radv: Don't use vgpr indexing for outputs on GFX9.
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "nir/nir.h"
34 #include "nir/nir_builder.h"
35 #include "spirv/nir_spirv.h"
36
37 #include <llvm-c/Core.h>
38 #include <llvm-c/TargetMachine.h>
39
40 #include "sid.h"
41 #include "gfx9d.h"
42 #include "ac_binary.h"
43 #include "ac_llvm_util.h"
44 #include "ac_nir_to_llvm.h"
45 #include "vk_format.h"
46 #include "util/debug.h"
47 #include "ac_exp_param.h"
48
49 static const struct nir_shader_compiler_options nir_options = {
50 .vertex_id_zero_based = true,
51 .lower_scmp = true,
52 .lower_flrp32 = true,
53 .lower_fsat = true,
54 .lower_fdiv = true,
55 .lower_sub = true,
56 .lower_pack_snorm_2x16 = true,
57 .lower_pack_snorm_4x8 = true,
58 .lower_pack_unorm_2x16 = true,
59 .lower_pack_unorm_4x8 = true,
60 .lower_unpack_snorm_2x16 = true,
61 .lower_unpack_snorm_4x8 = true,
62 .lower_unpack_unorm_2x16 = true,
63 .lower_unpack_unorm_4x8 = true,
64 .lower_extract_byte = true,
65 .lower_extract_word = true,
66 .lower_ffma = true,
67 .max_unroll_iterations = 32
68 };
69
70 VkResult radv_CreateShaderModule(
71 VkDevice _device,
72 const VkShaderModuleCreateInfo* pCreateInfo,
73 const VkAllocationCallbacks* pAllocator,
74 VkShaderModule* pShaderModule)
75 {
76 RADV_FROM_HANDLE(radv_device, device, _device);
77 struct radv_shader_module *module;
78
79 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
80 assert(pCreateInfo->flags == 0);
81
82 module = vk_alloc2(&device->alloc, pAllocator,
83 sizeof(*module) + pCreateInfo->codeSize, 8,
84 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
85 if (module == NULL)
86 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
87
88 module->nir = NULL;
89 module->size = pCreateInfo->codeSize;
90 memcpy(module->data, pCreateInfo->pCode, module->size);
91
92 _mesa_sha1_compute(module->data, module->size, module->sha1);
93
94 *pShaderModule = radv_shader_module_to_handle(module);
95
96 return VK_SUCCESS;
97 }
98
99 void radv_DestroyShaderModule(
100 VkDevice _device,
101 VkShaderModule _module,
102 const VkAllocationCallbacks* pAllocator)
103 {
104 RADV_FROM_HANDLE(radv_device, device, _device);
105 RADV_FROM_HANDLE(radv_shader_module, module, _module);
106
107 if (!module)
108 return;
109
110 vk_free2(&device->alloc, pAllocator, module);
111 }
112
113 void
114 radv_optimize_nir(struct nir_shader *shader)
115 {
116 bool progress;
117
118 do {
119 progress = false;
120
121 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
122 NIR_PASS_V(shader, nir_lower_64bit_pack);
123 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
124 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
125
126 NIR_PASS(progress, shader, nir_copy_prop);
127 NIR_PASS(progress, shader, nir_opt_remove_phis);
128 NIR_PASS(progress, shader, nir_opt_dce);
129 if (nir_opt_trivial_continues(shader)) {
130 progress = true;
131 NIR_PASS(progress, shader, nir_copy_prop);
132 NIR_PASS(progress, shader, nir_opt_remove_phis);
133 NIR_PASS(progress, shader, nir_opt_dce);
134 }
135 NIR_PASS(progress, shader, nir_opt_if);
136 NIR_PASS(progress, shader, nir_opt_dead_cf);
137 NIR_PASS(progress, shader, nir_opt_cse);
138 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
139 NIR_PASS(progress, shader, nir_opt_algebraic);
140 NIR_PASS(progress, shader, nir_opt_constant_folding);
141 NIR_PASS(progress, shader, nir_opt_undef);
142 NIR_PASS(progress, shader, nir_opt_conditional_discard);
143 if (shader->options->max_unroll_iterations) {
144 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
145 }
146 } while (progress);
147 }
148
149 nir_shader *
150 radv_shader_compile_to_nir(struct radv_device *device,
151 struct radv_shader_module *module,
152 const char *entrypoint_name,
153 gl_shader_stage stage,
154 const VkSpecializationInfo *spec_info)
155 {
156 if (strcmp(entrypoint_name, "main") != 0) {
157 radv_finishme("Multiple shaders per module not really supported");
158 }
159
160 nir_shader *nir;
161 nir_function *entry_point;
162 if (module->nir) {
163 /* Some things such as our meta clear/blit code will give us a NIR
164 * shader directly. In that case, we just ignore the SPIR-V entirely
165 * and just use the NIR shader */
166 nir = module->nir;
167 nir->options = &nir_options;
168 nir_validate_shader(nir);
169
170 assert(exec_list_length(&nir->functions) == 1);
171 struct exec_node *node = exec_list_get_head(&nir->functions);
172 entry_point = exec_node_data(nir_function, node, node);
173 } else {
174 uint32_t *spirv = (uint32_t *) module->data;
175 assert(module->size % 4 == 0);
176
177 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
178 radv_print_spirv(spirv, module->size, stderr);
179
180 uint32_t num_spec_entries = 0;
181 struct nir_spirv_specialization *spec_entries = NULL;
182 if (spec_info && spec_info->mapEntryCount > 0) {
183 num_spec_entries = spec_info->mapEntryCount;
184 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
185 for (uint32_t i = 0; i < num_spec_entries; i++) {
186 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
187 const void *data = spec_info->pData + entry.offset;
188 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
189
190 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
191 if (spec_info->dataSize == 8)
192 spec_entries[i].data64 = *(const uint64_t *)data;
193 else
194 spec_entries[i].data32 = *(const uint32_t *)data;
195 }
196 }
197 const struct nir_spirv_supported_extensions supported_ext = {
198 .draw_parameters = true,
199 .float64 = true,
200 .image_read_without_format = true,
201 .image_write_without_format = true,
202 .tessellation = true,
203 .int64 = true,
204 .multiview = true,
205 .variable_pointers = true,
206 };
207 entry_point = spirv_to_nir(spirv, module->size / 4,
208 spec_entries, num_spec_entries,
209 stage, entrypoint_name, &supported_ext, &nir_options);
210 nir = entry_point->shader;
211 assert(nir->info.stage == stage);
212 nir_validate_shader(nir);
213
214 free(spec_entries);
215
216 /* We have to lower away local constant initializers right before we
217 * inline functions. That way they get properly initialized at the top
218 * of the function and not at the top of its caller.
219 */
220 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
221 NIR_PASS_V(nir, nir_lower_returns);
222 NIR_PASS_V(nir, nir_inline_functions);
223
224 /* Pick off the single entrypoint that we want */
225 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
226 if (func != entry_point)
227 exec_node_remove(&func->node);
228 }
229 assert(exec_list_length(&nir->functions) == 1);
230 entry_point->name = ralloc_strdup(entry_point, "main");
231
232 NIR_PASS_V(nir, nir_remove_dead_variables,
233 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
234
235 /* Now that we've deleted all but the main function, we can go ahead and
236 * lower the rest of the constant initializers.
237 */
238 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
239 NIR_PASS_V(nir, nir_lower_system_values);
240 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
241 }
242
243 /* Vulkan uses the separate-shader linking model */
244 nir->info.separate_shader = true;
245
246 nir_shader_gather_info(nir, entry_point->impl);
247
248 /* While it would be nice not to have this flag, we are constrained
249 * by the reality that LLVM 5.0 doesn't have working VGPR indexing
250 * on GFX9.
251 */
252 bool llvm_has_working_vgpr_indexing =
253 device->physical_device->rad_info.chip_class <= VI;
254
255 /* TODO: Indirect indexing of GS inputs is unimplemented.
256 *
257 * TCS and TES load inputs directly from LDS or offchip memory, so
258 * indirect indexing is trivial.
259 */
260 nir_variable_mode indirect_mask = 0;
261 if (nir->info.stage == MESA_SHADER_GEOMETRY ||
262 (nir->info.stage != MESA_SHADER_TESS_CTRL &&
263 nir->info.stage != MESA_SHADER_TESS_EVAL &&
264 !llvm_has_working_vgpr_indexing)) {
265 indirect_mask |= nir_var_shader_in;
266 }
267 if (!llvm_has_working_vgpr_indexing &&
268 (nir->info.stage == MESA_SHADER_VERTEX ||
269 nir->info.stage == MESA_SHADER_TESS_EVAL ||
270 nir->info.stage == MESA_SHADER_FRAGMENT))
271 indirect_mask |= nir_var_shader_out;
272
273 /* TODO: We shouldn't need to do this, however LLVM isn't currently
274 * smart enough to handle indirects without causing excess spilling
275 * causing the gpu to hang.
276 *
277 * See the following thread for more details of the problem:
278 * https://lists.freedesktop.org/archives/mesa-dev/2017-July/162106.html
279 */
280 indirect_mask |= nir_var_local;
281
282 nir_lower_indirect_derefs(nir, indirect_mask);
283
284 static const nir_lower_tex_options tex_options = {
285 .lower_txp = ~0,
286 };
287
288 nir_lower_tex(nir, &tex_options);
289
290 nir_lower_vars_to_ssa(nir);
291 nir_lower_var_copies(nir);
292 nir_lower_global_vars_to_local(nir);
293 nir_remove_dead_variables(nir, nir_var_local);
294 radv_optimize_nir(nir);
295
296 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS)
297 nir_print_shader(nir, stderr);
298
299 return nir;
300 }
301
302 void *
303 radv_alloc_shader_memory(struct radv_device *device,
304 struct radv_shader_variant *shader)
305 {
306 mtx_lock(&device->shader_slab_mutex);
307 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
308 uint64_t offset = 0;
309 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
310 if (s->bo_offset - offset >= shader->code_size) {
311 shader->bo = slab->bo;
312 shader->bo_offset = offset;
313 list_addtail(&shader->slab_list, &s->slab_list);
314 mtx_unlock(&device->shader_slab_mutex);
315 return slab->ptr + offset;
316 }
317 offset = align_u64(s->bo_offset + s->code_size, 256);
318 }
319 if (slab->size - offset >= shader->code_size) {
320 shader->bo = slab->bo;
321 shader->bo_offset = offset;
322 list_addtail(&shader->slab_list, &slab->shaders);
323 mtx_unlock(&device->shader_slab_mutex);
324 return slab->ptr + offset;
325 }
326 }
327
328 mtx_unlock(&device->shader_slab_mutex);
329 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
330
331 slab->size = 256 * 1024;
332 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
333 RADEON_DOMAIN_VRAM, 0);
334 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
335 list_inithead(&slab->shaders);
336
337 mtx_lock(&device->shader_slab_mutex);
338 list_add(&slab->slabs, &device->shader_slabs);
339
340 shader->bo = slab->bo;
341 shader->bo_offset = 0;
342 list_add(&shader->slab_list, &slab->shaders);
343 mtx_unlock(&device->shader_slab_mutex);
344 return slab->ptr;
345 }
346
347 void
348 radv_destroy_shader_slabs(struct radv_device *device)
349 {
350 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
351 device->ws->buffer_destroy(slab->bo);
352 free(slab);
353 }
354 mtx_destroy(&device->shader_slab_mutex);
355 }
356
357 static void
358 radv_fill_shader_variant(struct radv_device *device,
359 struct radv_shader_variant *variant,
360 struct ac_shader_binary *binary,
361 gl_shader_stage stage)
362 {
363 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
364 unsigned vgpr_comp_cnt = 0;
365
366 if (scratch_enabled && !device->llvm_supports_spill)
367 radv_finishme("shader scratch support only available with LLVM 4.0");
368
369 variant->code_size = binary->code_size;
370 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
371 S_00B12C_SCRATCH_EN(scratch_enabled);
372
373 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
374 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
375 S_00B848_DX10_CLAMP(1) |
376 S_00B848_FLOAT_MODE(variant->config.float_mode);
377
378 switch (stage) {
379 case MESA_SHADER_TESS_EVAL:
380 vgpr_comp_cnt = 3;
381 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
382 break;
383 case MESA_SHADER_TESS_CTRL:
384 if (device->physical_device->rad_info.chip_class >= GFX9)
385 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
386 else
387 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1);
388 break;
389 case MESA_SHADER_VERTEX:
390 case MESA_SHADER_GEOMETRY:
391 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
392 break;
393 case MESA_SHADER_FRAGMENT:
394 break;
395 case MESA_SHADER_COMPUTE:
396 variant->rsrc2 |=
397 S_00B84C_TGID_X_EN(1) | S_00B84C_TGID_Y_EN(1) |
398 S_00B84C_TGID_Z_EN(1) | S_00B84C_TIDIG_COMP_CNT(2) |
399 S_00B84C_TG_SIZE_EN(1) |
400 S_00B84C_LDS_SIZE(variant->config.lds_size);
401 break;
402 default:
403 unreachable("unsupported shader type");
404 break;
405 }
406
407 if (device->physical_device->rad_info.chip_class >= GFX9 &&
408 stage == MESA_SHADER_GEOMETRY) {
409 /* TODO: Figure out how many we actually need. */
410 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(3);
411 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(3) |
412 S_00B22C_OC_LDS_EN(1);
413 } else if (device->physical_device->rad_info.chip_class >= GFX9 &&
414 stage == MESA_SHADER_TESS_CTRL)
415 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
416 else
417 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
418
419 void *ptr = radv_alloc_shader_memory(device, variant);
420 memcpy(ptr, binary->code, binary->code_size);
421 }
422
423 static struct radv_shader_variant *
424 shader_variant_create(struct radv_device *device,
425 struct radv_shader_module *module,
426 struct nir_shader * const *shaders,
427 int shader_count,
428 gl_shader_stage stage,
429 struct ac_nir_compiler_options *options,
430 bool gs_copy_shader,
431 void **code_out,
432 unsigned *code_size_out)
433 {
434 enum radeon_family chip_family = device->physical_device->rad_info.family;
435 bool dump_shaders = device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS;
436 enum ac_target_machine_options tm_options = 0;
437 struct radv_shader_variant *variant;
438 struct ac_shader_binary binary;
439 LLVMTargetMachineRef tm;
440
441 variant = calloc(1, sizeof(struct radv_shader_variant));
442 if (!variant)
443 return NULL;
444
445 options->family = chip_family;
446 options->chip_class = device->physical_device->rad_info.chip_class;
447
448 if (options->supports_spill)
449 tm_options |= AC_TM_SUPPORTS_SPILL;
450 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
451 tm_options |= AC_TM_SISCHED;
452 tm = ac_create_target_machine(chip_family, tm_options);
453
454 if (gs_copy_shader) {
455 assert(shader_count == 1);
456 ac_create_gs_copy_shader(tm, *shaders, &binary, &variant->config,
457 &variant->info, options, dump_shaders);
458 } else {
459 ac_compile_nir_shader(tm, &binary, &variant->config,
460 &variant->info, shaders, shader_count, options,
461 dump_shaders);
462 }
463
464 LLVMDisposeTargetMachine(tm);
465
466 radv_fill_shader_variant(device, variant, &binary, stage);
467
468 if (code_out) {
469 *code_out = binary.code;
470 *code_size_out = binary.code_size;
471 } else
472 free(binary.code);
473 free(binary.config);
474 free(binary.rodata);
475 free(binary.global_symbol_offsets);
476 free(binary.relocs);
477 variant->ref_count = 1;
478
479 if (device->trace_bo) {
480 variant->disasm_string = binary.disasm_string;
481 if (!gs_copy_shader && !module->nir) {
482 variant->nir = *shaders;
483 variant->spirv = (uint32_t *)module->data;
484 variant->spirv_size = module->size;
485 }
486 } else {
487 free(binary.disasm_string);
488 }
489
490 return variant;
491 }
492
493 struct radv_shader_variant *
494 radv_shader_variant_create(struct radv_device *device,
495 struct radv_shader_module *module,
496 struct nir_shader *const *shaders,
497 int shader_count,
498 struct radv_pipeline_layout *layout,
499 const struct ac_shader_variant_key *key,
500 void **code_out,
501 unsigned *code_size_out)
502 {
503 struct ac_nir_compiler_options options = {0};
504
505 options.layout = layout;
506 if (key)
507 options.key = *key;
508
509 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH);
510 options.supports_spill = device->llvm_supports_spill;
511
512 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage,
513 &options, false, code_out, code_size_out);
514 }
515
516 struct radv_shader_variant *
517 radv_create_gs_copy_shader(struct radv_device *device,
518 struct nir_shader *shader,
519 void **code_out,
520 unsigned *code_size_out,
521 bool multiview)
522 {
523 struct ac_nir_compiler_options options = {0};
524
525 options.key.has_multiview_view_index = multiview;
526
527 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
528 &options, true, code_out, code_size_out);
529 }
530
531 void
532 radv_shader_variant_destroy(struct radv_device *device,
533 struct radv_shader_variant *variant)
534 {
535 if (!p_atomic_dec_zero(&variant->ref_count))
536 return;
537
538 mtx_lock(&device->shader_slab_mutex);
539 list_del(&variant->slab_list);
540 mtx_unlock(&device->shader_slab_mutex);
541
542 ralloc_free(variant->nir);
543 free(variant->disasm_string);
544 free(variant);
545 }
546
547 uint32_t
548 radv_shader_stage_to_user_data_0(gl_shader_stage stage, enum chip_class chip_class,
549 bool has_gs, bool has_tess)
550 {
551 switch (stage) {
552 case MESA_SHADER_FRAGMENT:
553 return R_00B030_SPI_SHADER_USER_DATA_PS_0;
554 case MESA_SHADER_VERTEX:
555 if (chip_class >= GFX9) {
556 return has_tess ? R_00B430_SPI_SHADER_USER_DATA_LS_0 :
557 has_gs ? R_00B330_SPI_SHADER_USER_DATA_ES_0 :
558 R_00B130_SPI_SHADER_USER_DATA_VS_0;
559 }
560 if (has_tess)
561 return R_00B530_SPI_SHADER_USER_DATA_LS_0;
562 else
563 return has_gs ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B130_SPI_SHADER_USER_DATA_VS_0;
564 case MESA_SHADER_GEOMETRY:
565 return chip_class >= GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0 :
566 R_00B230_SPI_SHADER_USER_DATA_GS_0;
567 case MESA_SHADER_COMPUTE:
568 return R_00B900_COMPUTE_USER_DATA_0;
569 case MESA_SHADER_TESS_CTRL:
570 return chip_class >= GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0 :
571 R_00B430_SPI_SHADER_USER_DATA_HS_0;
572 case MESA_SHADER_TESS_EVAL:
573 if (chip_class >= GFX9) {
574 return has_gs ? R_00B330_SPI_SHADER_USER_DATA_ES_0 :
575 R_00B130_SPI_SHADER_USER_DATA_VS_0;
576 }
577 if (has_gs)
578 return R_00B330_SPI_SHADER_USER_DATA_ES_0;
579 else
580 return R_00B130_SPI_SHADER_USER_DATA_VS_0;
581 default:
582 unreachable("unknown shader");
583 }
584 }
585
586 const char *
587 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
588 {
589 switch (stage) {
590 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
591 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
592 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
593 case MESA_SHADER_COMPUTE: return "Compute Shader";
594 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
595 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
596 default:
597 return "Unknown shader";
598 };
599 }
600
601 void
602 radv_shader_dump_stats(struct radv_device *device,
603 struct radv_shader_variant *variant,
604 gl_shader_stage stage,
605 FILE *file)
606 {
607 unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
608 struct ac_shader_config *conf;
609 unsigned max_simd_waves;
610 unsigned lds_per_wave = 0;
611
612 switch (device->physical_device->rad_info.family) {
613 /* These always have 8 waves: */
614 case CHIP_POLARIS10:
615 case CHIP_POLARIS11:
616 case CHIP_POLARIS12:
617 max_simd_waves = 8;
618 break;
619 default:
620 max_simd_waves = 10;
621 }
622
623 conf = &variant->config;
624
625 if (stage == MESA_SHADER_FRAGMENT) {
626 lds_per_wave = conf->lds_size * lds_increment +
627 align(variant->info.fs.num_interp * 48,
628 lds_increment);
629 }
630
631 if (conf->num_sgprs) {
632 if (device->physical_device->rad_info.chip_class >= VI)
633 max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
634 else
635 max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
636 }
637
638 if (conf->num_vgprs)
639 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
640
641 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
642 * that PS can use.
643 */
644 if (lds_per_wave)
645 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
646
647 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
648
649 if (stage == MESA_SHADER_FRAGMENT) {
650 fprintf(file, "*** SHADER CONFIG ***\n"
651 "SPI_PS_INPUT_ADDR = 0x%04x\n"
652 "SPI_PS_INPUT_ENA = 0x%04x\n",
653 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
654 }
655
656 fprintf(file, "*** SHADER STATS ***\n"
657 "SGPRS: %d\n"
658 "VGPRS: %d\n"
659 "Spilled SGPRs: %d\n"
660 "Spilled VGPRs: %d\n"
661 "Code Size: %d bytes\n"
662 "LDS: %d blocks\n"
663 "Scratch: %d bytes per wave\n"
664 "Max Waves: %d\n"
665 "********************\n\n\n",
666 conf->num_sgprs, conf->num_vgprs,
667 conf->spilled_sgprs, conf->spilled_vgprs, variant->code_size,
668 conf->lds_size, conf->scratch_bytes_per_wave,
669 max_simd_waves);
670 }