radv: Use new linking helper to set default driver locations.
[mesa.git] / src / amd / vulkan / radv_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/disk_cache.h"
29 #include "util/mesa-sha1.h"
30 #include "util/u_atomic.h"
31 #include "radv_debug.h"
32 #include "radv_private.h"
33 #include "radv_cs.h"
34 #include "radv_shader.h"
35 #include "nir/nir.h"
36 #include "nir/nir_builder.h"
37 #include "nir/nir_xfb_info.h"
38 #include "spirv/nir_spirv.h"
39 #include "vk_util.h"
40
41 #include "sid.h"
42 #include "ac_binary.h"
43 #include "ac_llvm_util.h"
44 #include "ac_nir_to_llvm.h"
45 #include "vk_format.h"
46 #include "util/debug.h"
47 #include "ac_exp_param.h"
48 #include "ac_shader_util.h"
49
50 struct radv_blend_state {
51 uint32_t blend_enable_4bit;
52 uint32_t need_src_alpha;
53
54 uint32_t cb_color_control;
55 uint32_t cb_target_mask;
56 uint32_t cb_target_enabled_4bit;
57 uint32_t sx_mrt_blend_opt[8];
58 uint32_t cb_blend_control[8];
59
60 uint32_t spi_shader_col_format;
61 uint32_t cb_shader_mask;
62 uint32_t db_alpha_to_mask;
63
64 uint32_t commutative_4bit;
65
66 bool single_cb_enable;
67 bool mrt0_is_dual_src;
68 };
69
70 struct radv_dsa_order_invariance {
71 /* Whether the final result in Z/S buffers is guaranteed to be
72 * invariant under changes to the order in which fragments arrive.
73 */
74 bool zs;
75
76 /* Whether the set of fragments that pass the combined Z/S test is
77 * guaranteed to be invariant under changes to the order in which
78 * fragments arrive.
79 */
80 bool pass_set;
81 };
82
83 struct radv_tessellation_state {
84 uint32_t ls_hs_config;
85 unsigned num_patches;
86 unsigned lds_size;
87 uint32_t tf_param;
88 };
89
90 static const VkPipelineMultisampleStateCreateInfo *
91 radv_pipeline_get_multisample_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
92 {
93 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable)
94 return pCreateInfo->pMultisampleState;
95 return NULL;
96 }
97
98 static const VkPipelineTessellationStateCreateInfo *
99 radv_pipeline_get_tessellation_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
100 {
101 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
102 if (pCreateInfo->pStages[i].stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT ||
103 pCreateInfo->pStages[i].stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
104 return pCreateInfo->pTessellationState;
105 }
106 }
107 return NULL;
108 }
109
110 static const VkPipelineDepthStencilStateCreateInfo *
111 radv_pipeline_get_depth_stencil_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
112 {
113 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
114 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
115
116 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
117 subpass->depth_stencil_attachment)
118 return pCreateInfo->pDepthStencilState;
119 return NULL;
120 }
121
122 static const VkPipelineColorBlendStateCreateInfo *
123 radv_pipeline_get_color_blend_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
124 {
125 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
126 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
127
128 if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
129 subpass->has_color_att)
130 return pCreateInfo->pColorBlendState;
131 return NULL;
132 }
133
134 bool radv_pipeline_has_ngg(const struct radv_pipeline *pipeline)
135 {
136 struct radv_shader_variant *variant = NULL;
137 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
138 variant = pipeline->shaders[MESA_SHADER_GEOMETRY];
139 else if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
140 variant = pipeline->shaders[MESA_SHADER_TESS_EVAL];
141 else if (pipeline->shaders[MESA_SHADER_VERTEX])
142 variant = pipeline->shaders[MESA_SHADER_VERTEX];
143 else
144 return false;
145 return variant->info.is_ngg;
146 }
147
148 bool radv_pipeline_has_ngg_passthrough(const struct radv_pipeline *pipeline)
149 {
150 assert(radv_pipeline_has_ngg(pipeline));
151
152 struct radv_shader_variant *variant = NULL;
153 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
154 variant = pipeline->shaders[MESA_SHADER_GEOMETRY];
155 else if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
156 variant = pipeline->shaders[MESA_SHADER_TESS_EVAL];
157 else if (pipeline->shaders[MESA_SHADER_VERTEX])
158 variant = pipeline->shaders[MESA_SHADER_VERTEX];
159 else
160 return false;
161 return variant->info.is_ngg_passthrough;
162 }
163
164 bool radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline)
165 {
166 if (!radv_pipeline_has_gs(pipeline))
167 return false;
168
169 /* The GS copy shader is required if the pipeline has GS on GFX6-GFX9.
170 * On GFX10, it might be required in rare cases if it's not possible to
171 * enable NGG.
172 */
173 if (radv_pipeline_has_ngg(pipeline))
174 return false;
175
176 assert(pipeline->gs_copy_shader);
177 return true;
178 }
179
180 static void
181 radv_pipeline_destroy(struct radv_device *device,
182 struct radv_pipeline *pipeline,
183 const VkAllocationCallbacks* allocator)
184 {
185 for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i)
186 if (pipeline->shaders[i])
187 radv_shader_variant_destroy(device, pipeline->shaders[i]);
188
189 if (pipeline->gs_copy_shader)
190 radv_shader_variant_destroy(device, pipeline->gs_copy_shader);
191
192 if(pipeline->cs.buf)
193 free(pipeline->cs.buf);
194 vk_free2(&device->alloc, allocator, pipeline);
195 }
196
197 void radv_DestroyPipeline(
198 VkDevice _device,
199 VkPipeline _pipeline,
200 const VkAllocationCallbacks* pAllocator)
201 {
202 RADV_FROM_HANDLE(radv_device, device, _device);
203 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
204
205 if (!_pipeline)
206 return;
207
208 radv_pipeline_destroy(device, pipeline, pAllocator);
209 }
210
211 static uint32_t get_hash_flags(struct radv_device *device)
212 {
213 uint32_t hash_flags = 0;
214
215 if (device->instance->debug_flags & RADV_DEBUG_NO_NGG)
216 hash_flags |= RADV_HASH_SHADER_NO_NGG;
217 if (device->physical_device->cs_wave_size == 32)
218 hash_flags |= RADV_HASH_SHADER_CS_WAVE32;
219 if (device->physical_device->ps_wave_size == 32)
220 hash_flags |= RADV_HASH_SHADER_PS_WAVE32;
221 if (device->physical_device->ge_wave_size == 32)
222 hash_flags |= RADV_HASH_SHADER_GE_WAVE32;
223 if (device->physical_device->use_aco)
224 hash_flags |= RADV_HASH_SHADER_ACO;
225 return hash_flags;
226 }
227
228 static VkResult
229 radv_pipeline_scratch_init(struct radv_device *device,
230 struct radv_pipeline *pipeline)
231 {
232 unsigned scratch_bytes_per_wave = 0;
233 unsigned max_waves = 0;
234 unsigned min_waves = 1;
235
236 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
237 if (pipeline->shaders[i] &&
238 pipeline->shaders[i]->config.scratch_bytes_per_wave) {
239 unsigned max_stage_waves = device->scratch_waves;
240
241 scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave,
242 pipeline->shaders[i]->config.scratch_bytes_per_wave);
243
244 max_stage_waves = MIN2(max_stage_waves,
245 4 * device->physical_device->rad_info.num_good_compute_units *
246 (256 / pipeline->shaders[i]->config.num_vgprs));
247 max_waves = MAX2(max_waves, max_stage_waves);
248 }
249 }
250
251 if (pipeline->shaders[MESA_SHADER_COMPUTE]) {
252 unsigned group_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[0] *
253 pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[1] *
254 pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[2];
255 min_waves = MAX2(min_waves, round_up_u32(group_size, 64));
256 }
257
258 pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave;
259 pipeline->max_waves = max_waves;
260 return VK_SUCCESS;
261 }
262
263 static uint32_t si_translate_blend_logic_op(VkLogicOp op)
264 {
265 switch (op) {
266 case VK_LOGIC_OP_CLEAR:
267 return V_028808_ROP3_CLEAR;
268 case VK_LOGIC_OP_AND:
269 return V_028808_ROP3_AND;
270 case VK_LOGIC_OP_AND_REVERSE:
271 return V_028808_ROP3_AND_REVERSE;
272 case VK_LOGIC_OP_COPY:
273 return V_028808_ROP3_COPY;
274 case VK_LOGIC_OP_AND_INVERTED:
275 return V_028808_ROP3_AND_INVERTED;
276 case VK_LOGIC_OP_NO_OP:
277 return V_028808_ROP3_NO_OP;
278 case VK_LOGIC_OP_XOR:
279 return V_028808_ROP3_XOR;
280 case VK_LOGIC_OP_OR:
281 return V_028808_ROP3_OR;
282 case VK_LOGIC_OP_NOR:
283 return V_028808_ROP3_NOR;
284 case VK_LOGIC_OP_EQUIVALENT:
285 return V_028808_ROP3_EQUIVALENT;
286 case VK_LOGIC_OP_INVERT:
287 return V_028808_ROP3_INVERT;
288 case VK_LOGIC_OP_OR_REVERSE:
289 return V_028808_ROP3_OR_REVERSE;
290 case VK_LOGIC_OP_COPY_INVERTED:
291 return V_028808_ROP3_COPY_INVERTED;
292 case VK_LOGIC_OP_OR_INVERTED:
293 return V_028808_ROP3_OR_INVERTED;
294 case VK_LOGIC_OP_NAND:
295 return V_028808_ROP3_NAND;
296 case VK_LOGIC_OP_SET:
297 return V_028808_ROP3_SET;
298 default:
299 unreachable("Unhandled logic op");
300 }
301 }
302
303
304 static uint32_t si_translate_blend_function(VkBlendOp op)
305 {
306 switch (op) {
307 case VK_BLEND_OP_ADD:
308 return V_028780_COMB_DST_PLUS_SRC;
309 case VK_BLEND_OP_SUBTRACT:
310 return V_028780_COMB_SRC_MINUS_DST;
311 case VK_BLEND_OP_REVERSE_SUBTRACT:
312 return V_028780_COMB_DST_MINUS_SRC;
313 case VK_BLEND_OP_MIN:
314 return V_028780_COMB_MIN_DST_SRC;
315 case VK_BLEND_OP_MAX:
316 return V_028780_COMB_MAX_DST_SRC;
317 default:
318 return 0;
319 }
320 }
321
322 static uint32_t si_translate_blend_factor(VkBlendFactor factor)
323 {
324 switch (factor) {
325 case VK_BLEND_FACTOR_ZERO:
326 return V_028780_BLEND_ZERO;
327 case VK_BLEND_FACTOR_ONE:
328 return V_028780_BLEND_ONE;
329 case VK_BLEND_FACTOR_SRC_COLOR:
330 return V_028780_BLEND_SRC_COLOR;
331 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
332 return V_028780_BLEND_ONE_MINUS_SRC_COLOR;
333 case VK_BLEND_FACTOR_DST_COLOR:
334 return V_028780_BLEND_DST_COLOR;
335 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
336 return V_028780_BLEND_ONE_MINUS_DST_COLOR;
337 case VK_BLEND_FACTOR_SRC_ALPHA:
338 return V_028780_BLEND_SRC_ALPHA;
339 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
340 return V_028780_BLEND_ONE_MINUS_SRC_ALPHA;
341 case VK_BLEND_FACTOR_DST_ALPHA:
342 return V_028780_BLEND_DST_ALPHA;
343 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
344 return V_028780_BLEND_ONE_MINUS_DST_ALPHA;
345 case VK_BLEND_FACTOR_CONSTANT_COLOR:
346 return V_028780_BLEND_CONSTANT_COLOR;
347 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
348 return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR;
349 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
350 return V_028780_BLEND_CONSTANT_ALPHA;
351 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
352 return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA;
353 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
354 return V_028780_BLEND_SRC_ALPHA_SATURATE;
355 case VK_BLEND_FACTOR_SRC1_COLOR:
356 return V_028780_BLEND_SRC1_COLOR;
357 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
358 return V_028780_BLEND_INV_SRC1_COLOR;
359 case VK_BLEND_FACTOR_SRC1_ALPHA:
360 return V_028780_BLEND_SRC1_ALPHA;
361 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
362 return V_028780_BLEND_INV_SRC1_ALPHA;
363 default:
364 return 0;
365 }
366 }
367
368 static uint32_t si_translate_blend_opt_function(VkBlendOp op)
369 {
370 switch (op) {
371 case VK_BLEND_OP_ADD:
372 return V_028760_OPT_COMB_ADD;
373 case VK_BLEND_OP_SUBTRACT:
374 return V_028760_OPT_COMB_SUBTRACT;
375 case VK_BLEND_OP_REVERSE_SUBTRACT:
376 return V_028760_OPT_COMB_REVSUBTRACT;
377 case VK_BLEND_OP_MIN:
378 return V_028760_OPT_COMB_MIN;
379 case VK_BLEND_OP_MAX:
380 return V_028760_OPT_COMB_MAX;
381 default:
382 return V_028760_OPT_COMB_BLEND_DISABLED;
383 }
384 }
385
386 static uint32_t si_translate_blend_opt_factor(VkBlendFactor factor, bool is_alpha)
387 {
388 switch (factor) {
389 case VK_BLEND_FACTOR_ZERO:
390 return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL;
391 case VK_BLEND_FACTOR_ONE:
392 return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE;
393 case VK_BLEND_FACTOR_SRC_COLOR:
394 return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0
395 : V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0;
396 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
397 return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1
398 : V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1;
399 case VK_BLEND_FACTOR_SRC_ALPHA:
400 return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0;
401 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
402 return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1;
403 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
404 return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE
405 : V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
406 default:
407 return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
408 }
409 }
410
411 /**
412 * Get rid of DST in the blend factors by commuting the operands:
413 * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
414 */
415 static void si_blend_remove_dst(unsigned *func, unsigned *src_factor,
416 unsigned *dst_factor, unsigned expected_dst,
417 unsigned replacement_src)
418 {
419 if (*src_factor == expected_dst &&
420 *dst_factor == VK_BLEND_FACTOR_ZERO) {
421 *src_factor = VK_BLEND_FACTOR_ZERO;
422 *dst_factor = replacement_src;
423
424 /* Commuting the operands requires reversing subtractions. */
425 if (*func == VK_BLEND_OP_SUBTRACT)
426 *func = VK_BLEND_OP_REVERSE_SUBTRACT;
427 else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT)
428 *func = VK_BLEND_OP_SUBTRACT;
429 }
430 }
431
432 static bool si_blend_factor_uses_dst(unsigned factor)
433 {
434 return factor == VK_BLEND_FACTOR_DST_COLOR ||
435 factor == VK_BLEND_FACTOR_DST_ALPHA ||
436 factor == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
437 factor == VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA ||
438 factor == VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
439 }
440
441 static bool is_dual_src(VkBlendFactor factor)
442 {
443 switch (factor) {
444 case VK_BLEND_FACTOR_SRC1_COLOR:
445 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
446 case VK_BLEND_FACTOR_SRC1_ALPHA:
447 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
448 return true;
449 default:
450 return false;
451 }
452 }
453
454 static unsigned si_choose_spi_color_format(VkFormat vk_format,
455 bool blend_enable,
456 bool blend_need_alpha)
457 {
458 const struct vk_format_description *desc = vk_format_description(vk_format);
459 unsigned format, ntype, swap;
460
461 /* Alpha is needed for alpha-to-coverage.
462 * Blending may be with or without alpha.
463 */
464 unsigned normal = 0; /* most optimal, may not support blending or export alpha */
465 unsigned alpha = 0; /* exports alpha, but may not support blending */
466 unsigned blend = 0; /* supports blending, but may not export alpha */
467 unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */
468
469 format = radv_translate_colorformat(vk_format);
470 ntype = radv_translate_color_numformat(vk_format, desc,
471 vk_format_get_first_non_void_channel(vk_format));
472 swap = radv_translate_colorswap(vk_format, false);
473
474 /* Choose the SPI color formats. These are required values for Stoney/RB+.
475 * Other chips have multiple choices, though they are not necessarily better.
476 */
477 switch (format) {
478 case V_028C70_COLOR_5_6_5:
479 case V_028C70_COLOR_1_5_5_5:
480 case V_028C70_COLOR_5_5_5_1:
481 case V_028C70_COLOR_4_4_4_4:
482 case V_028C70_COLOR_10_11_11:
483 case V_028C70_COLOR_11_11_10:
484 case V_028C70_COLOR_8:
485 case V_028C70_COLOR_8_8:
486 case V_028C70_COLOR_8_8_8_8:
487 case V_028C70_COLOR_10_10_10_2:
488 case V_028C70_COLOR_2_10_10_10:
489 if (ntype == V_028C70_NUMBER_UINT)
490 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
491 else if (ntype == V_028C70_NUMBER_SINT)
492 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
493 else
494 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
495 break;
496
497 case V_028C70_COLOR_16:
498 case V_028C70_COLOR_16_16:
499 case V_028C70_COLOR_16_16_16_16:
500 if (ntype == V_028C70_NUMBER_UNORM ||
501 ntype == V_028C70_NUMBER_SNORM) {
502 /* UNORM16 and SNORM16 don't support blending */
503 if (ntype == V_028C70_NUMBER_UNORM)
504 normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR;
505 else
506 normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR;
507
508 /* Use 32 bits per channel for blending. */
509 if (format == V_028C70_COLOR_16) {
510 if (swap == V_028C70_SWAP_STD) { /* R */
511 blend = V_028714_SPI_SHADER_32_R;
512 blend_alpha = V_028714_SPI_SHADER_32_AR;
513 } else if (swap == V_028C70_SWAP_ALT_REV) /* A */
514 blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
515 else
516 assert(0);
517 } else if (format == V_028C70_COLOR_16_16) {
518 if (swap == V_028C70_SWAP_STD) { /* RG */
519 blend = V_028714_SPI_SHADER_32_GR;
520 blend_alpha = V_028714_SPI_SHADER_32_ABGR;
521 } else if (swap == V_028C70_SWAP_ALT) /* RA */
522 blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
523 else
524 assert(0);
525 } else /* 16_16_16_16 */
526 blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
527 } else if (ntype == V_028C70_NUMBER_UINT)
528 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
529 else if (ntype == V_028C70_NUMBER_SINT)
530 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
531 else if (ntype == V_028C70_NUMBER_FLOAT)
532 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
533 else
534 assert(0);
535 break;
536
537 case V_028C70_COLOR_32:
538 if (swap == V_028C70_SWAP_STD) { /* R */
539 blend = normal = V_028714_SPI_SHADER_32_R;
540 alpha = blend_alpha = V_028714_SPI_SHADER_32_AR;
541 } else if (swap == V_028C70_SWAP_ALT_REV) /* A */
542 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
543 else
544 assert(0);
545 break;
546
547 case V_028C70_COLOR_32_32:
548 if (swap == V_028C70_SWAP_STD) { /* RG */
549 blend = normal = V_028714_SPI_SHADER_32_GR;
550 alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
551 } else if (swap == V_028C70_SWAP_ALT) /* RA */
552 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
553 else
554 assert(0);
555 break;
556
557 case V_028C70_COLOR_32_32_32_32:
558 case V_028C70_COLOR_8_24:
559 case V_028C70_COLOR_24_8:
560 case V_028C70_COLOR_X24_8_32_FLOAT:
561 alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR;
562 break;
563
564 default:
565 unreachable("unhandled blend format");
566 }
567
568 if (blend_enable && blend_need_alpha)
569 return blend_alpha;
570 else if(blend_need_alpha)
571 return alpha;
572 else if(blend_enable)
573 return blend;
574 else
575 return normal;
576 }
577
578 static void
579 radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline,
580 const VkGraphicsPipelineCreateInfo *pCreateInfo,
581 struct radv_blend_state *blend)
582 {
583 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
584 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
585 unsigned col_format = 0;
586 unsigned num_targets;
587
588 for (unsigned i = 0; i < (blend->single_cb_enable ? 1 : subpass->color_count); ++i) {
589 unsigned cf;
590
591 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) {
592 cf = V_028714_SPI_SHADER_ZERO;
593 } else {
594 struct radv_render_pass_attachment *attachment = pass->attachments + subpass->color_attachments[i].attachment;
595 bool blend_enable =
596 blend->blend_enable_4bit & (0xfu << (i * 4));
597
598 cf = si_choose_spi_color_format(attachment->format,
599 blend_enable,
600 blend->need_src_alpha & (1 << i));
601 }
602
603 col_format |= cf << (4 * i);
604 }
605
606 if (!(col_format & 0xf) && blend->need_src_alpha & (1 << 0)) {
607 /* When a subpass doesn't have any color attachments, write the
608 * alpha channel of MRT0 when alpha coverage is enabled because
609 * the depth attachment needs it.
610 */
611 col_format |= V_028714_SPI_SHADER_32_AR;
612 }
613
614 /* If the i-th target format is set, all previous target formats must
615 * be non-zero to avoid hangs.
616 */
617 num_targets = (util_last_bit(col_format) + 3) / 4;
618 for (unsigned i = 0; i < num_targets; i++) {
619 if (!(col_format & (0xf << (i * 4)))) {
620 col_format |= V_028714_SPI_SHADER_32_R << (i * 4);
621 }
622 }
623
624 /* The output for dual source blending should have the same format as
625 * the first output.
626 */
627 if (blend->mrt0_is_dual_src)
628 col_format |= (col_format & 0xf) << 4;
629
630 blend->cb_shader_mask = ac_get_cb_shader_mask(col_format);
631 blend->spi_shader_col_format = col_format;
632 }
633
634 static bool
635 format_is_int8(VkFormat format)
636 {
637 const struct vk_format_description *desc = vk_format_description(format);
638 int channel = vk_format_get_first_non_void_channel(format);
639
640 return channel >= 0 && desc->channel[channel].pure_integer &&
641 desc->channel[channel].size == 8;
642 }
643
644 static bool
645 format_is_int10(VkFormat format)
646 {
647 const struct vk_format_description *desc = vk_format_description(format);
648
649 if (desc->nr_channels != 4)
650 return false;
651 for (unsigned i = 0; i < 4; i++) {
652 if (desc->channel[i].pure_integer && desc->channel[i].size == 10)
653 return true;
654 }
655 return false;
656 }
657
658 /*
659 * Ordered so that for each i,
660 * radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i.
661 */
662 const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = {
663 VK_FORMAT_R32_SFLOAT,
664 VK_FORMAT_R32G32_SFLOAT,
665 VK_FORMAT_R8G8B8A8_UNORM,
666 VK_FORMAT_R16G16B16A16_UNORM,
667 VK_FORMAT_R16G16B16A16_SNORM,
668 VK_FORMAT_R16G16B16A16_UINT,
669 VK_FORMAT_R16G16B16A16_SINT,
670 VK_FORMAT_R32G32B32A32_SFLOAT,
671 VK_FORMAT_R8G8B8A8_UINT,
672 VK_FORMAT_R8G8B8A8_SINT,
673 VK_FORMAT_A2R10G10B10_UINT_PACK32,
674 VK_FORMAT_A2R10G10B10_SINT_PACK32,
675 };
676
677 unsigned radv_format_meta_fs_key(VkFormat format)
678 {
679 unsigned col_format = si_choose_spi_color_format(format, false, false);
680
681 assert(col_format != V_028714_SPI_SHADER_32_AR);
682 if (col_format >= V_028714_SPI_SHADER_32_AR)
683 --col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */
684
685 --col_format; /* Skip V_028714_SPI_SHADER_ZERO */
686 bool is_int8 = format_is_int8(format);
687 bool is_int10 = format_is_int10(format);
688
689 return col_format + (is_int8 ? 3 : is_int10 ? 5 : 0);
690 }
691
692 static void
693 radv_pipeline_compute_get_int_clamp(const VkGraphicsPipelineCreateInfo *pCreateInfo,
694 unsigned *is_int8, unsigned *is_int10)
695 {
696 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
697 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
698 *is_int8 = 0;
699 *is_int10 = 0;
700
701 for (unsigned i = 0; i < subpass->color_count; ++i) {
702 struct radv_render_pass_attachment *attachment;
703
704 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
705 continue;
706
707 attachment = pass->attachments + subpass->color_attachments[i].attachment;
708
709 if (format_is_int8(attachment->format))
710 *is_int8 |= 1 << i;
711 if (format_is_int10(attachment->format))
712 *is_int10 |= 1 << i;
713 }
714 }
715
716 static void
717 radv_blend_check_commutativity(struct radv_blend_state *blend,
718 VkBlendOp op, VkBlendFactor src,
719 VkBlendFactor dst, unsigned chanmask)
720 {
721 /* Src factor is allowed when it does not depend on Dst. */
722 static const uint32_t src_allowed =
723 (1u << VK_BLEND_FACTOR_ONE) |
724 (1u << VK_BLEND_FACTOR_SRC_COLOR) |
725 (1u << VK_BLEND_FACTOR_SRC_ALPHA) |
726 (1u << VK_BLEND_FACTOR_SRC_ALPHA_SATURATE) |
727 (1u << VK_BLEND_FACTOR_CONSTANT_COLOR) |
728 (1u << VK_BLEND_FACTOR_CONSTANT_ALPHA) |
729 (1u << VK_BLEND_FACTOR_SRC1_COLOR) |
730 (1u << VK_BLEND_FACTOR_SRC1_ALPHA) |
731 (1u << VK_BLEND_FACTOR_ZERO) |
732 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR) |
733 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) |
734 (1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR) |
735 (1u << VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA) |
736 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR) |
737 (1u << VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA);
738
739 if (dst == VK_BLEND_FACTOR_ONE &&
740 (src_allowed & (1u << src))) {
741 /* Addition is commutative, but floating point addition isn't
742 * associative: subtle changes can be introduced via different
743 * rounding. Be conservative, only enable for min and max.
744 */
745 if (op == VK_BLEND_OP_MAX || op == VK_BLEND_OP_MIN)
746 blend->commutative_4bit |= chanmask;
747 }
748 }
749
750 static struct radv_blend_state
751 radv_pipeline_init_blend_state(struct radv_pipeline *pipeline,
752 const VkGraphicsPipelineCreateInfo *pCreateInfo,
753 const struct radv_graphics_pipeline_create_info *extra)
754 {
755 const VkPipelineColorBlendStateCreateInfo *vkblend = radv_pipeline_get_color_blend_state(pCreateInfo);
756 const VkPipelineMultisampleStateCreateInfo *vkms = radv_pipeline_get_multisample_state(pCreateInfo);
757 struct radv_blend_state blend = {0};
758 unsigned mode = V_028808_CB_NORMAL;
759 int i;
760
761 if (extra && extra->custom_blend_mode) {
762 blend.single_cb_enable = true;
763 mode = extra->custom_blend_mode;
764 }
765
766 blend.cb_color_control = 0;
767 if (vkblend) {
768 if (vkblend->logicOpEnable)
769 blend.cb_color_control |= S_028808_ROP3(si_translate_blend_logic_op(vkblend->logicOp));
770 else
771 blend.cb_color_control |= S_028808_ROP3(V_028808_ROP3_COPY);
772 }
773
774 blend.db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(3) |
775 S_028B70_ALPHA_TO_MASK_OFFSET1(1) |
776 S_028B70_ALPHA_TO_MASK_OFFSET2(0) |
777 S_028B70_ALPHA_TO_MASK_OFFSET3(2) |
778 S_028B70_OFFSET_ROUND(1);
779
780 if (vkms && vkms->alphaToCoverageEnable) {
781 blend.db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1);
782 blend.need_src_alpha |= 0x1;
783 }
784
785 blend.cb_target_mask = 0;
786 if (vkblend) {
787 for (i = 0; i < vkblend->attachmentCount; i++) {
788 const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i];
789 unsigned blend_cntl = 0;
790 unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt;
791 VkBlendOp eqRGB = att->colorBlendOp;
792 VkBlendFactor srcRGB = att->srcColorBlendFactor;
793 VkBlendFactor dstRGB = att->dstColorBlendFactor;
794 VkBlendOp eqA = att->alphaBlendOp;
795 VkBlendFactor srcA = att->srcAlphaBlendFactor;
796 VkBlendFactor dstA = att->dstAlphaBlendFactor;
797
798 blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
799
800 if (!att->colorWriteMask)
801 continue;
802
803 blend.cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i);
804 blend.cb_target_enabled_4bit |= 0xf << (4 * i);
805 if (!att->blendEnable) {
806 blend.cb_blend_control[i] = blend_cntl;
807 continue;
808 }
809
810 if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA))
811 if (i == 0)
812 blend.mrt0_is_dual_src = true;
813
814 if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
815 srcRGB = VK_BLEND_FACTOR_ONE;
816 dstRGB = VK_BLEND_FACTOR_ONE;
817 }
818 if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) {
819 srcA = VK_BLEND_FACTOR_ONE;
820 dstA = VK_BLEND_FACTOR_ONE;
821 }
822
823 radv_blend_check_commutativity(&blend, eqRGB, srcRGB, dstRGB,
824 0x7 << (4 * i));
825 radv_blend_check_commutativity(&blend, eqA, srcA, dstA,
826 0x8 << (4 * i));
827
828 /* Blending optimizations for RB+.
829 * These transformations don't change the behavior.
830 *
831 * First, get rid of DST in the blend factors:
832 * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
833 */
834 si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB,
835 VK_BLEND_FACTOR_DST_COLOR,
836 VK_BLEND_FACTOR_SRC_COLOR);
837
838 si_blend_remove_dst(&eqA, &srcA, &dstA,
839 VK_BLEND_FACTOR_DST_COLOR,
840 VK_BLEND_FACTOR_SRC_COLOR);
841
842 si_blend_remove_dst(&eqA, &srcA, &dstA,
843 VK_BLEND_FACTOR_DST_ALPHA,
844 VK_BLEND_FACTOR_SRC_ALPHA);
845
846 /* Look up the ideal settings from tables. */
847 srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false);
848 dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false);
849 srcA_opt = si_translate_blend_opt_factor(srcA, true);
850 dstA_opt = si_translate_blend_opt_factor(dstA, true);
851
852 /* Handle interdependencies. */
853 if (si_blend_factor_uses_dst(srcRGB))
854 dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
855 if (si_blend_factor_uses_dst(srcA))
856 dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
857
858 if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE &&
859 (dstRGB == VK_BLEND_FACTOR_ZERO ||
860 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
861 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE))
862 dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
863
864 /* Set the final value. */
865 blend.sx_mrt_blend_opt[i] =
866 S_028760_COLOR_SRC_OPT(srcRGB_opt) |
867 S_028760_COLOR_DST_OPT(dstRGB_opt) |
868 S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) |
869 S_028760_ALPHA_SRC_OPT(srcA_opt) |
870 S_028760_ALPHA_DST_OPT(dstA_opt) |
871 S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA));
872 blend_cntl |= S_028780_ENABLE(1);
873
874 blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB));
875 blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB));
876 blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB));
877 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
878 blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
879 blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA));
880 blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA));
881 blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA));
882 }
883 blend.cb_blend_control[i] = blend_cntl;
884
885 blend.blend_enable_4bit |= 0xfu << (i * 4);
886
887 if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
888 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
889 srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
890 dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
891 srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA ||
892 dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
893 blend.need_src_alpha |= 1 << i;
894 }
895 for (i = vkblend->attachmentCount; i < 8; i++) {
896 blend.cb_blend_control[i] = 0;
897 blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
898 }
899 }
900
901 if (pipeline->device->physical_device->rad_info.has_rbplus) {
902 /* Disable RB+ blend optimizations for dual source blending. */
903 if (blend.mrt0_is_dual_src) {
904 for (i = 0; i < 8; i++) {
905 blend.sx_mrt_blend_opt[i] =
906 S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) |
907 S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE);
908 }
909 }
910
911 /* RB+ doesn't work with dual source blending, logic op and
912 * RESOLVE.
913 */
914 if (blend.mrt0_is_dual_src ||
915 (vkblend && vkblend->logicOpEnable) ||
916 mode == V_028808_CB_RESOLVE)
917 blend.cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1);
918 }
919
920 if (blend.cb_target_mask)
921 blend.cb_color_control |= S_028808_MODE(mode);
922 else
923 blend.cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
924
925 radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo, &blend);
926 return blend;
927 }
928
929 static uint32_t si_translate_stencil_op(enum VkStencilOp op)
930 {
931 switch (op) {
932 case VK_STENCIL_OP_KEEP:
933 return V_02842C_STENCIL_KEEP;
934 case VK_STENCIL_OP_ZERO:
935 return V_02842C_STENCIL_ZERO;
936 case VK_STENCIL_OP_REPLACE:
937 return V_02842C_STENCIL_REPLACE_TEST;
938 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
939 return V_02842C_STENCIL_ADD_CLAMP;
940 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
941 return V_02842C_STENCIL_SUB_CLAMP;
942 case VK_STENCIL_OP_INVERT:
943 return V_02842C_STENCIL_INVERT;
944 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
945 return V_02842C_STENCIL_ADD_WRAP;
946 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
947 return V_02842C_STENCIL_SUB_WRAP;
948 default:
949 return 0;
950 }
951 }
952
953 static uint32_t si_translate_fill(VkPolygonMode func)
954 {
955 switch(func) {
956 case VK_POLYGON_MODE_FILL:
957 return V_028814_X_DRAW_TRIANGLES;
958 case VK_POLYGON_MODE_LINE:
959 return V_028814_X_DRAW_LINES;
960 case VK_POLYGON_MODE_POINT:
961 return V_028814_X_DRAW_POINTS;
962 default:
963 assert(0);
964 return V_028814_X_DRAW_POINTS;
965 }
966 }
967
968 static uint8_t radv_pipeline_get_ps_iter_samples(const VkGraphicsPipelineCreateInfo *pCreateInfo)
969 {
970 const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState;
971 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
972 struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
973 uint32_t ps_iter_samples = 1;
974 uint32_t num_samples;
975
976 /* From the Vulkan 1.1.129 spec, 26.7. Sample Shading:
977 *
978 * "If the VK_AMD_mixed_attachment_samples extension is enabled and the
979 * subpass uses color attachments, totalSamples is the number of
980 * samples of the color attachments. Otherwise, totalSamples is the
981 * value of VkPipelineMultisampleStateCreateInfo::rasterizationSamples
982 * specified at pipeline creation time."
983 */
984 if (subpass->has_color_att) {
985 num_samples = subpass->color_sample_count;
986 } else {
987 num_samples = vkms->rasterizationSamples;
988 }
989
990 if (vkms->sampleShadingEnable) {
991 ps_iter_samples = ceilf(vkms->minSampleShading * num_samples);
992 ps_iter_samples = util_next_power_of_two(ps_iter_samples);
993 }
994 return ps_iter_samples;
995 }
996
997 static bool
998 radv_is_depth_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
999 {
1000 return pCreateInfo->depthTestEnable &&
1001 pCreateInfo->depthWriteEnable &&
1002 pCreateInfo->depthCompareOp != VK_COMPARE_OP_NEVER;
1003 }
1004
1005 static bool
1006 radv_writes_stencil(const VkStencilOpState *state)
1007 {
1008 return state->writeMask &&
1009 (state->failOp != VK_STENCIL_OP_KEEP ||
1010 state->passOp != VK_STENCIL_OP_KEEP ||
1011 state->depthFailOp != VK_STENCIL_OP_KEEP);
1012 }
1013
1014 static bool
1015 radv_is_stencil_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
1016 {
1017 return pCreateInfo->stencilTestEnable &&
1018 (radv_writes_stencil(&pCreateInfo->front) ||
1019 radv_writes_stencil(&pCreateInfo->back));
1020 }
1021
1022 static bool
1023 radv_is_ds_write_enabled(const VkPipelineDepthStencilStateCreateInfo *pCreateInfo)
1024 {
1025 return radv_is_depth_write_enabled(pCreateInfo) ||
1026 radv_is_stencil_write_enabled(pCreateInfo);
1027 }
1028
1029 static bool
1030 radv_order_invariant_stencil_op(VkStencilOp op)
1031 {
1032 /* REPLACE is normally order invariant, except when the stencil
1033 * reference value is written by the fragment shader. Tracking this
1034 * interaction does not seem worth the effort, so be conservative.
1035 */
1036 return op != VK_STENCIL_OP_INCREMENT_AND_CLAMP &&
1037 op != VK_STENCIL_OP_DECREMENT_AND_CLAMP &&
1038 op != VK_STENCIL_OP_REPLACE;
1039 }
1040
1041 static bool
1042 radv_order_invariant_stencil_state(const VkStencilOpState *state)
1043 {
1044 /* Compute whether, assuming Z writes are disabled, this stencil state
1045 * is order invariant in the sense that the set of passing fragments as
1046 * well as the final stencil buffer result does not depend on the order
1047 * of fragments.
1048 */
1049 return !state->writeMask ||
1050 /* The following assumes that Z writes are disabled. */
1051 (state->compareOp == VK_COMPARE_OP_ALWAYS &&
1052 radv_order_invariant_stencil_op(state->passOp) &&
1053 radv_order_invariant_stencil_op(state->depthFailOp)) ||
1054 (state->compareOp == VK_COMPARE_OP_NEVER &&
1055 radv_order_invariant_stencil_op(state->failOp));
1056 }
1057
1058 static bool
1059 radv_pipeline_out_of_order_rast(struct radv_pipeline *pipeline,
1060 struct radv_blend_state *blend,
1061 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1062 {
1063 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
1064 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
1065 const VkPipelineDepthStencilStateCreateInfo *vkds = radv_pipeline_get_depth_stencil_state(pCreateInfo);
1066 const VkPipelineColorBlendStateCreateInfo *vkblend = radv_pipeline_get_color_blend_state(pCreateInfo);
1067 unsigned colormask = blend->cb_target_enabled_4bit;
1068
1069 if (!pipeline->device->physical_device->out_of_order_rast_allowed)
1070 return false;
1071
1072 /* Be conservative if a logic operation is enabled with color buffers. */
1073 if (colormask && vkblend && vkblend->logicOpEnable)
1074 return false;
1075
1076 /* Default depth/stencil invariance when no attachment is bound. */
1077 struct radv_dsa_order_invariance dsa_order_invariant = {
1078 .zs = true, .pass_set = true
1079 };
1080
1081 if (vkds) {
1082 struct radv_render_pass_attachment *attachment =
1083 pass->attachments + subpass->depth_stencil_attachment->attachment;
1084 bool has_stencil = vk_format_is_stencil(attachment->format);
1085 struct radv_dsa_order_invariance order_invariance[2];
1086 struct radv_shader_variant *ps =
1087 pipeline->shaders[MESA_SHADER_FRAGMENT];
1088
1089 /* Compute depth/stencil order invariance in order to know if
1090 * it's safe to enable out-of-order.
1091 */
1092 bool zfunc_is_ordered =
1093 vkds->depthCompareOp == VK_COMPARE_OP_NEVER ||
1094 vkds->depthCompareOp == VK_COMPARE_OP_LESS ||
1095 vkds->depthCompareOp == VK_COMPARE_OP_LESS_OR_EQUAL ||
1096 vkds->depthCompareOp == VK_COMPARE_OP_GREATER ||
1097 vkds->depthCompareOp == VK_COMPARE_OP_GREATER_OR_EQUAL;
1098
1099 bool nozwrite_and_order_invariant_stencil =
1100 !radv_is_ds_write_enabled(vkds) ||
1101 (!radv_is_depth_write_enabled(vkds) &&
1102 radv_order_invariant_stencil_state(&vkds->front) &&
1103 radv_order_invariant_stencil_state(&vkds->back));
1104
1105 order_invariance[1].zs =
1106 nozwrite_and_order_invariant_stencil ||
1107 (!radv_is_stencil_write_enabled(vkds) &&
1108 zfunc_is_ordered);
1109 order_invariance[0].zs =
1110 !radv_is_depth_write_enabled(vkds) || zfunc_is_ordered;
1111
1112 order_invariance[1].pass_set =
1113 nozwrite_and_order_invariant_stencil ||
1114 (!radv_is_stencil_write_enabled(vkds) &&
1115 (vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS ||
1116 vkds->depthCompareOp == VK_COMPARE_OP_NEVER));
1117 order_invariance[0].pass_set =
1118 !radv_is_depth_write_enabled(vkds) ||
1119 (vkds->depthCompareOp == VK_COMPARE_OP_ALWAYS ||
1120 vkds->depthCompareOp == VK_COMPARE_OP_NEVER);
1121
1122 dsa_order_invariant = order_invariance[has_stencil];
1123 if (!dsa_order_invariant.zs)
1124 return false;
1125
1126 /* The set of PS invocations is always order invariant,
1127 * except when early Z/S tests are requested.
1128 */
1129 if (ps &&
1130 ps->info.ps.writes_memory &&
1131 ps->info.ps.early_fragment_test &&
1132 !dsa_order_invariant.pass_set)
1133 return false;
1134
1135 /* Determine if out-of-order rasterization should be disabled
1136 * when occlusion queries are used.
1137 */
1138 pipeline->graphics.disable_out_of_order_rast_for_occlusion =
1139 !dsa_order_invariant.pass_set;
1140 }
1141
1142 /* No color buffers are enabled for writing. */
1143 if (!colormask)
1144 return true;
1145
1146 unsigned blendmask = colormask & blend->blend_enable_4bit;
1147
1148 if (blendmask) {
1149 /* Only commutative blending. */
1150 if (blendmask & ~blend->commutative_4bit)
1151 return false;
1152
1153 if (!dsa_order_invariant.pass_set)
1154 return false;
1155 }
1156
1157 if (colormask & ~blendmask)
1158 return false;
1159
1160 return true;
1161 }
1162
1163 static void
1164 radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline,
1165 struct radv_blend_state *blend,
1166 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1167 {
1168 const VkPipelineMultisampleStateCreateInfo *vkms = radv_pipeline_get_multisample_state(pCreateInfo);
1169 struct radv_multisample_state *ms = &pipeline->graphics.ms;
1170 unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes;
1171 bool out_of_order_rast = false;
1172 int ps_iter_samples = 1;
1173 uint32_t mask = 0xffff;
1174
1175 if (vkms) {
1176 ms->num_samples = vkms->rasterizationSamples;
1177
1178 /* From the Vulkan 1.1.129 spec, 26.7. Sample Shading:
1179 *
1180 * "Sample shading is enabled for a graphics pipeline:
1181 *
1182 * - If the interface of the fragment shader entry point of the
1183 * graphics pipeline includes an input variable decorated
1184 * with SampleId or SamplePosition. In this case
1185 * minSampleShadingFactor takes the value 1.0.
1186 * - Else if the sampleShadingEnable member of the
1187 * VkPipelineMultisampleStateCreateInfo structure specified
1188 * when creating the graphics pipeline is set to VK_TRUE. In
1189 * this case minSampleShadingFactor takes the value of
1190 * VkPipelineMultisampleStateCreateInfo::minSampleShading.
1191 *
1192 * Otherwise, sample shading is considered disabled."
1193 */
1194 if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.force_persample) {
1195 ps_iter_samples = ms->num_samples;
1196 } else {
1197 ps_iter_samples = radv_pipeline_get_ps_iter_samples(pCreateInfo);
1198 }
1199 } else {
1200 ms->num_samples = 1;
1201 }
1202
1203 const struct VkPipelineRasterizationStateRasterizationOrderAMD *raster_order =
1204 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD);
1205 if (raster_order && raster_order->rasterizationOrder == VK_RASTERIZATION_ORDER_RELAXED_AMD) {
1206 /* Out-of-order rasterization is explicitly enabled by the
1207 * application.
1208 */
1209 out_of_order_rast = true;
1210 } else {
1211 /* Determine if the driver can enable out-of-order
1212 * rasterization internally.
1213 */
1214 out_of_order_rast =
1215 radv_pipeline_out_of_order_rast(pipeline, blend, pCreateInfo);
1216 }
1217
1218 ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1);
1219 ms->pa_sc_aa_config = 0;
1220 ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) |
1221 S_028804_INCOHERENT_EQAA_READS(1) |
1222 S_028804_INTERPOLATE_COMP_Z(1) |
1223 S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
1224 ms->pa_sc_mode_cntl_1 =
1225 S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes
1226 S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) |
1227 S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(out_of_order_rast) |
1228 S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7) |
1229 /* always 1: */
1230 S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) |
1231 S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) |
1232 S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
1233 S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) |
1234 S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
1235 S_028A4C_FORCE_EOV_REZ_ENABLE(1);
1236 ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE(pipeline->device->physical_device->rad_info.chip_class >= GFX9) |
1237 S_028A48_VPORT_SCISSOR_ENABLE(1);
1238
1239 const VkPipelineRasterizationLineStateCreateInfoEXT *rast_line =
1240 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1241 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
1242 if (rast_line) {
1243 ms->pa_sc_mode_cntl_0 |= S_028A48_LINE_STIPPLE_ENABLE(rast_line->stippledLineEnable);
1244 if (rast_line->lineRasterizationMode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT) {
1245 /* From the Vulkan spec 1.1.129:
1246 *
1247 * "When VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT lines
1248 * are being rasterized, sample locations may all be
1249 * treated as being at the pixel center (this may
1250 * affect attribute and depth interpolation)."
1251 */
1252 ms->num_samples = 1;
1253 }
1254 }
1255
1256 if (ms->num_samples > 1) {
1257 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
1258 struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1259 uint32_t z_samples = subpass->depth_stencil_attachment ? subpass->depth_sample_count : ms->num_samples;
1260 unsigned log_samples = util_logbase2(ms->num_samples);
1261 unsigned log_z_samples = util_logbase2(z_samples);
1262 unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples);
1263 ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1);
1264 ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */
1265 ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_z_samples) |
1266 S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
1267 S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) |
1268 S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
1269 ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) |
1270 S_028BE0_MAX_SAMPLE_DIST(radv_get_default_max_sample_dist(log_samples)) |
1271 S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */
1272 ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1);
1273 if (ps_iter_samples > 1)
1274 pipeline->graphics.spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
1275 }
1276
1277 if (vkms && vkms->pSampleMask) {
1278 mask = vkms->pSampleMask[0] & 0xffff;
1279 }
1280
1281 ms->pa_sc_aa_mask[0] = mask | (mask << 16);
1282 ms->pa_sc_aa_mask[1] = mask | (mask << 16);
1283 }
1284
1285 static bool
1286 radv_prim_can_use_guardband(enum VkPrimitiveTopology topology)
1287 {
1288 switch (topology) {
1289 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
1290 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
1291 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
1292 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1293 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1294 return false;
1295 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
1296 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
1297 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
1298 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1299 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1300 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
1301 return true;
1302 default:
1303 unreachable("unhandled primitive type");
1304 }
1305 }
1306
1307 static uint32_t
1308 si_translate_prim(enum VkPrimitiveTopology topology)
1309 {
1310 switch (topology) {
1311 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
1312 return V_008958_DI_PT_POINTLIST;
1313 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
1314 return V_008958_DI_PT_LINELIST;
1315 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
1316 return V_008958_DI_PT_LINESTRIP;
1317 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
1318 return V_008958_DI_PT_TRILIST;
1319 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
1320 return V_008958_DI_PT_TRISTRIP;
1321 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
1322 return V_008958_DI_PT_TRIFAN;
1323 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1324 return V_008958_DI_PT_LINELIST_ADJ;
1325 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1326 return V_008958_DI_PT_LINESTRIP_ADJ;
1327 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1328 return V_008958_DI_PT_TRILIST_ADJ;
1329 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1330 return V_008958_DI_PT_TRISTRIP_ADJ;
1331 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
1332 return V_008958_DI_PT_PATCH;
1333 default:
1334 assert(0);
1335 return 0;
1336 }
1337 }
1338
1339 static uint32_t
1340 si_conv_gl_prim_to_gs_out(unsigned gl_prim)
1341 {
1342 switch (gl_prim) {
1343 case 0: /* GL_POINTS */
1344 return V_028A6C_OUTPRIM_TYPE_POINTLIST;
1345 case 1: /* GL_LINES */
1346 case 3: /* GL_LINE_STRIP */
1347 case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */
1348 case 0x8E7A: /* GL_ISOLINES */
1349 return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
1350
1351 case 4: /* GL_TRIANGLES */
1352 case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */
1353 case 5: /* GL_TRIANGLE_STRIP */
1354 case 7: /* GL_QUADS */
1355 return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
1356 default:
1357 assert(0);
1358 return 0;
1359 }
1360 }
1361
1362 static uint32_t
1363 si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology)
1364 {
1365 switch (topology) {
1366 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
1367 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
1368 return V_028A6C_OUTPRIM_TYPE_POINTLIST;
1369 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
1370 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
1371 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1372 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1373 return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
1374 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
1375 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
1376 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
1377 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1378 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1379 return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
1380 default:
1381 assert(0);
1382 return 0;
1383 }
1384 }
1385
1386 static unsigned radv_dynamic_state_mask(VkDynamicState state)
1387 {
1388 switch(state) {
1389 case VK_DYNAMIC_STATE_VIEWPORT:
1390 return RADV_DYNAMIC_VIEWPORT;
1391 case VK_DYNAMIC_STATE_SCISSOR:
1392 return RADV_DYNAMIC_SCISSOR;
1393 case VK_DYNAMIC_STATE_LINE_WIDTH:
1394 return RADV_DYNAMIC_LINE_WIDTH;
1395 case VK_DYNAMIC_STATE_DEPTH_BIAS:
1396 return RADV_DYNAMIC_DEPTH_BIAS;
1397 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
1398 return RADV_DYNAMIC_BLEND_CONSTANTS;
1399 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
1400 return RADV_DYNAMIC_DEPTH_BOUNDS;
1401 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
1402 return RADV_DYNAMIC_STENCIL_COMPARE_MASK;
1403 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
1404 return RADV_DYNAMIC_STENCIL_WRITE_MASK;
1405 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
1406 return RADV_DYNAMIC_STENCIL_REFERENCE;
1407 case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT:
1408 return RADV_DYNAMIC_DISCARD_RECTANGLE;
1409 case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
1410 return RADV_DYNAMIC_SAMPLE_LOCATIONS;
1411 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
1412 return RADV_DYNAMIC_LINE_STIPPLE;
1413 default:
1414 unreachable("Unhandled dynamic state");
1415 }
1416 }
1417
1418 static uint32_t radv_pipeline_needed_dynamic_state(const VkGraphicsPipelineCreateInfo *pCreateInfo)
1419 {
1420 uint32_t states = RADV_DYNAMIC_ALL;
1421
1422 /* If rasterization is disabled we do not care about any of the dynamic states,
1423 * since they are all rasterization related only. */
1424 if (pCreateInfo->pRasterizationState->rasterizerDiscardEnable)
1425 return 0;
1426
1427 if (!pCreateInfo->pRasterizationState->depthBiasEnable)
1428 states &= ~RADV_DYNAMIC_DEPTH_BIAS;
1429
1430 if (!pCreateInfo->pDepthStencilState ||
1431 !pCreateInfo->pDepthStencilState->depthBoundsTestEnable)
1432 states &= ~RADV_DYNAMIC_DEPTH_BOUNDS;
1433
1434 if (!pCreateInfo->pDepthStencilState ||
1435 !pCreateInfo->pDepthStencilState->stencilTestEnable)
1436 states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK |
1437 RADV_DYNAMIC_STENCIL_WRITE_MASK |
1438 RADV_DYNAMIC_STENCIL_REFERENCE);
1439
1440 if (!vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT))
1441 states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE;
1442
1443 if (!pCreateInfo->pMultisampleState ||
1444 !vk_find_struct_const(pCreateInfo->pMultisampleState->pNext,
1445 PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT))
1446 states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS;
1447
1448 if (!pCreateInfo->pRasterizationState ||
1449 !vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1450 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT))
1451 states &= ~RADV_DYNAMIC_LINE_STIPPLE;
1452
1453 /* TODO: blend constants & line width. */
1454
1455 return states;
1456 }
1457
1458
1459 static void
1460 radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline,
1461 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1462 {
1463 uint32_t needed_states = radv_pipeline_needed_dynamic_state(pCreateInfo);
1464 uint32_t states = needed_states;
1465 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
1466 struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1467
1468 pipeline->dynamic_state = default_dynamic_state;
1469 pipeline->graphics.needed_dynamic_state = needed_states;
1470
1471 if (pCreateInfo->pDynamicState) {
1472 /* Remove all of the states that are marked as dynamic */
1473 uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1474 for (uint32_t s = 0; s < count; s++)
1475 states &= ~radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]);
1476 }
1477
1478 struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
1479
1480 if (needed_states & RADV_DYNAMIC_VIEWPORT) {
1481 assert(pCreateInfo->pViewportState);
1482
1483 dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1484 if (states & RADV_DYNAMIC_VIEWPORT) {
1485 typed_memcpy(dynamic->viewport.viewports,
1486 pCreateInfo->pViewportState->pViewports,
1487 pCreateInfo->pViewportState->viewportCount);
1488 }
1489 }
1490
1491 if (needed_states & RADV_DYNAMIC_SCISSOR) {
1492 dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1493 if (states & RADV_DYNAMIC_SCISSOR) {
1494 typed_memcpy(dynamic->scissor.scissors,
1495 pCreateInfo->pViewportState->pScissors,
1496 pCreateInfo->pViewportState->scissorCount);
1497 }
1498 }
1499
1500 if (states & RADV_DYNAMIC_LINE_WIDTH) {
1501 assert(pCreateInfo->pRasterizationState);
1502 dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1503 }
1504
1505 if (states & RADV_DYNAMIC_DEPTH_BIAS) {
1506 assert(pCreateInfo->pRasterizationState);
1507 dynamic->depth_bias.bias =
1508 pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1509 dynamic->depth_bias.clamp =
1510 pCreateInfo->pRasterizationState->depthBiasClamp;
1511 dynamic->depth_bias.slope =
1512 pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1513 }
1514
1515 /* Section 9.2 of the Vulkan 1.0.15 spec says:
1516 *
1517 * pColorBlendState is [...] NULL if the pipeline has rasterization
1518 * disabled or if the subpass of the render pass the pipeline is
1519 * created against does not use any color attachments.
1520 */
1521 if (subpass->has_color_att && states & RADV_DYNAMIC_BLEND_CONSTANTS) {
1522 assert(pCreateInfo->pColorBlendState);
1523 typed_memcpy(dynamic->blend_constants,
1524 pCreateInfo->pColorBlendState->blendConstants, 4);
1525 }
1526
1527 /* If there is no depthstencil attachment, then don't read
1528 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1529 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1530 * no need to override the depthstencil defaults in
1531 * radv_pipeline::dynamic_state when there is no depthstencil attachment.
1532 *
1533 * Section 9.2 of the Vulkan 1.0.15 spec says:
1534 *
1535 * pDepthStencilState is [...] NULL if the pipeline has rasterization
1536 * disabled or if the subpass of the render pass the pipeline is created
1537 * against does not use a depth/stencil attachment.
1538 */
1539 if (needed_states && subpass->depth_stencil_attachment) {
1540 assert(pCreateInfo->pDepthStencilState);
1541
1542 if (states & RADV_DYNAMIC_DEPTH_BOUNDS) {
1543 dynamic->depth_bounds.min =
1544 pCreateInfo->pDepthStencilState->minDepthBounds;
1545 dynamic->depth_bounds.max =
1546 pCreateInfo->pDepthStencilState->maxDepthBounds;
1547 }
1548
1549 if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) {
1550 dynamic->stencil_compare_mask.front =
1551 pCreateInfo->pDepthStencilState->front.compareMask;
1552 dynamic->stencil_compare_mask.back =
1553 pCreateInfo->pDepthStencilState->back.compareMask;
1554 }
1555
1556 if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) {
1557 dynamic->stencil_write_mask.front =
1558 pCreateInfo->pDepthStencilState->front.writeMask;
1559 dynamic->stencil_write_mask.back =
1560 pCreateInfo->pDepthStencilState->back.writeMask;
1561 }
1562
1563 if (states & RADV_DYNAMIC_STENCIL_REFERENCE) {
1564 dynamic->stencil_reference.front =
1565 pCreateInfo->pDepthStencilState->front.reference;
1566 dynamic->stencil_reference.back =
1567 pCreateInfo->pDepthStencilState->back.reference;
1568 }
1569 }
1570
1571 const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info =
1572 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT);
1573 if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
1574 dynamic->discard_rectangle.count = discard_rectangle_info->discardRectangleCount;
1575 if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
1576 typed_memcpy(dynamic->discard_rectangle.rectangles,
1577 discard_rectangle_info->pDiscardRectangles,
1578 discard_rectangle_info->discardRectangleCount);
1579 }
1580 }
1581
1582 if (needed_states & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
1583 const VkPipelineSampleLocationsStateCreateInfoEXT *sample_location_info =
1584 vk_find_struct_const(pCreateInfo->pMultisampleState->pNext,
1585 PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
1586 /* If sampleLocationsEnable is VK_FALSE, the default sample
1587 * locations are used and the values specified in
1588 * sampleLocationsInfo are ignored.
1589 */
1590 if (sample_location_info->sampleLocationsEnable) {
1591 const VkSampleLocationsInfoEXT *pSampleLocationsInfo =
1592 &sample_location_info->sampleLocationsInfo;
1593
1594 assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS);
1595
1596 dynamic->sample_location.per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel;
1597 dynamic->sample_location.grid_size = pSampleLocationsInfo->sampleLocationGridSize;
1598 dynamic->sample_location.count = pSampleLocationsInfo->sampleLocationsCount;
1599 typed_memcpy(&dynamic->sample_location.locations[0],
1600 pSampleLocationsInfo->pSampleLocations,
1601 pSampleLocationsInfo->sampleLocationsCount);
1602 }
1603 }
1604
1605 const VkPipelineRasterizationLineStateCreateInfoEXT *rast_line_info =
1606 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
1607 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
1608 if (needed_states & RADV_DYNAMIC_LINE_STIPPLE) {
1609 dynamic->line_stipple.factor = rast_line_info->lineStippleFactor;
1610 dynamic->line_stipple.pattern = rast_line_info->lineStipplePattern;
1611 }
1612
1613 pipeline->dynamic_state.mask = states;
1614 }
1615
1616 static void
1617 gfx9_get_gs_info(const struct radv_pipeline_key *key,
1618 const struct radv_pipeline *pipeline,
1619 nir_shader **nir,
1620 struct radv_shader_info *infos,
1621 struct gfx9_gs_info *out)
1622 {
1623 struct radv_shader_info *gs_info = &infos[MESA_SHADER_GEOMETRY];
1624 struct radv_es_output_info *es_info;
1625 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9)
1626 es_info = nir[MESA_SHADER_TESS_CTRL] ? &gs_info->tes.es_info : &gs_info->vs.es_info;
1627 else
1628 es_info = nir[MESA_SHADER_TESS_CTRL] ?
1629 &infos[MESA_SHADER_TESS_EVAL].tes.es_info :
1630 &infos[MESA_SHADER_VERTEX].vs.es_info;
1631
1632 unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1);
1633 bool uses_adjacency;
1634 switch(key->topology) {
1635 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1636 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1637 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1638 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1639 uses_adjacency = true;
1640 break;
1641 default:
1642 uses_adjacency = false;
1643 break;
1644 }
1645
1646 /* All these are in dwords: */
1647 /* We can't allow using the whole LDS, because GS waves compete with
1648 * other shader stages for LDS space. */
1649 const unsigned max_lds_size = 8 * 1024;
1650 const unsigned esgs_itemsize = es_info->esgs_itemsize / 4;
1651 unsigned esgs_lds_size;
1652
1653 /* All these are per subgroup: */
1654 const unsigned max_out_prims = 32 * 1024;
1655 const unsigned max_es_verts = 255;
1656 const unsigned ideal_gs_prims = 64;
1657 unsigned max_gs_prims, gs_prims;
1658 unsigned min_es_verts, es_verts, worst_case_es_verts;
1659
1660 if (uses_adjacency || gs_num_invocations > 1)
1661 max_gs_prims = 127 / gs_num_invocations;
1662 else
1663 max_gs_prims = 255;
1664
1665 /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
1666 * Make sure we don't go over the maximum value.
1667 */
1668 if (gs_info->gs.vertices_out > 0) {
1669 max_gs_prims = MIN2(max_gs_prims,
1670 max_out_prims /
1671 (gs_info->gs.vertices_out * gs_num_invocations));
1672 }
1673 assert(max_gs_prims > 0);
1674
1675 /* If the primitive has adjacency, halve the number of vertices
1676 * that will be reused in multiple primitives.
1677 */
1678 min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1);
1679
1680 gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
1681 worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
1682
1683 /* Compute ESGS LDS size based on the worst case number of ES vertices
1684 * needed to create the target number of GS prims per subgroup.
1685 */
1686 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
1687
1688 /* If total LDS usage is too big, refactor partitions based on ratio
1689 * of ESGS item sizes.
1690 */
1691 if (esgs_lds_size > max_lds_size) {
1692 /* Our target GS Prims Per Subgroup was too large. Calculate
1693 * the maximum number of GS Prims Per Subgroup that will fit
1694 * into LDS, capped by the maximum that the hardware can support.
1695 */
1696 gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
1697 max_gs_prims);
1698 assert(gs_prims > 0);
1699 worst_case_es_verts = MIN2(min_es_verts * gs_prims,
1700 max_es_verts);
1701
1702 esgs_lds_size = esgs_itemsize * worst_case_es_verts;
1703 assert(esgs_lds_size <= max_lds_size);
1704 }
1705
1706 /* Now calculate remaining ESGS information. */
1707 if (esgs_lds_size)
1708 es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
1709 else
1710 es_verts = max_es_verts;
1711
1712 /* Vertices for adjacency primitives are not always reused, so restore
1713 * it for ES_VERTS_PER_SUBGRP.
1714 */
1715 min_es_verts = gs_info->gs.vertices_in;
1716
1717 /* For normal primitives, the VGT only checks if they are past the ES
1718 * verts per subgroup after allocating a full GS primitive and if they
1719 * are, kick off a new subgroup. But if those additional ES verts are
1720 * unique (e.g. not reused) we need to make sure there is enough LDS
1721 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
1722 */
1723 es_verts -= min_es_verts - 1;
1724
1725 uint32_t es_verts_per_subgroup = es_verts;
1726 uint32_t gs_prims_per_subgroup = gs_prims;
1727 uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
1728 uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out;
1729 out->lds_size = align(esgs_lds_size, 128) / 128;
1730 out->vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(es_verts_per_subgroup) |
1731 S_028A44_GS_PRIMS_PER_SUBGRP(gs_prims_per_subgroup) |
1732 S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_inst_prims_in_subgroup);
1733 out->vgt_gs_max_prims_per_subgroup = S_028A94_MAX_PRIMS_PER_SUBGROUP(max_prims_per_subgroup);
1734 out->vgt_esgs_ring_itemsize = esgs_itemsize;
1735 assert(max_prims_per_subgroup <= max_out_prims);
1736 }
1737
1738 static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
1739 unsigned min_verts_per_prim, bool use_adjacency)
1740 {
1741 unsigned max_reuse = max_esverts - min_verts_per_prim;
1742 if (use_adjacency)
1743 max_reuse /= 2;
1744 *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
1745 }
1746
1747 static unsigned
1748 radv_get_num_input_vertices(nir_shader **nir)
1749 {
1750 if (nir[MESA_SHADER_GEOMETRY]) {
1751 nir_shader *gs = nir[MESA_SHADER_GEOMETRY];
1752
1753 return gs->info.gs.vertices_in;
1754 }
1755
1756 if (nir[MESA_SHADER_TESS_CTRL]) {
1757 nir_shader *tes = nir[MESA_SHADER_TESS_EVAL];
1758
1759 if (tes->info.tess.point_mode)
1760 return 1;
1761 if (tes->info.tess.primitive_mode == GL_ISOLINES)
1762 return 2;
1763 return 3;
1764 }
1765
1766 return 3;
1767 }
1768
1769 static void
1770 gfx10_get_ngg_info(const struct radv_pipeline_key *key,
1771 struct radv_pipeline *pipeline,
1772 nir_shader **nir,
1773 struct radv_shader_info *infos,
1774 struct gfx10_ngg_info *ngg)
1775 {
1776 struct radv_shader_info *gs_info = &infos[MESA_SHADER_GEOMETRY];
1777 struct radv_es_output_info *es_info =
1778 nir[MESA_SHADER_TESS_CTRL] ? &gs_info->tes.es_info : &gs_info->vs.es_info;
1779 unsigned gs_type = nir[MESA_SHADER_GEOMETRY] ? MESA_SHADER_GEOMETRY : MESA_SHADER_VERTEX;
1780 unsigned max_verts_per_prim = radv_get_num_input_vertices(nir);
1781 unsigned min_verts_per_prim =
1782 gs_type == MESA_SHADER_GEOMETRY ? max_verts_per_prim : 1;
1783 unsigned gs_num_invocations = nir[MESA_SHADER_GEOMETRY] ? MAX2(gs_info->gs.invocations, 1) : 1;
1784 bool uses_adjacency;
1785 switch(key->topology) {
1786 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1787 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1788 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1789 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1790 uses_adjacency = true;
1791 break;
1792 default:
1793 uses_adjacency = false;
1794 break;
1795 }
1796
1797 /* All these are in dwords: */
1798 /* We can't allow using the whole LDS, because GS waves compete with
1799 * other shader stages for LDS space.
1800 *
1801 * TODO: We should really take the shader's internal LDS use into
1802 * account. The linker will fail if the size is greater than
1803 * 8K dwords.
1804 */
1805 const unsigned max_lds_size = 8 * 1024 - 768;
1806 const unsigned target_lds_size = max_lds_size;
1807 unsigned esvert_lds_size = 0;
1808 unsigned gsprim_lds_size = 0;
1809
1810 /* All these are per subgroup: */
1811 bool max_vert_out_per_gs_instance = false;
1812 unsigned max_esverts_base = 256;
1813 unsigned max_gsprims_base = 128; /* default prim group size clamp */
1814
1815 /* Hardware has the following non-natural restrictions on the value
1816 * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
1817 * the draw:
1818 * - at most 252 for any line input primitive type
1819 * - at most 251 for any quad input primitive type
1820 * - at most 251 for triangle strips with adjacency (this happens to
1821 * be the natural limit for triangle *lists* with adjacency)
1822 */
1823 max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
1824
1825 if (gs_type == MESA_SHADER_GEOMETRY) {
1826 unsigned max_out_verts_per_gsprim =
1827 gs_info->gs.vertices_out * gs_num_invocations;
1828
1829 if (max_out_verts_per_gsprim <= 256) {
1830 if (max_out_verts_per_gsprim) {
1831 max_gsprims_base = MIN2(max_gsprims_base,
1832 256 / max_out_verts_per_gsprim);
1833 }
1834 } else {
1835 /* Use special multi-cycling mode in which each GS
1836 * instance gets its own subgroup. Does not work with
1837 * tessellation. */
1838 max_vert_out_per_gs_instance = true;
1839 max_gsprims_base = 1;
1840 max_out_verts_per_gsprim = gs_info->gs.vertices_out;
1841 }
1842
1843 esvert_lds_size = es_info->esgs_itemsize / 4;
1844 gsprim_lds_size = (gs_info->gs.gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
1845 } else {
1846 /* VS and TES. */
1847 /* LDS size for passing data from GS to ES. */
1848 struct radv_streamout_info *so_info = nir[MESA_SHADER_TESS_CTRL]
1849 ? &infos[MESA_SHADER_TESS_EVAL].so
1850 : &infos[MESA_SHADER_VERTEX].so;
1851
1852 if (so_info->num_outputs)
1853 esvert_lds_size = 4 * so_info->num_outputs + 1;
1854
1855 /* GS stores Primitive IDs (one DWORD) into LDS at the address
1856 * corresponding to the ES thread of the provoking vertex. All
1857 * ES threads load and export PrimitiveID for their thread.
1858 */
1859 if (!nir[MESA_SHADER_TESS_CTRL] &&
1860 infos[MESA_SHADER_VERTEX].vs.outinfo.export_prim_id)
1861 esvert_lds_size = MAX2(esvert_lds_size, 1);
1862 }
1863
1864 unsigned max_gsprims = max_gsprims_base;
1865 unsigned max_esverts = max_esverts_base;
1866
1867 if (esvert_lds_size)
1868 max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
1869 if (gsprim_lds_size)
1870 max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
1871
1872 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1873 clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency);
1874 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1875
1876 if (esvert_lds_size || gsprim_lds_size) {
1877 /* Now that we have a rough proportionality between esverts
1878 * and gsprims based on the primitive type, scale both of them
1879 * down simultaneously based on required LDS space.
1880 *
1881 * We could be smarter about this if we knew how much vertex
1882 * reuse to expect.
1883 */
1884 unsigned lds_total = max_esverts * esvert_lds_size +
1885 max_gsprims * gsprim_lds_size;
1886 if (lds_total > target_lds_size) {
1887 max_esverts = max_esverts * target_lds_size / lds_total;
1888 max_gsprims = max_gsprims * target_lds_size / lds_total;
1889
1890 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1891 clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
1892 min_verts_per_prim, uses_adjacency);
1893 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1894 }
1895 }
1896
1897 /* Round up towards full wave sizes for better ALU utilization. */
1898 if (!max_vert_out_per_gs_instance) {
1899 unsigned orig_max_esverts;
1900 unsigned orig_max_gsprims;
1901 unsigned wavesize;
1902
1903 if (gs_type == MESA_SHADER_GEOMETRY) {
1904 wavesize = gs_info->wave_size;
1905 } else {
1906 wavesize = nir[MESA_SHADER_TESS_CTRL]
1907 ? infos[MESA_SHADER_TESS_EVAL].wave_size
1908 : infos[MESA_SHADER_VERTEX].wave_size;
1909 }
1910
1911 do {
1912 orig_max_esverts = max_esverts;
1913 orig_max_gsprims = max_gsprims;
1914
1915 max_esverts = align(max_esverts, wavesize);
1916 max_esverts = MIN2(max_esverts, max_esverts_base);
1917 if (esvert_lds_size)
1918 max_esverts = MIN2(max_esverts,
1919 (max_lds_size - max_gsprims * gsprim_lds_size) /
1920 esvert_lds_size);
1921 max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
1922
1923 max_gsprims = align(max_gsprims, wavesize);
1924 max_gsprims = MIN2(max_gsprims, max_gsprims_base);
1925 if (gsprim_lds_size)
1926 max_gsprims = MIN2(max_gsprims,
1927 (max_lds_size - max_esverts * esvert_lds_size) /
1928 gsprim_lds_size);
1929 clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
1930 min_verts_per_prim, uses_adjacency);
1931 assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
1932 } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
1933 }
1934
1935 /* Hardware restriction: minimum value of max_esverts */
1936 max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim);
1937
1938 unsigned max_out_vertices =
1939 max_vert_out_per_gs_instance ? gs_info->gs.vertices_out :
1940 gs_type == MESA_SHADER_GEOMETRY ?
1941 max_gsprims * gs_num_invocations * gs_info->gs.vertices_out :
1942 max_esverts;
1943 assert(max_out_vertices <= 256);
1944
1945 unsigned prim_amp_factor = 1;
1946 if (gs_type == MESA_SHADER_GEOMETRY) {
1947 /* Number of output primitives per GS input primitive after
1948 * GS instancing. */
1949 prim_amp_factor = gs_info->gs.vertices_out;
1950 }
1951
1952 /* The GE only checks against the maximum number of ES verts after
1953 * allocating a full GS primitive. So we need to ensure that whenever
1954 * this check passes, there is enough space for a full primitive without
1955 * vertex reuse.
1956 */
1957 ngg->hw_max_esverts = max_esverts - max_verts_per_prim + 1;
1958 ngg->max_gsprims = max_gsprims;
1959 ngg->max_out_verts = max_out_vertices;
1960 ngg->prim_amp_factor = prim_amp_factor;
1961 ngg->max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
1962 ngg->ngg_emit_size = max_gsprims * gsprim_lds_size;
1963 ngg->esgs_ring_size = 4 * max_esverts * esvert_lds_size;
1964
1965 if (gs_type == MESA_SHADER_GEOMETRY) {
1966 ngg->vgt_esgs_ring_itemsize = es_info->esgs_itemsize / 4;
1967 } else {
1968 ngg->vgt_esgs_ring_itemsize = 1;
1969 }
1970
1971 pipeline->graphics.esgs_ring_size = ngg->esgs_ring_size;
1972
1973 assert(ngg->hw_max_esverts >= 24); /* HW limitation */
1974 }
1975
1976 static void
1977 calculate_gs_ring_sizes(struct radv_pipeline *pipeline,
1978 const struct gfx9_gs_info *gs)
1979 {
1980 struct radv_device *device = pipeline->device;
1981 unsigned num_se = device->physical_device->rad_info.max_se;
1982 unsigned wave_size = 64;
1983 unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
1984 /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
1985 * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
1986 */
1987 unsigned gs_vertex_reuse =
1988 (device->physical_device->rad_info.chip_class >= GFX8 ? 32 : 16) * num_se;
1989 unsigned alignment = 256 * num_se;
1990 /* The maximum size is 63.999 MB per SE. */
1991 unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
1992 struct radv_shader_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info;
1993
1994 /* Calculate the minimum size. */
1995 unsigned min_esgs_ring_size = align(gs->vgt_esgs_ring_itemsize * 4 * gs_vertex_reuse *
1996 wave_size, alignment);
1997 /* These are recommended sizes, not minimum sizes. */
1998 unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
1999 gs->vgt_esgs_ring_itemsize * 4 * gs_info->gs.vertices_in;
2000 unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
2001 gs_info->gs.max_gsvs_emit_size;
2002
2003 min_esgs_ring_size = align(min_esgs_ring_size, alignment);
2004 esgs_ring_size = align(esgs_ring_size, alignment);
2005 gsvs_ring_size = align(gsvs_ring_size, alignment);
2006
2007 if (pipeline->device->physical_device->rad_info.chip_class <= GFX8)
2008 pipeline->graphics.esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
2009
2010 pipeline->graphics.gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
2011 }
2012
2013 static void si_multiwave_lds_size_workaround(struct radv_device *device,
2014 unsigned *lds_size)
2015 {
2016 /* If tessellation is all offchip and on-chip GS isn't used, this
2017 * workaround is not needed.
2018 */
2019 return;
2020
2021 /* SPI barrier management bug:
2022 * Make sure we have at least 4k of LDS in use to avoid the bug.
2023 * It applies to workgroup sizes of more than one wavefront.
2024 */
2025 if (device->physical_device->rad_info.family == CHIP_BONAIRE ||
2026 device->physical_device->rad_info.family == CHIP_KABINI)
2027 *lds_size = MAX2(*lds_size, 8);
2028 }
2029
2030 struct radv_shader_variant *
2031 radv_get_shader(struct radv_pipeline *pipeline,
2032 gl_shader_stage stage)
2033 {
2034 if (stage == MESA_SHADER_VERTEX) {
2035 if (pipeline->shaders[MESA_SHADER_VERTEX])
2036 return pipeline->shaders[MESA_SHADER_VERTEX];
2037 if (pipeline->shaders[MESA_SHADER_TESS_CTRL])
2038 return pipeline->shaders[MESA_SHADER_TESS_CTRL];
2039 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
2040 return pipeline->shaders[MESA_SHADER_GEOMETRY];
2041 } else if (stage == MESA_SHADER_TESS_EVAL) {
2042 if (!radv_pipeline_has_tess(pipeline))
2043 return NULL;
2044 if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
2045 return pipeline->shaders[MESA_SHADER_TESS_EVAL];
2046 if (pipeline->shaders[MESA_SHADER_GEOMETRY])
2047 return pipeline->shaders[MESA_SHADER_GEOMETRY];
2048 }
2049 return pipeline->shaders[stage];
2050 }
2051
2052 static struct radv_tessellation_state
2053 calculate_tess_state(struct radv_pipeline *pipeline,
2054 const VkGraphicsPipelineCreateInfo *pCreateInfo)
2055 {
2056 unsigned num_tcs_input_cp;
2057 unsigned num_tcs_output_cp;
2058 unsigned lds_size;
2059 unsigned num_patches;
2060 struct radv_tessellation_state tess = {0};
2061
2062 num_tcs_input_cp = pCreateInfo->pTessellationState->patchControlPoints;
2063 num_tcs_output_cp = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; //TCS VERTICES OUT
2064 num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
2065
2066 lds_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.lds_size;
2067
2068 if (pipeline->device->physical_device->rad_info.chip_class >= GFX7) {
2069 assert(lds_size <= 65536);
2070 lds_size = align(lds_size, 512) / 512;
2071 } else {
2072 assert(lds_size <= 32768);
2073 lds_size = align(lds_size, 256) / 256;
2074 }
2075 si_multiwave_lds_size_workaround(pipeline->device, &lds_size);
2076
2077 tess.lds_size = lds_size;
2078
2079 tess.ls_hs_config = S_028B58_NUM_PATCHES(num_patches) |
2080 S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
2081 S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
2082 tess.num_patches = num_patches;
2083
2084 struct radv_shader_variant *tes = radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL);
2085 unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0;
2086
2087 switch (tes->info.tes.primitive_mode) {
2088 case GL_TRIANGLES:
2089 type = V_028B6C_TESS_TRIANGLE;
2090 break;
2091 case GL_QUADS:
2092 type = V_028B6C_TESS_QUAD;
2093 break;
2094 case GL_ISOLINES:
2095 type = V_028B6C_TESS_ISOLINE;
2096 break;
2097 }
2098
2099 switch (tes->info.tes.spacing) {
2100 case TESS_SPACING_EQUAL:
2101 partitioning = V_028B6C_PART_INTEGER;
2102 break;
2103 case TESS_SPACING_FRACTIONAL_ODD:
2104 partitioning = V_028B6C_PART_FRAC_ODD;
2105 break;
2106 case TESS_SPACING_FRACTIONAL_EVEN:
2107 partitioning = V_028B6C_PART_FRAC_EVEN;
2108 break;
2109 default:
2110 break;
2111 }
2112
2113 bool ccw = tes->info.tes.ccw;
2114 const VkPipelineTessellationDomainOriginStateCreateInfo *domain_origin_state =
2115 vk_find_struct_const(pCreateInfo->pTessellationState,
2116 PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO);
2117
2118 if (domain_origin_state && domain_origin_state->domainOrigin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT)
2119 ccw = !ccw;
2120
2121 if (tes->info.tes.point_mode)
2122 topology = V_028B6C_OUTPUT_POINT;
2123 else if (tes->info.tes.primitive_mode == GL_ISOLINES)
2124 topology = V_028B6C_OUTPUT_LINE;
2125 else if (ccw)
2126 topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
2127 else
2128 topology = V_028B6C_OUTPUT_TRIANGLE_CW;
2129
2130 if (pipeline->device->physical_device->rad_info.has_distributed_tess) {
2131 if (pipeline->device->physical_device->rad_info.family == CHIP_FIJI ||
2132 pipeline->device->physical_device->rad_info.family >= CHIP_POLARIS10)
2133 distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
2134 else
2135 distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
2136 } else
2137 distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
2138
2139 tess.tf_param = S_028B6C_TYPE(type) |
2140 S_028B6C_PARTITIONING(partitioning) |
2141 S_028B6C_TOPOLOGY(topology) |
2142 S_028B6C_DISTRIBUTION_MODE(distribution_mode);
2143
2144 return tess;
2145 }
2146
2147 static const struct radv_prim_vertex_count prim_size_table[] = {
2148 [V_008958_DI_PT_NONE] = {0, 0},
2149 [V_008958_DI_PT_POINTLIST] = {1, 1},
2150 [V_008958_DI_PT_LINELIST] = {2, 2},
2151 [V_008958_DI_PT_LINESTRIP] = {2, 1},
2152 [V_008958_DI_PT_TRILIST] = {3, 3},
2153 [V_008958_DI_PT_TRIFAN] = {3, 1},
2154 [V_008958_DI_PT_TRISTRIP] = {3, 1},
2155 [V_008958_DI_PT_LINELIST_ADJ] = {4, 4},
2156 [V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1},
2157 [V_008958_DI_PT_TRILIST_ADJ] = {6, 6},
2158 [V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2},
2159 [V_008958_DI_PT_RECTLIST] = {3, 3},
2160 [V_008958_DI_PT_LINELOOP] = {2, 1},
2161 [V_008958_DI_PT_POLYGON] = {3, 1},
2162 [V_008958_DI_PT_2D_TRI_STRIP] = {0, 0},
2163 };
2164
2165 static const struct radv_vs_output_info *get_vs_output_info(const struct radv_pipeline *pipeline)
2166 {
2167 if (radv_pipeline_has_gs(pipeline))
2168 if (radv_pipeline_has_ngg(pipeline))
2169 return &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.vs.outinfo;
2170 else
2171 return &pipeline->gs_copy_shader->info.vs.outinfo;
2172 else if (radv_pipeline_has_tess(pipeline))
2173 return &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo;
2174 else
2175 return &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.outinfo;
2176 }
2177
2178 static void
2179 radv_link_shaders(struct radv_pipeline *pipeline, nir_shader **shaders)
2180 {
2181 nir_shader* ordered_shaders[MESA_SHADER_STAGES];
2182 int shader_count = 0;
2183
2184 if(shaders[MESA_SHADER_FRAGMENT]) {
2185 ordered_shaders[shader_count++] = shaders[MESA_SHADER_FRAGMENT];
2186 }
2187 if(shaders[MESA_SHADER_GEOMETRY]) {
2188 ordered_shaders[shader_count++] = shaders[MESA_SHADER_GEOMETRY];
2189 }
2190 if(shaders[MESA_SHADER_TESS_EVAL]) {
2191 ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_EVAL];
2192 }
2193 if(shaders[MESA_SHADER_TESS_CTRL]) {
2194 ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_CTRL];
2195 }
2196 if(shaders[MESA_SHADER_VERTEX]) {
2197 ordered_shaders[shader_count++] = shaders[MESA_SHADER_VERTEX];
2198 }
2199
2200 if (shader_count > 1) {
2201 unsigned first = ordered_shaders[shader_count - 1]->info.stage;
2202 unsigned last = ordered_shaders[0]->info.stage;
2203
2204 if (ordered_shaders[0]->info.stage == MESA_SHADER_FRAGMENT &&
2205 ordered_shaders[1]->info.has_transform_feedback_varyings)
2206 nir_link_xfb_varyings(ordered_shaders[1], ordered_shaders[0]);
2207
2208 for (int i = 0; i < shader_count; ++i) {
2209 nir_variable_mode mask = 0;
2210
2211 if (ordered_shaders[i]->info.stage != first)
2212 mask = mask | nir_var_shader_in;
2213
2214 if (ordered_shaders[i]->info.stage != last)
2215 mask = mask | nir_var_shader_out;
2216
2217 nir_lower_io_to_scalar_early(ordered_shaders[i], mask);
2218 radv_optimize_nir(ordered_shaders[i], false, false);
2219 }
2220 }
2221
2222 for (int i = 1; i < shader_count; ++i) {
2223 nir_lower_io_arrays_to_elements(ordered_shaders[i],
2224 ordered_shaders[i - 1]);
2225
2226 if (nir_link_opt_varyings(ordered_shaders[i],
2227 ordered_shaders[i - 1]))
2228 radv_optimize_nir(ordered_shaders[i - 1], false, false);
2229
2230 nir_remove_dead_variables(ordered_shaders[i],
2231 nir_var_shader_out);
2232 nir_remove_dead_variables(ordered_shaders[i - 1],
2233 nir_var_shader_in);
2234
2235 bool progress = nir_remove_unused_varyings(ordered_shaders[i],
2236 ordered_shaders[i - 1]);
2237
2238 nir_compact_varyings(ordered_shaders[i],
2239 ordered_shaders[i - 1], true);
2240
2241 if (progress) {
2242 if (nir_lower_global_vars_to_local(ordered_shaders[i])) {
2243 ac_lower_indirect_derefs(ordered_shaders[i],
2244 pipeline->device->physical_device->rad_info.chip_class);
2245 }
2246 radv_optimize_nir(ordered_shaders[i], false, false);
2247
2248 if (nir_lower_global_vars_to_local(ordered_shaders[i - 1])) {
2249 ac_lower_indirect_derefs(ordered_shaders[i - 1],
2250 pipeline->device->physical_device->rad_info.chip_class);
2251 }
2252 radv_optimize_nir(ordered_shaders[i - 1], false, false);
2253 }
2254 }
2255 }
2256
2257 static void
2258 radv_set_linked_driver_locations(struct radv_pipeline *pipeline, nir_shader **shaders,
2259 struct radv_shader_info infos[MESA_SHADER_STAGES])
2260 {
2261 bool has_tess = shaders[MESA_SHADER_TESS_CTRL];
2262 bool has_gs = shaders[MESA_SHADER_GEOMETRY];
2263
2264 if (!has_tess && !has_gs)
2265 return;
2266
2267 unsigned vs_info_idx = MESA_SHADER_VERTEX;
2268 unsigned tes_info_idx = MESA_SHADER_TESS_EVAL;
2269
2270 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) {
2271 /* These are merged into the next stage */
2272 vs_info_idx = has_tess ? MESA_SHADER_TESS_CTRL : MESA_SHADER_GEOMETRY;
2273 tes_info_idx = has_gs ? MESA_SHADER_GEOMETRY : MESA_SHADER_TESS_EVAL;
2274 }
2275
2276 if (has_tess) {
2277 nir_linked_io_var_info vs2tcs =
2278 nir_assign_linked_io_var_locations(shaders[MESA_SHADER_VERTEX], shaders[MESA_SHADER_TESS_CTRL]);
2279 nir_linked_io_var_info tcs2tes =
2280 nir_assign_linked_io_var_locations(shaders[MESA_SHADER_TESS_CTRL], shaders[MESA_SHADER_TESS_EVAL]);
2281
2282 infos[vs_info_idx].vs.num_linked_outputs = vs2tcs.num_linked_io_vars;
2283 infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_inputs = vs2tcs.num_linked_io_vars;
2284 infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_outputs = tcs2tes.num_linked_io_vars;
2285 infos[MESA_SHADER_TESS_CTRL].tcs.num_linked_patch_outputs = tcs2tes.num_linked_patch_io_vars;
2286 infos[tes_info_idx].tes.num_linked_inputs = tcs2tes.num_linked_io_vars;
2287 infos[tes_info_idx].tes.num_linked_patch_inputs = tcs2tes.num_linked_patch_io_vars;
2288
2289 if (has_gs) {
2290 nir_linked_io_var_info tes2gs =
2291 nir_assign_linked_io_var_locations(shaders[MESA_SHADER_TESS_EVAL], shaders[MESA_SHADER_GEOMETRY]);
2292
2293 infos[tes_info_idx].tes.num_linked_outputs = tes2gs.num_linked_io_vars;
2294 infos[MESA_SHADER_GEOMETRY].gs.num_linked_inputs = tes2gs.num_linked_io_vars;
2295 }
2296 } else if (has_gs) {
2297 nir_linked_io_var_info vs2gs =
2298 nir_assign_linked_io_var_locations(shaders[MESA_SHADER_VERTEX], shaders[MESA_SHADER_GEOMETRY]);
2299
2300 infos[vs_info_idx].vs.num_linked_outputs = vs2gs.num_linked_io_vars;
2301 infos[MESA_SHADER_GEOMETRY].gs.num_linked_inputs = vs2gs.num_linked_io_vars;
2302 }
2303 }
2304
2305 static uint32_t
2306 radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *input_state,
2307 uint32_t attrib_binding)
2308 {
2309 for (uint32_t i = 0; i < input_state->vertexBindingDescriptionCount; i++) {
2310 const VkVertexInputBindingDescription *input_binding =
2311 &input_state->pVertexBindingDescriptions[i];
2312
2313 if (input_binding->binding == attrib_binding)
2314 return input_binding->stride;
2315 }
2316
2317 return 0;
2318 }
2319
2320 static struct radv_pipeline_key
2321 radv_generate_graphics_pipeline_key(struct radv_pipeline *pipeline,
2322 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2323 const struct radv_blend_state *blend,
2324 bool has_view_index)
2325 {
2326 const VkPipelineVertexInputStateCreateInfo *input_state =
2327 pCreateInfo->pVertexInputState;
2328 const VkPipelineVertexInputDivisorStateCreateInfoEXT *divisor_state =
2329 vk_find_struct_const(input_state->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
2330
2331 struct radv_pipeline_key key;
2332 memset(&key, 0, sizeof(key));
2333
2334 if (pCreateInfo->flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)
2335 key.optimisations_disabled = 1;
2336
2337 key.has_multiview_view_index = has_view_index;
2338
2339 uint32_t binding_input_rate = 0;
2340 uint32_t instance_rate_divisors[MAX_VERTEX_ATTRIBS];
2341 for (unsigned i = 0; i < input_state->vertexBindingDescriptionCount; ++i) {
2342 if (input_state->pVertexBindingDescriptions[i].inputRate) {
2343 unsigned binding = input_state->pVertexBindingDescriptions[i].binding;
2344 binding_input_rate |= 1u << binding;
2345 instance_rate_divisors[binding] = 1;
2346 }
2347 }
2348 if (divisor_state) {
2349 for (unsigned i = 0; i < divisor_state->vertexBindingDivisorCount; ++i) {
2350 instance_rate_divisors[divisor_state->pVertexBindingDivisors[i].binding] =
2351 divisor_state->pVertexBindingDivisors[i].divisor;
2352 }
2353 }
2354
2355 for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) {
2356 const VkVertexInputAttributeDescription *desc =
2357 &input_state->pVertexAttributeDescriptions[i];
2358 const struct vk_format_description *format_desc;
2359 unsigned location = desc->location;
2360 unsigned binding = desc->binding;
2361 unsigned num_format, data_format;
2362 int first_non_void;
2363
2364 if (binding_input_rate & (1u << binding)) {
2365 key.instance_rate_inputs |= 1u << location;
2366 key.instance_rate_divisors[location] = instance_rate_divisors[binding];
2367 }
2368
2369 format_desc = vk_format_description(desc->format);
2370 first_non_void = vk_format_get_first_non_void_channel(desc->format);
2371
2372 num_format = radv_translate_buffer_numformat(format_desc, first_non_void);
2373 data_format = radv_translate_buffer_dataformat(format_desc, first_non_void);
2374
2375 key.vertex_attribute_formats[location] = data_format | (num_format << 4);
2376 key.vertex_attribute_bindings[location] = desc->binding;
2377 key.vertex_attribute_offsets[location] = desc->offset;
2378 key.vertex_attribute_strides[location] = radv_get_attrib_stride(input_state, desc->binding);
2379
2380 if (pipeline->device->physical_device->rad_info.chip_class <= GFX8 &&
2381 pipeline->device->physical_device->rad_info.family != CHIP_STONEY) {
2382 VkFormat format = input_state->pVertexAttributeDescriptions[i].format;
2383 uint64_t adjust;
2384 switch(format) {
2385 case VK_FORMAT_A2R10G10B10_SNORM_PACK32:
2386 case VK_FORMAT_A2B10G10R10_SNORM_PACK32:
2387 adjust = RADV_ALPHA_ADJUST_SNORM;
2388 break;
2389 case VK_FORMAT_A2R10G10B10_SSCALED_PACK32:
2390 case VK_FORMAT_A2B10G10R10_SSCALED_PACK32:
2391 adjust = RADV_ALPHA_ADJUST_SSCALED;
2392 break;
2393 case VK_FORMAT_A2R10G10B10_SINT_PACK32:
2394 case VK_FORMAT_A2B10G10R10_SINT_PACK32:
2395 adjust = RADV_ALPHA_ADJUST_SINT;
2396 break;
2397 default:
2398 adjust = 0;
2399 break;
2400 }
2401 key.vertex_alpha_adjust |= adjust << (2 * location);
2402 }
2403
2404 switch (desc->format) {
2405 case VK_FORMAT_B8G8R8A8_UNORM:
2406 case VK_FORMAT_B8G8R8A8_SNORM:
2407 case VK_FORMAT_B8G8R8A8_USCALED:
2408 case VK_FORMAT_B8G8R8A8_SSCALED:
2409 case VK_FORMAT_B8G8R8A8_UINT:
2410 case VK_FORMAT_B8G8R8A8_SINT:
2411 case VK_FORMAT_B8G8R8A8_SRGB:
2412 case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
2413 case VK_FORMAT_A2R10G10B10_SNORM_PACK32:
2414 case VK_FORMAT_A2R10G10B10_USCALED_PACK32:
2415 case VK_FORMAT_A2R10G10B10_SSCALED_PACK32:
2416 case VK_FORMAT_A2R10G10B10_UINT_PACK32:
2417 case VK_FORMAT_A2R10G10B10_SINT_PACK32:
2418 key.vertex_post_shuffle |= 1 << location;
2419 break;
2420 default:
2421 break;
2422 }
2423 }
2424
2425 const VkPipelineTessellationStateCreateInfo *tess =
2426 radv_pipeline_get_tessellation_state(pCreateInfo);
2427 if (tess)
2428 key.tess_input_vertices = tess->patchControlPoints;
2429
2430 const VkPipelineMultisampleStateCreateInfo *vkms =
2431 radv_pipeline_get_multisample_state(pCreateInfo);
2432 if (vkms && vkms->rasterizationSamples > 1) {
2433 uint32_t num_samples = vkms->rasterizationSamples;
2434 uint32_t ps_iter_samples = radv_pipeline_get_ps_iter_samples(pCreateInfo);
2435 key.num_samples = num_samples;
2436 key.log2_ps_iter_samples = util_logbase2(ps_iter_samples);
2437 }
2438
2439 key.col_format = blend->spi_shader_col_format;
2440 if (pipeline->device->physical_device->rad_info.chip_class < GFX8)
2441 radv_pipeline_compute_get_int_clamp(pCreateInfo, &key.is_int8, &key.is_int10);
2442
2443 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10)
2444 key.topology = pCreateInfo->pInputAssemblyState->topology;
2445
2446 return key;
2447 }
2448
2449 static bool
2450 radv_nir_stage_uses_xfb(const nir_shader *nir)
2451 {
2452 nir_xfb_info *xfb = nir_gather_xfb_info(nir, NULL);
2453 bool uses_xfb = !!xfb;
2454
2455 ralloc_free(xfb);
2456 return uses_xfb;
2457 }
2458
2459 static void
2460 radv_fill_shader_keys(struct radv_device *device,
2461 struct radv_shader_variant_key *keys,
2462 const struct radv_pipeline_key *key,
2463 nir_shader **nir)
2464 {
2465 keys[MESA_SHADER_VERTEX].vs.instance_rate_inputs = key->instance_rate_inputs;
2466 keys[MESA_SHADER_VERTEX].vs.alpha_adjust = key->vertex_alpha_adjust;
2467 keys[MESA_SHADER_VERTEX].vs.post_shuffle = key->vertex_post_shuffle;
2468 for (unsigned i = 0; i < MAX_VERTEX_ATTRIBS; ++i) {
2469 keys[MESA_SHADER_VERTEX].vs.instance_rate_divisors[i] = key->instance_rate_divisors[i];
2470 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_formats[i] = key->vertex_attribute_formats[i];
2471 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_bindings[i] = key->vertex_attribute_bindings[i];
2472 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_offsets[i] = key->vertex_attribute_offsets[i];
2473 keys[MESA_SHADER_VERTEX].vs.vertex_attribute_strides[i] = key->vertex_attribute_strides[i];
2474 }
2475 keys[MESA_SHADER_VERTEX].vs.outprim = si_conv_prim_to_gs_out(key->topology);
2476
2477 if (nir[MESA_SHADER_TESS_CTRL]) {
2478 keys[MESA_SHADER_VERTEX].vs_common_out.as_ls = true;
2479 keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = 0;
2480 keys[MESA_SHADER_TESS_CTRL].tcs.input_vertices = key->tess_input_vertices;
2481 keys[MESA_SHADER_TESS_CTRL].tcs.primitive_mode = nir[MESA_SHADER_TESS_EVAL]->info.tess.primitive_mode;
2482
2483 keys[MESA_SHADER_TESS_CTRL].tcs.tes_reads_tess_factors = !!(nir[MESA_SHADER_TESS_EVAL]->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER));
2484 }
2485
2486 if (nir[MESA_SHADER_GEOMETRY]) {
2487 if (nir[MESA_SHADER_TESS_CTRL])
2488 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_es = true;
2489 else
2490 keys[MESA_SHADER_VERTEX].vs_common_out.as_es = true;
2491 }
2492
2493 if (device->physical_device->use_ngg) {
2494 if (nir[MESA_SHADER_TESS_CTRL]) {
2495 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = true;
2496 } else {
2497 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = true;
2498 }
2499
2500 if (nir[MESA_SHADER_TESS_CTRL] &&
2501 nir[MESA_SHADER_GEOMETRY] &&
2502 nir[MESA_SHADER_GEOMETRY]->info.gs.invocations *
2503 nir[MESA_SHADER_GEOMETRY]->info.gs.vertices_out > 256) {
2504 /* Fallback to the legacy path if tessellation is
2505 * enabled with extreme geometry because
2506 * EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it
2507 * might hang.
2508 */
2509 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false;
2510 }
2511
2512 if (!device->physical_device->use_ngg_gs) {
2513 if (nir[MESA_SHADER_GEOMETRY]) {
2514 if (nir[MESA_SHADER_TESS_CTRL])
2515 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false;
2516 else
2517 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = false;
2518 }
2519 }
2520
2521 gl_shader_stage last_xfb_stage = MESA_SHADER_VERTEX;
2522
2523 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
2524 if (nir[i])
2525 last_xfb_stage = i;
2526 }
2527
2528 bool uses_xfb = nir[last_xfb_stage] &&
2529 radv_nir_stage_uses_xfb(nir[last_xfb_stage]);
2530
2531 if (!device->physical_device->use_ngg_streamout && uses_xfb) {
2532 if (nir[MESA_SHADER_TESS_CTRL])
2533 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg = false;
2534 else
2535 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg = false;
2536 }
2537
2538 /* Determine if the pipeline is eligible for the NGG passthrough
2539 * mode. It can't be enabled for geometry shaders, for NGG
2540 * streamout or for vertex shaders that export the primitive ID
2541 * (this is checked later because we don't have the info here.)
2542 */
2543 if (!nir[MESA_SHADER_GEOMETRY] && !uses_xfb) {
2544 if (nir[MESA_SHADER_TESS_CTRL] &&
2545 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg) {
2546 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg_passthrough = true;
2547 } else if (nir[MESA_SHADER_VERTEX] &&
2548 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg) {
2549 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg_passthrough = true;
2550 }
2551 }
2552 }
2553
2554 for(int i = 0; i < MESA_SHADER_STAGES; ++i)
2555 keys[i].has_multiview_view_index = key->has_multiview_view_index;
2556
2557 keys[MESA_SHADER_FRAGMENT].fs.col_format = key->col_format;
2558 keys[MESA_SHADER_FRAGMENT].fs.is_int8 = key->is_int8;
2559 keys[MESA_SHADER_FRAGMENT].fs.is_int10 = key->is_int10;
2560 keys[MESA_SHADER_FRAGMENT].fs.log2_ps_iter_samples = key->log2_ps_iter_samples;
2561 keys[MESA_SHADER_FRAGMENT].fs.num_samples = key->num_samples;
2562
2563 if (nir[MESA_SHADER_COMPUTE]) {
2564 keys[MESA_SHADER_COMPUTE].cs.subgroup_size = key->compute_subgroup_size;
2565 }
2566 }
2567
2568 static uint8_t
2569 radv_get_wave_size(struct radv_device *device,
2570 const VkPipelineShaderStageCreateInfo *pStage,
2571 gl_shader_stage stage,
2572 const struct radv_shader_variant_key *key)
2573 {
2574 if (stage == MESA_SHADER_GEOMETRY && !key->vs_common_out.as_ngg)
2575 return 64;
2576 else if (stage == MESA_SHADER_COMPUTE) {
2577 if (key->cs.subgroup_size) {
2578 /* Return the required subgroup size if specified. */
2579 return key->cs.subgroup_size;
2580 }
2581 return device->physical_device->cs_wave_size;
2582 }
2583 else if (stage == MESA_SHADER_FRAGMENT)
2584 return device->physical_device->ps_wave_size;
2585 else
2586 return device->physical_device->ge_wave_size;
2587 }
2588
2589 static uint8_t
2590 radv_get_ballot_bit_size(struct radv_device *device,
2591 const VkPipelineShaderStageCreateInfo *pStage,
2592 gl_shader_stage stage,
2593 const struct radv_shader_variant_key *key)
2594 {
2595 if (stage == MESA_SHADER_COMPUTE && key->cs.subgroup_size)
2596 return key->cs.subgroup_size;
2597 return 64;
2598 }
2599
2600 static void
2601 radv_fill_shader_info(struct radv_pipeline *pipeline,
2602 const VkPipelineShaderStageCreateInfo **pStages,
2603 struct radv_shader_variant_key *keys,
2604 struct radv_shader_info *infos,
2605 nir_shader **nir)
2606 {
2607 unsigned active_stages = 0;
2608 unsigned filled_stages = 0;
2609
2610 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2611 if (nir[i])
2612 active_stages |= (1 << i);
2613 }
2614
2615 if (nir[MESA_SHADER_FRAGMENT]) {
2616 radv_nir_shader_info_init(&infos[MESA_SHADER_FRAGMENT]);
2617 radv_nir_shader_info_pass(nir[MESA_SHADER_FRAGMENT],
2618 pipeline->layout,
2619 &keys[MESA_SHADER_FRAGMENT],
2620 &infos[MESA_SHADER_FRAGMENT]);
2621
2622 /* TODO: These are no longer used as keys we should refactor this */
2623 keys[MESA_SHADER_VERTEX].vs_common_out.export_prim_id =
2624 infos[MESA_SHADER_FRAGMENT].ps.prim_id_input;
2625 keys[MESA_SHADER_VERTEX].vs_common_out.export_layer_id =
2626 infos[MESA_SHADER_FRAGMENT].ps.layer_input;
2627 keys[MESA_SHADER_VERTEX].vs_common_out.export_clip_dists =
2628 !!infos[MESA_SHADER_FRAGMENT].ps.num_input_clips_culls;
2629 keys[MESA_SHADER_VERTEX].vs_common_out.export_viewport_index =
2630 infos[MESA_SHADER_FRAGMENT].ps.viewport_index_input;
2631 keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_prim_id =
2632 infos[MESA_SHADER_FRAGMENT].ps.prim_id_input;
2633 keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_layer_id =
2634 infos[MESA_SHADER_FRAGMENT].ps.layer_input;
2635 keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_clip_dists =
2636 !!infos[MESA_SHADER_FRAGMENT].ps.num_input_clips_culls;
2637 keys[MESA_SHADER_TESS_EVAL].vs_common_out.export_viewport_index =
2638 infos[MESA_SHADER_FRAGMENT].ps.viewport_index_input;
2639
2640 /* NGG passthrough mode can't be enabled for vertex shaders
2641 * that export the primitive ID.
2642 *
2643 * TODO: I should really refactor the keys logic.
2644 */
2645 if (nir[MESA_SHADER_VERTEX] &&
2646 keys[MESA_SHADER_VERTEX].vs_common_out.export_prim_id) {
2647 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg_passthrough = false;
2648 }
2649
2650 filled_stages |= (1 << MESA_SHADER_FRAGMENT);
2651 }
2652
2653 if (nir[MESA_SHADER_TESS_CTRL]) {
2654 infos[MESA_SHADER_TESS_CTRL].tcs.tes_inputs_read =
2655 nir[MESA_SHADER_TESS_EVAL]->info.inputs_read;
2656 infos[MESA_SHADER_TESS_CTRL].tcs.tes_patch_inputs_read =
2657 nir[MESA_SHADER_TESS_EVAL]->info.patch_inputs_read;
2658 }
2659
2660 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9 &&
2661 nir[MESA_SHADER_TESS_CTRL]) {
2662 struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]};
2663 struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL];
2664 key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs;
2665
2666 radv_nir_shader_info_init(&infos[MESA_SHADER_TESS_CTRL]);
2667
2668 for (int i = 0; i < 2; i++) {
2669 radv_nir_shader_info_pass(combined_nir[i],
2670 pipeline->layout, &key,
2671 &infos[MESA_SHADER_TESS_CTRL]);
2672 }
2673
2674 keys[MESA_SHADER_TESS_EVAL].tes.num_patches =
2675 infos[MESA_SHADER_TESS_CTRL].tcs.num_patches;
2676 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs =
2677 util_last_bit64(infos[MESA_SHADER_TESS_CTRL].tcs.outputs_written);
2678
2679 filled_stages |= (1 << MESA_SHADER_VERTEX);
2680 filled_stages |= (1 << MESA_SHADER_TESS_CTRL);
2681 }
2682
2683 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9 &&
2684 nir[MESA_SHADER_GEOMETRY]) {
2685 gl_shader_stage pre_stage = nir[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
2686 struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]};
2687
2688 radv_nir_shader_info_init(&infos[MESA_SHADER_GEOMETRY]);
2689
2690 for (int i = 0; i < 2; i++) {
2691 radv_nir_shader_info_pass(combined_nir[i],
2692 pipeline->layout,
2693 &keys[pre_stage],
2694 &infos[MESA_SHADER_GEOMETRY]);
2695 }
2696
2697 filled_stages |= (1 << pre_stage);
2698 filled_stages |= (1 << MESA_SHADER_GEOMETRY);
2699 }
2700
2701 active_stages ^= filled_stages;
2702 while (active_stages) {
2703 int i = u_bit_scan(&active_stages);
2704
2705 if (i == MESA_SHADER_TESS_CTRL) {
2706 keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs =
2707 util_last_bit64(infos[MESA_SHADER_VERTEX].vs.ls_outputs_written);
2708 }
2709
2710 if (i == MESA_SHADER_TESS_EVAL) {
2711 keys[MESA_SHADER_TESS_EVAL].tes.num_patches =
2712 infos[MESA_SHADER_TESS_CTRL].tcs.num_patches;
2713 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs =
2714 util_last_bit64(infos[MESA_SHADER_TESS_CTRL].tcs.outputs_written);
2715 }
2716
2717 radv_nir_shader_info_init(&infos[i]);
2718 radv_nir_shader_info_pass(nir[i], pipeline->layout,
2719 &keys[i], &infos[i]);
2720 }
2721
2722 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
2723 if (nir[i]) {
2724 infos[i].wave_size =
2725 radv_get_wave_size(pipeline->device, pStages[i],
2726 i, &keys[i]);
2727 infos[i].ballot_bit_size =
2728 radv_get_ballot_bit_size(pipeline->device,
2729 pStages[i], i,
2730 &keys[i]);
2731 }
2732 }
2733 }
2734
2735 static void
2736 merge_tess_info(struct shader_info *tes_info,
2737 const struct shader_info *tcs_info)
2738 {
2739 /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
2740 *
2741 * "PointMode. Controls generation of points rather than triangles
2742 * or lines. This functionality defaults to disabled, and is
2743 * enabled if either shader stage includes the execution mode.
2744 *
2745 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
2746 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
2747 * and OutputVertices, it says:
2748 *
2749 * "One mode must be set in at least one of the tessellation
2750 * shader stages."
2751 *
2752 * So, the fields can be set in either the TCS or TES, but they must
2753 * agree if set in both. Our backend looks at TES, so bitwise-or in
2754 * the values from the TCS.
2755 */
2756 assert(tcs_info->tess.tcs_vertices_out == 0 ||
2757 tes_info->tess.tcs_vertices_out == 0 ||
2758 tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
2759 tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
2760
2761 assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
2762 tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
2763 tcs_info->tess.spacing == tes_info->tess.spacing);
2764 tes_info->tess.spacing |= tcs_info->tess.spacing;
2765
2766 assert(tcs_info->tess.primitive_mode == 0 ||
2767 tes_info->tess.primitive_mode == 0 ||
2768 tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
2769 tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
2770 tes_info->tess.ccw |= tcs_info->tess.ccw;
2771 tes_info->tess.point_mode |= tcs_info->tess.point_mode;
2772 }
2773
2774 static
2775 void radv_init_feedback(const VkPipelineCreationFeedbackCreateInfoEXT *ext)
2776 {
2777 if (!ext)
2778 return;
2779
2780 if (ext->pPipelineCreationFeedback) {
2781 ext->pPipelineCreationFeedback->flags = 0;
2782 ext->pPipelineCreationFeedback->duration = 0;
2783 }
2784
2785 for (unsigned i = 0; i < ext->pipelineStageCreationFeedbackCount; ++i) {
2786 ext->pPipelineStageCreationFeedbacks[i].flags = 0;
2787 ext->pPipelineStageCreationFeedbacks[i].duration = 0;
2788 }
2789 }
2790
2791 static
2792 void radv_start_feedback(VkPipelineCreationFeedbackEXT *feedback)
2793 {
2794 if (!feedback)
2795 return;
2796
2797 feedback->duration -= radv_get_current_time();
2798 feedback ->flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
2799 }
2800
2801 static
2802 void radv_stop_feedback(VkPipelineCreationFeedbackEXT *feedback, bool cache_hit)
2803 {
2804 if (!feedback)
2805 return;
2806
2807 feedback->duration += radv_get_current_time();
2808 feedback ->flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT |
2809 (cache_hit ? VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT : 0);
2810 }
2811
2812 void radv_create_shaders(struct radv_pipeline *pipeline,
2813 struct radv_device *device,
2814 struct radv_pipeline_cache *cache,
2815 const struct radv_pipeline_key *key,
2816 const VkPipelineShaderStageCreateInfo **pStages,
2817 const VkPipelineCreateFlags flags,
2818 VkPipelineCreationFeedbackEXT *pipeline_feedback,
2819 VkPipelineCreationFeedbackEXT **stage_feedbacks)
2820 {
2821 struct radv_shader_module fs_m = {0};
2822 struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
2823 nir_shader *nir[MESA_SHADER_STAGES] = {0};
2824 struct radv_shader_binary *binaries[MESA_SHADER_STAGES] = {NULL};
2825 struct radv_shader_variant_key keys[MESA_SHADER_STAGES] = {{{{{0}}}}};
2826 struct radv_shader_info infos[MESA_SHADER_STAGES] = {0};
2827 unsigned char hash[20], gs_copy_hash[20];
2828 bool keep_executable_info = (flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR) || device->keep_shader_info;
2829 bool keep_statistic_info = (flags & VK_PIPELINE_CREATE_CAPTURE_STATISTICS_BIT_KHR) || device->keep_shader_info;
2830
2831 radv_start_feedback(pipeline_feedback);
2832
2833 for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
2834 if (pStages[i]) {
2835 modules[i] = radv_shader_module_from_handle(pStages[i]->module);
2836 if (modules[i]->nir)
2837 _mesa_sha1_compute(modules[i]->nir->info.name,
2838 strlen(modules[i]->nir->info.name),
2839 modules[i]->sha1);
2840
2841 pipeline->active_stages |= mesa_to_vk_shader_stage(i);
2842 }
2843 }
2844
2845 radv_hash_shaders(hash, pStages, pipeline->layout, key, get_hash_flags(device));
2846 memcpy(gs_copy_hash, hash, 20);
2847 gs_copy_hash[0] ^= 1;
2848
2849 bool found_in_application_cache = true;
2850 if (modules[MESA_SHADER_GEOMETRY] && !keep_executable_info && !keep_statistic_info) {
2851 struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0};
2852 radv_create_shader_variants_from_pipeline_cache(device, cache, gs_copy_hash, variants,
2853 &found_in_application_cache);
2854 pipeline->gs_copy_shader = variants[MESA_SHADER_GEOMETRY];
2855 }
2856
2857 if (!keep_executable_info && !keep_statistic_info &&
2858 radv_create_shader_variants_from_pipeline_cache(device, cache, hash, pipeline->shaders,
2859 &found_in_application_cache) &&
2860 (!modules[MESA_SHADER_GEOMETRY] || pipeline->gs_copy_shader)) {
2861 radv_stop_feedback(pipeline_feedback, found_in_application_cache);
2862 return;
2863 }
2864
2865 if (!modules[MESA_SHADER_FRAGMENT] && !modules[MESA_SHADER_COMPUTE]) {
2866 nir_builder fs_b;
2867 nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL);
2868 fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "noop_fs");
2869 fs_m.nir = fs_b.shader;
2870 modules[MESA_SHADER_FRAGMENT] = &fs_m;
2871 }
2872
2873 for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
2874 const VkPipelineShaderStageCreateInfo *stage = pStages[i];
2875 unsigned subgroup_size = 64, ballot_bit_size = 64;
2876
2877 if (!modules[i])
2878 continue;
2879
2880 radv_start_feedback(stage_feedbacks[i]);
2881
2882 if (key->compute_subgroup_size) {
2883 /* Only compute shaders currently support requiring a
2884 * specific subgroup size.
2885 */
2886 assert(i == MESA_SHADER_COMPUTE);
2887 subgroup_size = key->compute_subgroup_size;
2888 ballot_bit_size = key->compute_subgroup_size;
2889 }
2890
2891 nir[i] = radv_shader_compile_to_nir(device, modules[i],
2892 stage ? stage->pName : "main", i,
2893 stage ? stage->pSpecializationInfo : NULL,
2894 flags, pipeline->layout,
2895 subgroup_size, ballot_bit_size);
2896
2897 /* We don't want to alter meta shaders IR directly so clone it
2898 * first.
2899 */
2900 if (nir[i]->info.name) {
2901 nir[i] = nir_shader_clone(NULL, nir[i]);
2902 }
2903
2904 radv_stop_feedback(stage_feedbacks[i], false);
2905 }
2906
2907 if (nir[MESA_SHADER_TESS_CTRL]) {
2908 nir_lower_patch_vertices(nir[MESA_SHADER_TESS_EVAL], nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out, NULL);
2909 merge_tess_info(&nir[MESA_SHADER_TESS_EVAL]->info, &nir[MESA_SHADER_TESS_CTRL]->info);
2910 }
2911
2912 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
2913 radv_link_shaders(pipeline, nir);
2914
2915 radv_set_linked_driver_locations(pipeline, nir, infos);
2916
2917 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2918 if (nir[i]) {
2919 /* do this again since information such as outputs_read can be out-of-date */
2920 nir_shader_gather_info(nir[i], nir_shader_get_entrypoint(nir[i]));
2921
2922 if (device->physical_device->use_aco) {
2923 NIR_PASS_V(nir[i], nir_lower_non_uniform_access,
2924 nir_lower_non_uniform_ubo_access |
2925 nir_lower_non_uniform_ssbo_access |
2926 nir_lower_non_uniform_texture_access |
2927 nir_lower_non_uniform_image_access);
2928 } else
2929 NIR_PASS_V(nir[i], nir_lower_bool_to_int32);
2930 }
2931 }
2932
2933 if (nir[MESA_SHADER_FRAGMENT])
2934 radv_lower_fs_io(nir[MESA_SHADER_FRAGMENT]);
2935
2936 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2937 if (radv_can_dump_shader(device, modules[i], false))
2938 nir_print_shader(nir[i], stderr);
2939 }
2940
2941 radv_fill_shader_keys(device, keys, key, nir);
2942
2943 radv_fill_shader_info(pipeline, pStages, keys, infos, nir);
2944
2945 if ((nir[MESA_SHADER_VERTEX] &&
2946 keys[MESA_SHADER_VERTEX].vs_common_out.as_ngg) ||
2947 (nir[MESA_SHADER_TESS_EVAL] &&
2948 keys[MESA_SHADER_TESS_EVAL].vs_common_out.as_ngg)) {
2949 struct gfx10_ngg_info *ngg_info;
2950
2951 if (nir[MESA_SHADER_GEOMETRY])
2952 ngg_info = &infos[MESA_SHADER_GEOMETRY].ngg_info;
2953 else if (nir[MESA_SHADER_TESS_CTRL])
2954 ngg_info = &infos[MESA_SHADER_TESS_EVAL].ngg_info;
2955 else
2956 ngg_info = &infos[MESA_SHADER_VERTEX].ngg_info;
2957
2958 gfx10_get_ngg_info(key, pipeline, nir, infos, ngg_info);
2959 } else if (nir[MESA_SHADER_GEOMETRY]) {
2960 struct gfx9_gs_info *gs_info =
2961 &infos[MESA_SHADER_GEOMETRY].gs_ring_info;
2962
2963 gfx9_get_gs_info(key, pipeline, nir, infos, gs_info);
2964 }
2965
2966 if(modules[MESA_SHADER_GEOMETRY]) {
2967 struct radv_shader_binary *gs_copy_binary = NULL;
2968 if (!pipeline->gs_copy_shader &&
2969 !radv_pipeline_has_ngg(pipeline)) {
2970 struct radv_shader_info info = {};
2971 struct radv_shader_variant_key key = {};
2972
2973 key.has_multiview_view_index =
2974 keys[MESA_SHADER_GEOMETRY].has_multiview_view_index;
2975
2976 radv_nir_shader_info_pass(nir[MESA_SHADER_GEOMETRY],
2977 pipeline->layout, &key,
2978 &info);
2979 info.wave_size = 64; /* Wave32 not supported. */
2980 info.ballot_bit_size = 64;
2981
2982 pipeline->gs_copy_shader = radv_create_gs_copy_shader(
2983 device, nir[MESA_SHADER_GEOMETRY], &info,
2984 &gs_copy_binary, keep_executable_info, keep_statistic_info,
2985 keys[MESA_SHADER_GEOMETRY].has_multiview_view_index);
2986 }
2987
2988 if (!keep_executable_info && !keep_statistic_info && pipeline->gs_copy_shader) {
2989 struct radv_shader_binary *binaries[MESA_SHADER_STAGES] = {NULL};
2990 struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0};
2991
2992 binaries[MESA_SHADER_GEOMETRY] = gs_copy_binary;
2993 variants[MESA_SHADER_GEOMETRY] = pipeline->gs_copy_shader;
2994
2995 radv_pipeline_cache_insert_shaders(device, cache,
2996 gs_copy_hash,
2997 variants,
2998 binaries);
2999 }
3000 free(gs_copy_binary);
3001 }
3002
3003 if (nir[MESA_SHADER_FRAGMENT]) {
3004 if (!pipeline->shaders[MESA_SHADER_FRAGMENT]) {
3005 radv_start_feedback(stage_feedbacks[MESA_SHADER_FRAGMENT]);
3006
3007 pipeline->shaders[MESA_SHADER_FRAGMENT] =
3008 radv_shader_variant_compile(device, modules[MESA_SHADER_FRAGMENT], &nir[MESA_SHADER_FRAGMENT], 1,
3009 pipeline->layout, keys + MESA_SHADER_FRAGMENT,
3010 infos + MESA_SHADER_FRAGMENT,
3011 keep_executable_info, keep_statistic_info,
3012 &binaries[MESA_SHADER_FRAGMENT]);
3013
3014 radv_stop_feedback(stage_feedbacks[MESA_SHADER_FRAGMENT], false);
3015 }
3016 }
3017
3018 if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_TESS_CTRL]) {
3019 if (!pipeline->shaders[MESA_SHADER_TESS_CTRL]) {
3020 struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]};
3021 struct radv_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL];
3022 key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs;
3023
3024 radv_start_feedback(stage_feedbacks[MESA_SHADER_TESS_CTRL]);
3025
3026 pipeline->shaders[MESA_SHADER_TESS_CTRL] = radv_shader_variant_compile(device, modules[MESA_SHADER_TESS_CTRL], combined_nir, 2,
3027 pipeline->layout,
3028 &key, &infos[MESA_SHADER_TESS_CTRL], keep_executable_info,
3029 keep_statistic_info, &binaries[MESA_SHADER_TESS_CTRL]);
3030
3031 radv_stop_feedback(stage_feedbacks[MESA_SHADER_TESS_CTRL], false);
3032 }
3033 modules[MESA_SHADER_VERTEX] = NULL;
3034 keys[MESA_SHADER_TESS_EVAL].tes.num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
3035 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written);
3036 }
3037
3038 if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_GEOMETRY]) {
3039 gl_shader_stage pre_stage = modules[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
3040 if (!pipeline->shaders[MESA_SHADER_GEOMETRY]) {
3041 struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]};
3042
3043 radv_start_feedback(stage_feedbacks[MESA_SHADER_GEOMETRY]);
3044
3045 pipeline->shaders[MESA_SHADER_GEOMETRY] = radv_shader_variant_compile(device, modules[MESA_SHADER_GEOMETRY], combined_nir, 2,
3046 pipeline->layout,
3047 &keys[pre_stage], &infos[MESA_SHADER_GEOMETRY], keep_executable_info,
3048 keep_statistic_info, &binaries[MESA_SHADER_GEOMETRY]);
3049
3050 radv_stop_feedback(stage_feedbacks[MESA_SHADER_GEOMETRY], false);
3051 }
3052 modules[pre_stage] = NULL;
3053 }
3054
3055 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
3056 if(modules[i] && !pipeline->shaders[i]) {
3057 if (i == MESA_SHADER_TESS_CTRL) {
3058 keys[MESA_SHADER_TESS_CTRL].tcs.num_inputs = util_last_bit64(pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.ls_outputs_written);
3059 }
3060 if (i == MESA_SHADER_TESS_EVAL) {
3061 keys[MESA_SHADER_TESS_EVAL].tes.num_patches = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_patches;
3062 keys[MESA_SHADER_TESS_EVAL].tes.tcs_num_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written);
3063 }
3064
3065 radv_start_feedback(stage_feedbacks[i]);
3066
3067 pipeline->shaders[i] = radv_shader_variant_compile(device, modules[i], &nir[i], 1,
3068 pipeline->layout,
3069 keys + i, infos + i, keep_executable_info,
3070 keep_statistic_info, &binaries[i]);
3071
3072 radv_stop_feedback(stage_feedbacks[i], false);
3073 }
3074 }
3075
3076 if (!keep_executable_info && !keep_statistic_info) {
3077 radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline->shaders,
3078 binaries);
3079 }
3080
3081 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
3082 free(binaries[i]);
3083 if (nir[i]) {
3084 ralloc_free(nir[i]);
3085
3086 if (radv_can_dump_shader_stats(device, modules[i]))
3087 radv_shader_dump_stats(device,
3088 pipeline->shaders[i],
3089 i, stderr);
3090 }
3091 }
3092
3093 if (fs_m.nir)
3094 ralloc_free(fs_m.nir);
3095
3096 radv_stop_feedback(pipeline_feedback, false);
3097 }
3098
3099 static uint32_t
3100 radv_pipeline_stage_to_user_data_0(struct radv_pipeline *pipeline,
3101 gl_shader_stage stage, enum chip_class chip_class)
3102 {
3103 bool has_gs = radv_pipeline_has_gs(pipeline);
3104 bool has_tess = radv_pipeline_has_tess(pipeline);
3105 bool has_ngg = radv_pipeline_has_ngg(pipeline);
3106
3107 switch (stage) {
3108 case MESA_SHADER_FRAGMENT:
3109 return R_00B030_SPI_SHADER_USER_DATA_PS_0;
3110 case MESA_SHADER_VERTEX:
3111 if (has_tess) {
3112 if (chip_class >= GFX10) {
3113 return R_00B430_SPI_SHADER_USER_DATA_HS_0;
3114 } else if (chip_class == GFX9) {
3115 return R_00B430_SPI_SHADER_USER_DATA_LS_0;
3116 } else {
3117 return R_00B530_SPI_SHADER_USER_DATA_LS_0;
3118 }
3119
3120 }
3121
3122 if (has_gs) {
3123 if (chip_class >= GFX10) {
3124 return R_00B230_SPI_SHADER_USER_DATA_GS_0;
3125 } else {
3126 return R_00B330_SPI_SHADER_USER_DATA_ES_0;
3127 }
3128 }
3129
3130 if (has_ngg)
3131 return R_00B230_SPI_SHADER_USER_DATA_GS_0;
3132
3133 return R_00B130_SPI_SHADER_USER_DATA_VS_0;
3134 case MESA_SHADER_GEOMETRY:
3135 return chip_class == GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0 :
3136 R_00B230_SPI_SHADER_USER_DATA_GS_0;
3137 case MESA_SHADER_COMPUTE:
3138 return R_00B900_COMPUTE_USER_DATA_0;
3139 case MESA_SHADER_TESS_CTRL:
3140 return chip_class == GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0 :
3141 R_00B430_SPI_SHADER_USER_DATA_HS_0;
3142 case MESA_SHADER_TESS_EVAL:
3143 if (has_gs) {
3144 return chip_class >= GFX10 ? R_00B230_SPI_SHADER_USER_DATA_GS_0 :
3145 R_00B330_SPI_SHADER_USER_DATA_ES_0;
3146 } else if (has_ngg) {
3147 return R_00B230_SPI_SHADER_USER_DATA_GS_0;
3148 } else {
3149 return R_00B130_SPI_SHADER_USER_DATA_VS_0;
3150 }
3151 default:
3152 unreachable("unknown shader");
3153 }
3154 }
3155
3156 struct radv_bin_size_entry {
3157 unsigned bpp;
3158 VkExtent2D extent;
3159 };
3160
3161 static VkExtent2D
3162 radv_gfx9_compute_bin_size(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo)
3163 {
3164 static const struct radv_bin_size_entry color_size_table[][3][9] = {
3165 {
3166 /* One RB / SE */
3167 {
3168 /* One shader engine */
3169 { 0, {128, 128}},
3170 { 1, { 64, 128}},
3171 { 2, { 32, 128}},
3172 { 3, { 16, 128}},
3173 { 17, { 0, 0}},
3174 { UINT_MAX, { 0, 0}},
3175 },
3176 {
3177 /* Two shader engines */
3178 { 0, {128, 128}},
3179 { 2, { 64, 128}},
3180 { 3, { 32, 128}},
3181 { 5, { 16, 128}},
3182 { 17, { 0, 0}},
3183 { UINT_MAX, { 0, 0}},
3184 },
3185 {
3186 /* Four shader engines */
3187 { 0, {128, 128}},
3188 { 3, { 64, 128}},
3189 { 5, { 16, 128}},
3190 { 17, { 0, 0}},
3191 { UINT_MAX, { 0, 0}},
3192 },
3193 },
3194 {
3195 /* Two RB / SE */
3196 {
3197 /* One shader engine */
3198 { 0, {128, 128}},
3199 { 2, { 64, 128}},
3200 { 3, { 32, 128}},
3201 { 5, { 16, 128}},
3202 { 33, { 0, 0}},
3203 { UINT_MAX, { 0, 0}},
3204 },
3205 {
3206 /* Two shader engines */
3207 { 0, {128, 128}},
3208 { 3, { 64, 128}},
3209 { 5, { 32, 128}},
3210 { 9, { 16, 128}},
3211 { 33, { 0, 0}},
3212 { UINT_MAX, { 0, 0}},
3213 },
3214 {
3215 /* Four shader engines */
3216 { 0, {256, 256}},
3217 { 2, {128, 256}},
3218 { 3, {128, 128}},
3219 { 5, { 64, 128}},
3220 { 9, { 16, 128}},
3221 { 33, { 0, 0}},
3222 { UINT_MAX, { 0, 0}},
3223 },
3224 },
3225 {
3226 /* Four RB / SE */
3227 {
3228 /* One shader engine */
3229 { 0, {128, 256}},
3230 { 2, {128, 128}},
3231 { 3, { 64, 128}},
3232 { 5, { 32, 128}},
3233 { 9, { 16, 128}},
3234 { 33, { 0, 0}},
3235 { UINT_MAX, { 0, 0}},
3236 },
3237 {
3238 /* Two shader engines */
3239 { 0, {256, 256}},
3240 { 2, {128, 256}},
3241 { 3, {128, 128}},
3242 { 5, { 64, 128}},
3243 { 9, { 32, 128}},
3244 { 17, { 16, 128}},
3245 { 33, { 0, 0}},
3246 { UINT_MAX, { 0, 0}},
3247 },
3248 {
3249 /* Four shader engines */
3250 { 0, {256, 512}},
3251 { 2, {256, 256}},
3252 { 3, {128, 256}},
3253 { 5, {128, 128}},
3254 { 9, { 64, 128}},
3255 { 17, { 16, 128}},
3256 { 33, { 0, 0}},
3257 { UINT_MAX, { 0, 0}},
3258 },
3259 },
3260 };
3261 static const struct radv_bin_size_entry ds_size_table[][3][9] = {
3262 {
3263 // One RB / SE
3264 {
3265 // One shader engine
3266 { 0, {128, 256}},
3267 { 2, {128, 128}},
3268 { 4, { 64, 128}},
3269 { 7, { 32, 128}},
3270 { 13, { 16, 128}},
3271 { 49, { 0, 0}},
3272 { UINT_MAX, { 0, 0}},
3273 },
3274 {
3275 // Two shader engines
3276 { 0, {256, 256}},
3277 { 2, {128, 256}},
3278 { 4, {128, 128}},
3279 { 7, { 64, 128}},
3280 { 13, { 32, 128}},
3281 { 25, { 16, 128}},
3282 { 49, { 0, 0}},
3283 { UINT_MAX, { 0, 0}},
3284 },
3285 {
3286 // Four shader engines
3287 { 0, {256, 512}},
3288 { 2, {256, 256}},
3289 { 4, {128, 256}},
3290 { 7, {128, 128}},
3291 { 13, { 64, 128}},
3292 { 25, { 16, 128}},
3293 { 49, { 0, 0}},
3294 { UINT_MAX, { 0, 0}},
3295 },
3296 },
3297 {
3298 // Two RB / SE
3299 {
3300 // One shader engine
3301 { 0, {256, 256}},
3302 { 2, {128, 256}},
3303 { 4, {128, 128}},
3304 { 7, { 64, 128}},
3305 { 13, { 32, 128}},
3306 { 25, { 16, 128}},
3307 { 97, { 0, 0}},
3308 { UINT_MAX, { 0, 0}},
3309 },
3310 {
3311 // Two shader engines
3312 { 0, {256, 512}},
3313 { 2, {256, 256}},
3314 { 4, {128, 256}},
3315 { 7, {128, 128}},
3316 { 13, { 64, 128}},
3317 { 25, { 32, 128}},
3318 { 49, { 16, 128}},
3319 { 97, { 0, 0}},
3320 { UINT_MAX, { 0, 0}},
3321 },
3322 {
3323 // Four shader engines
3324 { 0, {512, 512}},
3325 { 2, {256, 512}},
3326 { 4, {256, 256}},
3327 { 7, {128, 256}},
3328 { 13, {128, 128}},
3329 { 25, { 64, 128}},
3330 { 49, { 16, 128}},
3331 { 97, { 0, 0}},
3332 { UINT_MAX, { 0, 0}},
3333 },
3334 },
3335 {
3336 // Four RB / SE
3337 {
3338 // One shader engine
3339 { 0, {256, 512}},
3340 { 2, {256, 256}},
3341 { 4, {128, 256}},
3342 { 7, {128, 128}},
3343 { 13, { 64, 128}},
3344 { 25, { 32, 128}},
3345 { 49, { 16, 128}},
3346 { UINT_MAX, { 0, 0}},
3347 },
3348 {
3349 // Two shader engines
3350 { 0, {512, 512}},
3351 { 2, {256, 512}},
3352 { 4, {256, 256}},
3353 { 7, {128, 256}},
3354 { 13, {128, 128}},
3355 { 25, { 64, 128}},
3356 { 49, { 32, 128}},
3357 { 97, { 16, 128}},
3358 { UINT_MAX, { 0, 0}},
3359 },
3360 {
3361 // Four shader engines
3362 { 0, {512, 512}},
3363 { 4, {256, 512}},
3364 { 7, {256, 256}},
3365 { 13, {128, 256}},
3366 { 25, {128, 128}},
3367 { 49, { 64, 128}},
3368 { 97, { 16, 128}},
3369 { UINT_MAX, { 0, 0}},
3370 },
3371 },
3372 };
3373
3374 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3375 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3376 VkExtent2D extent = {512, 512};
3377
3378 unsigned log_num_rb_per_se =
3379 util_logbase2_ceil(pipeline->device->physical_device->rad_info.num_render_backends /
3380 pipeline->device->physical_device->rad_info.max_se);
3381 unsigned log_num_se = util_logbase2_ceil(pipeline->device->physical_device->rad_info.max_se);
3382
3383 unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_aa_config);
3384 unsigned ps_iter_samples = 1u << G_028804_PS_ITER_SAMPLES(pipeline->graphics.ms.db_eqaa);
3385 unsigned effective_samples = total_samples;
3386 unsigned color_bytes_per_pixel = 0;
3387
3388 const VkPipelineColorBlendStateCreateInfo *vkblend =
3389 radv_pipeline_get_color_blend_state(pCreateInfo);
3390 if (vkblend) {
3391 for (unsigned i = 0; i < subpass->color_count; i++) {
3392 if (!vkblend->pAttachments[i].colorWriteMask)
3393 continue;
3394
3395 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
3396 continue;
3397
3398 VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
3399 color_bytes_per_pixel += vk_format_get_blocksize(format);
3400 }
3401
3402 /* MSAA images typically don't use all samples all the time. */
3403 if (effective_samples >= 2 && ps_iter_samples <= 1)
3404 effective_samples = 2;
3405 color_bytes_per_pixel *= effective_samples;
3406 }
3407
3408 const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se];
3409 while(color_entry[1].bpp <= color_bytes_per_pixel)
3410 ++color_entry;
3411
3412 extent = color_entry->extent;
3413
3414 if (subpass->depth_stencil_attachment) {
3415 struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
3416
3417 /* Coefficients taken from AMDVLK */
3418 unsigned depth_coeff = vk_format_is_depth(attachment->format) ? 5 : 0;
3419 unsigned stencil_coeff = vk_format_is_stencil(attachment->format) ? 1 : 0;
3420 unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples;
3421
3422 const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se];
3423 while(ds_entry[1].bpp <= ds_bytes_per_pixel)
3424 ++ds_entry;
3425
3426 if (ds_entry->extent.width * ds_entry->extent.height < extent.width * extent.height)
3427 extent = ds_entry->extent;
3428 }
3429
3430 return extent;
3431 }
3432
3433 static VkExtent2D
3434 radv_gfx10_compute_bin_size(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo)
3435 {
3436 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3437 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3438 VkExtent2D extent = {512, 512};
3439
3440 const unsigned db_tag_size = 64;
3441 const unsigned db_tag_count = 312;
3442 const unsigned color_tag_size = 1024;
3443 const unsigned color_tag_count = 31;
3444 const unsigned fmask_tag_size = 256;
3445 const unsigned fmask_tag_count = 44;
3446
3447 const unsigned rb_count = pipeline->device->physical_device->rad_info.num_render_backends;
3448 const unsigned pipe_count = MAX2(rb_count, pipeline->device->physical_device->rad_info.num_sdp_interfaces);
3449
3450 const unsigned db_tag_part = (db_tag_count * rb_count / pipe_count) * db_tag_size * pipe_count;
3451 const unsigned color_tag_part = (color_tag_count * rb_count / pipe_count) * color_tag_size * pipe_count;
3452 const unsigned fmask_tag_part = (fmask_tag_count * rb_count / pipe_count) * fmask_tag_size * pipe_count;
3453
3454 const unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_aa_config);
3455 const unsigned samples_log = util_logbase2_ceil(total_samples);
3456
3457 unsigned color_bytes_per_pixel = 0;
3458 unsigned fmask_bytes_per_pixel = 0;
3459
3460 const VkPipelineColorBlendStateCreateInfo *vkblend =
3461 radv_pipeline_get_color_blend_state(pCreateInfo);
3462 if (vkblend) {
3463 for (unsigned i = 0; i < subpass->color_count; i++) {
3464 if (!vkblend->pAttachments[i].colorWriteMask)
3465 continue;
3466
3467 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
3468 continue;
3469
3470 VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
3471 color_bytes_per_pixel += vk_format_get_blocksize(format);
3472
3473 if (total_samples > 1) {
3474 assert(samples_log <= 3);
3475 const unsigned fmask_array[] = {0, 1, 1, 4};
3476 fmask_bytes_per_pixel += fmask_array[samples_log];
3477 }
3478 }
3479
3480 color_bytes_per_pixel *= total_samples;
3481 }
3482 color_bytes_per_pixel = MAX2(color_bytes_per_pixel, 1);
3483
3484 const unsigned color_pixel_count_log = util_logbase2(color_tag_part / color_bytes_per_pixel);
3485 extent.width = 1ull << ((color_pixel_count_log + 1) / 2);
3486 extent.height = 1ull << (color_pixel_count_log / 2);
3487
3488 if (fmask_bytes_per_pixel) {
3489 const unsigned fmask_pixel_count_log = util_logbase2(fmask_tag_part / fmask_bytes_per_pixel);
3490
3491 const VkExtent2D fmask_extent = (VkExtent2D){
3492 .width = 1ull << ((fmask_pixel_count_log + 1) / 2),
3493 .height = 1ull << (color_pixel_count_log / 2)
3494 };
3495
3496 if (fmask_extent.width * fmask_extent.height < extent.width * extent.height)
3497 extent = fmask_extent;
3498 }
3499
3500 if (subpass->depth_stencil_attachment) {
3501 struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
3502
3503 /* Coefficients taken from AMDVLK */
3504 unsigned depth_coeff = vk_format_is_depth(attachment->format) ? 5 : 0;
3505 unsigned stencil_coeff = vk_format_is_stencil(attachment->format) ? 1 : 0;
3506 unsigned db_bytes_per_pixel = (depth_coeff + stencil_coeff) * total_samples;
3507
3508 const unsigned db_pixel_count_log = util_logbase2(db_tag_part / db_bytes_per_pixel);
3509
3510 const VkExtent2D db_extent = (VkExtent2D){
3511 .width = 1ull << ((db_pixel_count_log + 1) / 2),
3512 .height = 1ull << (color_pixel_count_log / 2)
3513 };
3514
3515 if (db_extent.width * db_extent.height < extent.width * extent.height)
3516 extent = db_extent;
3517 }
3518
3519 extent.width = MAX2(extent.width, 128);
3520 extent.height = MAX2(extent.width, 64);
3521
3522 return extent;
3523 }
3524
3525 static void
3526 radv_pipeline_generate_disabled_binning_state(struct radeon_cmdbuf *ctx_cs,
3527 struct radv_pipeline *pipeline,
3528 const VkGraphicsPipelineCreateInfo *pCreateInfo)
3529 {
3530 uint32_t pa_sc_binner_cntl_0 =
3531 S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) |
3532 S_028C44_DISABLE_START_OF_PRIM(1);
3533 uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF);
3534
3535 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
3536 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3537 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3538 const VkPipelineColorBlendStateCreateInfo *vkblend =
3539 radv_pipeline_get_color_blend_state(pCreateInfo);
3540 unsigned min_bytes_per_pixel = 0;
3541
3542 if (vkblend) {
3543 for (unsigned i = 0; i < subpass->color_count; i++) {
3544 if (!vkblend->pAttachments[i].colorWriteMask)
3545 continue;
3546
3547 if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
3548 continue;
3549
3550 VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
3551 unsigned bytes = vk_format_get_blocksize(format);
3552 if (!min_bytes_per_pixel || bytes < min_bytes_per_pixel)
3553 min_bytes_per_pixel = bytes;
3554 }
3555 }
3556
3557 pa_sc_binner_cntl_0 =
3558 S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_NEW_SC) |
3559 S_028C44_BIN_SIZE_X(0) |
3560 S_028C44_BIN_SIZE_Y(0) |
3561 S_028C44_BIN_SIZE_X_EXTEND(2) | /* 128 */
3562 S_028C44_BIN_SIZE_Y_EXTEND(min_bytes_per_pixel <= 4 ? 2 : 1) | /* 128 or 64 */
3563 S_028C44_DISABLE_START_OF_PRIM(1);
3564 }
3565
3566 pipeline->graphics.binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0;
3567 pipeline->graphics.binning.db_dfsm_control = db_dfsm_control;
3568 }
3569
3570 struct radv_binning_settings
3571 radv_get_binning_settings(const struct radv_physical_device *pdev)
3572 {
3573 struct radv_binning_settings settings;
3574 if (pdev->rad_info.has_dedicated_vram) {
3575 if (pdev->rad_info.num_render_backends > 4) {
3576 settings.context_states_per_bin = 1;
3577 settings.persistent_states_per_bin = 1;
3578 } else {
3579 settings.context_states_per_bin = 3;
3580 settings.persistent_states_per_bin = 8;
3581 }
3582 settings.fpovs_per_batch = 63;
3583 } else {
3584 /* The context states are affected by the scissor bug. */
3585 settings.context_states_per_bin = 6;
3586 /* 32 causes hangs for RAVEN. */
3587 settings.persistent_states_per_bin = 16;
3588 settings.fpovs_per_batch = 63;
3589 }
3590
3591 if (pdev->rad_info.has_gfx9_scissor_bug)
3592 settings.context_states_per_bin = 1;
3593
3594 return settings;
3595 }
3596
3597 static void
3598 radv_pipeline_generate_binning_state(struct radeon_cmdbuf *ctx_cs,
3599 struct radv_pipeline *pipeline,
3600 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3601 const struct radv_blend_state *blend)
3602 {
3603 if (pipeline->device->physical_device->rad_info.chip_class < GFX9)
3604 return;
3605
3606 VkExtent2D bin_size;
3607 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
3608 bin_size = radv_gfx10_compute_bin_size(pipeline, pCreateInfo);
3609 } else if (pipeline->device->physical_device->rad_info.chip_class == GFX9) {
3610 bin_size = radv_gfx9_compute_bin_size(pipeline, pCreateInfo);
3611 } else
3612 unreachable("Unhandled generation for binning bin size calculation");
3613
3614 if (pipeline->device->pbb_allowed && bin_size.width && bin_size.height) {
3615 struct radv_binning_settings settings =
3616 radv_get_binning_settings(pipeline->device->physical_device);
3617
3618 bool disable_start_of_prim = true;
3619 uint32_t db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF);
3620
3621 const struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
3622
3623 if (pipeline->device->dfsm_allowed && ps &&
3624 !ps->info.ps.can_discard &&
3625 !ps->info.ps.writes_memory &&
3626 blend->cb_target_enabled_4bit) {
3627 db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_AUTO);
3628 disable_start_of_prim = (blend->blend_enable_4bit & blend->cb_target_enabled_4bit) != 0;
3629 }
3630
3631 const uint32_t pa_sc_binner_cntl_0 =
3632 S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) |
3633 S_028C44_BIN_SIZE_X(bin_size.width == 16) |
3634 S_028C44_BIN_SIZE_Y(bin_size.height == 16) |
3635 S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) |
3636 S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) |
3637 S_028C44_CONTEXT_STATES_PER_BIN(settings.context_states_per_bin - 1) |
3638 S_028C44_PERSISTENT_STATES_PER_BIN(settings.persistent_states_per_bin - 1) |
3639 S_028C44_DISABLE_START_OF_PRIM(disable_start_of_prim) |
3640 S_028C44_FPOVS_PER_BATCH(settings.fpovs_per_batch) |
3641 S_028C44_OPTIMAL_BIN_SELECTION(1);
3642
3643 pipeline->graphics.binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0;
3644 pipeline->graphics.binning.db_dfsm_control = db_dfsm_control;
3645 } else
3646 radv_pipeline_generate_disabled_binning_state(ctx_cs, pipeline, pCreateInfo);
3647 }
3648
3649
3650 static void
3651 radv_pipeline_generate_depth_stencil_state(struct radeon_cmdbuf *ctx_cs,
3652 struct radv_pipeline *pipeline,
3653 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3654 const struct radv_graphics_pipeline_create_info *extra)
3655 {
3656 const VkPipelineDepthStencilStateCreateInfo *vkds = radv_pipeline_get_depth_stencil_state(pCreateInfo);
3657 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
3658 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
3659 struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
3660 struct radv_render_pass_attachment *attachment = NULL;
3661 uint32_t db_depth_control = 0, db_stencil_control = 0;
3662 uint32_t db_render_control = 0, db_render_override2 = 0;
3663 uint32_t db_render_override = 0;
3664
3665 if (subpass->depth_stencil_attachment)
3666 attachment = pass->attachments + subpass->depth_stencil_attachment->attachment;
3667
3668 bool has_depth_attachment = attachment && vk_format_is_depth(attachment->format);
3669 bool has_stencil_attachment = attachment && vk_format_is_stencil(attachment->format);
3670
3671 if (vkds && has_depth_attachment) {
3672 db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) |
3673 S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) |
3674 S_028800_ZFUNC(vkds->depthCompareOp) |
3675 S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0);
3676
3677 /* from amdvlk: For 4xAA and 8xAA need to decompress on flush for better performance */
3678 db_render_override2 |= S_028010_DECOMPRESS_Z_ON_FLUSH(attachment->samples > 2);
3679 }
3680
3681 if (has_stencil_attachment && vkds && vkds->stencilTestEnable) {
3682 db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1);
3683 db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp);
3684 db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp));
3685 db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp));
3686 db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp));
3687
3688 db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp);
3689 db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp));
3690 db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp));
3691 db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp));
3692 }
3693
3694 if (attachment && extra) {
3695 db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
3696 db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
3697
3698 db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->resummarize_enable);
3699 db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->depth_compress_disable);
3700 db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->stencil_compress_disable);
3701 db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear);
3702 db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear);
3703 }
3704
3705 db_render_override |= S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
3706 S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE);
3707
3708 if (!pCreateInfo->pRasterizationState->depthClampEnable &&
3709 ps->info.ps.writes_z) {
3710 /* From VK_EXT_depth_range_unrestricted spec:
3711 *
3712 * "The behavior described in Primitive Clipping still applies.
3713 * If depth clamping is disabled the depth values are still
3714 * clipped to 0 ≤ zc ≤ wc before the viewport transform. If
3715 * depth clamping is enabled the above equation is ignored and
3716 * the depth values are instead clamped to the VkViewport
3717 * minDepth and maxDepth values, which in the case of this
3718 * extension can be outside of the 0.0 to 1.0 range."
3719 */
3720 db_render_override |= S_02800C_DISABLE_VIEWPORT_CLAMP(1);
3721 }
3722
3723 radeon_set_context_reg(ctx_cs, R_028800_DB_DEPTH_CONTROL, db_depth_control);
3724 radeon_set_context_reg(ctx_cs, R_02842C_DB_STENCIL_CONTROL, db_stencil_control);
3725
3726 radeon_set_context_reg(ctx_cs, R_028000_DB_RENDER_CONTROL, db_render_control);
3727 radeon_set_context_reg(ctx_cs, R_02800C_DB_RENDER_OVERRIDE, db_render_override);
3728 radeon_set_context_reg(ctx_cs, R_028010_DB_RENDER_OVERRIDE2, db_render_override2);
3729 }
3730
3731 static void
3732 radv_pipeline_generate_blend_state(struct radeon_cmdbuf *ctx_cs,
3733 struct radv_pipeline *pipeline,
3734 const struct radv_blend_state *blend)
3735 {
3736 radeon_set_context_reg_seq(ctx_cs, R_028780_CB_BLEND0_CONTROL, 8);
3737 radeon_emit_array(ctx_cs, blend->cb_blend_control,
3738 8);
3739 radeon_set_context_reg(ctx_cs, R_028808_CB_COLOR_CONTROL, blend->cb_color_control);
3740 radeon_set_context_reg(ctx_cs, R_028B70_DB_ALPHA_TO_MASK, blend->db_alpha_to_mask);
3741
3742 if (pipeline->device->physical_device->rad_info.has_rbplus) {
3743
3744 radeon_set_context_reg_seq(ctx_cs, R_028760_SX_MRT0_BLEND_OPT, 8);
3745 radeon_emit_array(ctx_cs, blend->sx_mrt_blend_opt, 8);
3746 }
3747
3748 radeon_set_context_reg(ctx_cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format);
3749
3750 radeon_set_context_reg(ctx_cs, R_028238_CB_TARGET_MASK, blend->cb_target_mask);
3751 radeon_set_context_reg(ctx_cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask);
3752
3753 pipeline->graphics.col_format = blend->spi_shader_col_format;
3754 pipeline->graphics.cb_target_mask = blend->cb_target_mask;
3755 }
3756
3757 static const VkConservativeRasterizationModeEXT
3758 radv_get_conservative_raster_mode(const VkPipelineRasterizationStateCreateInfo *pCreateInfo)
3759 {
3760 const VkPipelineRasterizationConservativeStateCreateInfoEXT *conservative_raster =
3761 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT);
3762
3763 if (!conservative_raster)
3764 return VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT;
3765 return conservative_raster->conservativeRasterizationMode;
3766 }
3767
3768 static void
3769 radv_pipeline_generate_raster_state(struct radeon_cmdbuf *ctx_cs,
3770 struct radv_pipeline *pipeline,
3771 const VkGraphicsPipelineCreateInfo *pCreateInfo)
3772 {
3773 const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState;
3774 const VkConservativeRasterizationModeEXT mode =
3775 radv_get_conservative_raster_mode(vkraster);
3776 uint32_t pa_sc_conservative_rast = S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1);
3777 bool depth_clip_disable = vkraster->depthClampEnable;
3778
3779 const VkPipelineRasterizationDepthClipStateCreateInfoEXT *depth_clip_state =
3780 vk_find_struct_const(vkraster->pNext, PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
3781 if (depth_clip_state) {
3782 depth_clip_disable = !depth_clip_state->depthClipEnable;
3783 }
3784
3785 radeon_set_context_reg(ctx_cs, R_028810_PA_CL_CLIP_CNTL,
3786 S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions.
3787 S_028810_ZCLIP_NEAR_DISABLE(depth_clip_disable ? 1 : 0) |
3788 S_028810_ZCLIP_FAR_DISABLE(depth_clip_disable ? 1 : 0) |
3789 S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) |
3790 S_028810_DX_LINEAR_ATTR_CLIP_ENA(1));
3791
3792 radeon_set_context_reg(ctx_cs, R_0286D4_SPI_INTERP_CONTROL_0,
3793 S_0286D4_FLAT_SHADE_ENA(1) |
3794 S_0286D4_PNT_SPRITE_ENA(1) |
3795 S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
3796 S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
3797 S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
3798 S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
3799 S_0286D4_PNT_SPRITE_TOP_1(0)); /* vulkan is top to bottom - 1.0 at bottom */
3800
3801 radeon_set_context_reg(ctx_cs, R_028BE4_PA_SU_VTX_CNTL,
3802 S_028BE4_PIX_CENTER(1) | // TODO verify
3803 S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) |
3804 S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH));
3805
3806 radeon_set_context_reg(ctx_cs, R_028814_PA_SU_SC_MODE_CNTL,
3807 S_028814_FACE(vkraster->frontFace) |
3808 S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) |
3809 S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) |
3810 S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) |
3811 S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) |
3812 S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) |
3813 S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
3814 S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
3815 S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0));
3816
3817 /* Conservative rasterization. */
3818 if (mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) {
3819 struct radv_multisample_state *ms = &pipeline->graphics.ms;
3820
3821 ms->pa_sc_aa_config |= S_028BE0_AA_MASK_CENTROID_DTMN(1);
3822 ms->db_eqaa |= S_028804_ENABLE_POSTZ_OVERRASTERIZATION(1) |
3823 S_028804_OVERRASTERIZATION_AMOUNT(4);
3824
3825 pa_sc_conservative_rast = S_028C4C_PREZ_AA_MASK_ENABLE(1) |
3826 S_028C4C_POSTZ_AA_MASK_ENABLE(1) |
3827 S_028C4C_CENTROID_SAMPLE_OVERRIDE(1);
3828
3829 if (mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT) {
3830 pa_sc_conservative_rast |=
3831 S_028C4C_OVER_RAST_ENABLE(1) |
3832 S_028C4C_OVER_RAST_SAMPLE_SELECT(0) |
3833 S_028C4C_UNDER_RAST_ENABLE(0) |
3834 S_028C4C_UNDER_RAST_SAMPLE_SELECT(1) |
3835 S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(1);
3836 } else {
3837 assert(mode == VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT);
3838 pa_sc_conservative_rast |=
3839 S_028C4C_OVER_RAST_ENABLE(0) |
3840 S_028C4C_OVER_RAST_SAMPLE_SELECT(1) |
3841 S_028C4C_UNDER_RAST_ENABLE(1) |
3842 S_028C4C_UNDER_RAST_SAMPLE_SELECT(0) |
3843 S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(0);
3844 }
3845 }
3846
3847 radeon_set_context_reg(ctx_cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
3848 pa_sc_conservative_rast);
3849 }
3850
3851
3852 static void
3853 radv_pipeline_generate_multisample_state(struct radeon_cmdbuf *ctx_cs,
3854 struct radv_pipeline *pipeline)
3855 {
3856 struct radv_multisample_state *ms = &pipeline->graphics.ms;
3857
3858 radeon_set_context_reg_seq(ctx_cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2);
3859 radeon_emit(ctx_cs, ms->pa_sc_aa_mask[0]);
3860 radeon_emit(ctx_cs, ms->pa_sc_aa_mask[1]);
3861
3862 radeon_set_context_reg(ctx_cs, R_028804_DB_EQAA, ms->db_eqaa);
3863 radeon_set_context_reg(ctx_cs, R_028A48_PA_SC_MODE_CNTL_0, ms->pa_sc_mode_cntl_0);
3864 radeon_set_context_reg(ctx_cs, R_028A4C_PA_SC_MODE_CNTL_1, ms->pa_sc_mode_cntl_1);
3865 radeon_set_context_reg(ctx_cs, R_028BDC_PA_SC_LINE_CNTL, ms->pa_sc_line_cntl);
3866 radeon_set_context_reg(ctx_cs, R_028BE0_PA_SC_AA_CONFIG, ms->pa_sc_aa_config);
3867
3868 /* The exclusion bits can be set to improve rasterization efficiency
3869 * if no sample lies on the pixel boundary (-8 sample offset). It's
3870 * currently always TRUE because the driver doesn't support 16 samples.
3871 */
3872 bool exclusion = pipeline->device->physical_device->rad_info.chip_class >= GFX7;
3873 radeon_set_context_reg(ctx_cs, R_02882C_PA_SU_PRIM_FILTER_CNTL,
3874 S_02882C_XMAX_RIGHT_EXCLUSION(exclusion) |
3875 S_02882C_YMAX_BOTTOM_EXCLUSION(exclusion));
3876
3877 /* GFX9: Flush DFSM when the AA mode changes. */
3878 if (pipeline->device->dfsm_allowed) {
3879 radeon_emit(ctx_cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3880 radeon_emit(ctx_cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0));
3881 }
3882 }
3883
3884 static void
3885 radv_pipeline_generate_vgt_gs_mode(struct radeon_cmdbuf *ctx_cs,
3886 struct radv_pipeline *pipeline)
3887 {
3888 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
3889 const struct radv_shader_variant *vs =
3890 pipeline->shaders[MESA_SHADER_TESS_EVAL] ?
3891 pipeline->shaders[MESA_SHADER_TESS_EVAL] :
3892 pipeline->shaders[MESA_SHADER_VERTEX];
3893 unsigned vgt_primitiveid_en = 0;
3894 uint32_t vgt_gs_mode = 0;
3895
3896 if (radv_pipeline_has_ngg(pipeline))
3897 return;
3898
3899 if (radv_pipeline_has_gs(pipeline)) {
3900 const struct radv_shader_variant *gs =
3901 pipeline->shaders[MESA_SHADER_GEOMETRY];
3902
3903 vgt_gs_mode = ac_vgt_gs_mode(gs->info.gs.vertices_out,
3904 pipeline->device->physical_device->rad_info.chip_class);
3905 } else if (outinfo->export_prim_id || vs->info.uses_prim_id) {
3906 vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A);
3907 vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1);
3908 }
3909
3910 radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, vgt_primitiveid_en);
3911 radeon_set_context_reg(ctx_cs, R_028A40_VGT_GS_MODE, vgt_gs_mode);
3912 }
3913
3914 static void
3915 radv_pipeline_generate_hw_vs(struct radeon_cmdbuf *ctx_cs,
3916 struct radeon_cmdbuf *cs,
3917 struct radv_pipeline *pipeline,
3918 struct radv_shader_variant *shader)
3919 {
3920 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
3921
3922 radeon_set_sh_reg_seq(cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4);
3923 radeon_emit(cs, va >> 8);
3924 radeon_emit(cs, S_00B124_MEM_BASE(va >> 40));
3925 radeon_emit(cs, shader->config.rsrc1);
3926 radeon_emit(cs, shader->config.rsrc2);
3927
3928 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
3929 unsigned clip_dist_mask, cull_dist_mask, total_mask;
3930 clip_dist_mask = outinfo->clip_dist_mask;
3931 cull_dist_mask = outinfo->cull_dist_mask;
3932 total_mask = clip_dist_mask | cull_dist_mask;
3933 bool misc_vec_ena = outinfo->writes_pointsize ||
3934 outinfo->writes_layer ||
3935 outinfo->writes_viewport_index;
3936 unsigned spi_vs_out_config, nparams;
3937
3938 /* VS is required to export at least one param. */
3939 nparams = MAX2(outinfo->param_exports, 1);
3940 spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
3941
3942 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
3943 spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0);
3944 }
3945
3946 radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, spi_vs_out_config);
3947
3948 radeon_set_context_reg(ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
3949 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
3950 S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ?
3951 V_02870C_SPI_SHADER_4COMP :
3952 V_02870C_SPI_SHADER_NONE) |
3953 S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ?
3954 V_02870C_SPI_SHADER_4COMP :
3955 V_02870C_SPI_SHADER_NONE) |
3956 S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ?
3957 V_02870C_SPI_SHADER_4COMP :
3958 V_02870C_SPI_SHADER_NONE));
3959
3960 radeon_set_context_reg(ctx_cs, R_028818_PA_CL_VTE_CNTL,
3961 S_028818_VTX_W0_FMT(1) |
3962 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
3963 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
3964 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
3965
3966 radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
3967 S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
3968 S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
3969 S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
3970 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
3971 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
3972 S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
3973 S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
3974 cull_dist_mask << 8 |
3975 clip_dist_mask);
3976
3977 if (pipeline->device->physical_device->rad_info.chip_class <= GFX8)
3978 radeon_set_context_reg(ctx_cs, R_028AB4_VGT_REUSE_OFF,
3979 outinfo->writes_viewport_index);
3980 }
3981
3982 static void
3983 radv_pipeline_generate_hw_es(struct radeon_cmdbuf *cs,
3984 struct radv_pipeline *pipeline,
3985 struct radv_shader_variant *shader)
3986 {
3987 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
3988
3989 radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4);
3990 radeon_emit(cs, va >> 8);
3991 radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
3992 radeon_emit(cs, shader->config.rsrc1);
3993 radeon_emit(cs, shader->config.rsrc2);
3994 }
3995
3996 static void
3997 radv_pipeline_generate_hw_ls(struct radeon_cmdbuf *cs,
3998 struct radv_pipeline *pipeline,
3999 struct radv_shader_variant *shader,
4000 const struct radv_tessellation_state *tess)
4001 {
4002 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
4003 uint32_t rsrc2 = shader->config.rsrc2;
4004
4005 radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2);
4006 radeon_emit(cs, va >> 8);
4007 radeon_emit(cs, S_00B524_MEM_BASE(va >> 40));
4008
4009 rsrc2 |= S_00B52C_LDS_SIZE(tess->lds_size);
4010 if (pipeline->device->physical_device->rad_info.chip_class == GFX7 &&
4011 pipeline->device->physical_device->rad_info.family != CHIP_HAWAII)
4012 radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, rsrc2);
4013
4014 radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
4015 radeon_emit(cs, shader->config.rsrc1);
4016 radeon_emit(cs, rsrc2);
4017 }
4018
4019 static void
4020 radv_pipeline_generate_hw_ngg(struct radeon_cmdbuf *ctx_cs,
4021 struct radeon_cmdbuf *cs,
4022 struct radv_pipeline *pipeline,
4023 struct radv_shader_variant *shader)
4024 {
4025 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
4026 gl_shader_stage es_type =
4027 radv_pipeline_has_tess(pipeline) ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
4028 struct radv_shader_variant *es =
4029 es_type == MESA_SHADER_TESS_EVAL ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX];
4030 const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info;
4031
4032 radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 2);
4033 radeon_emit(cs, va >> 8);
4034 radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
4035 radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
4036 radeon_emit(cs, shader->config.rsrc1);
4037 radeon_emit(cs, shader->config.rsrc2);
4038
4039 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
4040 unsigned clip_dist_mask, cull_dist_mask, total_mask;
4041 clip_dist_mask = outinfo->clip_dist_mask;
4042 cull_dist_mask = outinfo->cull_dist_mask;
4043 total_mask = clip_dist_mask | cull_dist_mask;
4044 bool misc_vec_ena = outinfo->writes_pointsize ||
4045 outinfo->writes_layer ||
4046 outinfo->writes_viewport_index;
4047 bool es_enable_prim_id = outinfo->export_prim_id ||
4048 (es && es->info.uses_prim_id);
4049 bool break_wave_at_eoi = false;
4050 unsigned ge_cntl;
4051 unsigned nparams;
4052
4053 if (es_type == MESA_SHADER_TESS_EVAL) {
4054 struct radv_shader_variant *gs =
4055 pipeline->shaders[MESA_SHADER_GEOMETRY];
4056
4057 if (es_enable_prim_id || (gs && gs->info.uses_prim_id))
4058 break_wave_at_eoi = true;
4059 }
4060
4061 nparams = MAX2(outinfo->param_exports, 1);
4062 radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG,
4063 S_0286C4_VS_EXPORT_COUNT(nparams - 1) |
4064 S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0));
4065
4066 radeon_set_context_reg(ctx_cs, R_028708_SPI_SHADER_IDX_FORMAT,
4067 S_028708_IDX0_EXPORT_FORMAT(V_028708_SPI_SHADER_1COMP));
4068 radeon_set_context_reg(ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
4069 S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
4070 S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ?
4071 V_02870C_SPI_SHADER_4COMP :
4072 V_02870C_SPI_SHADER_NONE) |
4073 S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ?
4074 V_02870C_SPI_SHADER_4COMP :
4075 V_02870C_SPI_SHADER_NONE) |
4076 S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ?
4077 V_02870C_SPI_SHADER_4COMP :
4078 V_02870C_SPI_SHADER_NONE));
4079
4080 radeon_set_context_reg(ctx_cs, R_028818_PA_CL_VTE_CNTL,
4081 S_028818_VTX_W0_FMT(1) |
4082 S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
4083 S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
4084 S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
4085 radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
4086 S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
4087 S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
4088 S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
4089 S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
4090 S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
4091 S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
4092 S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
4093 cull_dist_mask << 8 |
4094 clip_dist_mask);
4095
4096 radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN,
4097 S_028A84_PRIMITIVEID_EN(es_enable_prim_id) |
4098 S_028A84_NGG_DISABLE_PROVOK_REUSE(outinfo->export_prim_id));
4099
4100 radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
4101 ngg_state->vgt_esgs_ring_itemsize);
4102
4103 /* NGG specific registers. */
4104 struct radv_shader_variant *gs = pipeline->shaders[MESA_SHADER_GEOMETRY];
4105 uint32_t gs_num_invocations = gs ? gs->info.gs.invocations : 1;
4106
4107 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
4108 S_028A44_ES_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) |
4109 S_028A44_GS_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) |
4110 S_028A44_GS_INST_PRIMS_IN_SUBGRP(ngg_state->max_gsprims * gs_num_invocations));
4111 radeon_set_context_reg(ctx_cs, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
4112 S_0287FC_MAX_VERTS_PER_SUBGROUP(ngg_state->max_out_verts));
4113 radeon_set_context_reg(ctx_cs, R_028B4C_GE_NGG_SUBGRP_CNTL,
4114 S_028B4C_PRIM_AMP_FACTOR(ngg_state->prim_amp_factor) |
4115 S_028B4C_THDS_PER_SUBGRP(0)); /* for fast launch */
4116 radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
4117 S_028B90_CNT(gs_num_invocations) |
4118 S_028B90_ENABLE(gs_num_invocations > 1) |
4119 S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(ngg_state->max_vert_out_per_gs_instance));
4120
4121 /* User edge flags are set by the pos exports. If user edge flags are
4122 * not used, we must use hw-generated edge flags and pass them via
4123 * the prim export to prevent drawing lines on internal edges of
4124 * decomposed primitives (such as quads) with polygon mode = lines.
4125 *
4126 * TODO: We should combine hw-generated edge flags with user edge
4127 * flags in the shader.
4128 */
4129 radeon_set_context_reg(ctx_cs, R_028838_PA_CL_NGG_CNTL,
4130 S_028838_INDEX_BUF_EDGE_FLAG_ENA(!radv_pipeline_has_tess(pipeline) &&
4131 !radv_pipeline_has_gs(pipeline)));
4132
4133 ge_cntl = S_03096C_PRIM_GRP_SIZE(ngg_state->max_gsprims) |
4134 S_03096C_VERT_GRP_SIZE(256) | /* 256 = disable vertex grouping */
4135 S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
4136
4137 /* Bug workaround for a possible hang with non-tessellation cases.
4138 * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
4139 *
4140 * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
4141 */
4142 if (pipeline->device->physical_device->rad_info.chip_class == GFX10 &&
4143 !radv_pipeline_has_tess(pipeline) &&
4144 ngg_state->hw_max_esverts != 256) {
4145 ge_cntl &= C_03096C_VERT_GRP_SIZE;
4146
4147 if (ngg_state->hw_max_esverts > 5) {
4148 ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5);
4149 }
4150 }
4151
4152 radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, ge_cntl);
4153 }
4154
4155 static void
4156 radv_pipeline_generate_hw_hs(struct radeon_cmdbuf *cs,
4157 struct radv_pipeline *pipeline,
4158 struct radv_shader_variant *shader,
4159 const struct radv_tessellation_state *tess)
4160 {
4161 uint64_t va = radv_buffer_get_va(shader->bo) + shader->bo_offset;
4162
4163 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) {
4164 unsigned hs_rsrc2 = shader->config.rsrc2;
4165
4166 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4167 hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(tess->lds_size);
4168 } else {
4169 hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(tess->lds_size);
4170 }
4171
4172 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4173 radeon_set_sh_reg_seq(cs, R_00B520_SPI_SHADER_PGM_LO_LS, 2);
4174 radeon_emit(cs, va >> 8);
4175 radeon_emit(cs, S_00B524_MEM_BASE(va >> 40));
4176 } else {
4177 radeon_set_sh_reg_seq(cs, R_00B410_SPI_SHADER_PGM_LO_LS, 2);
4178 radeon_emit(cs, va >> 8);
4179 radeon_emit(cs, S_00B414_MEM_BASE(va >> 40));
4180 }
4181
4182 radeon_set_sh_reg_seq(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, 2);
4183 radeon_emit(cs, shader->config.rsrc1);
4184 radeon_emit(cs, hs_rsrc2);
4185 } else {
4186 radeon_set_sh_reg_seq(cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4);
4187 radeon_emit(cs, va >> 8);
4188 radeon_emit(cs, S_00B424_MEM_BASE(va >> 40));
4189 radeon_emit(cs, shader->config.rsrc1);
4190 radeon_emit(cs, shader->config.rsrc2);
4191 }
4192 }
4193
4194 static void
4195 radv_pipeline_generate_vertex_shader(struct radeon_cmdbuf *ctx_cs,
4196 struct radeon_cmdbuf *cs,
4197 struct radv_pipeline *pipeline,
4198 const struct radv_tessellation_state *tess)
4199 {
4200 struct radv_shader_variant *vs;
4201
4202 /* Skip shaders merged into HS/GS */
4203 vs = pipeline->shaders[MESA_SHADER_VERTEX];
4204 if (!vs)
4205 return;
4206
4207 if (vs->info.vs.as_ls)
4208 radv_pipeline_generate_hw_ls(cs, pipeline, vs, tess);
4209 else if (vs->info.vs.as_es)
4210 radv_pipeline_generate_hw_es(cs, pipeline, vs);
4211 else if (vs->info.is_ngg)
4212 radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, vs);
4213 else
4214 radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, vs);
4215 }
4216
4217 static void
4218 radv_pipeline_generate_tess_shaders(struct radeon_cmdbuf *ctx_cs,
4219 struct radeon_cmdbuf *cs,
4220 struct radv_pipeline *pipeline,
4221 const struct radv_tessellation_state *tess)
4222 {
4223 if (!radv_pipeline_has_tess(pipeline))
4224 return;
4225
4226 struct radv_shader_variant *tes, *tcs;
4227
4228 tcs = pipeline->shaders[MESA_SHADER_TESS_CTRL];
4229 tes = pipeline->shaders[MESA_SHADER_TESS_EVAL];
4230
4231 if (tes) {
4232 if (tes->info.is_ngg) {
4233 radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, tes);
4234 } else if (tes->info.tes.as_es)
4235 radv_pipeline_generate_hw_es(cs, pipeline, tes);
4236 else
4237 radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, tes);
4238 }
4239
4240 radv_pipeline_generate_hw_hs(cs, pipeline, tcs, tess);
4241
4242 radeon_set_context_reg(ctx_cs, R_028B6C_VGT_TF_PARAM,
4243 tess->tf_param);
4244
4245 if (pipeline->device->physical_device->rad_info.chip_class >= GFX7)
4246 radeon_set_context_reg_idx(ctx_cs, R_028B58_VGT_LS_HS_CONFIG, 2,
4247 tess->ls_hs_config);
4248 else
4249 radeon_set_context_reg(ctx_cs, R_028B58_VGT_LS_HS_CONFIG,
4250 tess->ls_hs_config);
4251
4252 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10 &&
4253 !radv_pipeline_has_gs(pipeline) && !radv_pipeline_has_ngg(pipeline)) {
4254 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
4255 S_028A44_ES_VERTS_PER_SUBGRP(250) |
4256 S_028A44_GS_PRIMS_PER_SUBGRP(126) |
4257 S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
4258 }
4259 }
4260
4261 static void
4262 radv_pipeline_generate_hw_gs(struct radeon_cmdbuf *ctx_cs,
4263 struct radeon_cmdbuf *cs,
4264 struct radv_pipeline *pipeline,
4265 struct radv_shader_variant *gs)
4266 {
4267 const struct gfx9_gs_info *gs_state = &gs->info.gs_ring_info;
4268 unsigned gs_max_out_vertices;
4269 uint8_t *num_components;
4270 uint8_t max_stream;
4271 unsigned offset;
4272 uint64_t va;
4273
4274 gs_max_out_vertices = gs->info.gs.vertices_out;
4275 max_stream = gs->info.gs.max_stream;
4276 num_components = gs->info.gs.num_stream_output_components;
4277
4278 offset = num_components[0] * gs_max_out_vertices;
4279
4280 radeon_set_context_reg_seq(ctx_cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3);
4281 radeon_emit(ctx_cs, offset);
4282 if (max_stream >= 1)
4283 offset += num_components[1] * gs_max_out_vertices;
4284 radeon_emit(ctx_cs, offset);
4285 if (max_stream >= 2)
4286 offset += num_components[2] * gs_max_out_vertices;
4287 radeon_emit(ctx_cs, offset);
4288 if (max_stream >= 3)
4289 offset += num_components[3] * gs_max_out_vertices;
4290 radeon_set_context_reg(ctx_cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
4291
4292 radeon_set_context_reg_seq(ctx_cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4);
4293 radeon_emit(ctx_cs, num_components[0]);
4294 radeon_emit(ctx_cs, (max_stream >= 1) ? num_components[1] : 0);
4295 radeon_emit(ctx_cs, (max_stream >= 2) ? num_components[2] : 0);
4296 radeon_emit(ctx_cs, (max_stream >= 3) ? num_components[3] : 0);
4297
4298 uint32_t gs_num_invocations = gs->info.gs.invocations;
4299 radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
4300 S_028B90_CNT(MIN2(gs_num_invocations, 127)) |
4301 S_028B90_ENABLE(gs_num_invocations > 0));
4302
4303 radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
4304 gs_state->vgt_esgs_ring_itemsize);
4305
4306 va = radv_buffer_get_va(gs->bo) + gs->bo_offset;
4307
4308 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9) {
4309 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4310 radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 2);
4311 radeon_emit(cs, va >> 8);
4312 radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
4313 } else {
4314 radeon_set_sh_reg_seq(cs, R_00B210_SPI_SHADER_PGM_LO_ES, 2);
4315 radeon_emit(cs, va >> 8);
4316 radeon_emit(cs, S_00B214_MEM_BASE(va >> 40));
4317 }
4318
4319 radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
4320 radeon_emit(cs, gs->config.rsrc1);
4321 radeon_emit(cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size));
4322
4323 radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, gs_state->vgt_gs_onchip_cntl);
4324 radeon_set_context_reg(ctx_cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, gs_state->vgt_gs_max_prims_per_subgroup);
4325 } else {
4326 radeon_set_sh_reg_seq(cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4);
4327 radeon_emit(cs, va >> 8);
4328 radeon_emit(cs, S_00B224_MEM_BASE(va >> 40));
4329 radeon_emit(cs, gs->config.rsrc1);
4330 radeon_emit(cs, gs->config.rsrc2);
4331 }
4332
4333 radv_pipeline_generate_hw_vs(ctx_cs, cs, pipeline, pipeline->gs_copy_shader);
4334 }
4335
4336 static void
4337 radv_pipeline_generate_geometry_shader(struct radeon_cmdbuf *ctx_cs,
4338 struct radeon_cmdbuf *cs,
4339 struct radv_pipeline *pipeline)
4340 {
4341 struct radv_shader_variant *gs;
4342
4343 gs = pipeline->shaders[MESA_SHADER_GEOMETRY];
4344 if (!gs)
4345 return;
4346
4347 if (gs->info.is_ngg)
4348 radv_pipeline_generate_hw_ngg(ctx_cs, cs, pipeline, gs);
4349 else
4350 radv_pipeline_generate_hw_gs(ctx_cs, cs, pipeline, gs);
4351
4352 radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT,
4353 gs->info.gs.vertices_out);
4354 }
4355
4356 static uint32_t offset_to_ps_input(uint32_t offset, bool flat_shade,
4357 bool explicit, bool float16)
4358 {
4359 uint32_t ps_input_cntl;
4360 if (offset <= AC_EXP_PARAM_OFFSET_31) {
4361 ps_input_cntl = S_028644_OFFSET(offset);
4362 if (flat_shade || explicit)
4363 ps_input_cntl |= S_028644_FLAT_SHADE(1);
4364 if (explicit) {
4365 /* Force parameter cache to be read in passthrough
4366 * mode.
4367 */
4368 ps_input_cntl |= S_028644_OFFSET(1 << 5);
4369 }
4370 if (float16) {
4371 ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
4372 S_028644_ATTR0_VALID(1);
4373 }
4374 } else {
4375 /* The input is a DEFAULT_VAL constant. */
4376 assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
4377 offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
4378 offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
4379 ps_input_cntl = S_028644_OFFSET(0x20) |
4380 S_028644_DEFAULT_VAL(offset);
4381 }
4382 return ps_input_cntl;
4383 }
4384
4385 static void
4386 radv_pipeline_generate_ps_inputs(struct radeon_cmdbuf *ctx_cs,
4387 struct radv_pipeline *pipeline)
4388 {
4389 struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
4390 const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
4391 uint32_t ps_input_cntl[32];
4392
4393 unsigned ps_offset = 0;
4394
4395 if (ps->info.ps.prim_id_input) {
4396 unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID];
4397 if (vs_offset != AC_EXP_PARAM_UNDEFINED) {
4398 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false, false);
4399 ++ps_offset;
4400 }
4401 }
4402
4403 if (ps->info.ps.layer_input ||
4404 ps->info.needs_multiview_view_index) {
4405 unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_LAYER];
4406 if (vs_offset != AC_EXP_PARAM_UNDEFINED)
4407 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false, false);
4408 else
4409 ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true, false, false);
4410 ++ps_offset;
4411 }
4412
4413 if (ps->info.ps.viewport_index_input) {
4414 unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VIEWPORT];
4415 if (vs_offset != AC_EXP_PARAM_UNDEFINED)
4416 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true, false, false);
4417 else
4418 ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true, false, false);
4419 ++ps_offset;
4420 }
4421
4422 if (ps->info.ps.has_pcoord) {
4423 unsigned val;
4424 val = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
4425 ps_input_cntl[ps_offset] = val;
4426 ps_offset++;
4427 }
4428
4429 if (ps->info.ps.num_input_clips_culls) {
4430 unsigned vs_offset;
4431
4432 vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0];
4433 if (vs_offset != AC_EXP_PARAM_UNDEFINED) {
4434 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, false, false, false);
4435 ++ps_offset;
4436 }
4437
4438 vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1];
4439 if (vs_offset != AC_EXP_PARAM_UNDEFINED &&
4440 ps->info.ps.num_input_clips_culls > 4) {
4441 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, false, false, false);
4442 ++ps_offset;
4443 }
4444 }
4445
4446 for (unsigned i = 0; i < 32 && (1u << i) <= ps->info.ps.input_mask; ++i) {
4447 unsigned vs_offset;
4448 bool flat_shade;
4449 bool explicit;
4450 bool float16;
4451 if (!(ps->info.ps.input_mask & (1u << i)))
4452 continue;
4453
4454 vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i];
4455 if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
4456 ps_input_cntl[ps_offset] = S_028644_OFFSET(0x20);
4457 ++ps_offset;
4458 continue;
4459 }
4460
4461 flat_shade = !!(ps->info.ps.flat_shaded_mask & (1u << ps_offset));
4462 explicit = !!(ps->info.ps.explicit_shaded_mask & (1u << ps_offset));
4463 float16 = !!(ps->info.ps.float16_shaded_mask & (1u << ps_offset));
4464
4465 ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, flat_shade, explicit, float16);
4466 ++ps_offset;
4467 }
4468
4469 if (ps_offset) {
4470 radeon_set_context_reg_seq(ctx_cs, R_028644_SPI_PS_INPUT_CNTL_0, ps_offset);
4471 for (unsigned i = 0; i < ps_offset; i++) {
4472 radeon_emit(ctx_cs, ps_input_cntl[i]);
4473 }
4474 }
4475 }
4476
4477 static uint32_t
4478 radv_compute_db_shader_control(const struct radv_device *device,
4479 const struct radv_pipeline *pipeline,
4480 const struct radv_shader_variant *ps)
4481 {
4482 unsigned z_order;
4483 if (ps->info.ps.early_fragment_test || !ps->info.ps.writes_memory)
4484 z_order = V_02880C_EARLY_Z_THEN_LATE_Z;
4485 else
4486 z_order = V_02880C_LATE_Z;
4487
4488 bool disable_rbplus = device->physical_device->rad_info.has_rbplus &&
4489 !device->physical_device->rad_info.rbplus_allowed;
4490
4491 /* It shouldn't be needed to export gl_SampleMask when MSAA is disabled
4492 * but this appears to break Project Cars (DXVK). See
4493 * https://bugs.freedesktop.org/show_bug.cgi?id=109401
4494 */
4495 bool mask_export_enable = ps->info.ps.writes_sample_mask;
4496
4497 return S_02880C_Z_EXPORT_ENABLE(ps->info.ps.writes_z) |
4498 S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.ps.writes_stencil) |
4499 S_02880C_KILL_ENABLE(!!ps->info.ps.can_discard) |
4500 S_02880C_MASK_EXPORT_ENABLE(mask_export_enable) |
4501 S_02880C_Z_ORDER(z_order) |
4502 S_02880C_DEPTH_BEFORE_SHADER(ps->info.ps.early_fragment_test) |
4503 S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(ps->info.ps.post_depth_coverage) |
4504 S_02880C_EXEC_ON_HIER_FAIL(ps->info.ps.writes_memory) |
4505 S_02880C_EXEC_ON_NOOP(ps->info.ps.writes_memory) |
4506 S_02880C_DUAL_QUAD_DISABLE(disable_rbplus);
4507 }
4508
4509 static void
4510 radv_pipeline_generate_fragment_shader(struct radeon_cmdbuf *ctx_cs,
4511 struct radeon_cmdbuf *cs,
4512 struct radv_pipeline *pipeline)
4513 {
4514 struct radv_shader_variant *ps;
4515 uint64_t va;
4516 assert (pipeline->shaders[MESA_SHADER_FRAGMENT]);
4517
4518 ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
4519 va = radv_buffer_get_va(ps->bo) + ps->bo_offset;
4520
4521 radeon_set_sh_reg_seq(cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4);
4522 radeon_emit(cs, va >> 8);
4523 radeon_emit(cs, S_00B024_MEM_BASE(va >> 40));
4524 radeon_emit(cs, ps->config.rsrc1);
4525 radeon_emit(cs, ps->config.rsrc2);
4526
4527 radeon_set_context_reg(ctx_cs, R_02880C_DB_SHADER_CONTROL,
4528 radv_compute_db_shader_control(pipeline->device,
4529 pipeline, ps));
4530
4531 radeon_set_context_reg(ctx_cs, R_0286CC_SPI_PS_INPUT_ENA,
4532 ps->config.spi_ps_input_ena);
4533
4534 radeon_set_context_reg(ctx_cs, R_0286D0_SPI_PS_INPUT_ADDR,
4535 ps->config.spi_ps_input_addr);
4536
4537 radeon_set_context_reg(ctx_cs, R_0286D8_SPI_PS_IN_CONTROL,
4538 S_0286D8_NUM_INTERP(ps->info.ps.num_interp) |
4539 S_0286D8_PS_W32_EN(ps->info.wave_size == 32));
4540
4541 radeon_set_context_reg(ctx_cs, R_0286E0_SPI_BARYC_CNTL, pipeline->graphics.spi_baryc_cntl);
4542
4543 radeon_set_context_reg(ctx_cs, R_028710_SPI_SHADER_Z_FORMAT,
4544 ac_get_spi_shader_z_format(ps->info.ps.writes_z,
4545 ps->info.ps.writes_stencil,
4546 ps->info.ps.writes_sample_mask));
4547
4548 if (pipeline->device->dfsm_allowed) {
4549 /* optimise this? */
4550 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
4551 radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_DFSM) | EVENT_INDEX(0));
4552 }
4553 }
4554
4555 static void
4556 radv_pipeline_generate_vgt_vertex_reuse(struct radeon_cmdbuf *ctx_cs,
4557 struct radv_pipeline *pipeline)
4558 {
4559 if (pipeline->device->physical_device->rad_info.family < CHIP_POLARIS10 ||
4560 pipeline->device->physical_device->rad_info.chip_class >= GFX10)
4561 return;
4562
4563 unsigned vtx_reuse_depth = 30;
4564 if (radv_pipeline_has_tess(pipeline) &&
4565 radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) {
4566 vtx_reuse_depth = 14;
4567 }
4568 radeon_set_context_reg(ctx_cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
4569 S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth));
4570 }
4571
4572 static uint32_t
4573 radv_compute_vgt_shader_stages_en(const struct radv_pipeline *pipeline)
4574 {
4575 uint32_t stages = 0;
4576 if (radv_pipeline_has_tess(pipeline)) {
4577 stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
4578 S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
4579
4580 if (radv_pipeline_has_gs(pipeline))
4581 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
4582 S_028B54_GS_EN(1);
4583 else if (radv_pipeline_has_ngg(pipeline))
4584 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
4585 else
4586 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
4587 } else if (radv_pipeline_has_gs(pipeline)) {
4588 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
4589 S_028B54_GS_EN(1);
4590 } else if (radv_pipeline_has_ngg(pipeline)) {
4591 stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
4592 }
4593
4594 if (radv_pipeline_has_ngg(pipeline)) {
4595 stages |= S_028B54_PRIMGEN_EN(1);
4596 if (pipeline->streamout_shader)
4597 stages |= S_028B54_NGG_WAVE_ID_EN(1);
4598 if (radv_pipeline_has_ngg_passthrough(pipeline))
4599 stages |= S_028B54_PRIMGEN_PASSTHRU_EN(1);
4600 } else if (radv_pipeline_has_gs(pipeline)) {
4601 stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
4602 }
4603
4604 if (pipeline->device->physical_device->rad_info.chip_class >= GFX9)
4605 stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
4606
4607 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10) {
4608 uint8_t hs_size = 64, gs_size = 64, vs_size = 64;
4609
4610 if (radv_pipeline_has_tess(pipeline))
4611 hs_size = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.wave_size;
4612
4613 if (pipeline->shaders[MESA_SHADER_GEOMETRY]) {
4614 vs_size = gs_size = pipeline->shaders[MESA_SHADER_GEOMETRY]->info.wave_size;
4615 if (pipeline->gs_copy_shader)
4616 vs_size = pipeline->gs_copy_shader->info.wave_size;
4617 } else if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
4618 vs_size = pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.wave_size;
4619 else if (pipeline->shaders[MESA_SHADER_VERTEX])
4620 vs_size = pipeline->shaders[MESA_SHADER_VERTEX]->info.wave_size;
4621
4622 if (radv_pipeline_has_ngg(pipeline))
4623 gs_size = vs_size;
4624
4625 /* legacy GS only supports Wave64 */
4626 stages |= S_028B54_HS_W32_EN(hs_size == 32 ? 1 : 0) |
4627 S_028B54_GS_W32_EN(gs_size == 32 ? 1 : 0) |
4628 S_028B54_VS_W32_EN(vs_size == 32 ? 1 : 0);
4629 }
4630
4631 return stages;
4632 }
4633
4634 static uint32_t
4635 radv_compute_cliprect_rule(const VkGraphicsPipelineCreateInfo *pCreateInfo)
4636 {
4637 const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info =
4638 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT);
4639
4640 if (!discard_rectangle_info)
4641 return 0xffff;
4642
4643 unsigned mask = 0;
4644
4645 for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) {
4646 /* Interpret i as a bitmask, and then set the bit in the mask if
4647 * that combination of rectangles in which the pixel is contained
4648 * should pass the cliprect test. */
4649 unsigned relevant_subset = i & ((1u << discard_rectangle_info->discardRectangleCount) - 1);
4650
4651 if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT &&
4652 !relevant_subset)
4653 continue;
4654
4655 if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT &&
4656 relevant_subset)
4657 continue;
4658
4659 mask |= 1u << i;
4660 }
4661
4662 return mask;
4663 }
4664
4665 static void
4666 gfx10_pipeline_generate_ge_cntl(struct radeon_cmdbuf *ctx_cs,
4667 struct radv_pipeline *pipeline,
4668 const struct radv_tessellation_state *tess)
4669 {
4670 bool break_wave_at_eoi = false;
4671 unsigned primgroup_size;
4672 unsigned vertgroup_size = 256; /* 256 = disable vertex grouping */
4673
4674 if (radv_pipeline_has_tess(pipeline)) {
4675 primgroup_size = tess->num_patches; /* must be a multiple of NUM_PATCHES */
4676 } else if (radv_pipeline_has_gs(pipeline)) {
4677 const struct gfx9_gs_info *gs_state =
4678 &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs_ring_info;
4679 unsigned vgt_gs_onchip_cntl = gs_state->vgt_gs_onchip_cntl;
4680 primgroup_size = G_028A44_GS_PRIMS_PER_SUBGRP(vgt_gs_onchip_cntl);
4681 } else {
4682 primgroup_size = 128; /* recommended without a GS and tess */
4683 }
4684
4685 if (radv_pipeline_has_tess(pipeline)) {
4686 if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
4687 radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
4688 break_wave_at_eoi = true;
4689 }
4690
4691 radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL,
4692 S_03096C_PRIM_GRP_SIZE(primgroup_size) |
4693 S_03096C_VERT_GRP_SIZE(vertgroup_size) |
4694 S_03096C_PACKET_TO_ONE_PA(0) /* line stipple */ |
4695 S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi));
4696 }
4697
4698 static void
4699 radv_pipeline_generate_pm4(struct radv_pipeline *pipeline,
4700 const VkGraphicsPipelineCreateInfo *pCreateInfo,
4701 const struct radv_graphics_pipeline_create_info *extra,
4702 const struct radv_blend_state *blend,
4703 const struct radv_tessellation_state *tess,
4704 unsigned prim, unsigned gs_out)
4705 {
4706 struct radeon_cmdbuf *ctx_cs = &pipeline->ctx_cs;
4707 struct radeon_cmdbuf *cs = &pipeline->cs;
4708
4709 cs->max_dw = 64;
4710 ctx_cs->max_dw = 256;
4711 cs->buf = malloc(4 * (cs->max_dw + ctx_cs->max_dw));
4712 ctx_cs->buf = cs->buf + cs->max_dw;
4713
4714 radv_pipeline_generate_depth_stencil_state(ctx_cs, pipeline, pCreateInfo, extra);
4715 radv_pipeline_generate_blend_state(ctx_cs, pipeline, blend);
4716 radv_pipeline_generate_raster_state(ctx_cs, pipeline, pCreateInfo);
4717 radv_pipeline_generate_multisample_state(ctx_cs, pipeline);
4718 radv_pipeline_generate_vgt_gs_mode(ctx_cs, pipeline);
4719 radv_pipeline_generate_vertex_shader(ctx_cs, cs, pipeline, tess);
4720 radv_pipeline_generate_tess_shaders(ctx_cs, cs, pipeline, tess);
4721 radv_pipeline_generate_geometry_shader(ctx_cs, cs, pipeline);
4722 radv_pipeline_generate_fragment_shader(ctx_cs, cs, pipeline);
4723 radv_pipeline_generate_ps_inputs(ctx_cs, pipeline);
4724 radv_pipeline_generate_vgt_vertex_reuse(ctx_cs, pipeline);
4725 radv_pipeline_generate_binning_state(ctx_cs, pipeline, pCreateInfo, blend);
4726
4727 if (pipeline->device->physical_device->rad_info.chip_class >= GFX10 && !radv_pipeline_has_ngg(pipeline))
4728 gfx10_pipeline_generate_ge_cntl(ctx_cs, pipeline, tess);
4729
4730 radeon_set_context_reg(ctx_cs, R_028B54_VGT_SHADER_STAGES_EN, radv_compute_vgt_shader_stages_en(pipeline));
4731
4732 if (pipeline->device->physical_device->rad_info.chip_class >= GFX7) {
4733 radeon_set_uconfig_reg_idx(pipeline->device->physical_device,
4734 cs, R_030908_VGT_PRIMITIVE_TYPE, 1, prim);
4735 } else {
4736 radeon_set_config_reg(cs, R_008958_VGT_PRIMITIVE_TYPE, prim);
4737 }
4738 radeon_set_context_reg(ctx_cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, gs_out);
4739
4740 radeon_set_context_reg(ctx_cs, R_02820C_PA_SC_CLIPRECT_RULE, radv_compute_cliprect_rule(pCreateInfo));
4741
4742 pipeline->ctx_cs_hash = _mesa_hash_data(ctx_cs->buf, ctx_cs->cdw * 4);
4743
4744 assert(ctx_cs->cdw <= ctx_cs->max_dw);
4745 assert(cs->cdw <= cs->max_dw);
4746 }
4747
4748 static struct radv_ia_multi_vgt_param_helpers
4749 radv_compute_ia_multi_vgt_param_helpers(struct radv_pipeline *pipeline,
4750 const struct radv_tessellation_state *tess,
4751 uint32_t prim)
4752 {
4753 struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0};
4754 const struct radv_device *device = pipeline->device;
4755
4756 if (radv_pipeline_has_tess(pipeline))
4757 ia_multi_vgt_param.primgroup_size = tess->num_patches;
4758 else if (radv_pipeline_has_gs(pipeline))
4759 ia_multi_vgt_param.primgroup_size = 64;
4760 else
4761 ia_multi_vgt_param.primgroup_size = 128; /* recommended without a GS */
4762
4763 /* GS requirement. */
4764 ia_multi_vgt_param.partial_es_wave = false;
4765 if (radv_pipeline_has_gs(pipeline) && device->physical_device->rad_info.chip_class <= GFX8)
4766 if (SI_GS_PER_ES / ia_multi_vgt_param.primgroup_size >= pipeline->device->gs_table_depth - 3)
4767 ia_multi_vgt_param.partial_es_wave = true;
4768
4769 ia_multi_vgt_param.wd_switch_on_eop = false;
4770 if (device->physical_device->rad_info.chip_class >= GFX7) {
4771 /* WD_SWITCH_ON_EOP has no effect on GPUs with less than
4772 * 4 shader engines. Set 1 to pass the assertion below.
4773 * The other cases are hardware requirements. */
4774 if (device->physical_device->rad_info.max_se < 4 ||
4775 prim == V_008958_DI_PT_POLYGON ||
4776 prim == V_008958_DI_PT_LINELOOP ||
4777 prim == V_008958_DI_PT_TRIFAN ||
4778 prim == V_008958_DI_PT_TRISTRIP_ADJ ||
4779 (pipeline->graphics.prim_restart_enable &&
4780 (device->physical_device->rad_info.family < CHIP_POLARIS10 ||
4781 (prim != V_008958_DI_PT_POINTLIST &&
4782 prim != V_008958_DI_PT_LINESTRIP))))
4783 ia_multi_vgt_param.wd_switch_on_eop = true;
4784 }
4785
4786 ia_multi_vgt_param.ia_switch_on_eoi = false;
4787 if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input)
4788 ia_multi_vgt_param.ia_switch_on_eoi = true;
4789 if (radv_pipeline_has_gs(pipeline) &&
4790 pipeline->shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)
4791 ia_multi_vgt_param.ia_switch_on_eoi = true;
4792 if (radv_pipeline_has_tess(pipeline)) {
4793 /* SWITCH_ON_EOI must be set if PrimID is used. */
4794 if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
4795 radv_get_shader(pipeline, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
4796 ia_multi_vgt_param.ia_switch_on_eoi = true;
4797 }
4798
4799 ia_multi_vgt_param.partial_vs_wave = false;
4800 if (radv_pipeline_has_tess(pipeline)) {
4801 /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
4802 if ((device->physical_device->rad_info.family == CHIP_TAHITI ||
4803 device->physical_device->rad_info.family == CHIP_PITCAIRN ||
4804 device->physical_device->rad_info.family == CHIP_BONAIRE) &&
4805 radv_pipeline_has_gs(pipeline))
4806 ia_multi_vgt_param.partial_vs_wave = true;
4807 /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
4808 if (device->physical_device->rad_info.has_distributed_tess) {
4809 if (radv_pipeline_has_gs(pipeline)) {
4810 if (device->physical_device->rad_info.chip_class <= GFX8)
4811 ia_multi_vgt_param.partial_es_wave = true;
4812 } else {
4813 ia_multi_vgt_param.partial_vs_wave = true;
4814 }
4815 }
4816 }
4817
4818 /* Workaround for a VGT hang when strip primitive types are used with
4819 * primitive restart.
4820 */
4821 if (pipeline->graphics.prim_restart_enable &&
4822 (prim == V_008958_DI_PT_LINESTRIP ||
4823 prim == V_008958_DI_PT_TRISTRIP ||
4824 prim == V_008958_DI_PT_LINESTRIP_ADJ ||
4825 prim == V_008958_DI_PT_TRISTRIP_ADJ)) {
4826 ia_multi_vgt_param.partial_vs_wave = true;
4827 }
4828
4829 if (radv_pipeline_has_gs(pipeline)) {
4830 /* On these chips there is the possibility of a hang if the
4831 * pipeline uses a GS and partial_vs_wave is not set.
4832 *
4833 * This mostly does not hit 4-SE chips, as those typically set
4834 * ia_switch_on_eoi and then partial_vs_wave is set for pipelines
4835 * with GS due to another workaround.
4836 *
4837 * Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242
4838 */
4839 if (device->physical_device->rad_info.family == CHIP_TONGA ||
4840 device->physical_device->rad_info.family == CHIP_FIJI ||
4841 device->physical_device->rad_info.family == CHIP_POLARIS10 ||
4842 device->physical_device->rad_info.family == CHIP_POLARIS11 ||
4843 device->physical_device->rad_info.family == CHIP_POLARIS12 ||
4844 device->physical_device->rad_info.family == CHIP_VEGAM) {
4845 ia_multi_vgt_param.partial_vs_wave = true;
4846 }
4847 }
4848
4849 ia_multi_vgt_param.base =
4850 S_028AA8_PRIMGROUP_SIZE(ia_multi_vgt_param.primgroup_size - 1) |
4851 /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
4852 S_028AA8_MAX_PRIMGRP_IN_WAVE(device->physical_device->rad_info.chip_class == GFX8 ? 2 : 0) |
4853 S_030960_EN_INST_OPT_BASIC(device->physical_device->rad_info.chip_class >= GFX9) |
4854 S_030960_EN_INST_OPT_ADV(device->physical_device->rad_info.chip_class >= GFX9);
4855
4856 return ia_multi_vgt_param;
4857 }
4858
4859
4860 static void
4861 radv_compute_vertex_input_state(struct radv_pipeline *pipeline,
4862 const VkGraphicsPipelineCreateInfo *pCreateInfo)
4863 {
4864 const VkPipelineVertexInputStateCreateInfo *vi_info =
4865 pCreateInfo->pVertexInputState;
4866 struct radv_vertex_elements_info *velems = &pipeline->vertex_elements;
4867
4868 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
4869 const VkVertexInputAttributeDescription *desc =
4870 &vi_info->pVertexAttributeDescriptions[i];
4871 unsigned loc = desc->location;
4872 const struct vk_format_description *format_desc;
4873
4874 format_desc = vk_format_description(desc->format);
4875
4876 velems->format_size[loc] = format_desc->block.bits / 8;
4877 }
4878
4879 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
4880 const VkVertexInputBindingDescription *desc =
4881 &vi_info->pVertexBindingDescriptions[i];
4882
4883 pipeline->binding_stride[desc->binding] = desc->stride;
4884 pipeline->num_vertex_bindings =
4885 MAX2(pipeline->num_vertex_bindings, desc->binding + 1);
4886 }
4887 }
4888
4889 static struct radv_shader_variant *
4890 radv_pipeline_get_streamout_shader(struct radv_pipeline *pipeline)
4891 {
4892 int i;
4893
4894 for (i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4895 struct radv_shader_variant *shader =
4896 radv_get_shader(pipeline, i);
4897
4898 if (shader && shader->info.so.num_outputs > 0)
4899 return shader;
4900 }
4901
4902 return NULL;
4903 }
4904
4905 static VkResult
4906 radv_secure_compile(struct radv_pipeline *pipeline,
4907 struct radv_device *device,
4908 const struct radv_pipeline_key *key,
4909 const VkPipelineShaderStageCreateInfo **pStages,
4910 const VkPipelineCreateFlags flags,
4911 unsigned num_stages)
4912 {
4913 uint8_t allowed_pipeline_hashes[2][20];
4914 radv_hash_shaders(allowed_pipeline_hashes[0], pStages,
4915 pipeline->layout, key, get_hash_flags(device));
4916
4917 /* Generate the GC copy hash */
4918 memcpy(allowed_pipeline_hashes[1], allowed_pipeline_hashes[0], 20);
4919 allowed_pipeline_hashes[1][0] ^= 1;
4920
4921 uint8_t allowed_hashes[2][20];
4922 for (unsigned i = 0; i < 2; ++i) {
4923 disk_cache_compute_key(device->physical_device->disk_cache,
4924 allowed_pipeline_hashes[i], 20,
4925 allowed_hashes[i]);
4926 }
4927
4928 /* Do an early exit if all cache entries are already there. */
4929 bool may_need_copy_shader = pStages[MESA_SHADER_GEOMETRY];
4930 void *main_entry = disk_cache_get(device->physical_device->disk_cache, allowed_hashes[0], NULL);
4931 void *copy_entry = NULL;
4932 if (may_need_copy_shader)
4933 copy_entry = disk_cache_get(device->physical_device->disk_cache, allowed_hashes[1], NULL);
4934
4935 bool has_all_cache_entries = main_entry && (!may_need_copy_shader || copy_entry);
4936 free(main_entry);
4937 free(copy_entry);
4938
4939 if(has_all_cache_entries)
4940 return VK_SUCCESS;
4941
4942 unsigned process = 0;
4943 uint8_t sc_threads = device->instance->num_sc_threads;
4944 while (true) {
4945 mtx_lock(&device->sc_state->secure_compile_mutex);
4946 if (device->sc_state->secure_compile_thread_counter < sc_threads) {
4947 device->sc_state->secure_compile_thread_counter++;
4948 for (unsigned i = 0; i < sc_threads; i++) {
4949 if (!device->sc_state->secure_compile_processes[i].in_use) {
4950 device->sc_state->secure_compile_processes[i].in_use = true;
4951 process = i;
4952 break;
4953 }
4954 }
4955 mtx_unlock(&device->sc_state->secure_compile_mutex);
4956 break;
4957 }
4958 mtx_unlock(&device->sc_state->secure_compile_mutex);
4959 }
4960
4961 int fd_secure_input = device->sc_state->secure_compile_processes[process].fd_secure_input;
4962 int fd_secure_output = device->sc_state->secure_compile_processes[process].fd_secure_output;
4963
4964 /* Fork a copy of the slim untainted secure compile process */
4965 enum radv_secure_compile_type sc_type = RADV_SC_TYPE_FORK_DEVICE;
4966 write(fd_secure_input, &sc_type, sizeof(sc_type));
4967
4968 if (!radv_sc_read(fd_secure_output, &sc_type, sizeof(sc_type), true) ||
4969 sc_type != RADV_SC_TYPE_INIT_SUCCESS)
4970 return VK_ERROR_DEVICE_LOST;
4971
4972 fd_secure_input = device->sc_state->secure_compile_processes[process].fd_server;
4973 fd_secure_output = device->sc_state->secure_compile_processes[process].fd_client;
4974
4975 /* Write pipeline / shader module out to secure process via pipe */
4976 sc_type = RADV_SC_TYPE_COMPILE_PIPELINE;
4977 write(fd_secure_input, &sc_type, sizeof(sc_type));
4978
4979 /* Write pipeline layout out to secure process */
4980 struct radv_pipeline_layout *layout = pipeline->layout;
4981 write(fd_secure_input, layout, sizeof(struct radv_pipeline_layout));
4982 write(fd_secure_input, &layout->num_sets, sizeof(uint32_t));
4983 for (uint32_t set = 0; set < layout->num_sets; set++) {
4984 write(fd_secure_input, &layout->set[set].layout->layout_size, sizeof(uint32_t));
4985 write(fd_secure_input, layout->set[set].layout, layout->set[set].layout->layout_size);
4986 }
4987
4988 /* Write pipeline key out to secure process */
4989 write(fd_secure_input, key, sizeof(struct radv_pipeline_key));
4990
4991 /* Write pipeline create flags out to secure process */
4992 write(fd_secure_input, &flags, sizeof(VkPipelineCreateFlags));
4993
4994 /* Write stage and shader information out to secure process */
4995 write(fd_secure_input, &num_stages, sizeof(uint32_t));
4996 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
4997 if (!pStages[i])
4998 continue;
4999
5000 /* Write stage out to secure process */
5001 gl_shader_stage stage = ffs(pStages[i]->stage) - 1;
5002 write(fd_secure_input, &stage, sizeof(gl_shader_stage));
5003
5004 /* Write entry point name out to secure process */
5005 size_t name_size = strlen(pStages[i]->pName) + 1;
5006 write(fd_secure_input, &name_size, sizeof(size_t));
5007 write(fd_secure_input, pStages[i]->pName, name_size);
5008
5009 /* Write shader module out to secure process */
5010 struct radv_shader_module *module = radv_shader_module_from_handle(pStages[i]->module);
5011 assert(!module->nir);
5012 size_t module_size = sizeof(struct radv_shader_module) + module->size;
5013 write(fd_secure_input, &module_size, sizeof(size_t));
5014 write(fd_secure_input, module, module_size);
5015
5016 /* Write specialization info out to secure process */
5017 const VkSpecializationInfo *specInfo = pStages[i]->pSpecializationInfo;
5018 bool has_spec_info = specInfo ? true : false;
5019 write(fd_secure_input, &has_spec_info, sizeof(bool));
5020 if (specInfo) {
5021 write(fd_secure_input, &specInfo->dataSize, sizeof(size_t));
5022 write(fd_secure_input, specInfo->pData, specInfo->dataSize);
5023
5024 write(fd_secure_input, &specInfo->mapEntryCount, sizeof(uint32_t));
5025 for (uint32_t j = 0; j < specInfo->mapEntryCount; j++)
5026 write(fd_secure_input, &specInfo->pMapEntries[j], sizeof(VkSpecializationMapEntry));
5027 }
5028 }
5029
5030 /* Read the data returned from the secure process */
5031 while (sc_type != RADV_SC_TYPE_COMPILE_PIPELINE_FINISHED) {
5032 if (!radv_sc_read(fd_secure_output, &sc_type, sizeof(sc_type), true))
5033 return VK_ERROR_DEVICE_LOST;
5034
5035 if (sc_type == RADV_SC_TYPE_WRITE_DISK_CACHE) {
5036 assert(device->physical_device->disk_cache);
5037
5038 uint8_t disk_sha1[20];
5039 if (!radv_sc_read(fd_secure_output, disk_sha1, sizeof(uint8_t) * 20, true))
5040 return VK_ERROR_DEVICE_LOST;
5041
5042 if (memcmp(disk_sha1, allowed_hashes[0], 20) &&
5043 memcmp(disk_sha1, allowed_hashes[1], 20))
5044 return VK_ERROR_DEVICE_LOST;
5045
5046 uint32_t entry_size;
5047 if (!radv_sc_read(fd_secure_output, &entry_size, sizeof(uint32_t), true))
5048 return VK_ERROR_DEVICE_LOST;
5049
5050 struct cache_entry *entry = malloc(entry_size);
5051 if (!radv_sc_read(fd_secure_output, entry, entry_size, true))
5052 return VK_ERROR_DEVICE_LOST;
5053
5054 disk_cache_put(device->physical_device->disk_cache,
5055 disk_sha1, entry, entry_size,
5056 NULL);
5057
5058 free(entry);
5059 } else if (sc_type == RADV_SC_TYPE_READ_DISK_CACHE) {
5060 uint8_t disk_sha1[20];
5061 if (!radv_sc_read(fd_secure_output, disk_sha1, sizeof(uint8_t) * 20, true))
5062 return VK_ERROR_DEVICE_LOST;
5063
5064 if (memcmp(disk_sha1, allowed_hashes[0], 20) &&
5065 memcmp(disk_sha1, allowed_hashes[1], 20))
5066 return VK_ERROR_DEVICE_LOST;
5067
5068 size_t size;
5069 struct cache_entry *entry = (struct cache_entry *)
5070 disk_cache_get(device->physical_device->disk_cache,
5071 disk_sha1, &size);
5072
5073 uint8_t found = entry ? 1 : 0;
5074 write(fd_secure_input, &found, sizeof(uint8_t));
5075
5076 if (found) {
5077 write(fd_secure_input, &size, sizeof(size_t));
5078 write(fd_secure_input, entry, size);
5079 }
5080
5081 free(entry);
5082 }
5083 }
5084
5085 sc_type = RADV_SC_TYPE_DESTROY_DEVICE;
5086 write(fd_secure_input, &sc_type, sizeof(sc_type));
5087
5088 mtx_lock(&device->sc_state->secure_compile_mutex);
5089 device->sc_state->secure_compile_thread_counter--;
5090 device->sc_state->secure_compile_processes[process].in_use = false;
5091 mtx_unlock(&device->sc_state->secure_compile_mutex);
5092
5093 return VK_SUCCESS;
5094 }
5095
5096 static VkResult
5097 radv_pipeline_init(struct radv_pipeline *pipeline,
5098 struct radv_device *device,
5099 struct radv_pipeline_cache *cache,
5100 const VkGraphicsPipelineCreateInfo *pCreateInfo,
5101 const struct radv_graphics_pipeline_create_info *extra)
5102 {
5103 VkResult result;
5104 bool has_view_index = false;
5105
5106 RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
5107 struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
5108 if (subpass->view_mask)
5109 has_view_index = true;
5110
5111 pipeline->device = device;
5112 pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
5113 assert(pipeline->layout);
5114
5115 struct radv_blend_state blend = radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra);
5116
5117 const VkPipelineCreationFeedbackCreateInfoEXT *creation_feedback =
5118 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
5119 radv_init_feedback(creation_feedback);
5120
5121 VkPipelineCreationFeedbackEXT *pipeline_feedback = creation_feedback ? creation_feedback->pPipelineCreationFeedback : NULL;
5122
5123 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
5124 VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 };
5125 for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
5126 gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
5127 pStages[stage] = &pCreateInfo->pStages[i];
5128 if(creation_feedback)
5129 stage_feedbacks[stage] = &creation_feedback->pPipelineStageCreationFeedbacks[i];
5130 }
5131
5132 struct radv_pipeline_key key = radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, &blend, has_view_index);
5133 if (radv_device_use_secure_compile(device->instance)) {
5134 return radv_secure_compile(pipeline, device, &key, pStages, pCreateInfo->flags, pCreateInfo->stageCount);
5135 } else {
5136 radv_create_shaders(pipeline, device, cache, &key, pStages, pCreateInfo->flags, pipeline_feedback, stage_feedbacks);
5137 }
5138
5139 pipeline->graphics.spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
5140 radv_pipeline_init_multisample_state(pipeline, &blend, pCreateInfo);
5141 uint32_t gs_out;
5142 uint32_t prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology);
5143
5144 pipeline->graphics.topology = pCreateInfo->pInputAssemblyState->topology;
5145 pipeline->graphics.can_use_guardband = radv_prim_can_use_guardband(pCreateInfo->pInputAssemblyState->topology);
5146
5147 if (radv_pipeline_has_gs(pipeline)) {
5148 gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim);
5149 pipeline->graphics.can_use_guardband = gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP;
5150 } else if (radv_pipeline_has_tess(pipeline)) {
5151 if (pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode)
5152 gs_out = V_028A6C_OUTPRIM_TYPE_POINTLIST;
5153 else
5154 gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.primitive_mode);
5155 pipeline->graphics.can_use_guardband = gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP;
5156 } else {
5157 gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology);
5158 }
5159 if (extra && extra->use_rectlist) {
5160 prim = V_008958_DI_PT_RECTLIST;
5161 gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP;
5162 pipeline->graphics.can_use_guardband = true;
5163 if (radv_pipeline_has_ngg(pipeline))
5164 gs_out = V_028A6C_VGT_OUT_RECT_V0;
5165 }
5166 pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable;
5167 /* prim vertex count will need TESS changes */
5168 pipeline->graphics.prim_vertex_count = prim_size_table[prim];
5169
5170 radv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
5171
5172 /* Ensure that some export memory is always allocated, for two reasons:
5173 *
5174 * 1) Correctness: The hardware ignores the EXEC mask if no export
5175 * memory is allocated, so KILL and alpha test do not work correctly
5176 * without this.
5177 * 2) Performance: Every shader needs at least a NULL export, even when
5178 * it writes no color/depth output. The NULL export instruction
5179 * stalls without this setting.
5180 *
5181 * Don't add this to CB_SHADER_MASK.
5182 *
5183 * GFX10 supports pixel shaders without exports by setting both the
5184 * color and Z formats to SPI_SHADER_ZERO. The hw will skip export
5185 * instructions if any are present.
5186 */
5187 struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
5188 if ((pipeline->device->physical_device->rad_info.chip_class <= GFX9 ||
5189 ps->info.ps.can_discard) &&
5190 !blend.spi_shader_col_format) {
5191 if (!ps->info.ps.writes_z &&
5192 !ps->info.ps.writes_stencil &&
5193 !ps->info.ps.writes_sample_mask)
5194 blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
5195 }
5196
5197 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5198 if (pipeline->shaders[i]) {
5199 pipeline->need_indirect_descriptor_sets |= pipeline->shaders[i]->info.need_indirect_descriptor_sets;
5200 }
5201 }
5202
5203 if (radv_pipeline_has_gs(pipeline) && !radv_pipeline_has_ngg(pipeline)) {
5204 struct radv_shader_variant *gs =
5205 pipeline->shaders[MESA_SHADER_GEOMETRY];
5206
5207 calculate_gs_ring_sizes(pipeline, &gs->info.gs_ring_info);
5208 }
5209
5210 struct radv_tessellation_state tess = {0};
5211 if (radv_pipeline_has_tess(pipeline)) {
5212 if (prim == V_008958_DI_PT_PATCH) {
5213 pipeline->graphics.prim_vertex_count.min = pCreateInfo->pTessellationState->patchControlPoints;
5214 pipeline->graphics.prim_vertex_count.incr = 1;
5215 }
5216 tess = calculate_tess_state(pipeline, pCreateInfo);
5217 }
5218
5219 pipeline->graphics.ia_multi_vgt_param = radv_compute_ia_multi_vgt_param_helpers(pipeline, &tess, prim);
5220
5221 radv_compute_vertex_input_state(pipeline, pCreateInfo);
5222
5223 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++)
5224 pipeline->user_data_0[i] = radv_pipeline_stage_to_user_data_0(pipeline, i, device->physical_device->rad_info.chip_class);
5225
5226 struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_VERTEX,
5227 AC_UD_VS_BASE_VERTEX_START_INSTANCE);
5228 if (loc->sgpr_idx != -1) {
5229 pipeline->graphics.vtx_base_sgpr = pipeline->user_data_0[MESA_SHADER_VERTEX];
5230 pipeline->graphics.vtx_base_sgpr += loc->sgpr_idx * 4;
5231 if (radv_get_shader(pipeline, MESA_SHADER_VERTEX)->info.vs.needs_draw_id)
5232 pipeline->graphics.vtx_emit_num = 3;
5233 else
5234 pipeline->graphics.vtx_emit_num = 2;
5235 }
5236
5237 /* Find the last vertex shader stage that eventually uses streamout. */
5238 pipeline->streamout_shader = radv_pipeline_get_streamout_shader(pipeline);
5239
5240 result = radv_pipeline_scratch_init(device, pipeline);
5241 radv_pipeline_generate_pm4(pipeline, pCreateInfo, extra, &blend, &tess, prim, gs_out);
5242
5243 return result;
5244 }
5245
5246 VkResult
5247 radv_graphics_pipeline_create(
5248 VkDevice _device,
5249 VkPipelineCache _cache,
5250 const VkGraphicsPipelineCreateInfo *pCreateInfo,
5251 const struct radv_graphics_pipeline_create_info *extra,
5252 const VkAllocationCallbacks *pAllocator,
5253 VkPipeline *pPipeline)
5254 {
5255 RADV_FROM_HANDLE(radv_device, device, _device);
5256 RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
5257 struct radv_pipeline *pipeline;
5258 VkResult result;
5259
5260 pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
5261 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5262 if (pipeline == NULL)
5263 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5264
5265 result = radv_pipeline_init(pipeline, device, cache,
5266 pCreateInfo, extra);
5267 if (result != VK_SUCCESS) {
5268 radv_pipeline_destroy(device, pipeline, pAllocator);
5269 return result;
5270 }
5271
5272 *pPipeline = radv_pipeline_to_handle(pipeline);
5273
5274 return VK_SUCCESS;
5275 }
5276
5277 VkResult radv_CreateGraphicsPipelines(
5278 VkDevice _device,
5279 VkPipelineCache pipelineCache,
5280 uint32_t count,
5281 const VkGraphicsPipelineCreateInfo* pCreateInfos,
5282 const VkAllocationCallbacks* pAllocator,
5283 VkPipeline* pPipelines)
5284 {
5285 VkResult result = VK_SUCCESS;
5286 unsigned i = 0;
5287
5288 for (; i < count; i++) {
5289 VkResult r;
5290 r = radv_graphics_pipeline_create(_device,
5291 pipelineCache,
5292 &pCreateInfos[i],
5293 NULL, pAllocator, &pPipelines[i]);
5294 if (r != VK_SUCCESS) {
5295 result = r;
5296 pPipelines[i] = VK_NULL_HANDLE;
5297 }
5298 }
5299
5300 return result;
5301 }
5302
5303
5304 static void
5305 radv_compute_generate_pm4(struct radv_pipeline *pipeline)
5306 {
5307 struct radv_shader_variant *compute_shader;
5308 struct radv_device *device = pipeline->device;
5309 unsigned threads_per_threadgroup;
5310 unsigned threadgroups_per_cu = 1;
5311 unsigned waves_per_threadgroup;
5312 unsigned max_waves_per_sh = 0;
5313 uint64_t va;
5314
5315 pipeline->cs.max_dw = device->physical_device->rad_info.chip_class >= GFX10 ? 22 : 20;
5316 pipeline->cs.buf = malloc(pipeline->cs.max_dw * 4);
5317
5318 compute_shader = pipeline->shaders[MESA_SHADER_COMPUTE];
5319 va = radv_buffer_get_va(compute_shader->bo) + compute_shader->bo_offset;
5320
5321 radeon_set_sh_reg_seq(&pipeline->cs, R_00B830_COMPUTE_PGM_LO, 2);
5322 radeon_emit(&pipeline->cs, va >> 8);
5323 radeon_emit(&pipeline->cs, S_00B834_DATA(va >> 40));
5324
5325 radeon_set_sh_reg_seq(&pipeline->cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
5326 radeon_emit(&pipeline->cs, compute_shader->config.rsrc1);
5327 radeon_emit(&pipeline->cs, compute_shader->config.rsrc2);
5328 if (device->physical_device->rad_info.chip_class >= GFX10) {
5329 radeon_set_sh_reg(&pipeline->cs, R_00B8A0_COMPUTE_PGM_RSRC3, compute_shader->config.rsrc3);
5330 }
5331
5332 /* Calculate best compute resource limits. */
5333 threads_per_threadgroup = compute_shader->info.cs.block_size[0] *
5334 compute_shader->info.cs.block_size[1] *
5335 compute_shader->info.cs.block_size[2];
5336 waves_per_threadgroup = DIV_ROUND_UP(threads_per_threadgroup,
5337 compute_shader->info.wave_size);
5338
5339 if (device->physical_device->rad_info.chip_class >= GFX10 &&
5340 waves_per_threadgroup == 1)
5341 threadgroups_per_cu = 2;
5342
5343 radeon_set_sh_reg(&pipeline->cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
5344 ac_get_compute_resource_limits(&device->physical_device->rad_info,
5345 waves_per_threadgroup,
5346 max_waves_per_sh,
5347 threadgroups_per_cu));
5348
5349 radeon_set_sh_reg_seq(&pipeline->cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
5350 radeon_emit(&pipeline->cs,
5351 S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[0]));
5352 radeon_emit(&pipeline->cs,
5353 S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[1]));
5354 radeon_emit(&pipeline->cs,
5355 S_00B81C_NUM_THREAD_FULL(compute_shader->info.cs.block_size[2]));
5356
5357 assert(pipeline->cs.cdw <= pipeline->cs.max_dw);
5358 }
5359
5360 static struct radv_pipeline_key
5361 radv_generate_compute_pipeline_key(struct radv_pipeline *pipeline,
5362 const VkComputePipelineCreateInfo *pCreateInfo)
5363 {
5364 const VkPipelineShaderStageCreateInfo *stage = &pCreateInfo->stage;
5365 struct radv_pipeline_key key;
5366 memset(&key, 0, sizeof(key));
5367
5368 if (pCreateInfo->flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)
5369 key.optimisations_disabled = 1;
5370
5371 const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *subgroup_size =
5372 vk_find_struct_const(stage->pNext,
5373 PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT);
5374
5375 if (subgroup_size) {
5376 assert(subgroup_size->requiredSubgroupSize == 32 ||
5377 subgroup_size->requiredSubgroupSize == 64);
5378 key.compute_subgroup_size = subgroup_size->requiredSubgroupSize;
5379 }
5380
5381 return key;
5382 }
5383
5384 static VkResult radv_compute_pipeline_create(
5385 VkDevice _device,
5386 VkPipelineCache _cache,
5387 const VkComputePipelineCreateInfo* pCreateInfo,
5388 const VkAllocationCallbacks* pAllocator,
5389 VkPipeline* pPipeline)
5390 {
5391 RADV_FROM_HANDLE(radv_device, device, _device);
5392 RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
5393 const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
5394 VkPipelineCreationFeedbackEXT *stage_feedbacks[MESA_SHADER_STAGES] = { 0 };
5395 struct radv_pipeline *pipeline;
5396 VkResult result;
5397
5398 pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
5399 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5400 if (pipeline == NULL)
5401 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
5402
5403 pipeline->device = device;
5404 pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
5405 assert(pipeline->layout);
5406
5407 const VkPipelineCreationFeedbackCreateInfoEXT *creation_feedback =
5408 vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
5409 radv_init_feedback(creation_feedback);
5410
5411 VkPipelineCreationFeedbackEXT *pipeline_feedback = creation_feedback ? creation_feedback->pPipelineCreationFeedback : NULL;
5412 if (creation_feedback)
5413 stage_feedbacks[MESA_SHADER_COMPUTE] = &creation_feedback->pPipelineStageCreationFeedbacks[0];
5414
5415 pStages[MESA_SHADER_COMPUTE] = &pCreateInfo->stage;
5416
5417 struct radv_pipeline_key key =
5418 radv_generate_compute_pipeline_key(pipeline, pCreateInfo);
5419
5420 if (radv_device_use_secure_compile(device->instance)) {
5421 result = radv_secure_compile(pipeline, device, &key, pStages, pCreateInfo->flags, 1);
5422 *pPipeline = radv_pipeline_to_handle(pipeline);
5423
5424 return result;
5425 } else {
5426 radv_create_shaders(pipeline, device, cache, &key, pStages, pCreateInfo->flags, pipeline_feedback, stage_feedbacks);
5427 }
5428
5429 pipeline->user_data_0[MESA_SHADER_COMPUTE] = radv_pipeline_stage_to_user_data_0(pipeline, MESA_SHADER_COMPUTE, device->physical_device->rad_info.chip_class);
5430 pipeline->need_indirect_descriptor_sets |= pipeline->shaders[MESA_SHADER_COMPUTE]->info.need_indirect_descriptor_sets;
5431 result = radv_pipeline_scratch_init(device, pipeline);
5432 if (result != VK_SUCCESS) {
5433 radv_pipeline_destroy(device, pipeline, pAllocator);
5434 return result;
5435 }
5436
5437 radv_compute_generate_pm4(pipeline);
5438
5439 *pPipeline = radv_pipeline_to_handle(pipeline);
5440
5441 return VK_SUCCESS;
5442 }
5443
5444 VkResult radv_CreateComputePipelines(
5445 VkDevice _device,
5446 VkPipelineCache pipelineCache,
5447 uint32_t count,
5448 const VkComputePipelineCreateInfo* pCreateInfos,
5449 const VkAllocationCallbacks* pAllocator,
5450 VkPipeline* pPipelines)
5451 {
5452 VkResult result = VK_SUCCESS;
5453
5454 unsigned i = 0;
5455 for (; i < count; i++) {
5456 VkResult r;
5457 r = radv_compute_pipeline_create(_device, pipelineCache,
5458 &pCreateInfos[i],
5459 pAllocator, &pPipelines[i]);
5460 if (r != VK_SUCCESS) {
5461 result = r;
5462 pPipelines[i] = VK_NULL_HANDLE;
5463 }
5464 }
5465
5466 return result;
5467 }
5468
5469
5470 static uint32_t radv_get_executable_count(const struct radv_pipeline *pipeline)
5471 {
5472 uint32_t ret = 0;
5473 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
5474 if (!pipeline->shaders[i])
5475 continue;
5476
5477 if (i == MESA_SHADER_GEOMETRY &&
5478 !radv_pipeline_has_ngg(pipeline)) {
5479 ret += 2u;
5480 } else {
5481 ret += 1u;
5482 }
5483
5484 }
5485 return ret;
5486 }
5487
5488 static struct radv_shader_variant *
5489 radv_get_shader_from_executable_index(const struct radv_pipeline *pipeline, int index, gl_shader_stage *stage)
5490 {
5491 for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
5492 if (!pipeline->shaders[i])
5493 continue;
5494 if (!index) {
5495 *stage = i;
5496 return pipeline->shaders[i];
5497 }
5498
5499 --index;
5500
5501 if (i == MESA_SHADER_GEOMETRY &&
5502 !radv_pipeline_has_ngg(pipeline)) {
5503 if (!index) {
5504 *stage = i;
5505 return pipeline->gs_copy_shader;
5506 }
5507 --index;
5508 }
5509 }
5510
5511 *stage = -1;
5512 return NULL;
5513 }
5514
5515 /* Basically strlcpy (which does not exist on linux) specialized for
5516 * descriptions. */
5517 static void desc_copy(char *desc, const char *src) {
5518 int len = strlen(src);
5519 assert(len < VK_MAX_DESCRIPTION_SIZE);
5520 memcpy(desc, src, len);
5521 memset(desc + len, 0, VK_MAX_DESCRIPTION_SIZE - len);
5522 }
5523
5524 VkResult radv_GetPipelineExecutablePropertiesKHR(
5525 VkDevice _device,
5526 const VkPipelineInfoKHR* pPipelineInfo,
5527 uint32_t* pExecutableCount,
5528 VkPipelineExecutablePropertiesKHR* pProperties)
5529 {
5530 RADV_FROM_HANDLE(radv_pipeline, pipeline, pPipelineInfo->pipeline);
5531 const uint32_t total_count = radv_get_executable_count(pipeline);
5532
5533 if (!pProperties) {
5534 *pExecutableCount = total_count;
5535 return VK_SUCCESS;
5536 }
5537
5538 const uint32_t count = MIN2(total_count, *pExecutableCount);
5539 for (unsigned i = 0, executable_idx = 0;
5540 i < MESA_SHADER_STAGES && executable_idx < count; ++i) {
5541 if (!pipeline->shaders[i])
5542 continue;
5543 pProperties[executable_idx].stages = mesa_to_vk_shader_stage(i);
5544 const char *name = NULL;
5545 const char *description = NULL;
5546 switch(i) {
5547 case MESA_SHADER_VERTEX:
5548 name = "Vertex Shader";
5549 description = "Vulkan Vertex Shader";
5550 break;
5551 case MESA_SHADER_TESS_CTRL:
5552 if (!pipeline->shaders[MESA_SHADER_VERTEX]) {
5553 pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
5554 name = "Vertex + Tessellation Control Shaders";
5555 description = "Combined Vulkan Vertex and Tessellation Control Shaders";
5556 } else {
5557 name = "Tessellation Control Shader";
5558 description = "Vulkan Tessellation Control Shader";
5559 }
5560 break;
5561 case MESA_SHADER_TESS_EVAL:
5562 name = "Tessellation Evaluation Shader";
5563 description = "Vulkan Tessellation Evaluation Shader";
5564 break;
5565 case MESA_SHADER_GEOMETRY:
5566 if (radv_pipeline_has_tess(pipeline) && !pipeline->shaders[MESA_SHADER_TESS_EVAL]) {
5567 pProperties[executable_idx].stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
5568 name = "Tessellation Evaluation + Geometry Shaders";
5569 description = "Combined Vulkan Tessellation Evaluation and Geometry Shaders";
5570 } else if (!radv_pipeline_has_tess(pipeline) && !pipeline->shaders[MESA_SHADER_VERTEX]) {
5571 pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT;
5572 name = "Vertex + Geometry Shader";
5573 description = "Combined Vulkan Vertex and Geometry Shaders";
5574 } else {
5575 name = "Geometry Shader";
5576 description = "Vulkan Geometry Shader";
5577 }
5578 break;
5579 case MESA_SHADER_FRAGMENT:
5580 name = "Fragment Shader";
5581 description = "Vulkan Fragment Shader";
5582 break;
5583 case MESA_SHADER_COMPUTE:
5584 name = "Compute Shader";
5585 description = "Vulkan Compute Shader";
5586 break;
5587 }
5588
5589 pProperties[executable_idx].subgroupSize = pipeline->shaders[i]->info.wave_size;
5590 desc_copy(pProperties[executable_idx].name, name);
5591 desc_copy(pProperties[executable_idx].description, description);
5592
5593 ++executable_idx;
5594 if (i == MESA_SHADER_GEOMETRY &&
5595 !radv_pipeline_has_ngg(pipeline)) {
5596 assert(pipeline->gs_copy_shader);
5597 if (executable_idx >= count)
5598 break;
5599
5600 pProperties[executable_idx].stages = VK_SHADER_STAGE_GEOMETRY_BIT;
5601 pProperties[executable_idx].subgroupSize = 64;
5602 desc_copy(pProperties[executable_idx].name, "GS Copy Shader");
5603 desc_copy(pProperties[executable_idx].description,
5604 "Extra shader stage that loads the GS output ringbuffer into the rasterizer");
5605
5606 ++executable_idx;
5607 }
5608 }
5609
5610 VkResult result = *pExecutableCount < total_count ? VK_INCOMPLETE : VK_SUCCESS;
5611 *pExecutableCount = count;
5612 return result;
5613 }
5614
5615 VkResult radv_GetPipelineExecutableStatisticsKHR(
5616 VkDevice _device,
5617 const VkPipelineExecutableInfoKHR* pExecutableInfo,
5618 uint32_t* pStatisticCount,
5619 VkPipelineExecutableStatisticKHR* pStatistics)
5620 {
5621 RADV_FROM_HANDLE(radv_device, device, _device);
5622 RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
5623 gl_shader_stage stage;
5624 struct radv_shader_variant *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
5625
5626 enum chip_class chip_class = device->physical_device->rad_info.chip_class;
5627 unsigned lds_increment = chip_class >= GFX7 ? 512 : 256;
5628 unsigned max_waves = radv_get_max_waves(device, shader, stage);
5629
5630 VkPipelineExecutableStatisticKHR *s = pStatistics;
5631 VkPipelineExecutableStatisticKHR *end = s + (pStatistics ? *pStatisticCount : 0);
5632 VkResult result = VK_SUCCESS;
5633
5634 if (s < end) {
5635 desc_copy(s->name, "SGPRs");
5636 desc_copy(s->description, "Number of SGPR registers allocated per subgroup");
5637 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5638 s->value.u64 = shader->config.num_sgprs;
5639 }
5640 ++s;
5641
5642 if (s < end) {
5643 desc_copy(s->name, "VGPRs");
5644 desc_copy(s->description, "Number of VGPR registers allocated per subgroup");
5645 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5646 s->value.u64 = shader->config.num_vgprs;
5647 }
5648 ++s;
5649
5650 if (s < end) {
5651 desc_copy(s->name, "Spilled SGPRs");
5652 desc_copy(s->description, "Number of SGPR registers spilled per subgroup");
5653 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5654 s->value.u64 = shader->config.spilled_sgprs;
5655 }
5656 ++s;
5657
5658 if (s < end) {
5659 desc_copy(s->name, "Spilled VGPRs");
5660 desc_copy(s->description, "Number of VGPR registers spilled per subgroup");
5661 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5662 s->value.u64 = shader->config.spilled_vgprs;
5663 }
5664 ++s;
5665
5666 if (s < end) {
5667 desc_copy(s->name, "PrivMem VGPRs");
5668 desc_copy(s->description, "Number of VGPRs stored in private memory per subgroup");
5669 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5670 s->value.u64 = shader->info.private_mem_vgprs;
5671 }
5672 ++s;
5673
5674 if (s < end) {
5675 desc_copy(s->name, "Code size");
5676 desc_copy(s->description, "Code size in bytes");
5677 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5678 s->value.u64 = shader->exec_size;
5679 }
5680 ++s;
5681
5682 if (s < end) {
5683 desc_copy(s->name, "LDS size");
5684 desc_copy(s->description, "LDS size in bytes per workgroup");
5685 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5686 s->value.u64 = shader->config.lds_size * lds_increment;
5687 }
5688 ++s;
5689
5690 if (s < end) {
5691 desc_copy(s->name, "Scratch size");
5692 desc_copy(s->description, "Private memory in bytes per subgroup");
5693 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5694 s->value.u64 = shader->config.scratch_bytes_per_wave;
5695 }
5696 ++s;
5697
5698 if (s < end) {
5699 desc_copy(s->name, "Subgroups per SIMD");
5700 desc_copy(s->description, "The maximum number of subgroups in flight on a SIMD unit");
5701 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5702 s->value.u64 = max_waves;
5703 }
5704 ++s;
5705
5706 if (shader->statistics) {
5707 for (unsigned i = 0; i < shader->statistics->count; i++) {
5708 struct radv_compiler_statistic_info *info = &shader->statistics->infos[i];
5709 uint32_t value = shader->statistics->values[i];
5710 if (s < end) {
5711 desc_copy(s->name, info->name);
5712 desc_copy(s->description, info->desc);
5713 s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
5714 s->value.u64 = value;
5715 }
5716 ++s;
5717 }
5718 }
5719
5720 if (!pStatistics)
5721 *pStatisticCount = s - pStatistics;
5722 else if (s > end) {
5723 *pStatisticCount = end - pStatistics;
5724 result = VK_INCOMPLETE;
5725 } else {
5726 *pStatisticCount = s - pStatistics;
5727 }
5728
5729 return result;
5730 }
5731
5732 static VkResult radv_copy_representation(void *data, size_t *data_size, const char *src)
5733 {
5734 size_t total_size = strlen(src) + 1;
5735
5736 if (!data) {
5737 *data_size = total_size;
5738 return VK_SUCCESS;
5739 }
5740
5741 size_t size = MIN2(total_size, *data_size);
5742
5743 memcpy(data, src, size);
5744 if (size)
5745 *((char*)data + size - 1) = 0;
5746 return size < total_size ? VK_INCOMPLETE : VK_SUCCESS;
5747 }
5748
5749 VkResult radv_GetPipelineExecutableInternalRepresentationsKHR(
5750 VkDevice device,
5751 const VkPipelineExecutableInfoKHR* pExecutableInfo,
5752 uint32_t* pInternalRepresentationCount,
5753 VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
5754 {
5755 RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline);
5756 gl_shader_stage stage;
5757 struct radv_shader_variant *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage);
5758
5759 VkPipelineExecutableInternalRepresentationKHR *p = pInternalRepresentations;
5760 VkPipelineExecutableInternalRepresentationKHR *end = p + (pInternalRepresentations ? *pInternalRepresentationCount : 0);
5761 VkResult result = VK_SUCCESS;
5762 /* optimized NIR */
5763 if (p < end) {
5764 p->isText = true;
5765 desc_copy(p->name, "NIR Shader(s)");
5766 desc_copy(p->description, "The optimized NIR shader(s)");
5767 if (radv_copy_representation(p->pData, &p->dataSize, shader->nir_string) != VK_SUCCESS)
5768 result = VK_INCOMPLETE;
5769 }
5770 ++p;
5771
5772 /* backend IR */
5773 if (p < end) {
5774 p->isText = true;
5775 if (pipeline->device->physical_device->use_aco) {
5776 desc_copy(p->name, "ACO IR");
5777 desc_copy(p->description, "The ACO IR after some optimizations");
5778 } else {
5779 desc_copy(p->name, "LLVM IR");
5780 desc_copy(p->description, "The LLVM IR after some optimizations");
5781 }
5782 if (radv_copy_representation(p->pData, &p->dataSize, shader->ir_string) != VK_SUCCESS)
5783 result = VK_INCOMPLETE;
5784 }
5785 ++p;
5786
5787 /* Disassembler */
5788 if (p < end) {
5789 p->isText = true;
5790 desc_copy(p->name, "Assembly");
5791 desc_copy(p->description, "Final Assembly");
5792 if (radv_copy_representation(p->pData, &p->dataSize, shader->disasm_string) != VK_SUCCESS)
5793 result = VK_INCOMPLETE;
5794 }
5795 ++p;
5796
5797 if (!pInternalRepresentations)
5798 *pInternalRepresentationCount = p - pInternalRepresentations;
5799 else if(p > end) {
5800 result = VK_INCOMPLETE;
5801 *pInternalRepresentationCount = end - pInternalRepresentations;
5802 } else {
5803 *pInternalRepresentationCount = p - pInternalRepresentations;
5804 }
5805
5806 return result;
5807 }