radv: only enable TC-compat HTILE for images readable by a shader
[mesa.git] / src / amd / vulkan / radv_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/disk_cache.h"
29 #include "util/mesa-sha1.h"
30 #include "util/u_atomic.h"
31 #include "radv_debug.h"
32 #include "radv_private.h"
33 #include "radv_cs.h"
34 #include "radv_shader.h"
35 #include "nir/nir.h"
36 #include "nir/nir_builder.h"
37 #include "nir/nir_xfb_info.h"
38 #include "spirv/nir_spirv.h"
39 #include "vk_util.h"
40
41 #include "sid.h"
42 #include "ac_binary.h"
43 #include "ac_llvm_util.h"
44 #include "ac_nir_to_llvm.h"
45 #include "vk_format.h"
46 #include "util/debug.h"
47 #include "ac_exp_param.h"
48 #include "ac_shader_util.h"
49
50 struct radv_blend_state {
51 uint32_t blend_enable_4bit;
52 uint32_t need_src_alpha;
53
54 uint32_t cb_color_control;
55 uint32_t cb_target_mask;
56 uint32_t cb_target_enabled_4bit;
57 uint32_t sx_mrt_blend_opt[8];
58 uint32_t cb_blend_control[8];
59
60 uint32_t spi_shader_col_format;
61 uint32_t cb_shader_mask;
62 uint32_t db_alpha_to_mask;
63
64 uint32_t commutative_4bit;
65
66 bool single_cb_enable;
67 bool mrt0_is_dual_src;
68 };
69
70 struct radv_dsa_order_invariance {
71 /* Whether the final result in Z/S buffers is guaranteed to be
72 * invariant under changes to the order in which fragments arrive.
73 */
74 bool zs;
75
76 /* Whether the set of fragments that pass the combined Z/S test is
77 * guaranteed to be invariant under changes to the order in which
78 * fragments arrive.
79 */
80 bool pass_set;
81 };
82
83 struct radv_tessellation_state {
84 uint32_t ls_hs_config;
85 unsigned num_patches;
86 unsigned lds_size;
87 uint32_t tf_param;
88 };
89
90 static const VkPipelineMultisampleStateCreateInfo *
91 radv_pipeline_get_multisample_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
92 {
93 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable)
94 return pCreateInfo->pMultisampleState;
95 return NULL;
96 }
97
98 static const VkPipelineTessellationStateCreateInfo *
99 radv_pipeline_get_tessellation_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
100 {
101 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
102 if (pCreateInfo->pStages[i].stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT ||
103 pCreateInfo->pStages[i].stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
104 return pCreateInfo->pTessellationState;
105 }
106 }
107 return NULL;
108 }
109
110 static const VkPipelineDepthStencilStateCreateInfo *
111 radv_pipeline_get_depth_stencil_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
112 {
113 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
114 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
115
116 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
117 subpass->depth_stencil_attachment)
118 return pCreateInfo->pDepthStencilState;
119 return NULL;
120 }
121
122 static const VkPipelineColorBlendStateCreateInfo *
123 radv_pipeline_get_color_blend_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
124 {
125 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
126 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
127
128 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
129 subpass->has_color_att)
130 return pCreateInfo->pColorBlendState;
131 return NULL;
132 }
133
134 bool radv_pipeline_has_ngg(const struct radv_pipeline *pipeline)
135 {
136 struct radv_shader_variant *variant = NULL;
137 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
138 variant = pipeline->shaders[MESA_SHADER_GEOMETRY];
139 else if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
140 variant = pipeline->shaders[MESA_SHADER_TESS_EVAL];
141 else if (pipeline->shaders[MESA_SHADER_VERTEX])
142 variant = pipeline->shaders[MESA_SHADER_VERTEX];
143 else
144 return false;
145 return variant->info.is_ngg;
146 }
147
148 bool radv_pipeline_has_ngg_passthrough(const struct radv_pipeline *pipeline)
149 {
150 assert(radv_pipeline_has_ngg(pipeline));
151
152 struct radv_shader_variant *variant = NULL;
153 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
154 variant = pipeline->shaders[MESA_SHADER_GEOMETRY];
155 else if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
156 variant = pipeline->shaders[MESA_SHADER_TESS_EVAL];
157 else if (pipeline->shaders[MESA_SHADER_VERTEX])
158 variant = pipeline->shaders[MESA_SHADER_VERTEX];
159 else
160 return false;
161 return variant->info.is_ngg_passthrough;
162 }
163
164 bool radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline)
165 {
166 if (!radv_pipeline_has_gs(pipeline))
167 return false;
168
169 /* The GS copy shader is required if the pipeline has GS on GFX6-GFX9.
170 * On GFX10, it might be required in rare cases if it's not possible to
171 * enable NGG.
172 */
173 if (radv_pipeline_has_ngg(pipeline))
174 return false;
175
176 assert(pipeline->gs_copy_shader);
177 return true;
178 }
179
180 static void
181 radv_pipeline_destroy(struct radv_device *device,
182 struct radv_pipeline *pipeline,
183 const VkAllocationCallbacks* allocator)
184 {
185 for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i)
186 if (pipeline->shaders[i])
187 radv_shader_variant_destroy(device, pipeline->shaders[i]);
188
189 if (pipeline->gs_copy_shader)
190 radv_shader_variant_destroy(device, pipeline->gs_copy_shader);
191
192 if(pipeline->cs.buf)
193 free(pipeline->cs.buf);
194 vk_free2(&device->alloc, allocator, pipeline);
195 }
196
197 void radv_DestroyPipeline(
198 VkDevice _device,
199 VkPipeline _pipeline,
200 const VkAllocationCallbacks* pAllocator)
201 {
202 RADV_FROM_HANDLE(radv_device, device, _device);
203 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
204
205 if (!_pipeline)
206 return;
207
208 radv_pipeline_destroy(device, pipeline, pAllocator);
209 }
210
211 static uint32_t get_hash_flags(struct radv_device *device)
212 {
213 uint32_t hash_flags = 0;
214
215 if (device->instance->debug_flags & RADV_DEBUG_NO_NGG)
216 hash_flags |= RADV_HASH_SHADER_NO_NGG;
217 if (device->physical_device->cs_wave_size == 32)
218 hash_flags |= RADV_HASH_SHADER_CS_WAVE32;
219 if (device->physical_device->ps_wave_size == 32)
220 hash_flags |= RADV_HASH_SHADER_PS_WAVE32;
221 if (device->physical_device->ge_wave_size == 32)
222 hash_flags |= RADV_HASH_SHADER_GE_WAVE32;
223 if (device->physical_device->use_aco)
224 hash_flags |= RADV_HASH_SHADER_ACO;
225 return hash_flags;
226 }
227
228 static VkResult
229 radv_pipeline_scratch_init(struct radv_device *device,
230 struct radv_pipeline *pipeline)
231 {
232 unsigned scratch_bytes_per_wave = 0;
233 unsigned max_waves = 0;
234 unsigned min_waves = 1;
235
236 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
237 if (pipeline->shaders[i] &&
238 pipeline->shaders[i]->config.scratch_bytes_per_wave) {
239 unsigned max_stage_waves = device->scratch_waves;
240
241 scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave,
242 pipeline->shaders[i]->config.scratch_bytes_per_wave);
243
244 max_stage_waves = MIN2(max_stage_waves,
245 4 * device->physical_device->rad_info.num_good_compute_units *
246 (256 / pipeline->shaders[i]->config.num_vgprs));
247 max_waves = MAX2(max_waves, max_stage_waves);
248 }
249 }
250
251 if (pipeline->shaders[MESA_SHADER_COMPUTE]) {
252 unsigned group_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[0] *
253 pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[1] *
254 pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[2];
255 min_waves = MAX2(min_waves, round_up_u32(group_size, 64));
256 }
257
258 pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave;
259 pipeline->max_waves = max_waves;
260 return VK_SUCCESS;
261 }
262
263 static uint32_t si_translate_blend_logic_op(VkLogicOp op)
264 {
265 switch (op) {
266 case VK_LOGIC_OP_CLEAR:
267 return V_028808_ROP3_CLEAR;
268 case VK_LOGIC_OP_AND:
269 return V_028808_ROP3_AND;
270 case VK_LOGIC_OP_AND_REVERSE:
271 return V_028808_ROP3_AND_REVERSE;
272 case VK_LOGIC_OP_COPY:
273 return V_028808_ROP3_COPY;
274 case VK_LOGIC_OP_AND_INVERTED:
275 return V_028808_ROP3_AND_INVERTED;
276 case VK_LOGIC_OP_NO_OP:
277 return V_028808_ROP3_NO_OP;
278 case VK_LOGIC_OP_XOR:
279 return V_028808_ROP3_XOR;
280 case VK_LOGIC_OP_OR:
281 return V_028808_ROP3_OR;
282 case VK_LOGIC_OP_NOR:
283 return V_028808_ROP3_NOR;
284 case VK_LOGIC_OP_EQUIVALENT:
285 return V_028808_ROP3_EQUIVALENT;
286 case VK_LOGIC_OP_INVERT:
287 return V_028808_ROP3_INVERT;
288 case VK_LOGIC_OP_OR_REVERSE:
289 return V_028808_ROP3_OR_REVERSE;
290 case VK_LOGIC_OP_COPY_INVERTED:
291 return V_028808_ROP3_COPY_INVERTED;
292 case VK_LOGIC_OP_OR_INVERTED:
293 return V_028808_ROP3_OR_INVERTED;
294 case VK_LOGIC_OP_NAND:
295 return V_028808_ROP3_NAND;
296 case VK_LOGIC_OP_SET:
297 return V_028808_ROP3_SET;
298 default:
299 unreachable("Unhandled logic op");
300 }
301 }
302
303
304 static uint32_t si_translate_blend_function(VkBlendOp op)
305 {
306 switch (op) {
307 case VK_BLEND_OP_ADD:
308 return V_028780_COMB_DST_PLUS_SRC;
309 case VK_BLEND_OP_SUBTRACT:
310 return V_028780_COMB_SRC_MINUS_DST;
311 case VK_BLEND_OP_REVERSE_SUBTRACT:
312 return V_028780_COMB_DST_MINUS_SRC;
313 case VK_BLEND_OP_MIN:
314 return V_028780_COMB_MIN_DST_SRC;
315 case VK_BLEND_OP_MAX:
316 return V_028780_COMB_MAX_DST_SRC;
317 default:
318 return 0;
319 }
320 }
321
322 static uint32_t si_translate_blend_factor(VkBlendFactor factor)
323 {
324 switch (factor) {
325 case VK_BLEND_FACTOR_ZERO:
326 return V_028780_BLEND_ZERO;
327 case VK_BLEND_FACTOR_ONE:
328 return V_028780_BLEND_ONE;
329 case VK_BLEND_FACTOR_SRC_COLOR:
330 return V_028780_BLEND_SRC_COLOR;
331 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
332 return V_028780_BLEND_ONE_MINUS_SRC_COLOR;
333 case VK_BLEND_FACTOR_DST_COLOR:
334 return V_028780_BLEND_DST_COLOR;
335 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
336 return V_028780_BLEND_ONE_MINUS_DST_COLOR;
337 case VK_BLEND_FACTOR_SRC_ALPHA:
338 return V_028780_BLEND_SRC_ALPHA;
339 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
340 return V_028780_BLEND_ONE_MINUS_SRC_ALPHA;
341 case VK_BLEND_FACTOR_DST_ALPHA:
342 return V_028780_BLEND_DST_ALPHA;
343 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
344 return V_028780_BLEND_ONE_MINUS_DST_ALPHA;
345 case VK_BLEND_FACTOR_CONSTANT_COLOR:
346 return V_028780_BLEND_CONSTANT_COLOR;
347 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
348 return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR;
349 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
350 return V_028780_BLEND_CONSTANT_ALPHA;
351 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
352 return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA;
353 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
354 return V_028780_BLEND_SRC_ALPHA_SATURATE;
355 case VK_BLEND_FACTOR_SRC1_COLOR:
356 return V_028780_BLEND_SRC1_COLOR;
357 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
358 return V_028780_BLEND_INV_SRC1_COLOR;
359 case VK_BLEND_FACTOR_SRC1_ALPHA:
360 return V_028780_BLEND_SRC1_ALPHA;
361 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
362 return V_028780_BLEND_INV_SRC1_ALPHA;
363 default:
364 return 0;
365 }
366 }
367
368 static uint32_t si_translate_blend_opt_function(VkBlendOp op)
369 {
370 switch (op) {
371 case VK_BLEND_OP_ADD:
372 return V_028760_OPT_COMB_ADD;
373 case VK_BLEND_OP_SUBTRACT:
374 return V_028760_OPT_COMB_SUBTRACT;
375 case VK_BLEND_OP_REVERSE_SUBTRACT:
376 return V_028760_OPT_COMB_REVSUBTRACT;
377 case VK_BLEND_OP_MIN:
378 return V_028760_OPT_COMB_MIN;
379 case VK_BLEND_OP_MAX:
380 return V_028760_OPT_COMB_MAX;
381 default:
382 return V_028760_OPT_COMB_BLEND_DISABLED;
383 }
384 }
385
386 static uint32_t si_translate_blend_opt_factor(VkBlendFactor factor, bool is_alpha)
387 {
388 switch (factor) {
389 case VK_BLEND_FACTOR_ZERO:
390 return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL;
391 case VK_BLEND_FACTOR_ONE:
392 return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE;
393 case VK_BLEND_FACTOR_SRC_COLOR:
394 return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0
395 : V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0;
396 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
397 return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1
398 : V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1;
399 case VK_BLEND_FACTOR_SRC_ALPHA:
400 return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0;
401 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
402 return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1;
403 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
404 return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE
405 : V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
406 default:
407 return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
408 }
409 }
410
411 /**
412 * Get rid of DST in the blend factors by commuting the operands:
413 * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
414 */
415 static void si_blend_remove_dst(unsigned *func, unsigned *src_factor,
416 unsigned *dst_factor, unsigned expected_dst,
417 unsigned replacement_src)
418 {
419 if (*src_factor == expected_dst &&
420 *dst_factor == VK_BLEND_FACTOR_ZERO) {
421 *src_factor = VK_BLEND_FACTOR_ZERO;
422 *dst_factor = replacement_src;
423
424 /* Commuting the operands requires reversing subtractions. */
425 if (*func == VK_BLEND_OP_SUBTRACT)
426 *func = VK_BLEND_OP_REVERSE_SUBTRACT;
427 else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT)
428 *func = VK_BLEND_OP_SUBTRACT;
429 }
430 }
431
432 static bool si_blend_factor_uses_dst(unsigned factor)
433 {
434 return factor == VK_BLEND_FACTOR_DST_COLOR ||
435 factor == VK_BLEND_FACTOR_DST_ALPHA ||
436 factor == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
437 factor == VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA ||
438 factor == VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
439 }
440
441 static bool is_dual_src(VkBlendFactor factor)
442 {
443 switch (factor) {
444 case VK_BLEND_FACTOR_SRC1_COLOR:
445 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
446 case VK_BLEND_FACTOR_SRC1_ALPHA:
447 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
448 return true;
449 default:
450 return false;
451 }
452 }
453
454 static unsigned si_choose_spi_color_format(VkFormat vk_format,
455 bool blend_enable,
456 bool blend_need_alpha)
457 {
458 const struct vk_format_description *desc = vk_format_description(vk_format);
459 unsigned format, ntype, swap;
460
461 /* Alpha is needed for alpha-to-coverage.
462 * Blending may be with or without alpha.
463 */
464 unsigned normal = 0; /* most optimal, may not support blending or export alpha */
465 unsigned alpha = 0; /* exports alpha, but may not support blending */
466 unsigned blend = 0; /* supports blending, but may not export alpha */
467 unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */
468
469 format = radv_translate_colorformat(vk_format);
470 ntype = radv_translate_color_numformat(vk_format, desc,
471 vk_format_get_first_non_void_channel(vk_format));
472 swap = radv_translate_colorswap(vk_format, false);
473
474 /* Choose the SPI color formats. These are required values for Stoney/RB+.
475 * Other chips have multiple choices, though they are not necessarily better.
476 */
477 switch (format) {
478 case V_028C70_COLOR_5_6_5:
479 case V_028C70_COLOR_1_5_5_5:
480 case V_028C70_COLOR_5_5_5_1:
481 case V_028C70_COLOR_4_4_4_4:
482 case V_028C70_COLOR_10_11_11:
483 case V_028C70_COLOR_11_11_10:
484 case V_028C70_COLOR_8:
485 case V_028C70_COLOR_8_8:
486 case V_028C70_COLOR_8_8_8_8:
487 case V_028C70_COLOR_10_10_10_2:
488 case V_028C70_COLOR_2_10_10_10:
489 if (ntype == V_028C70_NUMBER_UINT)
490 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
491 else if (ntype == V_028C70_NUMBER_SINT)
492 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
493 else
494 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
495 break;
496
497 case V_028C70_COLOR_16:
498 case V_028C70_COLOR_16_16:
499 case V_028C70_COLOR_16_16_16_16:
500 if (ntype == V_028C70_NUMBER_UNORM ||
501 ntype == V_028C70_NUMBER_SNORM) {
502 /* UNORM16 and SNORM16 don't support blending */
503 if (ntype == V_028C70_NUMBER_UNORM)
504 normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR;
505 else
506 normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR;
507
508 /* Use 32 bits per channel for blending. */
509 if (format == V_028C70_COLOR_16) {
510 if (swap == V_028C70_SWAP_STD) { /* R */
511 blend = V_028714_SPI_SHADER_32_R;
512 blend_alpha = V_028714_SPI_SHADER_32_AR;
513 } else if (swap == V_028C70_SWAP_ALT_REV) /* A */
514 blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
515 else
516 assert(0);
517 } else if (format == V_028C70_COLOR_16_16) {
518 if (swap == V_028C70_SWAP_STD) { /* RG */
519 blend = V_028714_SPI_SHADER_32_GR;
520 blend_alpha = V_028714_SPI_SHADER_32_ABGR;
521 } else if (swap == V_028C70_SWAP_ALT) /* RA */
522 blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
523 else
524 assert(0);
525 } else /* 16_16_16_16 */
526 blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
527 } else if (ntype == V_028C70_NUMBER_UINT)
528 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
529 else if (ntype == V_028C70_NUMBER_SINT)
530 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
531 else if (ntype == V_028C70_NUMBER_FLOAT)
532 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
533 else
534 assert(0);
535 break;
536
537 case V_028C70_COLOR_32:
538 if (swap == V_028C70_SWAP_STD) { /* R */
539 blend = normal = V_028714_SPI_SHADER_32_R;
540 alpha = blend_alpha = V_028714_SPI_SHADER_32_AR;
541 } else if (swap == V_028C70_SWAP_ALT_REV) /* A */
542 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
543 else
544 assert(0);
545 break;
546
547 case V_028C70_COLOR_32_32:
548 if (swap == V_028C70_SWAP_STD) { /* RG */
549 blend = normal = V_028714_SPI_SHADER_32_GR;
550 alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
551 } else if (swap == V_028C70_SWAP_ALT) /* RA */
552 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
553 else
554 assert(0);
555 break;
556
557 case V_028C70_COLOR_32_32_32_32:
558 case V_028C70_COLOR_8_24:
559 case V_028C70_COLOR_24_8:
560 case V_028C70_COLOR_X24_8_32_FLOAT:
561 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR;
562 break;
563
564 default:
565 unreachable("unhandled blend format");
566 }
567
568 if (blend_enable && blend_need_alpha)
569 return blend_alpha;
570 else if(blend_need_alpha)
571 return alpha;
572 else if(blend_enable)
573 return blend;
574 else
575 return normal;
576 }
577
578 static void
579 radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline,
580 const VkGraphicsPipelineCreateInfo *pCreateInfo,
581 struct radv_blend_state *blend)
582 {
583 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
584 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
585 unsigned col_format = 0;
586 unsigned num_targets;
587
588 for (unsigned i = 0; i < (blend->single_cb_enable ? 1 : subpass->color_count); ++i) {
589 unsigned cf;
590
591 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) {
592 cf = V_028714_SPI_SHADER_ZERO;
593 } else {
594 struct radv_render_pass_attachment *attachment = pass->attachments + subpass->color_attachments[i].attachment;
595 bool blend_enable =
596 blend->blend_enable_4bit & (0xfu << (i * 4));
597
598 cf = si_choose_spi_color_format(attachment->format,
599 blend_enable,
600 blend->need_src_alpha & (1 << i));
601 }
602
603 col_format |= cf << (4 * i);
604 }
605
606 if (!(col_format & 0xf) && blend->need_src_alpha & (1 << 0)) {
607 /* When a subpass doesn't have any color attachments, write the
608 * alpha channel of MRT0 when alpha coverage is enabled because
609 * the depth attachment needs it.
610 */
611 col_format |= V_028714_SPI_SHADER_32_AR;
612 }
613
614 /* If the i-th target format is set, all previous target formats must
615 * be non-zero to avoid hangs.
616 */
617 num_targets = (util_last_bit(col_format) + 3) / 4;
618 for (unsigned i = 0; i < num_targets; i++) {
619 if (!(col_format & (0xf << (i * 4)))) {
620 col_format |= V_028714_SPI_SHADER_32_R << (i * 4);
621 }
622 }
623
624 /* The output for dual source blending should have the same format as
625 * the first output.
626 */
627 if (blend->mrt0_is_dual_src)
628 col_format |= (col_format & 0xf) << 4;
629
630 blend->cb_shader_mask = ac_get_cb_shader_mask(col_format);
631 blend->spi_shader_col_format = col_format;
632 }
633
634 static bool
635 format_is_int8(VkFormat format)
636 {
637 const struct vk_format_description *desc = vk_format_description(format);
638 int channel = vk_format_get_first_non_void_channel(format);
639
640 return channel >= 0 && desc->channel[channel].pure_integer &&
641 desc->channel[channel].size == 8;
642 }
643
644 static bool
645 format_is_int10(VkFormat format)
646 {
647 const struct vk_format_description *desc = vk_format_description(format);
648
649 if (desc->nr_channels != 4)
650 return false;
651 for (unsigned i = 0; i < 4; i++) {
652 if (desc->channel[i].pure_integer && desc->channel[i].size == 10)
653 return true;
654 }
655 return false;
656 }
657
658 /*
659 * Ordered so that for each i,
660 * radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i.
661 */
662 const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = {
663 VK_FORMAT_R32_SFLOAT,
664 VK_FORMAT_R32G32_SFLOAT,
665 VK_FORMAT_R8G8B8A8_UNORM,
666 VK_FORMAT_R16G16B16A16_UNORM,
667 VK_FORMAT_R16G16B16A16_SNORM,
668 VK_FORMAT_R16G16B16A16_UINT,
669 VK_FORMAT_R16G16B16A16_SINT,
670 VK_FORMAT_R32G32B32A32_SFLOAT,
671 VK_FORMAT_R8G8B8A8_UINT,
672 VK_FORMAT_R8G8B8A8_SINT,
673 VK_FORMAT_A2R10G10B10_UINT_PACK32,
674 VK_FORMAT_A2R10G10B10_SINT_PACK32,
675 };
676
677 unsigned radv_format_meta_fs_key(VkFormat format)
678 {
679 unsigned col_format = si_choose_spi_color_format(format, false, false);
680
681 assert(col_format != V_028714_SPI_SHADER_32_AR);
682 if (col_format >= V_028714_SPI_SHADER_32_AR)
683 --col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */
684
685 --col_format; /* Skip V_028714_SPI_SHADER_ZERO */
686 bool is_int8 = format_is_int8(format);
687 bool is_int10 = format_is_int10(format);
688
689 return col_format + (is_int8 ? 3 : is_int10 ? 5 : 0);
690 }
691
692 static void
693 radv_pipeline_compute_get_int_clamp(const VkGraphicsPipelineCreateInfo *pCreateInfo,
694 unsigned *is_int8, unsigned *is_int10)
695 {
696 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
697 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
698 *is_int8 = 0;
699 *is_int10 = 0;
700
701 for (unsigned i = 0; i < subpass->color_count; ++i) {
702 struct radv_render_pass_attachment *attachment;
703
704 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
705 continue;
706
707 attachment = pass->attachments + subpass->color_attachments[i].attachment;
708
709 if (format_is_int8(attachment->format))
710 *is_int8 |= 1 << i;
711 if (format_is_int10(attachment->format))
712 *is_int10 |= 1 << i;
713 }
714 }
715
716 static void
717 radv_blend_check_commutativity(struct radv_blend_state *blend,
718 VkBlendOp op, VkBlendFactor src,
719 VkBlendFactor dst, unsigned chanmask)
720 {
721 /* Src factor is allowed when it does not depend on Dst. */
722 static const uint32_t src_allowed =
723 (1u << VK_BLEND_FACTOR_ONE) |
724 (1u << VK_BLEND_FACTOR_SRC_COLOR) |
725 (1u << VK_BLEND_FACTOR_SRC_ALPHA) |
726 (1u << VK_BLEND_FACTOR_SRC_ALPHA_SATURATE) |
727 (1u << VK_BLEND_FACTOR_CONSTANT_COLOR) |
728 (1u << VK_BLEND_FACTOR_CONSTANT_ALPHA) |
729 (1u << VK_BLEND_FACTOR_SRC1_COLOR) |
730 (1u << VK_BLEND_FACTOR_SRC1_ALPHA) |
731 (1u << VK_BLEND_FACTOR_ZERO) |
732 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR) |
733 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) |
734 (1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR) |
735 (1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA) |
736 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR) |
737 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA);
738
739 if (dst == VK_BLEND_FACTOR_ONE &&
740 (src_allowed & (1u << src))) {
741 /* Addition is commutative, but floating point addition isn't
742 * associative: subtle changes can be introduced via different
743 * rounding. Be conservative, only enable for min and max.
744 */
745 if (op == VK_BLEND_OP_MAX || op == VK_BLEND_OP_MIN)
746 blend->commutative_4bit |= chanmask;
747 }
748 }
749
750 static struct radv_blend_state
751 radv_pipeline_init_blend_state(struct radv_pipeline *pipeline,
752 const VkGraphicsPipelineCreateInfo *pCreateInfo,
753 const struct radv_graphics_pipeline_create_info *extra)
754 {
755 const VkPipelineColorBlendStateCreateInfo *vkblend = radv_pipeline_get_color_blend_state(pCreateInfo);
756 const VkPipelineMultisampleStateCreateInfo *vkms = radv_pipeline_get_multisample_state(pCreateInfo);
757 struct radv_blend_state blend = {0};
758 unsigned mode = V_028808_CB_NORMAL;
759 int i;
760
761 if (extra && extra->custom_blend_mode) {
762 blend.single_cb_enable = true;
763 mode = extra->custom_blend_mode;
764 }
765
766 blend.cb_color_control = 0;
767 if (vkblend) {
768 if (vkblend->logicOpEnable)
769 blend.cb_color_control |= S_028808_ROP3(si_translate_blend_logic_op(vkblend->logicOp));
770 else
771 blend.cb_color_control |= S_028808_ROP3(V_028808_ROP3_COPY);
772 }
773
774 blend.db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(3) |
775 S_028B70_ALPHA_TO_MASK_OFFSET1(1) |
776 S_028B70_ALPHA_TO_MASK_OFFSET2(0) |
777 S_028B70_ALPHA_TO_MASK_OFFSET3(2) |
778 S_028B70_OFFSET_ROUND(1);
779
780 if (vkms && vkms->alphaToCoverageEnable) {
781 blend.db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1);
782 blend.need_src_alpha |= 0x1;
783 }
784
785 blend.cb_target_mask = 0;
786 if (vkblend) {
787 for (i = 0; i < vkblend->attachmentCount; i++) {
788 const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i];
789 unsigned blend_cntl = 0;
790 unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt;
791 VkBlendOp eqRGB = att->colorBlendOp;
792 VkBlendFactor srcRGB = att->srcColorBlendFactor;
793 VkBlendFactor dstRGB = att->dstColorBlendFactor;
794 VkBlendOp eqA = att->alphaBlendOp;
795 VkBlendFactor srcA = att->srcAlphaBlendFactor;
796 VkBlendFactor dstA = att->dstAlphaBlendFactor;
797
798 blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
799
800 if (!att->colorWriteMask)
801 continue;
802
803 blend.cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i);
804 blend.cb_target_enabled_4bit |= 0xf << (4 * i);
805 if (!att->blendEnable) {
806 blend.cb_blend_control[i] = blend_cntl;
807 continue;
808 }
809
810 if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA))
811 if (i == 0)
812 blend.mrt0_is_dual_src = true;
813
814 if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
815 srcRGB = VK_BLEND_FACTOR_ONE;
816 dstRGB = VK_BLEND_FACTOR_ONE;
817 }
818 if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) {
819 srcA = VK_BLEND_FACTOR_ONE;
820 dstA = VK_BLEND_FACTOR_ONE;
821 }
822
823 radv_blend_check_commutativity(&blend, eqRGB, srcRGB, dstRGB,
824 0x7 << (4 * i));
825 radv_blend_check_commutativity(&blend, eqA, srcA, dstA,
826 0x8 << (4 * i));
827
828 /* Blending optimizations for RB+.
829 * These transformations don't change the behavior.
830 *
831 * First, get rid of DST in the blend factors:
832 * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
833 */
834 si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB,
835 VK_BLEND_FACTOR_DST_COLOR,
836 VK_BLEND_FACTOR_SRC_COLOR);
837
838 si_blend_remove_dst(&eqA, &srcA, &dstA,
839 VK_BLEND_FACTOR_DST_COLOR,
840 VK_BLEND_FACTOR_SRC_COLOR);
841
842 si_blend_remove_dst(&eqA, &srcA, &dstA,
843 VK_BLEND_FACTOR_DST_ALPHA,
844 VK_BLEND_FACTOR_SRC_ALPHA);
845
846 /* Look up the ideal settings from tables. */
847 srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false);
848 dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false);
849 srcA_opt = si_translate_blend_opt_factor(srcA, true);
850 dstA_opt = si_translate_blend_opt_factor(dstA, true);
851
852 /* Handle interdependencies. */
853 if (si_blend_factor_uses_dst(srcRGB))
854 dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
855 if (si_blend_factor_uses_dst(srcA))
856 dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
857
858 if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE &&
859 (dstRGB == VK_BLEND_FACTOR_ZERO ||
860 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
861 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE))
862 dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
863
864 /* Set the final value. */
865 blend.sx_mrt_blend_opt[i] =
866 S_028760_COLOR_SRC_OPT(srcRGB_opt) |
867 S_028760_COLOR_DST_OPT(dstRGB_opt) |
868 S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) |
869 S_028760_ALPHA_SRC_OPT(srcA_opt) |
870 S_028760_ALPHA_DST_OPT(dstA_opt) |
871 S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA));
872 blend_cntl |= S_028780_ENABLE(1);
873
874 blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB));
875 blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB));
876 blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB));
877 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
878 blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
879 blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA));
880 blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA));
881 blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA));
882 }
883 blend.cb_blend_control[i] = blend_cntl;
884
885 blend.blend_enable_4bit |= 0xfu << (i * 4);
886
887 if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
888 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
889 srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
890 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
891 srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA ||
892 dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
893 blend.need_src_alpha |= 1 << i;
894 }
895 for (i = vkblend->attachmentCount; i < 8; i++) {
896 blend.cb_blend_control[i] = 0;
897 blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
898 }
899 }
900
901 if (pipeline->device->physical_device->rad_info.has_rbplus) {
902 /* Disable RB+ blend optimizations for dual source blending. */
903 if (blend.mrt0_is_dual_src) {
904 for (i = 0; i < 8; i++) {
905 blend.sx_mrt_blend_opt[i] =
906 S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) |
907 S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE);
908 }
909 }
910
911 /* RB+ doesn't work with dual source blending, logic op and
912 * RESOLVE.
913 */
914 if (blend.mrt0_is_dual_src ||
915 (vkblend && vkblend->logicOpEnable) ||
916 mode == V_028808_CB_RESOLVE)
917 blend.cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1);
918 }
919
920 if (blend.cb_target_mask)
921 blend.cb_color_control |= S_028808_MODE(mode);
922 else
923 blend.cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
924
925 radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo, &blend);
926 return blend;
927 }
928
929 static uint32_t si_translate_stencil_op(enum VkStencilOp op)
930 {
931 switch (op) {
932 case VK_STENCIL_OP_KEEP:
933 return V_02842C_STENCIL_KEEP;
934 case VK_STENCIL_OP_ZERO:
935 return V_02842C_STENCIL_ZERO;
936 case VK_STENCIL_OP_REPLACE:
937 return V_02842C_STENCIL_REPLACE_TEST;
938 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
939 return V_02842C_STENCIL_ADD_CLAMP;
940 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
941 return V_02842C_STENCIL_SUB_CLAMP;
942 case VK_STENCIL_OP_INVERT:
943 return V_02842C_STENCIL_INVERT;
944 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
945 return V_02842C_STENCIL_ADD_WRAP;
946 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
947 return V_02842C_STENCIL_SUB_WRAP;
948 default:
949 return 0;
950 }
951 }
952
953 static uint32_t si_translate_fill(VkPolygonMode func)
954 {
955 switch(func) {
956 case VK_POLYGON_MODE_FILL:
957 return V_028814_X_DRAW_TRIANGLES;
958 case VK_POLYGON_MODE_LINE:
959 return V_028814_X_DRAW_LINES;
960 case VK_POLYGON_MODE_POINT:
961 return V_028814_X_DRAW_POINTS;
962 default:
963 assert(0);
964 return V_028814_X_DRAW_POINTS;
965 }
966 }
967
968 static uint8_t radv_pipeline_get_ps_iter_samples(const VkGraphicsPipelineCreateInfo *pCreateInfo)
969 {
970 const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState;
971 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
972 struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
973 uint32_t ps_iter_samples = 1;
974 uint32_t num_samples;
975
976 /* From the Vulkan 1.1.129 spec, 26.7. Sample Shading:
977 *
978 * "If the VK_AMD_mixed_attachment_samples extension is enabled and the
979 * subpass uses color attachments, totalSamples is the number of
980 * samples of the color attachments. Otherwise, totalSamples is the
981 * value of VkPipelineMultisampleStateCreateInfo::rasterizationSamples
982 * specified at pipeline creation time."
983 */
984 if (subpass->has_color_att) {
985 num_samples = subpass->color_sample_count;
986 } else {
987 num_samples = vkms->rasterizationSamples;
988 }
989
990 if (vkms->sampleShadingEnable) {
991 ps_iter_samples = ceil(vkms->minSampleShading * num_samples);
992 ps_iter_samples = util_next_power_of_two(ps_iter_samples);
993 }
994 return ps_iter_samples;
995 }
996
997 static bool
998 radv_is_depth_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
999 {
1000 return pCreateInfo->depthTestEnable &&
1001 pCreateInfo->depthWriteEnable &&
1002 pCreateInfo->depthCompareOp != VK_COMPARE_OP_NEVER;
1003 }
1004
1005 static bool
1006 radv_writes_stencil(const VkStencilOpState *state)
1007 {
1008 return state->writeMask &&
1009 (state->failOp != VK_STENCIL_OP_KEEP ||
1010 state->passOp != VK_STENCIL_OP_KEEP ||
1011 state->depthFailOp != VK_STENCIL_OP_KEEP);
1012 }
1013
1014 static bool
1015 radv_is_stencil_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
1016 {
1017 return pCreateInfo->stencilTestEnable &&
1018 (radv_writes_stencil(&pCreateInfo->front) ||
1019 radv_writes_stencil(&pCreateInfo->back));
1020 }
1021
1022 static bool
1023 radv_is_ds_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
1024 {
1025 return radv_is_depth_write_enabled(pCreateInfo) ||
1026 radv_is_stencil_write_enabled(pCreateInfo);
1027 }
1028
1029 static bool
1030 radv_order_invariant_stencil_op(VkStencilOp op)
1031 {
1032 /* REPLACE is normally order invariant, except when the stencil
1033 * reference value is written by the fragment shader. Tracking this
1034 * interaction does not seem worth the effort, so be conservative.
1035 */
1036 return op != VK_STENCIL_OP_INCREMENT_AND_CLAMP &&
1037 op != VK_STENCIL_OP_DECREMENT_AND_CLAMP &&
1038 op != VK_STENCIL_OP_REPLACE;
1039 }
1040
1041 static bool
1042 radv_order_invariant_stencil_state(const VkStencilOpState *state)
1043 {
1044 /* Compute whether, assuming Z writes are disabled, this stencil state
1045 * is order invariant in the sense that the set of passing fragments as
1046 * well as the final stencil buffer result does not depend on the order
1047 * of fragments.
1048 */
1049 return !state->writeMask ||
1050 /* The following assumes that Z writes are disabled. */
1051 (state->compareOp == VK_COMPARE_OP_ALWAYS &&
1052 radv_order_invariant_stencil_op(state->passOp) &&
1053 radv_order_invariant_stencil_op(state->depthFailOp)) ||
1054 (state->compareOp == VK_COMPARE_OP_NEVER &&
1055 radv_order_invariant_stencil_op(state->failOp));
1056 }
1057
1058 static bool
1059 radv_pipeline_out_of_order_rast(struct radv_pipeline *pipeline,
1060 struct radv_blend_state *blend,
1061 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1062 {
1063 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
1064 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
1065 const VkPipelineDepthStencilStateCreateInfo *vkds = radv_pipeline_get_depth_stencil_state(pCreateInfo);
1066 const VkPipelineColorBlendStateCreateInfo *vkblend = radv_pipeline_get_color_blend_state(pCreateInfo);
1067 unsigned colormask = blend->cb_target_enabled_4bit;
1068
1069 if (!pipeline->device->physical_device->out_of_order_rast_allowed)
1070 return false;
1071
1072 /* Be conservative if a logic operation is enabled with color buffers. */
1073 if (colormask && vkblend && vkblend->logicOpEnable)
1074 return false;
1075
1076 /* Default depth/stencil invariance when no attachment is bound. */
1077 struct radv_dsa_order_invariance dsa_order_invariant = {
1078 .zs = true, .pass_set = true
1079 };
1080
1081 if (vkds) {
1082 struct radv_render_pass_attachment *attachment =
1083 pass->attachments + subpass->depth_stencil_attachment->attachment;
1084 bool has_stencil = vk_format_is_stencil(attachment->format);
1085 struct radv_dsa_order_invariance order_invariance[2];
1086 struct radv_shader_variant *ps =
1087 pipeline->shaders[MESA_SHADER_FRAGMENT];
1088
1089 /* Compute depth/stencil order invariance in order to know if
1090 * it's safe to enable out-of-order.
1091 */
1092 bool zfunc_is_ordered =
1093 vkds->depthCompareOp == VK_COMPARE_OP_NEVER ||
1094 vkds->depthCompareOp == VK_COMPARE_OP_LESS ||
1095 vkds->depthCompareOp == VK_COMPARE_OP_LESS_OR_EQUAL ||
1096 vkds->depthCompareOp == VK_COMPARE_OP_GREATER ||
1097 vkds->depthCompareOp == VK_COMPARE_OP_GREATER_OR_EQUAL;
1098
1099 bool nozwrite_and_order_invariant_stencil =
1100 !radv_is_ds_write_enabled(vkds) ||
1101 (!radv_is_depth_write_enabled(vkds) &&
1102 radv_order_invariant_stencil_state(&vkds->front) &&
1103 radv_order_invariant_stencil_state(&vkds->back));
1104
1105 order_invariance[1].zs =
1106 nozwrite_and_order_invariant_stencil ||
1107 (!radv_is_stencil_write_enabled(vkds) &&
1108 zfunc_is_ordered);
1109 order_invariance[0].zs =
1110 !radv_is_depth_write_enabled(vkds) || zfunc_is_ordered;
1111
1112 order_invariance[1].pass_set =
1113 nozwrite_and_order_invariant_stencil ||
1114 (!radv_is_stencil_write_enabled(vkds) &&
1115 (vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS ||
1116 vkds->depthCompareOp == VK_COMPARE_OP_NEVER));
1117 order_invariance[0].pass_set =
1118 !radv_is_depth_write_enabled(vkds) ||
1119 (vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS ||
1120 vkds->depthCompareOp == VK_COMPARE_OP_NEVER);
1121
1122 dsa_order_invariant = order_invariance[has_stencil];
1123 if (!dsa_order_invariant.zs)
1124 return false;
1125
1126 /* The set of PS invocations is always order invariant,
1127 * except when early Z/S tests are requested.
1128 */
1129 if (ps &&
1130 ps->info.ps.writes_memory &&
1131 ps->info.ps.early_fragment_test &&
1132 !dsa_order_invariant.pass_set)
1133 return false;
1134
1135 /* Determine if out-of-order rasterization should be disabled
1136 * when occlusion queries are used.
1137 */
1138 pipeline->graphics.disable_out_of_order_rast_for_occlusion =
1139 !dsa_order_invariant.pass_set;
1140 }
1141
1142 /* No color buffers are enabled for writing. */
1143 if (!colormask)
1144 return true;
1145
1146 unsigned blendmask = colormask & blend->blend_enable_4bit;
1147
1148 if (blendmask) {
1149 /* Only commutative blending. */
1150 if (blendmask & ~blend->commutative_4bit)
1151 return false;
1152
1153 if (!dsa_order_invariant.pass_set)
1154 return false;
1155 }
1156
1157 if (colormask & ~blendmask)
1158 return false;
1159
1160 return true;
1161 }
1162
1163 static void
1164 radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline,
1165 struct radv_blend_state *blend,
1166 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1167 {
1168 const VkPipelineMultisampleStateCreateInfo *vkms = radv_pipeline_get_multisample_state(pCreateInfo);
1169 struct radv_multisample_state *ms = &pipeline->graphics.ms;
1170 unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes;
1171 bool out_of_order_rast = false;
1172 int ps_iter_samples = 1;
1173 uint32_t mask = 0xffff;
1174
1175 if (vkms) {
1176 ms->num_samples = vkms->rasterizationSamples;
1177
1178 /* From the Vulkan 1.1.129 spec, 26.7. Sample Shading:
1179 *
1180 * "Sample shading is enabled for a graphics pipeline:
1181 *
1182 * - If the interface of the fragment shader entry point of the
1183 * graphics pipeline includes an input variable decorated
1184 * with SampleId or SamplePosition. In this case
1185 * minSampleShadingFactor takes the value 1.0.
1186 * - Else if the sampleShadingEnable member of the
1187 * VkPipelineMultisampleStateCreateInfo structure specified
1188 * when creating the graphics pipeline is set to VK_TRUE. In
1189 * this case minSampleShadingFactor takes the value of
1190 * VkPipelineMultisampleStateCreateInfo::minSampleShading.
1191 *
1192 * Otherwise, sample shading is considered disabled."
1193 */
1194 if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.force_persample) {
1195 ps_iter_samples = ms->num_samples;
1196 } else {
1197 ps_iter_samples = radv_pipeline_get_ps_iter_samples(pCreateInfo);
1198 }
1199 } else {
1200 ms->num_samples = 1;
1201 }
1202
1203 const struct VkPipelineRasterizationStateRasterizationOrderAMD *raster_order =
1204 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD);
1205 if (raster_order && raster_order->rasterizationOrder == VK_RASTERIZATION_ORDER_RELAXED_AMD) {
1206 /* Out-of-order rasterization is explicitly enabled by the
1207 * application.
1208 */
1209 out_of_order_rast = true;
1210 } else {
1211 /* Determine if the driver can enable out-of-order
1212 * rasterization internally.
1213 */
1214 out_of_order_rast =
1215 radv_pipeline_out_of_order_rast(pipeline, blend, pCreateInfo);
1216 }
1217
1218 ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1);
1219 ms->pa_sc_aa_config = 0;
1220 ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) |
1221 S_028804_INCOHERENT_EQAA_READS(1) |
1222 S_028804_INTERPOLATE_COMP_Z(1) |
1223 S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
1224 ms->pa_sc_mode_cntl_1 =
1225 S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes
1226 S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) |
1227 S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(out_of_order_rast) |
1228 S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7) |
1229 /* always 1: */
1230 S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) |
1231 S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) |
1232 S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
1233 S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) |
1234 S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
1235 S_028A4C_FORCE_EOV_REZ_ENABLE(1);
1236 ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE(pipeline->device->physical_device->rad_info.chip_class >= GFX9) |
1237 S_028A48_VPORT_SCISSOR_ENABLE(1);
1238
1239 const VkPipelineRasterizationLineStateCreateInfoEXT *rast_line =
1240 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1241 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
1242 if (rast_line) {
1243 ms->pa_sc_mode_cntl_0 |= S_028A48_LINE_STIPPLE_ENABLE(rast_line->stippledLineEnable);
1244 if (rast_line->lineRasterizationMode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT) {
1245 /* From the Vulkan spec 1.1.129:
1246 *
1247 * "When VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT lines
1248 * are being rasterized, sample locations may all be
1249 * treated as being at the pixel center (this may
1250 * affect attribute and depth interpolation)."
1251 */
1252 ms->num_samples = 1;
1253 }
1254 }
1255
1256 if (ms->num_samples > 1) {
1257 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
1258 struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1259 uint32_t z_samples = subpass->depth_stencil_attachment ? subpass->depth_sample_count : ms->num_samples;
1260 unsigned log_samples = util_logbase2(ms->num_samples);
1261 unsigned log_z_samples = util_logbase2(z_samples);
1262 unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples);
1263 ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1);
1264 ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */
1265 ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_z_samples) |
1266 S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
1267 S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) |
1268 S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
1269 ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) |
1270 S_028BE0_MAX_SAMPLE_DIST(radv_get_default_max_sample_dist(log_samples)) |
1271 S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */
1272 ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1);
1273 if (ps_iter_samples > 1)
1274 pipeline->graphics.spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1275 }
1276
1277 if (vkms && vkms->pSampleMask) {
1278 mask = vkms->pSampleMask[0] & 0xffff;
1279 }
1280
1281 ms->pa_sc_aa_mask[0] = mask | (mask << 16);
1282 ms->pa_sc_aa_mask[1] = mask | (mask << 16);
1283 }
1284
1285 static bool
1286 radv_prim_can_use_guardband(enum VkPrimitiveTopology topology)
1287 {
1288 switch (topology) {
1289 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
1290 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
1291 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
1292 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1293 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1294 return false;
1295 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
1296 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
1297 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
1298 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1299 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1300 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
1301 return true;
1302 default:
1303 unreachable("unhandled primitive type");
1304 }
1305 }
1306
1307 static uint32_t
1308 si_translate_prim(enum VkPrimitiveTopology topology)
1309 {
1310 switch (topology) {
1311 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
1312 return V_008958_DI_PT_POINTLIST;
1313 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
1314 return V_008958_DI_PT_LINELIST;
1315 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
1316 return V_008958_DI_PT_LINESTRIP;
1317 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
1318 return V_008958_DI_PT_TRILIST;
1319 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
1320 return V_008958_DI_PT_TRISTRIP;
1321 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
1322 return V_008958_DI_PT_TRIFAN;
1323 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1324 return V_008958_DI_PT_LINELIST_ADJ;
1325 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1326 return V_008958_DI_PT_LINESTRIP_ADJ;
1327 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1328 return V_008958_DI_PT_TRILIST_ADJ;
1329 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1330 return V_008958_DI_PT_TRISTRIP_ADJ;
1331 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
1332 return V_008958_DI_PT_PATCH;
1333 default:
1334 assert(0);
1335 return 0;
1336 }
1337 }
1338
1339 static uint32_t
1340 si_conv_gl_prim_to_gs_out(unsigned gl_prim)
1341 {
1342 switch (gl_prim) {
1343 case 0: /* GL_POINTS */
1344 return V_028A6C_OUTPRIM_TYPE_POINTLIST;
1345 case 1: /* GL_LINES */
1346 case 3: /* GL_LINE_STRIP */
1347 case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */
1348 case 0x8E7A: /* GL_ISOLINES */
1349 return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
1350
1351 case 4: /* GL_TRIANGLES */
1352 case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */
1353 case 5: /* GL_TRIANGLE_STRIP */
1354 case 7: /* GL_QUADS */
1355 return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
1356 default:
1357 assert(0);
1358 return 0;
1359 }
1360 }
1361
1362 static uint32_t
1363 si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology)
1364 {
1365 switch (topology) {
1366 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
1367 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
1368 return V_028A6C_OUTPRIM_TYPE_POINTLIST;
1369 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
1370 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
1371 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1372 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1373 return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
1374 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
1375 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
1376 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
1377 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1378 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1379 return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
1380 default:
1381 assert(0);
1382 return 0;
1383 }
1384 }
1385
1386 static unsigned radv_dynamic_state_mask(VkDynamicState state)
1387 {
1388 switch(state) {
1389 case VK_DYNAMIC_STATE_VIEWPORT:
1390 return RADV_DYNAMIC_VIEWPORT;
1391 case VK_DYNAMIC_STATE_SCISSOR:
1392 return RADV_DYNAMIC_SCISSOR;
1393 case VK_DYNAMIC_STATE_LINE_WIDTH:
1394 return RADV_DYNAMIC_LINE_WIDTH;
1395 case VK_DYNAMIC_STATE_DEPTH_BIAS:
1396 return RADV_DYNAMIC_DEPTH_BIAS;
1397 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
1398 return RADV_DYNAMIC_BLEND_CONSTANTS;
1399 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
1400 return RADV_DYNAMIC_DEPTH_BOUNDS;
1401 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
1402 return RADV_DYNAMIC_STENCIL_COMPARE_MASK;
1403 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
1404 return RADV_DYNAMIC_STENCIL_WRITE_MASK;
1405 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
1406 return RADV_DYNAMIC_STENCIL_REFERENCE;
1407 case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT:
1408 return RADV_DYNAMIC_DISCARD_RECTANGLE;
1409 case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
1410 return RADV_DYNAMIC_SAMPLE_LOCATIONS;
1411 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
1412 return RADV_DYNAMIC_LINE_STIPPLE;
1413 default:
1414 unreachable("Unhandled dynamic state");
1415 }
1416 }
1417
1418 static uint32_t radv_pipeline_needed_dynamic_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
1419 {
1420 uint32_t states = RADV_DYNAMIC_ALL;
1421
1422 /* If rasterization is disabled we do not care about any of the dynamic states,
1423 * since they are all rasterization related only. */
1424 if (pCreateInfo->pRasterizationState->rasterizerDiscardEnable)
1425 return 0;
1426
1427 if (!pCreateInfo->pRasterizationState->depthBiasEnable)
1428 states &= ~RADV_DYNAMIC_DEPTH_BIAS;
1429
1430 if (!pCreateInfo->pDepthStencilState ||
1431 !pCreateInfo->pDepthStencilState->depthBoundsTestEnable)
1432 states &= ~RADV_DYNAMIC_DEPTH_BOUNDS;
1433
1434 if (!pCreateInfo->pDepthStencilState ||
1435 !pCreateInfo->pDepthStencilState->stencilTestEnable)
1436 states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK |
1437 RADV_DYNAMIC_STENCIL_WRITE_MASK |
1438 RADV_DYNAMIC_STENCIL_REFERENCE);
1439
1440 if (!vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT))
1441 states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE;
1442
1443 if (!pCreateInfo->pMultisampleState ||
1444 !vk_find_struct_const(pCreateInfo->pMultisampleState->pNext,
1445 PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT))
1446 states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS;
1447
1448 if (!pCreateInfo->pRasterizationState ||
1449 !vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1450 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT))
1451 states &= ~RADV_DYNAMIC_LINE_STIPPLE;
1452
1453 /* TODO: blend constants & line width. */
1454
1455 return states;
1456 }
1457
1458
1459 static void
1460 radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline,
1461 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1462 {
1463 uint32_t needed_states = radv_pipeline_needed_dynamic_state(pCreateInfo);
1464 uint32_t states = needed_states;
1465 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
1466 struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1467
1468 pipeline->dynamic_state = default_dynamic_state;
1469 pipeline->graphics.needed_dynamic_state = needed_states;
1470
1471 if (pCreateInfo->pDynamicState) {
1472 /* Remove all of the states that are marked as dynamic */
1473 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1474 for (uint32_t s = 0; s < count; s++)
1475 states &= ~radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]);
1476 }
1477
1478 struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
1479
1480 if (needed_states & RADV_DYNAMIC_VIEWPORT) {
1481 assert(pCreateInfo->pViewportState);
1482
1483 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1484 if (states & RADV_DYNAMIC_VIEWPORT) {
1485 typed_memcpy(dynamic->viewport.viewports,
1486 pCreateInfo->pViewportState->pViewports,
1487 pCreateInfo->pViewportState->viewportCount);
1488 }
1489 }
1490
1491 if (needed_states & RADV_DYNAMIC_SCISSOR) {
1492 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1493 if (states & RADV_DYNAMIC_SCISSOR) {
1494 typed_memcpy(dynamic->scissor.scissors,
1495 pCreateInfo->pViewportState->pScissors,
1496 pCreateInfo->pViewportState->scissorCount);
1497 }
1498 }
1499
1500 if (states & RADV_DYNAMIC_LINE_WIDTH) {
1501 assert(pCreateInfo->pRasterizationState);
1502 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1503 }
1504
1505 if (states & RADV_DYNAMIC_DEPTH_BIAS) {
1506 assert(pCreateInfo->pRasterizationState);
1507 dynamic->depth_bias.bias =
1508 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1509 dynamic->depth_bias.clamp =
1510 pCreateInfo->pRasterizationState->depthBiasClamp;
1511 dynamic->depth_bias.slope =
1512 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1513 }
1514
1515 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1516 *
1517 * pColorBlendState is [...] NULL if the pipeline has rasterization
1518 * disabled or if the subpass of the render pass the pipeline is
1519 * created against does not use any color attachments.
1520 */
1521 if (subpass->has_color_att && states & RADV_DYNAMIC_BLEND_CONSTANTS) {
1522 assert(pCreateInfo->pColorBlendState);
1523 typed_memcpy(dynamic->blend_constants,
1524 pCreateInfo->pColorBlendState->blendConstants, 4);
1525 }
1526
1527 /* If there is no depthstencil attachment, then don't read
1528 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1529 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1530 * no need to override the depthstencil defaults in
1531 * radv_pipeline::dynamic_state when there is no depthstencil attachment.
1532 *
1533 * Section 9.2 of the Vulkan 1.0.15 spec says:
1534 *
1535 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1536 * disabled or if the subpass of the render pass the pipeline is created
1537 * against does not use a depth/stencil attachment.
1538 */
1539 if (needed_states && subpass->depth_stencil_attachment) {
1540 assert(pCreateInfo->pDepthStencilState);
1541
1542 if (states & RADV_DYNAMIC_DEPTH_BOUNDS) {
1543 dynamic->depth_bounds.min =
1544 pCreateInfo->pDepthStencilState->minDepthBounds;
1545 dynamic->depth_bounds.max =
1546 pCreateInfo->pDepthStencilState->maxDepthBounds;
1547 }
1548
1549 if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) {
1550 dynamic->stencil_compare_mask.front =
1551 pCreateInfo->pDepthStencilState->front.compareMask;
1552 dynamic->stencil_compare_mask.back =
1553 pCreateInfo->pDepthStencilState->back.compareMask;
1554 }
1555
1556 if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) {
1557 dynamic->stencil_write_mask.front =
1558 pCreateInfo->pDepthStencilState->front.writeMask;
1559 dynamic->stencil_write_mask.back =
1560 pCreateInfo->pDepthStencilState->back.writeMask;
1561 }
1562
1563 if (states & RADV_DYNAMIC_STENCIL_REFERENCE) {
1564 dynamic->stencil_reference.front =
1565 pCreateInfo->pDepthStencilState->front.reference;
1566 dynamic->stencil_reference.back =
1567 pCreateInfo->pDepthStencilState->back.reference;
1568 }
1569 }
1570
1571 const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info =
1572 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT);
1573 if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
1574 dynamic->discard_rectangle.count = discard_rectangle_info->discardRectangleCount;
1575 if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
1576 typed_memcpy(dynamic->discard_rectangle.rectangles,
1577 discard_rectangle_info->pDiscardRectangles,
1578 discard_rectangle_info->discardRectangleCount);
1579 }
1580 }
1581
1582 if (needed_states & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
1583 const VkPipelineSampleLocationsStateCreateInfoEXT *sample_location_info =
1584 vk_find_struct_const(pCreateInfo->pMultisampleState->pNext,
1585 PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
1586 /* If sampleLocationsEnable is VK_FALSE, the default sample
1587 * locations are used and the values specified in
1588 * sampleLocationsInfo are ignored.
1589 */
1590 if (sample_location_info->sampleLocationsEnable) {
1591 const VkSampleLocationsInfoEXT *pSampleLocationsInfo =
1592 &sample_location_info->sampleLocationsInfo;
1593
1594 assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS);
1595
1596 dynamic->sample_location.per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel;
1597 dynamic->sample_location.grid_size = pSampleLocationsInfo->sampleLocationGridSize;
1598 dynamic->sample_location.count = pSampleLocationsInfo->sampleLocationsCount;
1599 typed_memcpy(&dynamic->sample_location.locations[0],
1600 pSampleLocationsInfo->pSampleLocations,
1601 pSampleLocationsInfo->sampleLocationsCount);
1602 }
1603 }
1604
1605 const VkPipelineRasterizationLineStateCreateInfoEXT *rast_line_info =
1606 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1607 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
1608 if (needed_states & RADV_DYNAMIC_LINE_STIPPLE) {
1609 dynamic->line_stipple.factor = rast_line_info->lineStippleFactor;
1610 dynamic->line_stipple.pattern = rast_line_info->lineStipplePattern;
1611 }
1612
1613 pipeline->dynamic_state.mask = states;
1614 }
1615
1616 static void
1617 gfx9_get_gs_info(const struct radv_pipeline_key *key,
1618 const struct radv_pipeline *pipeline,
1619 nir_shader **nir,
1620 struct radv_shader_info *infos,
1621 struct gfx9_gs_info *out)
1622 {
1623 struct radv_shader_info *gs_info = &infos[MESA_SHADER_GEOMETRY];
1624 struct radv_es_output_info *es_info;
1625 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9)
1626 es_info = nir[MESA_SHADER_TESS_CTRL] ? &gs_info->tes.es_info : &gs_info->vs.es_info;
1627 else
1628 es_info = nir[MESA_SHADER_TESS_CTRL] ?
1629 &infos[MESA_SHADER_TESS_EVAL].tes.es_info :
1630 &infos[MESA_SHADER_VERTEX].vs.es_info;
1631
1632 unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1);
1633 bool uses_adjacency;
1634 switch(key->topology) {
1635 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1636 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1637 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1638 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1639 uses_adjacency = true;
1640 break;
1641 default:
1642 uses_adjacency = false;
1643 break;
1644 }
1645
1646 /* All these are in dwords: */
1647 /* We can't allow using the whole LDS, because GS waves compete with
1648 * other shader stages for LDS space. */
1649 const unsigned max_lds_size = 8 * 1024;
1650 const unsigned esgs_itemsize = es_info->esgs_itemsize / 4;
1651 unsigned esgs_lds_size;
1652
1653 /* All these are per subgroup: */
1654 const unsigned max_out_prims = 32 * 1024;
1655 const unsigned max_es_verts = 255;
1656 const unsigned ideal_gs_prims = 64;
1657 unsigned max_gs_prims, gs_prims;
1658 unsigned min_es_verts, es_verts, worst_case_es_verts;
1659
1660 if (uses_adjacency || gs_num_invocations > 1)
1661 max_gs_prims = 127 / gs_num_invocations;
1662 else
1663 max_gs_prims = 255;
1664
1665 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
1666 * Make sure we don't go over the maximum value.
1667 */
1668 if (gs_info->gs.vertices_out > 0) {
1669 max_gs_prims = MIN2(max_gs_prims,
1670 max_out_prims /
1671 (gs_info->gs.vertices_out * gs_num_invocations));
1672 }
1673 assert(max_gs_prims > 0);
1674
1675 /* If the primitive has adjacency, halve the number of vertices
1676 * that will be reused in multiple primitives.
1677 */
1678 min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1);
1679
1680 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
1681 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
1682
1683 /* Compute ESGS LDS size based on the worst case number of ES vertices
1684 * needed to create the target number of GS prims per subgroup.
1685 */
1686 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
1687
1688 /* If total LDS usage is too big, refactor partitions based on ratio
1689 * of ESGS item sizes.
1690 */
1691 if (esgs_lds_size > max_lds_size) {
1692 /* Our target GS Prims Per Subgroup was too large. Calculate
1693 * the maximum number of GS Prims Per Subgroup that will fit
1694 * into LDS, capped by the maximum that the hardware can support.
1695 */
1696 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
1697 max_gs_prims);
1698 assert(gs_prims > 0);
1699 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
1700 max_es_verts);
1701
1702 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
1703 assert(esgs_lds_size <= max_lds_size);
1704 }
1705
1706 /* Now calculate remaining ESGS information. */
1707 if (esgs_lds_size)
1708 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
1709 else
1710 es_verts = max_es_verts;
1711
1712 /* Vertices for adjacency primitives are not always reused, so restore
1713 * it for ES_VERTS_PER_SUBGRP.
1714 */
1715 min_es_verts = gs_info->gs.vertices_in;
1716
1717 /* For normal primitives, the VGT only checks if they are past the ES
1718 * verts per subgroup after allocating a full GS primitive and if they
1719 * are, kick off a new subgroup. But if those additional ES verts are
1720 * unique (e.g. not reused) we need to make sure there is enough LDS
1721 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
1722 */
1723 es_verts -= min_es_verts - 1;
1724
1725 uint32_t es_verts_per_subgroup = es_verts;
1726 uint32_t gs_prims_per_subgroup = gs_prims;
1727 uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
1728 uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out;
1729 out->lds_size = align(esgs_lds_size, 128) / 128;
1730 out->vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(es_verts_per_subgroup) |
1731 S_028A44_GS_PRIMS_PER_SUBGRP(gs_prims_per_subgroup) |
1732 S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_inst_prims_in_subgroup);
1733 out->vgt_gs_max_prims_per_subgroup = S_028A94_MAX_PRIMS_PER_SUBGROUP(max_prims_per_subgroup);
1734 out->vgt_esgs_ring_itemsize = esgs_itemsize;
1735 assert(max_prims_per_subgroup <= max_out_prims);
1736 }
1737
1738 static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
1739 unsigned min_verts_per_prim, bool use_adjacency)
1740 {
1741 unsigned max_reuse = max_esverts - min_verts_per_prim;
1742 if (use_adjacency)
1743 max_reuse /= 2;
1744 *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
1745 }
1746
1747 static unsigned
1748 radv_get_num_input_vertices(nir_shader **nir)
1749 {
1750 if (nir[MESA_SHADER_GEOMETRY]) {
1751 nir_shader *gs = nir[MESA_SHADER_GEOMETRY];
1752
1753 return gs->info.gs.vertices_in;
1754 }
1755
1756 if (nir[MESA_SHADER_TESS_CTRL]) {
1757 nir_shader *tes = nir[MESA_SHADER_TESS_EVAL];
1758
1759 if (tes->info.tess.point_mode)
1760 return 1;
1761 if (tes->info.tess.primitive_mode == GL_ISOLINES)
1762 return 2;
1763 return 3;
1764 }
1765
1766 return 3;
1767 }
1768
1769 static void
1770 gfx10_get_ngg_info(const struct radv_pipeline_key *key,
1771 struct radv_pipeline *pipeline,
1772 nir_shader **nir,
1773 struct radv_shader_info *infos,
1774 struct gfx10_ngg_info *ngg)
1775 {
1776 struct radv_shader_info *gs_info = &infos[MESA_SHADER_GEOMETRY];
1777 struct radv_es_output_info *es_info =
1778 nir[MESA_SHADER_TESS_CTRL] ? &gs_info->tes.es_info : &gs_info->vs.es_info;
1779 unsigned gs_type = nir[MESA_SHADER_GEOMETRY] ? MESA_SHADER_GEOMETRY : MESA_SHADER_VERTEX;
1780 unsigned max_verts_per_prim = radv_get_num_input_vertices(nir);
1781 unsigned min_verts_per_prim =
1782 gs_type == MESA_SHADER_GEOMETRY ? max_verts_per_prim : 1;
1783 unsigned gs_num_invocations = nir[MESA_SHADER_GEOMETRY] ? MAX2(gs_info->gs.invocations, 1) : 1;
1784 bool uses_adjacency;
1785 switch(key->topology) {
1786 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1787 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1788 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1789 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1790 uses_adjacency = true;
1791 break;
1792 default:
1793 uses_adjacency = false;
1794 break;
1795 }
1796
1797 /* All these are in dwords: */
1798 /* We can't allow using the whole LDS, because GS waves compete with
1799 * other shader stages for LDS space.
1800 *
1801 * TODO: We should really take the shader's internal LDS use into
1802 * account. The linker will fail if the size is greater than
1803 * 8K dwords.
1804 */
1805 const unsigned max_lds_size = 8 * 1024 - 768;
1806 const unsigned target_lds_size = max_lds_size;
1807 unsigned esvert_lds_size = 0;
1808 unsigned gsprim_lds_size = 0;
1809
1810 /* All these are per subgroup: */
1811 bool max_vert_out_per_gs_instance = false;
1812 unsigned max_esverts_base = 256;
1813 unsigned max_gsprims_base = 128; /* default prim group size clamp */
1814
1815 /* Hardware has the following non-natural restrictions on the value
1816 * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
1817 * the draw:
1818 * - at most 252 for any line input primitive type
1819 * - at most 251 for any quad input primitive type
1820 * - at most 251 for triangle strips with adjacency (this happens to
1821 * be the natural limit for triangle *lists* with adjacency)
1822 */
1823 max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
1824
1825 if (gs_type == MESA_SHADER_GEOMETRY) {
1826 unsigned max_out_verts_per_gsprim =
1827 gs_info->gs.vertices_out * gs_num_invocations;
1828
1829 if (max_out_verts_per_gsprim <= 256) {
1830 if (max_out_verts_per_gsprim) {
1831 max_gsprims_base = MIN2(max_gsprims_base,
1832 256 / max_out_verts_per_gsprim);
1833 }
1834 } else {
1835 /* Use special multi-cycling mode in which each GS
1836 * instance gets its own subgroup. Does not work with
1837 * tessellation. */
1838 max_vert_out_per_gs_instance = true;
1839 max_gsprims_base = 1;
1840 max_out_verts_per_gsprim = gs_info->gs.vertices_out;
1841 }
1842
1843 esvert_lds_size = es_info->esgs_itemsize / 4;
1844 gsprim_lds_size = (gs_info->gs.gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
1845 } else {
1846 /* VS and TES. */
1847 /* LDS size for passing data from GS to ES. */
1848 struct radv_streamout_info *so_info = nir[MESA_SHADER_TESS_CTRL]
1849 ? &infos[MESA_SHADER_TESS_EVAL].so
1850 : &infos[MESA_SHADER_VERTEX].so;
1851
1852 if (so_info->num_outputs)
1853 esvert_lds_size = 4 * so_info->num_outputs + 1;
1854
1855 /* GS stores Primitive IDs (one DWORD) into LDS at the address
1856 * corresponding to the ES thread of the provoking vertex. All
1857 * ES threads load and export PrimitiveID for their thread.
1858 */
1859 if (!nir[MESA_SHADER_TESS_CTRL] &&
1860 infos[MESA_SHADER_VERTEX].vs.outinfo.export_prim_id)
1861 esvert_lds_size = MAX2(esvert_lds_size, 1);
1862 }
1863
1864 unsigned max_gsprims = max_gsprims_base;
1865 unsigned max_esverts = max_esverts_base;
1866
1867 if (esvert_lds_size)
1868 max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
1869 if (gsprim_lds_size)
1870 max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
1871
1872 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1873 clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency);
1874 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1875
1876 if (esvert_lds_size || gsprim_lds_size) {
1877 /* Now that we have a rough proportionality between esverts
1878 * and gsprims based on the primitive type, scale both of them
1879 * down simultaneously based on required LDS space.
1880 *
1881 * We could be smarter about this if we knew how much vertex
1882 * reuse to expect.
1883 */
1884 unsigned lds_total = max_esverts * esvert_lds_size +
1885 max_gsprims * gsprim_lds_size;
1886 if (lds_total > target_lds_size) {
1887 max_esverts = max_esverts * target_lds_size / lds_total;
1888 max_gsprims = max_gsprims * target_lds_size / lds_total;
1889
1890 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1891 clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
1892 min_verts_per_prim, uses_adjacency);
1893 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1894 }
1895 }
1896
1897 /* Round up towards full wave sizes for better ALU utilization. */
1898 if (!max_vert_out_per_gs_instance) {
1899 unsigned orig_max_esverts;
1900 unsigned orig_max_gsprims;
1901 unsigned wavesize;
1902
1903 if (gs_type == MESA_SHADER_GEOMETRY) {
1904 wavesize = gs_info->wave_size;
1905 } else {
1906 wavesize = nir[MESA_SHADER_TESS_CTRL]
1907 ? infos[MESA_SHADER_TESS_EVAL].wave_size
1908 : infos[MESA_SHADER_VERTEX].wave_size;
1909 }
1910
1911 do {
1912 orig_max_esverts = max_esverts;
1913 orig_max_gsprims = max_gsprims;
1914
1915 max_esverts = align(max_esverts, wavesize);
1916 max_esverts = MIN2(max_esverts, max_esverts_base);
1917 if (esvert_lds_size)
1918 max_esverts = MIN2(max_esverts,
1919 (max_lds_size - max_gsprims * gsprim_lds_size) /
1920 esvert_lds_size);
1921 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1922
1923 max_gsprims = align(max_gsprims, wavesize);
1924 max_gsprims = MIN2(max_gsprims, max_gsprims_base);
1925 if (gsprim_lds_size)
1926 max_gsprims = MIN2(max_gsprims,
1927 (max_lds_size - max_esverts * esvert_lds_size) /
1928 gsprim_lds_size);
1929 clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
1930 min_verts_per_prim, uses_adjacency);
1931 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1932 } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
1933 }
1934
1935 /* Hardware restriction: minimum value of max_esverts */
1936 max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim);
1937
1938 unsigned max_out_vertices =
1939 max_vert_out_per_gs_instance ? gs_info->gs.vertices_out :
1940 gs_type == MESA_SHADER_GEOMETRY ?
1941 max_gsprims * gs_num_invocations * gs_info->gs.vertices_out :
1942 max_esverts;
1943 assert(max_out_vertices <= 256);
1944
1945 unsigned prim_amp_factor = 1;
1946 if (gs_type == MESA_SHADER_GEOMETRY) {
1947 /* Number of output primitives per GS input primitive after
1948 * GS instancing. */
1949 prim_amp_factor = gs_info->gs.vertices_out;
1950 }
1951
1952 /* The GE only checks against the maximum number of ES verts after
1953 * allocating a full GS primitive. So we need to ensure that whenever
1954 * this check passes, there is enough space for a full primitive without
1955 * vertex reuse.
1956 */
1957 ngg->hw_max_esverts = max_esverts - max_verts_per_prim + 1;
1958 ngg->max_gsprims = max_gsprims;
1959 ngg->max_out_verts = max_out_vertices;
1960 ngg->prim_amp_factor = prim_amp_factor;
1961 ngg->max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
1962 ngg->ngg_emit_size = max_gsprims * gsprim_lds_size;
1963 ngg->esgs_ring_size = 4 * max_esverts * esvert_lds_size;
1964
1965 if (gs_type == MESA_SHADER_GEOMETRY) {
1966 ngg->vgt_esgs_ring_itemsize = es_info->esgs_itemsize / 4;
1967 } else {
1968 ngg->vgt_esgs_ring_itemsize = 1;
1969 }
1970
1971 pipeline->graphics.esgs_ring_size = ngg->esgs_ring_size;
1972
1973 assert(ngg->hw_max_esverts >= 24); /* HW limitation */
1974 }
1975
1976 static void
1977 calculate_gs_ring_sizes(struct radv_pipeline *pipeline,
1978 const struct gfx9_gs_info *gs)
1979 {
1980 struct radv_device *device = pipeline->device;
1981 unsigned num_se = device->physical_device->rad_info.max_se;
1982 unsigned wave_size = 64;
1983 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
1984 /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
1985 * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
1986 */
1987 unsigned gs_vertex_reuse =
1988 (device->physical_device->rad_info.chip_class >= GFX8 ? 32 : 16) * num_se;
1989 unsigned alignment = 256 * num_se;
1990 /* The maximum size is 63.999 MB per SE. */
1991 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
1992 struct radv_shader_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info;
1993
1994 /* Calculate the minimum size. */
1995 unsigned min_esgs_ring_size = align(gs->vgt_esgs_ring_itemsize * 4 * gs_vertex_reuse *
1996 wave_size, alignment);
1997 /* These are recommended sizes, not minimum sizes. */
1998 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
1999 gs->vgt_esgs_ring_itemsize * 4 * gs_info->gs.vertices_in;
2000 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
2001 gs_info->gs.max_gsvs_emit_size;
2002
2003 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
2004 esgs_ring_size = align(esgs_ring_size, alignment);
2005 gsvs_ring_size = align(gsvs_ring_size, alignment);
2006
2007 if (pipeline->device->physical_device->rad_info.chip_class <= GFX8)
2008 pipeline->graphics.esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
2009
2010 pipeline->graphics.gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
2011 }
2012
2013 static void si_multiwave_lds_size_workaround(struct radv_device *device,
2014 unsigned *lds_size)
2015 {
2016 /* If tessellation is all offchip and on-chip GS isn't used, this
2017 * workaround is not needed.
2018 */
2019 return;
2020
2021 /* SPI barrier management bug:
2022 * Make sure we have at least 4k of LDS in use to avoid the bug.
2023 * It applies to workgroup sizes of more than one wavefront.
2024 */
2025 if (device->physical_device->rad_info.family == CHIP_BONAIRE ||
2026 device->physical_device->rad_info.family == CHIP_KABINI)
2027 *lds_size = MAX2(*lds_size, 8);
2028 }
2029
2030 struct radv_shader_variant *
2031 radv_get_shader(struct radv_pipeline *pipeline,
2032 gl_shader_stage stage)
2033 {
2034 if (stage == MESA_SHADER_VERTEX) {
2035 if (pipeline->shaders[MESA_SHADER_VERTEX])
2036 return pipeline->shaders[MESA_SHADER_VERTEX];
2037 if (pipeline->shaders[MESA_SHADER_TESS_CTRL])
2038 return pipeline->shaders[MESA_SHADER_TESS_CTRL];
2039 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
2040 return pipeline->shaders[MESA_SHADER_GEOMETRY];
2041 } else if (stage == MESA_SHADER_TESS_EVAL) {
2042 if (!radv_pipeline_has_tess(pipeline))
2043 return NULL;
2044 if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
2045 return pipeline->shaders[MESA_SHADER_TESS_EVAL];
2046 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
2047 return pipeline->shaders[MESA_SHADER_GEOMETRY];
2048 }
2049 return pipeline->shaders[stage];
2050 }
2051
2052 static struct radv_tessellation_state
2053 calculate_tess_state(struct radv_pipeline *pipeline,
2054 const VkGraphicsPipelineCreateInfo *pCreateInfo)
2055 {
2056 unsigned num_tcs_input_cp;
2057 unsigned num_tcs_output_cp;
2058 unsigned lds_size;
2059 unsigned num_patches;
2060 struct radv_tessellation_state tess = {0};
2061
2062 num_tcs_input_cp = pCreateInfo->pTessellationState->patchControlPoints;
2063 num_tcs_output_cp = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; //TCS VERTICES OUT
2064 num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
2065
2066 lds_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.lds_size;
2067
2068 if (pipeline->device->physical_device->rad_info.chip_class >= GFX7) {
2069 assert(lds_size <= 65536);
2070 lds_size = align(lds_size, 512) / 512;
2071 } else {
2072 assert(lds_size <= 32768);
2073 lds_size = align(lds_size, 256) / 256;
2074 }
2075 si_multiwave_lds_size_workaround(pipeline->device, &lds_size);
2076
2077 tess.lds_size = lds_size;
2078
2079 tess.ls_hs_config = S_028B58_NUM_PATCHES(num_patches) |
2080 S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
2081 S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
2082 tess.num_patches = num_patches;
2083
2084 struct radv_shader_variant *tes = radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL);
2085 unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0;
2086
2087 switch (tes->info.tes.primitive_mode) {
2088 case GL_TRIANGLES:
2089 type = V_028B6C_TESS_TRIANGLE;
2090 break;
2091 case GL_QUADS:
2092 type = V_028B6C_TESS_QUAD;
2093 break;
2094 case GL_ISOLINES:
2095 type = V_028B6C_TESS_ISOLINE;
2096 break;
2097 }
2098
2099 switch (tes->info.tes.spacing) {
2100 case TESS_SPACING_EQUAL:
2101 partitioning = V_028B6C_PART_INTEGER;
2102 break;
2103 case TESS_SPACING_FRACTIONAL_ODD:
2104 partitioning = V_028B6C_PART_FRAC_ODD;
2105 break;
2106 case TESS_SPACING_FRACTIONAL_EVEN:
2107 partitioning = V_028B6C_PART_FRAC_EVEN;
2108 break;
2109 default:
2110 break;
2111 }
2112
2113 bool ccw = tes->info.tes.ccw;
2114 const VkPipelineTessellationDomainOriginStateCreateInfo *domain_origin_state =
2115 vk_find_struct_const(pCreateInfo->pTessellationState,
2116 PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO);
2117
2118 if (domain_origin_state && domain_origin_state->domainOrigin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT)
2119 ccw = !ccw;
2120
2121 if (tes->info.tes.point_mode)
2122 topology = V_028B6C_OUTPUT_POINT;
2123 else if (tes->info.tes.primitive_mode == GL_ISOLINES)
2124 topology = V_028B6C_OUTPUT_LINE;
2125 else if (ccw)
2126 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
2127 else
2128 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
2129
2130 if (pipeline->device->physical_device->rad_info.has_distributed_tess) {
2131 if (pipeline->device->physical_device->rad_info.family == CHIP_FIJI ||
2132 pipeline->device->physical_device->rad_info.family >= CHIP_POLARIS10)
2133 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
2134 else
2135 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
2136 } else
2137 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
2138
2139 tess.tf_param = S_028B6C_TYPE(type) |
2140 S_028B6C_PARTITIONING(partitioning) |
2141 S_028B6C_TOPOLOGY(topology) |
2142 S_028B6C_DISTRIBUTION_MODE(distribution_mode);
2143
2144 return tess;
2145 }
2146
2147 static const struct radv_prim_vertex_count prim_size_table[] = {
2148 [V_008958_DI_PT_NONE] = {0, 0},
2149 [V_008958_DI_PT_POINTLIST] = {1, 1},
2150 [V_008958_DI_PT_LINELIST] = {2, 2},
2151 [V_008958_DI_PT_LINESTRIP] = {2, 1},
2152 [V_008958_DI_PT_TRILIST] = {3, 3},
2153 [V_008958_DI_PT_TRIFAN] = {3, 1},
2154 [V_008958_DI_PT_TRISTRIP] = {3, 1},
2155 [V_008958_DI_PT_LINELIST_ADJ] = {4, 4},
2156 [V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1},
2157 [V_008958_DI_PT_TRILIST_ADJ] = {6, 6},
2158 [V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2},
2159 [V_008958_DI_PT_RECTLIST] = {3, 3},
2160 [V_008958_DI_PT_LINELOOP] = {2, 1},
2161 [V_008958_DI_PT_POLYGON] = {3, 1},
2162 [V_008958_DI_PT_2D_TRI_STRIP] = {0, 0},
2163 };
2164
2165 static const struct radv_vs_output_info *get_vs_output_info(const struct radv_pipeline *pipeline)
2166 {
2167 if (radv_pipeline_has_gs(pipeline))
2168 if (radv_pipeline_has_ngg(pipeline))
2169 return &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.vs.outinfo;
2170 else
2171 return &pipeline->gs_copy_shader->info.vs.outinfo;
2172 else if (radv_pipeline_has_tess(pipeline))
2173 return &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo;
2174 else
2175 return &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.outinfo;
2176 }
2177
2178 static void
2179 radv_link_shaders(struct radv_pipeline *pipeline, nir_shader **shaders)
2180 {
2181 nir_shader* ordered_shaders[MESA_SHADER_STAGES];
2182 int shader_count = 0;
2183
2184 if(shaders[MESA_SHADER_FRAGMENT]) {
2185 ordered_shaders[shader_count++] = shaders[MESA_SHADER_FRAGMENT];
2186 }
2187 if(shaders[MESA_SHADER_GEOMETRY]) {
2188 ordered_shaders[shader_count++] = shaders[MESA_SHADER_GEOMETRY];
2189 }
2190 if(shaders[MESA_SHADER_TESS_EVAL]) {
2191 ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_EVAL];
2192 }
2193 if(shaders[MESA_SHADER_TESS_CTRL]) {
2194 ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_CTRL];
2195 }
2196 if(shaders[MESA_SHADER_VERTEX]) {
2197 ordered_shaders[shader_count++] = shaders[MESA_SHADER_VERTEX];
2198 }
2199
2200 if (shader_count > 1) {
2201 unsigned first = ordered_shaders[shader_count - 1]->info.stage;
2202 unsigned last = ordered_shaders[0]->info.stage;
2203
2204 if (ordered_shaders[0]->info.stage == MESA_SHADER_FRAGMENT &&
2205 ordered_shaders[1]->info.has_transform_feedback_varyings)
2206 nir_link_xfb_varyings(ordered_shaders[1], ordered_shaders[0]);
2207
2208 for (int i = 0; i < shader_count; ++i) {
2209 nir_variable_mode mask = 0;
2210
2211 if (ordered_shaders[i]->info.stage != first)
2212 mask = mask | nir_var_shader_in;
2213
2214 if (ordered_shaders[i]->info.stage != last)
2215 mask = mask | nir_var_shader_out;
2216
2217 nir_lower_io_to_scalar_early(ordered_shaders[i], mask);
2218 radv_optimize_nir(ordered_shaders[i], false, false);
2219 }
2220 }
2221
2222 for (int i = 1; i < shader_count; ++i) {
2223 nir_lower_io_arrays_to_elements(ordered_shaders[i],
2224 ordered_shaders[i - 1]);
2225
2226 if (nir_link_opt_varyings(ordered_shaders[i],
2227 ordered_shaders[i - 1]))
2228 radv_optimize_nir(ordered_shaders[i - 1], false, false);
2229
2230 nir_remove_dead_variables(ordered_shaders[i],
2231 nir_var_shader_out);
2232 nir_remove_dead_variables(ordered_shaders[i - 1],
2233 nir_var_shader_in);
2234
2235 bool progress = nir_remove_unused_varyings(ordered_shaders[i],
2236 ordered_shaders[i - 1]);
2237
2238 nir_compact_varyings(ordered_shaders[i],
2239 ordered_shaders[i - 1], true);
2240
2241 if (progress) {
2242 if (nir_lower_global_vars_to_local(ordered_shaders[i])) {
2243 ac_lower_indirect_derefs(ordered_shaders[i],
2244 pipeline->device->physical_device->rad_info.chip_class);
2245 }
2246 radv_optimize_nir(ordered_shaders[i], false, false);
2247
2248 if (nir_lower_global_vars_to_local(ordered_shaders[i - 1])) {
2249 ac_lower_indirect_derefs(ordered_shaders[i - 1],
2250 pipeline->device->physical_device->rad_info.chip_class);
2251 }
2252 radv_optimize_nir(ordered_shaders[i - 1], false, false);
2253 }
2254 }
2255 }
2256
2257 static uint32_t
2258 radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *input_state,
2259 uint32_t attrib_binding)
2260 {
2261 for (uint32_t i = 0; i < input_state->vertexBindingDescriptionCount; i++) {
2262 const VkVertexInputBindingDescription *input_binding =
2263 &input_state->pVertexBindingDescriptions[i];
2264
2265 if (input_binding->binding == attrib_binding)
2266 return input_binding->stride;
2267 }
2268
2269 return 0;
2270 }
2271
2272 static struct radv_pipeline_key
2273 radv_generate_graphics_pipeline_key(struct radv_pipeline *pipeline,
2274 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2275 const struct radv_blend_state *blend,
2276 bool has_view_index)
2277 {
2278 const VkPipelineVertexInputStateCreateInfo *input_state =
2279 pCreateInfo->pVertexInputState;
2280 const VkPipelineVertexInputDivisorStateCreateInfoEXT *divisor_state =
2281 vk_find_struct_const(input_state->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
2282
2283 struct radv_pipeline_key key;
2284 memset(&key, 0, sizeof(key));
2285
2286 if (pCreateInfo->flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)
2287 key.optimisations_disabled = 1;
2288
2289 key.has_multiview_view_index = has_view_index;
2290
2291 uint32_t binding_input_rate = 0;
2292 uint32_t instance_rate_divisors[MAX_VERTEX_ATTRIBS];
2293 for (unsigned i = 0; i < input_state->vertexBindingDescriptionCount; ++i) {
2294 if (input_state->pVertexBindingDescriptions[i].inputRate) {
2295 unsigned binding = input_state->pVertexBindingDescriptions[i].binding;
2296 binding_input_rate |= 1u << binding;
2297 instance_rate_divisors[binding] = 1;
2298 }
2299 }
2300 if (divisor_state) {
2301 for (unsigned i = 0; i < divisor_state->vertexBindingDivisorCount; ++i) {
2302 instance_rate_divisors[divisor_state->pVertexBindingDivisors[i].binding] =
2303 divisor_state->pVertexBindingDivisors[i].divisor;
2304 }
2305 }
2306
2307 for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) {
2308 const VkVertexInputAttributeDescription *desc =
2309 &input_state->pVertexAttributeDescriptions[i];
2310 const struct vk_format_description *format_desc;
2311 unsigned location = desc->location;
2312 unsigned binding = desc->binding;
2313 unsigned num_format, data_format;
2314 int first_non_void;
2315
2316 if (binding_input_rate & (1u << binding)) {
2317 key.instance_rate_inputs |= 1u << location;
2318 key.instance_rate_divisors[location] = instance_rate_divisors[binding];
2319 }
2320
2321 format_desc = vk_format_description(desc->format);
2322 first_non_void = vk_format_get_first_non_void_channel(desc->format);
2323
2324 num_format = radv_translate_buffer_numformat(format_desc, first_non_void);
2325 data_format = radv_translate_buffer_dataformat(format_desc, first_non_void);
2326
2327 key.vertex_attribute_formats[location] = data_format | (num_format << 4);
2328 key.vertex_attribute_bindings[location] = desc->binding;
2329 key.vertex_attribute_offsets[location] = desc->offset;
2330 key.vertex_attribute_strides[location] = radv_get_attrib_stride(input_state, desc->binding);
2331
2332 if (pipeline->device->physical_device->rad_info.chip_class <= GFX8 &&
2333 pipeline->device->physical_device->rad_info.family != CHIP_STONEY) {
2334 VkFormat format = input_state->pVertexAttributeDescriptions[i].format;
2335 uint64_t adjust;
2336 switch(format) {
2337 case VK_FORMAT_A2R10G10B10_SNORM_PACK32:
2338 case VK_FORMAT_A2B10G10R10_SNORM_PACK32:
2339 adjust = RADV_ALPHA_ADJUST_SNORM;
2340 break;
2341 case VK_FORMAT_A2R10G10B10_SSCALED_PACK32:
2342 case VK_FORMAT_A2B10G10R10_SSCALED_PACK32:
2343 adjust = RADV_ALPHA_ADJUST_SSCALED;
2344 break;
2345 case VK_FORMAT_A2R10G10B10_SINT_PACK32:
2346 case VK_FORMAT_A2B10G10R10_SINT_PACK32:
2347 adjust = RADV_ALPHA_ADJUST_SINT;
2348 break;
2349 default:
2350 adjust = 0;
2351 break;
2352 }
2353 key.vertex_alpha_adjust |= adjust << (2 * location);
2354 }
2355
2356 switch (desc->format) {
2357 case VK_FORMAT_B8G8R8A8_UNORM:
2358 case VK_FORMAT_B8G8R8A8_SNORM:
2359 case VK_FORMAT_B8G8R8A8_USCALED:
2360 case VK_FORMAT_B8G8R8A8_SSCALED:
2361 case VK_FORMAT_B8G8R8A8_UINT:
2362 case VK_FORMAT_B8G8R8A8_SINT:
2363 case VK_FORMAT_B8G8R8A8_SRGB:
2364 case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
2365 case VK_FORMAT_A2R10G10B10_SNORM_PACK32:
2366 case VK_FORMAT_A2R10G10B10_USCALED_PACK32:
2367 case VK_FORMAT_A2R10G10B10_SSCALED_PACK32:
2368 case VK_FORMAT_A2R10G10B10_UINT_PACK32:
2369 case VK_FORMAT_A2R10G10B10_SINT_PACK32:
2370 key.vertex_post_shuffle |= 1 << location;
2371 break;
2372 default:
2373 break;
2374 }
2375 }
2376
2377 const VkPipelineTessellationStateCreateInfo *tess =
2378 radv_pipeline_get_tessellation_state(pCreateInfo);
2379 if (tess)
2380 key.tess_input_vertices = tess->patchControlPoints;
2381
2382 const VkPipelineMultisampleStateCreateInfo *vkms =
2383 radv_pipeline_get_multisample_state(pCreateInfo);
2384 if (vkms && vkms->rasterizationSamples > 1) {
2385 uint32_t num_samples = vkms->rasterizationSamples;
2386 uint32_t ps_iter_samples = radv_pipeline_get_ps_iter_samples(pCreateInfo);
2387 key.num_samples = num_samples;
2388 key.log2_ps_iter_samples = util_logbase2(ps_iter_samples);
2389 }
2390
2391 key.col_format = blend->spi_shader_col_format;
2392 if (pipeline->device->physical_device->rad_info.chip_class < GFX8)
2393 radv_pipeline_compute_get_int_clamp(pCreateInfo, &key.is_int8, &key.is_int10);
2394
2395 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10)
2396 key.topology = pCreateInfo->pInputAssemblyState->topology;
2397
2398 return key;
2399 }
2400
2401 static bool
2402 radv_nir_stage_uses_xfb(const nir_shader *nir)
2403 {
2404 nir_xfb_info *xfb = nir_gather_xfb_info(nir, NULL);
2405 bool uses_xfb = !!xfb;
2406
2407 ralloc_free(xfb);
2408 return uses_xfb;
2409 }
2410
2411 static void
2412 radv_fill_shader_keys(struct radv_device *device,
2413 struct radv_shader_variant_key *keys,
2414 const struct radv_pipeline_key *key,
2415 nir_shader **nir)
2416 {
2417 keys[MESA_SHADER_VERTEX].vs.instance_rate_inputs = key->instance_rate_inputs;
2418 keys[MESA_SHADER_VERTEX].vs.alpha_adjust = key->vertex_alpha_adjust;
2419 keys[MESA_SHADER_VERTEX].vs.post_shuffle = key->vertex_post_shuffle;
2420 for (unsigned i = 0; i < MAX_VERTEX_ATTRIBS; ++i) {
2421 keys[MESA_SHADER_VERTEX].vs.instance_rate_divisors[i] = key->instance_rate_divisors[i];
2422 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_formats[i] = key->vertex_attribute_formats[i];
2423 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_bindings[i] = key->vertex_attribute_bindings[i];
2424 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_offsets[i] = key->vertex_attribute_offsets[i];
2425 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_strides[i] = key->vertex_attribute_strides[i];
2426 }
2427 keys[MESA_SHADER_VERTEX].vs.outprim = si_conv_prim_to_gs_out(key->topology);
2428
2429 if (nir[MESA_SHADER_TESS_CTRL]) {
2430 keys[MESA_SHADER_VERTEX].vs_common_out.as_ls = true;
2431 keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = 0;
2432 keys[MESA_SHADER_TESS_CTRL].tcs.input_vertices = key->tess_input_vertices;
2433 keys[MESA_SHADER_TESS_CTRL].tcs.primitive_mode = nir[MESA_SHADER_TESS_EVAL]->info.tess.primitive_mode;
2434
2435 keys[MESA_SHADER_TESS_CTRL].tcs.tes_reads_tess_factors = !!(nir[MESA_SHADER_TESS_EVAL]->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER));
2436 }
2437
2438 if (nir[MESA_SHADER_GEOMETRY]) {
2439 if (nir[MESA_SHADER_TESS_CTRL])
2440 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_es = true;
2441 else
2442 keys[MESA_SHADER_VERTEX].vs_common_out.as_es = true;
2443 }
2444
2445 if (device->physical_device->use_ngg) {
2446 if (nir[MESA_SHADER_TESS_CTRL]) {
2447 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = true;
2448 } else {
2449 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = true;
2450 }
2451
2452 if (nir[MESA_SHADER_TESS_CTRL] &&
2453 nir[MESA_SHADER_GEOMETRY] &&
2454 nir[MESA_SHADER_GEOMETRY]->info.gs.invocations *
2455 nir[MESA_SHADER_GEOMETRY]->info.gs.vertices_out > 256) {
2456 /* Fallback to the legacy path if tessellation is
2457 * enabled with extreme geometry because
2458 * EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it
2459 * might hang.
2460 */
2461 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false;
2462 }
2463
2464 if (device->physical_device->use_aco) {
2465 /* Disable NGG GS when ACO is used */
2466 if (nir[MESA_SHADER_GEOMETRY]) {
2467 if (nir[MESA_SHADER_TESS_CTRL])
2468 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false;
2469 else
2470 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = false;
2471 }
2472
2473 /* NGG streamout not yet supported by ACO */
2474 assert(!device->physical_device->use_ngg_streamout);
2475 }
2476
2477 gl_shader_stage last_xfb_stage = MESA_SHADER_VERTEX;
2478
2479 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
2480 if (nir[i])
2481 last_xfb_stage = i;
2482 }
2483
2484 bool uses_xfb = nir[last_xfb_stage] &&
2485 radv_nir_stage_uses_xfb(nir[last_xfb_stage]);
2486
2487 if (!device->physical_device->use_ngg_streamout && uses_xfb) {
2488 if (nir[MESA_SHADER_TESS_CTRL])
2489 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false;
2490 else
2491 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = false;
2492 }
2493
2494 /* Determine if the pipeline is eligible for the NGG passthrough
2495 * mode. It can't be enabled for geometry shaders, for NGG
2496 * streamout or for vertex shaders that export the primitive ID
2497 * (this is checked later because we don't have the info here.)
2498 */
2499 if (!nir[MESA_SHADER_GEOMETRY] && !uses_xfb) {
2500 if (nir[MESA_SHADER_TESS_CTRL] &&
2501 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg) {
2502 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg_passthrough = true;
2503 } else if (nir[MESA_SHADER_VERTEX] &&
2504 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg) {
2505 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg_passthrough = true;
2506 }
2507 }
2508 }
2509
2510 for(int i = 0; i < MESA_SHADER_STAGES; ++i)
2511 keys[i].has_multiview_view_index = key->has_multiview_view_index;
2512
2513 keys[MESA_SHADER_FRAGMENT].fs.col_format = key->col_format;
2514 keys[MESA_SHADER_FRAGMENT].fs.is_int8 = key->is_int8;
2515 keys[MESA_SHADER_FRAGMENT].fs.is_int10 = key->is_int10;
2516 keys[MESA_SHADER_FRAGMENT].fs.log2_ps_iter_samples = key->log2_ps_iter_samples;
2517 keys[MESA_SHADER_FRAGMENT].fs.num_samples = key->num_samples;
2518
2519 if (nir[MESA_SHADER_COMPUTE]) {
2520 keys[MESA_SHADER_COMPUTE].cs.subgroup_size = key->compute_subgroup_size;
2521 }
2522 }
2523
2524 static uint8_t
2525 radv_get_wave_size(struct radv_device *device,
2526 const VkPipelineShaderStageCreateInfo *pStage,
2527 gl_shader_stage stage,
2528 const struct radv_shader_variant_key *key)
2529 {
2530 if (stage == MESA_SHADER_GEOMETRY && !key->vs_common_out.as_ngg)
2531 return 64;
2532 else if (stage == MESA_SHADER_COMPUTE) {
2533 if (key->cs.subgroup_size) {
2534 /* Return the required subgroup size if specified. */
2535 return key->cs.subgroup_size;
2536 }
2537 return device->physical_device->cs_wave_size;
2538 }
2539 else if (stage == MESA_SHADER_FRAGMENT)
2540 return device->physical_device->ps_wave_size;
2541 else
2542 return device->physical_device->ge_wave_size;
2543 }
2544
2545 static uint8_t
2546 radv_get_ballot_bit_size(struct radv_device *device,
2547 const VkPipelineShaderStageCreateInfo *pStage,
2548 gl_shader_stage stage,
2549 const struct radv_shader_variant_key *key)
2550 {
2551 if (stage == MESA_SHADER_COMPUTE && key->cs.subgroup_size)
2552 return key->cs.subgroup_size;
2553 return 64;
2554 }
2555
2556 static void
2557 radv_fill_shader_info(struct radv_pipeline *pipeline,
2558 const VkPipelineShaderStageCreateInfo **pStages,
2559 struct radv_shader_variant_key *keys,
2560 struct radv_shader_info *infos,
2561 nir_shader **nir)
2562 {
2563 unsigned active_stages = 0;
2564 unsigned filled_stages = 0;
2565
2566 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2567 if (nir[i])
2568 active_stages |= (1 << i);
2569 }
2570
2571 if (nir[MESA_SHADER_FRAGMENT]) {
2572 radv_nir_shader_info_init(&infos[MESA_SHADER_FRAGMENT]);
2573 radv_nir_shader_info_pass(nir[MESA_SHADER_FRAGMENT],
2574 pipeline->layout,
2575 &keys[MESA_SHADER_FRAGMENT],
2576 &infos[MESA_SHADER_FRAGMENT]);
2577
2578 /* TODO: These are no longer used as keys we should refactor this */
2579 keys[MESA_SHADER_VERTEX].vs_common_out.export_prim_id =
2580 infos[MESA_SHADER_FRAGMENT].ps.prim_id_input;
2581 keys[MESA_SHADER_VERTEX].vs_common_out.export_layer_id =
2582 infos[MESA_SHADER_FRAGMENT].ps.layer_input;
2583 keys[MESA_SHADER_VERTEX].vs_common_out.export_clip_dists =
2584 !!infos[MESA_SHADER_FRAGMENT].ps.num_input_clips_culls;
2585 keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_prim_id =
2586 infos[MESA_SHADER_FRAGMENT].ps.prim_id_input;
2587 keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_layer_id =
2588 infos[MESA_SHADER_FRAGMENT].ps.layer_input;
2589 keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_clip_dists =
2590 !!infos[MESA_SHADER_FRAGMENT].ps.num_input_clips_culls;
2591
2592 /* NGG passthrough mode can't be enabled for vertex shaders
2593 * that export the primitive ID.
2594 *
2595 * TODO: I should really refactor the keys logic.
2596 */
2597 if (nir[MESA_SHADER_VERTEX] &&
2598 keys[MESA_SHADER_VERTEX].vs_common_out.export_prim_id) {
2599 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg_passthrough = false;
2600 }
2601
2602 filled_stages |= (1 << MESA_SHADER_FRAGMENT);
2603 }
2604
2605 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9 &&
2606 nir[MESA_SHADER_TESS_CTRL]) {
2607 struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]};
2608 struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL];
2609 key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs;
2610
2611 radv_nir_shader_info_init(&infos[MESA_SHADER_TESS_CTRL]);
2612
2613 for (int i = 0; i < 2; i++) {
2614 radv_nir_shader_info_pass(combined_nir[i],
2615 pipeline->layout, &key,
2616 &infos[MESA_SHADER_TESS_CTRL]);
2617 }
2618
2619 keys[MESA_SHADER_TESS_EVAL].tes.num_patches =
2620 infos[MESA_SHADER_TESS_CTRL].tcs.num_patches;
2621 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs =
2622 util_last_bit64(infos[MESA_SHADER_TESS_CTRL].tcs.outputs_written);
2623
2624 filled_stages |= (1 << MESA_SHADER_VERTEX);
2625 filled_stages |= (1 << MESA_SHADER_TESS_CTRL);
2626 }
2627
2628 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9 &&
2629 nir[MESA_SHADER_GEOMETRY]) {
2630 gl_shader_stage pre_stage = nir[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
2631 struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]};
2632
2633 radv_nir_shader_info_init(&infos[MESA_SHADER_GEOMETRY]);
2634
2635 for (int i = 0; i < 2; i++) {
2636 radv_nir_shader_info_pass(combined_nir[i],
2637 pipeline->layout,
2638 &keys[pre_stage],
2639 &infos[MESA_SHADER_GEOMETRY]);
2640 }
2641
2642 filled_stages |= (1 << pre_stage);
2643 filled_stages |= (1 << MESA_SHADER_GEOMETRY);
2644 }
2645
2646 active_stages ^= filled_stages;
2647 while (active_stages) {
2648 int i = u_bit_scan(&active_stages);
2649
2650 if (i == MESA_SHADER_TESS_CTRL) {
2651 keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs =
2652 util_last_bit64(infos[MESA_SHADER_VERTEX].vs.ls_outputs_written);
2653 }
2654
2655 if (i == MESA_SHADER_TESS_EVAL) {
2656 keys[MESA_SHADER_TESS_EVAL].tes.num_patches =
2657 infos[MESA_SHADER_TESS_CTRL].tcs.num_patches;
2658 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs =
2659 util_last_bit64(infos[MESA_SHADER_TESS_CTRL].tcs.outputs_written);
2660 }
2661
2662 radv_nir_shader_info_init(&infos[i]);
2663 radv_nir_shader_info_pass(nir[i], pipeline->layout,
2664 &keys[i], &infos[i]);
2665 }
2666
2667 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2668 if (nir[i]) {
2669 infos[i].wave_size =
2670 radv_get_wave_size(pipeline->device, pStages[i],
2671 i, &keys[i]);
2672 infos[i].ballot_bit_size =
2673 radv_get_ballot_bit_size(pipeline->device,
2674 pStages[i], i,
2675 &keys[i]);
2676 }
2677 }
2678 }
2679
2680 static void
2681 merge_tess_info(struct shader_info *tes_info,
2682 const struct shader_info *tcs_info)
2683 {
2684 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
2685 *
2686 * "PointMode. Controls generation of points rather than triangles
2687 * or lines. This functionality defaults to disabled, and is
2688 * enabled if either shader stage includes the execution mode.
2689 *
2690 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
2691 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
2692 * and OutputVertices, it says:
2693 *
2694 * "One mode must be set in at least one of the tessellation
2695 * shader stages."
2696 *
2697 * So, the fields can be set in either the TCS or TES, but they must
2698 * agree if set in both. Our backend looks at TES, so bitwise-or in
2699 * the values from the TCS.
2700 */
2701 assert(tcs_info->tess.tcs_vertices_out == 0 ||
2702 tes_info->tess.tcs_vertices_out == 0 ||
2703 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
2704 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
2705
2706 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
2707 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
2708 tcs_info->tess.spacing == tes_info->tess.spacing);
2709 tes_info->tess.spacing |= tcs_info->tess.spacing;
2710
2711 assert(tcs_info->tess.primitive_mode == 0 ||
2712 tes_info->tess.primitive_mode == 0 ||
2713 tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
2714 tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
2715 tes_info->tess.ccw |= tcs_info->tess.ccw;
2716 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
2717 }
2718
2719 static
2720 void radv_init_feedback(const VkPipelineCreationFeedbackCreateInfoEXT *ext)
2721 {
2722 if (!ext)
2723 return;
2724
2725 if (ext->pPipelineCreationFeedback) {
2726 ext->pPipelineCreationFeedback->flags = 0;
2727 ext->pPipelineCreationFeedback->duration = 0;
2728 }
2729
2730 for (unsigned i = 0; i < ext->pipelineStageCreationFeedbackCount; ++i) {
2731 ext->pPipelineStageCreationFeedbacks[i].flags = 0;
2732 ext->pPipelineStageCreationFeedbacks[i].duration = 0;
2733 }
2734 }
2735
2736 static
2737 void radv_start_feedback(VkPipelineCreationFeedbackEXT *feedback)
2738 {
2739 if (!feedback)
2740 return;
2741
2742 feedback->duration -= radv_get_current_time();
2743 feedback ->flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
2744 }
2745
2746 static
2747 void radv_stop_feedback(VkPipelineCreationFeedbackEXT *feedback, bool cache_hit)
2748 {
2749 if (!feedback)
2750 return;
2751
2752 feedback->duration += radv_get_current_time();
2753 feedback ->flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT |
2754 (cache_hit ? VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT : 0);
2755 }
2756
2757 void radv_create_shaders(struct radv_pipeline *pipeline,
2758 struct radv_device *device,
2759 struct radv_pipeline_cache *cache,
2760 const struct radv_pipeline_key *key,
2761 const VkPipelineShaderStageCreateInfo **pStages,
2762 const VkPipelineCreateFlags flags,
2763 VkPipelineCreationFeedbackEXT *pipeline_feedback,
2764 VkPipelineCreationFeedbackEXT **stage_feedbacks)
2765 {
2766 struct radv_shader_module fs_m = {0};
2767 struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
2768 nir_shader *nir[MESA_SHADER_STAGES] = {0};
2769 struct radv_shader_binary *binaries[MESA_SHADER_STAGES] = {NULL};
2770 struct radv_shader_variant_key keys[MESA_SHADER_STAGES] = {{{{{0}}}}};
2771 struct radv_shader_info infos[MESA_SHADER_STAGES] = {0};
2772 unsigned char hash[20], gs_copy_hash[20];
2773 bool keep_executable_info = (flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR) || device->keep_shader_info;
2774 bool keep_statistic_info = (flags & VK_PIPELINE_CREATE_CAPTURE_STATISTICS_BIT_KHR) || device->keep_shader_info;
2775
2776 radv_start_feedback(pipeline_feedback);
2777
2778 for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
2779 if (pStages[i]) {
2780 modules[i] = radv_shader_module_from_handle(pStages[i]->module);
2781 if (modules[i]->nir)
2782 _mesa_sha1_compute(modules[i]->nir->info.name,
2783 strlen(modules[i]->nir->info.name),
2784 modules[i]->sha1);
2785
2786 pipeline->active_stages |= mesa_to_vk_shader_stage(i);
2787 }
2788 }
2789
2790 radv_hash_shaders(hash, pStages, pipeline->layout, key, get_hash_flags(device));
2791 memcpy(gs_copy_hash, hash, 20);
2792 gs_copy_hash[0] ^= 1;
2793
2794 bool found_in_application_cache = true;
2795 if (modules[MESA_SHADER_GEOMETRY] && !keep_executable_info && !keep_statistic_info) {
2796 struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0};
2797 radv_create_shader_variants_from_pipeline_cache(device, cache, gs_copy_hash, variants,
2798 &found_in_application_cache);
2799 pipeline->gs_copy_shader = variants[MESA_SHADER_GEOMETRY];
2800 }
2801
2802 if (!keep_executable_info && !keep_statistic_info &&
2803 radv_create_shader_variants_from_pipeline_cache(device, cache, hash, pipeline->shaders,
2804 &found_in_application_cache) &&
2805 (!modules[MESA_SHADER_GEOMETRY] || pipeline->gs_copy_shader)) {
2806 radv_stop_feedback(pipeline_feedback, found_in_application_cache);
2807 return;
2808 }
2809
2810 if (!modules[MESA_SHADER_FRAGMENT] && !modules[MESA_SHADER_COMPUTE]) {
2811 nir_builder fs_b;
2812 nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL);
2813 fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "noop_fs");
2814 fs_m.nir = fs_b.shader;
2815 modules[MESA_SHADER_FRAGMENT] = &fs_m;
2816 }
2817
2818 for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
2819 const VkPipelineShaderStageCreateInfo *stage = pStages[i];
2820 unsigned subgroup_size = 64, ballot_bit_size = 64;
2821
2822 if (!modules[i])
2823 continue;
2824
2825 radv_start_feedback(stage_feedbacks[i]);
2826
2827 if (key->compute_subgroup_size) {
2828 /* Only compute shaders currently support requiring a
2829 * specific subgroup size.
2830 */
2831 assert(i == MESA_SHADER_COMPUTE);
2832 subgroup_size = key->compute_subgroup_size;
2833 ballot_bit_size = key->compute_subgroup_size;
2834 }
2835
2836 nir[i] = radv_shader_compile_to_nir(device, modules[i],
2837 stage ? stage->pName : "main", i,
2838 stage ? stage->pSpecializationInfo : NULL,
2839 flags, pipeline->layout,
2840 subgroup_size, ballot_bit_size);
2841
2842 /* We don't want to alter meta shaders IR directly so clone it
2843 * first.
2844 */
2845 if (nir[i]->info.name) {
2846 nir[i] = nir_shader_clone(NULL, nir[i]);
2847 }
2848
2849 radv_stop_feedback(stage_feedbacks[i], false);
2850 }
2851
2852 if (nir[MESA_SHADER_TESS_CTRL]) {
2853 nir_lower_patch_vertices(nir[MESA_SHADER_TESS_EVAL], nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out, NULL);
2854 merge_tess_info(&nir[MESA_SHADER_TESS_EVAL]->info, &nir[MESA_SHADER_TESS_CTRL]->info);
2855 }
2856
2857 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
2858 radv_link_shaders(pipeline, nir);
2859
2860 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2861 if (nir[i]) {
2862 /* do this again since information such as outputs_read can be out-of-date */
2863 nir_shader_gather_info(nir[i], nir_shader_get_entrypoint(nir[i]));
2864
2865 if (device->physical_device->use_aco) {
2866 NIR_PASS_V(nir[i], nir_lower_non_uniform_access,
2867 nir_lower_non_uniform_ubo_access |
2868 nir_lower_non_uniform_ssbo_access |
2869 nir_lower_non_uniform_texture_access |
2870 nir_lower_non_uniform_image_access);
2871 } else
2872 NIR_PASS_V(nir[i], nir_lower_bool_to_int32);
2873 }
2874 }
2875
2876 if (nir[MESA_SHADER_FRAGMENT])
2877 radv_lower_fs_io(nir[MESA_SHADER_FRAGMENT]);
2878
2879 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2880 if (radv_can_dump_shader(device, modules[i], false))
2881 nir_print_shader(nir[i], stderr);
2882 }
2883
2884 radv_fill_shader_keys(device, keys, key, nir);
2885
2886 radv_fill_shader_info(pipeline, pStages, keys, infos, nir);
2887
2888 if ((nir[MESA_SHADER_VERTEX] &&
2889 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg) ||
2890 (nir[MESA_SHADER_TESS_EVAL] &&
2891 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg)) {
2892 struct gfx10_ngg_info *ngg_info;
2893
2894 if (nir[MESA_SHADER_GEOMETRY])
2895 ngg_info = &infos[MESA_SHADER_GEOMETRY].ngg_info;
2896 else if (nir[MESA_SHADER_TESS_CTRL])
2897 ngg_info = &infos[MESA_SHADER_TESS_EVAL].ngg_info;
2898 else
2899 ngg_info = &infos[MESA_SHADER_VERTEX].ngg_info;
2900
2901 gfx10_get_ngg_info(key, pipeline, nir, infos, ngg_info);
2902 } else if (nir[MESA_SHADER_GEOMETRY]) {
2903 struct gfx9_gs_info *gs_info =
2904 &infos[MESA_SHADER_GEOMETRY].gs_ring_info;
2905
2906 gfx9_get_gs_info(key, pipeline, nir, infos, gs_info);
2907 }
2908
2909 if(modules[MESA_SHADER_GEOMETRY]) {
2910 struct radv_shader_binary *gs_copy_binary = NULL;
2911 if (!pipeline->gs_copy_shader &&
2912 !radv_pipeline_has_ngg(pipeline)) {
2913 struct radv_shader_info info = {};
2914 struct radv_shader_variant_key key = {};
2915
2916 key.has_multiview_view_index =
2917 keys[MESA_SHADER_GEOMETRY].has_multiview_view_index;
2918
2919 radv_nir_shader_info_pass(nir[MESA_SHADER_GEOMETRY],
2920 pipeline->layout, &key,
2921 &info);
2922 info.wave_size = 64; /* Wave32 not supported. */
2923 info.ballot_bit_size = 64;
2924
2925 pipeline->gs_copy_shader = radv_create_gs_copy_shader(
2926 device, nir[MESA_SHADER_GEOMETRY], &info,
2927 &gs_copy_binary, keep_executable_info, keep_statistic_info,
2928 keys[MESA_SHADER_GEOMETRY].has_multiview_view_index);
2929 }
2930
2931 if (!keep_executable_info && !keep_statistic_info && pipeline->gs_copy_shader) {
2932 struct radv_shader_binary *binaries[MESA_SHADER_STAGES] = {NULL};
2933 struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0};
2934
2935 binaries[MESA_SHADER_GEOMETRY] = gs_copy_binary;
2936 variants[MESA_SHADER_GEOMETRY] = pipeline->gs_copy_shader;
2937
2938 radv_pipeline_cache_insert_shaders(device, cache,
2939 gs_copy_hash,
2940 variants,
2941 binaries);
2942 }
2943 free(gs_copy_binary);
2944 }
2945
2946 if (nir[MESA_SHADER_FRAGMENT]) {
2947 if (!pipeline->shaders[MESA_SHADER_FRAGMENT]) {
2948 radv_start_feedback(stage_feedbacks[MESA_SHADER_FRAGMENT]);
2949
2950 pipeline->shaders[MESA_SHADER_FRAGMENT] =
2951 radv_shader_variant_compile(device, modules[MESA_SHADER_FRAGMENT], &nir[MESA_SHADER_FRAGMENT], 1,
2952 pipeline->layout, keys + MESA_SHADER_FRAGMENT,
2953 infos + MESA_SHADER_FRAGMENT,
2954 keep_executable_info, keep_statistic_info,
2955 &binaries[MESA_SHADER_FRAGMENT]);
2956
2957 radv_stop_feedback(stage_feedbacks[MESA_SHADER_FRAGMENT], false);
2958 }
2959 }
2960
2961 if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_TESS_CTRL]) {
2962 if (!pipeline->shaders[MESA_SHADER_TESS_CTRL]) {
2963 struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]};
2964 struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL];
2965 key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs;
2966
2967 radv_start_feedback(stage_feedbacks[MESA_SHADER_TESS_CTRL]);
2968
2969 pipeline->shaders[MESA_SHADER_TESS_CTRL] = radv_shader_variant_compile(device, modules[MESA_SHADER_TESS_CTRL], combined_nir, 2,
2970 pipeline->layout,
2971 &key, &infos[MESA_SHADER_TESS_CTRL], keep_executable_info,
2972 keep_statistic_info, &binaries[MESA_SHADER_TESS_CTRL]);
2973
2974 radv_stop_feedback(stage_feedbacks[MESA_SHADER_TESS_CTRL], false);
2975 }
2976 modules[MESA_SHADER_VERTEX] = NULL;
2977 keys[MESA_SHADER_TESS_EVAL].tes.num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
2978 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written);
2979 }
2980
2981 if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_GEOMETRY]) {
2982 gl_shader_stage pre_stage = modules[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
2983 if (!pipeline->shaders[MESA_SHADER_GEOMETRY]) {
2984 struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]};
2985
2986 radv_start_feedback(stage_feedbacks[MESA_SHADER_GEOMETRY]);
2987
2988 pipeline->shaders[MESA_SHADER_GEOMETRY] = radv_shader_variant_compile(device, modules[MESA_SHADER_GEOMETRY], combined_nir, 2,
2989 pipeline->layout,
2990 &keys[pre_stage], &infos[MESA_SHADER_GEOMETRY], keep_executable_info,
2991 keep_statistic_info, &binaries[MESA_SHADER_GEOMETRY]);
2992
2993 radv_stop_feedback(stage_feedbacks[MESA_SHADER_GEOMETRY], false);
2994 }
2995 modules[pre_stage] = NULL;
2996 }
2997
2998 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2999 if(modules[i] && !pipeline->shaders[i]) {
3000 if (i == MESA_SHADER_TESS_CTRL) {
3001 keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = util_last_bit64(pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.ls_outputs_written);
3002 }
3003 if (i == MESA_SHADER_TESS_EVAL) {
3004 keys[MESA_SHADER_TESS_EVAL].tes.num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
3005 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written);
3006 }
3007
3008 radv_start_feedback(stage_feedbacks[i]);
3009
3010 pipeline->shaders[i] = radv_shader_variant_compile(device, modules[i], &nir[i], 1,
3011 pipeline->layout,
3012 keys + i, infos + i, keep_executable_info,
3013 keep_statistic_info, &binaries[i]);
3014
3015 radv_stop_feedback(stage_feedbacks[i], false);
3016 }
3017 }
3018
3019 if (!keep_executable_info && !keep_statistic_info) {
3020 radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline->shaders,
3021 binaries);
3022 }
3023
3024 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
3025 free(binaries[i]);
3026 if (nir[i]) {
3027 ralloc_free(nir[i]);
3028
3029 if (radv_can_dump_shader_stats(device, modules[i]))
3030 radv_shader_dump_stats(device,
3031 pipeline->shaders[i],
3032 i, stderr);
3033 }
3034 }
3035
3036 if (fs_m.nir)
3037 ralloc_free(fs_m.nir);
3038
3039 radv_stop_feedback(pipeline_feedback, false);
3040 }
3041
3042 static uint32_t
3043 radv_pipeline_stage_to_user_data_0(struct radv_pipeline *pipeline,
3044 gl_shader_stage stage, enum chip_class chip_class)
3045 {
3046 bool has_gs = radv_pipeline_has_gs(pipeline);
3047 bool has_tess = radv_pipeline_has_tess(pipeline);
3048 bool has_ngg = radv_pipeline_has_ngg(pipeline);
3049
3050 switch (stage) {
3051 case MESA_SHADER_FRAGMENT:
3052 return R_00B030_SPI_SHADER_USER_DATA_PS_0;
3053 case MESA_SHADER_VERTEX:
3054 if (has_tess) {
3055 if (chip_class >= GFX10) {
3056 return R_00B430_SPI_SHADER_USER_DATA_HS_0;
3057 } else if (chip_class == GFX9) {
3058 return R_00B430_SPI_SHADER_USER_DATA_LS_0;
3059 } else {
3060 return R_00B530_SPI_SHADER_USER_DATA_LS_0;
3061 }
3062
3063 }
3064
3065 if (has_gs) {
3066 if (chip_class >= GFX10) {
3067 return R_00B230_SPI_SHADER_USER_DATA_GS_0;
3068 } else {
3069 return R_00B330_SPI_SHADER_USER_DATA_ES_0;
3070 }
3071 }
3072
3073 if (has_ngg)
3074 return R_00B230_SPI_SHADER_USER_DATA_GS_0;
3075
3076 return R_00B130_SPI_SHADER_USER_DATA_VS_0;
3077 case MESA_SHADER_GEOMETRY:
3078 return chip_class == GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0 :
3079 R_00B230_SPI_SHADER_USER_DATA_GS_0;
3080 case MESA_SHADER_COMPUTE:
3081 return R_00B900_COMPUTE_USER_DATA_0;
3082 case MESA_SHADER_TESS_CTRL:
3083 return chip_class == GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0 :
3084 R_00B430_SPI_SHADER_USER_DATA_HS_0;
3085 case MESA_SHADER_TESS_EVAL:
3086 if (has_gs) {
3087 return chip_class >= GFX10 ? R_00B230_SPI_SHADER_USER_DATA_GS_0 :
3088 R_00B330_SPI_SHADER_USER_DATA_ES_0;
3089 } else if (has_ngg) {
3090 return R_00B230_SPI_SHADER_USER_DATA_GS_0;
3091 } else {
3092 return R_00B130_SPI_SHADER_USER_DATA_VS_0;
3093 }
3094 default:
3095 unreachable("unknown shader");
3096 }
3097 }
3098
3099 struct radv_bin_size_entry {
3100 unsigned bpp;
3101 VkExtent2D extent;
3102 };
3103
3104 static VkExtent2D
3105 radv_gfx9_compute_bin_size(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo)
3106 {
3107 static const struct radv_bin_size_entry color_size_table[][3][9] = {
3108 {
3109 /* One RB / SE */
3110 {
3111 /* One shader engine */
3112 { 0, {128, 128}},
3113 { 1, { 64, 128}},
3114 { 2, { 32, 128}},
3115 { 3, { 16, 128}},
3116 { 17, { 0, 0}},
3117 { UINT_MAX, { 0, 0}},
3118 },
3119 {
3120 /* Two shader engines */
3121 { 0, {128, 128}},
3122 { 2, { 64, 128}},
3123 { 3, { 32, 128}},
3124 { 5, { 16, 128}},
3125 { 17, { 0, 0}},
3126 { UINT_MAX, { 0, 0}},
3127 },
3128 {
3129 /* Four shader engines */
3130 { 0, {128, 128}},
3131 { 3, { 64, 128}},
3132 { 5, { 16, 128}},
3133 { 17, { 0, 0}},
3134 { UINT_MAX, { 0, 0}},
3135 },
3136 },
3137 {
3138 /* Two RB / SE */
3139 {
3140 /* One shader engine */
3141 { 0, {128, 128}},
3142 { 2, { 64, 128}},
3143 { 3, { 32, 128}},
3144 { 5, { 16, 128}},
3145 { 33, { 0, 0}},
3146 { UINT_MAX, { 0, 0}},
3147 },
3148 {
3149 /* Two shader engines */
3150 { 0, {128, 128}},
3151 { 3, { 64, 128}},
3152 { 5, { 32, 128}},
3153 { 9, { 16, 128}},
3154 { 33, { 0, 0}},
3155 { UINT_MAX, { 0, 0}},
3156 },
3157 {
3158 /* Four shader engines */
3159 { 0, {256, 256}},
3160 { 2, {128, 256}},
3161 { 3, {128, 128}},
3162 { 5, { 64, 128}},
3163 { 9, { 16, 128}},
3164 { 33, { 0, 0}},
3165 { UINT_MAX, { 0, 0}},
3166 },
3167 },
3168 {
3169 /* Four RB / SE */
3170 {
3171 /* One shader engine */
3172 { 0, {128, 256}},
3173 { 2, {128, 128}},
3174 { 3, { 64, 128}},
3175 { 5, { 32, 128}},
3176 { 9, { 16, 128}},
3177 { 33, { 0, 0}},
3178 { UINT_MAX, { 0, 0}},
3179 },
3180 {
3181 /* Two shader engines */
3182 { 0, {256, 256}},
3183 { 2, {128, 256}},
3184 { 3, {128, 128}},
3185 { 5, { 64, 128}},
3186 { 9, { 32, 128}},
3187 { 17, { 16, 128}},
3188 { 33, { 0, 0}},
3189 { UINT_MAX, { 0, 0}},
3190 },
3191 {
3192 /* Four shader engines */
3193 { 0, {256, 512}},
3194 { 2, {256, 256}},
3195 { 3, {128, 256}},
3196 { 5, {128, 128}},
3197 { 9, { 64, 128}},
3198 { 17, { 16, 128}},
3199 { 33, { 0, 0}},
3200 { UINT_MAX, { 0, 0}},
3201 },
3202 },
3203 };
3204 static const struct radv_bin_size_entry ds_size_table[][3][9] = {
3205 {
3206 // One RB / SE
3207 {
3208 // One shader engine
3209 { 0, {128, 256}},
3210 { 2, {128, 128}},
3211 { 4, { 64, 128}},
3212 { 7, { 32, 128}},
3213 { 13, { 16, 128}},
3214 { 49, { 0, 0}},
3215 { UINT_MAX, { 0, 0}},
3216 },
3217 {
3218 // Two shader engines
3219 { 0, {256, 256}},
3220 { 2, {128, 256}},
3221 { 4, {128, 128}},
3222 { 7, { 64, 128}},
3223 { 13, { 32, 128}},
3224 { 25, { 16, 128}},
3225 { 49, { 0, 0}},
3226 { UINT_MAX, { 0, 0}},
3227 },
3228 {
3229 // Four shader engines
3230 { 0, {256, 512}},
3231 { 2, {256, 256}},
3232 { 4, {128, 256}},
3233 { 7, {128, 128}},
3234 { 13, { 64, 128}},
3235 { 25, { 16, 128}},
3236 { 49, { 0, 0}},
3237 { UINT_MAX, { 0, 0}},
3238 },
3239 },
3240 {
3241 // Two RB / SE
3242 {
3243 // One shader engine
3244 { 0, {256, 256}},
3245 { 2, {128, 256}},
3246 { 4, {128, 128}},
3247 { 7, { 64, 128}},
3248 { 13, { 32, 128}},
3249 { 25, { 16, 128}},
3250 { 97, { 0, 0}},
3251 { UINT_MAX, { 0, 0}},
3252 },
3253 {
3254 // Two shader engines
3255 { 0, {256, 512}},
3256 { 2, {256, 256}},
3257 { 4, {128, 256}},
3258 { 7, {128, 128}},
3259 { 13, { 64, 128}},
3260 { 25, { 32, 128}},
3261 { 49, { 16, 128}},
3262 { 97, { 0, 0}},
3263 { UINT_MAX, { 0, 0}},
3264 },
3265 {
3266 // Four shader engines
3267 { 0, {512, 512}},
3268 { 2, {256, 512}},
3269 { 4, {256, 256}},
3270 { 7, {128, 256}},
3271 { 13, {128, 128}},
3272 { 25, { 64, 128}},
3273 { 49, { 16, 128}},
3274 { 97, { 0, 0}},
3275 { UINT_MAX, { 0, 0}},
3276 },
3277 },
3278 {
3279 // Four RB / SE
3280 {
3281 // One shader engine
3282 { 0, {256, 512}},
3283 { 2, {256, 256}},
3284 { 4, {128, 256}},
3285 { 7, {128, 128}},
3286 { 13, { 64, 128}},
3287 { 25, { 32, 128}},
3288 { 49, { 16, 128}},
3289 { UINT_MAX, { 0, 0}},
3290 },
3291 {
3292 // Two shader engines
3293 { 0, {512, 512}},
3294 { 2, {256, 512}},
3295 { 4, {256, 256}},
3296 { 7, {128, 256}},
3297 { 13, {128, 128}},
3298 { 25, { 64, 128}},
3299 { 49, { 32, 128}},
3300 { 97, { 16, 128}},
3301 { UINT_MAX, { 0, 0}},
3302 },
3303 {
3304 // Four shader engines
3305 { 0, {512, 512}},
3306 { 4, {256, 512}},
3307 { 7, {256, 256}},
3308 { 13, {128, 256}},
3309 { 25, {128, 128}},
3310 { 49, { 64, 128}},
3311 { 97, { 16, 128}},
3312 { UINT_MAX, { 0, 0}},
3313 },
3314 },
3315 };
3316
3317 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3318 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3319 VkExtent2D extent = {512, 512};
3320
3321 unsigned log_num_rb_per_se =
3322 util_logbase2_ceil(pipeline->device->physical_device->rad_info.num_render_backends /
3323 pipeline->device->physical_device->rad_info.max_se);
3324 unsigned log_num_se = util_logbase2_ceil(pipeline->device->physical_device->rad_info.max_se);
3325
3326 unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_aa_config);
3327 unsigned ps_iter_samples = 1u << G_028804_PS_ITER_SAMPLES(pipeline->graphics.ms.db_eqaa);
3328 unsigned effective_samples = total_samples;
3329 unsigned color_bytes_per_pixel = 0;
3330
3331 const VkPipelineColorBlendStateCreateInfo *vkblend =
3332 radv_pipeline_get_color_blend_state(pCreateInfo);
3333 if (vkblend) {
3334 for (unsigned i = 0; i < subpass->color_count; i++) {
3335 if (!vkblend->pAttachments[i].colorWriteMask)
3336 continue;
3337
3338 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
3339 continue;
3340
3341 VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
3342 color_bytes_per_pixel += vk_format_get_blocksize(format);
3343 }
3344
3345 /* MSAA images typically don't use all samples all the time. */
3346 if (effective_samples >= 2 && ps_iter_samples <= 1)
3347 effective_samples = 2;
3348 color_bytes_per_pixel *= effective_samples;
3349 }
3350
3351 const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se];
3352 while(color_entry[1].bpp <= color_bytes_per_pixel)
3353 ++color_entry;
3354
3355 extent = color_entry->extent;
3356
3357 if (subpass->depth_stencil_attachment) {
3358 struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
3359
3360 /* Coefficients taken from AMDVLK */
3361 unsigned depth_coeff = vk_format_is_depth(attachment->format) ? 5 : 0;
3362 unsigned stencil_coeff = vk_format_is_stencil(attachment->format) ? 1 : 0;
3363 unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples;
3364
3365 const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se];
3366 while(ds_entry[1].bpp <= ds_bytes_per_pixel)
3367 ++ds_entry;
3368
3369 if (ds_entry->extent.width * ds_entry->extent.height < extent.width * extent.height)
3370 extent = ds_entry->extent;
3371 }
3372
3373 return extent;
3374 }
3375
3376 static VkExtent2D
3377 radv_gfx10_compute_bin_size(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo)
3378 {
3379 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3380 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3381 VkExtent2D extent = {512, 512};
3382
3383 const unsigned db_tag_size = 64;
3384 const unsigned db_tag_count = 312;
3385 const unsigned color_tag_size = 1024;
3386 const unsigned color_tag_count = 31;
3387 const unsigned fmask_tag_size = 256;
3388 const unsigned fmask_tag_count = 44;
3389
3390 const unsigned rb_count = pipeline->device->physical_device->rad_info.num_render_backends;
3391 const unsigned pipe_count = MAX2(rb_count, pipeline->device->physical_device->rad_info.num_sdp_interfaces);
3392
3393 const unsigned db_tag_part = (db_tag_count * rb_count / pipe_count) * db_tag_size * pipe_count;
3394 const unsigned color_tag_part = (color_tag_count * rb_count / pipe_count) * color_tag_size * pipe_count;
3395 const unsigned fmask_tag_part = (fmask_tag_count * rb_count / pipe_count) * fmask_tag_size * pipe_count;
3396
3397 const unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_aa_config);
3398 const unsigned samples_log = util_logbase2_ceil(total_samples);
3399
3400 unsigned color_bytes_per_pixel = 0;
3401 unsigned fmask_bytes_per_pixel = 0;
3402
3403 const VkPipelineColorBlendStateCreateInfo *vkblend =
3404 radv_pipeline_get_color_blend_state(pCreateInfo);
3405 if (vkblend) {
3406 for (unsigned i = 0; i < subpass->color_count; i++) {
3407 if (!vkblend->pAttachments[i].colorWriteMask)
3408 continue;
3409
3410 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
3411 continue;
3412
3413 VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
3414 color_bytes_per_pixel += vk_format_get_blocksize(format);
3415
3416 if (total_samples > 1) {
3417 assert(samples_log <= 3);
3418 const unsigned fmask_array[] = {0, 1, 1, 4};
3419 fmask_bytes_per_pixel += fmask_array[samples_log];
3420 }
3421 }
3422
3423 color_bytes_per_pixel *= total_samples;
3424 }
3425 color_bytes_per_pixel = MAX2(color_bytes_per_pixel, 1);
3426
3427 const unsigned color_pixel_count_log = util_logbase2(color_tag_part / color_bytes_per_pixel);
3428 extent.width = 1ull << ((color_pixel_count_log + 1) / 2);
3429 extent.height = 1ull << (color_pixel_count_log / 2);
3430
3431 if (fmask_bytes_per_pixel) {
3432 const unsigned fmask_pixel_count_log = util_logbase2(fmask_tag_part / fmask_bytes_per_pixel);
3433
3434 const VkExtent2D fmask_extent = (VkExtent2D){
3435 .width = 1ull << ((fmask_pixel_count_log + 1) / 2),
3436 .height = 1ull << (color_pixel_count_log / 2)
3437 };
3438
3439 if (fmask_extent.width * fmask_extent.height < extent.width * extent.height)
3440 extent = fmask_extent;
3441 }
3442
3443 if (subpass->depth_stencil_attachment) {
3444 struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
3445
3446 /* Coefficients taken from AMDVLK */
3447 unsigned depth_coeff = vk_format_is_depth(attachment->format) ? 5 : 0;
3448 unsigned stencil_coeff = vk_format_is_stencil(attachment->format) ? 1 : 0;
3449 unsigned db_bytes_per_pixel = (depth_coeff + stencil_coeff) * total_samples;
3450
3451 const unsigned db_pixel_count_log = util_logbase2(db_tag_part / db_bytes_per_pixel);
3452
3453 const VkExtent2D db_extent = (VkExtent2D){
3454 .width = 1ull << ((db_pixel_count_log + 1) / 2),
3455 .height = 1ull << (color_pixel_count_log / 2)
3456 };
3457
3458 if (db_extent.width * db_extent.height < extent.width * extent.height)
3459 extent = db_extent;
3460 }
3461
3462 extent.width = MAX2(extent.width, 128);
3463 extent.height = MAX2(extent.width, 64);
3464
3465 return extent;
3466 }
3467
3468 static void
3469 radv_pipeline_generate_disabled_binning_state(struct radeon_cmdbuf *ctx_cs,
3470 struct radv_pipeline *pipeline,
3471 const VkGraphicsPipelineCreateInfo *pCreateInfo)
3472 {
3473 uint32_t pa_sc_binner_cntl_0 =
3474 S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) |
3475 S_028C44_DISABLE_START_OF_PRIM(1);
3476 uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF);
3477
3478 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
3479 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3480 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3481 const VkPipelineColorBlendStateCreateInfo *vkblend =
3482 radv_pipeline_get_color_blend_state(pCreateInfo);
3483 unsigned min_bytes_per_pixel = 0;
3484
3485 if (vkblend) {
3486 for (unsigned i = 0; i < subpass->color_count; i++) {
3487 if (!vkblend->pAttachments[i].colorWriteMask)
3488 continue;
3489
3490 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
3491 continue;
3492
3493 VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
3494 unsigned bytes = vk_format_get_blocksize(format);
3495 if (!min_bytes_per_pixel || bytes < min_bytes_per_pixel)
3496 min_bytes_per_pixel = bytes;
3497 }
3498 }
3499
3500 pa_sc_binner_cntl_0 =
3501 S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_NEW_SC) |
3502 S_028C44_BIN_SIZE_X(0) |
3503 S_028C44_BIN_SIZE_Y(0) |
3504 S_028C44_BIN_SIZE_X_EXTEND(2) | /* 128 */
3505 S_028C44_BIN_SIZE_Y_EXTEND(min_bytes_per_pixel <= 4 ? 2 : 1) | /* 128 or 64 */
3506 S_028C44_DISABLE_START_OF_PRIM(1);
3507 }
3508
3509 pipeline->graphics.binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0;
3510 pipeline->graphics.binning.db_dfsm_control = db_dfsm_control;
3511 }
3512
3513 struct radv_binning_settings
3514 radv_get_binning_settings(const struct radv_physical_device *pdev)
3515 {
3516 struct radv_binning_settings settings;
3517 if (pdev->rad_info.has_dedicated_vram) {
3518 if (pdev->rad_info.num_render_backends > 4) {
3519 settings.context_states_per_bin = 1;
3520 settings.persistent_states_per_bin = 1;
3521 } else {
3522 settings.context_states_per_bin = 3;
3523 settings.persistent_states_per_bin = 8;
3524 }
3525 settings.fpovs_per_batch = 63;
3526 } else {
3527 /* The context states are affected by the scissor bug. */
3528 settings.context_states_per_bin = 6;
3529 /* 32 causes hangs for RAVEN. */
3530 settings.persistent_states_per_bin = 16;
3531 settings.fpovs_per_batch = 63;
3532 }
3533
3534 if (pdev->rad_info.has_gfx9_scissor_bug)
3535 settings.context_states_per_bin = 1;
3536
3537 return settings;
3538 }
3539
3540 static void
3541 radv_pipeline_generate_binning_state(struct radeon_cmdbuf *ctx_cs,
3542 struct radv_pipeline *pipeline,
3543 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3544 const struct radv_blend_state *blend)
3545 {
3546 if (pipeline->device->physical_device->rad_info.chip_class < GFX9)
3547 return;
3548
3549 VkExtent2D bin_size;
3550 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
3551 bin_size = radv_gfx10_compute_bin_size(pipeline, pCreateInfo);
3552 } else if (pipeline->device->physical_device->rad_info.chip_class == GFX9) {
3553 bin_size = radv_gfx9_compute_bin_size(pipeline, pCreateInfo);
3554 } else
3555 unreachable("Unhandled generation for binning bin size calculation");
3556
3557 if (pipeline->device->pbb_allowed && bin_size.width && bin_size.height) {
3558 struct radv_binning_settings settings =
3559 radv_get_binning_settings(pipeline->device->physical_device);
3560
3561 bool disable_start_of_prim = true;
3562 uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF);
3563
3564 const struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
3565
3566 if (pipeline->device->dfsm_allowed && ps &&
3567 !ps->info.ps.can_discard &&
3568 !ps->info.ps.writes_memory &&
3569 blend->cb_target_enabled_4bit) {
3570 db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_AUTO);
3571 disable_start_of_prim = (blend->blend_enable_4bit & blend->cb_target_enabled_4bit) != 0;
3572 }
3573
3574 const uint32_t pa_sc_binner_cntl_0 =
3575 S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) |
3576 S_028C44_BIN_SIZE_X(bin_size.width == 16) |
3577 S_028C44_BIN_SIZE_Y(bin_size.height == 16) |
3578 S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) |
3579 S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) |
3580 S_028C44_CONTEXT_STATES_PER_BIN(settings.context_states_per_bin - 1) |
3581 S_028C44_PERSISTENT_STATES_PER_BIN(settings.persistent_states_per_bin - 1) |
3582 S_028C44_DISABLE_START_OF_PRIM(disable_start_of_prim) |
3583 S_028C44_FPOVS_PER_BATCH(settings.fpovs_per_batch) |
3584 S_028C44_OPTIMAL_BIN_SELECTION(1);
3585
3586 pipeline->graphics.binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0;
3587 pipeline->graphics.binning.db_dfsm_control = db_dfsm_control;
3588 } else
3589 radv_pipeline_generate_disabled_binning_state(ctx_cs, pipeline, pCreateInfo);
3590 }
3591
3592
3593 static void
3594 radv_pipeline_generate_depth_stencil_state(struct radeon_cmdbuf *ctx_cs,
3595 struct radv_pipeline *pipeline,
3596 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3597 const struct radv_graphics_pipeline_create_info *extra)
3598 {
3599 const VkPipelineDepthStencilStateCreateInfo *vkds = radv_pipeline_get_depth_stencil_state(pCreateInfo);
3600 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3601 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3602 struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
3603 struct radv_render_pass_attachment *attachment = NULL;
3604 uint32_t db_depth_control = 0, db_stencil_control = 0;
3605 uint32_t db_render_control = 0, db_render_override2 = 0;
3606 uint32_t db_render_override = 0;
3607
3608 if (subpass->depth_stencil_attachment)
3609 attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
3610
3611 bool has_depth_attachment = attachment && vk_format_is_depth(attachment->format);
3612 bool has_stencil_attachment = attachment && vk_format_is_stencil(attachment->format);
3613
3614 if (vkds && has_depth_attachment) {
3615 db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) |
3616 S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) |
3617 S_028800_ZFUNC(vkds->depthCompareOp) |
3618 S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0);
3619
3620 /* from amdvlk: For 4xAA and 8xAA need to decompress on flush for better performance */
3621 db_render_override2 |= S_028010_DECOMPRESS_Z_ON_FLUSH(attachment->samples > 2);
3622 }
3623
3624 if (has_stencil_attachment && vkds && vkds->stencilTestEnable) {
3625 db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1);
3626 db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp);
3627 db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp));
3628 db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp));
3629 db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp));
3630
3631 db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp);
3632 db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp));
3633 db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp));
3634 db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp));
3635 }
3636
3637 if (attachment && extra) {
3638 db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
3639 db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
3640
3641 db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->resummarize_enable);
3642 db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->depth_compress_disable);
3643 db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->stencil_compress_disable);
3644 db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear);
3645 db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear);
3646 }
3647
3648 db_render_override |= S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
3649 S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE);
3650
3651 if (!pCreateInfo->pRasterizationState->depthClampEnable &&
3652 ps->info.ps.writes_z) {
3653 /* From VK_EXT_depth_range_unrestricted spec:
3654 *
3655 * "The behavior described in Primitive Clipping still applies.
3656 * If depth clamping is disabled the depth values are still
3657 * clipped to 0 ≤ zc ≤ wc before the viewport transform. If
3658 * depth clamping is enabled the above equation is ignored and
3659 * the depth values are instead clamped to the VkViewport
3660 * minDepth and maxDepth values, which in the case of this
3661 * extension can be outside of the 0.0 to 1.0 range."
3662 */
3663 db_render_override |= S_02800C_DISABLE_VIEWPORT_CLAMP(1);
3664 }
3665
3666 radeon_set_context_reg(ctx_cs, R_028800_DB_DEPTH_CONTROL, db_depth_control);
3667 radeon_set_context_reg(ctx_cs, R_02842C_DB_STENCIL_CONTROL, db_stencil_control);
3668
3669 radeon_set_context_reg(ctx_cs, R_028000_DB_RENDER_CONTROL, db_render_control);
3670 radeon_set_context_reg(ctx_cs, R_02800C_DB_RENDER_OVERRIDE, db_render_override);
3671 radeon_set_context_reg(ctx_cs, R_028010_DB_RENDER_OVERRIDE2, db_render_override2);
3672 }
3673
3674 static void
3675 radv_pipeline_generate_blend_state(struct radeon_cmdbuf *ctx_cs,
3676 struct radv_pipeline *pipeline,
3677 const struct radv_blend_state *blend)
3678 {
3679 radeon_set_context_reg_seq(ctx_cs, R_028780_CB_BLEND0_CONTROL, 8);
3680 radeon_emit_array(ctx_cs, blend->cb_blend_control,
3681 8);
3682 radeon_set_context_reg(ctx_cs, R_028808_CB_COLOR_CONTROL, blend->cb_color_control);
3683 radeon_set_context_reg(ctx_cs, R_028B70_DB_ALPHA_TO_MASK, blend->db_alpha_to_mask);
3684
3685 if (pipeline->device->physical_device->rad_info.has_rbplus) {
3686
3687 radeon_set_context_reg_seq(ctx_cs, R_028760_SX_MRT0_BLEND_OPT, 8);
3688 radeon_emit_array(ctx_cs, blend->sx_mrt_blend_opt, 8);
3689 }
3690
3691 radeon_set_context_reg(ctx_cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format);
3692
3693 radeon_set_context_reg(ctx_cs, R_028238_CB_TARGET_MASK, blend->cb_target_mask);
3694 radeon_set_context_reg(ctx_cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask);
3695
3696 pipeline->graphics.col_format = blend->spi_shader_col_format;
3697 pipeline->graphics.cb_target_mask = blend->cb_target_mask;
3698 }
3699
3700 static const VkConservativeRasterizationModeEXT
3701 radv_get_conservative_raster_mode(const VkPipelineRasterizationStateCreateInfo *pCreateInfo)
3702 {
3703 const VkPipelineRasterizationConservativeStateCreateInfoEXT *conservative_raster =
3704 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT);
3705
3706 if (!conservative_raster)
3707 return VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT;
3708 return conservative_raster->conservativeRasterizationMode;
3709 }
3710
3711 static void
3712 radv_pipeline_generate_raster_state(struct radeon_cmdbuf *ctx_cs,
3713 struct radv_pipeline *pipeline,
3714 const VkGraphicsPipelineCreateInfo *pCreateInfo)
3715 {
3716 const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState;
3717 const VkConservativeRasterizationModeEXT mode =
3718 radv_get_conservative_raster_mode(vkraster);
3719 uint32_t pa_sc_conservative_rast = S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1);
3720 bool depth_clip_disable = vkraster->depthClampEnable;
3721
3722 const VkPipelineRasterizationDepthClipStateCreateInfoEXT *depth_clip_state =
3723 vk_find_struct_const(vkraster->pNext, PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
3724 if (depth_clip_state) {
3725 depth_clip_disable = !depth_clip_state->depthClipEnable;
3726 }
3727
3728 radeon_set_context_reg(ctx_cs, R_028810_PA_CL_CLIP_CNTL,
3729 S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions.
3730 S_028810_ZCLIP_NEAR_DISABLE(depth_clip_disable ? 1 : 0) |
3731 S_028810_ZCLIP_FAR_DISABLE(depth_clip_disable ? 1 : 0) |
3732 S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) |
3733 S_028810_DX_LINEAR_ATTR_CLIP_ENA(1));
3734
3735 radeon_set_context_reg(ctx_cs, R_0286D4_SPI_INTERP_CONTROL_0,
3736 S_0286D4_FLAT_SHADE_ENA(1) |
3737 S_0286D4_PNT_SPRITE_ENA(1) |
3738 S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
3739 S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
3740 S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
3741 S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
3742 S_0286D4_PNT_SPRITE_TOP_1(0)); /* vulkan is top to bottom - 1.0 at bottom */
3743
3744 radeon_set_context_reg(ctx_cs, R_028BE4_PA_SU_VTX_CNTL,
3745 S_028BE4_PIX_CENTER(1) | // TODO verify
3746 S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) |
3747 S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH));
3748
3749 radeon_set_context_reg(ctx_cs, R_028814_PA_SU_SC_MODE_CNTL,
3750 S_028814_FACE(vkraster->frontFace) |
3751 S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) |
3752 S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) |
3753 S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) |
3754 S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) |
3755 S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) |
3756 S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
3757 S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
3758 S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0));
3759
3760 /* Conservative rasterization. */
3761 if (mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) {
3762 struct radv_multisample_state *ms = &pipeline->graphics.ms;
3763
3764 ms->pa_sc_aa_config |= S_028BE0_AA_MASK_CENTROID_DTMN(1);
3765 ms->db_eqaa |= S_028804_ENABLE_POSTZ_OVERRASTERIZATION(1) |
3766 S_028804_OVERRASTERIZATION_AMOUNT(4);
3767
3768 pa_sc_conservative_rast = S_028C4C_PREZ_AA_MASK_ENABLE(1) |
3769 S_028C4C_POSTZ_AA_MASK_ENABLE(1) |
3770 S_028C4C_CENTROID_SAMPLE_OVERRIDE(1);
3771
3772 if (mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT) {
3773 pa_sc_conservative_rast |=
3774 S_028C4C_OVER_RAST_ENABLE(1) |
3775 S_028C4C_OVER_RAST_SAMPLE_SELECT(0) |
3776 S_028C4C_UNDER_RAST_ENABLE(0) |
3777 S_028C4C_UNDER_RAST_SAMPLE_SELECT(1) |
3778 S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(1);
3779 } else {
3780 assert(mode == VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT);
3781 pa_sc_conservative_rast |=
3782 S_028C4C_OVER_RAST_ENABLE(0) |
3783 S_028C4C_OVER_RAST_SAMPLE_SELECT(1) |
3784 S_028C4C_UNDER_RAST_ENABLE(1) |
3785 S_028C4C_UNDER_RAST_SAMPLE_SELECT(0) |
3786 S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(0);
3787 }
3788 }
3789
3790 radeon_set_context_reg(ctx_cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
3791 pa_sc_conservative_rast);
3792 }
3793
3794
3795 static void
3796 radv_pipeline_generate_multisample_state(struct radeon_cmdbuf *ctx_cs,
3797 struct radv_pipeline *pipeline)
3798 {
3799 struct radv_multisample_state *ms = &pipeline->graphics.ms;
3800
3801 radeon_set_context_reg_seq(ctx_cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2);
3802 radeon_emit(ctx_cs, ms->pa_sc_aa_mask[0]);
3803 radeon_emit(ctx_cs, ms->pa_sc_aa_mask[1]);
3804
3805 radeon_set_context_reg(ctx_cs, R_028804_DB_EQAA, ms->db_eqaa);
3806 radeon_set_context_reg(ctx_cs, R_028A48_PA_SC_MODE_CNTL_0, ms->pa_sc_mode_cntl_0);
3807 radeon_set_context_reg(ctx_cs, R_028A4C_PA_SC_MODE_CNTL_1, ms->pa_sc_mode_cntl_1);
3808 radeon_set_context_reg(ctx_cs, R_028BDC_PA_SC_LINE_CNTL, ms->pa_sc_line_cntl);
3809 radeon_set_context_reg(ctx_cs, R_028BE0_PA_SC_AA_CONFIG, ms->pa_sc_aa_config);
3810
3811 /* The exclusion bits can be set to improve rasterization efficiency
3812 * if no sample lies on the pixel boundary (-8 sample offset). It's
3813 * currently always TRUE because the driver doesn't support 16 samples.
3814 */
3815 bool exclusion = pipeline->device->physical_device->rad_info.chip_class >= GFX7;
3816 radeon_set_context_reg(ctx_cs, R_02882C_PA_SU_PRIM_FILTER_CNTL,
3817 S_02882C_XMAX_RIGHT_EXCLUSION(exclusion) |
3818 S_02882C_YMAX_BOTTOM_EXCLUSION(exclusion));
3819
3820 /* GFX9: Flush DFSM when the AA mode changes. */
3821 if (pipeline->device->dfsm_allowed) {
3822 radeon_emit(ctx_cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3823 radeon_emit(ctx_cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0));
3824 }
3825 }
3826
3827 static void
3828 radv_pipeline_generate_vgt_gs_mode(struct radeon_cmdbuf *ctx_cs,
3829 struct radv_pipeline *pipeline)
3830 {
3831 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
3832 const struct radv_shader_variant *vs =
3833 pipeline->shaders[MESA_SHADER_TESS_EVAL] ?
3834 pipeline->shaders[MESA_SHADER_TESS_EVAL] :
3835 pipeline->shaders[MESA_SHADER_VERTEX];
3836 unsigned vgt_primitiveid_en = 0;
3837 uint32_t vgt_gs_mode = 0;
3838
3839 if (radv_pipeline_has_ngg(pipeline))
3840 return;
3841
3842 if (radv_pipeline_has_gs(pipeline)) {
3843 const struct radv_shader_variant *gs =
3844 pipeline->shaders[MESA_SHADER_GEOMETRY];
3845
3846 vgt_gs_mode = ac_vgt_gs_mode(gs->info.gs.vertices_out,
3847 pipeline->device->physical_device->rad_info.chip_class);
3848 } else if (outinfo->export_prim_id || vs->info.uses_prim_id) {
3849 vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A);
3850 vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1);
3851 }
3852
3853 radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, vgt_primitiveid_en);
3854 radeon_set_context_reg(ctx_cs, R_028A40_VGT_GS_MODE, vgt_gs_mode);
3855 }
3856
3857 static void
3858 radv_pipeline_generate_hw_vs(struct radeon_cmdbuf *ctx_cs,
3859 struct radeon_cmdbuf *cs,
3860 struct radv_pipeline *pipeline,
3861 struct radv_shader_variant *shader)
3862 {
3863 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
3864
3865 radeon_set_sh_reg_seq(cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4);
3866 radeon_emit(cs, va >> 8);
3867 radeon_emit(cs, S_00B124_MEM_BASE(va >> 40));
3868 radeon_emit(cs, shader->config.rsrc1);
3869 radeon_emit(cs, shader->config.rsrc2);
3870
3871 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
3872 unsigned clip_dist_mask, cull_dist_mask, total_mask;
3873 clip_dist_mask = outinfo->clip_dist_mask;
3874 cull_dist_mask = outinfo->cull_dist_mask;
3875 total_mask = clip_dist_mask | cull_dist_mask;
3876 bool misc_vec_ena = outinfo->writes_pointsize ||
3877 outinfo->writes_layer ||
3878 outinfo->writes_viewport_index;
3879 unsigned spi_vs_out_config, nparams;
3880
3881 /* VS is required to export at least one param. */
3882 nparams = MAX2(outinfo->param_exports, 1);
3883 spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
3884
3885 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
3886 spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0);
3887 }
3888
3889 radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, spi_vs_out_config);
3890
3891 radeon_set_context_reg(ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
3892 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
3893 S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ?
3894 V_02870C_SPI_SHADER_4COMP :
3895 V_02870C_SPI_SHADER_NONE) |
3896 S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ?
3897 V_02870C_SPI_SHADER_4COMP :
3898 V_02870C_SPI_SHADER_NONE) |
3899 S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ?
3900 V_02870C_SPI_SHADER_4COMP :
3901 V_02870C_SPI_SHADER_NONE));
3902
3903 radeon_set_context_reg(ctx_cs, R_028818_PA_CL_VTE_CNTL,
3904 S_028818_VTX_W0_FMT(1) |
3905 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
3906 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
3907 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
3908
3909 radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
3910 S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
3911 S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
3912 S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
3913 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
3914 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
3915 S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
3916 S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
3917 cull_dist_mask << 8 |
3918 clip_dist_mask);
3919
3920 if (pipeline->device->physical_device->rad_info.chip_class <= GFX8)
3921 radeon_set_context_reg(ctx_cs, R_028AB4_VGT_REUSE_OFF,
3922 outinfo->writes_viewport_index);
3923 }
3924
3925 static void
3926 radv_pipeline_generate_hw_es(struct radeon_cmdbuf *cs,
3927 struct radv_pipeline *pipeline,
3928 struct radv_shader_variant *shader)
3929 {
3930 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
3931
3932 radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4);
3933 radeon_emit(cs, va >> 8);
3934 radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
3935 radeon_emit(cs, shader->config.rsrc1);
3936 radeon_emit(cs, shader->config.rsrc2);
3937 }
3938
3939 static void
3940 radv_pipeline_generate_hw_ls(struct radeon_cmdbuf *cs,
3941 struct radv_pipeline *pipeline,
3942 struct radv_shader_variant *shader,
3943 const struct radv_tessellation_state *tess)
3944 {
3945 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
3946 uint32_t rsrc2 = shader->config.rsrc2;
3947
3948 radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2);
3949 radeon_emit(cs, va >> 8);
3950 radeon_emit(cs, S_00B524_MEM_BASE(va >> 40));
3951
3952 rsrc2 |= S_00B52C_LDS_SIZE(tess->lds_size);
3953 if (pipeline->device->physical_device->rad_info.chip_class == GFX7 &&
3954 pipeline->device->physical_device->rad_info.family != CHIP_HAWAII)
3955 radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, rsrc2);
3956
3957 radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
3958 radeon_emit(cs, shader->config.rsrc1);
3959 radeon_emit(cs, rsrc2);
3960 }
3961
3962 static void
3963 radv_pipeline_generate_hw_ngg(struct radeon_cmdbuf *ctx_cs,
3964 struct radeon_cmdbuf *cs,
3965 struct radv_pipeline *pipeline,
3966 struct radv_shader_variant *shader)
3967 {
3968 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
3969 gl_shader_stage es_type =
3970 radv_pipeline_has_tess(pipeline) ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
3971 struct radv_shader_variant *es =
3972 es_type == MESA_SHADER_TESS_EVAL ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX];
3973 const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info;
3974
3975 radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 2);
3976 radeon_emit(cs, va >> 8);
3977 radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
3978 radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
3979 radeon_emit(cs, shader->config.rsrc1);
3980 radeon_emit(cs, shader->config.rsrc2);
3981
3982 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
3983 unsigned clip_dist_mask, cull_dist_mask, total_mask;
3984 clip_dist_mask = outinfo->clip_dist_mask;
3985 cull_dist_mask = outinfo->cull_dist_mask;
3986 total_mask = clip_dist_mask | cull_dist_mask;
3987 bool misc_vec_ena = outinfo->writes_pointsize ||
3988 outinfo->writes_layer ||
3989 outinfo->writes_viewport_index;
3990 bool es_enable_prim_id = outinfo->export_prim_id ||
3991 (es && es->info.uses_prim_id);
3992 bool break_wave_at_eoi = false;
3993 unsigned ge_cntl;
3994 unsigned nparams;
3995
3996 if (es_type == MESA_SHADER_TESS_EVAL) {
3997 struct radv_shader_variant *gs =
3998 pipeline->shaders[MESA_SHADER_GEOMETRY];
3999
4000 if (es_enable_prim_id || (gs && gs->info.uses_prim_id))
4001 break_wave_at_eoi = true;
4002 }
4003
4004 nparams = MAX2(outinfo->param_exports, 1);
4005 radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG,
4006 S_0286C4_VS_EXPORT_COUNT(nparams - 1) |
4007 S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0));
4008
4009 radeon_set_context_reg(ctx_cs, R_028708_SPI_SHADER_IDX_FORMAT,
4010 S_028708_IDX0_EXPORT_FORMAT(V_028708_SPI_SHADER_1COMP));
4011 radeon_set_context_reg(ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
4012 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
4013 S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ?
4014 V_02870C_SPI_SHADER_4COMP :
4015 V_02870C_SPI_SHADER_NONE) |
4016 S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ?
4017 V_02870C_SPI_SHADER_4COMP :
4018 V_02870C_SPI_SHADER_NONE) |
4019 S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ?
4020 V_02870C_SPI_SHADER_4COMP :
4021 V_02870C_SPI_SHADER_NONE));
4022
4023 radeon_set_context_reg(ctx_cs, R_028818_PA_CL_VTE_CNTL,
4024 S_028818_VTX_W0_FMT(1) |
4025 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
4026 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
4027 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
4028 radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
4029 S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
4030 S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
4031 S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
4032 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
4033 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
4034 S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
4035 S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
4036 cull_dist_mask << 8 |
4037 clip_dist_mask);
4038
4039 radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN,
4040 S_028A84_PRIMITIVEID_EN(es_enable_prim_id) |
4041 S_028A84_NGG_DISABLE_PROVOK_REUSE(outinfo->export_prim_id));
4042
4043 radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
4044 ngg_state->vgt_esgs_ring_itemsize);
4045
4046 /* NGG specific registers. */
4047 struct radv_shader_variant *gs = pipeline->shaders[MESA_SHADER_GEOMETRY];
4048 uint32_t gs_num_invocations = gs ? gs->info.gs.invocations : 1;
4049
4050 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
4051 S_028A44_ES_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) |
4052 S_028A44_GS_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) |
4053 S_028A44_GS_INST_PRIMS_IN_SUBGRP(ngg_state->max_gsprims * gs_num_invocations));
4054 radeon_set_context_reg(ctx_cs, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
4055 S_0287FC_MAX_VERTS_PER_SUBGROUP(ngg_state->max_out_verts));
4056 radeon_set_context_reg(ctx_cs, R_028B4C_GE_NGG_SUBGRP_CNTL,
4057 S_028B4C_PRIM_AMP_FACTOR(ngg_state->prim_amp_factor) |
4058 S_028B4C_THDS_PER_SUBGRP(0)); /* for fast launch */
4059 radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
4060 S_028B90_CNT(gs_num_invocations) |
4061 S_028B90_ENABLE(gs_num_invocations > 1) |
4062 S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(ngg_state->max_vert_out_per_gs_instance));
4063
4064 /* User edge flags are set by the pos exports. If user edge flags are
4065 * not used, we must use hw-generated edge flags and pass them via
4066 * the prim export to prevent drawing lines on internal edges of
4067 * decomposed primitives (such as quads) with polygon mode = lines.
4068 *
4069 * TODO: We should combine hw-generated edge flags with user edge
4070 * flags in the shader.
4071 */
4072 radeon_set_context_reg(ctx_cs, R_028838_PA_CL_NGG_CNTL,
4073 S_028838_INDEX_BUF_EDGE_FLAG_ENA(!radv_pipeline_has_tess(pipeline) &&
4074 !radv_pipeline_has_gs(pipeline)));
4075
4076 ge_cntl = S_03096C_PRIM_GRP_SIZE(ngg_state->max_gsprims) |
4077 S_03096C_VERT_GRP_SIZE(256) | /* 256 = disable vertex grouping */
4078 S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
4079
4080 /* Bug workaround for a possible hang with non-tessellation cases.
4081 * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
4082 *
4083 * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
4084 */
4085 if ((pipeline->device->physical_device->rad_info.family == CHIP_NAVI10 ||
4086 pipeline->device->physical_device->rad_info.family == CHIP_NAVI12 ||
4087 pipeline->device->physical_device->rad_info.family == CHIP_NAVI14) &&
4088 !radv_pipeline_has_tess(pipeline) &&
4089 ngg_state->hw_max_esverts != 256) {
4090 ge_cntl &= C_03096C_VERT_GRP_SIZE;
4091
4092 if (ngg_state->hw_max_esverts > 5) {
4093 ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5);
4094 }
4095 }
4096
4097 radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, ge_cntl);
4098 }
4099
4100 static void
4101 radv_pipeline_generate_hw_hs(struct radeon_cmdbuf *cs,
4102 struct radv_pipeline *pipeline,
4103 struct radv_shader_variant *shader,
4104 const struct radv_tessellation_state *tess)
4105 {
4106 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
4107
4108 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) {
4109 unsigned hs_rsrc2 = shader->config.rsrc2;
4110
4111 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4112 hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(tess->lds_size);
4113 } else {
4114 hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(tess->lds_size);
4115 }
4116
4117 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4118 radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2);
4119 radeon_emit(cs, va >> 8);
4120 radeon_emit(cs, S_00B524_MEM_BASE(va >> 40));
4121 } else {
4122 radeon_set_sh_reg_seq(cs, R_00B410_SPI_SHADER_PGM_LO_LS, 2);
4123 radeon_emit(cs, va >> 8);
4124 radeon_emit(cs, S_00B414_MEM_BASE(va >> 40));
4125 }
4126
4127 radeon_set_sh_reg_seq(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, 2);
4128 radeon_emit(cs, shader->config.rsrc1);
4129 radeon_emit(cs, hs_rsrc2);
4130 } else {
4131 radeon_set_sh_reg_seq(cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4);
4132 radeon_emit(cs, va >> 8);
4133 radeon_emit(cs, S_00B424_MEM_BASE(va >> 40));
4134 radeon_emit(cs, shader->config.rsrc1);
4135 radeon_emit(cs, shader->config.rsrc2);
4136 }
4137 }
4138
4139 static void
4140 radv_pipeline_generate_vertex_shader(struct radeon_cmdbuf *ctx_cs,
4141 struct radeon_cmdbuf *cs,
4142 struct radv_pipeline *pipeline,
4143 const struct radv_tessellation_state *tess)
4144 {
4145 struct radv_shader_variant *vs;
4146
4147 /* Skip shaders merged into HS/GS */
4148 vs = pipeline->shaders[MESA_SHADER_VERTEX];
4149 if (!vs)
4150 return;
4151
4152 if (vs->info.vs.as_ls)
4153 radv_pipeline_generate_hw_ls(cs, pipeline, vs, tess);
4154 else if (vs->info.vs.as_es)
4155 radv_pipeline_generate_hw_es(cs, pipeline, vs);
4156 else if (vs->info.is_ngg)
4157 radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, vs);
4158 else
4159 radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, vs);
4160 }
4161
4162 static void
4163 radv_pipeline_generate_tess_shaders(struct radeon_cmdbuf *ctx_cs,
4164 struct radeon_cmdbuf *cs,
4165 struct radv_pipeline *pipeline,
4166 const struct radv_tessellation_state *tess)
4167 {
4168 if (!radv_pipeline_has_tess(pipeline))
4169 return;
4170
4171 struct radv_shader_variant *tes, *tcs;
4172
4173 tcs = pipeline->shaders[MESA_SHADER_TESS_CTRL];
4174 tes = pipeline->shaders[MESA_SHADER_TESS_EVAL];
4175
4176 if (tes) {
4177 if (tes->info.is_ngg) {
4178 radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, tes);
4179 } else if (tes->info.tes.as_es)
4180 radv_pipeline_generate_hw_es(cs, pipeline, tes);
4181 else
4182 radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, tes);
4183 }
4184
4185 radv_pipeline_generate_hw_hs(cs, pipeline, tcs, tess);
4186
4187 radeon_set_context_reg(ctx_cs, R_028B6C_VGT_TF_PARAM,
4188 tess->tf_param);
4189
4190 if (pipeline->device->physical_device->rad_info.chip_class >= GFX7)
4191 radeon_set_context_reg_idx(ctx_cs, R_028B58_VGT_LS_HS_CONFIG, 2,
4192 tess->ls_hs_config);
4193 else
4194 radeon_set_context_reg(ctx_cs, R_028B58_VGT_LS_HS_CONFIG,
4195 tess->ls_hs_config);
4196
4197 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10 &&
4198 !radv_pipeline_has_gs(pipeline) && !radv_pipeline_has_ngg(pipeline)) {
4199 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
4200 S_028A44_ES_VERTS_PER_SUBGRP(250) |
4201 S_028A44_GS_PRIMS_PER_SUBGRP(126) |
4202 S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
4203 }
4204 }
4205
4206 static void
4207 radv_pipeline_generate_hw_gs(struct radeon_cmdbuf *ctx_cs,
4208 struct radeon_cmdbuf *cs,
4209 struct radv_pipeline *pipeline,
4210 struct radv_shader_variant *gs)
4211 {
4212 const struct gfx9_gs_info *gs_state = &gs->info.gs_ring_info;
4213 unsigned gs_max_out_vertices;
4214 uint8_t *num_components;
4215 uint8_t max_stream;
4216 unsigned offset;
4217 uint64_t va;
4218
4219 gs_max_out_vertices = gs->info.gs.vertices_out;
4220 max_stream = gs->info.gs.max_stream;
4221 num_components = gs->info.gs.num_stream_output_components;
4222
4223 offset = num_components[0] * gs_max_out_vertices;
4224
4225 radeon_set_context_reg_seq(ctx_cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3);
4226 radeon_emit(ctx_cs, offset);
4227 if (max_stream >= 1)
4228 offset += num_components[1] * gs_max_out_vertices;
4229 radeon_emit(ctx_cs, offset);
4230 if (max_stream >= 2)
4231 offset += num_components[2] * gs_max_out_vertices;
4232 radeon_emit(ctx_cs, offset);
4233 if (max_stream >= 3)
4234 offset += num_components[3] * gs_max_out_vertices;
4235 radeon_set_context_reg(ctx_cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
4236
4237 radeon_set_context_reg_seq(ctx_cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4);
4238 radeon_emit(ctx_cs, num_components[0]);
4239 radeon_emit(ctx_cs, (max_stream >= 1) ? num_components[1] : 0);
4240 radeon_emit(ctx_cs, (max_stream >= 2) ? num_components[2] : 0);
4241 radeon_emit(ctx_cs, (max_stream >= 3) ? num_components[3] : 0);
4242
4243 uint32_t gs_num_invocations = gs->info.gs.invocations;
4244 radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
4245 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
4246 S_028B90_ENABLE(gs_num_invocations > 0));
4247
4248 radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
4249 gs_state->vgt_esgs_ring_itemsize);
4250
4251 va = radv_buffer_get_va(gs->bo) + gs->bo_offset;
4252
4253 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) {
4254 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4255 radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 2);
4256 radeon_emit(cs, va >> 8);
4257 radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
4258 } else {
4259 radeon_set_sh_reg_seq(cs, R_00B210_SPI_SHADER_PGM_LO_ES, 2);
4260 radeon_emit(cs, va >> 8);
4261 radeon_emit(cs, S_00B214_MEM_BASE(va >> 40));
4262 }
4263
4264 radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
4265 radeon_emit(cs, gs->config.rsrc1);
4266 radeon_emit(cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size));
4267
4268 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, gs_state->vgt_gs_onchip_cntl);
4269 radeon_set_context_reg(ctx_cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, gs_state->vgt_gs_max_prims_per_subgroup);
4270 } else {
4271 radeon_set_sh_reg_seq(cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4);
4272 radeon_emit(cs, va >> 8);
4273 radeon_emit(cs, S_00B224_MEM_BASE(va >> 40));
4274 radeon_emit(cs, gs->config.rsrc1);
4275 radeon_emit(cs, gs->config.rsrc2);
4276 }
4277
4278 radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, pipeline->gs_copy_shader);
4279 }
4280
4281 static void
4282 radv_pipeline_generate_geometry_shader(struct radeon_cmdbuf *ctx_cs,
4283 struct radeon_cmdbuf *cs,
4284 struct radv_pipeline *pipeline)
4285 {
4286 struct radv_shader_variant *gs;
4287
4288 gs = pipeline->shaders[MESA_SHADER_GEOMETRY];
4289 if (!gs)
4290 return;
4291
4292 if (gs->info.is_ngg)
4293 radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, gs);
4294 else
4295 radv_pipeline_generate_hw_gs(ctx_cs, cs, pipeline, gs);
4296
4297 radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT,
4298 gs->info.gs.vertices_out);
4299 }
4300
4301 static uint32_t offset_to_ps_input(uint32_t offset, bool flat_shade,
4302 bool explicit, bool float16)
4303 {
4304 uint32_t ps_input_cntl;
4305 if (offset <= AC_EXP_PARAM_OFFSET_31) {
4306 ps_input_cntl = S_028644_OFFSET(offset);
4307 if (flat_shade || explicit)
4308 ps_input_cntl |= S_028644_FLAT_SHADE(1);
4309 if (explicit) {
4310 /* Force parameter cache to be read in passthrough
4311 * mode.
4312 */
4313 ps_input_cntl |= S_028644_OFFSET(1 << 5);
4314 }
4315 if (float16) {
4316 ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
4317 S_028644_ATTR0_VALID(1);
4318 }
4319 } else {
4320 /* The input is a DEFAULT_VAL constant. */
4321 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
4322 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
4323 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
4324 ps_input_cntl = S_028644_OFFSET(0x20) |
4325 S_028644_DEFAULT_VAL(offset);
4326 }
4327 return ps_input_cntl;
4328 }
4329
4330 static void
4331 radv_pipeline_generate_ps_inputs(struct radeon_cmdbuf *ctx_cs,
4332 struct radv_pipeline *pipeline)
4333 {
4334 struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
4335 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
4336 uint32_t ps_input_cntl[32];
4337
4338 unsigned ps_offset = 0;
4339
4340 if (ps->info.ps.prim_id_input) {
4341 unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID];
4342 if (vs_offset != AC_EXP_PARAM_UNDEFINED) {
4343 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false, false);
4344 ++ps_offset;
4345 }
4346 }
4347
4348 if (ps->info.ps.layer_input ||
4349 ps->info.needs_multiview_view_index) {
4350 unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_LAYER];
4351 if (vs_offset != AC_EXP_PARAM_UNDEFINED)
4352 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false, false);
4353 else
4354 ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true, false, false);
4355 ++ps_offset;
4356 }
4357
4358 if (ps->info.ps.has_pcoord) {
4359 unsigned val;
4360 val = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
4361 ps_input_cntl[ps_offset] = val;
4362 ps_offset++;
4363 }
4364
4365 if (ps->info.ps.num_input_clips_culls) {
4366 unsigned vs_offset;
4367
4368 vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0];
4369 if (vs_offset != AC_EXP_PARAM_UNDEFINED) {
4370 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, false, false, false);
4371 ++ps_offset;
4372 }
4373
4374 vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1];
4375 if (vs_offset != AC_EXP_PARAM_UNDEFINED &&
4376 ps->info.ps.num_input_clips_culls > 4) {
4377 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, false, false, false);
4378 ++ps_offset;
4379 }
4380 }
4381
4382 for (unsigned i = 0; i < 32 && (1u << i) <= ps->info.ps.input_mask; ++i) {
4383 unsigned vs_offset;
4384 bool flat_shade;
4385 bool explicit;
4386 bool float16;
4387 if (!(ps->info.ps.input_mask & (1u << i)))
4388 continue;
4389
4390 vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i];
4391 if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
4392 ps_input_cntl[ps_offset] = S_028644_OFFSET(0x20);
4393 ++ps_offset;
4394 continue;
4395 }
4396
4397 flat_shade = !!(ps->info.ps.flat_shaded_mask & (1u << ps_offset));
4398 explicit = !!(ps->info.ps.explicit_shaded_mask & (1u << ps_offset));
4399 float16 = !!(ps->info.ps.float16_shaded_mask & (1u << ps_offset));
4400
4401 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, flat_shade, explicit, float16);
4402 ++ps_offset;
4403 }
4404
4405 if (ps_offset) {
4406 radeon_set_context_reg_seq(ctx_cs, R_028644_SPI_PS_INPUT_CNTL_0, ps_offset);
4407 for (unsigned i = 0; i < ps_offset; i++) {
4408 radeon_emit(ctx_cs, ps_input_cntl[i]);
4409 }
4410 }
4411 }
4412
4413 static uint32_t
4414 radv_compute_db_shader_control(const struct radv_device *device,
4415 const struct radv_pipeline *pipeline,
4416 const struct radv_shader_variant *ps)
4417 {
4418 unsigned z_order;
4419 if (ps->info.ps.early_fragment_test || !ps->info.ps.writes_memory)
4420 z_order = V_02880C_EARLY_Z_THEN_LATE_Z;
4421 else
4422 z_order = V_02880C_LATE_Z;
4423
4424 bool disable_rbplus = device->physical_device->rad_info.has_rbplus &&
4425 !device->physical_device->rad_info.rbplus_allowed;
4426
4427 /* It shouldn't be needed to export gl_SampleMask when MSAA is disabled
4428 * but this appears to break Project Cars (DXVK). See
4429 * https://bugs.freedesktop.org/show_bug.cgi?id=109401
4430 */
4431 bool mask_export_enable = ps->info.ps.writes_sample_mask;
4432
4433 return S_02880C_Z_EXPORT_ENABLE(ps->info.ps.writes_z) |
4434 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.ps.writes_stencil) |
4435 S_02880C_KILL_ENABLE(!!ps->info.ps.can_discard) |
4436 S_02880C_MASK_EXPORT_ENABLE(mask_export_enable) |
4437 S_02880C_Z_ORDER(z_order) |
4438 S_02880C_DEPTH_BEFORE_SHADER(ps->info.ps.early_fragment_test) |
4439 S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(ps->info.ps.post_depth_coverage) |
4440 S_02880C_EXEC_ON_HIER_FAIL(ps->info.ps.writes_memory) |
4441 S_02880C_EXEC_ON_NOOP(ps->info.ps.writes_memory) |
4442 S_02880C_DUAL_QUAD_DISABLE(disable_rbplus);
4443 }
4444
4445 static void
4446 radv_pipeline_generate_fragment_shader(struct radeon_cmdbuf *ctx_cs,
4447 struct radeon_cmdbuf *cs,
4448 struct radv_pipeline *pipeline)
4449 {
4450 struct radv_shader_variant *ps;
4451 uint64_t va;
4452 assert (pipeline->shaders[MESA_SHADER_FRAGMENT]);
4453
4454 ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
4455 va = radv_buffer_get_va(ps->bo) + ps->bo_offset;
4456
4457 radeon_set_sh_reg_seq(cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4);
4458 radeon_emit(cs, va >> 8);
4459 radeon_emit(cs, S_00B024_MEM_BASE(va >> 40));
4460 radeon_emit(cs, ps->config.rsrc1);
4461 radeon_emit(cs, ps->config.rsrc2);
4462
4463 radeon_set_context_reg(ctx_cs, R_02880C_DB_SHADER_CONTROL,
4464 radv_compute_db_shader_control(pipeline->device,
4465 pipeline, ps));
4466
4467 radeon_set_context_reg(ctx_cs, R_0286CC_SPI_PS_INPUT_ENA,
4468 ps->config.spi_ps_input_ena);
4469
4470 radeon_set_context_reg(ctx_cs, R_0286D0_SPI_PS_INPUT_ADDR,
4471 ps->config.spi_ps_input_addr);
4472
4473 radeon_set_context_reg(ctx_cs, R_0286D8_SPI_PS_IN_CONTROL,
4474 S_0286D8_NUM_INTERP(ps->info.ps.num_interp) |
4475 S_0286D8_PS_W32_EN(ps->info.wave_size == 32));
4476
4477 radeon_set_context_reg(ctx_cs, R_0286E0_SPI_BARYC_CNTL, pipeline->graphics.spi_baryc_cntl);
4478
4479 radeon_set_context_reg(ctx_cs, R_028710_SPI_SHADER_Z_FORMAT,
4480 ac_get_spi_shader_z_format(ps->info.ps.writes_z,
4481 ps->info.ps.writes_stencil,
4482 ps->info.ps.writes_sample_mask));
4483
4484 if (pipeline->device->dfsm_allowed) {
4485 /* optimise this? */
4486 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
4487 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0));
4488 }
4489 }
4490
4491 static void
4492 radv_pipeline_generate_vgt_vertex_reuse(struct radeon_cmdbuf *ctx_cs,
4493 struct radv_pipeline *pipeline)
4494 {
4495 if (pipeline->device->physical_device->rad_info.family < CHIP_POLARIS10 ||
4496 pipeline->device->physical_device->rad_info.chip_class >= GFX10)
4497 return;
4498
4499 unsigned vtx_reuse_depth = 30;
4500 if (radv_pipeline_has_tess(pipeline) &&
4501 radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) {
4502 vtx_reuse_depth = 14;
4503 }
4504 radeon_set_context_reg(ctx_cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
4505 S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth));
4506 }
4507
4508 static uint32_t
4509 radv_compute_vgt_shader_stages_en(const struct radv_pipeline *pipeline)
4510 {
4511 uint32_t stages = 0;
4512 if (radv_pipeline_has_tess(pipeline)) {
4513 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
4514 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
4515
4516 if (radv_pipeline_has_gs(pipeline))
4517 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
4518 S_028B54_GS_EN(1);
4519 else if (radv_pipeline_has_ngg(pipeline))
4520 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
4521 else
4522 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
4523 } else if (radv_pipeline_has_gs(pipeline)) {
4524 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
4525 S_028B54_GS_EN(1);
4526 } else if (radv_pipeline_has_ngg(pipeline)) {
4527 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
4528 }
4529
4530 if (radv_pipeline_has_ngg(pipeline)) {
4531 stages |= S_028B54_PRIMGEN_EN(1);
4532 if (pipeline->streamout_shader)
4533 stages |= S_028B54_NGG_WAVE_ID_EN(1);
4534 if (radv_pipeline_has_ngg_passthrough(pipeline))
4535 stages |= S_028B54_PRIMGEN_PASSTHRU_EN(1);
4536 } else if (radv_pipeline_has_gs(pipeline)) {
4537 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
4538 }
4539
4540 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9)
4541 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
4542
4543 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4544 uint8_t hs_size = 64, gs_size = 64, vs_size = 64;
4545
4546 if (radv_pipeline_has_tess(pipeline))
4547 hs_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.wave_size;
4548
4549 if (pipeline->shaders[MESA_SHADER_GEOMETRY]) {
4550 vs_size = gs_size = pipeline->shaders[MESA_SHADER_GEOMETRY]->info.wave_size;
4551 if (pipeline->gs_copy_shader)
4552 vs_size = pipeline->gs_copy_shader->info.wave_size;
4553 } else if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
4554 vs_size = pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.wave_size;
4555 else if (pipeline->shaders[MESA_SHADER_VERTEX])
4556 vs_size = pipeline->shaders[MESA_SHADER_VERTEX]->info.wave_size;
4557
4558 if (radv_pipeline_has_ngg(pipeline))
4559 gs_size = vs_size;
4560
4561 /* legacy GS only supports Wave64 */
4562 stages |= S_028B54_HS_W32_EN(hs_size == 32 ? 1 : 0) |
4563 S_028B54_GS_W32_EN(gs_size == 32 ? 1 : 0) |
4564 S_028B54_VS_W32_EN(vs_size == 32 ? 1 : 0);
4565 }
4566
4567 return stages;
4568 }
4569
4570 static uint32_t
4571 radv_compute_cliprect_rule(const VkGraphicsPipelineCreateInfo *pCreateInfo)
4572 {
4573 const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info =
4574 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT);
4575
4576 if (!discard_rectangle_info)
4577 return 0xffff;
4578
4579 unsigned mask = 0;
4580
4581 for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) {
4582 /* Interpret i as a bitmask, and then set the bit in the mask if
4583 * that combination of rectangles in which the pixel is contained
4584 * should pass the cliprect test. */
4585 unsigned relevant_subset = i & ((1u << discard_rectangle_info->discardRectangleCount) - 1);
4586
4587 if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT &&
4588 !relevant_subset)
4589 continue;
4590
4591 if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT &&
4592 relevant_subset)
4593 continue;
4594
4595 mask |= 1u << i;
4596 }
4597
4598 return mask;
4599 }
4600
4601 static void
4602 gfx10_pipeline_generate_ge_cntl(struct radeon_cmdbuf *ctx_cs,
4603 struct radv_pipeline *pipeline,
4604 const struct radv_tessellation_state *tess)
4605 {
4606 bool break_wave_at_eoi = false;
4607 unsigned primgroup_size;
4608 unsigned vertgroup_size = 256; /* 256 = disable vertex grouping */
4609
4610 if (radv_pipeline_has_tess(pipeline)) {
4611 primgroup_size = tess->num_patches; /* must be a multiple of NUM_PATCHES */
4612 } else if (radv_pipeline_has_gs(pipeline)) {
4613 const struct gfx9_gs_info *gs_state =
4614 &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs_ring_info;
4615 unsigned vgt_gs_onchip_cntl = gs_state->vgt_gs_onchip_cntl;
4616 primgroup_size = G_028A44_GS_PRIMS_PER_SUBGRP(vgt_gs_onchip_cntl);
4617 } else {
4618 primgroup_size = 128; /* recommended without a GS and tess */
4619 }
4620
4621 if (radv_pipeline_has_tess(pipeline)) {
4622 if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
4623 radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
4624 break_wave_at_eoi = true;
4625 }
4626
4627 radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL,
4628 S_03096C_PRIM_GRP_SIZE(primgroup_size) |
4629 S_03096C_VERT_GRP_SIZE(vertgroup_size) |
4630 S_03096C_PACKET_TO_ONE_PA(0) /* line stipple */ |
4631 S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi));
4632 }
4633
4634 static void
4635 radv_pipeline_generate_pm4(struct radv_pipeline *pipeline,
4636 const VkGraphicsPipelineCreateInfo *pCreateInfo,
4637 const struct radv_graphics_pipeline_create_info *extra,
4638 const struct radv_blend_state *blend,
4639 const struct radv_tessellation_state *tess,
4640 unsigned prim, unsigned gs_out)
4641 {
4642 struct radeon_cmdbuf *ctx_cs = &pipeline->ctx_cs;
4643 struct radeon_cmdbuf *cs = &pipeline->cs;
4644
4645 cs->max_dw = 64;
4646 ctx_cs->max_dw = 256;
4647 cs->buf = malloc(4 * (cs->max_dw + ctx_cs->max_dw));
4648 ctx_cs->buf = cs->buf + cs->max_dw;
4649
4650 radv_pipeline_generate_depth_stencil_state(ctx_cs, pipeline, pCreateInfo, extra);
4651 radv_pipeline_generate_blend_state(ctx_cs, pipeline, blend);
4652 radv_pipeline_generate_raster_state(ctx_cs, pipeline, pCreateInfo);
4653 radv_pipeline_generate_multisample_state(ctx_cs, pipeline);
4654 radv_pipeline_generate_vgt_gs_mode(ctx_cs, pipeline);
4655 radv_pipeline_generate_vertex_shader(ctx_cs, cs, pipeline, tess);
4656 radv_pipeline_generate_tess_shaders(ctx_cs, cs, pipeline, tess);
4657 radv_pipeline_generate_geometry_shader(ctx_cs, cs, pipeline);
4658 radv_pipeline_generate_fragment_shader(ctx_cs, cs, pipeline);
4659 radv_pipeline_generate_ps_inputs(ctx_cs, pipeline);
4660 radv_pipeline_generate_vgt_vertex_reuse(ctx_cs, pipeline);
4661 radv_pipeline_generate_binning_state(ctx_cs, pipeline, pCreateInfo, blend);
4662
4663 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10 && !radv_pipeline_has_ngg(pipeline))
4664 gfx10_pipeline_generate_ge_cntl(ctx_cs, pipeline, tess);
4665
4666 radeon_set_context_reg(ctx_cs, R_028B54_VGT_SHADER_STAGES_EN, radv_compute_vgt_shader_stages_en(pipeline));
4667
4668 if (pipeline->device->physical_device->rad_info.chip_class >= GFX7) {
4669 radeon_set_uconfig_reg_idx(pipeline->device->physical_device,
4670 cs, R_030908_VGT_PRIMITIVE_TYPE, 1, prim);
4671 } else {
4672 radeon_set_config_reg(cs, R_008958_VGT_PRIMITIVE_TYPE, prim);
4673 }
4674 radeon_set_context_reg(ctx_cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out);
4675
4676 radeon_set_context_reg(ctx_cs, R_02820C_PA_SC_CLIPRECT_RULE, radv_compute_cliprect_rule(pCreateInfo));
4677
4678 pipeline->ctx_cs_hash = _mesa_hash_data(ctx_cs->buf, ctx_cs->cdw * 4);
4679
4680 assert(ctx_cs->cdw <= ctx_cs->max_dw);
4681 assert(cs->cdw <= cs->max_dw);
4682 }
4683
4684 static struct radv_ia_multi_vgt_param_helpers
4685 radv_compute_ia_multi_vgt_param_helpers(struct radv_pipeline *pipeline,
4686 const struct radv_tessellation_state *tess,
4687 uint32_t prim)
4688 {
4689 struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0};
4690 const struct radv_device *device = pipeline->device;
4691
4692 if (radv_pipeline_has_tess(pipeline))
4693 ia_multi_vgt_param.primgroup_size = tess->num_patches;
4694 else if (radv_pipeline_has_gs(pipeline))
4695 ia_multi_vgt_param.primgroup_size = 64;
4696 else
4697 ia_multi_vgt_param.primgroup_size = 128; /* recommended without a GS */
4698
4699 /* GS requirement. */
4700 ia_multi_vgt_param.partial_es_wave = false;
4701 if (radv_pipeline_has_gs(pipeline) && device->physical_device->rad_info.chip_class <= GFX8)
4702 if (SI_GS_PER_ES / ia_multi_vgt_param.primgroup_size >= pipeline->device->gs_table_depth - 3)
4703 ia_multi_vgt_param.partial_es_wave = true;
4704
4705 ia_multi_vgt_param.wd_switch_on_eop = false;
4706 if (device->physical_device->rad_info.chip_class >= GFX7) {
4707 /* WD_SWITCH_ON_EOP has no effect on GPUs with less than
4708 * 4 shader engines. Set 1 to pass the assertion below.
4709 * The other cases are hardware requirements. */
4710 if (device->physical_device->rad_info.max_se < 4 ||
4711 prim == V_008958_DI_PT_POLYGON ||
4712 prim == V_008958_DI_PT_LINELOOP ||
4713 prim == V_008958_DI_PT_TRIFAN ||
4714 prim == V_008958_DI_PT_TRISTRIP_ADJ ||
4715 (pipeline->graphics.prim_restart_enable &&
4716 (device->physical_device->rad_info.family < CHIP_POLARIS10 ||
4717 (prim != V_008958_DI_PT_POINTLIST &&
4718 prim != V_008958_DI_PT_LINESTRIP))))
4719 ia_multi_vgt_param.wd_switch_on_eop = true;
4720 }
4721
4722 ia_multi_vgt_param.ia_switch_on_eoi = false;
4723 if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input)
4724 ia_multi_vgt_param.ia_switch_on_eoi = true;
4725 if (radv_pipeline_has_gs(pipeline) &&
4726 pipeline->shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)
4727 ia_multi_vgt_param.ia_switch_on_eoi = true;
4728 if (radv_pipeline_has_tess(pipeline)) {
4729 /* SWITCH_ON_EOI must be set if PrimID is used. */
4730 if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
4731 radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
4732 ia_multi_vgt_param.ia_switch_on_eoi = true;
4733 }
4734
4735 ia_multi_vgt_param.partial_vs_wave = false;
4736 if (radv_pipeline_has_tess(pipeline)) {
4737 /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
4738 if ((device->physical_device->rad_info.family == CHIP_TAHITI ||
4739 device->physical_device->rad_info.family == CHIP_PITCAIRN ||
4740 device->physical_device->rad_info.family == CHIP_BONAIRE) &&
4741 radv_pipeline_has_gs(pipeline))
4742 ia_multi_vgt_param.partial_vs_wave = true;
4743 /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
4744 if (device->physical_device->rad_info.has_distributed_tess) {
4745 if (radv_pipeline_has_gs(pipeline)) {
4746 if (device->physical_device->rad_info.chip_class <= GFX8)
4747 ia_multi_vgt_param.partial_es_wave = true;
4748 } else {
4749 ia_multi_vgt_param.partial_vs_wave = true;
4750 }
4751 }
4752 }
4753
4754 /* Workaround for a VGT hang when strip primitive types are used with
4755 * primitive restart.
4756 */
4757 if (pipeline->graphics.prim_restart_enable &&
4758 (prim == V_008958_DI_PT_LINESTRIP ||
4759 prim == V_008958_DI_PT_TRISTRIP ||
4760 prim == V_008958_DI_PT_LINESTRIP_ADJ ||
4761 prim == V_008958_DI_PT_TRISTRIP_ADJ)) {
4762 ia_multi_vgt_param.partial_vs_wave = true;
4763 }
4764
4765 if (radv_pipeline_has_gs(pipeline)) {
4766 /* On these chips there is the possibility of a hang if the
4767 * pipeline uses a GS and partial_vs_wave is not set.
4768 *
4769 * This mostly does not hit 4-SE chips, as those typically set
4770 * ia_switch_on_eoi and then partial_vs_wave is set for pipelines
4771 * with GS due to another workaround.
4772 *
4773 * Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242
4774 */
4775 if (device->physical_device->rad_info.family == CHIP_TONGA ||
4776 device->physical_device->rad_info.family == CHIP_FIJI ||
4777 device->physical_device->rad_info.family == CHIP_POLARIS10 ||
4778 device->physical_device->rad_info.family == CHIP_POLARIS11 ||
4779 device->physical_device->rad_info.family == CHIP_POLARIS12 ||
4780 device->physical_device->rad_info.family == CHIP_VEGAM) {
4781 ia_multi_vgt_param.partial_vs_wave = true;
4782 }
4783 }
4784
4785 ia_multi_vgt_param.base =
4786 S_028AA8_PRIMGROUP_SIZE(ia_multi_vgt_param.primgroup_size - 1) |
4787 /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
4788 S_028AA8_MAX_PRIMGRP_IN_WAVE(device->physical_device->rad_info.chip_class == GFX8 ? 2 : 0) |
4789 S_030960_EN_INST_OPT_BASIC(device->physical_device->rad_info.chip_class >= GFX9) |
4790 S_030960_EN_INST_OPT_ADV(device->physical_device->rad_info.chip_class >= GFX9);
4791
4792 return ia_multi_vgt_param;
4793 }
4794
4795
4796 static void
4797 radv_compute_vertex_input_state(struct radv_pipeline *pipeline,
4798 const VkGraphicsPipelineCreateInfo *pCreateInfo)
4799 {
4800 const VkPipelineVertexInputStateCreateInfo *vi_info =
4801 pCreateInfo->pVertexInputState;
4802 struct radv_vertex_elements_info *velems = &pipeline->vertex_elements;
4803
4804 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
4805 const VkVertexInputAttributeDescription *desc =
4806 &vi_info->pVertexAttributeDescriptions[i];
4807 unsigned loc = desc->location;
4808 const struct vk_format_description *format_desc;
4809
4810 format_desc = vk_format_description(desc->format);
4811
4812 velems->format_size[loc] = format_desc->block.bits / 8;
4813 }
4814
4815 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
4816 const VkVertexInputBindingDescription *desc =
4817 &vi_info->pVertexBindingDescriptions[i];
4818
4819 pipeline->binding_stride[desc->binding] = desc->stride;
4820 pipeline->num_vertex_bindings =
4821 MAX2(pipeline->num_vertex_bindings, desc->binding + 1);
4822 }
4823 }
4824
4825 static struct radv_shader_variant *
4826 radv_pipeline_get_streamout_shader(struct radv_pipeline *pipeline)
4827 {
4828 int i;
4829
4830 for (i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4831 struct radv_shader_variant *shader =
4832 radv_get_shader(pipeline, i);
4833
4834 if (shader && shader->info.so.num_outputs > 0)
4835 return shader;
4836 }
4837
4838 return NULL;
4839 }
4840
4841 static VkResult
4842 radv_secure_compile(struct radv_pipeline *pipeline,
4843 struct radv_device *device,
4844 const struct radv_pipeline_key *key,
4845 const VkPipelineShaderStageCreateInfo **pStages,
4846 const VkPipelineCreateFlags flags,
4847 unsigned num_stages)
4848 {
4849 uint8_t allowed_pipeline_hashes[2][20];
4850 radv_hash_shaders(allowed_pipeline_hashes[0], pStages,
4851 pipeline->layout, key, get_hash_flags(device));
4852
4853 /* Generate the GC copy hash */
4854 memcpy(allowed_pipeline_hashes[1], allowed_pipeline_hashes[0], 20);
4855 allowed_pipeline_hashes[1][0] ^= 1;
4856
4857 uint8_t allowed_hashes[2][20];
4858 for (unsigned i = 0; i < 2; ++i) {
4859 disk_cache_compute_key(device->physical_device->disk_cache,
4860 allowed_pipeline_hashes[i], 20,
4861 allowed_hashes[i]);
4862 }
4863
4864 /* Do an early exit if all cache entries are already there. */
4865 bool may_need_copy_shader = pStages[MESA_SHADER_GEOMETRY];
4866 void *main_entry = disk_cache_get(device->physical_device->disk_cache, allowed_hashes[0], NULL);
4867 void *copy_entry = NULL;
4868 if (may_need_copy_shader)
4869 copy_entry = disk_cache_get(device->physical_device->disk_cache, allowed_hashes[1], NULL);
4870
4871 bool has_all_cache_entries = main_entry && (!may_need_copy_shader || copy_entry);
4872 free(main_entry);
4873 free(copy_entry);
4874
4875 if(has_all_cache_entries)
4876 return VK_SUCCESS;
4877
4878 unsigned process = 0;
4879 uint8_t sc_threads = device->instance->num_sc_threads;
4880 while (true) {
4881 mtx_lock(&device->sc_state->secure_compile_mutex);
4882 if (device->sc_state->secure_compile_thread_counter < sc_threads) {
4883 device->sc_state->secure_compile_thread_counter++;
4884 for (unsigned i = 0; i < sc_threads; i++) {
4885 if (!device->sc_state->secure_compile_processes[i].in_use) {
4886 device->sc_state->secure_compile_processes[i].in_use = true;
4887 process = i;
4888 break;
4889 }
4890 }
4891 mtx_unlock(&device->sc_state->secure_compile_mutex);
4892 break;
4893 }
4894 mtx_unlock(&device->sc_state->secure_compile_mutex);
4895 }
4896
4897 int fd_secure_input = device->sc_state->secure_compile_processes[process].fd_secure_input;
4898 int fd_secure_output = device->sc_state->secure_compile_processes[process].fd_secure_output;
4899
4900 /* Fork a copy of the slim untainted secure compile process */
4901 enum radv_secure_compile_type sc_type = RADV_SC_TYPE_FORK_DEVICE;
4902 write(fd_secure_input, &sc_type, sizeof(sc_type));
4903
4904 if (!radv_sc_read(fd_secure_output, &sc_type, sizeof(sc_type), true) ||
4905 sc_type != RADV_SC_TYPE_INIT_SUCCESS)
4906 return VK_ERROR_DEVICE_LOST;
4907
4908 fd_secure_input = device->sc_state->secure_compile_processes[process].fd_server;
4909 fd_secure_output = device->sc_state->secure_compile_processes[process].fd_client;
4910
4911 /* Write pipeline / shader module out to secure process via pipe */
4912 sc_type = RADV_SC_TYPE_COMPILE_PIPELINE;
4913 write(fd_secure_input, &sc_type, sizeof(sc_type));
4914
4915 /* Write pipeline layout out to secure process */
4916 struct radv_pipeline_layout *layout = pipeline->layout;
4917 write(fd_secure_input, layout, sizeof(struct radv_pipeline_layout));
4918 write(fd_secure_input, &layout->num_sets, sizeof(uint32_t));
4919 for (uint32_t set = 0; set < layout->num_sets; set++) {
4920 write(fd_secure_input, &layout->set[set].layout->layout_size, sizeof(uint32_t));
4921 write(fd_secure_input, layout->set[set].layout, layout->set[set].layout->layout_size);
4922 }
4923
4924 /* Write pipeline key out to secure process */
4925 write(fd_secure_input, key, sizeof(struct radv_pipeline_key));
4926
4927 /* Write pipeline create flags out to secure process */
4928 write(fd_secure_input, &flags, sizeof(VkPipelineCreateFlags));
4929
4930 /* Write stage and shader information out to secure process */
4931 write(fd_secure_input, &num_stages, sizeof(uint32_t));
4932 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
4933 if (!pStages[i])
4934 continue;
4935
4936 /* Write stage out to secure process */
4937 gl_shader_stage stage = ffs(pStages[i]->stage) - 1;
4938 write(fd_secure_input, &stage, sizeof(gl_shader_stage));
4939
4940 /* Write entry point name out to secure process */
4941 size_t name_size = strlen(pStages[i]->pName) + 1;
4942 write(fd_secure_input, &name_size, sizeof(size_t));
4943 write(fd_secure_input, pStages[i]->pName, name_size);
4944
4945 /* Write shader module out to secure process */
4946 struct radv_shader_module *module = radv_shader_module_from_handle(pStages[i]->module);
4947 assert(!module->nir);
4948 size_t module_size = sizeof(struct radv_shader_module) + module->size;
4949 write(fd_secure_input, &module_size, sizeof(size_t));
4950 write(fd_secure_input, module, module_size);
4951
4952 /* Write specialization info out to secure process */
4953 const VkSpecializationInfo *specInfo = pStages[i]->pSpecializationInfo;
4954 bool has_spec_info = specInfo ? true : false;
4955 write(fd_secure_input, &has_spec_info, sizeof(bool));
4956 if (specInfo) {
4957 write(fd_secure_input, &specInfo->dataSize, sizeof(size_t));
4958 write(fd_secure_input, specInfo->pData, specInfo->dataSize);
4959
4960 write(fd_secure_input, &specInfo->mapEntryCount, sizeof(uint32_t));
4961 for (uint32_t j = 0; j < specInfo->mapEntryCount; j++)
4962 write(fd_secure_input, &specInfo->pMapEntries[j], sizeof(VkSpecializationMapEntry));
4963 }
4964 }
4965
4966 /* Read the data returned from the secure process */
4967 while (sc_type != RADV_SC_TYPE_COMPILE_PIPELINE_FINISHED) {
4968 if (!radv_sc_read(fd_secure_output, &sc_type, sizeof(sc_type), true))
4969 return VK_ERROR_DEVICE_LOST;
4970
4971 if (sc_type == RADV_SC_TYPE_WRITE_DISK_CACHE) {
4972 assert(device->physical_device->disk_cache);
4973
4974 uint8_t disk_sha1[20];
4975 if (!radv_sc_read(fd_secure_output, disk_sha1, sizeof(uint8_t) * 20, true))
4976 return VK_ERROR_DEVICE_LOST;
4977
4978 if (memcmp(disk_sha1, allowed_hashes[0], 20) &&
4979 memcmp(disk_sha1, allowed_hashes[1], 20))
4980 return VK_ERROR_DEVICE_LOST;
4981
4982 uint32_t entry_size;
4983 if (!radv_sc_read(fd_secure_output, &entry_size, sizeof(uint32_t), true))
4984 return VK_ERROR_DEVICE_LOST;
4985
4986 struct cache_entry *entry = malloc(entry_size);
4987 if (!radv_sc_read(fd_secure_output, entry, entry_size, true))
4988 return VK_ERROR_DEVICE_LOST;
4989
4990 disk_cache_put(device->physical_device->disk_cache,
4991 disk_sha1, entry, entry_size,
4992 NULL);
4993
4994 free(entry);
4995 } else if (sc_type == RADV_SC_TYPE_READ_DISK_CACHE) {
4996 uint8_t disk_sha1[20];
4997 if (!radv_sc_read(fd_secure_output, disk_sha1, sizeof(uint8_t) * 20, true))
4998 return VK_ERROR_DEVICE_LOST;
4999
5000 if (memcmp(disk_sha1, allowed_hashes[0], 20) &&
5001 memcmp(disk_sha1, allowed_hashes[1], 20))
5002 return VK_ERROR_DEVICE_LOST;
5003
5004 size_t size;
5005 struct cache_entry *entry = (struct cache_entry *)
5006 disk_cache_get(device->physical_device->disk_cache,
5007 disk_sha1, &size);
5008
5009 uint8_t found = entry ? 1 : 0;
5010 write(fd_secure_input, &found, sizeof(uint8_t));
5011
5012 if (found) {
5013 write(fd_secure_input, &size, sizeof(size_t));
5014 write(fd_secure_input, entry, size);
5015 }
5016
5017 free(entry);
5018 }
5019 }
5020
5021 sc_type = RADV_SC_TYPE_DESTROY_DEVICE;
5022 write(fd_secure_input, &sc_type, sizeof(sc_type));
5023
5024 mtx_lock(&device->sc_state->secure_compile_mutex);
5025 device->sc_state->secure_compile_thread_counter--;
5026 device->sc_state->secure_compile_processes[process].in_use = false;
5027 mtx_unlock(&device->sc_state->secure_compile_mutex);
5028
5029 return VK_SUCCESS;
5030 }
5031
5032 static VkResult
5033 radv_pipeline_init(struct radv_pipeline *pipeline,
5034 struct radv_device *device,
5035 struct radv_pipeline_cache *cache,
5036 const VkGraphicsPipelineCreateInfo *pCreateInfo,
5037 const struct radv_graphics_pipeline_create_info *extra)
5038 {
5039 VkResult result;
5040 bool has_view_index = false;
5041
5042 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
5043 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
5044 if (subpass->view_mask)
5045 has_view_index = true;
5046
5047 pipeline->device = device;
5048 pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
5049 assert(pipeline->layout);
5050
5051 struct radv_blend_state blend = radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra);
5052
5053 const VkPipelineCreationFeedbackCreateInfoEXT *creation_feedback =
5054 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
5055 radv_init_feedback(creation_feedback);
5056
5057 VkPipelineCreationFeedbackEXT *pipeline_feedback = creation_feedback ? creation_feedback->pPipelineCreationFeedback : NULL;
5058
5059 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
5060 VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 };
5061 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
5062 gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
5063 pStages[stage] = &pCreateInfo->pStages[i];
5064 if(creation_feedback)
5065 stage_feedbacks[stage] = &creation_feedback->pPipelineStageCreationFeedbacks[i];
5066 }
5067
5068 struct radv_pipeline_key key = radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, &blend, has_view_index);
5069 if (radv_device_use_secure_compile(device->instance)) {
5070 return radv_secure_compile(pipeline, device, &key, pStages, pCreateInfo->flags, pCreateInfo->stageCount);
5071 } else {
5072 radv_create_shaders(pipeline, device, cache, &key, pStages, pCreateInfo->flags, pipeline_feedback, stage_feedbacks);
5073 }
5074
5075 pipeline->graphics.spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
5076 radv_pipeline_init_multisample_state(pipeline, &blend, pCreateInfo);
5077 uint32_t gs_out;
5078 uint32_t prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology);
5079
5080 pipeline->graphics.topology = pCreateInfo->pInputAssemblyState->topology;
5081 pipeline->graphics.can_use_guardband = radv_prim_can_use_guardband(pCreateInfo->pInputAssemblyState->topology);
5082
5083 if (radv_pipeline_has_gs(pipeline)) {
5084 gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim);
5085 pipeline->graphics.can_use_guardband = gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP;
5086 } else if (radv_pipeline_has_tess(pipeline)) {
5087 if (pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode)
5088 gs_out = V_028A6C_OUTPRIM_TYPE_POINTLIST;
5089 else
5090 gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.primitive_mode);
5091 pipeline->graphics.can_use_guardband = gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP;
5092 } else {
5093 gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology);
5094 }
5095 if (extra && extra->use_rectlist) {
5096 prim = V_008958_DI_PT_RECTLIST;
5097 gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP;
5098 pipeline->graphics.can_use_guardband = true;
5099 if (radv_pipeline_has_ngg(pipeline))
5100 gs_out = V_028A6C_VGT_OUT_RECT_V0;
5101 }
5102 pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable;
5103 /* prim vertex count will need TESS changes */
5104 pipeline->graphics.prim_vertex_count = prim_size_table[prim];
5105
5106 radv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
5107
5108 /* Ensure that some export memory is always allocated, for two reasons:
5109 *
5110 * 1) Correctness: The hardware ignores the EXEC mask if no export
5111 * memory is allocated, so KILL and alpha test do not work correctly
5112 * without this.
5113 * 2) Performance: Every shader needs at least a NULL export, even when
5114 * it writes no color/depth output. The NULL export instruction
5115 * stalls without this setting.
5116 *
5117 * Don't add this to CB_SHADER_MASK.
5118 *
5119 * GFX10 supports pixel shaders without exports by setting both the
5120 * color and Z formats to SPI_SHADER_ZERO. The hw will skip export
5121 * instructions if any are present.
5122 */
5123 struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
5124 if ((pipeline->device->physical_device->rad_info.chip_class <= GFX9 ||
5125 ps->info.ps.can_discard) &&
5126 !blend.spi_shader_col_format) {
5127 if (!ps->info.ps.writes_z &&
5128 !ps->info.ps.writes_stencil &&
5129 !ps->info.ps.writes_sample_mask)
5130 blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
5131 }
5132
5133 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5134 if (pipeline->shaders[i]) {
5135 pipeline->need_indirect_descriptor_sets |= pipeline->shaders[i]->info.need_indirect_descriptor_sets;
5136 }
5137 }
5138
5139 if (radv_pipeline_has_gs(pipeline) && !radv_pipeline_has_ngg(pipeline)) {
5140 struct radv_shader_variant *gs =
5141 pipeline->shaders[MESA_SHADER_GEOMETRY];
5142
5143 calculate_gs_ring_sizes(pipeline, &gs->info.gs_ring_info);
5144 }
5145
5146 struct radv_tessellation_state tess = {0};
5147 if (radv_pipeline_has_tess(pipeline)) {
5148 if (prim == V_008958_DI_PT_PATCH) {
5149 pipeline->graphics.prim_vertex_count.min = pCreateInfo->pTessellationState->patchControlPoints;
5150 pipeline->graphics.prim_vertex_count.incr = 1;
5151 }
5152 tess = calculate_tess_state(pipeline, pCreateInfo);
5153 }
5154
5155 pipeline->graphics.ia_multi_vgt_param = radv_compute_ia_multi_vgt_param_helpers(pipeline, &tess, prim);
5156
5157 radv_compute_vertex_input_state(pipeline, pCreateInfo);
5158
5159 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++)
5160 pipeline->user_data_0[i] = radv_pipeline_stage_to_user_data_0(pipeline, i, device->physical_device->rad_info.chip_class);
5161
5162 struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_VERTEX,
5163 AC_UD_VS_BASE_VERTEX_START_INSTANCE);
5164 if (loc->sgpr_idx != -1) {
5165 pipeline->graphics.vtx_base_sgpr = pipeline->user_data_0[MESA_SHADER_VERTEX];
5166 pipeline->graphics.vtx_base_sgpr += loc->sgpr_idx * 4;
5167 if (radv_get_shader(pipeline, MESA_SHADER_VERTEX)->info.vs.needs_draw_id)
5168 pipeline->graphics.vtx_emit_num = 3;
5169 else
5170 pipeline->graphics.vtx_emit_num = 2;
5171 }
5172
5173 /* Find the last vertex shader stage that eventually uses streamout. */
5174 pipeline->streamout_shader = radv_pipeline_get_streamout_shader(pipeline);
5175
5176 result = radv_pipeline_scratch_init(device, pipeline);
5177 radv_pipeline_generate_pm4(pipeline, pCreateInfo, extra, &blend, &tess, prim, gs_out);
5178
5179 return result;
5180 }
5181
5182 VkResult
5183 radv_graphics_pipeline_create(
5184 VkDevice _device,
5185 VkPipelineCache _cache,
5186 const VkGraphicsPipelineCreateInfo *pCreateInfo,
5187 const struct radv_graphics_pipeline_create_info *extra,
5188 const VkAllocationCallbacks *pAllocator,
5189 VkPipeline *pPipeline)
5190 {
5191 RADV_FROM_HANDLE(radv_device, device, _device);
5192 RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
5193 struct radv_pipeline *pipeline;
5194 VkResult result;
5195
5196 pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
5197 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5198 if (pipeline == NULL)
5199 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5200
5201 result = radv_pipeline_init(pipeline, device, cache,
5202 pCreateInfo, extra);
5203 if (result != VK_SUCCESS) {
5204 radv_pipeline_destroy(device, pipeline, pAllocator);
5205 return result;
5206 }
5207
5208 *pPipeline = radv_pipeline_to_handle(pipeline);
5209
5210 return VK_SUCCESS;
5211 }
5212
5213 VkResult radv_CreateGraphicsPipelines(
5214 VkDevice _device,
5215 VkPipelineCache pipelineCache,
5216 uint32_t count,
5217 const VkGraphicsPipelineCreateInfo* pCreateInfos,
5218 const VkAllocationCallbacks* pAllocator,
5219 VkPipeline* pPipelines)
5220 {
5221 VkResult result = VK_SUCCESS;
5222 unsigned i = 0;
5223
5224 for (; i < count; i++) {
5225 VkResult r;
5226 r = radv_graphics_pipeline_create(_device,
5227 pipelineCache,
5228 &pCreateInfos[i],
5229 NULL, pAllocator, &pPipelines[i]);
5230 if (r != VK_SUCCESS) {
5231 result = r;
5232 pPipelines[i] = VK_NULL_HANDLE;
5233 }
5234 }
5235
5236 return result;
5237 }
5238
5239
5240 static void
5241 radv_compute_generate_pm4(struct radv_pipeline *pipeline)
5242 {
5243 struct radv_shader_variant *compute_shader;
5244 struct radv_device *device = pipeline->device;
5245 unsigned threads_per_threadgroup;
5246 unsigned threadgroups_per_cu = 1;
5247 unsigned waves_per_threadgroup;
5248 unsigned max_waves_per_sh = 0;
5249 uint64_t va;
5250
5251 pipeline->cs.max_dw = device->physical_device->rad_info.chip_class >= GFX10 ? 22 : 20;
5252 pipeline->cs.buf = malloc(pipeline->cs.max_dw * 4);
5253
5254 compute_shader = pipeline->shaders[MESA_SHADER_COMPUTE];
5255 va = radv_buffer_get_va(compute_shader->bo) + compute_shader->bo_offset;
5256
5257 radeon_set_sh_reg_seq(&pipeline->cs, R_00B830_COMPUTE_PGM_LO, 2);
5258 radeon_emit(&pipeline->cs, va >> 8);
5259 radeon_emit(&pipeline->cs, S_00B834_DATA(va >> 40));
5260
5261 radeon_set_sh_reg_seq(&pipeline->cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
5262 radeon_emit(&pipeline->cs, compute_shader->config.rsrc1);
5263 radeon_emit(&pipeline->cs, compute_shader->config.rsrc2);
5264 if (device->physical_device->rad_info.chip_class >= GFX10) {
5265 radeon_set_sh_reg(&pipeline->cs, R_00B8A0_COMPUTE_PGM_RSRC3, compute_shader->config.rsrc3);
5266 }
5267
5268 /* Calculate best compute resource limits. */
5269 threads_per_threadgroup = compute_shader->info.cs.block_size[0] *
5270 compute_shader->info.cs.block_size[1] *
5271 compute_shader->info.cs.block_size[2];
5272 waves_per_threadgroup = DIV_ROUND_UP(threads_per_threadgroup,
5273 compute_shader->info.wave_size);
5274
5275 if (device->physical_device->rad_info.chip_class >= GFX10 &&
5276 waves_per_threadgroup == 1)
5277 threadgroups_per_cu = 2;
5278
5279 radeon_set_sh_reg(&pipeline->cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
5280 ac_get_compute_resource_limits(&device->physical_device->rad_info,
5281 waves_per_threadgroup,
5282 max_waves_per_sh,
5283 threadgroups_per_cu));
5284
5285 radeon_set_sh_reg_seq(&pipeline->cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
5286 radeon_emit(&pipeline->cs,
5287 S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[0]));
5288 radeon_emit(&pipeline->cs,
5289 S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[1]));
5290 radeon_emit(&pipeline->cs,
5291 S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[2]));
5292
5293 assert(pipeline->cs.cdw <= pipeline->cs.max_dw);
5294 }
5295
5296 static struct radv_pipeline_key
5297 radv_generate_compute_pipeline_key(struct radv_pipeline *pipeline,
5298 const VkComputePipelineCreateInfo *pCreateInfo)
5299 {
5300 const VkPipelineShaderStageCreateInfo *stage = &pCreateInfo->stage;
5301 struct radv_pipeline_key key;
5302 memset(&key, 0, sizeof(key));
5303
5304 if (pCreateInfo->flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)
5305 key.optimisations_disabled = 1;
5306
5307 const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *subgroup_size =
5308 vk_find_struct_const(stage->pNext,
5309 PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT);
5310
5311 if (subgroup_size) {
5312 assert(subgroup_size->requiredSubgroupSize == 32 ||
5313 subgroup_size->requiredSubgroupSize == 64);
5314 key.compute_subgroup_size = subgroup_size->requiredSubgroupSize;
5315 }
5316
5317 return key;
5318 }
5319
5320 static VkResult radv_compute_pipeline_create(
5321 VkDevice _device,
5322 VkPipelineCache _cache,
5323 const VkComputePipelineCreateInfo* pCreateInfo,
5324 const VkAllocationCallbacks* pAllocator,
5325 VkPipeline* pPipeline)
5326 {
5327 RADV_FROM_HANDLE(radv_device, device, _device);
5328 RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
5329 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
5330 VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 };
5331 struct radv_pipeline *pipeline;
5332 VkResult result;
5333
5334 pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
5335 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5336 if (pipeline == NULL)
5337 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5338
5339 pipeline->device = device;
5340 pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
5341 assert(pipeline->layout);
5342
5343 const VkPipelineCreationFeedbackCreateInfoEXT *creation_feedback =
5344 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
5345 radv_init_feedback(creation_feedback);
5346
5347 VkPipelineCreationFeedbackEXT *pipeline_feedback = creation_feedback ? creation_feedback->pPipelineCreationFeedback : NULL;
5348 if (creation_feedback)
5349 stage_feedbacks[MESA_SHADER_COMPUTE] = &creation_feedback->pPipelineStageCreationFeedbacks[0];
5350
5351 pStages[MESA_SHADER_COMPUTE] = &pCreateInfo->stage;
5352
5353 struct radv_pipeline_key key =
5354 radv_generate_compute_pipeline_key(pipeline, pCreateInfo);
5355
5356 if (radv_device_use_secure_compile(device->instance)) {
5357 result = radv_secure_compile(pipeline, device, &key, pStages, pCreateInfo->flags, 1);
5358 *pPipeline = radv_pipeline_to_handle(pipeline);
5359
5360 return result;
5361 } else {
5362 radv_create_shaders(pipeline, device, cache, &key, pStages, pCreateInfo->flags, pipeline_feedback, stage_feedbacks);
5363 }
5364
5365 pipeline->user_data_0[MESA_SHADER_COMPUTE] = radv_pipeline_stage_to_user_data_0(pipeline, MESA_SHADER_COMPUTE, device->physical_device->rad_info.chip_class);
5366 pipeline->need_indirect_descriptor_sets |= pipeline->shaders[MESA_SHADER_COMPUTE]->info.need_indirect_descriptor_sets;
5367 result = radv_pipeline_scratch_init(device, pipeline);
5368 if (result != VK_SUCCESS) {
5369 radv_pipeline_destroy(device, pipeline, pAllocator);
5370 return result;
5371 }
5372
5373 radv_compute_generate_pm4(pipeline);
5374
5375 *pPipeline = radv_pipeline_to_handle(pipeline);
5376
5377 return VK_SUCCESS;
5378 }
5379
5380 VkResult radv_CreateComputePipelines(
5381 VkDevice _device,
5382 VkPipelineCache pipelineCache,
5383 uint32_t count,
5384 const VkComputePipelineCreateInfo* pCreateInfos,
5385 const VkAllocationCallbacks* pAllocator,
5386 VkPipeline* pPipelines)
5387 {
5388 VkResult result = VK_SUCCESS;
5389
5390 unsigned i = 0;
5391 for (; i < count; i++) {
5392 VkResult r;
5393 r = radv_compute_pipeline_create(_device, pipelineCache,
5394 &pCreateInfos[i],
5395 pAllocator, &pPipelines[i]);
5396 if (r != VK_SUCCESS) {
5397 result = r;
5398 pPipelines[i] = VK_NULL_HANDLE;
5399 }
5400 }
5401
5402 return result;
5403 }
5404
5405
5406 static uint32_t radv_get_executable_count(const struct radv_pipeline *pipeline)
5407 {
5408 uint32_t ret = 0;
5409 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
5410 if (!pipeline->shaders[i])
5411 continue;
5412
5413 if (i == MESA_SHADER_GEOMETRY &&
5414 !radv_pipeline_has_ngg(pipeline)) {
5415 ret += 2u;
5416 } else {
5417 ret += 1u;
5418 }
5419
5420 }
5421 return ret;
5422 }
5423
5424 static struct radv_shader_variant *
5425 radv_get_shader_from_executable_index(const struct radv_pipeline *pipeline, int index, gl_shader_stage *stage)
5426 {
5427 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
5428 if (!pipeline->shaders[i])
5429 continue;
5430 if (!index) {
5431 *stage = i;
5432 return pipeline->shaders[i];
5433 }
5434
5435 --index;
5436
5437 if (i == MESA_SHADER_GEOMETRY &&
5438 !radv_pipeline_has_ngg(pipeline)) {
5439 if (!index) {
5440 *stage = i;
5441 return pipeline->gs_copy_shader;
5442 }
5443 --index;
5444 }
5445 }
5446
5447 *stage = -1;
5448 return NULL;
5449 }
5450
5451 /* Basically strlcpy (which does not exist on linux) specialized for
5452 * descriptions. */
5453 static void desc_copy(char *desc, const char *src) {
5454 int len = strlen(src);
5455 assert(len < VK_MAX_DESCRIPTION_SIZE);
5456 memcpy(desc, src, len);
5457 memset(desc + len, 0, VK_MAX_DESCRIPTION_SIZE - len);
5458 }
5459
5460 VkResult radv_GetPipelineExecutablePropertiesKHR(
5461 VkDevice _device,
5462 const VkPipelineInfoKHR* pPipelineInfo,
5463 uint32_t* pExecutableCount,
5464 VkPipelineExecutablePropertiesKHR* pProperties)
5465 {
5466 RADV_FROM_HANDLE(radv_pipeline, pipeline, pPipelineInfo->pipeline);
5467 const uint32_t total_count = radv_get_executable_count(pipeline);
5468
5469 if (!pProperties) {
5470 *pExecutableCount = total_count;
5471 return VK_SUCCESS;
5472 }
5473
5474 const uint32_t count = MIN2(total_count, *pExecutableCount);
5475 for (unsigned i = 0, executable_idx = 0;
5476 i < MESA_SHADER_STAGES && executable_idx < count; ++i) {
5477 if (!pipeline->shaders[i])
5478 continue;
5479 pProperties[executable_idx].stages = mesa_to_vk_shader_stage(i);
5480 const char *name = NULL;
5481 const char *description = NULL;
5482 switch(i) {
5483 case MESA_SHADER_VERTEX:
5484 name = "Vertex Shader";
5485 description = "Vulkan Vertex Shader";
5486 break;
5487 case MESA_SHADER_TESS_CTRL:
5488 if (!pipeline->shaders[MESA_SHADER_VERTEX]) {
5489 pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
5490 name = "Vertex + Tessellation Control Shaders";
5491 description = "Combined Vulkan Vertex and Tessellation Control Shaders";
5492 } else {
5493 name = "Tessellation Control Shader";
5494 description = "Vulkan Tessellation Control Shader";
5495 }
5496 break;
5497 case MESA_SHADER_TESS_EVAL:
5498 name = "Tessellation Evaluation Shader";
5499 description = "Vulkan Tessellation Evaluation Shader";
5500 break;
5501 case MESA_SHADER_GEOMETRY:
5502 if (radv_pipeline_has_tess(pipeline) && !pipeline->shaders[MESA_SHADER_TESS_EVAL]) {
5503 pProperties[executable_idx].stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
5504 name = "Tessellation Evaluation + Geometry Shaders";
5505 description = "Combined Vulkan Tessellation Evaluation and Geometry Shaders";
5506 } else if (!radv_pipeline_has_tess(pipeline) && !pipeline->shaders[MESA_SHADER_VERTEX]) {
5507 pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
5508 name = "Vertex + Geometry Shader";
5509 description = "Combined Vulkan Vertex and Geometry Shaders";
5510 } else {
5511 name = "Geometry Shader";
5512 description = "Vulkan Geometry Shader";
5513 }
5514 break;
5515 case MESA_SHADER_FRAGMENT:
5516 name = "Fragment Shader";
5517 description = "Vulkan Fragment Shader";
5518 break;
5519 case MESA_SHADER_COMPUTE:
5520 name = "Compute Shader";
5521 description = "Vulkan Compute Shader";
5522 break;
5523 }
5524
5525 pProperties[executable_idx].subgroupSize = pipeline->shaders[i]->info.wave_size;
5526 desc_copy(pProperties[executable_idx].name, name);
5527 desc_copy(pProperties[executable_idx].description, description);
5528
5529 ++executable_idx;
5530 if (i == MESA_SHADER_GEOMETRY &&
5531 !radv_pipeline_has_ngg(pipeline)) {
5532 assert(pipeline->gs_copy_shader);
5533 if (executable_idx >= count)
5534 break;
5535
5536 pProperties[executable_idx].stages = VK_SHADER_STAGE_GEOMETRY_BIT;
5537 pProperties[executable_idx].subgroupSize = 64;
5538 desc_copy(pProperties[executable_idx].name, "GS Copy Shader");
5539 desc_copy(pProperties[executable_idx].description,
5540 "Extra shader stage that loads the GS output ringbuffer into the rasterizer");
5541
5542 ++executable_idx;
5543 }
5544 }
5545
5546 VkResult result = *pExecutableCount < total_count ? VK_INCOMPLETE : VK_SUCCESS;
5547 *pExecutableCount = count;
5548 return result;
5549 }
5550
5551 VkResult radv_GetPipelineExecutableStatisticsKHR(
5552 VkDevice _device,
5553 const VkPipelineExecutableInfoKHR* pExecutableInfo,
5554 uint32_t* pStatisticCount,
5555 VkPipelineExecutableStatisticKHR* pStatistics)
5556 {
5557 RADV_FROM_HANDLE(radv_device, device, _device);
5558 RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
5559 gl_shader_stage stage;
5560 struct radv_shader_variant *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
5561
5562 enum chip_class chip_class = device->physical_device->rad_info.chip_class;
5563 unsigned lds_increment = chip_class >= GFX7 ? 512 : 256;
5564 unsigned max_waves = radv_get_max_waves(device, shader, stage);
5565
5566 VkPipelineExecutableStatisticKHR *s = pStatistics;
5567 VkPipelineExecutableStatisticKHR *end = s + (pStatistics ? *pStatisticCount : 0);
5568 VkResult result = VK_SUCCESS;
5569
5570 if (s < end) {
5571 desc_copy(s->name, "SGPRs");
5572 desc_copy(s->description, "Number of SGPR registers allocated per subgroup");
5573 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5574 s->value.u64 = shader->config.num_sgprs;
5575 }
5576 ++s;
5577
5578 if (s < end) {
5579 desc_copy(s->name, "VGPRs");
5580 desc_copy(s->description, "Number of VGPR registers allocated per subgroup");
5581 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5582 s->value.u64 = shader->config.num_vgprs;
5583 }
5584 ++s;
5585
5586 if (s < end) {
5587 desc_copy(s->name, "Spilled SGPRs");
5588 desc_copy(s->description, "Number of SGPR registers spilled per subgroup");
5589 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5590 s->value.u64 = shader->config.spilled_sgprs;
5591 }
5592 ++s;
5593
5594 if (s < end) {
5595 desc_copy(s->name, "Spilled VGPRs");
5596 desc_copy(s->description, "Number of VGPR registers spilled per subgroup");
5597 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5598 s->value.u64 = shader->config.spilled_vgprs;
5599 }
5600 ++s;
5601
5602 if (s < end) {
5603 desc_copy(s->name, "PrivMem VGPRs");
5604 desc_copy(s->description, "Number of VGPRs stored in private memory per subgroup");
5605 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5606 s->value.u64 = shader->info.private_mem_vgprs;
5607 }
5608 ++s;
5609
5610 if (s < end) {
5611 desc_copy(s->name, "Code size");
5612 desc_copy(s->description, "Code size in bytes");
5613 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5614 s->value.u64 = shader->exec_size;
5615 }
5616 ++s;
5617
5618 if (s < end) {
5619 desc_copy(s->name, "LDS size");
5620 desc_copy(s->description, "LDS size in bytes per workgroup");
5621 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5622 s->value.u64 = shader->config.lds_size * lds_increment;
5623 }
5624 ++s;
5625
5626 if (s < end) {
5627 desc_copy(s->name, "Scratch size");
5628 desc_copy(s->description, "Private memory in bytes per subgroup");
5629 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5630 s->value.u64 = shader->config.scratch_bytes_per_wave;
5631 }
5632 ++s;
5633
5634 if (s < end) {
5635 desc_copy(s->name, "Subgroups per SIMD");
5636 desc_copy(s->description, "The maximum number of subgroups in flight on a SIMD unit");
5637 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5638 s->value.u64 = max_waves;
5639 }
5640 ++s;
5641
5642 if (shader->statistics) {
5643 for (unsigned i = 0; i < shader->statistics->count; i++) {
5644 struct radv_compiler_statistic_info *info = &shader->statistics->infos[i];
5645 uint32_t value = shader->statistics->values[i];
5646 if (s < end) {
5647 desc_copy(s->name, info->name);
5648 desc_copy(s->description, info->desc);
5649 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5650 s->value.u64 = value;
5651 }
5652 ++s;
5653 }
5654 }
5655
5656 if (!pStatistics)
5657 *pStatisticCount = s - pStatistics;
5658 else if (s > end) {
5659 *pStatisticCount = end - pStatistics;
5660 result = VK_INCOMPLETE;
5661 } else {
5662 *pStatisticCount = s - pStatistics;
5663 }
5664
5665 return result;
5666 }
5667
5668 static VkResult radv_copy_representation(void *data, size_t *data_size, const char *src)
5669 {
5670 size_t total_size = strlen(src) + 1;
5671
5672 if (!data) {
5673 *data_size = total_size;
5674 return VK_SUCCESS;
5675 }
5676
5677 size_t size = MIN2(total_size, *data_size);
5678
5679 memcpy(data, src, size);
5680 if (size)
5681 *((char*)data + size - 1) = 0;
5682 return size < total_size ? VK_INCOMPLETE : VK_SUCCESS;
5683 }
5684
5685 VkResult radv_GetPipelineExecutableInternalRepresentationsKHR(
5686 VkDevice device,
5687 const VkPipelineExecutableInfoKHR* pExecutableInfo,
5688 uint32_t* pInternalRepresentationCount,
5689 VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
5690 {
5691 RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
5692 gl_shader_stage stage;
5693 struct radv_shader_variant *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
5694
5695 VkPipelineExecutableInternalRepresentationKHR *p = pInternalRepresentations;
5696 VkPipelineExecutableInternalRepresentationKHR *end = p + (pInternalRepresentations ? *pInternalRepresentationCount : 0);
5697 VkResult result = VK_SUCCESS;
5698 /* optimized NIR */
5699 if (p < end) {
5700 p->isText = true;
5701 desc_copy(p->name, "NIR Shader(s)");
5702 desc_copy(p->description, "The optimized NIR shader(s)");
5703 if (radv_copy_representation(p->pData, &p->dataSize, shader->nir_string) != VK_SUCCESS)
5704 result = VK_INCOMPLETE;
5705 }
5706 ++p;
5707
5708 /* backend IR */
5709 if (p < end) {
5710 p->isText = true;
5711 if (pipeline->device->physical_device->use_aco) {
5712 desc_copy(p->name, "ACO IR");
5713 desc_copy(p->description, "The ACO IR after some optimizations");
5714 } else {
5715 desc_copy(p->name, "LLVM IR");
5716 desc_copy(p->description, "The LLVM IR after some optimizations");
5717 }
5718 if (radv_copy_representation(p->pData, &p->dataSize, shader->ir_string) != VK_SUCCESS)
5719 result = VK_INCOMPLETE;
5720 }
5721 ++p;
5722
5723 /* Disassembler */
5724 if (p < end) {
5725 p->isText = true;
5726 desc_copy(p->name, "Assembly");
5727 desc_copy(p->description, "Final Assembly");
5728 if (radv_copy_representation(p->pData, &p->dataSize, shader->disasm_string) != VK_SUCCESS)
5729 result = VK_INCOMPLETE;
5730 }
5731 ++p;
5732
5733 if (!pInternalRepresentations)
5734 *pInternalRepresentationCount = p - pInternalRepresentations;
5735 else if(p > end) {
5736 result = VK_INCOMPLETE;
5737 *pInternalRepresentationCount = end - pInternalRepresentations;
5738 } else {
5739 *pInternalRepresentationCount = p - pInternalRepresentations;
5740 }
5741
5742 return result;
5743 }