9bb8f1ddf2ee642c033af6dd63f44ceffbf6f613
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "nir/nir.h"
34 #include "nir/nir_builder.h"
35 #include "spirv/nir_spirv.h"
36
37 #include <llvm-c/Core.h>
38 #include <llvm-c/TargetMachine.h>
39
40 #include "sid.h"
41 #include "gfx9d.h"
42 #include "r600d_common.h"
43 #include "ac_binary.h"
44 #include "ac_llvm_util.h"
45 #include "ac_nir_to_llvm.h"
46 #include "vk_format.h"
47 #include "util/debug.h"
48 #include "ac_exp_param.h"
49
50 static const struct nir_shader_compiler_options nir_options = {
51 .vertex_id_zero_based = true,
52 .lower_scmp = true,
53 .lower_flrp32 = true,
54 .lower_fsat = true,
55 .lower_fdiv = true,
56 .lower_sub = true,
57 .lower_pack_snorm_2x16 = true,
58 .lower_pack_snorm_4x8 = true,
59 .lower_pack_unorm_2x16 = true,
60 .lower_pack_unorm_4x8 = true,
61 .lower_unpack_snorm_2x16 = true,
62 .lower_unpack_snorm_4x8 = true,
63 .lower_unpack_unorm_2x16 = true,
64 .lower_unpack_unorm_4x8 = true,
65 .lower_extract_byte = true,
66 .lower_extract_word = true,
67 .max_unroll_iterations = 32
68 };
69
70 VkResult radv_CreateShaderModule(
71 VkDevice _device,
72 const VkShaderModuleCreateInfo* pCreateInfo,
73 const VkAllocationCallbacks* pAllocator,
74 VkShaderModule* pShaderModule)
75 {
76 RADV_FROM_HANDLE(radv_device, device, _device);
77 struct radv_shader_module *module;
78
79 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
80 assert(pCreateInfo->flags == 0);
81
82 module = vk_alloc2(&device->alloc, pAllocator,
83 sizeof(*module) + pCreateInfo->codeSize, 8,
84 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
85 if (module == NULL)
86 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
87
88 module->nir = NULL;
89 module->size = pCreateInfo->codeSize;
90 memcpy(module->data, pCreateInfo->pCode, module->size);
91
92 _mesa_sha1_compute(module->data, module->size, module->sha1);
93
94 *pShaderModule = radv_shader_module_to_handle(module);
95
96 return VK_SUCCESS;
97 }
98
99 void radv_DestroyShaderModule(
100 VkDevice _device,
101 VkShaderModule _module,
102 const VkAllocationCallbacks* pAllocator)
103 {
104 RADV_FROM_HANDLE(radv_device, device, _device);
105 RADV_FROM_HANDLE(radv_shader_module, module, _module);
106
107 if (!module)
108 return;
109
110 vk_free2(&device->alloc, pAllocator, module);
111 }
112
113 static void
114 radv_optimize_nir(struct nir_shader *shader)
115 {
116 bool progress;
117
118 do {
119 progress = false;
120
121 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
122 NIR_PASS_V(shader, nir_lower_64bit_pack);
123 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
124 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
125
126 NIR_PASS(progress, shader, nir_copy_prop);
127 NIR_PASS(progress, shader, nir_opt_remove_phis);
128 NIR_PASS(progress, shader, nir_opt_dce);
129 if (nir_opt_trivial_continues(shader)) {
130 progress = true;
131 NIR_PASS(progress, shader, nir_copy_prop);
132 NIR_PASS(progress, shader, nir_opt_dce);
133 }
134 NIR_PASS(progress, shader, nir_opt_if);
135 NIR_PASS(progress, shader, nir_opt_dead_cf);
136 NIR_PASS(progress, shader, nir_opt_cse);
137 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
138 NIR_PASS(progress, shader, nir_opt_algebraic);
139 NIR_PASS(progress, shader, nir_opt_constant_folding);
140 NIR_PASS(progress, shader, nir_opt_undef);
141 NIR_PASS(progress, shader, nir_opt_conditional_discard);
142 if (shader->options->max_unroll_iterations) {
143 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
144 }
145 } while (progress);
146 }
147
148 nir_shader *
149 radv_shader_compile_to_nir(struct radv_device *device,
150 struct radv_shader_module *module,
151 const char *entrypoint_name,
152 gl_shader_stage stage,
153 const VkSpecializationInfo *spec_info,
154 bool dump)
155 {
156 if (strcmp(entrypoint_name, "main") != 0) {
157 radv_finishme("Multiple shaders per module not really supported");
158 }
159
160 nir_shader *nir;
161 nir_function *entry_point;
162 if (module->nir) {
163 /* Some things such as our meta clear/blit code will give us a NIR
164 * shader directly. In that case, we just ignore the SPIR-V entirely
165 * and just use the NIR shader */
166 nir = module->nir;
167 nir->options = &nir_options;
168 nir_validate_shader(nir);
169
170 assert(exec_list_length(&nir->functions) == 1);
171 struct exec_node *node = exec_list_get_head(&nir->functions);
172 entry_point = exec_node_data(nir_function, node, node);
173 } else {
174 uint32_t *spirv = (uint32_t *) module->data;
175 assert(module->size % 4 == 0);
176
177 if (device->debug_flags & RADV_DEBUG_DUMP_SPIRV)
178 radv_print_spirv(module, stderr);
179
180 uint32_t num_spec_entries = 0;
181 struct nir_spirv_specialization *spec_entries = NULL;
182 if (spec_info && spec_info->mapEntryCount > 0) {
183 num_spec_entries = spec_info->mapEntryCount;
184 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
185 for (uint32_t i = 0; i < num_spec_entries; i++) {
186 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
187 const void *data = spec_info->pData + entry.offset;
188 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
189
190 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
191 if (spec_info->dataSize == 8)
192 spec_entries[i].data64 = *(const uint64_t *)data;
193 else
194 spec_entries[i].data32 = *(const uint32_t *)data;
195 }
196 }
197 const struct nir_spirv_supported_extensions supported_ext = {
198 .draw_parameters = true,
199 .float64 = true,
200 .image_read_without_format = true,
201 .image_write_without_format = true,
202 .tessellation = true,
203 .int64 = true,
204 .multiview = true,
205 .variable_pointers = true,
206 };
207 entry_point = spirv_to_nir(spirv, module->size / 4,
208 spec_entries, num_spec_entries,
209 stage, entrypoint_name, &supported_ext, &nir_options);
210 nir = entry_point->shader;
211 assert(nir->stage == stage);
212 nir_validate_shader(nir);
213
214 free(spec_entries);
215
216 /* We have to lower away local constant initializers right before we
217 * inline functions. That way they get properly initialized at the top
218 * of the function and not at the top of its caller.
219 */
220 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
221 NIR_PASS_V(nir, nir_lower_returns);
222 NIR_PASS_V(nir, nir_inline_functions);
223
224 /* Pick off the single entrypoint that we want */
225 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
226 if (func != entry_point)
227 exec_node_remove(&func->node);
228 }
229 assert(exec_list_length(&nir->functions) == 1);
230 entry_point->name = ralloc_strdup(entry_point, "main");
231
232 NIR_PASS_V(nir, nir_remove_dead_variables,
233 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
234
235 /* Now that we've deleted all but the main function, we can go ahead and
236 * lower the rest of the constant initializers.
237 */
238 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
239 NIR_PASS_V(nir, nir_lower_system_values);
240 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
241 }
242
243 /* Vulkan uses the separate-shader linking model */
244 nir->info.separate_shader = true;
245
246 nir_shader_gather_info(nir, entry_point->impl);
247
248 nir_variable_mode indirect_mask = 0;
249 indirect_mask |= nir_var_shader_in;
250 indirect_mask |= nir_var_local;
251
252 nir_lower_indirect_derefs(nir, indirect_mask);
253
254 static const nir_lower_tex_options tex_options = {
255 .lower_txp = ~0,
256 };
257
258 nir_lower_tex(nir, &tex_options);
259
260 nir_lower_vars_to_ssa(nir);
261 nir_lower_var_copies(nir);
262 nir_lower_global_vars_to_local(nir);
263 nir_remove_dead_variables(nir, nir_var_local);
264 radv_optimize_nir(nir);
265
266 if (dump)
267 nir_print_shader(nir, stderr);
268
269 return nir;
270 }
271
272 void *
273 radv_alloc_shader_memory(struct radv_device *device,
274 struct radv_shader_variant *shader)
275 {
276 mtx_lock(&device->shader_slab_mutex);
277 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
278 uint64_t offset = 0;
279 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
280 if (s->bo_offset - offset >= shader->code_size) {
281 shader->bo = slab->bo;
282 shader->bo_offset = offset;
283 list_addtail(&shader->slab_list, &s->slab_list);
284 mtx_unlock(&device->shader_slab_mutex);
285 return slab->ptr + offset;
286 }
287 offset = align_u64(s->bo_offset + s->code_size, 256);
288 }
289 if (slab->size - offset >= shader->code_size) {
290 shader->bo = slab->bo;
291 shader->bo_offset = offset;
292 list_addtail(&shader->slab_list, &slab->shaders);
293 mtx_unlock(&device->shader_slab_mutex);
294 return slab->ptr + offset;
295 }
296 }
297
298 mtx_unlock(&device->shader_slab_mutex);
299 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
300
301 slab->size = 256 * 1024;
302 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
303 RADEON_DOMAIN_VRAM, 0);
304 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
305 list_inithead(&slab->shaders);
306
307 mtx_lock(&device->shader_slab_mutex);
308 list_add(&slab->slabs, &device->shader_slabs);
309
310 shader->bo = slab->bo;
311 shader->bo_offset = 0;
312 list_add(&shader->slab_list, &slab->shaders);
313 mtx_unlock(&device->shader_slab_mutex);
314 return slab->ptr;
315 }
316
317 void
318 radv_destroy_shader_slabs(struct radv_device *device)
319 {
320 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
321 device->ws->buffer_destroy(slab->bo);
322 free(slab);
323 }
324 mtx_destroy(&device->shader_slab_mutex);
325 }
326
327 static void
328 radv_fill_shader_variant(struct radv_device *device,
329 struct radv_shader_variant *variant,
330 struct ac_shader_binary *binary,
331 gl_shader_stage stage)
332 {
333 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
334 unsigned vgpr_comp_cnt = 0;
335
336 if (scratch_enabled && !device->llvm_supports_spill)
337 radv_finishme("shader scratch support only available with LLVM 4.0");
338
339 variant->code_size = binary->code_size;
340 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
341 S_00B12C_SCRATCH_EN(scratch_enabled);
342
343 switch (stage) {
344 case MESA_SHADER_TESS_EVAL:
345 vgpr_comp_cnt = 3;
346 /* fallthrough */
347 case MESA_SHADER_TESS_CTRL:
348 variant->rsrc2 |= S_00B42C_OC_LDS_EN(1);
349 break;
350 case MESA_SHADER_VERTEX:
351 case MESA_SHADER_GEOMETRY:
352 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
353 break;
354 case MESA_SHADER_FRAGMENT:
355 break;
356 case MESA_SHADER_COMPUTE:
357 variant->rsrc2 |=
358 S_00B84C_TGID_X_EN(1) | S_00B84C_TGID_Y_EN(1) |
359 S_00B84C_TGID_Z_EN(1) | S_00B84C_TIDIG_COMP_CNT(2) |
360 S_00B84C_TG_SIZE_EN(1) |
361 S_00B84C_LDS_SIZE(variant->config.lds_size);
362 break;
363 default:
364 unreachable("unsupported shader type");
365 break;
366 }
367
368 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
369 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
370 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
371 S_00B848_DX10_CLAMP(1) |
372 S_00B848_FLOAT_MODE(variant->config.float_mode);
373
374 void *ptr = radv_alloc_shader_memory(device, variant);
375 memcpy(ptr, binary->code, binary->code_size);
376 }
377
378 struct radv_shader_variant *
379 radv_shader_variant_create(struct radv_device *device,
380 struct nir_shader *shader,
381 struct radv_pipeline_layout *layout,
382 const struct ac_shader_variant_key *key,
383 void **code_out,
384 unsigned *code_size_out,
385 bool dump)
386 {
387 struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant));
388 enum radeon_family chip_family = device->physical_device->rad_info.family;
389 LLVMTargetMachineRef tm;
390 if (!variant)
391 return NULL;
392
393 struct ac_nir_compiler_options options = {0};
394 options.layout = layout;
395 if (key)
396 options.key = *key;
397
398 struct ac_shader_binary binary;
399 enum ac_target_machine_options tm_options = 0;
400 options.unsafe_math = !!(device->debug_flags & RADV_DEBUG_UNSAFE_MATH);
401 options.family = chip_family;
402 options.chip_class = device->physical_device->rad_info.chip_class;
403 options.supports_spill = device->llvm_supports_spill;
404 if (options.supports_spill)
405 tm_options |= AC_TM_SUPPORTS_SPILL;
406 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
407 tm_options |= AC_TM_SISCHED;
408 tm = ac_create_target_machine(chip_family, tm_options);
409 ac_compile_nir_shader(tm, &binary, &variant->config,
410 &variant->info, shader, &options, dump);
411 LLVMDisposeTargetMachine(tm);
412
413 radv_fill_shader_variant(device, variant, &binary, shader->stage);
414
415 if (code_out) {
416 *code_out = binary.code;
417 *code_size_out = binary.code_size;
418 } else
419 free(binary.code);
420 free(binary.config);
421 free(binary.rodata);
422 free(binary.global_symbol_offsets);
423 free(binary.relocs);
424 free(binary.disasm_string);
425 variant->ref_count = 1;
426 return variant;
427 }
428
429 struct radv_shader_variant *
430 radv_create_gs_copy_shader(struct radv_device *device, struct nir_shader *nir,
431 void **code_out, unsigned *code_size_out,
432 bool dump_shader, bool multiview)
433 {
434 struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant));
435 enum radeon_family chip_family = device->physical_device->rad_info.family;
436 LLVMTargetMachineRef tm;
437 if (!variant)
438 return NULL;
439
440 struct ac_nir_compiler_options options = {0};
441 struct ac_shader_binary binary;
442 enum ac_target_machine_options tm_options = 0;
443 options.family = chip_family;
444 options.chip_class = device->physical_device->rad_info.chip_class;
445 options.key.has_multiview_view_index = multiview;
446 if (options.supports_spill)
447 tm_options |= AC_TM_SUPPORTS_SPILL;
448 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
449 tm_options |= AC_TM_SISCHED;
450 tm = ac_create_target_machine(chip_family, tm_options);
451 ac_create_gs_copy_shader(tm, nir, &binary, &variant->config, &variant->info, &options, dump_shader);
452 LLVMDisposeTargetMachine(tm);
453
454 radv_fill_shader_variant(device, variant, &binary, MESA_SHADER_VERTEX);
455
456 if (code_out) {
457 *code_out = binary.code;
458 *code_size_out = binary.code_size;
459 } else
460 free(binary.code);
461 free(binary.config);
462 free(binary.rodata);
463 free(binary.global_symbol_offsets);
464 free(binary.relocs);
465 free(binary.disasm_string);
466 variant->ref_count = 1;
467 return variant;
468 }
469
470 void
471 radv_shader_variant_destroy(struct radv_device *device,
472 struct radv_shader_variant *variant)
473 {
474 if (!p_atomic_dec_zero(&variant->ref_count))
475 return;
476
477 mtx_lock(&device->shader_slab_mutex);
478 list_del(&variant->slab_list);
479 mtx_unlock(&device->shader_slab_mutex);
480
481 free(variant);
482 }
483
484 uint32_t
485 radv_shader_stage_to_user_data_0(gl_shader_stage stage, bool has_gs,
486 bool has_tess)
487 {
488 switch (stage) {
489 case MESA_SHADER_FRAGMENT:
490 return R_00B030_SPI_SHADER_USER_DATA_PS_0;
491 case MESA_SHADER_VERTEX:
492 if (has_tess)
493 return R_00B530_SPI_SHADER_USER_DATA_LS_0;
494 else
495 return has_gs ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B130_SPI_SHADER_USER_DATA_VS_0;
496 case MESA_SHADER_GEOMETRY:
497 return R_00B230_SPI_SHADER_USER_DATA_GS_0;
498 case MESA_SHADER_COMPUTE:
499 return R_00B900_COMPUTE_USER_DATA_0;
500 case MESA_SHADER_TESS_CTRL:
501 return R_00B430_SPI_SHADER_USER_DATA_HS_0;
502 case MESA_SHADER_TESS_EVAL:
503 if (has_gs)
504 return R_00B330_SPI_SHADER_USER_DATA_ES_0;
505 else
506 return R_00B130_SPI_SHADER_USER_DATA_VS_0;
507 default:
508 unreachable("unknown shader");
509 }
510 }
511
512 const char *
513 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
514 {
515 switch (stage) {
516 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
517 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
518 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
519 case MESA_SHADER_COMPUTE: return "Compute Shader";
520 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
521 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
522 default:
523 return "Unknown shader";
524 };
525 }
526