radv/gfx9: enable LDS for GS only if the ES type is TES
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "nir/nir.h"
34 #include "nir/nir_builder.h"
35 #include "spirv/nir_spirv.h"
36
37 #include <llvm-c/Core.h>
38 #include <llvm-c/TargetMachine.h>
39
40 #include "sid.h"
41 #include "gfx9d.h"
42 #include "ac_binary.h"
43 #include "ac_llvm_util.h"
44 #include "ac_nir_to_llvm.h"
45 #include "vk_format.h"
46 #include "util/debug.h"
47 #include "ac_exp_param.h"
48
49 #include "util/string_buffer.h"
50
51 static const struct nir_shader_compiler_options nir_options = {
52 .vertex_id_zero_based = true,
53 .lower_scmp = true,
54 .lower_flrp32 = true,
55 .lower_fsat = true,
56 .lower_fdiv = true,
57 .lower_sub = true,
58 .lower_pack_snorm_2x16 = true,
59 .lower_pack_snorm_4x8 = true,
60 .lower_pack_unorm_2x16 = true,
61 .lower_pack_unorm_4x8 = true,
62 .lower_unpack_snorm_2x16 = true,
63 .lower_unpack_snorm_4x8 = true,
64 .lower_unpack_unorm_2x16 = true,
65 .lower_unpack_unorm_4x8 = true,
66 .lower_extract_byte = true,
67 .lower_extract_word = true,
68 .lower_ffma = true,
69 .max_unroll_iterations = 32
70 };
71
72 VkResult radv_CreateShaderModule(
73 VkDevice _device,
74 const VkShaderModuleCreateInfo* pCreateInfo,
75 const VkAllocationCallbacks* pAllocator,
76 VkShaderModule* pShaderModule)
77 {
78 RADV_FROM_HANDLE(radv_device, device, _device);
79 struct radv_shader_module *module;
80
81 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
82 assert(pCreateInfo->flags == 0);
83
84 module = vk_alloc2(&device->alloc, pAllocator,
85 sizeof(*module) + pCreateInfo->codeSize, 8,
86 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
87 if (module == NULL)
88 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
89
90 module->nir = NULL;
91 module->size = pCreateInfo->codeSize;
92 memcpy(module->data, pCreateInfo->pCode, module->size);
93
94 _mesa_sha1_compute(module->data, module->size, module->sha1);
95
96 *pShaderModule = radv_shader_module_to_handle(module);
97
98 return VK_SUCCESS;
99 }
100
101 void radv_DestroyShaderModule(
102 VkDevice _device,
103 VkShaderModule _module,
104 const VkAllocationCallbacks* pAllocator)
105 {
106 RADV_FROM_HANDLE(radv_device, device, _device);
107 RADV_FROM_HANDLE(radv_shader_module, module, _module);
108
109 if (!module)
110 return;
111
112 vk_free2(&device->alloc, pAllocator, module);
113 }
114
115 void
116 radv_optimize_nir(struct nir_shader *shader)
117 {
118 bool progress;
119
120 do {
121 progress = false;
122
123 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
124 NIR_PASS_V(shader, nir_lower_64bit_pack);
125 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
126 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
127
128 NIR_PASS(progress, shader, nir_copy_prop);
129 NIR_PASS(progress, shader, nir_opt_remove_phis);
130 NIR_PASS(progress, shader, nir_opt_dce);
131 if (nir_opt_trivial_continues(shader)) {
132 progress = true;
133 NIR_PASS(progress, shader, nir_copy_prop);
134 NIR_PASS(progress, shader, nir_opt_remove_phis);
135 NIR_PASS(progress, shader, nir_opt_dce);
136 }
137 NIR_PASS(progress, shader, nir_opt_if);
138 NIR_PASS(progress, shader, nir_opt_dead_cf);
139 NIR_PASS(progress, shader, nir_opt_cse);
140 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
141 NIR_PASS(progress, shader, nir_opt_algebraic);
142 NIR_PASS(progress, shader, nir_opt_constant_folding);
143 NIR_PASS(progress, shader, nir_opt_undef);
144 NIR_PASS(progress, shader, nir_opt_conditional_discard);
145 if (shader->options->max_unroll_iterations) {
146 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
147 }
148 } while (progress);
149 }
150
151 nir_shader *
152 radv_shader_compile_to_nir(struct radv_device *device,
153 struct radv_shader_module *module,
154 const char *entrypoint_name,
155 gl_shader_stage stage,
156 const VkSpecializationInfo *spec_info)
157 {
158 if (strcmp(entrypoint_name, "main") != 0) {
159 radv_finishme("Multiple shaders per module not really supported");
160 }
161
162 nir_shader *nir;
163 nir_function *entry_point;
164 if (module->nir) {
165 /* Some things such as our meta clear/blit code will give us a NIR
166 * shader directly. In that case, we just ignore the SPIR-V entirely
167 * and just use the NIR shader */
168 nir = module->nir;
169 nir->options = &nir_options;
170 nir_validate_shader(nir);
171
172 assert(exec_list_length(&nir->functions) == 1);
173 struct exec_node *node = exec_list_get_head(&nir->functions);
174 entry_point = exec_node_data(nir_function, node, node);
175 } else {
176 uint32_t *spirv = (uint32_t *) module->data;
177 assert(module->size % 4 == 0);
178
179 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
180 radv_print_spirv(spirv, module->size, stderr);
181
182 uint32_t num_spec_entries = 0;
183 struct nir_spirv_specialization *spec_entries = NULL;
184 if (spec_info && spec_info->mapEntryCount > 0) {
185 num_spec_entries = spec_info->mapEntryCount;
186 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
187 for (uint32_t i = 0; i < num_spec_entries; i++) {
188 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
189 const void *data = spec_info->pData + entry.offset;
190 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
191
192 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
193 if (spec_info->dataSize == 8)
194 spec_entries[i].data64 = *(const uint64_t *)data;
195 else
196 spec_entries[i].data32 = *(const uint32_t *)data;
197 }
198 }
199 const struct spirv_to_nir_options spirv_options = {
200 .caps = {
201 .draw_parameters = true,
202 .float64 = true,
203 .image_read_without_format = true,
204 .image_write_without_format = true,
205 .tessellation = true,
206 .int64 = true,
207 .multiview = true,
208 .variable_pointers = true,
209 },
210 };
211 entry_point = spirv_to_nir(spirv, module->size / 4,
212 spec_entries, num_spec_entries,
213 stage, entrypoint_name,
214 &spirv_options, &nir_options);
215 nir = entry_point->shader;
216 assert(nir->info.stage == stage);
217 nir_validate_shader(nir);
218
219 free(spec_entries);
220
221 /* We have to lower away local constant initializers right before we
222 * inline functions. That way they get properly initialized at the top
223 * of the function and not at the top of its caller.
224 */
225 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
226 NIR_PASS_V(nir, nir_lower_returns);
227 NIR_PASS_V(nir, nir_inline_functions);
228
229 /* Pick off the single entrypoint that we want */
230 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
231 if (func != entry_point)
232 exec_node_remove(&func->node);
233 }
234 assert(exec_list_length(&nir->functions) == 1);
235 entry_point->name = ralloc_strdup(entry_point, "main");
236
237 NIR_PASS_V(nir, nir_remove_dead_variables,
238 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
239
240 /* Now that we've deleted all but the main function, we can go ahead and
241 * lower the rest of the constant initializers.
242 */
243 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
244 NIR_PASS_V(nir, nir_lower_system_values);
245 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
246 }
247
248 /* Vulkan uses the separate-shader linking model */
249 nir->info.separate_shader = true;
250
251 nir_shader_gather_info(nir, entry_point->impl);
252
253 /* While it would be nice not to have this flag, we are constrained
254 * by the reality that LLVM 5.0 doesn't have working VGPR indexing
255 * on GFX9.
256 */
257 bool llvm_has_working_vgpr_indexing =
258 device->physical_device->rad_info.chip_class <= VI;
259
260 /* TODO: Indirect indexing of GS inputs is unimplemented.
261 *
262 * TCS and TES load inputs directly from LDS or offchip memory, so
263 * indirect indexing is trivial.
264 */
265 nir_variable_mode indirect_mask = 0;
266 if (nir->info.stage == MESA_SHADER_GEOMETRY ||
267 (nir->info.stage != MESA_SHADER_TESS_CTRL &&
268 nir->info.stage != MESA_SHADER_TESS_EVAL &&
269 !llvm_has_working_vgpr_indexing)) {
270 indirect_mask |= nir_var_shader_in;
271 }
272 if (!llvm_has_working_vgpr_indexing &&
273 nir->info.stage != MESA_SHADER_TESS_CTRL)
274 indirect_mask |= nir_var_shader_out;
275
276 /* TODO: We shouldn't need to do this, however LLVM isn't currently
277 * smart enough to handle indirects without causing excess spilling
278 * causing the gpu to hang.
279 *
280 * See the following thread for more details of the problem:
281 * https://lists.freedesktop.org/archives/mesa-dev/2017-July/162106.html
282 */
283 indirect_mask |= nir_var_local;
284
285 nir_lower_indirect_derefs(nir, indirect_mask);
286
287 static const nir_lower_tex_options tex_options = {
288 .lower_txp = ~0,
289 };
290
291 nir_lower_tex(nir, &tex_options);
292
293 nir_lower_vars_to_ssa(nir);
294 nir_lower_var_copies(nir);
295 nir_lower_global_vars_to_local(nir);
296 nir_remove_dead_variables(nir, nir_var_local);
297 radv_optimize_nir(nir);
298
299 return nir;
300 }
301
302 void *
303 radv_alloc_shader_memory(struct radv_device *device,
304 struct radv_shader_variant *shader)
305 {
306 mtx_lock(&device->shader_slab_mutex);
307 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
308 uint64_t offset = 0;
309 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
310 if (s->bo_offset - offset >= shader->code_size) {
311 shader->bo = slab->bo;
312 shader->bo_offset = offset;
313 list_addtail(&shader->slab_list, &s->slab_list);
314 mtx_unlock(&device->shader_slab_mutex);
315 return slab->ptr + offset;
316 }
317 offset = align_u64(s->bo_offset + s->code_size, 256);
318 }
319 if (slab->size - offset >= shader->code_size) {
320 shader->bo = slab->bo;
321 shader->bo_offset = offset;
322 list_addtail(&shader->slab_list, &slab->shaders);
323 mtx_unlock(&device->shader_slab_mutex);
324 return slab->ptr + offset;
325 }
326 }
327
328 mtx_unlock(&device->shader_slab_mutex);
329 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
330
331 slab->size = 256 * 1024;
332 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
333 RADEON_DOMAIN_VRAM,
334 RADEON_FLAG_NO_INTERPROCESS_SHARING |
335 device->physical_device->cpdma_prefetch_writes_memory ?
336 0 : RADEON_FLAG_READ_ONLY);
337 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
338 list_inithead(&slab->shaders);
339
340 mtx_lock(&device->shader_slab_mutex);
341 list_add(&slab->slabs, &device->shader_slabs);
342
343 shader->bo = slab->bo;
344 shader->bo_offset = 0;
345 list_add(&shader->slab_list, &slab->shaders);
346 mtx_unlock(&device->shader_slab_mutex);
347 return slab->ptr;
348 }
349
350 void
351 radv_destroy_shader_slabs(struct radv_device *device)
352 {
353 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
354 device->ws->buffer_destroy(slab->bo);
355 free(slab);
356 }
357 mtx_destroy(&device->shader_slab_mutex);
358 }
359
360 static void
361 radv_fill_shader_variant(struct radv_device *device,
362 struct radv_shader_variant *variant,
363 struct ac_shader_binary *binary,
364 gl_shader_stage stage)
365 {
366 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
367 unsigned vgpr_comp_cnt = 0;
368
369 if (scratch_enabled && !device->llvm_supports_spill)
370 radv_finishme("shader scratch support only available with LLVM 4.0");
371
372 variant->code_size = binary->code_size;
373 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
374 S_00B12C_SCRATCH_EN(scratch_enabled);
375
376 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
377 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
378 S_00B848_DX10_CLAMP(1) |
379 S_00B848_FLOAT_MODE(variant->config.float_mode);
380
381 switch (stage) {
382 case MESA_SHADER_TESS_EVAL:
383 vgpr_comp_cnt = 3;
384 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
385 break;
386 case MESA_SHADER_TESS_CTRL:
387 if (device->physical_device->rad_info.chip_class >= GFX9)
388 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
389 else
390 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
391 break;
392 case MESA_SHADER_VERTEX:
393 case MESA_SHADER_GEOMETRY:
394 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
395 break;
396 case MESA_SHADER_FRAGMENT:
397 break;
398 case MESA_SHADER_COMPUTE: {
399 struct ac_shader_info *info = &variant->info.info;
400 variant->rsrc2 |=
401 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
402 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
403 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
404 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
405 info->cs.uses_thread_id[1] ? 1 : 0) |
406 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
407 S_00B84C_LDS_SIZE(variant->config.lds_size);
408 break;
409 }
410 default:
411 unreachable("unsupported shader type");
412 break;
413 }
414
415 if (device->physical_device->rad_info.chip_class >= GFX9 &&
416 stage == MESA_SHADER_GEOMETRY) {
417 struct ac_shader_info *info = &variant->info.info;
418 unsigned es_type = variant->info.gs.es_type;
419 unsigned gs_vgpr_comp_cnt;
420
421 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
422 * VGPR[0:4] are always loaded.
423 */
424 if (info->uses_invocation_id)
425 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
426 else if (info->uses_prim_id)
427 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
428 else if (variant->info.gs.vertices_in >= 3)
429 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
430 else
431 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
432
433 /* TODO: Figure out how many we actually need. */
434 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
435 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(3) |
436 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
437 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
438 stage == MESA_SHADER_TESS_CTRL)
439 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
440 else
441 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
442
443 void *ptr = radv_alloc_shader_memory(device, variant);
444 memcpy(ptr, binary->code, binary->code_size);
445 }
446
447 static struct radv_shader_variant *
448 shader_variant_create(struct radv_device *device,
449 struct radv_shader_module *module,
450 struct nir_shader * const *shaders,
451 int shader_count,
452 gl_shader_stage stage,
453 struct ac_nir_compiler_options *options,
454 bool gs_copy_shader,
455 void **code_out,
456 unsigned *code_size_out)
457 {
458 enum radeon_family chip_family = device->physical_device->rad_info.family;
459 bool dump_shaders = radv_can_dump_shader(device, module);
460 enum ac_target_machine_options tm_options = 0;
461 struct radv_shader_variant *variant;
462 struct ac_shader_binary binary;
463 LLVMTargetMachineRef tm;
464
465 variant = calloc(1, sizeof(struct radv_shader_variant));
466 if (!variant)
467 return NULL;
468
469 options->family = chip_family;
470 options->chip_class = device->physical_device->rad_info.chip_class;
471
472 if (options->supports_spill)
473 tm_options |= AC_TM_SUPPORTS_SPILL;
474 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
475 tm_options |= AC_TM_SISCHED;
476 tm = ac_create_target_machine(chip_family, tm_options);
477
478 if (gs_copy_shader) {
479 assert(shader_count == 1);
480 ac_create_gs_copy_shader(tm, *shaders, &binary, &variant->config,
481 &variant->info, options, dump_shaders);
482 } else {
483 ac_compile_nir_shader(tm, &binary, &variant->config,
484 &variant->info, shaders, shader_count, options,
485 dump_shaders);
486 }
487
488 LLVMDisposeTargetMachine(tm);
489
490 radv_fill_shader_variant(device, variant, &binary, stage);
491
492 if (code_out) {
493 *code_out = binary.code;
494 *code_size_out = binary.code_size;
495 } else
496 free(binary.code);
497 free(binary.config);
498 free(binary.rodata);
499 free(binary.global_symbol_offsets);
500 free(binary.relocs);
501 variant->ref_count = 1;
502
503 if (device->keep_shader_info) {
504 variant->disasm_string = binary.disasm_string;
505 if (!gs_copy_shader && !module->nir) {
506 variant->nir = *shaders;
507 variant->spirv = (uint32_t *)module->data;
508 variant->spirv_size = module->size;
509 }
510 } else {
511 free(binary.disasm_string);
512 }
513
514 return variant;
515 }
516
517 struct radv_shader_variant *
518 radv_shader_variant_create(struct radv_device *device,
519 struct radv_shader_module *module,
520 struct nir_shader *const *shaders,
521 int shader_count,
522 struct radv_pipeline_layout *layout,
523 const struct ac_shader_variant_key *key,
524 void **code_out,
525 unsigned *code_size_out)
526 {
527 struct ac_nir_compiler_options options = {0};
528
529 options.layout = layout;
530 if (key)
531 options.key = *key;
532
533 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
534 options.supports_spill = device->llvm_supports_spill;
535
536 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
537 &options, false, code_out, code_size_out);
538 }
539
540 struct radv_shader_variant *
541 radv_create_gs_copy_shader(struct radv_device *device,
542 struct nir_shader *shader,
543 void **code_out,
544 unsigned *code_size_out,
545 bool multiview)
546 {
547 struct ac_nir_compiler_options options = {0};
548
549 options.key.has_multiview_view_index = multiview;
550
551 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
552 &options, true, code_out, code_size_out);
553 }
554
555 void
556 radv_shader_variant_destroy(struct radv_device *device,
557 struct radv_shader_variant *variant)
558 {
559 if (!p_atomic_dec_zero(&variant->ref_count))
560 return;
561
562 mtx_lock(&device->shader_slab_mutex);
563 list_del(&variant->slab_list);
564 mtx_unlock(&device->shader_slab_mutex);
565
566 ralloc_free(variant->nir);
567 free(variant->disasm_string);
568 free(variant);
569 }
570
571 const char *
572 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
573 {
574 switch (stage) {
575 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
576 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
577 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
578 case MESA_SHADER_COMPUTE: return "Compute Shader";
579 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
580 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
581 default:
582 return "Unknown shader";
583 };
584 }
585
586 static uint32_t
587 get_total_sgprs(struct radv_device *device)
588 {
589 if (device->physical_device->rad_info.chip_class >= VI)
590 return 800;
591 else
592 return 512;
593 }
594
595 static void
596 generate_shader_stats(struct radv_device *device,
597 struct radv_shader_variant *variant,
598 gl_shader_stage stage,
599 struct _mesa_string_buffer *buf)
600 {
601 unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
602 struct ac_shader_config *conf;
603 unsigned max_simd_waves;
604 unsigned lds_per_wave = 0;
605
606 switch (device->physical_device->rad_info.family) {
607 /* These always have 8 waves: */
608 case CHIP_POLARIS10:
609 case CHIP_POLARIS11:
610 case CHIP_POLARIS12:
611 max_simd_waves = 8;
612 break;
613 default:
614 max_simd_waves = 10;
615 }
616
617 conf = &variant->config;
618
619 if (stage == MESA_SHADER_FRAGMENT) {
620 lds_per_wave = conf->lds_size * lds_increment +
621 align(variant->info.fs.num_interp * 48,
622 lds_increment);
623 }
624
625 if (conf->num_sgprs)
626 max_simd_waves = MIN2(max_simd_waves, get_total_sgprs(device) / conf->num_sgprs);
627
628 if (conf->num_vgprs)
629 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
630
631 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
632 * that PS can use.
633 */
634 if (lds_per_wave)
635 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
636
637 if (stage == MESA_SHADER_FRAGMENT) {
638 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
639 "SPI_PS_INPUT_ADDR = 0x%04x\n"
640 "SPI_PS_INPUT_ENA = 0x%04x\n",
641 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
642 }
643
644 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
645 "SGPRS: %d\n"
646 "VGPRS: %d\n"
647 "Spilled SGPRs: %d\n"
648 "Spilled VGPRs: %d\n"
649 "Code Size: %d bytes\n"
650 "LDS: %d blocks\n"
651 "Scratch: %d bytes per wave\n"
652 "Max Waves: %d\n"
653 "********************\n\n\n",
654 conf->num_sgprs, conf->num_vgprs,
655 conf->spilled_sgprs, conf->spilled_vgprs, variant->code_size,
656 conf->lds_size, conf->scratch_bytes_per_wave,
657 max_simd_waves);
658 }
659
660 void
661 radv_shader_dump_stats(struct radv_device *device,
662 struct radv_shader_variant *variant,
663 gl_shader_stage stage,
664 FILE *file)
665 {
666 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);
667
668 generate_shader_stats(device, variant, stage, buf);
669
670 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
671 fprintf(file, "%s", buf->buf);
672
673 _mesa_string_buffer_destroy(buf);
674 }
675
676 VkResult
677 radv_GetShaderInfoAMD(VkDevice _device,
678 VkPipeline _pipeline,
679 VkShaderStageFlagBits shaderStage,
680 VkShaderInfoTypeAMD infoType,
681 size_t* pInfoSize,
682 void* pInfo)
683 {
684 RADV_FROM_HANDLE(radv_device, device, _device);
685 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
686 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
687 struct radv_shader_variant *variant = pipeline->shaders[stage];
688 struct _mesa_string_buffer *buf;
689 VkResult result = VK_SUCCESS;
690
691 /* Spec doesn't indicate what to do if the stage is invalid, so just
692 * return no info for this. */
693 if (!variant)
694 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
695
696 switch (infoType) {
697 case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
698 if (!pInfo) {
699 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
700 } else {
701 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
702 struct ac_shader_config *conf = &variant->config;
703
704 VkShaderStatisticsInfoAMD statistics = {};
705 statistics.shaderStageMask = shaderStage;
706 statistics.numPhysicalVgprs = 256;
707 statistics.numPhysicalSgprs = get_total_sgprs(device);
708 statistics.numAvailableSgprs = statistics.numPhysicalSgprs;
709
710 if (stage == MESA_SHADER_COMPUTE) {
711 unsigned *local_size = variant->nir->info.cs.local_size;
712 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];
713
714 statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
715 ceil(workgroup_size / statistics.numPhysicalVgprs);
716
717 statistics.computeWorkGroupSize[0] = local_size[0];
718 statistics.computeWorkGroupSize[1] = local_size[1];
719 statistics.computeWorkGroupSize[2] = local_size[2];
720 } else {
721 statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
722 }
723
724 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
725 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
726 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
727 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
728 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;
729
730 size_t size = *pInfoSize;
731 *pInfoSize = sizeof(statistics);
732
733 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));
734
735 if (size < *pInfoSize)
736 result = VK_INCOMPLETE;
737 }
738
739 break;
740 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
741 buf = _mesa_string_buffer_create(NULL, 1024);
742
743 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage));
744 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
745 generate_shader_stats(device, variant, stage, buf);
746
747 /* Need to include the null terminator. */
748 size_t length = buf->length + 1;
749
750 if (!pInfo) {
751 *pInfoSize = length;
752 } else {
753 size_t size = *pInfoSize;
754 *pInfoSize = length;
755
756 memcpy(pInfo, buf->buf, MIN2(size, length));
757
758 if (size < length)
759 result = VK_INCOMPLETE;
760 }
761
762 _mesa_string_buffer_destroy(buf);
763 break;
764 default:
765 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
766 result = VK_ERROR_FEATURE_NOT_PRESENT;
767 break;
768 }
769
770 return result;
771 }