radv: dump SPIRV when a GPU hang is detected
[mesa.git] / src / amd / vulkan / radv_shader.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "nir/nir.h"
34 #include "nir/nir_builder.h"
35 #include "spirv/nir_spirv.h"
36
37 #include <llvm-c/Core.h>
38 #include <llvm-c/TargetMachine.h>
39
40 #include "sid.h"
41 #include "gfx9d.h"
42 #include "r600d_common.h"
43 #include "ac_binary.h"
44 #include "ac_llvm_util.h"
45 #include "ac_nir_to_llvm.h"
46 #include "vk_format.h"
47 #include "util/debug.h"
48 #include "ac_exp_param.h"
49
50 static const struct nir_shader_compiler_options nir_options = {
51 .vertex_id_zero_based = true,
52 .lower_scmp = true,
53 .lower_flrp32 = true,
54 .lower_fsat = true,
55 .lower_fdiv = true,
56 .lower_sub = true,
57 .lower_pack_snorm_2x16 = true,
58 .lower_pack_snorm_4x8 = true,
59 .lower_pack_unorm_2x16 = true,
60 .lower_pack_unorm_4x8 = true,
61 .lower_unpack_snorm_2x16 = true,
62 .lower_unpack_snorm_4x8 = true,
63 .lower_unpack_unorm_2x16 = true,
64 .lower_unpack_unorm_4x8 = true,
65 .lower_extract_byte = true,
66 .lower_extract_word = true,
67 .max_unroll_iterations = 32
68 };
69
70 VkResult radv_CreateShaderModule(
71 VkDevice _device,
72 const VkShaderModuleCreateInfo* pCreateInfo,
73 const VkAllocationCallbacks* pAllocator,
74 VkShaderModule* pShaderModule)
75 {
76 RADV_FROM_HANDLE(radv_device, device, _device);
77 struct radv_shader_module *module;
78
79 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
80 assert(pCreateInfo->flags == 0);
81
82 module = vk_alloc2(&device->alloc, pAllocator,
83 sizeof(*module) + pCreateInfo->codeSize, 8,
84 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
85 if (module == NULL)
86 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
87
88 module->nir = NULL;
89 module->size = pCreateInfo->codeSize;
90 memcpy(module->data, pCreateInfo->pCode, module->size);
91
92 _mesa_sha1_compute(module->data, module->size, module->sha1);
93
94 *pShaderModule = radv_shader_module_to_handle(module);
95
96 return VK_SUCCESS;
97 }
98
99 void radv_DestroyShaderModule(
100 VkDevice _device,
101 VkShaderModule _module,
102 const VkAllocationCallbacks* pAllocator)
103 {
104 RADV_FROM_HANDLE(radv_device, device, _device);
105 RADV_FROM_HANDLE(radv_shader_module, module, _module);
106
107 if (!module)
108 return;
109
110 vk_free2(&device->alloc, pAllocator, module);
111 }
112
113 static void
114 radv_optimize_nir(struct nir_shader *shader)
115 {
116 bool progress;
117
118 do {
119 progress = false;
120
121 NIR_PASS_V(shader, nir_lower_vars_to_ssa);
122 NIR_PASS_V(shader, nir_lower_64bit_pack);
123 NIR_PASS_V(shader, nir_lower_alu_to_scalar);
124 NIR_PASS_V(shader, nir_lower_phis_to_scalar);
125
126 NIR_PASS(progress, shader, nir_copy_prop);
127 NIR_PASS(progress, shader, nir_opt_remove_phis);
128 NIR_PASS(progress, shader, nir_opt_dce);
129 if (nir_opt_trivial_continues(shader)) {
130 progress = true;
131 NIR_PASS(progress, shader, nir_copy_prop);
132 NIR_PASS(progress, shader, nir_opt_remove_phis);
133 NIR_PASS(progress, shader, nir_opt_dce);
134 }
135 NIR_PASS(progress, shader, nir_opt_if);
136 NIR_PASS(progress, shader, nir_opt_dead_cf);
137 NIR_PASS(progress, shader, nir_opt_cse);
138 NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
139 NIR_PASS(progress, shader, nir_opt_algebraic);
140 NIR_PASS(progress, shader, nir_opt_constant_folding);
141 NIR_PASS(progress, shader, nir_opt_undef);
142 NIR_PASS(progress, shader, nir_opt_conditional_discard);
143 if (shader->options->max_unroll_iterations) {
144 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
145 }
146 } while (progress);
147 }
148
149 nir_shader *
150 radv_shader_compile_to_nir(struct radv_device *device,
151 struct radv_shader_module *module,
152 const char *entrypoint_name,
153 gl_shader_stage stage,
154 const VkSpecializationInfo *spec_info)
155 {
156 if (strcmp(entrypoint_name, "main") != 0) {
157 radv_finishme("Multiple shaders per module not really supported");
158 }
159
160 nir_shader *nir;
161 nir_function *entry_point;
162 if (module->nir) {
163 /* Some things such as our meta clear/blit code will give us a NIR
164 * shader directly. In that case, we just ignore the SPIR-V entirely
165 * and just use the NIR shader */
166 nir = module->nir;
167 nir->options = &nir_options;
168 nir_validate_shader(nir);
169
170 assert(exec_list_length(&nir->functions) == 1);
171 struct exec_node *node = exec_list_get_head(&nir->functions);
172 entry_point = exec_node_data(nir_function, node, node);
173 } else {
174 uint32_t *spirv = (uint32_t *) module->data;
175 assert(module->size % 4 == 0);
176
177 if (device->debug_flags & RADV_DEBUG_DUMP_SPIRV)
178 radv_print_spirv(spirv, module->size, stderr);
179
180 uint32_t num_spec_entries = 0;
181 struct nir_spirv_specialization *spec_entries = NULL;
182 if (spec_info && spec_info->mapEntryCount > 0) {
183 num_spec_entries = spec_info->mapEntryCount;
184 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
185 for (uint32_t i = 0; i < num_spec_entries; i++) {
186 VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
187 const void *data = spec_info->pData + entry.offset;
188 assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
189
190 spec_entries[i].id = spec_info->pMapEntries[i].constantID;
191 if (spec_info->dataSize == 8)
192 spec_entries[i].data64 = *(const uint64_t *)data;
193 else
194 spec_entries[i].data32 = *(const uint32_t *)data;
195 }
196 }
197 const struct nir_spirv_supported_extensions supported_ext = {
198 .draw_parameters = true,
199 .float64 = true,
200 .image_read_without_format = true,
201 .image_write_without_format = true,
202 .tessellation = true,
203 .int64 = true,
204 .multiview = true,
205 .variable_pointers = true,
206 };
207 entry_point = spirv_to_nir(spirv, module->size / 4,
208 spec_entries, num_spec_entries,
209 stage, entrypoint_name, &supported_ext, &nir_options);
210 nir = entry_point->shader;
211 assert(nir->stage == stage);
212 nir_validate_shader(nir);
213
214 free(spec_entries);
215
216 /* We have to lower away local constant initializers right before we
217 * inline functions. That way they get properly initialized at the top
218 * of the function and not at the top of its caller.
219 */
220 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
221 NIR_PASS_V(nir, nir_lower_returns);
222 NIR_PASS_V(nir, nir_inline_functions);
223
224 /* Pick off the single entrypoint that we want */
225 foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
226 if (func != entry_point)
227 exec_node_remove(&func->node);
228 }
229 assert(exec_list_length(&nir->functions) == 1);
230 entry_point->name = ralloc_strdup(entry_point, "main");
231
232 NIR_PASS_V(nir, nir_remove_dead_variables,
233 nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
234
235 /* Now that we've deleted all but the main function, we can go ahead and
236 * lower the rest of the constant initializers.
237 */
238 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
239 NIR_PASS_V(nir, nir_lower_system_values);
240 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
241 }
242
243 /* Vulkan uses the separate-shader linking model */
244 nir->info.separate_shader = true;
245
246 nir_shader_gather_info(nir, entry_point->impl);
247
248 nir_variable_mode indirect_mask = 0;
249 indirect_mask |= nir_var_shader_in;
250 indirect_mask |= nir_var_local;
251
252 nir_lower_indirect_derefs(nir, indirect_mask);
253
254 static const nir_lower_tex_options tex_options = {
255 .lower_txp = ~0,
256 };
257
258 nir_lower_tex(nir, &tex_options);
259
260 nir_lower_vars_to_ssa(nir);
261 nir_lower_var_copies(nir);
262 nir_lower_global_vars_to_local(nir);
263 nir_remove_dead_variables(nir, nir_var_local);
264 radv_optimize_nir(nir);
265
266 if (device->debug_flags & RADV_DEBUG_DUMP_SHADERS)
267 nir_print_shader(nir, stderr);
268
269 return nir;
270 }
271
272 void *
273 radv_alloc_shader_memory(struct radv_device *device,
274 struct radv_shader_variant *shader)
275 {
276 mtx_lock(&device->shader_slab_mutex);
277 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
278 uint64_t offset = 0;
279 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
280 if (s->bo_offset - offset >= shader->code_size) {
281 shader->bo = slab->bo;
282 shader->bo_offset = offset;
283 list_addtail(&shader->slab_list, &s->slab_list);
284 mtx_unlock(&device->shader_slab_mutex);
285 return slab->ptr + offset;
286 }
287 offset = align_u64(s->bo_offset + s->code_size, 256);
288 }
289 if (slab->size - offset >= shader->code_size) {
290 shader->bo = slab->bo;
291 shader->bo_offset = offset;
292 list_addtail(&shader->slab_list, &slab->shaders);
293 mtx_unlock(&device->shader_slab_mutex);
294 return slab->ptr + offset;
295 }
296 }
297
298 mtx_unlock(&device->shader_slab_mutex);
299 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));
300
301 slab->size = 256 * 1024;
302 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
303 RADEON_DOMAIN_VRAM, 0);
304 slab->ptr = (char*)device->ws->buffer_map(slab->bo);
305 list_inithead(&slab->shaders);
306
307 mtx_lock(&device->shader_slab_mutex);
308 list_add(&slab->slabs, &device->shader_slabs);
309
310 shader->bo = slab->bo;
311 shader->bo_offset = 0;
312 list_add(&shader->slab_list, &slab->shaders);
313 mtx_unlock(&device->shader_slab_mutex);
314 return slab->ptr;
315 }
316
317 void
318 radv_destroy_shader_slabs(struct radv_device *device)
319 {
320 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
321 device->ws->buffer_destroy(slab->bo);
322 free(slab);
323 }
324 mtx_destroy(&device->shader_slab_mutex);
325 }
326
327 static void
328 radv_fill_shader_variant(struct radv_device *device,
329 struct radv_shader_variant *variant,
330 struct ac_shader_binary *binary,
331 gl_shader_stage stage)
332 {
333 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
334 unsigned vgpr_comp_cnt = 0;
335
336 if (scratch_enabled && !device->llvm_supports_spill)
337 radv_finishme("shader scratch support only available with LLVM 4.0");
338
339 variant->code_size = binary->code_size;
340 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
341 S_00B12C_SCRATCH_EN(scratch_enabled);
342
343 switch (stage) {
344 case MESA_SHADER_TESS_EVAL:
345 vgpr_comp_cnt = 3;
346 /* fallthrough */
347 case MESA_SHADER_TESS_CTRL:
348 variant->rsrc2 |= S_00B42C_OC_LDS_EN(1);
349 break;
350 case MESA_SHADER_VERTEX:
351 case MESA_SHADER_GEOMETRY:
352 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
353 break;
354 case MESA_SHADER_FRAGMENT:
355 break;
356 case MESA_SHADER_COMPUTE:
357 variant->rsrc2 |=
358 S_00B84C_TGID_X_EN(1) | S_00B84C_TGID_Y_EN(1) |
359 S_00B84C_TGID_Z_EN(1) | S_00B84C_TIDIG_COMP_CNT(2) |
360 S_00B84C_TG_SIZE_EN(1) |
361 S_00B84C_LDS_SIZE(variant->config.lds_size);
362 break;
363 default:
364 unreachable("unsupported shader type");
365 break;
366 }
367
368 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
369 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
370 S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
371 S_00B848_DX10_CLAMP(1) |
372 S_00B848_FLOAT_MODE(variant->config.float_mode);
373
374 void *ptr = radv_alloc_shader_memory(device, variant);
375 memcpy(ptr, binary->code, binary->code_size);
376 }
377
378 static struct radv_shader_variant *
379 shader_variant_create(struct radv_device *device,
380 struct radv_shader_module *module,
381 struct nir_shader *shader,
382 gl_shader_stage stage,
383 struct ac_nir_compiler_options *options,
384 bool gs_copy_shader,
385 void **code_out,
386 unsigned *code_size_out)
387 {
388 enum radeon_family chip_family = device->physical_device->rad_info.family;
389 bool dump_shaders = device->debug_flags & RADV_DEBUG_DUMP_SHADERS;
390 enum ac_target_machine_options tm_options = 0;
391 struct radv_shader_variant *variant;
392 struct ac_shader_binary binary;
393 LLVMTargetMachineRef tm;
394
395 variant = calloc(1, sizeof(struct radv_shader_variant));
396 if (!variant)
397 return NULL;
398
399 options->family = chip_family;
400 options->chip_class = device->physical_device->rad_info.chip_class;
401
402 if (options->supports_spill)
403 tm_options |= AC_TM_SUPPORTS_SPILL;
404 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
405 tm_options |= AC_TM_SISCHED;
406 tm = ac_create_target_machine(chip_family, tm_options);
407
408 if (gs_copy_shader) {
409 ac_create_gs_copy_shader(tm, shader, &binary, &variant->config,
410 &variant->info, options, dump_shaders);
411 } else {
412 ac_compile_nir_shader(tm, &binary, &variant->config,
413 &variant->info, shader, options,
414 dump_shaders);
415 }
416
417 LLVMDisposeTargetMachine(tm);
418
419 radv_fill_shader_variant(device, variant, &binary, stage);
420
421 if (code_out) {
422 *code_out = binary.code;
423 *code_size_out = binary.code_size;
424 } else
425 free(binary.code);
426 free(binary.config);
427 free(binary.rodata);
428 free(binary.global_symbol_offsets);
429 free(binary.relocs);
430 variant->ref_count = 1;
431
432 if (device->trace_bo) {
433 variant->disasm_string = binary.disasm_string;
434 if (!gs_copy_shader && !module->nir) {
435 variant->nir = shader;
436 variant->spirv = (uint32_t *)module->data;
437 variant->spirv_size = module->size;
438 }
439 } else {
440 free(binary.disasm_string);
441 }
442
443 return variant;
444 }
445
446 struct radv_shader_variant *
447 radv_shader_variant_create(struct radv_device *device,
448 struct radv_shader_module *module,
449 struct nir_shader *shader,
450 struct radv_pipeline_layout *layout,
451 const struct ac_shader_variant_key *key,
452 void **code_out,
453 unsigned *code_size_out)
454 {
455 struct ac_nir_compiler_options options = {0};
456
457 options.layout = layout;
458 if (key)
459 options.key = *key;
460
461 options.unsafe_math = !!(device->debug_flags & RADV_DEBUG_UNSAFE_MATH);
462 options.supports_spill = device->llvm_supports_spill;
463
464 return shader_variant_create(device, module, shader, shader->stage,
465 &options, false, code_out, code_size_out);
466 }
467
468 struct radv_shader_variant *
469 radv_create_gs_copy_shader(struct radv_device *device,
470 struct nir_shader *shader,
471 void **code_out,
472 unsigned *code_size_out,
473 bool multiview)
474 {
475 struct ac_nir_compiler_options options = {0};
476
477 options.key.has_multiview_view_index = multiview;
478
479 return shader_variant_create(device, NULL, shader, MESA_SHADER_VERTEX,
480 &options, true, code_out, code_size_out);
481 }
482
483 void
484 radv_shader_variant_destroy(struct radv_device *device,
485 struct radv_shader_variant *variant)
486 {
487 if (!p_atomic_dec_zero(&variant->ref_count))
488 return;
489
490 mtx_lock(&device->shader_slab_mutex);
491 list_del(&variant->slab_list);
492 mtx_unlock(&device->shader_slab_mutex);
493
494 ralloc_free(variant->nir);
495 free(variant->disasm_string);
496 free(variant);
497 }
498
499 uint32_t
500 radv_shader_stage_to_user_data_0(gl_shader_stage stage, bool has_gs,
501 bool has_tess)
502 {
503 switch (stage) {
504 case MESA_SHADER_FRAGMENT:
505 return R_00B030_SPI_SHADER_USER_DATA_PS_0;
506 case MESA_SHADER_VERTEX:
507 if (has_tess)
508 return R_00B530_SPI_SHADER_USER_DATA_LS_0;
509 else
510 return has_gs ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B130_SPI_SHADER_USER_DATA_VS_0;
511 case MESA_SHADER_GEOMETRY:
512 return R_00B230_SPI_SHADER_USER_DATA_GS_0;
513 case MESA_SHADER_COMPUTE:
514 return R_00B900_COMPUTE_USER_DATA_0;
515 case MESA_SHADER_TESS_CTRL:
516 return R_00B430_SPI_SHADER_USER_DATA_HS_0;
517 case MESA_SHADER_TESS_EVAL:
518 if (has_gs)
519 return R_00B330_SPI_SHADER_USER_DATA_ES_0;
520 else
521 return R_00B130_SPI_SHADER_USER_DATA_VS_0;
522 default:
523 unreachable("unknown shader");
524 }
525 }
526
527 const char *
528 radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
529 {
530 switch (stage) {
531 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
532 case MESA_SHADER_GEOMETRY: return "Geometry Shader";
533 case MESA_SHADER_FRAGMENT: return "Pixel Shader";
534 case MESA_SHADER_COMPUTE: return "Compute Shader";
535 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
536 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
537 default:
538 return "Unknown shader";
539 };
540 }
541
542 void
543 radv_shader_dump_stats(struct radv_device *device,
544 struct radv_shader_variant *variant,
545 gl_shader_stage stage,
546 FILE *file)
547 {
548 unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
549 struct ac_shader_config *conf;
550 unsigned max_simd_waves;
551 unsigned lds_per_wave = 0;
552
553 switch (device->physical_device->rad_info.family) {
554 /* These always have 8 waves: */
555 case CHIP_POLARIS10:
556 case CHIP_POLARIS11:
557 case CHIP_POLARIS12:
558 max_simd_waves = 8;
559 break;
560 default:
561 max_simd_waves = 10;
562 }
563
564 conf = &variant->config;
565
566 if (stage == MESA_SHADER_FRAGMENT) {
567 lds_per_wave = conf->lds_size * lds_increment +
568 align(variant->info.fs.num_interp * 48,
569 lds_increment);
570 }
571
572 if (conf->num_sgprs) {
573 if (device->physical_device->rad_info.chip_class >= VI)
574 max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
575 else
576 max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
577 }
578
579 if (conf->num_vgprs)
580 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
581
582 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
583 * that PS can use.
584 */
585 if (lds_per_wave)
586 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
587
588 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));
589
590 if (stage == MESA_SHADER_FRAGMENT) {
591 fprintf(file, "*** SHADER CONFIG ***\n"
592 "SPI_PS_INPUT_ADDR = 0x%04x\n"
593 "SPI_PS_INPUT_ENA = 0x%04x\n",
594 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
595 }
596
597 fprintf(file, "*** SHADER STATS ***\n"
598 "SGPRS: %d\n"
599 "VGPRS: %d\n"
600 "Spilled SGPRs: %d\n"
601 "Spilled VGPRs: %d\n"
602 "Code Size: %d bytes\n"
603 "LDS: %d blocks\n"
604 "Scratch: %d bytes per wave\n"
605 "Max Waves: %d\n"
606 "********************\n\n\n",
607 conf->num_sgprs, conf->num_vgprs,
608 conf->spilled_sgprs, conf->spilled_vgprs, variant->code_size,
609 conf->lds_size, conf->scratch_bytes_per_wave,
610 max_simd_waves);
611 }