radv: Call NIR passes using NIR_PASS_V.
[mesa.git] / src / amd / vulkan / radv_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "radv_private.h"
30 #include "nir/nir.h"
31 #include "nir/nir_builder.h"
32 #include "spirv/nir_spirv.h"
33
34 #include <llvm-c/Core.h>
35 #include <llvm-c/TargetMachine.h>
36
37 #include "sid.h"
38 #include "r600d_common.h"
39 #include "ac_binary.h"
40 #include "ac_llvm_util.h"
41 #include "ac_nir_to_llvm.h"
42 #include "vk_format.h"
43 #include "util/debug.h"
44 void radv_shader_variant_destroy(struct radv_device *device,
45 struct radv_shader_variant *variant);
46
47 static const struct nir_shader_compiler_options nir_options = {
48 .vertex_id_zero_based = true,
49 .lower_scmp = true,
50 .lower_flrp32 = true,
51 .lower_fsat = true,
52 .lower_pack_snorm_2x16 = true,
53 .lower_pack_snorm_4x8 = true,
54 .lower_pack_unorm_2x16 = true,
55 .lower_pack_unorm_4x8 = true,
56 .lower_unpack_snorm_2x16 = true,
57 .lower_unpack_snorm_4x8 = true,
58 .lower_unpack_unorm_2x16 = true,
59 .lower_unpack_unorm_4x8 = true,
60 .lower_extract_byte = true,
61 .lower_extract_word = true,
62 };
63
64 VkResult radv_CreateShaderModule(
65 VkDevice _device,
66 const VkShaderModuleCreateInfo* pCreateInfo,
67 const VkAllocationCallbacks* pAllocator,
68 VkShaderModule* pShaderModule)
69 {
70 RADV_FROM_HANDLE(radv_device, device, _device);
71 struct radv_shader_module *module;
72
73 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
74 assert(pCreateInfo->flags == 0);
75
76 module = vk_alloc2(&device->alloc, pAllocator,
77 sizeof(*module) + pCreateInfo->codeSize, 8,
78 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
79 if (module == NULL)
80 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
81
82 module->nir = NULL;
83 module->size = pCreateInfo->codeSize;
84 memcpy(module->data, pCreateInfo->pCode, module->size);
85
86 _mesa_sha1_compute(module->data, module->size, module->sha1);
87
88 *pShaderModule = radv_shader_module_to_handle(module);
89
90 return VK_SUCCESS;
91 }
92
93 void radv_DestroyShaderModule(
94 VkDevice _device,
95 VkShaderModule _module,
96 const VkAllocationCallbacks* pAllocator)
97 {
98 RADV_FROM_HANDLE(radv_device, device, _device);
99 RADV_FROM_HANDLE(radv_shader_module, module, _module);
100
101 if (!module)
102 return;
103
104 vk_free2(&device->alloc, pAllocator, module);
105 }
106
107 void radv_DestroyPipeline(
108 VkDevice _device,
109 VkPipeline _pipeline,
110 const VkAllocationCallbacks* pAllocator)
111 {
112 RADV_FROM_HANDLE(radv_device, device, _device);
113 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
114
115 if (!_pipeline)
116 return;
117
118 for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i)
119 if (pipeline->shaders[i])
120 radv_shader_variant_destroy(device, pipeline->shaders[i]);
121
122 vk_free2(&device->alloc, pAllocator, pipeline);
123 }
124
125
126 static void
127 radv_optimize_nir(struct nir_shader *shader)
128 {
129 bool progress;
130
131 do {
132 progress = false;
133
134 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
135 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
136 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
137
138 NIR_PASS(progress, shader, nir_copy_prop);
139 NIR_PASS(progress, shader, nir_opt_remove_phis);
140 NIR_PASS(progress, shader, nir_opt_dce);
141 NIR_PASS(progress, shader, nir_opt_dead_cf);
142 NIR_PASS(progress, shader, nir_opt_cse);
143 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
144 NIR_PASS(progress, shader, nir_opt_algebraic);
145 NIR_PASS(progress, shader, nir_opt_constant_folding);
146 NIR_PASS(progress, shader, nir_opt_undef);
147 NIR_PASS(progress, shader, nir_opt_conditional_discard);
148 } while (progress);
149 }
150
151 static nir_shader *
152 radv_shader_compile_to_nir(struct radv_device *device,
153 struct radv_shader_module *module,
154 const char *entrypoint_name,
155 gl_shader_stage stage,
156 const VkSpecializationInfo *spec_info,
157 bool dump)
158 {
159 if (strcmp(entrypoint_name, "main") != 0) {
160 radv_finishme("Multiple shaders per module not really supported");
161 }
162
163 nir_shader *nir;
164 nir_function *entry_point;
165 if (module->nir) {
166 /* Some things such as our meta clear/blit code will give us a NIR
167 * shader directly. In that case, we just ignore the SPIR-V entirely
168 * and just use the NIR shader */
169 nir = module->nir;
170 nir->options = &nir_options;
171 nir_validate_shader(nir);
172
173 assert(exec_list_length(&nir->functions) == 1);
174 struct exec_node *node = exec_list_get_head(&nir->functions);
175 entry_point = exec_node_data(nir_function, node, node);
176 } else {
177 uint32_t *spirv = (uint32_t *) module->data;
178 assert(module->size % 4 == 0);
179
180 uint32_t num_spec_entries = 0;
181 struct nir_spirv_specialization *spec_entries = NULL;
182 if (spec_info && spec_info->mapEntryCount > 0) {
183 num_spec_entries = spec_info->mapEntryCount;
184 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
185 for (uint32_t i = 0; i < num_spec_entries; i++) {
186 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
187 const void *data = spec_info->pData + entry.offset;
188 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
189
190 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
191 if (spec_info->dataSize == 8)
192 spec_entries[i].data64 = *(const uint64_t *)data;
193 else
194 spec_entries[i].data32 = *(const uint32_t *)data;
195 }
196 }
197 const struct nir_spirv_supported_extensions supported_ext = {
198 };
199 entry_point = spirv_to_nir(spirv, module->size / 4,
200 spec_entries, num_spec_entries,
201 stage, entrypoint_name, &supported_ext, &nir_options);
202 nir = entry_point->shader;
203 assert(nir->stage == stage);
204 nir_validate_shader(nir);
205
206 free(spec_entries);
207
208 /* We have to lower away local constant initializers right before we
209 * inline functions. That way they get properly initialized at the top
210 * of the function and not at the top of its caller.
211 */
212 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
213 NIR_PASS_V(nir, nir_lower_returns);
214 NIR_PASS_V(nir, nir_inline_functions);
215
216 /* Pick off the single entrypoint that we want */
217 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
218 if (func != entry_point)
219 exec_node_remove(&func->node);
220 }
221 assert(exec_list_length(&nir->functions) == 1);
222 entry_point->name = ralloc_strdup(entry_point, "main");
223
224 NIR_PASS_V(nir, nir_remove_dead_variables,
225 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
226
227 /* Now that we've deleted all but the main function, we can go ahead and
228 * lower the rest of the constant initializers.
229 */
230 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
231 NIR_PASS_V(nir, nir_lower_system_values);
232 }
233
234 /* Vulkan uses the separate-shader linking model */
235 nir->info->separate_shader = true;
236
237 // nir = brw_preprocess_nir(compiler, nir);
238
239 nir_shader_gather_info(nir, entry_point->impl);
240
241 nir_variable_mode indirect_mask = 0;
242 // if (compiler->glsl_compiler_options[stage].EmitNoIndirectInput)
243 indirect_mask |= nir_var_shader_in;
244 // if (compiler->glsl_compiler_options[stage].EmitNoIndirectTemp)
245 indirect_mask |= nir_var_local;
246
247 nir_lower_indirect_derefs(nir, indirect_mask);
248
249 static const nir_lower_tex_options tex_options = {
250 .lower_txp = ~0,
251 };
252
253 nir_lower_tex(nir, &tex_options);
254
255 nir_lower_vars_to_ssa(nir);
256 nir_lower_var_copies(nir);
257 nir_lower_global_vars_to_local(nir);
258 nir_remove_dead_variables(nir, nir_var_local);
259 radv_optimize_nir(nir);
260
261 if (dump)
262 nir_print_shader(nir, stderr);
263
264 return nir;
265 }
266
267 static const char *radv_get_shader_name(struct radv_shader_variant *var,
268 gl_shader_stage stage)
269 {
270 switch (stage) {
271 case MESA_SHADER_VERTEX: return "Vertex Shader as VS";
272 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
273 case MESA_SHADER_COMPUTE: return "Compute Shader";
274 default:
275 return "Unknown shader";
276 };
277
278 }
279 static void radv_dump_pipeline_stats(struct radv_device *device, struct radv_pipeline *pipeline)
280 {
281 unsigned lds_increment = device->instance->physicalDevice.rad_info.chip_class >= CIK ? 512 : 256;
282 struct radv_shader_variant *var;
283 struct ac_shader_config *conf;
284 int i;
285 FILE *file = stderr;
286 unsigned max_simd_waves = 10;
287 unsigned lds_per_wave = 0;
288
289 for (i = 0; i < MESA_SHADER_STAGES; i++) {
290 if (!pipeline->shaders[i])
291 continue;
292 var = pipeline->shaders[i];
293
294 conf = &var->config;
295
296 if (i == MESA_SHADER_FRAGMENT) {
297 lds_per_wave = conf->lds_size * lds_increment +
298 align(var->info.fs.num_interp * 48, lds_increment);
299 }
300
301 if (conf->num_sgprs) {
302 if (device->instance->physicalDevice.rad_info.chip_class >= VI)
303 max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
304 else
305 max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
306 }
307
308 if (conf->num_vgprs)
309 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
310
311 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
312 * that PS can use.
313 */
314 if (lds_per_wave)
315 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
316
317 fprintf(file, "\n%s:\n",
318 radv_get_shader_name(var, i));
319 if (i == MESA_SHADER_FRAGMENT) {
320 fprintf(file, "*** SHADER CONFIG ***\n"
321 "SPI_PS_INPUT_ADDR = 0x%04x\n"
322 "SPI_PS_INPUT_ENA = 0x%04x\n",
323 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
324 }
325 fprintf(file, "*** SHADER STATS ***\n"
326 "SGPRS: %d\n"
327 "VGPRS: %d\n"
328 "Spilled SGPRs: %d\n"
329 "Spilled VGPRs: %d\n"
330 "Code Size: %d bytes\n"
331 "LDS: %d blocks\n"
332 "Scratch: %d bytes per wave\n"
333 "Max Waves: %d\n"
334 "********************\n\n\n",
335 conf->num_sgprs, conf->num_vgprs,
336 conf->spilled_sgprs, conf->spilled_vgprs, var->code_size,
337 conf->lds_size, conf->scratch_bytes_per_wave,
338 max_simd_waves);
339 }
340 }
341
342 void radv_shader_variant_destroy(struct radv_device *device,
343 struct radv_shader_variant *variant)
344 {
345 if (__sync_fetch_and_sub(&variant->ref_count, 1) != 1)
346 return;
347
348 device->ws->buffer_destroy(variant->bo);
349 free(variant);
350 }
351
352 static void radv_fill_shader_variant(struct radv_device *device,
353 struct radv_shader_variant *variant,
354 struct ac_shader_binary *binary,
355 gl_shader_stage stage)
356 {
357 variant->code_size = binary->code_size;
358 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
359 unsigned vgpr_comp_cnt = 0;
360
361 if (scratch_enabled)
362 radv_finishme("shader scratch space");
363
364 switch (stage) {
365 case MESA_SHADER_VERTEX:
366 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
367 S_00B12C_SCRATCH_EN(scratch_enabled);
368 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
369 break;
370 case MESA_SHADER_FRAGMENT:
371 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
372 S_00B12C_SCRATCH_EN(scratch_enabled);
373 break;
374 case MESA_SHADER_COMPUTE:
375 variant->rsrc2 = S_00B84C_USER_SGPR(variant->info.num_user_sgprs) |
376 S_00B84C_SCRATCH_EN(scratch_enabled) |
377 S_00B84C_TGID_X_EN(1) | S_00B84C_TGID_Y_EN(1) |
378 S_00B84C_TGID_Z_EN(1) | S_00B84C_TIDIG_COMP_CNT(2) |
379 S_00B84C_TG_SIZE_EN(1) |
380 S_00B84C_LDS_SIZE(variant->config.lds_size);
381 break;
382 default:
383 unreachable("unsupported shader type");
384 break;
385 }
386
387 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
388 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
389 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
390 S_00B848_DX10_CLAMP(1) |
391 S_00B848_FLOAT_MODE(variant->config.float_mode);
392
393 variant->bo = device->ws->buffer_create(device->ws, binary->code_size, 256,
394 RADEON_DOMAIN_GTT, RADEON_FLAG_CPU_ACCESS);
395
396 void *ptr = device->ws->buffer_map(variant->bo);
397 memcpy(ptr, binary->code, binary->code_size);
398 device->ws->buffer_unmap(variant->bo);
399
400
401 }
402
403 static struct radv_shader_variant *radv_shader_variant_create(struct radv_device *device,
404 struct nir_shader *shader,
405 struct radv_pipeline_layout *layout,
406 const union ac_shader_variant_key *key,
407 void** code_out,
408 unsigned *code_size_out,
409 bool dump)
410 {
411 struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant));
412 enum radeon_family chip_family = device->instance->physicalDevice.rad_info.family;
413 LLVMTargetMachineRef tm;
414 if (!variant)
415 return NULL;
416
417 struct ac_nir_compiler_options options = {0};
418 options.layout = layout;
419 if (key)
420 options.key = *key;
421
422 struct ac_shader_binary binary;
423
424 options.unsafe_math = !!(device->debug_flags & RADV_DEBUG_UNSAFE_MATH);
425 options.family = chip_family;
426 options.chip_class = device->instance->physicalDevice.rad_info.chip_class;
427 tm = ac_create_target_machine(chip_family);
428 ac_compile_nir_shader(tm, &binary, &variant->config,
429 &variant->info, shader, &options, dump);
430 LLVMDisposeTargetMachine(tm);
431
432 radv_fill_shader_variant(device, variant, &binary, shader->stage);
433
434 if (code_out) {
435 *code_out = binary.code;
436 *code_size_out = binary.code_size;
437 } else
438 free(binary.code);
439 free(binary.config);
440 free(binary.rodata);
441 free(binary.global_symbol_offsets);
442 free(binary.relocs);
443 free(binary.disasm_string);
444 variant->ref_count = 1;
445 return variant;
446 }
447
448
449 static struct radv_shader_variant *
450 radv_pipeline_compile(struct radv_pipeline *pipeline,
451 struct radv_pipeline_cache *cache,
452 struct radv_shader_module *module,
453 const char *entrypoint,
454 gl_shader_stage stage,
455 const VkSpecializationInfo *spec_info,
456 struct radv_pipeline_layout *layout,
457 const union ac_shader_variant_key *key)
458 {
459 unsigned char sha1[20];
460 struct radv_shader_variant *variant;
461 nir_shader *nir;
462 void *code = NULL;
463 unsigned code_size = 0;
464 bool dump = (pipeline->device->debug_flags & RADV_DEBUG_DUMP_SHADERS);
465
466 if (module->nir)
467 _mesa_sha1_compute(module->nir->info->name,
468 strlen(module->nir->info->name),
469 module->sha1);
470
471 radv_hash_shader(sha1, module, entrypoint, spec_info, layout, key);
472
473 if (cache) {
474 variant = radv_create_shader_variant_from_pipeline_cache(pipeline->device,
475 cache,
476 sha1);
477 if (variant)
478 return variant;
479 }
480
481 nir = radv_shader_compile_to_nir(pipeline->device,
482 module, entrypoint, stage,
483 spec_info, dump);
484 if (nir == NULL)
485 return NULL;
486
487 variant = radv_shader_variant_create(pipeline->device, nir, layout, key,
488 &code, &code_size, dump);
489 if (!module->nir)
490 ralloc_free(nir);
491
492 if (variant && cache)
493 variant = radv_pipeline_cache_insert_shader(cache, sha1, variant,
494 code, code_size);
495
496 if (code)
497 free(code);
498 return variant;
499 }
500
501 static uint32_t si_translate_blend_function(VkBlendOp op)
502 {
503 switch (op) {
504 case VK_BLEND_OP_ADD:
505 return V_028780_COMB_DST_PLUS_SRC;
506 case VK_BLEND_OP_SUBTRACT:
507 return V_028780_COMB_SRC_MINUS_DST;
508 case VK_BLEND_OP_REVERSE_SUBTRACT:
509 return V_028780_COMB_DST_MINUS_SRC;
510 case VK_BLEND_OP_MIN:
511 return V_028780_COMB_MIN_DST_SRC;
512 case VK_BLEND_OP_MAX:
513 return V_028780_COMB_MAX_DST_SRC;
514 default:
515 return 0;
516 }
517 }
518
519 static uint32_t si_translate_blend_factor(VkBlendFactor factor)
520 {
521 switch (factor) {
522 case VK_BLEND_FACTOR_ZERO:
523 return V_028780_BLEND_ZERO;
524 case VK_BLEND_FACTOR_ONE:
525 return V_028780_BLEND_ONE;
526 case VK_BLEND_FACTOR_SRC_COLOR:
527 return V_028780_BLEND_SRC_COLOR;
528 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
529 return V_028780_BLEND_ONE_MINUS_SRC_COLOR;
530 case VK_BLEND_FACTOR_DST_COLOR:
531 return V_028780_BLEND_DST_COLOR;
532 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
533 return V_028780_BLEND_ONE_MINUS_DST_COLOR;
534 case VK_BLEND_FACTOR_SRC_ALPHA:
535 return V_028780_BLEND_SRC_ALPHA;
536 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
537 return V_028780_BLEND_ONE_MINUS_SRC_ALPHA;
538 case VK_BLEND_FACTOR_DST_ALPHA:
539 return V_028780_BLEND_DST_ALPHA;
540 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
541 return V_028780_BLEND_ONE_MINUS_DST_ALPHA;
542 case VK_BLEND_FACTOR_CONSTANT_COLOR:
543 return V_028780_BLEND_CONSTANT_COLOR;
544 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
545 return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR;
546 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
547 return V_028780_BLEND_CONSTANT_ALPHA;
548 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
549 return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA;
550 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
551 return V_028780_BLEND_SRC_ALPHA_SATURATE;
552 case VK_BLEND_FACTOR_SRC1_COLOR:
553 return V_028780_BLEND_SRC1_COLOR;
554 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
555 return V_028780_BLEND_INV_SRC1_COLOR;
556 case VK_BLEND_FACTOR_SRC1_ALPHA:
557 return V_028780_BLEND_SRC1_ALPHA;
558 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
559 return V_028780_BLEND_INV_SRC1_ALPHA;
560 default:
561 return 0;
562 }
563 }
564
565 static bool is_dual_src(VkBlendFactor factor)
566 {
567 switch (factor) {
568 case VK_BLEND_FACTOR_SRC1_COLOR:
569 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
570 case VK_BLEND_FACTOR_SRC1_ALPHA:
571 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
572 return true;
573 default:
574 return false;
575 }
576 }
577
578 static unsigned si_choose_spi_color_format(VkFormat vk_format,
579 bool blend_enable,
580 bool blend_need_alpha)
581 {
582 const struct vk_format_description *desc = vk_format_description(vk_format);
583 unsigned format, ntype, swap;
584
585 /* Alpha is needed for alpha-to-coverage.
586 * Blending may be with or without alpha.
587 */
588 unsigned normal = 0; /* most optimal, may not support blending or export alpha */
589 unsigned alpha = 0; /* exports alpha, but may not support blending */
590 unsigned blend = 0; /* supports blending, but may not export alpha */
591 unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */
592
593 format = radv_translate_colorformat(vk_format);
594 ntype = radv_translate_color_numformat(vk_format, desc,
595 vk_format_get_first_non_void_channel(vk_format));
596 swap = radv_translate_colorswap(vk_format, false);
597
598 /* Choose the SPI color formats. These are required values for Stoney/RB+.
599 * Other chips have multiple choices, though they are not necessarily better.
600 */
601 switch (format) {
602 case V_028C70_COLOR_5_6_5:
603 case V_028C70_COLOR_1_5_5_5:
604 case V_028C70_COLOR_5_5_5_1:
605 case V_028C70_COLOR_4_4_4_4:
606 case V_028C70_COLOR_10_11_11:
607 case V_028C70_COLOR_11_11_10:
608 case V_028C70_COLOR_8:
609 case V_028C70_COLOR_8_8:
610 case V_028C70_COLOR_8_8_8_8:
611 case V_028C70_COLOR_10_10_10_2:
612 case V_028C70_COLOR_2_10_10_10:
613 if (ntype == V_028C70_NUMBER_UINT)
614 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
615 else if (ntype == V_028C70_NUMBER_SINT)
616 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
617 else
618 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
619 break;
620
621 case V_028C70_COLOR_16:
622 case V_028C70_COLOR_16_16:
623 case V_028C70_COLOR_16_16_16_16:
624 if (ntype == V_028C70_NUMBER_UNORM ||
625 ntype == V_028C70_NUMBER_SNORM) {
626 /* UNORM16 and SNORM16 don't support blending */
627 if (ntype == V_028C70_NUMBER_UNORM)
628 normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR;
629 else
630 normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR;
631
632 /* Use 32 bits per channel for blending. */
633 if (format == V_028C70_COLOR_16) {
634 if (swap == V_028C70_SWAP_STD) { /* R */
635 blend = V_028714_SPI_SHADER_32_R;
636 blend_alpha = V_028714_SPI_SHADER_32_AR;
637 } else if (swap == V_028C70_SWAP_ALT_REV) /* A */
638 blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
639 else
640 assert(0);
641 } else if (format == V_028C70_COLOR_16_16) {
642 if (swap == V_028C70_SWAP_STD) { /* RG */
643 blend = V_028714_SPI_SHADER_32_GR;
644 blend_alpha = V_028714_SPI_SHADER_32_ABGR;
645 } else if (swap == V_028C70_SWAP_ALT) /* RA */
646 blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
647 else
648 assert(0);
649 } else /* 16_16_16_16 */
650 blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
651 } else if (ntype == V_028C70_NUMBER_UINT)
652 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
653 else if (ntype == V_028C70_NUMBER_SINT)
654 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
655 else if (ntype == V_028C70_NUMBER_FLOAT)
656 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
657 else
658 assert(0);
659 break;
660
661 case V_028C70_COLOR_32:
662 if (swap == V_028C70_SWAP_STD) { /* R */
663 blend = normal = V_028714_SPI_SHADER_32_R;
664 alpha = blend_alpha = V_028714_SPI_SHADER_32_AR;
665 } else if (swap == V_028C70_SWAP_ALT_REV) /* A */
666 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
667 else
668 assert(0);
669 break;
670
671 case V_028C70_COLOR_32_32:
672 if (swap == V_028C70_SWAP_STD) { /* RG */
673 blend = normal = V_028714_SPI_SHADER_32_GR;
674 alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
675 } else if (swap == V_028C70_SWAP_ALT) /* RA */
676 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
677 else
678 assert(0);
679 break;
680
681 case V_028C70_COLOR_32_32_32_32:
682 case V_028C70_COLOR_8_24:
683 case V_028C70_COLOR_24_8:
684 case V_028C70_COLOR_X24_8_32_FLOAT:
685 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR;
686 break;
687
688 default:
689 unreachable("unhandled blend format");
690 }
691
692 if (blend_enable && blend_need_alpha)
693 return blend_alpha;
694 else if(blend_need_alpha)
695 return alpha;
696 else if(blend_enable)
697 return blend;
698 else
699 return normal;
700 }
701
702 static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
703 {
704 unsigned i, cb_shader_mask = 0;
705
706 for (i = 0; i < 8; i++) {
707 switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
708 case V_028714_SPI_SHADER_ZERO:
709 break;
710 case V_028714_SPI_SHADER_32_R:
711 cb_shader_mask |= 0x1 << (i * 4);
712 break;
713 case V_028714_SPI_SHADER_32_GR:
714 cb_shader_mask |= 0x3 << (i * 4);
715 break;
716 case V_028714_SPI_SHADER_32_AR:
717 cb_shader_mask |= 0x9 << (i * 4);
718 break;
719 case V_028714_SPI_SHADER_FP16_ABGR:
720 case V_028714_SPI_SHADER_UNORM16_ABGR:
721 case V_028714_SPI_SHADER_SNORM16_ABGR:
722 case V_028714_SPI_SHADER_UINT16_ABGR:
723 case V_028714_SPI_SHADER_SINT16_ABGR:
724 case V_028714_SPI_SHADER_32_ABGR:
725 cb_shader_mask |= 0xf << (i * 4);
726 break;
727 default:
728 assert(0);
729 }
730 }
731 return cb_shader_mask;
732 }
733
734 static void
735 radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline,
736 const VkGraphicsPipelineCreateInfo *pCreateInfo,
737 uint32_t blend_enable,
738 uint32_t blend_need_alpha,
739 bool single_cb_enable,
740 bool blend_mrt0_is_dual_src)
741 {
742 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
743 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
744 struct radv_blend_state *blend = &pipeline->graphics.blend;
745 unsigned col_format = 0;
746
747 for (unsigned i = 0; i < (single_cb_enable ? 1 : subpass->color_count); ++i) {
748 struct radv_render_pass_attachment *attachment;
749 unsigned cf;
750
751 attachment = pass->attachments + subpass->color_attachments[i].attachment;
752
753 cf = si_choose_spi_color_format(attachment->format,
754 blend_enable & (1 << i),
755 blend_need_alpha & (1 << i));
756
757 col_format |= cf << (4 * i);
758 }
759
760 blend->cb_shader_mask = si_get_cb_shader_mask(col_format);
761
762 if (blend_mrt0_is_dual_src)
763 col_format |= (col_format & 0xf) << 4;
764 if (!col_format)
765 col_format |= V_028714_SPI_SHADER_32_R;
766 blend->spi_shader_col_format = col_format;
767 }
768
769 static bool
770 format_is_int8(VkFormat format)
771 {
772 const struct vk_format_description *desc = vk_format_description(format);
773 int channel = vk_format_get_first_non_void_channel(format);
774
775 return channel >= 0 && desc->channel[channel].pure_integer &&
776 desc->channel[channel].size == 8;
777 }
778
779 unsigned radv_format_meta_fs_key(VkFormat format)
780 {
781 unsigned col_format = si_choose_spi_color_format(format, false, false) - 1;
782 bool is_int8 = format_is_int8(format);
783
784 return col_format + (is_int8 ? 3 : 0);
785 }
786
787 static unsigned
788 radv_pipeline_compute_is_int8(const VkGraphicsPipelineCreateInfo *pCreateInfo)
789 {
790 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
791 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
792 unsigned is_int8 = 0;
793
794 for (unsigned i = 0; i < subpass->color_count; ++i) {
795 struct radv_render_pass_attachment *attachment;
796
797 attachment = pass->attachments + subpass->color_attachments[i].attachment;
798
799 if (format_is_int8(attachment->format))
800 is_int8 |= 1 << i;
801 }
802
803 return is_int8;
804 }
805
806 static void
807 radv_pipeline_init_blend_state(struct radv_pipeline *pipeline,
808 const VkGraphicsPipelineCreateInfo *pCreateInfo,
809 const struct radv_graphics_pipeline_create_info *extra)
810 {
811 const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState;
812 struct radv_blend_state *blend = &pipeline->graphics.blend;
813 unsigned mode = V_028808_CB_NORMAL;
814 uint32_t blend_enable = 0, blend_need_alpha = 0;
815 bool blend_mrt0_is_dual_src = false;
816 int i;
817 bool single_cb_enable = false;
818
819 if (!vkblend)
820 return;
821
822 if (extra && extra->custom_blend_mode) {
823 single_cb_enable = true;
824 mode = extra->custom_blend_mode;
825 }
826 blend->cb_color_control = 0;
827 if (vkblend->logicOpEnable)
828 blend->cb_color_control |= S_028808_ROP3(vkblend->logicOp | (vkblend->logicOp << 4));
829 else
830 blend->cb_color_control |= S_028808_ROP3(0xcc);
831
832 blend->db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) |
833 S_028B70_ALPHA_TO_MASK_OFFSET1(2) |
834 S_028B70_ALPHA_TO_MASK_OFFSET2(2) |
835 S_028B70_ALPHA_TO_MASK_OFFSET3(2);
836
837 blend->cb_target_mask = 0;
838 for (i = 0; i < vkblend->attachmentCount; i++) {
839 const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i];
840 unsigned blend_cntl = 0;
841 VkBlendOp eqRGB = att->colorBlendOp;
842 VkBlendFactor srcRGB = att->srcColorBlendFactor;
843 VkBlendFactor dstRGB = att->dstColorBlendFactor;
844 VkBlendOp eqA = att->alphaBlendOp;
845 VkBlendFactor srcA = att->srcAlphaBlendFactor;
846 VkBlendFactor dstA = att->dstAlphaBlendFactor;
847
848 blend->sx_mrt0_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
849
850 if (!att->colorWriteMask)
851 continue;
852
853 blend->cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i);
854 if (!att->blendEnable) {
855 blend->cb_blend_control[i] = blend_cntl;
856 continue;
857 }
858
859 if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA))
860 if (i == 0)
861 blend_mrt0_is_dual_src = true;
862
863 if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
864 srcRGB = VK_BLEND_FACTOR_ONE;
865 dstRGB = VK_BLEND_FACTOR_ONE;
866 }
867 if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) {
868 srcA = VK_BLEND_FACTOR_ONE;
869 dstA = VK_BLEND_FACTOR_ONE;
870 }
871
872 blend_cntl |= S_028780_ENABLE(1);
873
874 blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB));
875 blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB));
876 blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB));
877 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
878 blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
879 blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA));
880 blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA));
881 blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA));
882 }
883 blend->cb_blend_control[i] = blend_cntl;
884
885 blend_enable |= 1 << i;
886
887 if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
888 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
889 srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
890 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
891 srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA ||
892 dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
893 blend_need_alpha |= 1 << i;
894 }
895 for (i = vkblend->attachmentCount; i < 8; i++)
896 blend->cb_blend_control[i] = 0;
897
898 if (blend->cb_target_mask)
899 blend->cb_color_control |= S_028808_MODE(mode);
900 else
901 blend->cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
902
903 radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo,
904 blend_enable, blend_need_alpha, single_cb_enable, blend_mrt0_is_dual_src);
905 }
906
907 static uint32_t si_translate_stencil_op(enum VkStencilOp op)
908 {
909 switch (op) {
910 case VK_STENCIL_OP_KEEP:
911 return V_02842C_STENCIL_KEEP;
912 case VK_STENCIL_OP_ZERO:
913 return V_02842C_STENCIL_ZERO;
914 case VK_STENCIL_OP_REPLACE:
915 return V_02842C_STENCIL_REPLACE_TEST;
916 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
917 return V_02842C_STENCIL_ADD_CLAMP;
918 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
919 return V_02842C_STENCIL_SUB_CLAMP;
920 case VK_STENCIL_OP_INVERT:
921 return V_02842C_STENCIL_INVERT;
922 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
923 return V_02842C_STENCIL_ADD_WRAP;
924 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
925 return V_02842C_STENCIL_SUB_WRAP;
926 default:
927 return 0;
928 }
929 }
930 static void
931 radv_pipeline_init_depth_stencil_state(struct radv_pipeline *pipeline,
932 const VkGraphicsPipelineCreateInfo *pCreateInfo,
933 const struct radv_graphics_pipeline_create_info *extra)
934 {
935 const VkPipelineDepthStencilStateCreateInfo *vkds = pCreateInfo->pDepthStencilState;
936 struct radv_depth_stencil_state *ds = &pipeline->graphics.ds;
937
938 memset(ds, 0, sizeof(*ds));
939 if (!vkds)
940 return;
941 ds->db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) |
942 S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) |
943 S_028800_ZFUNC(vkds->depthCompareOp) |
944 S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0);
945
946 if (vkds->stencilTestEnable) {
947 ds->db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1);
948 ds->db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp);
949 ds->db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp));
950 ds->db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp));
951 ds->db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp));
952
953 ds->db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp);
954 ds->db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp));
955 ds->db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp));
956 ds->db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp));
957 }
958
959 if (extra) {
960
961 ds->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
962 ds->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
963
964 ds->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->db_resummarize);
965 ds->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->db_flush_depth_inplace);
966 ds->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->db_flush_stencil_inplace);
967 ds->db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear);
968 ds->db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear);
969 }
970 }
971
972 static uint32_t si_translate_fill(VkPolygonMode func)
973 {
974 switch(func) {
975 case VK_POLYGON_MODE_FILL:
976 return V_028814_X_DRAW_TRIANGLES;
977 case VK_POLYGON_MODE_LINE:
978 return V_028814_X_DRAW_LINES;
979 case VK_POLYGON_MODE_POINT:
980 return V_028814_X_DRAW_POINTS;
981 default:
982 assert(0);
983 return V_028814_X_DRAW_POINTS;
984 }
985 }
986 static void
987 radv_pipeline_init_raster_state(struct radv_pipeline *pipeline,
988 const VkGraphicsPipelineCreateInfo *pCreateInfo)
989 {
990 const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState;
991 struct radv_raster_state *raster = &pipeline->graphics.raster;
992
993 memset(raster, 0, sizeof(*raster));
994
995 raster->spi_interp_control =
996 S_0286D4_FLAT_SHADE_ENA(1) |
997 S_0286D4_PNT_SPRITE_ENA(1) |
998 S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
999 S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
1000 S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
1001 S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
1002 S_0286D4_PNT_SPRITE_TOP_1(0); // vulkan is top to bottom - 1.0 at bottom
1003
1004 raster->pa_cl_vs_out_cntl = S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(1);
1005 raster->pa_cl_clip_cntl = S_028810_PS_UCP_MODE(3) |
1006 S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions.
1007 S_028810_ZCLIP_NEAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) |
1008 S_028810_ZCLIP_FAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) |
1009 S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) |
1010 S_028810_DX_LINEAR_ATTR_CLIP_ENA(1);
1011
1012 raster->pa_su_vtx_cntl =
1013 S_028BE4_PIX_CENTER(1) | // TODO verify
1014 S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) |
1015 S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH);
1016
1017 raster->pa_su_sc_mode_cntl =
1018 S_028814_FACE(vkraster->frontFace) |
1019 S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) |
1020 S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) |
1021 S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) |
1022 S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) |
1023 S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) |
1024 S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
1025 S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
1026 S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0);
1027
1028 }
1029
1030 static void
1031 radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline,
1032 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1033 {
1034 const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState;
1035 struct radv_blend_state *blend = &pipeline->graphics.blend;
1036 struct radv_multisample_state *ms = &pipeline->graphics.ms;
1037 unsigned num_tile_pipes = pipeline->device->instance->physicalDevice.rad_info.num_tile_pipes;
1038 int ps_iter_samples = 1;
1039 uint32_t mask = 0xffff;
1040
1041 ms->num_samples = vkms->rasterizationSamples;
1042
1043 if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.force_persample) {
1044 ps_iter_samples = vkms->rasterizationSamples;
1045 }
1046
1047 ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1);
1048 ms->pa_sc_aa_config = 0;
1049 ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) |
1050 S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
1051 ms->pa_sc_mode_cntl_1 =
1052 S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes
1053 S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) |
1054 /* always 1: */
1055 S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) |
1056 S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) |
1057 S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
1058 S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) |
1059 EG_S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
1060 EG_S_028A4C_FORCE_EOV_REZ_ENABLE(1);
1061
1062 if (vkms->rasterizationSamples > 1) {
1063 unsigned log_samples = util_logbase2(vkms->rasterizationSamples);
1064 unsigned log_ps_iter_samples = util_logbase2(util_next_power_of_two(ps_iter_samples));
1065 ms->pa_sc_mode_cntl_0 = S_028A48_MSAA_ENABLE(1);
1066 ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */
1067 ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_samples) |
1068 S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
1069 S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) |
1070 S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
1071 ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) |
1072 S_028BE0_MAX_SAMPLE_DIST(radv_cayman_get_maxdist(log_samples)) |
1073 S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */
1074 ms->pa_sc_mode_cntl_1 |= EG_S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1);
1075 }
1076
1077 if (vkms->alphaToCoverageEnable)
1078 blend->db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1);
1079
1080 if (vkms->pSampleMask) {
1081 mask = vkms->pSampleMask[0] & 0xffff;
1082 }
1083
1084 ms->pa_sc_aa_mask[0] = mask | (mask << 16);
1085 ms->pa_sc_aa_mask[1] = mask | (mask << 16);
1086 }
1087
1088 static uint32_t
1089 si_translate_prim(enum VkPrimitiveTopology topology)
1090 {
1091 switch (topology) {
1092 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
1093 return V_008958_DI_PT_POINTLIST;
1094 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
1095 return V_008958_DI_PT_LINELIST;
1096 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
1097 return V_008958_DI_PT_LINESTRIP;
1098 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
1099 return V_008958_DI_PT_TRILIST;
1100 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
1101 return V_008958_DI_PT_TRISTRIP;
1102 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
1103 return V_008958_DI_PT_TRIFAN;
1104 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1105 return V_008958_DI_PT_LINELIST_ADJ;
1106 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1107 return V_008958_DI_PT_LINESTRIP_ADJ;
1108 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1109 return V_008958_DI_PT_TRILIST_ADJ;
1110 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1111 return V_008958_DI_PT_TRISTRIP_ADJ;
1112 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
1113 return V_008958_DI_PT_PATCH;
1114 default:
1115 assert(0);
1116 return 0;
1117 }
1118 }
1119
1120 static uint32_t
1121 si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology)
1122 {
1123 switch (topology) {
1124 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
1125 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
1126 return V_028A6C_OUTPRIM_TYPE_POINTLIST;
1127 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
1128 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
1129 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1130 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1131 return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
1132 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
1133 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
1134 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
1135 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1136 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1137 return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
1138 default:
1139 assert(0);
1140 return 0;
1141 }
1142 }
1143
1144 static unsigned si_map_swizzle(unsigned swizzle)
1145 {
1146 switch (swizzle) {
1147 case VK_SWIZZLE_Y:
1148 return V_008F0C_SQ_SEL_Y;
1149 case VK_SWIZZLE_Z:
1150 return V_008F0C_SQ_SEL_Z;
1151 case VK_SWIZZLE_W:
1152 return V_008F0C_SQ_SEL_W;
1153 case VK_SWIZZLE_0:
1154 return V_008F0C_SQ_SEL_0;
1155 case VK_SWIZZLE_1:
1156 return V_008F0C_SQ_SEL_1;
1157 default: /* VK_SWIZZLE_X */
1158 return V_008F0C_SQ_SEL_X;
1159 }
1160 }
1161
1162 static void
1163 radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline,
1164 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1165 {
1166 radv_cmd_dirty_mask_t states = RADV_CMD_DIRTY_DYNAMIC_ALL;
1167 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
1168 struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1169
1170 pipeline->dynamic_state = default_dynamic_state;
1171
1172 if (pCreateInfo->pDynamicState) {
1173 /* Remove all of the states that are marked as dynamic */
1174 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1175 for (uint32_t s = 0; s < count; s++)
1176 states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
1177 }
1178
1179 struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
1180
1181 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1182 *
1183 * pViewportState is [...] NULL if the pipeline
1184 * has rasterization disabled.
1185 */
1186 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1187 assert(pCreateInfo->pViewportState);
1188
1189 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1190 if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
1191 typed_memcpy(dynamic->viewport.viewports,
1192 pCreateInfo->pViewportState->pViewports,
1193 pCreateInfo->pViewportState->viewportCount);
1194 }
1195
1196 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1197 if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
1198 typed_memcpy(dynamic->scissor.scissors,
1199 pCreateInfo->pViewportState->pScissors,
1200 pCreateInfo->pViewportState->scissorCount);
1201 }
1202 }
1203
1204 if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
1205 assert(pCreateInfo->pRasterizationState);
1206 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1207 }
1208
1209 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
1210 assert(pCreateInfo->pRasterizationState);
1211 dynamic->depth_bias.bias =
1212 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1213 dynamic->depth_bias.clamp =
1214 pCreateInfo->pRasterizationState->depthBiasClamp;
1215 dynamic->depth_bias.slope =
1216 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1217 }
1218
1219 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1220 *
1221 * pColorBlendState is [...] NULL if the pipeline has rasterization
1222 * disabled or if the subpass of the render pass the pipeline is
1223 * created against does not use any color attachments.
1224 */
1225 bool uses_color_att = false;
1226 for (unsigned i = 0; i < subpass->color_count; ++i) {
1227 if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
1228 uses_color_att = true;
1229 break;
1230 }
1231 }
1232
1233 if (uses_color_att && states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) {
1234 assert(pCreateInfo->pColorBlendState);
1235 typed_memcpy(dynamic->blend_constants,
1236 pCreateInfo->pColorBlendState->blendConstants, 4);
1237 }
1238
1239 /* If there is no depthstencil attachment, then don't read
1240 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1241 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1242 * no need to override the depthstencil defaults in
1243 * radv_pipeline::dynamic_state when there is no depthstencil attachment.
1244 *
1245 * Section 9.2 of the Vulkan 1.0.15 spec says:
1246 *
1247 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1248 * disabled or if the subpass of the render pass the pipeline is created
1249 * against does not use a depth/stencil attachment.
1250 */
1251 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1252 subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
1253 assert(pCreateInfo->pDepthStencilState);
1254
1255 if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
1256 dynamic->depth_bounds.min =
1257 pCreateInfo->pDepthStencilState->minDepthBounds;
1258 dynamic->depth_bounds.max =
1259 pCreateInfo->pDepthStencilState->maxDepthBounds;
1260 }
1261
1262 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
1263 dynamic->stencil_compare_mask.front =
1264 pCreateInfo->pDepthStencilState->front.compareMask;
1265 dynamic->stencil_compare_mask.back =
1266 pCreateInfo->pDepthStencilState->back.compareMask;
1267 }
1268
1269 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
1270 dynamic->stencil_write_mask.front =
1271 pCreateInfo->pDepthStencilState->front.writeMask;
1272 dynamic->stencil_write_mask.back =
1273 pCreateInfo->pDepthStencilState->back.writeMask;
1274 }
1275
1276 if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
1277 dynamic->stencil_reference.front =
1278 pCreateInfo->pDepthStencilState->front.reference;
1279 dynamic->stencil_reference.back =
1280 pCreateInfo->pDepthStencilState->back.reference;
1281 }
1282 }
1283
1284 pipeline->dynamic_state_mask = states;
1285 }
1286
1287 static union ac_shader_variant_key
1288 radv_compute_vs_key(const VkGraphicsPipelineCreateInfo *pCreateInfo)
1289 {
1290 union ac_shader_variant_key key;
1291 const VkPipelineVertexInputStateCreateInfo *input_state =
1292 pCreateInfo->pVertexInputState;
1293
1294 memset(&key, 0, sizeof(key));
1295 key.vs.instance_rate_inputs = 0;
1296
1297 for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) {
1298 unsigned binding;
1299 binding = input_state->pVertexAttributeDescriptions[i].binding;
1300 if (input_state->pVertexBindingDescriptions[binding].inputRate)
1301 key.vs.instance_rate_inputs |= 1u << input_state->pVertexAttributeDescriptions[i].location;
1302 }
1303 return key;
1304 }
1305
1306 VkResult
1307 radv_pipeline_init(struct radv_pipeline *pipeline,
1308 struct radv_device *device,
1309 struct radv_pipeline_cache *cache,
1310 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1311 const struct radv_graphics_pipeline_create_info *extra,
1312 const VkAllocationCallbacks *alloc)
1313 {
1314 struct radv_shader_module fs_m = {0};
1315
1316 if (alloc == NULL)
1317 alloc = &device->alloc;
1318
1319 pipeline->device = device;
1320 pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
1321
1322 radv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
1323 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
1324 struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
1325 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
1326 gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
1327 pStages[stage] = &pCreateInfo->pStages[i];
1328 modules[stage] = radv_shader_module_from_handle(pStages[stage]->module);
1329 }
1330
1331 radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra);
1332
1333 /* */
1334 if (modules[MESA_SHADER_VERTEX]) {
1335 union ac_shader_variant_key key = radv_compute_vs_key(pCreateInfo);
1336
1337 pipeline->shaders[MESA_SHADER_VERTEX] =
1338 radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_VERTEX],
1339 pStages[MESA_SHADER_VERTEX]->pName,
1340 MESA_SHADER_VERTEX,
1341 pStages[MESA_SHADER_VERTEX]->pSpecializationInfo,
1342 pipeline->layout, &key);
1343
1344 pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_VERTEX);
1345 }
1346
1347 if (!modules[MESA_SHADER_FRAGMENT]) {
1348 nir_builder fs_b;
1349 nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL);
1350 fs_b.shader->info->name = ralloc_strdup(fs_b.shader, "noop_fs");
1351 fs_m.nir = fs_b.shader;
1352 modules[MESA_SHADER_FRAGMENT] = &fs_m;
1353 }
1354
1355 if (modules[MESA_SHADER_FRAGMENT]) {
1356 union ac_shader_variant_key key;
1357 key.fs.col_format = pipeline->graphics.blend.spi_shader_col_format;
1358 key.fs.is_int8 = radv_pipeline_compute_is_int8(pCreateInfo);
1359
1360 const VkPipelineShaderStageCreateInfo *stage = pStages[MESA_SHADER_FRAGMENT];
1361
1362 pipeline->shaders[MESA_SHADER_FRAGMENT] =
1363 radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_FRAGMENT],
1364 stage ? stage->pName : "main",
1365 MESA_SHADER_FRAGMENT,
1366 stage ? stage->pSpecializationInfo : NULL,
1367 pipeline->layout, &key);
1368 pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_FRAGMENT);
1369 }
1370
1371 if (fs_m.nir)
1372 ralloc_free(fs_m.nir);
1373
1374 radv_pipeline_init_depth_stencil_state(pipeline, pCreateInfo, extra);
1375 radv_pipeline_init_raster_state(pipeline, pCreateInfo);
1376 radv_pipeline_init_multisample_state(pipeline, pCreateInfo);
1377 pipeline->graphics.prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology);
1378 pipeline->graphics.gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology);
1379 if (extra && extra->use_rectlist) {
1380 pipeline->graphics.prim = V_008958_DI_PT_RECTLIST;
1381 pipeline->graphics.gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP;
1382 }
1383 pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable;
1384
1385 const VkPipelineVertexInputStateCreateInfo *vi_info =
1386 pCreateInfo->pVertexInputState;
1387 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1388 const VkVertexInputAttributeDescription *desc =
1389 &vi_info->pVertexAttributeDescriptions[i];
1390 unsigned loc = desc->location;
1391 const struct vk_format_description *format_desc;
1392 int first_non_void;
1393 uint32_t num_format, data_format;
1394 format_desc = vk_format_description(desc->format);
1395 first_non_void = vk_format_get_first_non_void_channel(desc->format);
1396
1397 num_format = radv_translate_buffer_numformat(format_desc, first_non_void);
1398 data_format = radv_translate_buffer_dataformat(format_desc, first_non_void);
1399
1400 pipeline->va_rsrc_word3[loc] = S_008F0C_DST_SEL_X(si_map_swizzle(format_desc->swizzle[0])) |
1401 S_008F0C_DST_SEL_Y(si_map_swizzle(format_desc->swizzle[1])) |
1402 S_008F0C_DST_SEL_Z(si_map_swizzle(format_desc->swizzle[2])) |
1403 S_008F0C_DST_SEL_W(si_map_swizzle(format_desc->swizzle[3])) |
1404 S_008F0C_NUM_FORMAT(num_format) |
1405 S_008F0C_DATA_FORMAT(data_format);
1406 pipeline->va_format_size[loc] = format_desc->block.bits / 8;
1407 pipeline->va_offset[loc] = desc->offset;
1408 pipeline->va_binding[loc] = desc->binding;
1409 pipeline->num_vertex_attribs = MAX2(pipeline->num_vertex_attribs, loc + 1);
1410 }
1411
1412 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1413 const VkVertexInputBindingDescription *desc =
1414 &vi_info->pVertexBindingDescriptions[i];
1415
1416 pipeline->binding_stride[desc->binding] = desc->stride;
1417 }
1418
1419 if (device->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) {
1420 radv_dump_pipeline_stats(device, pipeline);
1421 }
1422
1423 return VK_SUCCESS;
1424 }
1425
1426 VkResult
1427 radv_graphics_pipeline_create(
1428 VkDevice _device,
1429 VkPipelineCache _cache,
1430 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1431 const struct radv_graphics_pipeline_create_info *extra,
1432 const VkAllocationCallbacks *pAllocator,
1433 VkPipeline *pPipeline)
1434 {
1435 RADV_FROM_HANDLE(radv_device, device, _device);
1436 RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
1437 struct radv_pipeline *pipeline;
1438 VkResult result;
1439
1440 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1441 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1442 if (pipeline == NULL)
1443 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1444
1445 memset(pipeline, 0, sizeof(*pipeline));
1446 result = radv_pipeline_init(pipeline, device, cache,
1447 pCreateInfo, extra, pAllocator);
1448 if (result != VK_SUCCESS) {
1449 vk_free2(&device->alloc, pAllocator, pipeline);
1450 return result;
1451 }
1452
1453 *pPipeline = radv_pipeline_to_handle(pipeline);
1454
1455 return VK_SUCCESS;
1456 }
1457
1458 VkResult radv_CreateGraphicsPipelines(
1459 VkDevice _device,
1460 VkPipelineCache pipelineCache,
1461 uint32_t count,
1462 const VkGraphicsPipelineCreateInfo* pCreateInfos,
1463 const VkAllocationCallbacks* pAllocator,
1464 VkPipeline* pPipelines)
1465 {
1466 VkResult result = VK_SUCCESS;
1467 unsigned i = 0;
1468
1469 for (; i < count; i++) {
1470 VkResult r;
1471 r = radv_graphics_pipeline_create(_device,
1472 pipelineCache,
1473 &pCreateInfos[i],
1474 NULL, pAllocator, &pPipelines[i]);
1475 if (r != VK_SUCCESS) {
1476 result = r;
1477 pPipelines[i] = VK_NULL_HANDLE;
1478 }
1479 }
1480
1481 return result;
1482 }
1483
1484 static VkResult radv_compute_pipeline_create(
1485 VkDevice _device,
1486 VkPipelineCache _cache,
1487 const VkComputePipelineCreateInfo* pCreateInfo,
1488 const VkAllocationCallbacks* pAllocator,
1489 VkPipeline* pPipeline)
1490 {
1491 RADV_FROM_HANDLE(radv_device, device, _device);
1492 RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
1493 RADV_FROM_HANDLE(radv_shader_module, module, pCreateInfo->stage.module);
1494 struct radv_pipeline *pipeline;
1495
1496 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1497 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1498 if (pipeline == NULL)
1499 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1500
1501 memset(pipeline, 0, sizeof(*pipeline));
1502 pipeline->device = device;
1503 pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
1504
1505 pipeline->shaders[MESA_SHADER_COMPUTE] =
1506 radv_pipeline_compile(pipeline, cache, module,
1507 pCreateInfo->stage.pName,
1508 MESA_SHADER_COMPUTE,
1509 pCreateInfo->stage.pSpecializationInfo,
1510 pipeline->layout, NULL);
1511
1512 *pPipeline = radv_pipeline_to_handle(pipeline);
1513
1514 if (device->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) {
1515 radv_dump_pipeline_stats(device, pipeline);
1516 }
1517 return VK_SUCCESS;
1518 }
1519 VkResult radv_CreateComputePipelines(
1520 VkDevice _device,
1521 VkPipelineCache pipelineCache,
1522 uint32_t count,
1523 const VkComputePipelineCreateInfo* pCreateInfos,
1524 const VkAllocationCallbacks* pAllocator,
1525 VkPipeline* pPipelines)
1526 {
1527 VkResult result = VK_SUCCESS;
1528
1529 unsigned i = 0;
1530 for (; i < count; i++) {
1531 VkResult r;
1532 r = radv_compute_pipeline_create(_device, pipelineCache,
1533 &pCreateInfos[i],
1534 pAllocator, &pPipelines[i]);
1535 if (r != VK_SUCCESS) {
1536 result = r;
1537 pPipelines[i] = VK_NULL_HANDLE;
1538 }
1539 }
1540
1541 return result;
1542 }