struct radv_shader_variant *gs = pipeline->shaders[MESA_SHADER_GEOMETRY];
3993 uint32_t gs_num_invocations = gs ? gs->info.gs.invocations : 1;
3994
3995 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
3996 S_028A44_ES_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) |
3997 S_028A44_GS_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) |
3998 S_028A44_GS_INST_PRIMS_IN_SUBGRP(ngg_state->max_gsprims * gs_num_invocations));
3999 radeon_set_context_reg(ctx_cs, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
4000 S_0287FC_MAX_VERTS_PER_SUBGROUP(ngg_state->max_out_verts));
4001 radeon_set_context_reg(ctx_cs, R_028B4C_GE_NGG_SUBGRP_CNTL,
4002 S_028B4C_PRIM_AMP_FACTOR(ngg_state->prim_amp_factor) |
4003 S_028B4C_THDS_PER_SUBGRP(0)); /* for fast launch */
4004 radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
4005 S_028B90_CNT(gs_num_invocations) |
4006 S_028B90_ENABLE(gs_num_invocations > 1) |
4007 S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(ngg_state->max_vert_out_per_gs_instance));
4008
4009 /* User edge flags are set by the pos exports. If user edge flags are
4010 * not used, we must use hw-generated edge flags and pass them via
4011 * the prim export to prevent drawing lines on internal edges of
4012 * decomposed primitives (such as quads) with polygon mode = lines.
4013 *
4014 * TODO: We should combine hw-generated edge flags with user edge
4015 * flags in the shader.
4016 */
4017 radeon_set_context_reg(ctx_cs, R_028838_PA_CL_NGG_CNTL,
4018 S_028838_INDEX_BUF_EDGE_FLAG_ENA(!radv_pipeline_has_tess(pipeline) &&
4019 !radv_pipeline_has_gs(pipeline)) |
4020 /* Reuse for NGG. */
4021 S_028838_VERTEX_REUSE_DEPTH_GFX103(pipeline->device->physical_device->rad_info.chip_class >= GFX10_3 ? 30 : 0));
4022
4023 ge_cntl = S_03096C_PRIM_GRP_SIZE(ngg_state->max_gsprims) |
4024 S_03096C_VERT_GRP_SIZE(256) | /* 256 = disable vertex grouping */
4025 S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
4026
4027 /* Bug workaround for a possible hang with non-tessellation cases.
4028 * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
4029 *
4030 * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
4031 */
4032 if (pipeline->device->physical_device->rad_info.chip_class == GFX10 &&
4033 !radv_pipeline_has_tess(pipeline) &&
4034 ngg_state->hw_max_esverts != 256) {
4035 ge_cntl &= C_03096C_VERT_GRP_SIZE;
4036
4037 if (ngg_state->hw_max_esverts > 5) {
4038 ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5);
4039 }
4040 }
4041
4042 radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, ge_cntl);
4043 }
4044
4045 static void
4046 radv_pipeline_generate_hw_hs(struct radeon_cmdbuf *cs,
4047 struct radv_pipeline *pipeline,
4048 struct radv_shader_variant *shader,
4049 const struct radv_tessellation_state *tess)
4050 {
4051 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
4052
4053 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) {
4054 unsigned hs_rsrc2 = shader->config.rsrc2;
4055
4056 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4057 hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(tess->lds_size);
4058 } else {
4059 hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(tess->lds_size);
4060 }
4061
4062 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4063 radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2);
4064 radeon_emit(cs, va >> 8);
4065 radeon_emit(cs, S_00B524_MEM_BASE(va >> 40));
4066 } else {
4067 radeon_set_sh_reg_seq(cs, R_00B410_SPI_SHADER_PGM_LO_LS, 2);
4068 radeon_emit(cs, va >> 8);
4069 radeon_emit(cs, S_00B414_MEM_BASE(va >> 40));
4070 }
4071
4072 radeon_set_sh_reg_seq(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, 2);
4073 radeon_emit(cs, shader->config.rsrc1);
4074 radeon_emit(cs, hs_rsrc2);
4075 } else {
4076 radeon_set_sh_reg_seq(cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4);
4077 radeon_emit(cs, va >> 8);
4078 radeon_emit(cs, S_00B424_MEM_BASE(va >> 40));
4079 radeon_emit(cs, shader->config.rsrc1);
4080 radeon_emit(cs, shader->config.rsrc2);
4081 }
4082 }
4083
4084 static void
4085 radv_pipeline_generate_vertex_shader(struct radeon_cmdbuf *ctx_cs,
4086 struct radeon_cmdbuf *cs,
4087 struct radv_pipeline *pipeline,
4088 const struct radv_tessellation_state *tess)
4089 {
4090 struct radv_shader_variant *vs;
4091
4092 /* Skip shaders merged into HS/GS */
4093 vs = pipeline->shaders[MESA_SHADER_VERTEX];
4094 if (!vs)
4095 return;
4096
4097 if (vs->info.vs.as_ls)
4098 radv_pipeline_generate_hw_ls(cs, pipeline, vs, tess);
4099 else if (vs->info.vs.as_es)
4100 radv_pipeline_generate_hw_es(cs, pipeline, vs);
4101 else if (vs->info.is_ngg)
4102 radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, vs);
4103 else
4104 radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, vs);
4105 }
4106
4107 static void
4108 radv_pipeline_generate_tess_shaders(struct radeon_cmdbuf *ctx_cs,
4109 struct radeon_cmdbuf *cs,
4110 struct radv_pipeline *pipeline,
4111 const struct radv_tessellation_state *tess)
4112 {
4113 if (!radv_pipeline_has_tess(pipeline))
4114 return;
4115
4116 struct radv_shader_variant *tes, *tcs;
4117
4118 tcs = pipeline->shaders[MESA_SHADER_TESS_CTRL];
4119 tes = pipeline->shaders[MESA_SHADER_TESS_EVAL];
4120
4121 if (tes) {
4122 if (tes->info.is_ngg) {
4123 radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, tes);
4124 } else if (tes->info.tes.as_es)
4125 radv_pipeline_generate_hw_es(cs, pipeline, tes);
4126 else
4127 radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, tes);
4128 }
4129
4130 radv_pipeline_generate_hw_hs(cs, pipeline, tcs, tess);
4131
4132 radeon_set_context_reg(ctx_cs, R_028B6C_VGT_TF_PARAM,
4133 tess->tf_param);
4134
4135 if (pipeline->device->physical_device->rad_info.chip_class >= GFX7)
4136 radeon_set_context_reg_idx(ctx_cs, R_028B58_VGT_LS_HS_CONFIG, 2,
4137 tess->ls_hs_config);
4138 else
4139 radeon_set_context_reg(ctx_cs, R_028B58_VGT_LS_HS_CONFIG,
4140 tess->ls_hs_config);
4141
4142 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10 &&
4143 !radv_pipeline_has_gs(pipeline) && !radv_pipeline_has_ngg(pipeline)) {
4144 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
4145 S_028A44_ES_VERTS_PER_SUBGRP(250) |
4146 S_028A44_GS_PRIMS_PER_SUBGRP(126) |
4147 S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
4148 }
4149 }
4150
4151 static void
4152 radv_pipeline_generate_hw_gs(struct radeon_cmdbuf *ctx_cs,
4153 struct radeon_cmdbuf *cs,
4154 struct radv_pipeline *pipeline,
4155 struct radv_shader_variant *gs)
4156 {
4157 const struct gfx9_gs_info *gs_state = &gs->info.gs_ring_info;
4158 unsigned gs_max_out_vertices;
4159 uint8_t *num_components;
4160 uint8_t max_stream;
4161 unsigned offset;
4162 uint64_t va;
4163
4164 gs_max_out_vertices = gs->info.gs.vertices_out;
4165 max_stream = gs->info.gs.max_stream;
4166 num_components = gs->info.gs.num_stream_output_components;
4167
4168 offset = num_components[0] * gs_max_out_vertices;
4169
4170 radeon_set_context_reg_seq(ctx_cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3);
4171 radeon_emit(ctx_cs, offset);
4172 if (max_stream >= 1)
4173 offset += num_components[1] * gs_max_out_vertices;
4174 radeon_emit(ctx_cs, offset);
4175 if (max_stream >= 2)
4176 offset += num_components[2] * gs_max_out_vertices;
4177 radeon_emit(ctx_cs, offset);
4178 if (max_stream >= 3)
4179 offset += num_components[3] * gs_max_out_vertices;
4180 radeon_set_context_reg(ctx_cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
4181
4182 radeon_set_context_reg_seq(ctx_cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4);
4183 radeon_emit(ctx_cs, num_components[0]);
4184 radeon_emit(ctx_cs, (max_stream >= 1) ? num_components[1] : 0);
4185 radeon_emit(ctx_cs, (max_stream >= 2) ? num_components[2] : 0);
4186 radeon_emit(ctx_cs, (max_stream >= 3) ? num_components[3] : 0);
4187
4188 uint32_t gs_num_invocations = gs->info.gs.invocations;
4189 radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
4190 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
4191 S_028B90_ENABLE(gs_num_invocations > 0));
4192
4193 radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
4194 gs_state->vgt_esgs_ring_itemsize);
4195
4196 va = radv_buffer_get_va(gs->bo) + gs->bo_offset;
4197
4198 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) {
4199 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4200 radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 2);
4201 radeon_emit(cs, va >> 8);
4202 radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
4203 } else {
4204 radeon_set_sh_reg_seq(cs, R_00B210_SPI_SHADER_PGM_LO_ES, 2);
4205 radeon_emit(cs, va >> 8);
4206 radeon_emit(cs, S_00B214_MEM_BASE(va >> 40));
4207 }
4208
4209 radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
4210 radeon_emit(cs, gs->config.rsrc1);
4211 radeon_emit(cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size));
4212
4213 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, gs_state->vgt_gs_onchip_cntl);
4214 radeon_set_context_reg(ctx_cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, gs_state->vgt_gs_max_prims_per_subgroup);
4215 } else {
4216 radeon_set_sh_reg_seq(cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4);
4217 radeon_emit(cs, va >> 8);
4218 radeon_emit(cs, S_00B224_MEM_BASE(va >> 40));
4219 radeon_emit(cs, gs->config.rsrc1);
4220 radeon_emit(cs, gs->config.rsrc2);
4221 }
4222
4223 radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, pipeline->gs_copy_shader);
4224 }
4225
4226 static void
4227 radv_pipeline_generate_geometry_shader(struct radeon_cmdbuf *ctx_cs,
4228 struct radeon_cmdbuf *cs,
4229 struct radv_pipeline *pipeline)
4230 {
4231 struct radv_shader_variant *gs;
4232
4233 gs = pipeline->shaders[MESA_SHADER_GEOMETRY];
4234 if (!gs)
4235 return;
4236
4237 if (gs->info.is_ngg)
4238 radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, gs);
4239 else
4240 radv_pipeline_generate_hw_gs(ctx_cs, cs, pipeline, gs);
4241
4242 radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT,
4243 gs->info.gs.vertices_out);
4244 }
4245
4246 static uint32_t offset_to_ps_input(uint32_t offset, bool flat_shade,
4247 bool explicit, bool float16)
4248 {
4249 uint32_t ps_input_cntl;
4250 if (offset <= AC_EXP_PARAM_OFFSET_31) {
4251 ps_input_cntl = S_028644_OFFSET(offset);
4252 if (flat_shade || explicit)
4253 ps_input_cntl |= S_028644_FLAT_SHADE(1);
4254 if (explicit) {
4255 /* Force parameter cache to be read in passthrough
4256 * mode.
4257 */
4258 ps_input_cntl |= S_028644_OFFSET(1 << 5);
4259 }
4260 if (float16) {
4261 ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
4262 S_028644_ATTR0_VALID(1);
4263 }
4264 } else {
4265 /* The input is a DEFAULT_VAL constant. */
4266 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
4267 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
4268 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
4269 ps_input_cntl = S_028644_OFFSET(0x20) |
4270 S_028644_DEFAULT_VAL(offset);
4271 }
4272 return ps_input_cntl;
4273 }
4274
4275 static void
4276 radv_pipeline_generate_ps_inputs(struct radeon_cmdbuf *ctx_cs,
4277 struct radv_pipeline *pipeline)
4278 {
4279 struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
4280 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
4281 uint32_t ps_input_cntl[32];
4282
4283 unsigned ps_offset = 0;
4284
4285 if (ps->info.ps.prim_id_input) {
4286 unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID];
4287 if (vs_offset != AC_EXP_PARAM_UNDEFINED) {
4288 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false, false);
4289 ++ps_offset;
4290 }
4291 }
4292
4293 if (ps->info.ps.layer_input ||
4294 ps->info.needs_multiview_view_index) {
4295 unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_LAYER];
4296 if (vs_offset != AC_EXP_PARAM_UNDEFINED)
4297 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false, false);
4298 else
4299 ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true, false, false);
4300 ++ps_offset;
4301 }
4302
4303 if (ps->info.ps.viewport_index_input) {
4304 unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VIEWPORT];
4305 if (vs_offset != AC_EXP_PARAM_UNDEFINED)
4306 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false, false);
4307 else
4308 ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true, false, false);
4309 ++ps_offset;
4310 }
4311
4312 if (ps->info.ps.has_pcoord) {
4313 unsigned val;
4314 val = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
4315 ps_input_cntl[ps_offset] = val;
4316 ps_offset++;
4317 }
4318
4319 if (ps->info.ps.num_input_clips_culls) {
4320 unsigned vs_offset;
4321
4322 vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0];
4323 if (vs_offset != AC_EXP_PARAM_UNDEFINED) {
4324 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, false, false, false);
4325 ++ps_offset;
4326 }
4327
4328 vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1];
4329 if (vs_offset != AC_EXP_PARAM_UNDEFINED &&
4330 ps->info.ps.num_input_clips_culls > 4) {
4331 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, false, false, false);
4332 ++ps_offset;
4333 }
4334 }
4335
4336 for (unsigned i = 0; i < 32 && (1u << i) <= ps->info.ps.input_mask; ++i) {
4337 unsigned vs_offset;
4338 bool flat_shade;
4339 bool explicit;
4340 bool float16;
4341 if (!(ps->info.ps.input_mask & (1u << i)))
4342 continue;
4343
4344 vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i];
4345 if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
4346 ps_input_cntl[ps_offset] = S_028644_OFFSET(0x20);
4347 ++ps_offset;
4348 continue;
4349 }
4350
4351 flat_shade = !!(ps->info.ps.flat_shaded_mask & (1u << ps_offset));
4352 explicit = !!(ps->info.ps.explicit_shaded_mask & (1u << ps_offset));
4353 float16 = !!(ps->info.ps.float16_shaded_mask & (1u << ps_offset));
4354
4355 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, flat_shade, explicit, float16);
4356 ++ps_offset;
4357 }
4358
4359 if (ps_offset) {
4360 radeon_set_context_reg_seq(ctx_cs, R_028644_SPI_PS_INPUT_CNTL_0, ps_offset);
4361 for (unsigned i = 0; i < ps_offset; i++) {
4362 radeon_emit(ctx_cs, ps_input_cntl[i]);
4363 }
4364 }
4365 }
4366
4367 static uint32_t
4368 radv_compute_db_shader_control(const struct radv_device *device,
4369 const struct radv_pipeline *pipeline,
4370 const struct radv_shader_variant *ps)
4371 {
4372 unsigned conservative_z_export = V_02880C_EXPORT_ANY_Z;
4373 unsigned z_order;
4374 if (ps->info.ps.early_fragment_test || !ps->info.ps.writes_memory)
4375 z_order = V_02880C_EARLY_Z_THEN_LATE_Z;
4376 else
4377 z_order = V_02880C_LATE_Z;
4378
4379 if (ps->info.ps.depth_layout == FRAG_DEPTH_LAYOUT_GREATER)
4380 conservative_z_export = V_02880C_EXPORT_GREATER_THAN_Z;
4381 else if (ps->info.ps.depth_layout == FRAG_DEPTH_LAYOUT_LESS)
4382 conservative_z_export = V_02880C_EXPORT_LESS_THAN_Z;
4383
4384 bool disable_rbplus = device->physical_device->rad_info.has_rbplus &&
4385 !device->physical_device->rad_info.rbplus_allowed;
4386
4387 /* It shouldn't be needed to export gl_SampleMask when MSAA is disabled
4388 * but this appears to break Project Cars (DXVK). See
4389 * https://bugs.freedesktop.org/show_bug.cgi?id=109401
4390 */
4391 bool mask_export_enable = ps->info.ps.writes_sample_mask;
4392
4393 return S_02880C_Z_EXPORT_ENABLE(ps->info.ps.writes_z) |
4394 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.ps.writes_stencil) |
4395 S_02880C_KILL_ENABLE(!!ps->info.ps.can_discard) |
4396 S_02880C_MASK_EXPORT_ENABLE(mask_export_enable) |
4397 S_02880C_CONSERVATIVE_Z_EXPORT(conservative_z_export) |
4398 S_02880C_Z_ORDER(z_order) |
4399 S_02880C_DEPTH_BEFORE_SHADER(ps->info.ps.early_fragment_test) |
4400 S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(ps->info.ps.post_depth_coverage) |
4401 S_02880C_EXEC_ON_HIER_FAIL(ps->info.ps.writes_memory) |
4402 S_02880C_EXEC_ON_NOOP(ps->info.ps.writes_memory) |
4403 S_02880C_DUAL_QUAD_DISABLE(disable_rbplus);
4404 }
4405
4406 static void
4407 radv_pipeline_generate_fragment_shader(struct radeon_cmdbuf *ctx_cs,
4408 struct radeon_cmdbuf *cs,
4409 struct radv_pipeline *pipeline)
4410 {
4411 struct radv_shader_variant *ps;
4412 uint64_t va;
4413 assert (pipeline->shaders[MESA_SHADER_FRAGMENT]);
4414
4415 ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
4416 va = radv_buffer_get_va(ps->bo) + ps->bo_offset;
4417
4418 radeon_set_sh_reg_seq(cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4);
4419 radeon_emit(cs, va >> 8);
4420 radeon_emit(cs, S_00B024_MEM_BASE(va >> 40));
4421 radeon_emit(cs, ps->config.rsrc1);
4422 radeon_emit(cs, ps->config.rsrc2);
4423
4424 radeon_set_context_reg(ctx_cs, R_02880C_DB_SHADER_CONTROL,
4425 radv_compute_db_shader_control(pipeline->device,
4426 pipeline, ps));
4427
4428 radeon_set_context_reg(ctx_cs, R_0286CC_SPI_PS_INPUT_ENA,
4429 ps->config.spi_ps_input_ena);
4430
4431 radeon_set_context_reg(ctx_cs, R_0286D0_SPI_PS_INPUT_ADDR,
4432 ps->config.spi_ps_input_addr);
4433
4434 radeon_set_context_reg(ctx_cs, R_0286D8_SPI_PS_IN_CONTROL,
4435 S_0286D8_NUM_INTERP(ps->info.ps.num_interp) |
4436 S_0286D8_PS_W32_EN(ps->info.wave_size == 32));
4437
4438 radeon_set_context_reg(ctx_cs, R_0286E0_SPI_BARYC_CNTL, pipeline->graphics.spi_baryc_cntl);
4439
4440 radeon_set_context_reg(ctx_cs, R_028710_SPI_SHADER_Z_FORMAT,
4441 ac_get_spi_shader_z_format(ps->info.ps.writes_z,
4442 ps->info.ps.writes_stencil,
4443 ps->info.ps.writes_sample_mask));
4444
4445 if (pipeline->device->dfsm_allowed) {
4446 /* optimise this? */
4447 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
4448 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0));
4449 }
4450 }
4451
4452 static void
4453 radv_pipeline_generate_vgt_vertex_reuse(struct radeon_cmdbuf *ctx_cs,
4454 struct radv_pipeline *pipeline)
4455 {
4456 if (pipeline->device->physical_device->rad_info.family < CHIP_POLARIS10 ||
4457 pipeline->device->physical_device->rad_info.chip_class >= GFX10)
4458 return;
4459
4460 unsigned vtx_reuse_depth = 30;
4461 if (radv_pipeline_has_tess(pipeline) &&
4462 radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) {
4463 vtx_reuse_depth = 14;
4464 }
4465 radeon_set_context_reg(ctx_cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
4466 S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth));
4467 }
4468
4469 static uint32_t
4470 radv_compute_vgt_shader_stages_en(const struct radv_pipeline *pipeline)
4471 {
4472 uint32_t stages = 0;
4473 if (radv_pipeline_has_tess(pipeline)) {
4474 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
4475 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
4476
4477 if (radv_pipeline_has_gs(pipeline))
4478 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
4479 S_028B54_GS_EN(1);
4480 else if (radv_pipeline_has_ngg(pipeline))
4481 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
4482 else
4483 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
4484 } else if (radv_pipeline_has_gs(pipeline)) {
4485 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
4486 S_028B54_GS_EN(1);
4487 } else if (radv_pipeline_has_ngg(pipeline)) {
4488 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
4489 }
4490
4491 if (radv_pipeline_has_ngg(pipeline)) {
4492 stages |= S_028B54_PRIMGEN_EN(1);
4493 if (pipeline->streamout_shader)
4494 stages |= S_028B54_NGG_WAVE_ID_EN(1);
4495 if (radv_pipeline_has_ngg_passthrough(pipeline))
4496 stages |= S_028B54_PRIMGEN_PASSTHRU_EN(1);
4497 } else if (radv_pipeline_has_gs(pipeline)) {
4498 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
4499 }
4500
4501 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9)
4502 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
4503
4504 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4505 uint8_t hs_size = 64, gs_size = 64, vs_size = 64;
4506
4507 if (radv_pipeline_has_tess(pipeline))
4508 hs_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.wave_size;
4509
4510 if (pipeline->shaders[MESA_SHADER_GEOMETRY]) {
4511 vs_size = gs_size = pipeline->shaders[MESA_SHADER_GEOMETRY]->info.wave_size;
4512 if (pipeline->gs_copy_shader)
4513 vs_size = pipeline->gs_copy_shader->info.wave_size;
4514 } else if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
4515 vs_size = pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.wave_size;
4516 else if (pipeline->shaders[MESA_SHADER_VERTEX])
4517 vs_size = pipeline->shaders[MESA_SHADER_VERTEX]->info.wave_size;
4518
4519 if (radv_pipeline_has_ngg(pipeline))
4520 gs_size = vs_size;
4521
4522 /* legacy GS only supports Wave64 */
4523 stages |= S_028B54_HS_W32_EN(hs_size == 32 ? 1 : 0) |
4524 S_028B54_GS_W32_EN(gs_size == 32 ? 1 : 0) |
4525 S_028B54_VS_W32_EN(vs_size == 32 ? 1 : 0);
4526 }
4527
4528 return stages;
4529 }
4530
4531 static uint32_t
4532 radv_compute_cliprect_rule(const VkGraphicsPipelineCreateInfo *pCreateInfo)
4533 {
4534 const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info =
4535 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT);
4536
4537 if (!discard_rectangle_info)
4538 return 0xffff;
4539
4540 unsigned mask = 0;
4541
4542 for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) {
4543 /* Interpret i as a bitmask, and then set the bit in the mask if
4544 * that combination of rectangles in which the pixel is contained
4545 * should pass the cliprect test. */
4546 unsigned relevant_subset = i & ((1u << discard_rectangle_info->discardRectangleCount) - 1);
4547
4548 if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT &&
4549 !relevant_subset)
4550 continue;
4551
4552 if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT &&
4553 relevant_subset)
4554 continue;
4555
4556 mask |= 1u << i;
4557 }
4558
4559 return mask;
4560 }
4561
4562 static void
4563 gfx10_pipeline_generate_ge_cntl(struct radeon_cmdbuf *ctx_cs,
4564 struct radv_pipeline *pipeline,
4565 const struct radv_tessellation_state *tess)
4566 {
4567 bool break_wave_at_eoi = false;
4568 unsigned primgroup_size;
4569 unsigned vertgroup_size = 256; /* 256 = disable vertex grouping */
4570
4571 if (radv_pipeline_has_tess(pipeline)) {
4572 primgroup_size = tess->num_patches; /* must be a multiple of NUM_PATCHES */
4573 } else if (radv_pipeline_has_gs(pipeline)) {
4574 const struct gfx9_gs_info *gs_state =
4575 &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs_ring_info;
4576 unsigned vgt_gs_onchip_cntl = gs_state->vgt_gs_onchip_cntl;
4577 primgroup_size = G_028A44_GS_PRIMS_PER_SUBGRP(vgt_gs_onchip_cntl);
4578 } else {
4579 primgroup_size = 128; /* recommended without a GS and tess */
4580 }
4581
4582 if (radv_pipeline_has_tess(pipeline)) {
4583 if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
4584 radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
4585 break_wave_at_eoi = true;
4586 }
4587
4588 radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL,
4589 S_03096C_PRIM_GRP_SIZE(primgroup_size) |
4590 S_03096C_VERT_GRP_SIZE(vertgroup_size) |
4591 S_03096C_PACKET_TO_ONE_PA(0) /* line stipple */ |
4592 S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi));
4593 }
4594
4595 static void
4596 radv_pipeline_generate_pm4(struct radv_pipeline *pipeline,
4597 const VkGraphicsPipelineCreateInfo *pCreateInfo,
4598 const struct radv_graphics_pipeline_create_info *extra,
4599 const struct radv_blend_state *blend,
4600 const struct radv_tessellation_state *tess,
4601 unsigned gs_out)
4602 {
4603 struct radeon_cmdbuf *ctx_cs = &pipeline->ctx_cs;
4604 struct radeon_cmdbuf *cs = &pipeline->cs;
4605
4606 cs->max_dw = 64;
4607 ctx_cs->max_dw = 256;
4608 cs->buf = malloc(4 * (cs->max_dw + ctx_cs->max_dw));
4609 ctx_cs->buf = cs->buf + cs->max_dw;
4610
4611 radv_pipeline_generate_depth_stencil_state(ctx_cs, pipeline, pCreateInfo, extra);
4612 radv_pipeline_generate_blend_state(ctx_cs, pipeline, blend);
4613 radv_pipeline_generate_raster_state(ctx_cs, pipeline, pCreateInfo);
4614 radv_pipeline_generate_multisample_state(ctx_cs, pipeline);
4615 radv_pipeline_generate_vgt_gs_mode(ctx_cs, pipeline);
4616 radv_pipeline_generate_vertex_shader(ctx_cs, cs, pipeline, tess);
4617 radv_pipeline_generate_tess_shaders(ctx_cs, cs, pipeline, tess);
4618 radv_pipeline_generate_geometry_shader(ctx_cs, cs, pipeline);
4619 radv_pipeline_generate_fragment_shader(ctx_cs, cs, pipeline);
4620 radv_pipeline_generate_ps_inputs(ctx_cs, pipeline);
4621 radv_pipeline_generate_vgt_vertex_reuse(ctx_cs, pipeline);
4622 radv_pipeline_generate_binning_state(ctx_cs, pipeline, pCreateInfo, blend);
4623
4624 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10 && !radv_pipeline_has_ngg(pipeline))
4625 gfx10_pipeline_generate_ge_cntl(ctx_cs, pipeline, tess);
4626
4627 radeon_set_context_reg(ctx_cs, R_028B54_VGT_SHADER_STAGES_EN, radv_compute_vgt_shader_stages_en(pipeline));
4628 radeon_set_context_reg(ctx_cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out);
4629
4630 radeon_set_context_reg(ctx_cs, R_02820C_PA_SC_CLIPRECT_RULE, radv_compute_cliprect_rule(pCreateInfo));
4631
4632 pipeline->ctx_cs_hash = _mesa_hash_data(ctx_cs->buf, ctx_cs->cdw * 4);
4633
4634 assert(ctx_cs->cdw <= ctx_cs->max_dw);
4635 assert(cs->cdw <= cs->max_dw);
4636 }
4637
4638 static struct radv_ia_multi_vgt_param_helpers
4639 radv_compute_ia_multi_vgt_param_helpers(struct radv_pipeline *pipeline,
4640 const struct radv_tessellation_state *tess)
4641 {
4642 struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0};
4643 const struct radv_device *device = pipeline->device;
4644
4645 if (radv_pipeline_has_tess(pipeline))
4646 ia_multi_vgt_param.primgroup_size = tess->num_patches;
4647 else if (radv_pipeline_has_gs(pipeline))
4648 ia_multi_vgt_param.primgroup_size = 64;
4649 else
4650 ia_multi_vgt_param.primgroup_size = 128; /* recommended without a GS */
4651
4652 /* GS requirement. */
4653 ia_multi_vgt_param.partial_es_wave = false;
4654 if (radv_pipeline_has_gs(pipeline) && device->physical_device->rad_info.chip_class <= GFX8)
4655 if (SI_GS_PER_ES / ia_multi_vgt_param.primgroup_size >= pipeline->device->gs_table_depth - 3)
4656 ia_multi_vgt_param.partial_es_wave = true;
4657
4658 ia_multi_vgt_param.ia_switch_on_eoi = false;
4659 if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input)
4660 ia_multi_vgt_param.ia_switch_on_eoi = true;
4661 if (radv_pipeline_has_gs(pipeline) &&
4662 pipeline->shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)
4663 ia_multi_vgt_param.ia_switch_on_eoi = true;
4664 if (radv_pipeline_has_tess(pipeline)) {
4665 /* SWITCH_ON_EOI must be set if PrimID is used. */
4666 if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
4667 radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
4668 ia_multi_vgt_param.ia_switch_on_eoi = true;
4669 }
4670
4671 ia_multi_vgt_param.partial_vs_wave = false;
4672 if (radv_pipeline_has_tess(pipeline)) {
4673 /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
4674 if ((device->physical_device->rad_info.family == CHIP_TAHITI ||
4675 device->physical_device->rad_info.family == CHIP_PITCAIRN ||
4676 device->physical_device->rad_info.family == CHIP_BONAIRE) &&
4677 radv_pipeline_has_gs(pipeline))
4678 ia_multi_vgt_param.partial_vs_wave = true;
4679 /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
4680 if (device->physical_device->rad_info.has_distributed_tess) {
4681 if (radv_pipeline_has_gs(pipeline)) {
4682 if (device->physical_device->rad_info.chip_class <= GFX8)
4683 ia_multi_vgt_param.partial_es_wave = true;
4684 } else {
4685 ia_multi_vgt_param.partial_vs_wave = true;
4686 }
4687 }
4688 }
4689
4690 if (radv_pipeline_has_gs(pipeline)) {
4691 /* On these chips there is the possibility of a hang if the
4692 * pipeline uses a GS and partial_vs_wave is not set.
4693 *
4694 * This mostly does not hit 4-SE chips, as those typically set
4695 * ia_switch_on_eoi and then partial_vs_wave is set for pipelines
4696 * with GS due to another workaround.
4697 *
4698 * Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242
4699 */
4700 if (device->physical_device->rad_info.family == CHIP_TONGA ||
4701 device->physical_device->rad_info.family == CHIP_FIJI ||
4702 device->physical_device->rad_info.family == CHIP_POLARIS10 ||
4703 device->physical_device->rad_info.family == CHIP_POLARIS11 ||
4704 device->physical_device->rad_info.family == CHIP_POLARIS12 ||
4705 device->physical_device->rad_info.family == CHIP_VEGAM) {
4706 ia_multi_vgt_param.partial_vs_wave = true;
4707 }
4708 }
4709
4710 ia_multi_vgt_param.base =
4711 S_028AA8_PRIMGROUP_SIZE(ia_multi_vgt_param.primgroup_size - 1) |
4712 /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
4713 S_028AA8_MAX_PRIMGRP_IN_WAVE(device->physical_device->rad_info.chip_class == GFX8 ? 2 : 0) |
4714 S_030960_EN_INST_OPT_BASIC(device->physical_device->rad_info.chip_class >= GFX9) |
4715 S_030960_EN_INST_OPT_ADV(device->physical_device->rad_info.chip_class >= GFX9);
4716
4717 return ia_multi_vgt_param;
4718 }
4719
4720
4721 static void
4722 radv_compute_vertex_input_state(struct radv_pipeline *pipeline,
4723 const VkGraphicsPipelineCreateInfo *pCreateInfo)
4724 {
4725 const VkPipelineVertexInputStateCreateInfo *vi_info =
4726 pCreateInfo->pVertexInputState;
4727 struct radv_vertex_elements_info *velems = &pipeline->vertex_elements;
4728
4729 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
4730 const VkVertexInputAttributeDescription *desc =
4731 &vi_info->pVertexAttributeDescriptions[i];
4732 unsigned loc = desc->location;
4733 const struct vk_format_description *format_desc;
4734
4735 format_desc = vk_format_description(desc->format);
4736
4737 velems->format_size[loc] = format_desc->block.bits / 8;
4738 }
4739
4740 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
4741 const VkVertexInputBindingDescription *desc =
4742 &vi_info->pVertexBindingDescriptions[i];
4743
4744 pipeline->binding_stride[desc->binding] = desc->stride;
4745 pipeline->num_vertex_bindings =
4746 MAX2(pipeline->num_vertex_bindings, desc->binding + 1);
4747 }
4748 }
4749
4750 static struct radv_shader_variant *
4751 radv_pipeline_get_streamout_shader(struct radv_pipeline *pipeline)
4752 {
4753 int i;
4754
4755 for (i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4756 struct radv_shader_variant *shader =
4757 radv_get_shader(pipeline, i);
4758
4759 if (shader && shader->info.so.num_outputs > 0)
4760 return shader;
4761 }
4762
4763 return NULL;
4764 }
4765
4766 static VkResult
4767 radv_pipeline_init(struct radv_pipeline *pipeline,
4768 struct radv_device *device,
4769 struct radv_pipeline_cache *cache,
4770 const VkGraphicsPipelineCreateInfo *pCreateInfo,
4771 const struct radv_graphics_pipeline_create_info *extra)
4772 {
4773 VkResult result;
4774 bool has_view_index = false;
4775
4776 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
4777 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
4778 if (subpass->view_mask)
4779 has_view_index = true;
4780
4781 pipeline->device = device;
4782 pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
4783 assert(pipeline->layout);
4784
4785 struct radv_blend_state blend = radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra);
4786
4787 const VkPipelineCreationFeedbackCreateInfoEXT *creation_feedback =
4788 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
4789 radv_init_feedback(creation_feedback);
4790
4791 VkPipelineCreationFeedbackEXT *pipeline_feedback = creation_feedback ? creation_feedback->pPipelineCreationFeedback : NULL;
4792
4793 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
4794 VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 };
4795 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
4796 gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
4797 pStages[stage] = &pCreateInfo->pStages[i];
4798 if(creation_feedback)
4799 stage_feedbacks[stage] = &creation_feedback->pPipelineStageCreationFeedbacks[i];
4800 }
4801
4802 struct radv_pipeline_key key = radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, &blend, has_view_index);
4803
4804 result = radv_create_shaders(pipeline, device, cache, &key, pStages,
4805 pCreateInfo->flags, pipeline_feedback,
4806 stage_feedbacks);
4807 if (result != VK_SUCCESS)
4808 return result;
4809
4810 pipeline->graphics.spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
4811 radv_pipeline_init_multisample_state(pipeline, &blend, pCreateInfo);
4812 uint32_t gs_out;
4813
4814 pipeline->graphics.can_use_guardband = radv_prim_can_use_guardband(pCreateInfo->pInputAssemblyState->topology);
4815
4816 if (radv_pipeline_has_gs(pipeline)) {
4817 gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim);
4818 pipeline->graphics.can_use_guardband = gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP;
4819 } else if (radv_pipeline_has_tess(pipeline)) {
4820 if (pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode)
4821 gs_out = V_028A6C_OUTPRIM_TYPE_POINTLIST;
4822 else
4823 gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.primitive_mode);
4824 pipeline->graphics.can_use_guardband = gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP;
4825 } else {
4826 gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology);
4827 }
4828 if (extra && extra->use_rectlist) {
4829 gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP;
4830 pipeline->graphics.can_use_guardband = true;
4831 if (radv_pipeline_has_ngg(pipeline))
4832 gs_out = V_028A6C_VGT_OUT_RECT_V0;
4833 }
4834 pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable;
4835
4836 radv_pipeline_init_dynamic_state(pipeline, pCreateInfo, extra);
4837
4838 /* Ensure that some export memory is always allocated, for two reasons:
4839 *
4840 * 1) Correctness: The hardware ignores the EXEC mask if no export
4841 * memory is allocated, so KILL and alpha test do not work correctly
4842 * without this.
4843 * 2) Performance: Every shader needs at least a NULL export, even when
4844 * it writes no color/depth output. The NULL export instruction
4845 * stalls without this setting.
4846 *
4847 * Don't add this to CB_SHADER_MASK.
4848 *
4849 * GFX10 supports pixel shaders without exports by setting both the
4850 * color and Z formats to SPI_SHADER_ZERO. The hw will skip export
4851 * instructions if any are present.
4852 */
4853 struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
4854 if ((pipeline->device->physical_device->rad_info.chip_class <= GFX9 ||
4855 ps->info.ps.can_discard) &&
4856 !blend.spi_shader_col_format) {
4857 if (!ps->info.ps.writes_z &&
4858 !ps->info.ps.writes_stencil &&
4859 !ps->info.ps.writes_sample_mask)
4860 blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
4861 }
4862
4863 blend.cb_shader_mask = ps->info.ps.cb_shader_mask;
4864
4865 if (extra &&
4866 (extra->custom_blend_mode == V_028808_CB_ELIMINATE_FAST_CLEAR ||
4867 extra->custom_blend_mode == V_028808_CB_FMASK_DECOMPRESS ||
4868 extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS ||
4869 extra->custom_blend_mode == V_028808_CB_RESOLVE)) {
4870 /* According to the CB spec states, CB_SHADER_MASK should be
4871 * set to enable writes to all four channels of MRT0.
4872 */
4873 blend.cb_shader_mask = 0xf;
4874 }
4875
4876 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4877 if (pipeline->shaders[i]) {
4878 pipeline->need_indirect_descriptor_sets |= pipeline->shaders[i]->info.need_indirect_descriptor_sets;
4879 }
4880 }
4881
4882 if (radv_pipeline_has_gs(pipeline) && !radv_pipeline_has_ngg(pipeline)) {
4883 struct radv_shader_variant *gs =
4884 pipeline->shaders[MESA_SHADER_GEOMETRY];
4885
4886 calculate_gs_ring_sizes(pipeline, &gs->info.gs_ring_info);
4887 }
4888
4889 struct radv_tessellation_state tess = {0};
4890 if (radv_pipeline_has_tess(pipeline)) {
4891 pipeline->graphics.tess_patch_control_points =
4892 pCreateInfo->pTessellationState->patchControlPoints;
4893 tess = calculate_tess_state(pipeline, pCreateInfo);
4894 }
4895
4896 pipeline->graphics.ia_multi_vgt_param = radv_compute_ia_multi_vgt_param_helpers(pipeline, &tess);
4897
4898 radv_compute_vertex_input_state(pipeline, pCreateInfo);
4899
4900 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++)
4901 pipeline->user_data_0[i] = radv_pipeline_stage_to_user_data_0(pipeline, i, device->physical_device->rad_info.chip_class);
4902
4903 struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_VERTEX,
4904 AC_UD_VS_BASE_VERTEX_START_INSTANCE);
4905 if (loc->sgpr_idx != -1) {
4906 pipeline->graphics.vtx_base_sgpr = pipeline->user_data_0[MESA_SHADER_VERTEX];
4907 pipeline->graphics.vtx_base_sgpr += loc->sgpr_idx * 4;
4908 if (radv_get_shader(pipeline, MESA_SHADER_VERTEX)->info.vs.needs_draw_id)
4909 pipeline->graphics.vtx_emit_num = 3;
4910 else
4911 pipeline->graphics.vtx_emit_num = 2;
4912 }
4913
4914 /* Find the last vertex shader stage that eventually uses streamout. */
4915 pipeline->streamout_shader = radv_pipeline_get_streamout_shader(pipeline);
4916
4917 result = radv_pipeline_scratch_init(device, pipeline);
4918 radv_pipeline_generate_pm4(pipeline, pCreateInfo, extra, &blend, &tess, gs_out);
4919
4920 return result;
4921 }
4922
4923 VkResult
4924 radv_graphics_pipeline_create(
4925 VkDevice _device,
4926 VkPipelineCache _cache,
4927 const VkGraphicsPipelineCreateInfo *pCreateInfo,
4928 const struct radv_graphics_pipeline_create_info *extra,
4929 const VkAllocationCallbacks *pAllocator,
4930 VkPipeline *pPipeline)
4931 {
4932 RADV_FROM_HANDLE(radv_device, device, _device);
4933 RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
4934 struct radv_pipeline *pipeline;
4935 VkResult result;
4936
4937 pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
4938 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
4939 if (pipeline == NULL)
4940 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
4941
4942 vk_object_base_init(&device->vk, &pipeline->base,
4943 VK_OBJECT_TYPE_PIPELINE);
4944
4945 result = radv_pipeline_init(pipeline, device, cache,
4946 pCreateInfo, extra);
4947 if (result != VK_SUCCESS) {
4948 radv_pipeline_destroy(device, pipeline, pAllocator);
4949 return result;
4950 }
4951
4952 *pPipeline = radv_pipeline_to_handle(pipeline);
4953
4954 return VK_SUCCESS;
4955 }
4956
4957 VkResult radv_CreateGraphicsPipelines(
4958 VkDevice _device,
4959 VkPipelineCache pipelineCache,
4960 uint32_t count,
4961 const VkGraphicsPipelineCreateInfo* pCreateInfos,
4962 const VkAllocationCallbacks* pAllocator,
4963 VkPipeline* pPipelines)
4964 {
4965 VkResult result = VK_SUCCESS;
4966 unsigned i = 0;
4967
4968 for (; i < count; i++) {
4969 VkResult r;
4970 r = radv_graphics_pipeline_create(_device,
4971 pipelineCache,
4972 &pCreateInfos[i],
4973 NULL, pAllocator, &pPipelines[i]);
4974 if (r != VK_SUCCESS) {
4975 result = r;
4976 pPipelines[i] = VK_NULL_HANDLE;
4977
4978 if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT_EXT)
4979 break;
4980 }
4981 }
4982
4983 for (; i < count; ++i)
4984 pPipelines[i] = VK_NULL_HANDLE;
4985
4986 return result;
4987 }
4988
4989
4990 static void
4991 radv_compute_generate_pm4(struct radv_pipeline *pipeline)
4992 {
4993 struct radv_shader_variant *compute_shader;
4994 struct radv_device *device = pipeline->device;
4995 unsigned threads_per_threadgroup;
4996 unsigned threadgroups_per_cu = 1;
4997 unsigned waves_per_threadgroup;
4998 unsigned max_waves_per_sh = 0;
4999 uint64_t va;
5000
5001 pipeline->cs.max_dw = device->physical_device->rad_info.chip_class >= GFX10 ? 22 : 20;
5002 pipeline->cs.buf = malloc(pipeline->cs.max_dw * 4);
5003
5004 compute_shader = pipeline->shaders[MESA_SHADER_COMPUTE];
5005 va = radv_buffer_get_va(compute_shader->bo) + compute_shader->bo_offset;
5006
5007 radeon_set_sh_reg_seq(&pipeline->cs, R_00B830_COMPUTE_PGM_LO, 2);
5008 radeon_emit(&pipeline->cs, va >> 8);
5009 radeon_emit(&pipeline->cs, S_00B834_DATA(va >> 40));
5010
5011 radeon_set_sh_reg_seq(&pipeline->cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
5012 radeon_emit(&pipeline->cs, compute_shader->config.rsrc1);
5013 radeon_emit(&pipeline->cs, compute_shader->config.rsrc2);
5014 if (device->physical_device->rad_info.chip_class >= GFX10) {
5015 radeon_set_sh_reg(&pipeline->cs, R_00B8A0_COMPUTE_PGM_RSRC3, compute_shader->config.rsrc3);
5016 }
5017
5018 /* Calculate best compute resource limits. */
5019 threads_per_threadgroup = compute_shader->info.cs.block_size[0] *
5020 compute_shader->info.cs.block_size[1] *
5021 compute_shader->info.cs.block_size[2];
5022 waves_per_threadgroup = DIV_ROUND_UP(threads_per_threadgroup,
5023 compute_shader->info.wave_size);
5024
5025 if (device->physical_device->rad_info.chip_class >= GFX10 &&
5026 waves_per_threadgroup == 1)
5027 threadgroups_per_cu = 2;
5028
5029 radeon_set_sh_reg(&pipeline->cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
5030 ac_get_compute_resource_limits(&device->physical_device->rad_info,
5031 waves_per_threadgroup,
5032 max_waves_per_sh,
5033 threadgroups_per_cu));
5034
5035 radeon_set_sh_reg_seq(&pipeline->cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
5036 radeon_emit(&pipeline->cs,
5037 S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[0]));
5038 radeon_emit(&pipeline->cs,
5039 S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[1]));
5040 radeon_emit(&pipeline->cs,
5041 S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[2]));
5042
5043 assert(pipeline->cs.cdw <= pipeline->cs.max_dw);
5044 }
5045
5046 static struct radv_pipeline_key
5047 radv_generate_compute_pipeline_key(struct radv_pipeline *pipeline,
5048 const VkComputePipelineCreateInfo *pCreateInfo)
5049 {
5050 const VkPipelineShaderStageCreateInfo *stage = &pCreateInfo->stage;
5051 struct radv_pipeline_key key;
5052 memset(&key, 0, sizeof(key));
5053
5054 if (pCreateInfo->flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)
5055 key.optimisations_disabled = 1;
5056
5057 const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *subgroup_size =
5058 vk_find_struct_const(stage->pNext,
5059 PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT);
5060
5061 if (subgroup_size) {
5062 assert(subgroup_size->requiredSubgroupSize == 32 ||
5063 subgroup_size->requiredSubgroupSize == 64);
5064 key.compute_subgroup_size = subgroup_size->requiredSubgroupSize;
5065 }
5066
5067 return key;
5068 }
5069
5070 static VkResult radv_compute_pipeline_create(
5071 VkDevice _device,
5072 VkPipelineCache _cache,
5073 const VkComputePipelineCreateInfo* pCreateInfo,
5074 const VkAllocationCallbacks* pAllocator,
5075 VkPipeline* pPipeline)
5076 {
5077 RADV_FROM_HANDLE(radv_device, device, _device);
5078 RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
5079 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
5080 VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 };
5081 struct radv_pipeline *pipeline;
5082 VkResult result;
5083
5084 pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
5085 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5086 if (pipeline == NULL)
5087 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5088
5089 vk_object_base_init(&device->vk, &pipeline->base,
5090 VK_OBJECT_TYPE_PIPELINE);
5091
5092 pipeline->device = device;
5093 pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
5094 assert(pipeline->layout);
5095
5096 const VkPipelineCreationFeedbackCreateInfoEXT *creation_feedback =
5097 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
5098 radv_init_feedback(creation_feedback);
5099
5100 VkPipelineCreationFeedbackEXT *pipeline_feedback = creation_feedback ? creation_feedback->pPipelineCreationFeedback : NULL;
5101 if (creation_feedback)
5102 stage_feedbacks[MESA_SHADER_COMPUTE] = &creation_feedback->pPipelineStageCreationFeedbacks[0];
5103
5104 pStages[MESA_SHADER_COMPUTE] = &pCreateInfo->stage;
5105
5106 struct radv_pipeline_key key =
5107 radv_generate_compute_pipeline_key(pipeline, pCreateInfo);
5108
5109 result = radv_create_shaders(pipeline, device, cache, &key, pStages,
5110 pCreateInfo->flags, pipeline_feedback,
5111 stage_feedbacks);
5112 if (result != VK_SUCCESS) {
5113 radv_pipeline_destroy(device, pipeline, pAllocator);
5114 return result;
5115 }
5116
5117 pipeline->user_data_0[MESA_SHADER_COMPUTE] = radv_pipeline_stage_to_user_data_0(pipeline, MESA_SHADER_COMPUTE, device->physical_device->rad_info.chip_class);
5118 pipeline->need_indirect_descriptor_sets |= pipeline->shaders[MESA_SHADER_COMPUTE]->info.need_indirect_descriptor_sets;
5119 result = radv_pipeline_scratch_init(device, pipeline);
5120 if (result != VK_SUCCESS) {
5121 radv_pipeline_destroy(device, pipeline, pAllocator);
5122 return result;
5123 }
5124
5125 radv_compute_generate_pm4(pipeline);
5126
5127 *pPipeline = radv_pipeline_to_handle(pipeline);
5128
5129 return VK_SUCCESS;
5130 }
5131
5132 VkResult radv_CreateComputePipelines(
5133 VkDevice _device,
5134 VkPipelineCache pipelineCache,
5135 uint32_t count,
5136 const VkComputePipelineCreateInfo* pCreateInfos,
5137 const VkAllocationCallbacks* pAllocator,
5138 VkPipeline* pPipelines)
5139 {
5140 VkResult result = VK_SUCCESS;
5141
5142 unsigned i = 0;
5143 for (; i < count; i++) {
5144 VkResult r;
5145 r = radv_compute_pipeline_create(_device, pipelineCache,
5146 &pCreateInfos[i],
5147 pAllocator, &pPipelines[i]);
5148 if (r != VK_SUCCESS) {
5149 result = r;
5150 pPipelines[i] = VK_NULL_HANDLE;
5151
5152 if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT_EXT)
5153 break;
5154 }
5155 }
5156
5157 for (; i < count; ++i)
5158 pPipelines[i] = VK_NULL_HANDLE;
5159
5160 return result;
5161 }
5162
5163
5164 static uint32_t radv_get_executable_count(const struct radv_pipeline *pipeline)
5165 {
5166 uint32_t ret = 0;
5167 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
5168 if (!pipeline->shaders[i])
5169 continue;
5170
5171 if (i == MESA_SHADER_GEOMETRY &&
5172 !radv_pipeline_has_ngg(pipeline)) {
5173 ret += 2u;
5174 } else {
5175 ret += 1u;
5176 }
5177
5178 }
5179 return ret;
5180 }
5181
5182 static struct radv_shader_variant *
5183 radv_get_shader_from_executable_index(const struct radv_pipeline *pipeline, int index, gl_shader_stage *stage)
5184 {
5185 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
5186 if (!pipeline->shaders[i])
5187 continue;
5188 if (!index) {
5189 *stage = i;
5190 return pipeline->shaders[i];
5191 }
5192
5193 --index;
5194
5195 if (i == MESA_SHADER_GEOMETRY &&
5196 !radv_pipeline_has_ngg(pipeline)) {
5197 if (!index) {
5198 *stage = i;
5199 return pipeline->gs_copy_shader;
5200 }
5201 --index;
5202 }
5203 }
5204
5205 *stage = -1;
5206 return NULL;
5207 }
5208
5209 /* Basically strlcpy (which does not exist on linux) specialized for
5210 * descriptions. */
5211 static void desc_copy(char *desc, const char *src) {
5212 int len = strlen(src);
5213 assert(len < VK_MAX_DESCRIPTION_SIZE);
5214 memcpy(desc, src, len);
5215 memset(desc + len, 0, VK_MAX_DESCRIPTION_SIZE - len);
5216 }
5217
5218 VkResult radv_GetPipelineExecutablePropertiesKHR(
5219 VkDevice _device,
5220 const VkPipelineInfoKHR* pPipelineInfo,
5221 uint32_t* pExecutableCount,
5222 VkPipelineExecutablePropertiesKHR* pProperties)
5223 {
5224 RADV_FROM_HANDLE(radv_pipeline, pipeline, pPipelineInfo->pipeline);
5225 const uint32_t total_count = radv_get_executable_count(pipeline);
5226
5227 if (!pProperties) {
5228 *pExecutableCount = total_count;
5229 return VK_SUCCESS;
5230 }
5231
5232 const uint32_t count = MIN2(total_count, *pExecutableCount);
5233 for (unsigned i = 0, executable_idx = 0;
5234 i < MESA_SHADER_STAGES && executable_idx < count; ++i) {
5235 if (!pipeline->shaders[i])
5236 continue;
5237 pProperties[executable_idx].stages = mesa_to_vk_shader_stage(i);
5238 const char *name = NULL;
5239 const char *description = NULL;
5240 switch(i) {
5241 case MESA_SHADER_VERTEX:
5242 name = "Vertex Shader";
5243 description = "Vulkan Vertex Shader";
5244 break;
5245 case MESA_SHADER_TESS_CTRL:
5246 if (!pipeline->shaders[MESA_SHADER_VERTEX]) {
5247 pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
5248 name = "Vertex + Tessellation Control Shaders";
5249 description = "Combined Vulkan Vertex and Tessellation Control Shaders";
5250 } else {
5251 name = "Tessellation Control Shader";
5252 description = "Vulkan Tessellation Control Shader";
5253 }
5254 break;
5255 case MESA_SHADER_TESS_EVAL:
5256 name = "Tessellation Evaluation Shader";
5257 description = "Vulkan Tessellation Evaluation Shader";
5258 break;
5259 case MESA_SHADER_GEOMETRY:
5260 if (radv_pipeline_has_tess(pipeline) && !pipeline->shaders[MESA_SHADER_TESS_EVAL]) {
5261 pProperties[executable_idx].stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
5262 name = "Tessellation Evaluation + Geometry Shaders";
5263 description = "Combined Vulkan Tessellation Evaluation and Geometry Shaders";
5264 } else if (!radv_pipeline_has_tess(pipeline) && !pipeline->shaders[MESA_SHADER_VERTEX]) {
5265 pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
5266 name = "Vertex + Geometry Shader";
5267 description = "Combined Vulkan Vertex and Geometry Shaders";
5268 } else {
5269 name = "Geometry Shader";
5270 description = "Vulkan Geometry Shader";
5271 }
5272 break;
5273 case MESA_SHADER_FRAGMENT:
5274 name = "Fragment Shader";
5275 description = "Vulkan Fragment Shader";
5276 break;
5277 case MESA_SHADER_COMPUTE:
5278 name = "Compute Shader";
5279 description = "Vulkan Compute Shader";
5280 break;
5281 }
5282
5283 pProperties[executable_idx].subgroupSize = pipeline->shaders[i]->info.wave_size;
5284 desc_copy(pProperties[executable_idx].name, name);
5285 desc_copy(pProperties[executable_idx].description, description);
5286
5287 ++executable_idx;
5288 if (i == MESA_SHADER_GEOMETRY &&
5289 !radv_pipeline_has_ngg(pipeline)) {
5290 assert(pipeline->gs_copy_shader);
5291 if (executable_idx >= count)
5292 break;
5293
5294 pProperties[executable_idx].stages = VK_SHADER_STAGE_GEOMETRY_BIT;
5295 pProperties[executable_idx].subgroupSize = 64;
5296 desc_copy(pProperties[executable_idx].name, "GS Copy Shader");
5297 desc_copy(pProperties[executable_idx].description,
5298 "Extra shader stage that loads the GS output ringbuffer into the rasterizer");
5299
5300 ++executable_idx;
5301 }
5302 }
5303
5304 VkResult result = *pExecutableCount < total_count ? VK_INCOMPLETE : VK_SUCCESS;
5305 *pExecutableCount = count;
5306 return result;
5307 }
5308
5309 VkResult radv_GetPipelineExecutableStatisticsKHR(
5310 VkDevice _device,
5311 const VkPipelineExecutableInfoKHR* pExecutableInfo,
5312 uint32_t* pStatisticCount,
5313 VkPipelineExecutableStatisticKHR* pStatistics)
5314 {
5315 RADV_FROM_HANDLE(radv_device, device, _device);
5316 RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
5317 gl_shader_stage stage;
5318 struct radv_shader_variant *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
5319
5320 enum chip_class chip_class = device->physical_device->rad_info.chip_class;
5321 unsigned lds_increment = chip_class >= GFX7 ? 512 : 256;
5322 unsigned max_waves = radv_get_max_waves(device, shader, stage);
5323
5324 VkPipelineExecutableStatisticKHR *s = pStatistics;
5325 VkPipelineExecutableStatisticKHR *end = s + (pStatistics ? *pStatisticCount : 0);
5326 VkResult result = VK_SUCCESS;
5327
5328 if (s < end) {
5329 desc_copy(s->name, "SGPRs");
5330 desc_copy(s->description, "Number of SGPR registers allocated per subgroup");
5331 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5332 s->value.u64 = shader->config.num_sgprs;
5333 }
5334 ++s;
5335
5336 if (s < end) {
5337 desc_copy(s->name, "VGPRs");
5338 desc_copy(s->description, "Number of VGPR registers allocated per subgroup");
5339 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5340 s->value.u64 = shader->config.num_vgprs;
5341 }
5342 ++s;
5343
5344 if (s < end) {
5345 desc_copy(s->name, "Spilled SGPRs");
5346 desc_copy(s->description, "Number of SGPR registers spilled per subgroup");
5347 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5348 s->value.u64 = shader->config.spilled_sgprs;
5349 }
5350 ++s;
5351
5352 if (s < end) {
5353 desc_copy(s->name, "Spilled VGPRs");
5354 desc_copy(s->description, "Number of VGPR registers spilled per subgroup");
5355 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5356 s->value.u64 = shader->config.spilled_vgprs;
5357 }
5358 ++s;
5359
5360 if (s < end) {
5361 desc_copy(s->name, "PrivMem VGPRs");
5362 desc_copy(s->description, "Number of VGPRs stored in private memory per subgroup");
5363 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5364 s->value.u64 = shader->info.private_mem_vgprs;
5365 }
5366 ++s;
5367
5368 if (s < end) {
5369 desc_copy(s->name, "Code size");
5370 desc_copy(s->description, "Code size in bytes");
5371 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5372 s->value.u64 = shader->exec_size;
5373 }
5374 ++s;
5375
5376 if (s < end) {
5377 desc_copy(s->name, "LDS size");
5378 desc_copy(s->description, "LDS size in bytes per workgroup");
5379 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5380 s->value.u64 = shader->config.lds_size * lds_increment;
5381 }
5382 ++s;
5383
5384 if (s < end) {
5385 desc_copy(s->name, "Scratch size");
5386 desc_copy(s->description, "Private memory in bytes per subgroup");
5387 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5388 s->value.u64 = shader->config.scratch_bytes_per_wave;
5389 }
5390 ++s;
5391
5392 if (s < end) {
5393 desc_copy(s->name, "Subgroups per SIMD");
5394 desc_copy(s->description, "The maximum number of subgroups in flight on a SIMD unit");
5395 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5396 s->value.u64 = max_waves;
5397 }
5398 ++s;
5399
5400 if (shader->statistics) {
5401 for (unsigned i = 0; i < shader->statistics->count; i++) {
5402 struct radv_compiler_statistic_info *info = &shader->statistics->infos[i];
5403 uint32_t value = shader->statistics->values[i];
5404 if (s < end) {
5405 desc_copy(s->name, info->name);
5406 desc_copy(s->description, info->desc);
5407 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5408 s->value.u64 = value;
5409 }
5410 ++s;
5411 }
5412 }
5413
5414 if (!pStatistics)
5415 *pStatisticCount = s - pStatistics;
5416 else if (s > end) {
5417 *pStatisticCount = end - pStatistics;
5418 result = VK_INCOMPLETE;
5419 } else {
5420 *pStatisticCount = s - pStatistics;
5421 }
5422
5423 return result;
5424 }
5425
5426 static VkResult radv_copy_representation(void *data, size_t *data_size, const char *src)
5427 {
5428 size_t total_size = strlen(src) + 1;
5429
5430 if (!data) {
5431 *data_size = total_size;
5432 return VK_SUCCESS;
5433 }
5434
5435 size_t size = MIN2(total_size, *data_size);
5436
5437 memcpy(data, src, size);
5438 if (size)
5439 *((char*)data + size - 1) = 0;
5440 return size < total_size ? VK_INCOMPLETE : VK_SUCCESS;
5441 }
5442
5443 VkResult radv_GetPipelineExecutableInternalRepresentationsKHR(
5444 VkDevice device,
5445 const VkPipelineExecutableInfoKHR* pExecutableInfo,
5446 uint32_t* pInternalRepresentationCount,
5447 VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
5448 {
5449 RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
5450 gl_shader_stage stage;
5451 struct radv_shader_variant *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
5452
5453 VkPipelineExecutableInternalRepresentationKHR *p = pInternalRepresentations;
5454 VkPipelineExecutableInternalRepresentationKHR *end = p + (pInternalRepresentations ? *pInternalRepresentationCount : 0);
5455 VkResult result = VK_SUCCESS;
5456 /* optimized NIR */
5457 if (p < end) {
5458 p->isText = true;
5459 desc_copy(p->name, "NIR Shader(s)");
5460 desc_copy(p->description, "The optimized NIR shader(s)");
5461 if (radv_copy_representation(p->pData, &p->dataSize, shader->nir_string) != VK_SUCCESS)
5462 result = VK_INCOMPLETE;
5463 }
5464 ++p;
5465
5466 /* backend IR */
5467 if (p < end) {
5468 p->isText = true;
5469 if (pipeline->device->physical_device->use_llvm) {
5470 desc_copy(p->name, "LLVM IR");
5471 desc_copy(p->description, "The LLVM IR after some optimizations");
5472 } else {
5473 desc_copy(p->name, "ACO IR");
5474 desc_copy(p->description, "The ACO IR after some optimizations");
5475 }
5476 if (radv_copy_representation(p->pData, &p->dataSize, shader->ir_string) != VK_SUCCESS)
5477 result = VK_INCOMPLETE;
5478 }
5479 ++p;
5480
5481 /* Disassembler */
5482 if (p < end) {
5483 p->isText = true;
5484 desc_copy(p->name, "Assembly");
5485 desc_copy(p->description, "Final Assembly");
5486 if (radv_copy_representation(p->pData, &p->dataSize, shader->disasm_string) != VK_SUCCESS)
5487 result = VK_INCOMPLETE;
5488 }
5489 ++p;
5490
5491 if (!pInternalRepresentations)
5492 *pInternalRepresentationCount = p - pInternalRepresentations;
5493 else if(p > end) {
5494 result = VK_INCOMPLETE;
5495 *pInternalRepresentationCount = end - pInternalRepresentations;
5496 } else {
5497 *pInternalRepresentationCount = p - pInternalRepresentations;
5498 }
5499
5500 return result;
5501 }