radv: do not lower frexp_exp and frexp_sig
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "radv_shader_helper.h"
34 #include "nir/nir.h"
35 #include "nir/nir_builder.h"
36 #include "spirv/nir_spirv.h"
37
38 #include <llvm-c/Core.h>
39 #include <llvm-c/TargetMachine.h>
40 #include <llvm-c/Support.h>
41
42 #include "sid.h"
43 #include "gfx9d.h"
44 #include "ac_binary.h"
45 #include "ac_llvm_util.h"
46 #include "ac_nir_to_llvm.h"
47 #include "vk_format.h"
48 #include "util/debug.h"
49 #include "ac_exp_param.h"
50
51 #include "util/string_buffer.h"
52
53 static const struct nir_shader_compiler_options nir_options = {
54 .vertex_id_zero_based = true,
55 .lower_scmp = true,
56 .lower_flrp32 = true,
57 .lower_flrp64 = true,
58 .lower_device_index_to_zero = true,
59 .lower_fsat = true,
60 .lower_fdiv = true,
61 .lower_sub = true,
62 .lower_pack_snorm_2x16 = true,
63 .lower_pack_snorm_4x8 = true,
64 .lower_pack_unorm_2x16 = true,
65 .lower_pack_unorm_4x8 = true,
66 .lower_unpack_snorm_2x16 = true,
67 .lower_unpack_snorm_4x8 = true,
68 .lower_unpack_unorm_2x16 = true,
69 .lower_unpack_unorm_4x8 = true,
70 .lower_extract_byte = true,
71 .lower_extract_word = true,
72 .lower_ffma = true,
73 .lower_fpow = true,
74 .lower_mul_2x32_64 = true,
75 .max_unroll_iterations = 32
76 };
77
78 VkResult radv_CreateShaderModule(
79 VkDevice _device,
80 const VkShaderModuleCreateInfo* pCreateInfo,
81 const VkAllocationCallbacks* pAllocator,
82 VkShaderModule* pShaderModule)
83 {
84 RADV_FROM_HANDLE(radv_device, device, _device);
85 struct radv_shader_module *module;
86
87 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
88 assert(pCreateInfo->flags == 0);
89
90 module = vk_alloc2(&device->alloc, pAllocator,
91 sizeof(*module) + pCreateInfo->codeSize, 8,
92 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
93 if (module == NULL)
94 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
95
96 module->nir = NULL;
97 module->size = pCreateInfo->codeSize;
98 memcpy(module->data, pCreateInfo->pCode, module->size);
99
100 _mesa_sha1_compute(module->data, module->size, module->sha1);
101
102 *pShaderModule = radv_shader_module_to_handle(module);
103
104 return VK_SUCCESS;
105 }
106
107 void radv_DestroyShaderModule(
108 VkDevice _device,
109 VkShaderModule _module,
110 const VkAllocationCallbacks* pAllocator)
111 {
112 RADV_FROM_HANDLE(radv_device, device, _device);
113 RADV_FROM_HANDLE(radv_shader_module, module, _module);
114
115 if (!module)
116 return;
117
118 vk_free2(&device->alloc, pAllocator, module);
119 }
120
121 void
122 radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively,
123 bool allow_copies)
124 {
125 bool progress;
126
127 do {
128 progress = false;
129
130 NIR_PASS(progress, shader, nir_split_array_vars, nir_var_function_temp);
131 NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_function_temp);
132
133 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
134 NIR_PASS_V(shader, nir_lower_pack);
135
136 if (allow_copies) {
137 /* Only run this pass in the first call to
138 * radv_optimize_nir. Later calls assume that we've
139 * lowered away any copy_deref instructions and we
140 * don't want to introduce any more.
141 */
142 NIR_PASS(progress, shader, nir_opt_find_array_copies);
143 }
144
145 NIR_PASS(progress, shader, nir_opt_copy_prop_vars);
146 NIR_PASS(progress, shader, nir_opt_dead_write_vars);
147
148 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
149 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
150
151 NIR_PASS(progress, shader, nir_copy_prop);
152 NIR_PASS(progress, shader, nir_opt_remove_phis);
153 NIR_PASS(progress, shader, nir_opt_dce);
154 if (nir_opt_trivial_continues(shader)) {
155 progress = true;
156 NIR_PASS(progress, shader, nir_copy_prop);
157 NIR_PASS(progress, shader, nir_opt_remove_phis);
158 NIR_PASS(progress, shader, nir_opt_dce);
159 }
160 NIR_PASS(progress, shader, nir_opt_if);
161 NIR_PASS(progress, shader, nir_opt_dead_cf);
162 NIR_PASS(progress, shader, nir_opt_cse);
163 NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true, true);
164 NIR_PASS(progress, shader, nir_opt_algebraic);
165 NIR_PASS(progress, shader, nir_opt_constant_folding);
166 NIR_PASS(progress, shader, nir_opt_undef);
167 NIR_PASS(progress, shader, nir_opt_conditional_discard);
168 if (shader->options->max_unroll_iterations) {
169 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
170 }
171 } while (progress && !optimize_conservatively);
172
173 NIR_PASS(progress, shader, nir_opt_shrink_load);
174 NIR_PASS(progress, shader, nir_opt_move_load_ubo);
175 }
176
177 nir_shader *
178 radv_shader_compile_to_nir(struct radv_device *device,
179 struct radv_shader_module *module,
180 const char *entrypoint_name,
181 gl_shader_stage stage,
182 const VkSpecializationInfo *spec_info,
183 const VkPipelineCreateFlags flags)
184 {
185 nir_shader *nir;
186 nir_function *entry_point;
187 if (module->nir) {
188 /* Some things such as our meta clear/blit code will give us a NIR
189 * shader directly. In that case, we just ignore the SPIR-V entirely
190 * and just use the NIR shader */
191 nir = module->nir;
192 nir->options = &nir_options;
193 nir_validate_shader(nir, "in internal shader");
194
195 assert(exec_list_length(&nir->functions) == 1);
196 struct exec_node *node = exec_list_get_head(&nir->functions);
197 entry_point = exec_node_data(nir_function, node, node);
198 } else {
199 uint32_t *spirv = (uint32_t *) module->data;
200 assert(module->size % 4 == 0);
201
202 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
203 radv_print_spirv(spirv, module->size, stderr);
204
205 uint32_t num_spec_entries = 0;
206 struct nir_spirv_specialization *spec_entries = NULL;
207 if (spec_info && spec_info->mapEntryCount > 0) {
208 num_spec_entries = spec_info->mapEntryCount;
209 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
210 for (uint32_t i = 0; i < num_spec_entries; i++) {
211 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
212 const void *data = spec_info->pData + entry.offset;
213 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
214
215 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
216 if (spec_info->dataSize == 8)
217 spec_entries[i].data64 = *(const uint64_t *)data;
218 else
219 spec_entries[i].data32 = *(const uint32_t *)data;
220 }
221 }
222 const struct spirv_to_nir_options spirv_options = {
223 .lower_ubo_ssbo_access_to_offsets = true,
224 .caps = {
225 .descriptor_array_dynamic_indexing = true,
226 .device_group = true,
227 .draw_parameters = true,
228 .float64 = true,
229 .gcn_shader = true,
230 .geometry_streams = true,
231 .image_read_without_format = true,
232 .image_write_without_format = true,
233 .int16 = true,
234 .int64 = true,
235 .multiview = true,
236 .physical_storage_buffer_address = true,
237 .runtime_descriptor_array = true,
238 .shader_viewport_index_layer = true,
239 .stencil_export = true,
240 .storage_16bit = true,
241 .storage_image_ms = true,
242 .subgroup_arithmetic = true,
243 .subgroup_ballot = true,
244 .subgroup_basic = true,
245 .subgroup_quad = true,
246 .subgroup_shuffle = true,
247 .subgroup_vote = true,
248 .tessellation = true,
249 .transform_feedback = true,
250 .trinary_minmax = true,
251 .variable_pointers = true,
252 .storage_8bit = true,
253 },
254 .ubo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2),
255 .ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2),
256 .phys_ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT64, 1),
257 .push_const_ptr_type = glsl_uint_type(),
258 .shared_ptr_type = glsl_uint_type(),
259 };
260 entry_point = spirv_to_nir(spirv, module->size / 4,
261 spec_entries, num_spec_entries,
262 stage, entrypoint_name,
263 &spirv_options, &nir_options);
264 nir = entry_point->shader;
265 assert(nir->info.stage == stage);
266 nir_validate_shader(nir, "after spirv_to_nir");
267
268 free(spec_entries);
269
270 /* We have to lower away local constant initializers right before we
271 * inline functions. That way they get properly initialized at the top
272 * of the function and not at the top of its caller.
273 */
274 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
275 NIR_PASS_V(nir, nir_lower_returns);
276 NIR_PASS_V(nir, nir_inline_functions);
277 NIR_PASS_V(nir, nir_opt_deref);
278
279 /* Pick off the single entrypoint that we want */
280 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
281 if (func != entry_point)
282 exec_node_remove(&func->node);
283 }
284 assert(exec_list_length(&nir->functions) == 1);
285 entry_point->name = ralloc_strdup(entry_point, "main");
286
287 /* Make sure we lower constant initializers on output variables so that
288 * nir_remove_dead_variables below sees the corresponding stores
289 */
290 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out);
291
292 /* Now that we've deleted all but the main function, we can go ahead and
293 * lower the rest of the constant initializers.
294 */
295 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
296
297 /* Split member structs. We do this before lower_io_to_temporaries so that
298 * it doesn't lower system values to temporaries by accident.
299 */
300 NIR_PASS_V(nir, nir_split_var_copies);
301 NIR_PASS_V(nir, nir_split_per_member_structs);
302
303 NIR_PASS_V(nir, nir_remove_dead_variables,
304 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
305
306 NIR_PASS_V(nir, nir_lower_system_values);
307 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
308 }
309
310 /* Vulkan uses the separate-shader linking model */
311 nir->info.separate_shader = true;
312
313 nir_shader_gather_info(nir, entry_point->impl);
314
315 static const nir_lower_tex_options tex_options = {
316 .lower_txp = ~0,
317 .lower_tg4_offsets = true,
318 };
319
320 nir_lower_tex(nir, &tex_options);
321
322 nir_lower_vars_to_ssa(nir);
323
324 if (nir->info.stage == MESA_SHADER_VERTEX ||
325 nir->info.stage == MESA_SHADER_GEOMETRY) {
326 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
327 nir_shader_get_entrypoint(nir), true, true);
328 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL||
329 nir->info.stage == MESA_SHADER_FRAGMENT) {
330 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
331 nir_shader_get_entrypoint(nir), true, false);
332 }
333
334 nir_split_var_copies(nir);
335
336 nir_lower_global_vars_to_local(nir);
337 nir_remove_dead_variables(nir, nir_var_function_temp);
338 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
339 .subgroup_size = 64,
340 .ballot_bit_size = 64,
341 .lower_to_scalar = 1,
342 .lower_subgroup_masks = 1,
343 .lower_shuffle = 1,
344 .lower_shuffle_to_32bit = 1,
345 .lower_vote_eq_to_ballot = 1,
346 });
347
348 nir_lower_load_const_to_scalar(nir);
349
350 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
351 radv_optimize_nir(nir, false, true);
352
353 /* We call nir_lower_var_copies() after the first radv_optimize_nir()
354 * to remove any copies introduced by nir_opt_find_array_copies().
355 */
356 nir_lower_var_copies(nir);
357
358 /* Indirect lowering must be called after the radv_optimize_nir() loop
359 * has been called at least once. Otherwise indirect lowering can
360 * bloat the instruction count of the loop and cause it to be
361 * considered too large for unrolling.
362 */
363 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
364 radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT, false);
365
366 return nir;
367 }
368
369 void *
370 radv_alloc_shader_memory(struct radv_device *device,
371 struct radv_shader_variant *shader)
372 {
373 mtx_lock(&device->shader_slab_mutex);
374 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
375 uint64_t offset = 0;
376 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
377 if (s->bo_offset - offset >= shader->code_size) {
378 shader->bo = slab->bo;
379 shader->bo_offset = offset;
380 list_addtail(&shader->slab_list, &s->slab_list);
381 mtx_unlock(&device->shader_slab_mutex);
382 return slab->ptr + offset;
383 }
384 offset = align_u64(s->bo_offset + s->code_size, 256);
385 }
386 if (slab->size - offset >= shader->code_size) {
387 shader->bo = slab->bo;
388 shader->bo_offset = offset;
389 list_addtail(&shader->slab_list, &slab->shaders);
390 mtx_unlock(&device->shader_slab_mutex);
391 return slab->ptr + offset;
392 }
393 }
394
395 mtx_unlock(&device->shader_slab_mutex);
396 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
397
398 slab->size = 256 * 1024;
399 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
400 RADEON_DOMAIN_VRAM,
401 RADEON_FLAG_NO_INTERPROCESS_SHARING |
402 (device->physical_device->cpdma_prefetch_writes_memory ?
403 0 : RADEON_FLAG_READ_ONLY),
404 RADV_BO_PRIORITY_SHADER);
405 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
406 list_inithead(&slab->shaders);
407
408 mtx_lock(&device->shader_slab_mutex);
409 list_add(&slab->slabs, &device->shader_slabs);
410
411 shader->bo = slab->bo;
412 shader->bo_offset = 0;
413 list_add(&shader->slab_list, &slab->shaders);
414 mtx_unlock(&device->shader_slab_mutex);
415 return slab->ptr;
416 }
417
418 void
419 radv_destroy_shader_slabs(struct radv_device *device)
420 {
421 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
422 device->ws->buffer_destroy(slab->bo);
423 free(slab);
424 }
425 mtx_destroy(&device->shader_slab_mutex);
426 }
427
428 /* For the UMR disassembler. */
429 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
430 #define DEBUGGER_NUM_MARKERS 5
431
432 static unsigned
433 radv_get_shader_binary_size(struct ac_shader_binary *binary)
434 {
435 return binary->code_size + DEBUGGER_NUM_MARKERS * 4;
436 }
437
438 static void
439 radv_fill_shader_variant(struct radv_device *device,
440 struct radv_shader_variant *variant,
441 struct ac_shader_binary *binary,
442 gl_shader_stage stage)
443 {
444 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
445 struct radv_shader_info *info = &variant->info.info;
446 unsigned vgpr_comp_cnt = 0;
447
448 variant->code_size = radv_get_shader_binary_size(binary);
449 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
450 S_00B12C_USER_SGPR_MSB(variant->info.num_user_sgprs >> 5) |
451 S_00B12C_SCRATCH_EN(scratch_enabled) |
452 S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) |
453 S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) |
454 S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) |
455 S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) |
456 S_00B12C_SO_EN(!!info->so.num_outputs);
457
458 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
459 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
460 S_00B848_DX10_CLAMP(1) |
461 S_00B848_FLOAT_MODE(variant->config.float_mode);
462
463 switch (stage) {
464 case MESA_SHADER_TESS_EVAL:
465 vgpr_comp_cnt = 3;
466 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
467 break;
468 case MESA_SHADER_TESS_CTRL:
469 if (device->physical_device->rad_info.chip_class >= GFX9) {
470 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
471 } else {
472 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
473 }
474 break;
475 case MESA_SHADER_VERTEX:
476 case MESA_SHADER_GEOMETRY:
477 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
478 break;
479 case MESA_SHADER_FRAGMENT:
480 break;
481 case MESA_SHADER_COMPUTE:
482 variant->rsrc2 |=
483 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
484 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
485 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
486 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
487 info->cs.uses_thread_id[1] ? 1 : 0) |
488 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
489 S_00B84C_LDS_SIZE(variant->config.lds_size);
490 break;
491 default:
492 unreachable("unsupported shader type");
493 break;
494 }
495
496 if (device->physical_device->rad_info.chip_class >= GFX9 &&
497 stage == MESA_SHADER_GEOMETRY) {
498 unsigned es_type = variant->info.gs.es_type;
499 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
500
501 if (es_type == MESA_SHADER_VERTEX) {
502 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
503 } else if (es_type == MESA_SHADER_TESS_EVAL) {
504 es_vgpr_comp_cnt = 3;
505 } else {
506 unreachable("invalid shader ES type");
507 }
508
509 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
510 * VGPR[0:4] are always loaded.
511 */
512 if (info->uses_invocation_id) {
513 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
514 } else if (info->uses_prim_id) {
515 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
516 } else if (variant->info.gs.vertices_in >= 3) {
517 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
518 } else {
519 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
520 }
521
522 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
523 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
524 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
525 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
526 stage == MESA_SHADER_TESS_CTRL) {
527 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
528 } else {
529 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
530 }
531
532 void *ptr = radv_alloc_shader_memory(device, variant);
533 memcpy(ptr, binary->code, binary->code_size);
534
535 /* Add end-of-code markers for the UMR disassembler. */
536 uint32_t *ptr32 = (uint32_t *)ptr + binary->code_size / 4;
537 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
538 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
539
540 }
541
542 static void radv_init_llvm_target()
543 {
544 LLVMInitializeAMDGPUTargetInfo();
545 LLVMInitializeAMDGPUTarget();
546 LLVMInitializeAMDGPUTargetMC();
547 LLVMInitializeAMDGPUAsmPrinter();
548
549 /* For inline assembly. */
550 LLVMInitializeAMDGPUAsmParser();
551
552 /* Workaround for bug in llvm 4.0 that causes image intrinsics
553 * to disappear.
554 * https://reviews.llvm.org/D26348
555 *
556 * Workaround for bug in llvm that causes the GPU to hang in presence
557 * of nested loops because there is an exec mask issue. The proper
558 * solution is to fix LLVM but this might require a bunch of work.
559 * https://bugs.llvm.org/show_bug.cgi?id=37744
560 *
561 * "mesa" is the prefix for error messages.
562 */
563 if (HAVE_LLVM >= 0x0800) {
564 const char *argv[2] = { "mesa", "-simplifycfg-sink-common=false" };
565 LLVMParseCommandLineOptions(2, argv, NULL);
566
567 } else {
568 const char *argv[3] = { "mesa", "-simplifycfg-sink-common=false",
569 "-amdgpu-skip-threshold=1" };
570 LLVMParseCommandLineOptions(3, argv, NULL);
571 }
572 }
573
574 static once_flag radv_init_llvm_target_once_flag = ONCE_FLAG_INIT;
575
576 static void radv_init_llvm_once(void)
577 {
578 call_once(&radv_init_llvm_target_once_flag, radv_init_llvm_target);
579 }
580
581 static struct radv_shader_variant *
582 shader_variant_create(struct radv_device *device,
583 struct radv_shader_module *module,
584 struct nir_shader * const *shaders,
585 int shader_count,
586 gl_shader_stage stage,
587 struct radv_nir_compiler_options *options,
588 bool gs_copy_shader,
589 void **code_out,
590 unsigned *code_size_out)
591 {
592 enum radeon_family chip_family = device->physical_device->rad_info.family;
593 enum ac_target_machine_options tm_options = 0;
594 struct radv_shader_variant *variant;
595 struct ac_shader_binary binary;
596 struct ac_llvm_compiler ac_llvm;
597 bool thread_compiler;
598 variant = calloc(1, sizeof(struct radv_shader_variant));
599 if (!variant)
600 return NULL;
601
602 options->family = chip_family;
603 options->chip_class = device->physical_device->rad_info.chip_class;
604 options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
605 options->dump_preoptir = options->dump_shader &&
606 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
607 options->record_llvm_ir = device->keep_shader_info;
608 options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
609 options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
610 options->address32_hi = device->physical_device->rad_info.address32_hi;
611
612 if (options->supports_spill)
613 tm_options |= AC_TM_SUPPORTS_SPILL;
614 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
615 tm_options |= AC_TM_SISCHED;
616 if (options->check_ir)
617 tm_options |= AC_TM_CHECK_IR;
618
619 thread_compiler = !(device->instance->debug_flags & RADV_DEBUG_NOTHREADLLVM);
620 radv_init_llvm_once();
621 radv_init_llvm_compiler(&ac_llvm,
622 thread_compiler,
623 chip_family, tm_options);
624 if (gs_copy_shader) {
625 assert(shader_count == 1);
626 radv_compile_gs_copy_shader(&ac_llvm, *shaders, &binary,
627 &variant->config, &variant->info,
628 options);
629 } else {
630 radv_compile_nir_shader(&ac_llvm, &binary, &variant->config,
631 &variant->info, shaders, shader_count,
632 options);
633 }
634
635 radv_destroy_llvm_compiler(&ac_llvm, thread_compiler);
636
637 radv_fill_shader_variant(device, variant, &binary, stage);
638
639 if (code_out) {
640 *code_out = binary.code;
641 *code_size_out = binary.code_size;
642 } else
643 free(binary.code);
644 free(binary.config);
645 free(binary.rodata);
646 free(binary.global_symbol_offsets);
647 free(binary.relocs);
648 variant->ref_count = 1;
649
650 if (device->keep_shader_info) {
651 variant->disasm_string = binary.disasm_string;
652 variant->llvm_ir_string = binary.llvm_ir_string;
653 if (!gs_copy_shader && !module->nir) {
654 variant->nir = *shaders;
655 variant->spirv = (uint32_t *)module->data;
656 variant->spirv_size = module->size;
657 }
658 } else {
659 free(binary.disasm_string);
660 }
661
662 return variant;
663 }
664
665 struct radv_shader_variant *
666 radv_shader_variant_create(struct radv_device *device,
667 struct radv_shader_module *module,
668 struct nir_shader *const *shaders,
669 int shader_count,
670 struct radv_pipeline_layout *layout,
671 const struct radv_shader_variant_key *key,
672 void **code_out,
673 unsigned *code_size_out)
674 {
675 struct radv_nir_compiler_options options = {0};
676
677 options.layout = layout;
678 if (key)
679 options.key = *key;
680
681 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
682 options.supports_spill = true;
683
684 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
685 &options, false, code_out, code_size_out);
686 }
687
688 struct radv_shader_variant *
689 radv_create_gs_copy_shader(struct radv_device *device,
690 struct nir_shader *shader,
691 void **code_out,
692 unsigned *code_size_out,
693 bool multiview)
694 {
695 struct radv_nir_compiler_options options = {0};
696
697 options.key.has_multiview_view_index = multiview;
698
699 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
700 &options, true, code_out, code_size_out);
701 }
702
703 void
704 radv_shader_variant_destroy(struct radv_device *device,
705 struct radv_shader_variant *variant)
706 {
707 if (!p_atomic_dec_zero(&variant->ref_count))
708 return;
709
710 mtx_lock(&device->shader_slab_mutex);
711 list_del(&variant->slab_list);
712 mtx_unlock(&device->shader_slab_mutex);
713
714 ralloc_free(variant->nir);
715 free(variant->disasm_string);
716 free(variant->llvm_ir_string);
717 free(variant);
718 }
719
720 const char *
721 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
722 {
723 switch (stage) {
724 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
725 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
726 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
727 case MESA_SHADER_COMPUTE: return "Compute Shader";
728 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
729 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
730 default:
731 return "Unknown shader";
732 };
733 }
734
735 static void
736 generate_shader_stats(struct radv_device *device,
737 struct radv_shader_variant *variant,
738 gl_shader_stage stage,
739 struct _mesa_string_buffer *buf)
740 {
741 enum chip_class chip_class = device->physical_device->rad_info.chip_class;
742 unsigned lds_increment = chip_class >= CIK ? 512 : 256;
743 struct ac_shader_config *conf;
744 unsigned max_simd_waves;
745 unsigned lds_per_wave = 0;
746
747 max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family);
748
749 conf = &variant->config;
750
751 if (stage == MESA_SHADER_FRAGMENT) {
752 lds_per_wave = conf->lds_size * lds_increment +
753 align(variant->info.fs.num_interp * 48,
754 lds_increment);
755 } else if (stage == MESA_SHADER_COMPUTE) {
756 unsigned max_workgroup_size =
757 radv_nir_get_max_workgroup_size(chip_class, variant->nir);
758 lds_per_wave = (conf->lds_size * lds_increment) /
759 DIV_ROUND_UP(max_workgroup_size, 64);
760 }
761
762 if (conf->num_sgprs)
763 max_simd_waves =
764 MIN2(max_simd_waves,
765 ac_get_num_physical_sgprs(chip_class) / conf->num_sgprs);
766
767 if (conf->num_vgprs)
768 max_simd_waves =
769 MIN2(max_simd_waves,
770 RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs);
771
772 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
773 * that PS can use.
774 */
775 if (lds_per_wave)
776 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
777
778 if (stage == MESA_SHADER_FRAGMENT) {
779 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
780 "SPI_PS_INPUT_ADDR = 0x%04x\n"
781 "SPI_PS_INPUT_ENA = 0x%04x\n",
782 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
783 }
784
785 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
786 "SGPRS: %d\n"
787 "VGPRS: %d\n"
788 "Spilled SGPRs: %d\n"
789 "Spilled VGPRs: %d\n"
790 "PrivMem VGPRS: %d\n"
791 "Code Size: %d bytes\n"
792 "LDS: %d blocks\n"
793 "Scratch: %d bytes per wave\n"
794 "Max Waves: %d\n"
795 "********************\n\n\n",
796 conf->num_sgprs, conf->num_vgprs,
797 conf->spilled_sgprs, conf->spilled_vgprs,
798 variant->info.private_mem_vgprs, variant->code_size,
799 conf->lds_size, conf->scratch_bytes_per_wave,
800 max_simd_waves);
801 }
802
803 void
804 radv_shader_dump_stats(struct radv_device *device,
805 struct radv_shader_variant *variant,
806 gl_shader_stage stage,
807 FILE *file)
808 {
809 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
810
811 generate_shader_stats(device, variant, stage, buf);
812
813 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
814 fprintf(file, "%s", buf->buf);
815
816 _mesa_string_buffer_destroy(buf);
817 }
818
819 VkResult
820 radv_GetShaderInfoAMD(VkDevice _device,
821 VkPipeline _pipeline,
822 VkShaderStageFlagBits shaderStage,
823 VkShaderInfoTypeAMD infoType,
824 size_t* pInfoSize,
825 void* pInfo)
826 {
827 RADV_FROM_HANDLE(radv_device, device, _device);
828 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
829 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
830 struct radv_shader_variant *variant = pipeline->shaders[stage];
831 struct _mesa_string_buffer *buf;
832 VkResult result = VK_SUCCESS;
833
834 /* Spec doesn't indicate what to do if the stage is invalid, so just
835 * return no info for this. */
836 if (!variant)
837 return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT);
838
839 switch (infoType) {
840 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
841 if (!pInfo) {
842 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
843 } else {
844 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
845 struct ac_shader_config *conf = &variant->config;
846
847 VkShaderStatisticsInfoAMD statistics = {};
848 statistics.shaderStageMask = shaderStage;
849 statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS;
850 statistics.numPhysicalSgprs = ac_get_num_physical_sgprs(device->physical_device->rad_info.chip_class);
851 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
852
853 if (stage == MESA_SHADER_COMPUTE) {
854 unsigned *local_size = variant->nir->info.cs.local_size;
855 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
856
857 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
858 ceil((double)workgroup_size / statistics.numPhysicalVgprs);
859
860 statistics.computeWorkGroupSize[0] = local_size[0];
861 statistics.computeWorkGroupSize[1] = local_size[1];
862 statistics.computeWorkGroupSize[2] = local_size[2];
863 } else {
864 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
865 }
866
867 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
868 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
869 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
870 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
871 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
872
873 size_t size = *pInfoSize;
874 *pInfoSize = sizeof(statistics);
875
876 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
877
878 if (size < *pInfoSize)
879 result = VK_INCOMPLETE;
880 }
881
882 break;
883 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
884 buf = _mesa_string_buffer_create(NULL, 1024);
885
886 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
887 _mesa_string_buffer_printf(buf, "%s\n\n", variant->llvm_ir_string);
888 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
889 generate_shader_stats(device, variant, stage, buf);
890
891 /* Need to include the null terminator. */
892 size_t length = buf->length + 1;
893
894 if (!pInfo) {
895 *pInfoSize = length;
896 } else {
897 size_t size = *pInfoSize;
898 *pInfoSize = length;
899
900 memcpy(pInfo, buf->buf, MIN2(size, length));
901
902 if (size < length)
903 result = VK_INCOMPLETE;
904 }
905
906 _mesa_string_buffer_destroy(buf);
907 break;
908 default:
909 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
910 result = VK_ERROR_FEATURE_NOT_PRESENT;
911 break;
912 }
913
914 return result;
915 }